WO2016141540A1 - 协作译码的方法和、基站和用户设备 - Google Patents

协作译码的方法和、基站和用户设备 Download PDF

Info

Publication number
WO2016141540A1
WO2016141540A1 PCT/CN2015/073900 CN2015073900W WO2016141540A1 WO 2016141540 A1 WO2016141540 A1 WO 2016141540A1 CN 2015073900 W CN2015073900 W CN 2015073900W WO 2016141540 A1 WO2016141540 A1 WO 2016141540A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
decoding
data
decoded
information
Prior art date
Application number
PCT/CN2015/073900
Other languages
English (en)
French (fr)
Inventor
卢磊
杨辉联
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580077452.2A priority Critical patent/CN107409108B/zh
Priority to PCT/CN2015/073900 priority patent/WO2016141540A1/zh
Publication of WO2016141540A1 publication Critical patent/WO2016141540A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • Embodiments of the present invention relate to the field of mobile communication technologies, and in particular, to a method and a base station and a user equipment for cooperative coding.
  • Orthogonal multiple access includes, for example, time division multiple access, frequency division multiple access and code division multiple access, non-orthogonal multiple access, non-orthogonal multiple access mode can improve communication system Throughput.
  • the same resource eg, time-frequency resource
  • Non-orthogonal multiple access technology superimposes M (M is an integer not less than 1) data streams from one or more users onto N (N is an integer not less than 1) subcarriers, each of which transmits Each data of the data stream can be spread to N subcarriers by sparse spreading.
  • Non-orthogonal multiple access technology has the problem of high decoding complexity while bringing gain.
  • the user equipment is limited by the size/size and the like, and cannot achieve the computing power on the base station side.
  • the present invention provides a method for cooperative coding, a base station, and a user equipment, which can improve the processing capability of a terminal in a non-orthogonal multiple access scenario.
  • a decoding method based on terminal cooperation including: acquiring, by a first user equipment, decoding information of a second user equipment, and acquiring first data to be decoded in data to be decoded of the second user equipment And the decoding information is used to decode the first to-be-decoded data, the first user equipment is one of the at least one user equipment that the cooperative second user equipment decodes the data to be decoded, the first user equipment and the second
  • the user equipment communicates with the base station by using a non-orthogonal multiple access method; the first user equipment decodes the first data to be decoded according to the decoding information, to obtain first decoded data; and the first user equipment sends the second user to the second user.
  • the device transmits the first decoded data.
  • the first user equipment acquires the decoding information of the second user equipment, and acquires the first data to be decoded in the data to be decoded of the second user equipment, including: The user equipment acquires the decoding information sent by the base station, and acquires the first data to be decoded sent by the second user equipment.
  • the method of the first aspect further includes: the first user equipment receives the first message sent by the base station, where the first message is used to notify the first user equipment to report the cooperative decoding.
  • Information of capability the first user equipment reports information of the capability of cooperative coding to the base station, so that the base station determines the cooperation set according to the information of the capability of cooperative coding, where the cooperation set includes at least one user equipment, where the first user equipment acquires the base station to send
  • the decoding information includes: the first user equipment receives decoding information of the user equipment in the cooperative set broadcasted or multicast by the base station.
  • the first user equipment acquires the decoding information of the second user equipment, and acquires the first data to be decoded in the data to be decoded of the second user equipment, including The first user equipment acquires the decoding information sent by the second user equipment; the first user equipment acquires the first data to be decoded sent by the second user equipment.
  • the first user equipment and the second user equipment are multiplexed with the same time-frequency resource, and the first user equipment acquires the decoding information of the second user equipment, and acquires the second
  • the first data to be decoded in the data to be decoded of the user equipment includes: the first user equipment acquires the decoding information sent by the second user equipment; and the first user equipment acquires the first data to be decoded sent by the second user equipment.
  • Time-frequency resource location information; the first user equipment acquires first to-be-decoded data sent by the base station according to the time-frequency resource location information.
  • the first user equipment acquires the decoding information sent by the second user equipment, where the first user equipment receives the second user equipment and sends the a second message, configured to request the first user equipment to cooperate with the second user equipment for decoding, where the second message carries the size of the decoding information and the first data to be decoded, where the decoding method further includes: the first user equipment And determining, by the size of the first to-be-decoded data, the cooperative second user equipment to perform decoding; the first user equipment sends a third message to the second user equipment, to confirm that the coordinated second user equipment performs decoding.
  • the decoding method before the first user equipment receives the second message sent by the second user equipment, the decoding method further includes: the first user equipment receives the second user a fourth message sent by the device, where the fourth message is used to notify the first user equipment of the capability of the cooperative decoding capability; the first user equipment reports the information of the capability of the cooperative decoding to the first user equipment, so that the second user equipment The information of the ability to cooperatively decode determines that the first user equipment cooperates with the second user equipment for decoding.
  • the decoding information is a codebook used by the first data to be decoded, and the first data to be decoded is transmitted between the first user equipment and the base station.
  • the first to-be-decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the decoding information includes a power allocation factor used by the first to-be-decoded data, and the first user equipment and the base station transmit the first to-be-decoded In the case of data, the first to-be-decoded data is multiplexed with the same time-frequency resource based on the power allocation factor and the at least one data stream.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the base station.
  • Multiple input and output MIMO transmissions are implemented between a plurality of transmit antennas and a plurality of receive antennas formed by antennas of the second user equipment and the at least one user equipment.
  • a second aspect provides a decoding method based on terminal cooperation, including: receiving, by a second user equipment, first decoded data sent by a first user equipment, where the first user equipment is to be decoded by the second user equipment.
  • the first user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access method, and the decoding information is used to decode the first data to be decoded, and the second user equipment is
  • a decoded data obtains decoded data corresponding to the data to be decoded.
  • the method of the second aspect further includes: the second user equipment sends the first to-be-decoded data to the first user equipment.
  • the method of the second aspect further includes: before the second user equipment sends the first data to be decoded to the first user equipment, the second user equipment receives the The third message is used to indicate a collaboration set, where the cooperation set includes at least one user equipment; and the second user equipment determines, according to the third message, that the first user equipment cooperates with the second user equipment for decoding.
  • the method of the second aspect further includes: the second user equipment sends the decoding information to the first user equipment; the second user equipment sends the first waiting to the first user equipment Decode the data.
  • the first user equipment and the second user equipment are multiplexed with the same time-frequency resource
  • the method of the second aspect further includes: the second user equipment is used by the first user equipment The user equipment sends the decoding information; the second user equipment sends the time-frequency resource location information of the first to-be-decoded data to the first user equipment.
  • the second user equipment sends the decoding information to the first user equipment, including: the second user equipment to the first user equipment Sending a second message, requesting the first user equipment to cooperate with the second user equipment for decoding, where the second message carries the size of the decoding information and the first data to be decoded, where the method of the second aspect further includes: The second user equipment receives the third message sent by the first user equipment, and the third message is used to confirm that the second user equipment cooperates to perform decoding.
  • the method of the second aspect further includes: before the second user equipment sends the second message to the first user equipment, the second user equipment Sending, to the first user equipment, a fourth message, the fourth message is used to notify the first user equipment of the information of the capability of the cooperative decoding; the second user equipment receives the information of the capability of the cooperative decoding reported by the first user equipment; The user equipment determines that the first user equipment cooperates with the second user equipment for decoding according to the information of the capability of cooperative decoding.
  • the decoding information is a codebook used by the first data to be decoded, and the first user equipment and the base station transmit the first
  • the first to-be-decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the decoding information includes a power allocation factor used by the first data to be decoded, and the first user equipment and the base station transmit the first When the data is to be decoded, the first to-be-decoded data is multiplexed with the same time-frequency resource according to the power allocation factor and the at least one data stream.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to enable translation
  • the code data implements multiple input and output MIMO transmission between a plurality of transmit antennas of the base station and a plurality of receive antennas of the second user equipment and antennas of the at least one user equipment.
  • a third aspect provides a decoding method based on terminal cooperation, including: a base station sending a first message to at least one first user equipment, where the first message is used to notify at least one first user equipment of the capability of reporting cooperative decoding.
  • Information the base station receives information of at least one capability of cooperative decoding reported by the first user equipment; and the base station decodes information of the at least one user equipment that is broadcast or multicast according to the information of the capability of the cooperative decoding reported by the first user equipment, So that at least one first user device is in accordance with the The decoding information of the two user equipments is to be decoded; the base station sends a third message to the second user equipment, where the third message is used to indicate the collaboration set, and the cooperation set information includes at least one user equipment.
  • the coding information is a codebook used by the first data to be decoded, and the first to be decoded is transmitted between the first user equipment and the base station, and the first to be decoded
  • the decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the decoding information includes a power allocation factor used by the first data to be decoded, and the first user equipment and the base station transmit the first data to be decoded, first The data to be decoded is multiplexed with the same time-frequency resource as the at least one data stream based on the power allocation factor.
  • the coding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at multiple transmit antennas of the base station.
  • Multiple input and output MIMO transmissions are implemented between a plurality of receive antennas formed by antennas of the second user equipment and the at least one user equipment.
  • a fourth aspect provides a user equipment, including: an obtaining module, configured to acquire decoding information of a second user equipment, and acquire first data to be decoded in data to be decoded of the second user equipment, where The code information is used to decode the first to-be-decoded data, and the user equipment is one of the at least one user equipment that the cooperative second user equipment decodes the data to be decoded, and the user equipment and the second user equipment adopt non-orthogonal multiple
  • the address access mode is in communication with the base station; the decoding module is configured to decode the first to-be-decoded data according to the decoding information to obtain the first decoded data, and the sending module is configured to send the first to the second user equipment Decode the data.
  • the acquiring module acquires the decoding information sent by the base station, and acquires the first to-be-decoded data sent by the second user equipment.
  • the acquiring module further receives a first message sent by the base station, where the first message is used to notify the user equipment of information about the capability of the cooperative decoding, and the sending module is further configured to send the base station to the base station.
  • the cooperation set includes at least one user equipment, wherein the acquisition module receives the decoding information of the user equipment in the cooperative set broadcasted or multicast by the base station .
  • the acquiring module acquires the decoding information sent by the second user equipment, and acquires the first to-be-decoded data sent by the second user equipment.
  • the user equipment and the second user equipment are multiplexed with the same time-frequency resource
  • the acquiring module acquires the decoding information sent by the second user equipment, and obtains the first The time-frequency resource location information of the first to-be-decoded data sent by the user equipment, and the user equipment acquires the first to-be-decoded data sent by the base station according to the time-frequency resource location information.
  • the acquiring module receives the second message sent by the second user equipment, and is configured to request the user equipment to cooperate with the second user equipment.
  • Decoding wherein the second message carries the size of the decoding information and the first data to be decoded
  • the user equipment further includes: a determining module, configured to determine, according to the size of the first data to be decoded, the cooperative second user equipment to perform translation
  • the sending module is further configured to send a third message to the second user equipment, to confirm that the second user equipment is cooperating for decoding.
  • the acquiring module before receiving the second message sent by the second user equipment, further receiving the fourth message sent by the second user equipment, The fourth message is used to notify the user equipment of the information of the capability of the cooperative decoding, and the sending module is further configured to report the information of the capability of the cooperative decoding to the user equipment, so that the second user equipment determines the user equipment according to the information of the capability of the cooperative decoding. Cooperating the second user equipment for decoding.
  • the decoding information is used by the first to be decoded data, and the first to be decoded is transmitted between the user equipment and the base station.
  • the first to-be-decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the decoding information includes a power allocation factor used by the first to-be-decoded data, and the first to be transmitted between the user equipment and the base station
  • the first to-be-decoded data is multiplexed with the same time-frequency resource based on the power allocation factor and the at least one data stream.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the base station.
  • Multiple input and output MIMO transmissions are implemented between a plurality of transmit antennas and a plurality of receive antennas formed by antennas of the second user equipment and the at least one user equipment.
  • a fifth aspect provides a user equipment, including: a receiving module, configured to receive first decoded data sent by a user equipment, where the first user equipment is at least one user equipment that is used by the cooperative user equipment to decode the data to be decoded.
  • the first decoding data is obtained by decoding, by the first user equipment, the first to-be-decoded data in the data to be decoded of the user equipment according to the decoding information of the user equipment, where the first user equipment and the user equipment are used.
  • the non-orthogonal multiple access mode communicates with the base station, the decoding information is used to decode the first data to be decoded, and the decoding module is configured to obtain the data according to the first decoding.
  • the decoded data corresponding to the data to be decoded.
  • the user equipment of the fifth aspect further includes: a sending module, configured to send the first to-be-decoded data to the first user equipment.
  • the receiving module before the user equipment sends the first to-be-decoded data to the first user equipment, the receiving module further receives a third message sent by the base station, where the third message is used to indicate collaboration.
  • the set, the collaboration set includes at least one user equipment, where the user equipment further includes: a determining module, configured to determine, according to the third message, that the first user equipment cooperates with the user equipment for decoding.
  • the user equipment of the fifth aspect further includes: a sending module, configured to send the decoding information to the first user equipment, and send the first to-be-translated to the first user equipment Code data.
  • the first user equipment and the user equipment are multiplexed with the same time-frequency resource
  • the user equipment further includes: a sending module, configured to send the decoding information to the first user equipment, And transmitting, to the first user equipment, time-frequency resource location information of the first to-be-decoded data.
  • the sending module sends a second message to the first user equipment, to request the first user equipment to cooperate with the user equipment for decoding
  • the second message carries the size of the decoding information and the first to-be-decoded data
  • the receiving module further receives a third message sent by the first user equipment, where the third message is used to confirm that the coordinated user equipment performs decoding.
  • the sending module sends a fourth message to the first user equipment, before the user equipment sends the second message to the first user equipment, The fourth message is used to notify the first user equipment of the information of the capability of the cooperative decoding, wherein the receiving module further receives the information of the capability of the cooperative decoding reported by the first user equipment, wherein the user equipment further includes: a determining module, configured to: The first user equipment cooperative user equipment is determined to be decoded according to the information of the capability of cooperative decoding.
  • the decoding information is used by the first to-be-decoded data, and the first to be decoded is transmitted between the user equipment and the base station.
  • the first to-be-decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the decoding information includes a power allocation factor used by the first data to be decoded, the user equipment and the base station When the first to-be-decoded data is transmitted, the first to-be-decoded data is multiplexed with the same time-frequency resource according to the power allocation factor and the at least one data stream.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to enable translation
  • the code data implements multiple input and output MIMO transmission between a plurality of transmit antennas of the base station and a plurality of receive antennas formed by the user equipment and the antenna of the at least one user equipment.
  • a base station including: a sending module, configured to send, to the at least one first user equipment, a first message, where the first message is used to notify at least one first user equipment of information about a capability of cooperative decoding; a receiving module, configured to receive information of at least one capability of cooperative decoding reported by the first user equipment, where the sending module broadcasts or multicasts at least information according to the capability of the cooperative decoding reported by the first user equipment Decoding information of a user equipment, so that at least one first user equipment decodes the data to be decoded according to the decoding information of the second user equipment, and sends a third message to the second user equipment, where the third message is used to indicate cooperation
  • the set, the collaboration set information includes at least one user device.
  • the decoding information is a codebook used by the first data to be decoded, and the first to be decoded is transmitted when the first to be decoded data is transmitted between the user equipment and the base station.
  • the data is based on the codebook multiplexed with the same time-frequency resource as the at least one data stream.
  • the decoding information includes a power allocation factor used by the first data to be decoded, and the first to be translated when the first to-be-decoded data is transmitted between the user equipment and the base station
  • the code data is multiplexed with the same time-frequency resource as the at least one data stream based on the power allocation factor.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at multiple transmitting antennas of the base station.
  • Multiple input and output MIMO transmissions are implemented between a plurality of receive antennas formed by antennas of the second user equipment and the at least one user equipment.
  • the first user equipment may acquire a part of the data to be decoded of the second user equipment and the decoding information of the part of the data to be decoded, and decode the part of the data to be decoded according to the decoding information. And transmitting the decoding result to the second user equipment, thereby implementing cooperative decoding.
  • the first user equipment shares a part of the decoding work of the second user equipment, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time making the first user equipment be used reasonably and effectively.
  • FIG. 1 is a block diagram showing the structure of a communication system in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of cooperative coding according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for cooperative decoding according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method of cooperative coding according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a process of cooperative coding according to another embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a process of cooperative decoding in accordance with another embodiment of the present invention.
  • Figure 7 is a schematic diagram of the coding principle of SCMA.
  • FIG. 8 is a schematic flowchart of a process of cooperative decoding according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a process of cooperative decoding in accordance with another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • the base station can be used for communication with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access), or
  • the NB (NodeB, base station) in the WCDMA (Wideband Code Division Multiple Access) may be an eNB or an eNodeB (Evolved Node B) in LTE (Long Term Evolution).
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable programmable read-only memory), card, stick or key drive, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • each mobile terminal in the system has one or more collaboration partners.
  • the collaboration partners help their partners to transmit information while transmitting their own information, so that each terminal uses itself in the process of transmitting information.
  • the channel and the partner's channel thus obtaining a certain spatial diversity gain.
  • a source node may directly transmit information through a path between a source node and a destination node, and may also utilize cooperative diversity to form a virtual antenna array together with antennas on the relay node. In this way, each antenna transmits a signal of the source node to the destination node, and the virtual antenna array can be regarded as a virtual MIMO structure.
  • Embodiments of the present invention utilize terminal cooperation techniques to enhance the processing capabilities of terminals in non-orthogonal multiple access scenarios.
  • FIG. 1 is a block diagram showing the structure of a communication system in accordance with one embodiment of the present invention.
  • the wireless communication system 100 includes a base station 102 that can include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Base station 102 can additionally include a transmitter and a receiver, as will be understood by those of ordinary skill in the art, which can include various components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulator, Demultiplexer or antenna, etc.).
  • Base station 102 can communicate with one or more access terminals, such as access terminal 116 and access terminal 122. However, it will be appreciated that base station 102 can communicate with any number of access terminals similar to access terminal 116 or 122.
  • Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 transmitting information to access terminal 116 over forward link 118 and receiving information from access terminal 116 over reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and from reverse link 126. Access terminal 122 receives the information.
  • Base station 102, access terminal 116 or access terminal 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the non-orthogonal multiple access technology can be used to communicate through the air interface between the base station and the multiple UEs, and multiple UEs can communicate in the D2D mode.
  • multiple UEs communicate with the base station, the same time-frequency resources can be multiplexed.
  • non-orthogonal multiple access technology of the embodiments of the present invention may be an SCMA technology that multiplexes the same time-frequency resources in a code division manner, or may multiplex the same time-frequency resources in a power multiplexing manner.
  • the technology is not limited in this embodiment of the present invention, and other non-orthogonal multiple access technologies may also be used.
  • SCMA is a non-orthogonal multiple access technology.
  • SCMA is a non-orthogonal multiple access technology.
  • the technology uses a codebook to transmit multiple different data streams on the same transmission resource, wherein different data streams use different codebooks, thereby improving resource utilization.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the time-frequency resource can be divided into several orthogonal time-frequency resource blocks, and each time-frequency resource block contains L REs (Resource Elements).
  • the receiving end When the receiving end decodes, it can perform MPA (Message Passing Algorithm) iteration according to the codebook C k to obtain the data sent by the transmitting end.
  • MPA Message Passing Algorithm
  • Non-orthogonal air interface access allows multiple codewords to be superimposed on one system resource block.
  • the NOMA is a non-orthogonal multiple access technology.
  • NOMA non-orthogonal multiple access technology
  • SIC Serial Interference Cancellation
  • the SIC can distinguish signals of different users at the receiving end.
  • the basic principle of SIC is to gradually reduce the interference of the user with the largest signal power, SIC
  • the detector performs data decision on multiple users one by one in the received signal, and determines that one user simultaneously subtracts the multiple access interference (MAI) caused by the user signal, and operates according to the order of the signal power, and the power is larger. Take action. This continues to cycle until all of the multiple access interference is removed.
  • MAI multiple access interference
  • FIG. 2 is a schematic flow chart of a method of cooperative coding according to an embodiment of the present invention.
  • the method of Figure 2 is performed by the user equipment of Figure 1.
  • the method of Figure 2 includes the following.
  • the first user equipment acquires the decoding information of the second user equipment, and acquires the first to-be-decoded data in the to-be-decoded data of the second user equipment, where the decoding information is used to perform the first to-be-decoded data.
  • the first user equipment is one of at least one user equipment that cooperates with the second user equipment to decode the data to be decoded, and the first user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access method. .
  • the first user equipment decodes the first to-be-decoded data according to the decoding information, to obtain first decoded data.
  • the first user equipment sends the first decoded data to the second user equipment.
  • the user equipment can communicate with the base station using a non-orthogonal multiple access method (eg, NOMA or SCMA).
  • the data to be decoded is data (for example, NOMA encoded data or SCMA encoded data) obtained by the base station to encode data that needs to be sent to the second user equipment.
  • the second user equipment may perform cooperative coding on the data to be decoded by the at least one first user equipment, where the data to be decoded may be divided into multiple parts, and each first user equipment shares a part of the decoding work, each of the first After the user equipment performs cooperative decoding, the obtained decoding result is sent to the second user equipment, and the second user equipment performs subsequent processing.
  • the first user equipment may acquire a part of the data to be decoded of the second user equipment and the decoding information of the part of the data to be decoded, and decode the part of the data to be decoded according to the decoding information. And transmitting the decoding result to the second user equipment, thereby implementing cooperative decoding.
  • the first user equipment shares a part of the decoding work of the second user equipment, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time making the first user equipment be used reasonably and effectively.
  • the second user equipment and the first user equipment may communicate in a Device to Device (D2D) manner.
  • D2D Device to Device
  • the embodiment of the present invention is not limited thereto, for example, the second user equipment and the first user.
  • the device can also communicate via the base station.
  • the first user equipment acquires the translation sent by the base station. Code information, and acquiring first to-be-decoded data sent by the second user equipment.
  • the base station may allocate the decoding information to the user equipment in the coverage or in a certain set, and notify the user equipment of the decoding information, so that the first user equipment may receive the second user sent by the base station. Decoding information of the device. It should be understood that the base station may also set the user equipment capable of cooperating with other users to be set into one cooperation set, and only send the decoding information of the user equipment in the cooperation set to the user equipment in the cooperation set. The base station may send the encoded data to the second user equipment. After receiving the encoded data sent by the base station, the second user equipment first allocates a part of the data to the first user equipment, and then sends the part of the data to the first user equipment. In this way, the first user equipment can obtain data from the second user equipment that requires it to be cooperatively decoded.
  • the method of FIG. 2 further includes: the first user equipment receives a first message sent by the base station, where the first message is used to notify the first user equipment of information about the capability of the cooperative decoding;
  • the user equipment reports information about the capability of the cooperative decoding to the base station, so that the base station determines the cooperation set according to the information of the capability of the cooperative decoding, where the cooperation set includes the at least one user equipment, where the first user equipment acquires the decoding information sent by the base station,
  • the method includes: the first user equipment receives decoding information of the user equipment in the cooperative set broadcasted or multicast by the base station.
  • the base station may first obtain information about the capability of cooperative decoding reported by the user equipment under its coverage or within a certain set, including the computing power of the user equipment, the time period supporting the computing capability, and the user equipment. At least one of position and signal quality, and the like.
  • the base station can determine which user equipments have the ability to cooperate with other user equipments for decoding according to the information of the cooperative decoding capability of the user equipment. For example, if the signal quality of a certain user equipment is lower than a preset threshold, it is determined that the user equipment does not have the capability of cooperative decoding, or the cooperative decoding capability is relatively poor, otherwise the user equipment is determined to have the capability of cooperative decoding. Or cooperative decoding ability is better.
  • the user equipment in a certain range may be determined to have cooperative decoding capability according to the location of the user equipment. For example, if the distance between the coordinated user equipments is greater than a preset threshold, the capability of cooperative decoding is considered to be absent. . For another example, if the computing capability of a user equipment is higher than a preset threshold, the user equipment is considered to have the capability of cooperative decoding.
  • the embodiments of the present invention are not limited thereto, and those skilled in the art should understand that when determining whether a certain user equipment has the cooperative decoding capability, it may also be based on any combination of the above parameters. For example, the user determines that the user equipment has cooperative decoding capability when the computing power in a certain time period exceeds a preset threshold.
  • the base station may set the user equipment with cooperative decoding capability as a cooperation set, and notify all user equipments in the cooperation set of the decoding information of all user equipments, so that some of the cooperation sets are concentrated.
  • the user equipment performs cooperative decoding for other user equipments.
  • the base station can select a suitable user equipment for cooperative coding according to the capability of the cooperative decoding of the user equipment, so that the capability of the other user equipment participating in the collaboration can be obtained while enhancing the processing capability of the user equipment. Reasonable and effective use.
  • the first user equipment acquires the decoding information sent by the second user equipment, and the first user equipment acquires the first data to be decoded sent by the second user equipment.
  • the second user equipment After receiving the encoded data and the corresponding decoding information sent by the base station, the second user equipment first allocates a part of data to the first user equipment, and then sends the part of the data and the corresponding decoding information to the second user equipment. In this way, the first user equipment can obtain the data and decoding information that it needs to perform cooperative decoding directly from the second user equipment.
  • the first user equipment and the second user equipment multiplex the same time-frequency resource.
  • the first user equipment acquires the decoding information sent by the second user equipment, and the first user equipment acquires the time-frequency resource location information of the first to-be-decoded data sent by the second user equipment, where the first user equipment is based on the time-frequency.
  • the resource location information acquires first to-be-decoded data sent by the base station.
  • the second user equipment and the first user equipment may receive the encoded data sent by the base station to the second user equipment, and therefore, the second user The device only needs to inform the first user equipment of the time-frequency resource location information of the data that needs to be cooperatively decoded by the first user equipment, and the first user equipment can obtain the data that needs to be cooperatively decoded according to the time-frequency resource location information.
  • the second user equipment does not need to send data that needs to be cooperatively decoded by the first user equipment to the first user equipment, which improves resource utilization.
  • the first user equipment may also obtain time-frequency resource location information of the first to-be-decoded data directly from the base station.
  • the first user equipment acquires the decoding information sent by the second user equipment, where the first user equipment receives the second message sent by the second user equipment, and is used to request the first user equipment.
  • Cooperating with the second user equipment for decoding, where the second message carries the size of the decoding information and the first data to be decoded wherein the decoding method of FIG. 2 further includes: the first user equipment according to the first data to be decoded The size determining cooperates with the second user equipment for decoding; the first user equipment sends a third message to the second user equipment, for confirming that the cooperative second user equipment performs decoding.
  • the second user equipment After determining that the first user equipment has the cooperative coding capability, the second user equipment sends a cooperation decoding request message to the first user equipment, where the cooperation decoding request may carry the first requirement.
  • the size of the data that the user equipment performs cooperative decoding so that the first user equipment determines whether to provide cooperative decoding for the second user equipment according to the size of the data, for example, if the size of the data exceeds a preset threshold, the first user equipment
  • the cooperative decoding of the second user equipment may be refused to avoid affecting the data processing of the first user equipment.
  • the decoding method of FIG. 2 further includes: the first user equipment receives the fourth message sent by the second user equipment. And the fourth message is used to notify the first user equipment of the information of the capability of the cooperative decoding; the first user equipment reports the information of the capability of the cooperative decoding to the first user equipment, so that the second user equipment according to the capability of the cooperative decoding The information determines that the first user equipment cooperates with the second user equipment for decoding.
  • the first user equipment may send a notification that reports the capability of the cooperative decoding, and the first user equipment may report the cooperative decoding to the second user equipment.
  • the information of the capability the second user equipment selects a suitable user equipment from the plurality of first user equipments for cooperative decoding according to the received information of the capability of the cooperative decoding of the plurality of first user equipment reports, so that the enhanced At the same time as the processing capability of the user equipment, the capabilities of other user equipments participating in the collaboration are reasonably and effectively utilized.
  • the coded information is a codebook used by the first to-be-decoded data
  • the first to-be-decoded data is transmitted between the first user equipment and the base station.
  • the data is based on the codebook multiplexed with the same time-frequency resource as the at least one data stream.
  • the first user equipment and the second user equipment communicate with the base station by using a sparse code division multiple access (SCMA) method
  • SCMA sparse code division multiple access
  • the data to be decoded is SCMA coded data
  • the decoded information is the SCMA codebook used for the first data to be decoded.
  • the codebook used by SCMA is a collection of two or more codewords.
  • the codeword may be a multi-dimensional complex domain vector having a dimension of two or more dimensions for indicating a mapping relationship between data and two or more modulation symbols, the modulation symbol including at least one zero modulation symbol. And at least one non-zero modulation symbol, the data may be binary bit data or multi-dimensional data optional, and the relationship between the zero modulation symbol and the non-zero modulation symbol may be zero number of modulation symbols not less than the number of non-zero modulation symbols.
  • a codebook consists of two or more codewords.
  • the codebook may represent a mapping relationship between a possible data combination of a certain length of data and a codeword in the codebook.
  • SCMA technology directly maps data in a data stream to a code according to a certain mapping relationship.
  • the codeword in this book is a multi-dimensional complex vector, which realizes the extended transmission of data on multiple resource units.
  • the data here may be binary bit data or multi-dimensional data, and multiple resource units may be resource elements in a time domain, a frequency domain, an air domain, a time-frequency domain, a spatio-temporal domain, and a time-frequency spatial domain.
  • the codeword used by the SCMA may have a certain sparsity.
  • the number of zero elements in the codeword may be no less than the number of modulation symbols, so that the receiving end can utilize the multi-user detection technique to perform lower complexity decoding.
  • the relationship between the number of zero elements listed above and the modulation symbol is only an exemplary description of sparsity, and the present invention is not limited thereto, and the ratio of the number of zero elements to the number of non-zero elements can be arbitrarily set as needed.
  • the first user equipment may perform an MPA (Message Passing Algorithm) iteration on the first to-be-decoded data according to the SCMA codebook of the second user equipment to obtain the first decoded data.
  • MPA Message Passing Algorithm
  • the MPA iterative process can be similar to the conventional technique and will not be described here.
  • the decoding information includes a power allocation factor adopted by the first to-be-decoded data, and the first to-be-decoded data is based on a power allocation factor when the first to-be-decoded data is transmitted between the first user equipment and the base station.
  • the same time-frequency resource is multiplexed with at least one data stream.
  • the first user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access (NOMA) mode
  • NOMA non-orthogonal multiple access
  • the data to be decoded is NOMA encoded data
  • the decoding information includes a power allocation factor used by the first data to be decoded.
  • the first user equipment may perform SIC on the first to-be-decoded aura according to the time-frequency resource information, and the first decoded data may be obtained through the SIC.
  • power allocation factors or weights are employed to represent the power allocation of different user equipments. Decoding based on the power allocation factor can be similar to the conventional technique and will not be described herein.
  • the foregoing coding information may be information of a signature matrix, where the signature matrix is used to generate a precoding matrix, where the precoding matrix is used to make the data to be decoded at multiple transmit antennas of the base station and the second user equipment.
  • Multiple input/output MIMO transmission is implemented between a plurality of receiving antennas formed by antennas of at least one of the user equipments described above.
  • the base station may generate a precoding matrix according to the signature matrix and the channel matrix, use the precoding matrix to precode the data to generate encoded data, and send the encoded data to the user equipment.
  • the base station may use the information of the signature matrix (for example, The index of the signature matrix or the signature matrix is sent to the user equipment, so that the user equipment decodes the encoded data by MPA iteration according to the signature matrix.
  • the base station may perform bit mapping processing (also referred to as modulation processing) on the multi-layer information bits that need to be sent to the user terminal according to the preset constellation point set to generate an L layer data stream (ie, L devices). a sequence of modulation symbols, wherein the L-layer data stream corresponds to the same time-frequency resource, L ⁇ 2; the base station determines a signature matrix according to the layer number L of the data stream and the number R of the first air-space resources used by the user equipment, where
  • the signature matrix may include L first element sequences arranged in a first dimension direction, the L first element sequences are in one-to-one correspondence with the L layer data stream, and each first element sequence includes R arranged in a second dimension direction a first element, the R first elements are in one-to-one correspondence with R first spatial resources, the R first elements comprise at least one zero element and at least one non-zero element, R ⁇ 2, the L first element sequence Different from each other.
  • the base station determines a precoding matrix according to the channel matrix and the signature matrix, and performs precoding processing on the L layer data stream according to the precoding matrix P, where the channel matrix is compared with a channel between the base station and the user equipment.
  • the precoding matrix P includes L second element sequences arranged along the first dimension direction, and the L second element sequences are in one-to-one correspondence with the L first element sequence, for example, the base station may according to a channel matrix and a signature An i-th first element sequence in the matrix, determining an i-th second element sequence corresponding to the i-th layer data stream in the pre-coding matrix, so that the pre-coding process based on the i-th second element sequence is performed
  • the energy of the i-th data stream on the spatial resource corresponding to the zero element in the i-th first element sequence is zero or approximately zero, i ⁇ [1, L].
  • the base station may send the pre-coded L layer data stream and the information for indicating the signature matrix to the user equipment, so that the base station processes the precoding according to the signature matrix S and the constellation point set.
  • the L layer data stream is subjected to decoding processing to acquire the L layer bit information.
  • FIG. 3 is a schematic flowchart of a method for cooperative decoding according to another embodiment of the present invention.
  • the method of FIG. 3 corresponds to the method of FIG. 2 and is performed by the user equipment of FIG. 1, and the detailed description is omitted as appropriate.
  • the method of Figure 3 includes the following.
  • the second user equipment receives first decoded data sent by the first user equipment, where the first user equipment is one of at least one user equipment that cooperates with the second user equipment to decode the data to be decoded, and the first decoded data is used. Decoding, by the first user equipment, the first data to be decoded in the data to be decoded of the second user equipment according to the decoding information of the second user equipment, where the first user equipment and the second user equipment are non-positive
  • the inter-access access mode communicates with the base station, and the decoding information is used to decode the first to-be-decoded data.
  • the second user equipment obtains the decoded data corresponding to the data to be decoded according to the first decoded data.
  • the second user equipment cooperates with the at least one user equipment to treat the second user equipment
  • the decoded data is decoded.
  • the second user equipment may obtain a corresponding decoding result from the at least one user equipment, and combine the decoded result according to the decoding result and the decoding result obtained by itself into a final decoding result.
  • the second user equipment may acquire decoded data obtained by cooperative decoding of other user equipments, and obtain final decoded data according to the decoded data obtained by the user equipments.
  • the first user equipment shares a part of the decoding work of the second user equipment, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time making the first user equipment be used reasonably and effectively.
  • the method of FIG. 3 further includes: the second user equipment sends the first to-be-decoded data to the first user equipment.
  • the second user equipment may divide the data to be decoded into a plurality of parts and respectively allocate to the plurality of first user equipments.
  • the second user equipment may allocate data received in different time periods to different user equipments for cooperative coding.
  • the embodiment of the present invention is not limited thereto.
  • the second user equipment may also process the data according to the size. Blocking is performed and assigned to different user equipments for cooperative decoding.
  • the method of FIG. 3 further includes: the second user equipment receives the third message sent by the base station, and the third The message is used to indicate a collaboration set, the cooperation set includes at least one user equipment; and the second user equipment determines, according to the third message, that the first user equipment cooperates with the second user equipment for decoding.
  • the base station may further send control signaling to the second user equipment by using the downlink control channel, where the control signaling includes information of the cooperation set, and is used to indicate which user equipments can perform cooperative communication with the second user equipment.
  • the method of FIG. 3 further includes: the second user equipment sends the decoding information to the first user equipment; and the second user equipment sends the first data to be decoded to the first user equipment.
  • the second user equipment may divide the data to be decoded into a plurality of parts and respectively allocate to the plurality of first user equipments.
  • the first user equipment and the second user equipment multiplex the same time-frequency resource
  • the method of FIG. 3 further includes: the second user equipment sends the decoding information to the first user equipment; The user equipment sends the time-frequency resource location information of the first to-be-decoded data to the first user equipment.
  • the second user equipment sends the decoding information to the first user equipment, where the second user equipment sends a second message to the first user equipment, for requesting the first user equipment association.
  • the second user equipment performs the decoding, where the second message carries the size of the decoding information and the first data to be decoded, wherein the method of FIG. 3 further includes: the second user equipment receives the third message sent by the first user equipment The third message is used to confirm that the cooperative second user equipment performs decoding.
  • the decoding method before the second user equipment sends the second message to the first user equipment, the decoding method further includes: the second user equipment sends a fourth message to the first user equipment, where the fourth message is used.
  • Information for notifying the first user equipment of the ability to report cooperative decoding the second user equipment receiving information of the capability of the cooperative decoding reported by the first user equipment; the second user equipment determining the first user according to the information of the capability of cooperative decoding The device cooperates with the second user equipment for decoding.
  • the first to-be-decoded data when the first to-be-decoded data is transmitted between the first user equipment and the base station, the first to-be-decoded data is multiplexed with the same time-frequency resource based on the codebook and the at least one data stream.
  • the first user equipment and the second user equipment communicate with the base station by using a sparse code division multiple access (SCMA) method
  • SCMA sparse code division multiple access
  • the data to be decoded is SCMA coded data
  • the decoded information is the SCMA codebook used for the first data to be decoded.
  • the decoding information includes a power allocation factor used by the first data to be decoded, and the first data to be decoded is transmitted when the first user equipment and the base station transmit the first data to be decoded.
  • the same time-frequency resource is multiplexed with at least one data stream based on the power allocation factor.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is configured to make the data to be decoded at a plurality of transmitting antennas of the base station and the antennas of the second user equipment and the at least one user equipment.
  • Multiple input and output MIMO transmissions are implemented between multiple receive antennas.
  • the first user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access (NOMA) mode.
  • NOMA non-orthogonal multiple access
  • the data to be decoded is NOMA encoded data, and the decoding information includes a power allocation factor used by the first data to be decoded.
  • FIG. 4 is a schematic flow chart of a method of cooperative coding according to another embodiment of the present invention.
  • the method of FIG. 4 corresponds to the method of FIG. 2 and is performed by the base station of FIG. 1, and a detailed description is omitted as appropriate.
  • the method of Figure 4 includes the following.
  • the base station sends a first message to the at least one first user equipment, where the first message is used to notify the at least one first user equipment of information about the capability of the cooperative decoding.
  • the base station receives information of at least one capability of cooperative decoding reported by the first user equipment.
  • the base station according to the information about the capability of the cooperative decoding reported by the first user equipment Decoding information of at least one user equipment that is broadcast or multicast, such that at least one first user equipment decodes the data to be decoded according to the decoding information of the second user equipment.
  • the base station may determine a cooperation set according to information of capabilities of cooperative coding, where the cooperation set includes at least one user equipment that cooperates with the second user equipment to decode the data to be decoded.
  • the base station sends a third message to the second user equipment, where the third message is used to indicate a collaboration set, where the collaboration set information includes at least one user equipment.
  • the base station sends a collaboration set selection message to each user equipment in its coverage or within a certain set, to notify the user equipment to report the cooperation capability information.
  • each user equipment feeds back the cooperation capability information to the base station.
  • the base station demarcates the scope of the cooperation set according to the cooperation capability information fed back by each first user equipment, and specifies the decoding information corresponding to each first user equipment in the cooperation set.
  • the base station may set the first user equipment with cooperative communication capability in the cooperation set, and allocate corresponding decoding information to the first user equipment in the cooperation set.
  • the base station transmits the decoding information corresponding to all user equipments in the cooperation to each user equipment in the cooperation set.
  • the base station encodes the data of the second user equipment and transmits the encoded data to the second user equipment.
  • the base station may also send control signaling to the second user equipment by using the downlink control channel, to indicate which user equipments can perform cooperative communication with the second user equipment.
  • the base station may determine, according to the information of the capability of the cooperative decoding of the first user equipment, that the first user equipment can perform cooperative decoding for the second user equipment, and send the decoding information of the second user equipment to The first user equipment enables the first user equipment to share a part of the decoding operation of the second user equipment according to the decoding information, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time, the first user equipment is obtained.
  • Reasonable and effective use may be used.
  • the coded information is a codebook used by the first data to be decoded, and when the first data to be decoded is transmitted between the first user equipment and the base station, the first data to be decoded is based on the codebook and at least One data stream multiplexes the same time-frequency resource
  • the first user equipment and the second user equipment communicate with the base station by using a sparse code division multiple access (SCMA) method
  • SCMA sparse code division multiple access
  • the data to be decoded is SCMA coded data
  • the decoded information is the SCMA codebook used for the first data to be decoded.
  • the decoding information includes a power allocation factor adopted by the first to-be-decoded data, and the first to-be-decoded data is based on a power allocation factor when the first to-be-decoded data is transmitted between the first user equipment and the base station.
  • the same time-frequency resource is multiplexed with at least one data stream.
  • the first user equipment and the second user equipment adopt a non-orthogonal multiple access (NOMA) mode.
  • NOMA non-orthogonal multiple access
  • Communicating with the base station the data to be decoded is NOMA encoded data, and the decoding information includes a power allocation factor used by the first data to be decoded.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the second user equipment and at least one Multiple input and output MIMO transmissions are implemented between multiple receive antennas formed by antennas of user equipment.
  • FIG. 5 is a schematic flowchart of a process of cooperative coding according to another embodiment of the present invention.
  • the embodiment of Fig. 5 is an example of the methods of Figs. 2, 3 and 4, and a detailed description is omitted as appropriate.
  • the method of Figure 5 includes the following.
  • the eNodeB sends a collaboration capability request to each UE, to notify the UE to report the collaboration capability information.
  • the cooperation capability information is used to determine which UEs have the capability of cooperative communication.
  • the collaboration capability information may include at least one of its computing capability, a time period supporting the computing capability, a location of each UE, a signal quality, and the like.
  • the embodiment of the present invention does not limit the name of the message used to notify the UE to report the collaboration capability information.
  • the message may also be referred to as a collaboration set selection message, and the collaboration set may be Includes user equipment with cooperative decoding capabilities.
  • each UE After receiving the cooperation capability request sent by the eNodeB, each UE feeds back the cooperation capability information to the eNodeB.
  • the eNodeB demarcates the scope of the collaboration set according to the collaboration capability information fed back by each UE, and specifies the SCMA codebook corresponding to each UE in the collaboration set.
  • the eNodeB can set the UE with the cooperative communication capability in the cooperation set.
  • the cooperation set includes the UE A, the UE B, and the UE C, and allocates the corresponding SCMA codebook to the UE in the cooperation set to form the SCMA code. This episode.
  • the eNodeB transmits the SCMA codebook corresponding to the UE in the collaboration set to the UE in the collaboration set.
  • the eNodeB can transmit the SCMA codebook set to the UE in the cooperative set in the form of a broadcast or multicast message.
  • the eNodeB can also notify the user equipment (for example, UE A and UE C) only the codebook information of UE B.
  • the eNodeB performs SCMA coding on the data that needs to be transmitted to the UE B, and transmits the data after the SCMA encoding to the UE B, and sends the cooperation set information to indicate which UEs can perform cooperative communication with the UE B.
  • the collaboration set information can be carried in a data frame in which data is transmitted.
  • the eNodeB performs SCMA coding on data that needs to be transmitted to the UE B, and transmits the data after the SCMA encoding to the UE B.
  • the eNodeB may also send control signaling to the UE B through the downlink control channel, to indicate which UEs can perform cooperative communication with the UE B.
  • the UE B After receiving the SCMA data sent by the eNodeB and the foregoing control signaling, the UE B divides the SCMA data that needs to be decoded into multiple parts, and respectively notify the neighboring UE A and the UE C through cooperative communication.
  • the UE A and the UE C After receiving the SCMA coded data from the UE B, the UE A and the UE C find the codebook corresponding to the UE B according to the SCMA codebook set delivered by the previous eNodeB, and decode the UE B.
  • UE A and UE A feed back the decoding result to UE B.
  • FIG. 6 is a schematic flow chart of a process of cooperative decoding in accordance with another embodiment of the present invention.
  • the embodiment of Fig. 6 is an example of the methods of Figs. 2, 3 and 4, and a detailed description is omitted as appropriate.
  • the method of Figure 6 includes the following.
  • the eNodeB sends the SCMA encoded data to the UE B.
  • the eNodeB performs SCMA coding on the data to be sent to the UE B to obtain SCMA encoded data, and transmits the SCMA encoded data to the UE B through the downlink channel.
  • UE A and UE C may also receive data sent by the base station to UE B at the same time.
  • the UE B After receiving the SCMA coded data, the UE B sends a cooperation capability request to the neighboring UE to request the UE A and the UE C to report the collaboration capability information.
  • UE B For example, if UE B requires neighbor UE A and UE C to cooperatively code SCMA coded data, UE B sends a cooperation capability request to UE A and UE C to indicate that UE A and UE B report available computing power and/or Time parameters, etc.
  • the embodiment of the present invention does not limit the name of the message used to notify the UE to report the collaboration capability information.
  • the message may also be referred to as a collaboration set selection message, and the collaboration set may be Includes user equipment with cooperative decoding capabilities.
  • the neighboring UE After receiving the cooperation capability request of the UE B, the neighboring UE reports its available computing power and/or the time parameter that can be supported by the available computing capability to the UE B.
  • neighbor UE A and UE C may report their available computing power and/or the time period that the available computing power can support to UE B.
  • the UE B performs a cooperative decoding decision according to the available computing capability reported by the neighboring UE and/or a time parameter that can be supported by the available computing capability, and determines to select the neighbor UE for cooperative decoding.
  • UE B may select UE A and UE C for cooperative decoding when the available computing power reported by UE A and UE C is greater than a certain preset value and the time period is within a preset time range.
  • the UE B decides to initiate a cooperative communication, and initiates a cooperation request message to the neighbor UE A and the UE C.
  • the cooperation request message may carry the SCMA codebook information of the UE B and the size of the data block that needs to be cooperatively decoded by the UE A and the UE C.
  • UE A After receiving the message, UE A determines whether to agree to cooperative decoding for UE B according to the size of the data block.
  • UE A may also decide whether to perform cooperative decoding according to the size of the data block. For example, UE A may refuse to perform cooperative translation when the size of the data block exceeds a predetermined value. code.
  • the UE UE A sends a response message to the UE B, which is used to confirm whether the UE A agrees to perform cooperative decoding.
  • the UE C determines whether to agree to perform cooperative decoding for the UE B.
  • the UE C sends a response message to the UE B, where the response message is used to confirm whether the UE C agrees to perform cooperative decoding.
  • UE C agrees to perform cooperative decoding, and UE B sends partial SCMA encoded data to it.
  • the partial SCMA encoded data is SCMA encoded data that requires UE C to perform cooperative decoding.
  • the UE B may also not send partial SCMA encoded data thereto, but transmit time-frequency resources corresponding to the partial SCMA encoded data.
  • the partial SCMA encoded data is SCMA encoded data that requires UE C to perform cooperative decoding. Since UE B and UE C use the same time-frequency resource when communicating with the base station, UE C can receive the SCMA coded data of the UEB from the base station. The UE C determines the partial SCMA encoded data according to the received location and size of the time-frequency resource of the partial SCMA encoded data.
  • the resources of the SCMA are multi-user multiplexed, multiple users occupy the same time-frequency resource block in the downlink scenario, and use different codebooks for decoding.
  • UE C and UE B are multiplexed users, UE C also receives the data of UE B while receiving the SCMA data. If the terminal processor capability of the UE C is strong, and the UE B can be used for cooperative communication, the UE B does not need to transmit the data to be cooperatively decoded to the UE C, and only needs to transmit the time-frequency resource location that needs to be cooperatively decoded. The size is fine.
  • UE C cooperatively decodes the part of the SCMA coded data.
  • the UE C feeds back the decoding result to the UE B.
  • UE B does not perform a cooperation code with the neighbor UE. For example, in this embodiment, since UE A does not intend to perform cooperative decoding, UE B does not perform cooperative decoding with UE A.
  • FIG. 7 is a schematic diagram of the coding principle of SCMA.
  • the embodiment of FIG. 7 illustrates an example in which four resource units are multiplexed by six data streams.
  • the data stream may also be referred to as a variable node
  • the resource unit may also be referred to as a function node, wherein 6 data streams form one packet, and 4 resource units constitute one coding unit.
  • a resource unit can be a resource unit, or a resource particle (English: Resource Element, English abbreviation: RE), or an antenna port.
  • a line between the data stream and the resource unit indicates that at least one data combination of the data stream is transmitted by the codeword, and a non-zero modulation symbol is transmitted on the resource unit, and there is no connection between the data stream and the resource unit. Then, it indicates that all possible data combinations of the data stream are zero coded by the codeword mapping on the resource unit.
  • the data combination of the data streams can be understood as follows, for example, in a binary bit data stream, 00, 01, 10, 11 are all possible two-bit data combinations.
  • the data combinations to be transmitted of the six data streams in the bipartite graph are sequentially represented by s1 to s6, and the symbols transmitted on the four resource units in the bipartite graph are sequentially represented by x1 to x4.
  • the data of each data stream is mapped by code words, and the modulation symbols are sent on two or more resource units.
  • the symbols sent by each resource unit are data from two or more data streams. Superposition of modulation symbols after mapping of respective codewords.
  • the data combination s3 of the data stream 3 may be sent with non-zero modulation symbols on the resource unit 1 and the resource unit 2 after the codeword mapping, and the data x3 sent by the resource unit 3 is the data stream 2, the data stream 4 and The superposition of non-zero modulation symbols obtained by mapping the data combinations s2, s4 and s6 of the data stream 6 to the respective codewords. Since the number of data streams can be greater than the number of resource units, the SCMA system can effectively increase network capacity, including the system. Number of access users and spectrum efficiency.
  • FIG. 8 is a schematic flowchart of a process of cooperative decoding according to another embodiment of the present invention.
  • the embodiment of Fig. 8 is an example of the methods of Figs. 2, 3 and 4, and a detailed description is omitted as appropriate.
  • the method of Figure 8 includes the following.
  • the eNodeB sends a cooperation capability request to each UE to notify the UE to report the collaboration capability information.
  • the cooperation capability information is used to determine which UEs have the capability of cooperative communication.
  • the collaboration capability information may include at least one of its computing capability, a time period supporting the computing capability, a location of each UE, a signal quality, and the like.
  • the embodiment of the present invention does not limit the name of the message used to notify the UE to report the collaboration capability information.
  • the message may also be referred to as a collaboration set selection message, and the collaboration set may be Includes user equipment with cooperative decoding capabilities.
  • each UE After receiving the cooperation capability request sent by the eNodeB, each UE feeds back the cooperation capability information to the eNodeB.
  • the eNodeB demarcates the scope of the cooperation set according to the cooperation capability information fed back by each UE, and specifies a power allocation factor corresponding to each UE in the collaboration set.
  • the eNodeB can set UEs with cooperative communication capabilities in a cooperative set, and allocate corresponding power allocation factors to UEs in the cooperative set.
  • the eNodeB transmits the power allocation factors corresponding to the UEs in the collaboration set to the UEs in the collaboration set.
  • the eNodeB may transmit the power allocation factors used by the respective UEs to the UEs in the cooperative set in the form of broadcast or multicast messages.
  • the eNodeB performs NOMA encoding on the data that needs to be transmitted to the UE B, and transmits the data after the NOMA encoding to the UE B, and sends the cooperation set information to indicate which UEs can perform cooperative communication with the UE B.
  • the collaboration set information can be carried in a data frame in which data is transmitted.
  • the eNodeB performs NOMA encoding on the data that needs to be transmitted to the UE B, and transmits the data after the NOMA encoding to the UE B.
  • eNodeB can also The control signaling is sent to the UE B through the downlink control channel, and is used to indicate which UEs can perform cooperative communication with the UE B.
  • the UE B After receiving the NOMA data sent by the eNodeB and the foregoing control signaling, the UE B divides the NOMA data that needs to be decoded into multiple parts, and respectively notifies the neighboring UE A and the UE C through cooperative communication.
  • the UE A and the UE C After receiving the requested NOMA data from the UE B, the UE A and the UE C decode the UE B according to the power allocation factor delivered by the previous eNodeB.
  • the decoding result is fed back to the UE B.
  • FIG. 9 is a schematic diagram of a process of cooperative decoding in accordance with another embodiment of the present invention.
  • the embodiment of Fig. 9 is an example of the methods of Figs. 2, 3 and 4, and a detailed description is omitted as appropriate.
  • the method of Figure 9 includes the following.
  • the base station calculates a precoding matrix according to the signature matrix.
  • the number of antennas t of the base station is 8
  • the number of antennas r of the user equipment is 4
  • the number of multiplexed data streams is 6 as an example.
  • the channel matrix be H and the size of H be 4*8.
  • the precoding matrix P is set such that the position of the non-zero element of the matrix HP is the same as the position of '1' in the matrix S.
  • D is a diagonal matrix for power allocation between data streams, which can be set according to actual needs.
  • the base station sends the index number of the signature matrix or the signature matrix to the user equipment by using a control channel.
  • the base station will precode the data, ie
  • the user equipment performs MPA iterative decoding on the received data according to the signature matrix, and demodulates the data sent by the base station.
  • the user equipment can demodulate
  • the four antennas of the user equipment may be distributed on multiple UEs, and multiple antennas distributed on multiple UEs may implement the above steps through terminal cooperation.
  • the base station or the user equipment may send the information of the signature matrix of the user equipment to other user equipments, and the other user equipments perform data according to the signature matrix. Decoding, and the decoded data is fed back to the user equipment.
  • the process of acquiring the information of the signature matrix by the other user equipment, decoding the data according to the information, and transmitting the decoded data to the user equipment is similar to the foregoing embodiment, and will not be described in detail herein.
  • embodiments of the present invention are described by using a 4 antenna as a user equipment, the technical field is described. It should be understood by the skilled person that embodiments of the present invention can be applied to support more complex SCMA or NOMA receptions such as 8 antennas, as well as higher transmission modes of SCMA or NOMA.
  • embodiments of the present invention do not limit the names used for various messages, and other names may be employed as needed in different scenarios.
  • FIG. 10 is a schematic structural diagram of a user equipment 1000 according to an embodiment of the present invention.
  • the user equipment 1000 includes an obtaining module 1010, a decoding module 1020, and a sending module 1030.
  • the obtaining module 1010 is configured to acquire decoding information of the second user equipment, and acquire first data to be decoded in the data to be decoded of the second user equipment, where the decoding information is used to translate the first data to be decoded
  • a user equipment is one of at least one user equipment that cooperates with the second user equipment to decode the data to be decoded, and the user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access method.
  • the decoding module 1020 is configured to decode the first data to be decoded according to the decoding information to obtain first decoded data.
  • the sending module 1030 is configured to send the first decoded data to the second user equipment.
  • a user equipment may acquire a part of data to be decoded of the second user equipment and decoding information of the part of the data to be decoded, and decode the part of the data to be decoded according to the decoding information.
  • the decoding result is sent to the second user equipment, thereby implementing cooperative decoding.
  • the user equipment shares a part of the decoding work of the second user equipment, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time making the user equipment reasonably and effectively utilized.
  • the acquiring module 1010 acquires the decoding information sent by the base station, and acquires the first to-be-decoded data sent by the second user equipment.
  • the acquiring module 1010 further receives a first message sent by the base station, where the first message is used to notify the user equipment of information about the capability of the cooperative decoding, and the sending module 1030 is further configured to cooperatively decode the base station.
  • the information of the capability so that the base station determines the cooperation set according to the information of the capability of the cooperative decoding, the cooperation set includes at least one user equipment, wherein the acquisition module 1010 receives the decoding information of the user equipment in the cooperative set broadcasted or multicast by the base station.
  • the obtaining module 1010 acquires the decoding information sent by the second user equipment, and acquires the first data to be decoded sent by the second user equipment.
  • the user equipment and the second user equipment are multiplexed with the same time-frequency resource
  • the acquiring module 1010 acquires the decoding information sent by the second user equipment, and acquires the first data to be decoded sent by the second user equipment.
  • Time-frequency resource location information, and the user equipment acquires first to-be-decoded data sent by the base station according to the time-frequency resource location information.
  • the acquiring module 1010 receives a second message sent by the second user equipment, where the user equipment is requested to cooperate with the second user equipment for decoding, where the second message carries the decoding information and the first to wait.
  • Decoding the size of the data wherein the user equipment further includes: a determining module 1040, configured to determine, according to the size of the first to-be-decoded data, the cooperative second user equipment to perform decoding, where the sending module 1030 is further configured to send to the second user equipment Sending a third message for confirming that the cooperative second user equipment performs decoding.
  • the acquiring module 1010 before acquiring the second message sent by the second user equipment, the acquiring module 1010 further receives a fourth message sent by the second user equipment, where the fourth message is used to notify the user equipment to report the cooperative decoding.
  • the user equipment further includes: a sending module 1030, configured to report information about the capability of the cooperative decoding to the user equipment, so that the second user equipment determines, according to the information of the capability of the cooperative decoding, that the user equipment cooperates with the second user equipment. Decoding.
  • the coded information is a codebook used by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on the codebook and the at least one data. Streams the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on a power allocation factor and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the second user equipment and at least one Multiple inputs between multiple receive antennas formed by the antenna of the user equipment Output MIMO transmission.
  • FIG. 11 is a schematic structural diagram of a user equipment 1100 according to another embodiment of the present invention.
  • the user equipment 1100 includes a receiving module 1110 and a decoding module 1120.
  • the receiving module 1110 is configured to receive first decoded data sent by the user equipment, where the first user equipment is one of at least one user equipment that the cooperative user equipment decodes the data to be decoded, and the first decoded data is used by the first user equipment. And decoding, by using the decoding information of the user equipment, the first to-be-decoded data in the data to be decoded of the user equipment, where the first user equipment and the user equipment communicate with the base station by using a non-orthogonal multiple access method. The decoding information is used to decode the first data to be decoded.
  • the decoding module 1120 is configured to obtain, according to the first decoded data, decoded data corresponding to the data to be decoded.
  • the user equipment may acquire decoded data obtained by cooperative decoding of other user equipments, and obtain final decoded data according to the decoded data obtained by the user equipments.
  • the first user equipment shares a part of the decoding work of the user equipment, thereby improving the capability of the user equipment to process data to be decoded, and at the same time making the first user equipment reasonably and effectively utilized.
  • the user equipment 1100 further includes: a sending module 1130, configured to send, to the first user equipment, first data to be decoded.
  • the receiving module 1110 before the user equipment sends the first data to be decoded to the first user equipment, the receiving module 1110 further receives a third message sent by the base station, where the third message is used to indicate the collaboration set, the collaboration set.
  • the at least one user equipment is further included, wherein the user equipment further includes: a determining module 1140, configured to determine, according to the third message, that the first user equipment cooperates with the user equipment for decoding.
  • the user equipment 1100 further includes: a sending module 1130, configured to send the decoding information to the first user equipment, and send the first data to be decoded to the first user equipment.
  • a sending module 1130 configured to send the decoding information to the first user equipment, and send the first data to be decoded to the first user equipment.
  • the first user equipment and the user equipment are multiplexed with the same time-frequency resource
  • the user equipment 1100 further includes: a sending module 1130, configured to send the decoding information to the first user equipment, and A user equipment sends time-frequency resource location information of the first to-be-decoded data.
  • the sending module 1130 sends a second message to the first user equipment, where the second user equipment is requested to cooperate with the user equipment for decoding, where the second message carries the decoding information and the first to be translated.
  • the size of the code data wherein the receiving module 1110 further receives a third message sent by the first user equipment, and the third message is used to confirm that the collaborative user equipment performs decoding.
  • the sending module 1130 sends a fourth message to the first user equipment, where the fourth message is used to notify the first user equipment to report the collaboration, before the user equipment sends the second message to the first user equipment.
  • the information of the capability of the decoding wherein the receiving module 1110 further receives the information of the capability of the cooperative decoding reported by the first user equipment, wherein the user equipment further comprises: a determining module 1140, configured to determine according to the information according to the capability of the cooperative decoding The first user equipment cooperates with the user equipment for decoding.
  • the coded information is a codebook used by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on the codebook and the at least one data. Streams the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on a power allocation factor and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the user equipment and the at least one user equipment
  • a multi-input and output MIMO transmission is implemented between a plurality of receiving antennas composed of antennas.
  • FIG. 12 is a schematic structural diagram of a base station 1200 according to an embodiment of the present invention.
  • the base station 1200 includes a sending module 1210, a receiving module 1220, and a determining module 1230.
  • the sending module 1210 is configured to send, to the at least one first user equipment, a first message, where the first message is used to notify the at least one first user equipment of information about the capability of the cooperative decoding.
  • the receiving module 1220 is configured to receive information about the capability of the cooperative decoding reported by the at least one first user equipment.
  • the sending module 1210 according to the information about the capability of the cooperative decoding reported by the first user equipment, to the broadcast information or the multicast information of the at least one user equipment, so that the at least one first user equipment is configured according to the second user equipment.
  • the decoding information is used to decode the data to be decoded, and the third message is sent to the second user equipment, where the third message is used to indicate the collaboration set, and the cooperation set information includes at least one user equipment.
  • the base station may determine, according to the information of the capability of the cooperative decoding of the first user equipment, that the first user equipment can perform cooperative decoding for the second user equipment, and the second user
  • the decoding information of the device is sent to the first user equipment, so that the first user equipment can share a part of the decoding work of the second user equipment according to the decoding information, thereby improving the capability of the second user equipment to process the data to be decoded.
  • the first user equipment is reasonably and effectively utilized.
  • the coded information is a codebook used by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on the codebook and the at least one data. Streams the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on a power allocation factor and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the second user equipment and at least one Multiple input and output MIMO transmissions are implemented between multiple receive antennas formed by antennas of user equipment.
  • FIG. 13 is a schematic structural diagram of a user equipment 1300 according to another embodiment of the present invention.
  • User equipment 1300 includes a processor 1310, a memory 1320, a communication bus 1330, a receiver 1340, and a transmitter 1350.
  • the receiver 1340 is configured to acquire decoding information of the second user equipment, and acquire first data to be decoded in the data to be decoded of the second user equipment, where the decoding information is used to translate the first data to be decoded.
  • a user equipment is one of at least one user equipment that cooperates with the second user equipment to decode the data to be decoded, and the user equipment and the second user equipment communicate with the base station by using a non-orthogonal multiple access method.
  • the processor 1310 is configured to call the code stored in the memory 1320 through the communication bus 1330 to decode the first to-be-decoded data according to the decoding information to obtain the first decoded data.
  • the transmitter 1350 is configured to send the first decoded data to the second user equipment.
  • a user equipment may acquire a part of data to be decoded of the second user equipment and decoding information of the part of the data to be decoded, and decode the part of the data to be decoded according to the decoding information.
  • the decoding result is sent to the second user equipment, thereby implementing cooperative decoding.
  • the user equipment shares a part of the decoding work of the second user equipment, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time making the user equipment reasonably and effectively utilized.
  • the receiver 1340 acquires the decoding information sent by the base station, and acquires the first to-be-decoded data sent by the second user equipment.
  • the receiver 1340 further receives a first message sent by the base station, where the first message is used to notify the user equipment of information about the capability of cooperative decoding, and the transmitter 1350 is further configured to cooperatively decode the base station.
  • the information of the capability so that the base station determines the cooperation set according to the information of the capability of the cooperative decoding, the cooperation set includes at least one user equipment, wherein the receiver 1340 receives the decoding information of the user equipment in the cooperative set broadcasted or multicast by the base station.
  • the receiver 1340 acquires the decoding information sent by the second user equipment, and acquires the first data to be decoded sent by the second user equipment.
  • the user equipment and the second user equipment multiplex the same time-frequency resource, and the receiver 1340 acquires the decoding information sent by the second user equipment, and acquires the first data to be decoded sent by the second user equipment.
  • Time-frequency resource location information and the user equipment acquires first to-be-decoded data sent by the base station according to the time-frequency resource location information.
  • the receiver 1340 receives a second message sent by the second user equipment, where the user equipment is requested to cooperate with the second user equipment to perform decoding, where the second message carries the decoding information and the first to wait. Decoding the size of the data, wherein the processor 1310 is further configured to determine, according to the size of the first to-be-decoded data, the cooperative second user equipment to perform decoding, where the transmitter 1350 is further configured to send the third message to the second user equipment, where Used to confirm the cooperation of the second user equipment for decoding.
  • the receiver 1340 before receiving the second message sent by the second user equipment, the receiver 1340 further receives a fourth message sent by the second user equipment, where the fourth message is used to notify the user equipment to report the cooperative decoding.
  • the information of the capability the processor 1310 is further configured to report the information of the capability of the cooperative decoding to the user equipment, so that the second user equipment determines, according to the information of the capability of the cooperative decoding, that the user equipment cooperates with the second user equipment for decoding.
  • the coded information is a codebook used by the first data to be decoded, and when the first data to be decoded is transmitted between the first user equipment and the base station, the first data to be decoded is based on the codebook and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first to-be-decoded data, and the first to-be-decoded data is based on a power allocation factor when the first to-be-decoded data is transmitted between the first user equipment and the base station.
  • the same time-frequency resource is multiplexed with at least one data stream.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the second Multiple input and output MIMO transmission is implemented between a plurality of receiving antennas formed by the user equipment and the antenna of the at least one user equipment.
  • FIG. 14 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • User equipment 1400 includes a processor 1410, a memory 1420, a communication bus 1430, a receiver 1440, and a receiver 1450.
  • the receiver 1440 is configured to receive first decoded data sent by the user equipment, where the first user equipment is one of at least one user equipment that the cooperative user equipment decodes the data to be decoded, and the first decoded data is used by the first user equipment. And decoding, by using the decoding information of the user equipment, the first to-be-decoded data in the data to be decoded of the user equipment, where the first user equipment and the user equipment communicate with the base station by using a non-orthogonal multiple access method. The decoding information is used to decode the first data to be decoded.
  • the processor 1410 is configured to call the code stored in the memory 1420 through the communication bus 1430 to obtain decoded data corresponding to the data to be decoded according to the first decoded data.
  • the user equipment may acquire decoded data obtained by cooperative decoding of other user equipments, and obtain final decoded data according to the decoded data obtained by the user equipments.
  • the first user equipment shares a part of the decoding work of the user equipment, thereby improving the capability of the user equipment to process data to be decoded, and at the same time making the first user equipment reasonably and effectively utilized.
  • the transmitter 1450 is further configured to send the first to-be-decoded data to the first user equipment.
  • the receiver 1440 further receives a third message sent by the base station, where the third message is used to indicate the collaboration set, the collaboration set, before the user equipment sends the first data to be decoded to the first user equipment.
  • the at least one user equipment is included, wherein the processor 1410 is further configured to determine, according to the third message, that the first user equipment cooperates with the user equipment for decoding.
  • the transmitter 1450 is further configured to send the decoding information to the first user equipment, and send the first to-be-decoded data to the first user equipment.
  • the first user equipment and the user equipment are multiplexed with the same time-frequency resource
  • the transmitter 1450 is further configured to send the decoding information to the first user equipment, and send the first information to the first user equipment.
  • Time-frequency resource location information of the data to be decoded are multiplexed with the same time-frequency resource
  • the transmitter 1450 sends a second message to the first user equipment, where the first user equipment is requested to cooperate with the user equipment for decoding, where the second message carries the decoding information. And a size of the first to-be-decoded data, where the receiver 1440 further receives a third message sent by the first user equipment, where the third message is used to confirm that the coordinated user equipment performs decoding.
  • the transmitter 1450 sends a fourth message to the first user equipment before the user equipment sends the second message to the first user equipment, where the fourth message is used to notify the first user equipment to report the collaboration.
  • the information of the capability of the decoding wherein the receiver 1440 further receives information of the capability of the cooperative decoding reported by the first user equipment, wherein the processor 1410 is further configured to determine the first user equipment cooperation according to the information according to the capability of the cooperative decoding.
  • the user equipment performs decoding.
  • the coded information is a codebook used by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on the codebook and the at least one data. Streams the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on a power allocation factor and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the user equipment and the at least one user equipment
  • a multi-input and output MIMO transmission is implemented between a plurality of receiving antennas composed of antennas.
  • FIG. 15 is a block diagram showing the structure of a base station 1500 according to an embodiment of the present invention.
  • the base station 1500 includes a processor 1510, a memory 1520, a communication bus 1530, a receiver 1540, and a transmitter 1550.
  • the transmitter 1550 is configured to send, to the at least one first user equipment, a first message, where the first message is used to notify the at least one first user equipment of information about the capability of the cooperative decoding.
  • the receiver 1540 is configured to receive information of at least one capability of cooperative decoding reported by the first user equipment.
  • the transmitter 1550 is configured to: according to the information about the capability of the cooperative decoding reported by the first user equipment, to the at least one user equipment of the broadcast or multicast, so that the at least one first user equipment is according to the second user.
  • the decoding information of the device is decoded, and the third message is sent to the second user equipment, where the third message is used to indicate the collaboration set, and the collaboration set information includes at least one User equipment.
  • the base station may determine, according to the information of the capability of the cooperative decoding of the first user equipment, that the first user equipment can perform cooperative decoding for the second user equipment, and send the decoding information of the second user equipment to The first user equipment enables the first user equipment to share a part of the decoding operation of the second user equipment according to the decoding information, thereby improving the capability of the second user equipment to process the data to be decoded, and at the same time, the first user equipment is obtained.
  • Reasonable and effective use may be used.
  • the coded information is a codebook used by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on the codebook and the at least one data. Streams the same time-frequency resources.
  • the decoding information includes a power allocation factor adopted by the first data to be decoded, and when the first to-be-decoded data is transmitted between the user equipment and the base station, the first data to be decoded is based on a power allocation factor and at least A data stream multiplexes the same time-frequency resources.
  • the decoding information is information of a signature matrix
  • the signature matrix is used to generate a precoding matrix
  • the precoding matrix is used to make the data to be decoded at the plurality of transmitting antennas of the base station and the second user equipment and at least one Multiple input and output MIMO transmissions are implemented between multiple receive antennas formed by antennas of user equipment.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种协作译码的方法、基站和用户设备。该方法包括:第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中第一用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,第一用户设备和第二用户设备采用非正交多址接入方式与基站进行通信;第一用户设备根据译码信息对第一待译码数据进行译码,得到第一译码数据;第一用户设备向第二用户设备发送第一译码数据。本发明的技术方案提高了用户设备译码能力,同时使得协作译码的用户设备得到了合理、有效的利用。

Description

协作译码的方法和、基站和用户设备 技术领域
本发明的实施例涉及移动通信技术领域,尤其是涉及一种协作译码的方法和、基站和用户设备。
背景技术
目前,已经提出了多种多址接入方式,包括正交多址接入和非正交多址接入。正交多址接入包括,例如,时分多址接入、频分多址接入和码分多址接入,非正交多址接入,非正交多址接入方式可以提升通信系统的吞吐量。在非正交多址接入技术中,可以将同一资源(例如,时频资源)分配给多个用户。非正交多址接入技术将来自一个或多个用户的M(M为不小于1的整数)个数据流叠加到N(N为不小于1的整数)个子载波上进行发送,其中每个数据流的每个数据可以通过稀疏扩频的方式扩展到N个子载波上。
非正交多址接入技术在带来增益的同时,存在译码复杂度高的问题。然而,用户设备受到体积/尺寸等的限制,无法达到基站侧的计算能力。
因此,如何提高非正交多址接入场景下用户设备的处理能力是亟待解决的问题。
发明内容
本发明提出了一种协作译码的方法、基站和用户设备,能够提高非正交多址接入场景下终端的处理能力。
一方面,提供了一种基于终端协作的译码方法,包括:第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中译码信息用于对第一待译码数据进行译码,第一用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,第一用户设备和第二用户设备采用非正交多址接入方式与基站进行通信;第一用户设备根据译码信息对第一待译码数据进行译码,得到第一译码数据;第一用户设备向第二用户设备发送第一译码数据。
在第一种可能的实现方式中,第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,包括:第一用 户设备获取基站发送的译码信息,并且获取第二用户设备发送的第一待译码数据。
结合第一方面,在第二种可能的实现方式中,第一方面的方法还包括:第一用户设备接收基站发送的第一消息,第一消息用于通知第一用户设备报告协作译码的能力的信息;第一用户设备向基站报告协作译码的能力的信息,以便基站根据协作译码的能力的信息确定协作集,协作集包括至少一个用户设备,其中,第一用户设备获取基站发送的译码信息,包括:第一用户设备接收基站广播或多播的协作集中的用户设备的译码信息。
结合第一方面,在第三种可能的实现方式中,第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,包括:第一用户设备获取第二用户设备发送的译码信息;第一用户设备获取第二用户设备发送的第一待译码数据。
结合第一方面,在第四种可能的实现方式中,第一用户设备与第二用户设备复用相同的时频资源,第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,包括:第一用户设备获取第二用户设备发送的译码信息;第一用户设备获取第二用户设备发送的第一待译码数据的时频资源位置信息;第一用户设备根据时频资源位置信息获取基站发送的第一待译码数据。
结合第三或第四种可能的实现方式,在第五种可能的实现方式中,第一用户设备获取第二用户设备发送的译码信息,包括:第一用户设备接收第二用户设备发送的第二消息,用于请求第一用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,译码方法还包括:第一用户设备根据第一待译码数据的大小确定协作第二用户设备进行译码;第一用户设备向第二用户设备发送第三消息,用于确认协作第二用户设备进行译码。
结合第五种可能的实现方式,在第六种可能的实现方式中,在第一用户设备接收第二用户设备发送的第二消息之前,译码方法还包括:第一用户设备接收第二用户设备发送的第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息;第一用户设备向第一用户设备报告协作译码的能力的信息,以便第二用户设备根据协作译码的能力的信息确定第一用户设备协作第二用户设备进行译码。
结合上述任何一种可能的实现方式,在第七种可能的实现方式中,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合上述任何一种可能的实现方式,在第八种可能的实现方式中,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合上述任何一种可能的实现方式,在第九种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第二方面,提供了一种基于终端协作的译码方法,包括:第二用户设备接收第一用户设备发送的第一译码数据,其中第一用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,第一译码数据由第一用户设备根据第二用户设备的译码信息对第二用户设备的待译码数据中的第一待译码数据进行译码得到的,第一用户设备和第二用户设备采用非正交多址接入方式与基站进行通信,译码信息用于对第一待译码数据进行译码,;第二用户设备根据第一译码数据得到待译码数据对应的译码数据。
结合第二方面,在第一种可能的实现方式中,第二方面的方法还包括:第二用户设备向第一用户设备发送第一待译码数据。
结合第二方面,在第二种可能的实现方式中,第二方面的方法还包括:在第二用户设备向第一用户设备发送第一待译码数据之前,第二用户设备接收基站发送的第三消息,第三消息用于指示协作集,协作集包括至少一个用户设备;第二用户设备根据第三消息确定第一用户设备协作第二用户设备进行译码。
结合第二方面,在第三种可能的实现方式中,第二方面的方法还包括:第二用户设备向第一用户设备发送译码信息;第二用户设备向第一用户设备发送第一待译码数据。
结合第二方面,在第四种可能的实现方式中,第一用户设备与第二用户设备复用相同的时频资源,第二方面的方法还包括:第二用户设备向第一用 户设备发送译码信息;第二用户设备向第一用户设备发送第一待译码数据的时频资源位置信息。
第二方面的第三或第四种可能的实现方式,在第五种可能的实现方式中,第二用户设备向第一用户设备发送译码信息,包括:第二用户设备向第一用户设备发送第二消息,用于请求第一用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,第二方面的方法还包括:第二用户设备接收第一用户设备发送的第三消息,第三消息用于确认协作第二用户设备进行译码。
第二方面的第五种可能的实现方式,在第六种可能的实现方式中,第二方面的方法还包括:在第二用户设备向第一用户设备发送第二消息之前,第二用户设备向第一用户设备发送第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息;第二用户设备接收第一用户设备报告的协作译码的能力的信息;第二用户设备根据协作译码的能力的信息确定第一用户设备协作第二用户设备进行译码。
结合第二方面的上述任何一种可能的实现方式,在第七种可能的实现方式中,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合第二方面的上述任何一种可能的实现方式,在第八种可能的实现方式中译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合第二方面的上述任何一种可能的实现方式,在第九种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第三方面,提供了一种基于终端协作的译码方法,包括:基站向至少一个第一用户设备发送第一消息,第一消息用于通知至少一个第一用户设备报告协作译码的能力的信息;基站接收至少一个第一用户设备报告的协作译码的能力的信息;基站根据第一用户设备报告的协作译码的能力的信息向广播或多播的至少一个用户设备的译码信息,以便至少一个第一用户设备根据第 二用户设备的译码信息对待译码数据进行译码;基站向第二用户设备发送第三消息,第三消息用于指示协作集,协作集信息包括至少一个用户设备。
结合第三方面,在第一种可能的实现方式中,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合第三方面,在第二种可能的实现方式中,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合第三方面,在第三种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第四方面,提供了一种用户设备,包括:获取模块,用于获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中译码信息用于对第一待译码数据进行译码,用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,用户设备和第二用户设备采用非正交多址接入方式与基站进行通信;译码模块,用于根据译码信息对第一待译码数据进行译码,得到第一译码数据;发送模块,用于向第二用户设备发送第一译码数据。
结合第四方面,在第一种可能的实现方式中,获取模块获取基站发送的译码信息,并获取第二用户设备发送的第一待译码数据。
结合第四方面,在第二种可能的实现方式中,获取模块还接收基站发送的第一消息,第一消息用于通知用户设备报告协作译码的能力的信息;发送模块还用于向基站协作译码的能力的信息,以便基站根据协作译码的能力的信息确定协作集,协作集包括至少一个用户设备,其中,获取模块接收基站广播或多播的协作集中的用户设备的译码信息。
结合第四方面,在第三种可能的实现方式中,获取模块获取第二用户设备发送的译码信息,并获取第二用户设备发送的第一待译码数据。
结合第四方面,在第四种可能的实现方式中,用户设备与第二用户设备复用相同的时频资源,获取模块获取第二用户设备发送的译码信息,获取第 二用户设备发送的第一待译码数据的时频资源位置信息,并且用户设备根据时频资源位置信息获取基站发送的第一待译码数据。
结合第四方面的第三或第四种可能的实现方式,在第五种可能的实现方式中,获取模块接收第二用户设备发送的第二消息,用于请求用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,用户设备还包括:确定模块,用于根据第一待译码数据的大小确定协作第二用户设备进行译码,其中发送模块还用于向第二用户设备发送第三消息,用于确认协作第二用户设备进行译码。
结合第四方面的第五种可能的实现方式,在第六种可能的实现方式中,获取模块在接收第二用户设备发送的第二消息之前,还接收第二用户设备发送的第四消息,第四消息用于通知用户设备报告协作译码的能力的信息,发送模块还用于向用户设备报告协作译码的能力的信息,以便第二用户设备根据协作译码的能力的信息确定用户设备协作第二用户设备进行译码。
结合第四方面的上述任何一种可能的实现方式,在第七种可能的实现方式中,译码信息为第一待译码数据使用码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合第四方面的上述任何一种可能的实现方式,在第八种可能的实现方式中,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合上述任何一种可能的实现方式,在第九种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第五方面,提供了一种用户设备,包括:接收模块,用于接收用户设备发送的第一译码数据,其中第一用户设备为协作用户设备对待译码数据进行译码的至少一个用户设备之一,第一译码数据由第一用户设备根据用户设备的译码信息对用户设备的待译码数据中的第一待译码数据进行译码得到的,第一用户设备和用户设备采用非正交多址接入方式与基站进行通信,译码信息用于对第一待译码数据进行译码,;译码模块,用于根据第一译码数据得 到待译码数据对应的译码数据。
结合第五方面,在第一种可能的实现方式中,第五方面的用户设备还包括:发送模块,用于向第一用户设备发送第一待译码数据。
结合第五方面,在第二种可能的实现方式中,接收模块在用户设备向第一用户设备发送第一待译码数据之前,还接收基站发送的第三消息,第三消息用于指示协作集,协作集包括至少一个用户设备,其中,用户设备还包括:确定模块,用于根据第三消息确定第一用户设备协作用户设备进行译码。
结合第五方面,在第三种可能的实现方式中,第五方面的用户设备还包括:发送模块,用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据。
结合第五方面,在第四种可能的实现方式中,第一用户设备与用户设备复用相同的时频资源,用户设备还包括:发送模块,用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据的时频资源位置信息。
第五方面的第三或第四种可能的实现方式,在第五种可能的实现方式中,发送模块向第一用户设备发送第二消息,用于请求第一用户设备协作用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,接收模块还接收第一用户设备发送的第三消息,第三消息用于确认协作用户设备进行译码。
第五方面的第五种可能的实现方式,在第六种可能的实现方式中,发送模块还在用户设备向第一用户设备发送第二消息之前,向第一用户设备发送第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息,其中接收模块还接收第一用户设备报告的协作译码的能力的信息,其中,用户设备还包括:确定模块,用于根据据协作译码的能力的信息确定第一用户设备协作用户设备进行译码。
结合第五方面的上述任何一种可能的实现方式,在第七种可能的实现方式中,译码信息为第一待译码数据使用码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合第五方面的上述任何一种可能的实现方式,在第八种可能的实现方式中,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站 之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合第五方面的上述任何一种可能的实现方式,在第九种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第六方面,提供了一种基站,包括:发送模块,用于向至少一个第一用户设备发送第一消息,第一消息用于通知至少一个第一用户设备报告协作译码的能力的信息;接收模块,用于接收至少一个第一用户设备报告的协作译码的能力的信息;其中发送模块根据所述第一用户设备报告的所述协作译码的能力的信息向广播或多播的至少一个用户设备的译码信息,以便至少一个第一用户设备根据第二用户设备的译码信息对待译码数据进行译码,并向第二用户设备发送第三消息,第三消息用于指示协作集,协作集信息包括至少一个用户设备。
结合第六方面,在第一种可能的实现方式中,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
结合第六方面,在第二种可能的实现方式中,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
结合第六方面,在第三种可能的实现方式中,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
根据本发明的实施例,第一用户设备可以获取第二用户设备的一部分待译码数据和该部分待译码数据的译码信息,根据该译码信息对该部分待译码数据进行译码,并将译码结果发送给第二用户设备,从而实现协作译码。由于第一用户设备分担了第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一个实施例的通信系统的结构示意图。
图2是根据本发明一个实施例的协作译码的方法的示意性流程图。
图3是根据本发明另一实施例的协作译码的方法的示意性流程图。
图4是根据本发明的另一实施例的协作译码的方法的示意性流程图。
图5是根据本发明的另一实施例的协作译码的过程的示意性流程图。
图6是根据本发明的另一实施例的协作译码的过程的示意性流程图。
图7是SCMA的编码原理的示意图。
图8是根据本发明的另一实施例的协作译码的过程的示意性流程图。
图9是根据本发明的另一实施例的协作译码的过程的示意图。
图10是根据本发明的一个实施例的用户设备的结构示意图。
图11是根据本发明的另一实施例的用户设备的结构示意图。
图12是根据本发明的一个实施例的基站的结构示意图。
图13是根据本发明的另一实施例的用户设备的结构示意图。
图14是根据本发明的另一实施例的用户设备的结构示意图。
图15是根据本发明的另一实施例的基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
现在参照附图描述多个实施例,其中用相同的附图标记指示本文中的相同元件。在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现实施例。在其它例子中,以方框图形式示出公知结构和设备,以便于描 述一个或多个实施例。
在本说明书中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端描述了各个实施例。接入终端也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语"制品"涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可 擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语"机器可读介质"可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
终端协作技术的基本思想是系统中每个移动终端都有一个或多个协作伙伴,协作伙伴在传输自己信息的同时,帮助其协作伙伴传输信息,这样每个终端在传输信息的过程中利用自己的信道和协作伙伴的信道,从而获取了一定的空间分集增益。在协作通信网络中,源节点可以通过源节点和目的节点之间的路径直接传输信息,还可以利用协作分集,与中继节点上的天线共同形成一个虚拟天线阵列。这样每根天线都向目的节点发送源节点的信号,即可将虚拟天线阵列看作虚拟MIMO结构。
本发明的实施例利用终端协作技术来增强非正交多址接入场景下终端的处理能力。
图1是根据本发明的一个实施例的通信系统的结构示意图。
参照图1,示出根据本文的各个实施例的无线通信系统100。无线通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机和接收机,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与一个或多个接入终端(例如接入终端116和接入终端122)通信。然而,可以理解,基站102可以与类似于接入终端116或122的任意数目的接入终端通信。接入终端116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端116与天线112和114通信,其中天线112和114通过前向链路118向接入终端116发送信息,并通过反向链路120从接入终端116接收信息。此外,接入终端122与天线104和106通信,其中天线104和106通过前向链路124向接入终端122发送信息,并通过反向链路126从 接入终端122接收信息。
基站102、接入终端116或接入终端122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
根据本发明的实施例,基站与多个UE之间可以采用非正交多址接入技术通过空口进行通信,多个UE之间可以采用D2D方式进行通信。多个UE在与基站通信时,可以复用相同的时频资源。
应理解,本发明的实施例的非正交多址接入技术可以是以码分方式复用相同时频资源的SCMA技术,也可以是以功率复用的方式复用相同时频资源的NOMA技术,本发明的实施例对此不作限定,也可以其它非正交多址接入技术。
具体地说,SCMA是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为SCMA,也可以称为其他技术名称。该技术借助码本在相同的传输资源上传输多个不同的数据流,其中不同的数据流使用的码本不同,从而达到提升资源的利用率。数据流可以来自同一个终端设备也可以来自不同的终端设备。在SCMA系统中,可以将时频资源分成若干正交的时频资源块,每个时频资源块含有L个RE(Resource element,资源单元)。当发送端k发送数据时,首先将待发送数据分成S比特大小的数据块,通过查找码本Ck将每个数据块映射成一组调制符号Xk={Xk1,Xk2,…,XkL},每个调制符号对应资源块中一个RE。接收端在译码时,可以根据码本Ck对数据进行MPA(Message Passing Algorithm,消息传递算法)迭代,得到发送端发送的数据。非正交的空口接入允许多个码字在一个系统资源块上进行叠加传输。
具体地说,NOMA是一种非正交的多址接入技术,当然本领域技术人员也可以不把这个技术称之为NOMA,也可以称为其他技术名称。在NOMA系统中,为了对非正交数据进行译码,需要在接收端进行SIC(Serial Interference Cancellation,串行干扰消除)。通过SIC可以在接收端区分出不同用户的信号。SIC的基本原理是逐步减去最大信号功率用户的干扰,SIC 检测器在接收信号中对多个用户逐个进行数据判决,判决出一个用户就同时减去该用户信号造成的多址干扰(MAI),按照信号功率大小的顺序来进行操作,功率较大信号先进行操作。这样一直进行循环操作,直至消除所有的多址干扰为止。
图2是根据本发明一个实施例的协作译码的方法的示意性流程图。图2的方法由图1的用户设备来执行。图2的方法包括如下内容。
210,第一用户设备获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中译码信息用于对第一待译码数据进行译码,第一用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,第一用户设备和第二用户设备采用非正交多址接入方式与基站进行通信。
220,第一用户设备根据译码信息对第一待译码数据进行译码,得到第一译码数据。
230,第一用户设备向第二用户设备发送第一译码数据。
具体而言,用户设备可以采用非正交多址接入方式(例如,NOMA或SCMA)与基站通信。上述待译码数据为基站对需要发送给第二用户设备的数据进行编码得到的数据(例如,NOMA编码数据或SCMA编码数据)。第二用户设备可以由至少一个第一用户设备对其待译码数据进行协作译码,其中待译码数据可以被分成多个部分,每个第一用户设备分担一部分译码工作,每个第一用户设备进行协作译码后,将得到的译码结果发送给第二用户设备,由第二用户设备进行后续的处理。
根据本发明的实施例,第一用户设备可以获取第二用户设备的一部分待译码数据和该部分待译码数据的译码信息,根据该译码信息对该部分待译码数据进行译码,并将译码结果发送给第二用户设备,从而实现协作译码。由于第一用户设备分担了第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
应理解,第二用户设备与第一用户设备之间可以采用设备到设备(Device to Device,D2D)方式进行通信,本发明的实施例并不限于此,例如,第二用户设备与第一用户设备也可以通过基站进行通信。
可选地,作为另一实施例,在210中,第一用户设备获取基站发送的译 码信息,并且获取第二用户设备发送的第一待译码数据。
具体而言,基站可以为其覆盖范围下或者某个集合内的用户设备分配译码信息,并且将译码信息通知给各个用户设备,这样,第一用户设备可以接收到基站发送的第二用户设备的译码信息。应理解,基站也可以将能够协作其它用户进行译码的用户设备设置成一个协作集,并且仅向协作集内的用户设备发送协作集内的用户设备的译码信息。基站可以向第二用户设备发送编码数据,第二用户设备在接收到基站发送的编码数据后,首先为第一用户设备分配一部分数据,然后将这部分数据发送给第一用户设备。这样,第一用户设备可以直接从第二用户设备获得需要其进行协作译码的数据。
可选地,作为另一实施例,图2的方法还包括:第一用户设备接收基站发送的第一消息,第一消息用于通知第一用户设备报告协作译码的能力的信息;第一用户设备向基站报告协作译码的能力的信息,以便基站根据协作译码的能力的信息确定协作集,协作集包括上述至少一个用户设备,其中,第一用户设备获取基站发送的译码信息,包括:第一用户设备接收基站广播或多播的协作集中的用户设备的译码信息。
例如,基站可以首先获取其覆盖范围下或者某个集合内的用户设备报告的协作译码的能力的信息,这些信息包括这些用户设备的计算能力、支持该计算能力的时间周期、各个用户设备的位置以及信号质量等中的至少一个。基站根据用户设备的协作译码能力的信息可以确定哪些用户设备有能力协作其它用户设备进行译码。例如,如果某个用户设备的信号质量低于预设的阈值,则确定该用户设备不具备协作译码的能力,或协作译码能力比较差,否则确定该用户设备具备协作译码的能力,或协作译码能力比较好。再如,还可以根据用户设备的位置确定某个范围内的用户设备具备协作译码的能力,例如,如果协作的用户设备之间的距离大于预设阈值,则认为不具备协作译码的能力。再如,如果某个用户设备的计算能力高于预设阈值,则认为该用户设备具备协作译码的能力。当然,本发明的实施例并不限于此,本领域技术人员应该理解的是,在判断某个用户设备是否具备协作译码能力时,也可以基于上述参数的任意组合。例如,用户设置在某个时段内的计算能力超过预设阈值时确定该用户设备具备协作译码能力。
基站可以将具备协作译码能力的用户设备设置为一个协作集,并将向协作集中的所有用户设备通知所有用户设备的译码信息,以便协作集中的某些 用户设备为其它用户设备进行协作译码。根据本发明的实施例,基站能够根据用户设备的协作译码的能力选择合适的用户设备进行协作译码,从而能够在增强用户设备的处理能力的同时,使得参与协作的其它用户设备的能力得到合理、有效利用。
可选地,作为另一实施例,在210中,第一用户设备获取第二用户设备发送的译码信息;第一用户设备获取第二用户设备发送的第一待译码数据。
例如,第二用户设备在接收到基站发送的编码数据和对应的译码信息后,首先为第一用户设备分配一部分数据,然后将这部分数据和对应的译码信息发送给第二用户设备。这样,第一用户设备可以直接从第二用户设备获得需要其进行协作译码的数据和译码信息。
可选地,作为另一实施例,第一用户设备与第二用户设备复用相同的时频资源。在210中,第一用户设备获取第二用户设备发送的译码信息;第一用户设备获取第二用户设备发送的第一待译码数据的时频资源位置信息;第一用户设备根据时频资源位置信息获取基站发送的第一待译码数据。
例如,在第一用户设备与第二用户设备复用相同资源的情况下,第二用户设备和第一用户设备均可以接收到基站向第二用户设备发送的该编码数据,因此,第二用户设备只需要将需要第一用户设备协作译码的数据的时频资源位置信息告诉第一用户设备即可,第一用户设备可以根据该时频资源位置信息获得需要其进行协作译码的数据。在这种情况下,第二用户设备无需将需要第一用户设备协作译码的数据发送给第一用户设备,提高了资源利用率。
应理解,第一用户设备也可以直接从基站获取第一待译码数据的时频资源位置信息。
可选地,根据本发明的实施例,第一用户设备获取第二用户设备发送的译码信息,包括:第一用户设备接收第二用户设备发送的第二消息,用于请求第一用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,图2的译码方法还包括:第一用户设备根据第一待译码数据的大小确定协作第二用户设备进行译码;第一用户设备向第二用户设备发送第三消息,用于确认协作第二用户设备进行译码。
例如,第二用户设备在确定第一用户设备具备协作译码能力之后,向第一用户设备发送协作译码请求消息,该协作译码请求中可以携带需要第一用 户设备进行协作译码的数据的大小,以便第一用户设备根据该数据的大小确定是否为第二用户设备提供协作译码,例如,如果该数据的大小超过预设的阈值,第一用户设备可以拒绝为第二用户设备提供协作译码,以免对第一用户设备的数据处理造成影响。
可选地,作为另一实施例,在第一用户设备接收第二用户设备发送的第二消息之前,图2的译码方法还包括:第一用户设备接收第二用户设备发送的第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息;第一用户设备向第一用户设备报告协作译码的能力的信息,以便第二用户设备根据协作译码的能力的信息确定第一用户设备协作第二用户设备进行译码。
例如,第二用户设备需要其它用户设备进行协作译码时,可以向第一用户设备发送报告协作译码的能力的信息的通知,第一用户设备可以向第二用户设备报告其协作译码的能力的信息,第二用户设备根据接收到的多个第一用户设备报告的协作译码的能力的信息,从多个第一用户设备中选择合适的用户设备进行协作译码,从而能够在增强用户设备的处理能力的同时,使得参与协作的其它用户设备的能力得到合理、有效利用。
根据本发明的实施例,作为另一实施例,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
例如,第一用户设备和第二用户设备采用稀疏码分多址接入SCMA方式与基站进行通信,待译码数据为SCMA编码数据,译码信息为第一待译码数据使用的SCMA码本。
SCMA采用的码本为两个或两个以上码字的集合。
其中,码字可以为多维复数域向量,其维数为两维或两维以上,用于表示数据与两个或两个以上调制符号之间的映射关系,该调制符号包括至少一个零调制符号和至少一个非零调制符号,数据可以为二进制比特数据或者多元数据可选的,零调制符号和非零调制符号的关系可以为零调制符号个数不少于非零调制符号个数。
码本由两个或两个以上的码字组成。码本可以表示一定长度的数据的可能的数据组合与码本中码字的映射关系。
SCMA技术通过将数据流中的数据按照一定的映射关系直接映射为码 本中的码字即多维复数向量,实现数据在多个资源单元上的扩展发送。这里的数据可以是二进制比特数据也可以是多元数据,多个资源单元可以是时域、频域、空域、时频域、时空域、时频空域的资源单元。
SCMA采用的码字可以具有一定稀疏性,比如说码字中的零元素数量可以不少于调制符号数量,以便于接收端可以利用多用户检测技术来进行较低复杂度的译码。这里,以上列举的零元素数量与调制符号的关系仅为稀疏性一个示例性说明,本发明并不限定于此,零元素数量与非零元素数量的比例可以根据需要任意设定。
例如,在译码时,第一用户设备可以根据第二用户设备的SCMA码本对第一待译码数据进行MPA(Message Passing Algorithm,消息传递算法)迭代,得到第一译码数据。基于MPA迭代处理可以与常规技术类似,在此不再赘述。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
例如,第一用户设备和第二用户设备采用非正交多址接入NOMA方式与基站进行通信,待译码数据为NOMA编码数据,译码信息包括第一待译码数据采用的功率分配因子。
例如,在译码时,第一用户设备可以根据时频资源信息对第一待译码灵气进行SIC,通过SIC可以得到第一译码数据。在NOMA,采用功率分配因子(或权重)来表示不同的用户设备的功率分配。基于功率分配因子进行译码可以与常规技术类似,在此不再赘述。
根据本发明的实施例,上述译码信息可以为签名矩阵的信息,该签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和上述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
例如,基站可以根据签名矩阵和信道矩阵生成预编码矩阵,利用该预编码矩阵对数据进行预编码生成编码数据,并且将该编码数据发送给用户设备,另外,基站可以将签名矩阵的信息(例如,签名矩阵或签名矩阵的索引)发送给用户设备,以便用户设备根据该签名矩阵,通过MPA迭代,对上述编码数据进行译码。
具体而言,基站可以根据预设的星座点集合对需要发送给用户终端的多层信息比特,进行比特映射处理(也可以称为,调制处理),以生成L层数据流(即,L个调制符号序列),上述L层数据流对应同一时频资源,L≥2;该基站根据该数据流的层数L和用户设备所使用的第一空域资源的数量R,确定签名矩阵,其中该签名矩阵可以包括沿第一维度方向排列的L个第一元素序列,该L个第一元素序列与该L层数据流一一对应,每个第一元素序列包括沿第二维度方向排列的R个第一元素,该R个第一元素与R个第一空域资源一一对应,R个第一元素包括至少一个零元素和至少一个非零元素,R≥2,该L个第一元素序列彼此相异。该基站根据信道矩阵和该签名矩阵,确定预编码矩阵,并根据该预编码矩阵P对该L层数据流进行预编码处理,其中,该信道矩阵与该基站和该用户设备之间的信道相对应,该预编码矩阵P包括沿该第一维度方向排列的L个第二元素序列,该L个第二元素序列与该L第一元素序列一一对应,例如,基站可以根据信道矩阵和签名矩阵中的第i个第一元素序列,确定预编码矩阵中与第i层数据流相对应的第i个第二元素序列,以使经过基于第i个第二元素序列的预编码处理后的第i层数据流在第i个第一元素序列中的零元素所对应的空域资源上的能量为零或近似为零,i∈[1,L]。该基站可以向该用户设备发送经该预编码处理的L层数据流和用于指示该签名矩阵的信息,以便于该基站根据该签名矩阵S和该星座点集合对该经该预编码处理的L层数据流进行译码处理,以获取该L层比特信息。
图3是根据本发明另一实施例的协作译码的方法的示意性流程图。图3的方法与图2的方法相对应,由图1的用户设备来执行,在此适当省略详细的描述。图3的方法包括如下内容。
310,第二用户设备接收第一用户设备发送的第一译码数据,其中第一用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,第一译码数据由第一用户设备根据第二用户设备的译码信息对第二用户设备的待译码数据中的第一待译码数据进行译码得到的,第一用户设备和第二用户设备采用非正交多址接入方式与基站进行通信,译码信息用于对第一待译码数据进行译码。
320,第二用户设备根据第一译码数据得到待译码数据对应的译码数据。
具体而言,第二用户设备与至少一个用户设备协作对第二用户设备的待 译码数据进行译码。第二用户设备可以从上述至少一个用户设备获得对应的译码结果,并且根据这些译码结果以及自身获得的译码结果合并成最终的译码结果。
根据本发明的实施例,第二用户设备可以获取其它用户设备协作译码得到的译码数据,并根据这些用户设备得到的译码数据得到最终的译码数据。由于第一用户设备分担了第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
可选地,作为另一实施例,图3的方法还包括:第二用户设备向第一用户设备发送第一待译码数据。
例如,第二用户设备可以将待译码数据可以被分成多个部分,分别分配给多个第一用户设备。例如,第二用户设备可以将不同时段接收到的数据分配给不同的用户设备进行协作译码,根据本发明的实施例并不限于此,例如,第二用户设备还可以按照大小对待译码数据进行分块,并且分配给不同的用户设备进行协作译码。
可选地,作为另一实施例,在第二用户设备向第一用户设备发送第一待译码数据之前,图3的方法还包括:第二用户设备接收基站发送的第三消息,第三消息用于指示协作集,协作集包括至少一个用户设备;第二用户设备根据第三消息确定第一用户设备协作第二用户设备进行译码。
例如,基站还可以通过下行控制信道向第二用户设备发送控制信令,该控制信令包括协作集的信息,用于指示哪些用户设备能够与第二用户设备进行协作通信。
可选地,作为另一实施例,图3的方法还包括:第二用户设备向第一用户设备发送译码信息;第二用户设备向第一用户设备发送第一待译码数据。
例如,第二用户设备可以将待译码数据可以被分成多个部分,分别分配给多个第一用户设备。
可选地,作为另一实施例,第一用户设备与第二用户设备复用相同的时频资源,图3的方法还包括:第二用户设备向第一用户设备发送译码信息;第二用户设备向第一用户设备发送第一待译码数据的时频资源位置信息。
根据本发明的实施例,第二用户设备向第一用户设备发送译码信息,包括:第二用户设备向第一用户设备发送第二消息,用于请求第一用户设备协 作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,图3的方法还包括:第二用户设备接收第一用户设备发送的第三消息,第三消息用于确认协作第二用户设备进行译码。
可选地,作为另一实施例,在第二用户设备向第一用户设备发送第二消息之前,译码方法还包括:第二用户设备向第一用户设备发送第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息;第二用户设备接收第一用户设备报告的协作译码的能力的信息;第二用户设备根据协作译码的能力的信息确定第一用户设备协作第二用户设备进行译码。
根据本发明的实施例,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源
例如,第一用户设备和第二用户设备采用稀疏码分多址接入SCMA方式与基站进行通信,待译码数据为SCMA编码数据,译码信息为第一待译码数据使用的SCMA码本。
可选地,作为另一实施例,,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
例如,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
第一用户设备和第二用户设备采用非正交多址接入NOMA方式与基站进行通信,待译码数据为NOMA编码数据,译码信息包括第一待译码数据采用的功率分配因子。
图4是根据本发明的另一实施例的协作译码的方法的示意性流程图。图4的方法与图2的方法相对应,由图1的基站来执行,在此适当省略详细的描述。图4的方法包括如下内容。
410,基站向至少一个第一用户设备发送第一消息,第一消息用于通知至少一个第一用户设备报告协作译码的能力的信息。
420,基站接收至少一个第一用户设备报告的协作译码的能力的信息。
430,基站根据所述第一用户设备报告的所述协作译码的能力的信息向 广播或多播的至少一个用户设备的译码信息,以便至少一个第一用户设备根据第二用户设备的译码信息对待译码数据进行译码。
具体地,基站可以根据协作译码的能力的信息确定协作集,协作集包括协作第二用户设备对待译码数据进行译码的至少一个用户设备。
440,基站向第二用户设备发送第三消息,第三消息用于指示协作集,协作集信息包括至少一个用户设备。
具体而言,基站向其覆盖范围内或者某个集合内的各个用户设备发送协作集选择消息,用于通知用户设备报告协作能力信息。各个用户设备接收到基站发送的协作集选择消息后,向基站反馈协作能力信息。基站根据各个第一用户设备反馈的协作能力信息,划定协作集的范围,并指定协作集内各个第一用户设备对应的译码信息。基站可以在协作集设定具备协作通信能力的第一用户设备,并且为协作集中的第一用户设备分配相应的译码信息。基站将协作中的所有用户设备对应的译码信息传输给协作集中的每个用户设备。随后,基站对第二用户设备的数据进行编码,并将编码之后的数据传输给第二用户设备。同时,基站还可以通过下行控制信道向第二用户设备发送控制信令,用于指示哪些用户设备能够与第二用户设备进行协作通信。
根据本发明的实施例,基站可以根据第一用户设备的协作译码的能力的信息确定第一用户设备能够为第二用户设备进行协作译码,并且将第二用户设备的译码信息发送给第一用户设备,使得第一用户设备根据该译码信息能够分担第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源
例如,第一用户设备和第二用户设备采用稀疏码分多址接入SCMA方式与基站进行通信,待译码数据为SCMA编码数据,译码信息为第一待译码数据使用的SCMA码本。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
例如,第一用户设备和第二用户设备采用非正交多址接入NOMA方式 与基站进行通信,待译码数据为NOMA编码数据,译码信息包括第一待译码数据采用的功率分配因子。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
图5是根据本发明的另一实施例的协作译码的过程的示意性流程图。图5的实施例是图2、图3和图4的方法的例子,在此适当省略详细的描述。图5的方法包括如下内容。
510,eNodeB向各个UE发送协作能力请求,用于通知UE报告协作能力信息。
协作能力信息,用于确定哪些UE具备协作通信的能力,例如,协作能力信息可以包括其计算能力、支持该计算能力的时间周期、各个UE的位置、信号质量等中的至少一个。
本发明的实施例对用于通知UE报告协作能力信息的消息的名称不作限定,例如,当上述协作能力信息用于确定协作集时,上述消息也可以称为协作集选择消息,该协作集可以包括具备协作译码能力的用户设备。
520,各个UE接收到eNodeB发送的协作能力请求后,向eNodeB反馈协作能力信息。
530,eNodeB根据各个UE反馈的协作能力信息,划定协作集的范围,并指定协作集内各个UE对应的SCMA码本。
eNodeB可以在协作集设定具备协作通信能力的UE,例如,在本实施例中,协作集包括UE A、UE B和UE C,并且为协作集中的UE分配相应的SCMA码本,形成SCMA码本集。
540,eNodeB将协作集中的UE对应的SCMA码本传输给协作集中的UE。
例如,eNodeB可以通过广播或多播消息的形式将SCMA码本集传输给协作集中的UE。
当然,如果eNodeB只需要为某个用户设备(例如,UE B)确定协作译码的设备,eNodeB也可以只将UE B的码本信息通知各个用户设备(例如,UE A和UE C)。
550,eNodeB对需要传输给UE B的数据进行SCMA编码,并将SCMA编码之后的数据传输给UE B,同时发送协作集信息,用于指示哪些UE能够与UE B进行协作通信。例如,可以在发送数据的数据帧中携带协作集信息。
可替代地,作为另一实施例,eNodeB对需要传输给UE B的数据进行SCMA编码,并将SCMA编码之后的数据传输给UE B。eNodeB还可以通过下行控制信道向UE B发送控制信令,用于指示哪些UE能够与UE B进行协作通信。
560,UE B在收到eNodeB发送来的SCMA数据和上述控制信令后,将需要译码的SCMA数据分成多个部分,分别通过协作通信通知邻近UE A和UE C。
570,UE A和UE C接收来自UE B的SCMA编码数据后,根据之前eNodeB下发的SCMA码本集,找到UE B对应的码本,对UE B进行译码;
580,UE A和UE A译码完成后将译码结果反馈给UE B。
图6是根据本发明的另一实施例的协作译码的过程的示意性流程图。图6的实施例是图2、图3和图4的方法的例子,在此适当省略详细的描述。图6的方法包括如下内容。
610,eNodeB向UE B发送SCMA编码数据。
例如,eNodeB对待发送给UE B的数据进行SCMA编码得到SCMA编码数据,并通过下行信道将SCMA编码数据发送给UE B。
可选地,作为另一个实施例,在UE A、UE B和UE C复用相同时频资源的情况下,UE A和UE C也可以同时接收到基站发送给UE B的数据。
620,UE B在接收到SCMA编码数据后,向邻居UE发送协作能力请求,用于请求UE A和UE C上报协作能力信息。
例如,如果UE B需要邻居UE A和UE C对SCMA编码数据进行协作译码,则UE B向UE A和UE C发送协作能力请求,用于指示UE A和UE B报告可用计算能力和/或时间参数等。
本发明的实施例对用于通知UE报告协作能力信息的消息的名称不作限定,例如,当上述协作能力信息用于确定协作集时,上述消息也可以称为协作集选择消息,该协作集可以包括具备协作译码能力的用户设备。
630,邻居UE在接收到UE B的协作能力请求后将自身的可用计算能力,和/或该可用计算能力能够支持的时间参数报告给UE B。
例如,邻居UE A和UE C可以将自身的可用计算能力和/或该可用计算能力能够支持的时间周期报告给UE B。
640,UE B根据邻居UE报告的可用计算能力和/或该可用计算能力能够支持的时间参数进行协作译码决策,决定选择该邻居UE进行协作译码。
具体地,UE B可以在UE A和UE C报告的可用计算能力大于某个预设值并且时间周期在预设的时间范围内时,选择UE A和UE C进行协作译码。
650,UE B决定发起协作通信,向邻居UE A和UE C发起协作请求消息。
具体地,协作请求消息可以携带UE B的SCMA码本信息以及需要UE A和UE C进行协作译码的数据块的大小。
660,UE A接收到消息后,根据数据块的大小决定是否同意为UE B进行协作译码。
虽然UE A有能力协作UE B进行协作译码,然而,UE A也可以根据该数据块的大小决定是否进行协作译码,例如,UE A可以在数据块的大小超过预定值时拒绝进行协作译码。
665,UE A向UE B发送响应消息,该响应消息用于确认UE A是否同意进行协作译码。
670,UE C接收到消息后,决定是否同意为UE B进行协作译码。
675,UE C向UE B发送响应消息,该响应消息用于确认UE C是否同意进行协作译码。
680,UE C同意进行协作译码,则UE B向其发送部分SCMA编码数据。该部分SCMA编码数据为需要UE C进行协作译码的SCMA编码数据。
可替代地,作为另一实施例,UE B也可以不向其发送部分SCMA编码数据,而是发送该部分SCMA编码数据对应的时频资源。
具体地,该部分SCMA编码数据为需要UE C进行协作译码的SCMA编码数据。由于UE B和UE C在与基站通信时使用了相同的时频资源,因此,UE C能够从基站接收到UEB的SCMA编码数据。UE C根据接收到的该部分SCMA编码数据的时频资源的位置和大小,确定该部分SCMA编码数据。
由于SCMA的资源是多用户复用的,下行场景中多个用户占用相同的时频资源块,通过使用不同的码本进行译码。在这种场景中,如果UE C和UE B是复用用户,那么UE C在接收SCMA数据时同时也接收了UE B的数据。如果UE C的终端处理器能力较强,可以帮助UE B进行协作通信,那么UE B不需要将需协作译码的数据发送给UE C,只需要传输需要进行协作译码的时频资源位置和大小即可。
690,UE C对该部分SCMA编码数据进行协作译码.
695,UE C将译码结果反馈给UE B。
应理解,如果某个邻居UE不同意进行协作译码,则UE B不与该邻居UE进行协作码。例如,在本实施例中,由于UE A不同意进行协作译码,因此,UE B不与UE A进行协作译码。
图7是SCMA的编码原理的示意图。图7的实施例以6个数据流复用4个资源单元为例进行说明。
参见图7,数据流也可以被称之为变量节点,资源单元也可被称之为功能节点,其中,6个数据流组成一个分组,4个资源单元组成一个编码单元。一个资源单元可以为一个资源单元,或者为一个资源粒子(英文为:Resource Element,英文缩写为:RE),或者为一个天线端口。数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合经码字映射后会在该资源单元上发送非零的调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经码字映射后在该资源单元上发送的调制符号都为零。数据流的数据组合可以按照如下阐述进行理解,例如,二进制比特数据流中,00、01、10、11为所有可能的两比特数据组合。为了描述方便,用s1至s6依次表示二分图中6个数据流待发送的数据组合,用x1至x4依次表示二分图中4个资源单元上发送的符号。每个数据流的数据经码字映射后会在两个或两个以上的资源单元上发送调制符号,同时,每个资源单元发送的符号是来自两个或两个以上的数据流的数据经各自码字映射后的调制符号的叠加。例如数据流3的待发送数据组合s3经码字映射后可能会在资源单元1和资源单元2上发送非零的调制符号,而资源单元3发送的数据x3是数据流2、数据流4和数据流6的待发送数据组合s2、s4和s6分别经各自码字映射后得到的非零调制符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该SCMA系统可以有效地提升网络容量,包括系统的可 接入用户数和频谱效率等。
应理解,图5和6的实施例的流程也可以类似于应用于NOMA技术中,不同是,在NOMA技术中,根据功率分配因子对NOMA编码数据进行译码。下面结合图8进行描述。
图8是根据本发明的另一实施例的协作译码的过程的示意性流程图。图8的实施例是图2、图3和图4的方法的例子,在此适当省略详细的描述。图8的方法包括如下内容。
810,eNodeB向各个UE发送协作能力请求,通知UE报告协作能力信息。
协作能力信息,用于确定哪些UE具备协作通信的能力,例如,协作能力信息可以包括其计算能力、支持该计算能力的时间周期、各个UE的位置、信号质量等中的至少一个。
本发明的实施例对用于通知UE报告协作能力信息的消息的名称不作限定,例如,当上述协作能力信息用于确定协作集时,上述消息也可以称为协作集选择消息,该协作集可以包括具备协作译码能力的用户设备。
820,各个UE接收到eNodeB发送的协作能力请求后,向eNodeB反馈协作能力信息。
830,eNodeB根据各个UE反馈的协作能力信息,划定协作集的范围,并指定协作集内各个UE对应的功率分配因子。
例如,eNodeB可以在协作集中设定具备协作通信能力的UE,并且为协作集中的UE分配相应的功率分配因子。
840,eNodeB将协作集中的各个UE对应的功率分配因子传输给协作集中的UE。
例如,eNodeB可以通过广播或多播消息的形式将各个UE使用的功率分配因子传输给协作集中的UE。
850,eNodeB对需要传输给UE B的数据进行NOMA编码,并将NOMA编码之后的数据传输给UE B,同时发送协作集信息,用于指示哪些UE能够与UE B进行协作通信。例如,可以在发送数据的数据帧中携带协作集信息。
可替代地,作为另一实施例,eNodeB对需要传输给UE B的数据进行NOMA编码,并将NOMA编码之后的数据传输给UE B。同时eNodeB还可 以通过下行控制信道向UE B发送控制信令,用于指示哪些UE能够与UE B进行协作通信。
860,UE B在收到eNodeB发送来的NOMA数据和上述控制信令后,将需要译码的NOMA数据分成多个部分,分别通过协作通信通知邻近UE A和UE C。
870,UE A和UE C接收到来自UE B的请求协作的NOMA数据后,根据之前eNodeB下发的功率分配因子,对UE B进行译码。
880,UE A和UEC译码完成后将译码结果反馈给UE B。
图9是根据本发明的另一实施例的协作译码的过程的示意图。图9的实施例是图2、图3和图4的方法的例子,在此适当省略详细的描述。图9的方法包括如下内容。
910,基站根据签名矩阵计算预编码矩阵。
在本实施例中,以基站的天线数t为8,用户设备的天线数r为4,同时复用的数据流的数目l为6为例进行说明。设信道矩阵为H,H的大小为4*8。
设签名矩阵
Figure PCTCN2015073900-appb-000001
其中,签名矩阵的每一列的非零元素的数目d为2。
预编码矩阵P被设置为使得矩阵HP的非零元素的位置和矩阵S中‘1’的位置相同。
例如,可以通过以下步骤计算P:
1)先根据签名矩阵S每一列中“1”的位置定义矩阵H1~H6,并且根据矩阵S每一列中“0”的位置定义矩阵
Figure PCTCN2015073900-appb-000002
例如,如果矩阵S的第1列的第1和第2个元素为“1”,则令
Figure PCTCN2015073900-appb-000003
即H1为取矩阵H的第1和第2行;第3和第4个元素为“0”,则令
Figure PCTCN2015073900-appb-000004
Figure PCTCN2015073900-appb-000005
为取矩阵H的第3和第4行,如果矩阵S的第2列的第2和第3个元素为“1”,则令H2=H[2,3],:,即H2为取矩阵H的第2和第3行;第1和第4个元素为“0”,则令
Figure PCTCN2015073900-appb-000006
Figure PCTCN2015073900-appb-000007
为取矩阵H的第3和第4行,依次类推,可以得到H3,H4,H5,H6以及
Figure PCTCN2015073900-appb-000008
2),计算
Figure PCTCN2015073900-appb-000009
的零空间
Figure PCTCN2015073900-appb-000010
其中
Figure PCTCN2015073900-appb-000011
的大小为8*6:对
Figure PCTCN2015073900-appb-000012
进 行奇异值分解,得到
Figure PCTCN2015073900-appb-000013
3),计算
Figure PCTCN2015073900-appb-000014
的正交子空间
Figure PCTCN2015073900-appb-000015
Figure PCTCN2015073900-appb-000016
进行奇异值分解:
Figure PCTCN2015073900-appb-000017
Figure PCTCN2015073900-appb-000018
共有两列,分别对应奇异值σ12j=diag(σ12)),取其中对应奇异值较大的一列作为sj
4),生成预编码矩阵
Figure PCTCN2015073900-appb-000019
其中D为用于数据流之间进行功率分配的对角矩阵,可根据实际需要进行设置。
920,基站将签名矩阵或签名矩阵的索引号通过控制信道发送给用户设备。
设发送的数据为
Figure PCTCN2015073900-appb-000020
基站将对数据进行预编码发送,即
Figure PCTCN2015073900-appb-000021
930,用户设备接收数据和签名矩阵,接收到的数据y=HPx+n,其中n为噪声。
940,用户设备根据签名矩阵,对接收到的数据进行MPA迭代译码,解调出基站发送的数据。
例如,用户设备可以解调出
Figure PCTCN2015073900-appb-000022
在本实施例中,用户设备的4根天线可以分布在多个UE上,多个UE上的分布的多个天线可以通过终端协作实现以上步骤。
在实施例中,当用户设备需要其它用户设备协作译码时,可以由基站或用户设备将该用户设备的签名矩阵的信息发送给其它用户设备,由其它用户设备根据该签名矩阵进行对数据进行译码,并将译码后的数据反馈给该用户设备。其它用户设备获取签名矩阵的信息、根据该信息对数据进行译码并将译码后的数据发送给该用户设备的流程与上述实施例类似,在此不再详述。
虽然本发明的实施例以用户设备使用4天线为例进行说明,但本领域技 术人员应理解的是,本发明的实施例可以应用于支持8根天线等更加复杂的SCMA或NOMA接收的情况,以及更高的SCMA或NOMA的传输模式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
应理解,在本发明的各种实施例中,本发明的实施例对用于各种消息的名称不作限定,也可以在不同的场景下根据需要采用其它名称。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上面描述了根据本发明实施例的协作译码的方法,下面分别结合图10至图15描述根据本发明实施例的用户设备和基站。
图10是根据本发明的一个实施例的用户设备1000的结构示意图。用户设备1000包括获取模块1010、译码模块1020和发送模块1030。
获取模块1010用于获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中译码信息用于对第一待译码数据进行译码,用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,用户设备和第二用户设备采用非正交多址接入方式与基站进行通信。
译码模块1020用于根据译码信息对第一待译码数据进行译码,得到第一译码数据。
发送模块1030用于向第二用户设备发送第一译码数据。
根据本发明的实施例,一个用户设备可以获取第二用户设备的一部分待译码数据和该部分待译码数据的译码信息,根据该译码信息对该部分待译码数据进行译码,并将译码结果发送给第二用户设备,从而实现协作译码。该用户设备分担了第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得该用户设备得到了合理、有效的利用。
根据本发明的实施例,获取模块1010获取基站发送的译码信息,并获取第二用户设备发送的第一待译码数据。
可选地,作为另一实施例,获取模块1010还接收基站发送的第一消息,第一消息用于通知用户设备报告协作译码的能力的信息;发送模块1030还用于向基站协作译码的能力的信息,以便基站根据协作译码的能力的信息确定协作集,协作集包括至少一个用户设备,其中,获取模块1010接收基站广播或多播的协作集中的用户设备的译码信息。
根据本发明的实施例,获取模块1010获取第二用户设备发送的译码信息,并获取第二用户设备发送的第一待译码数据。
根据本发明的实施例,用户设备与第二用户设备复用相同的时频资源,获取模块1010获取第二用户设备发送的译码信息,获取第二用户设备发送的第一待译码数据的时频资源位置信息,并且用户设备根据时频资源位置信息获取基站发送的第一待译码数据。
可选地,作为另一实施例,获取模块1010接收第二用户设备发送的第二消息,用于请求用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,用户设备还包括:确定模块1040,用于根据第一待译码数据的大小确定协作第二用户设备进行译码,其中发送模块1030还用于向第二用户设备发送第三消息,用于确认协作第二用户设备进行译码。
可选地,作为另一实施例,获取模块1010在接收第二用户设备发送的第二消息之前,还接收第二用户设备发送的第四消息,第四消息用于通知用户设备报告协作译码的能力的信息,用户设备还包括:发送模块1030,用于向用户设备报告协作译码的能力的信息,以便第二用户设备根据协作译码的能力的信息确定用户设备协作第二用户设备进行译码。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入 输出MIMO传输。
UE 1000的模块的操作和功能可以参考上述图2的方法,为了避免重复,在此不再赘述。
图11是根据本发明的另一实施例的用户设备1100的结构示意图。用户设备1100包括:接收模块1110和译码模块1120。
接收模块1110用于接收用户设备发送的第一译码数据,其中第一用户设备为协作用户设备对待译码数据进行译码的至少一个用户设备之一,第一译码数据由第一用户设备根据用户设备的译码信息对用户设备的待译码数据中的第一待译码数据进行译码得到的,第一用户设备和用户设备采用非正交多址接入方式与基站进行通信,译码信息用于对第一待译码数据进行译码,。
译码模块1120用于根据第一译码数据得到待译码数据对应的译码数据。
根据本发明的实施例,用户设备可以获取其它用户设备协作译码得到的译码数据,并根据这些用户设备得到的译码数据得到最终的译码数据。由于第一用户设备分担了该用户设备的一部分译码工作,从而提高了该用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
可选地,作为另一实施例,用户设备1100还包括:发送模块1130,用于向第一用户设备发送第一待译码数据。
可选地,作为另一实施例,接收模块1110在用户设备向第一用户设备发送第一待译码数据之前,还接收基站发送的第三消息,第三消息用于指示协作集,协作集包括至少一个用户设备,其中,用户设备还包括:确定模块1140,用于根据第三消息确定第一用户设备协作用户设备进行译码。
可选地,作为另一实施例,用户设备1100还包括:发送模块1130,用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据。
可选地,作为另一实施例,第一用户设备与用户设备复用相同的时频资源,用户设备1100还包括:发送模块1130,用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据的时频资源位置信息。
可选地,作为另一实施例,发送模块1130向第一用户设备发送第二消息,用于请求第一用户设备协作用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,接收模块1110还接收第一用户设备发送的第三消息,第三消息用于确认协作用户设备进行译码。
可选地,作为另一实施例,发送模块1130还在用户设备向第一用户设备发送第二消息之前,向第一用户设备发送第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息,其中接收模块1110还接收第一用户设备报告的协作译码的能力的信息,其中,用户设备还包括:确定模块1140,用于根据据协作译码的能力的信息确定第一用户设备协作用户设备进行译码。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
UE 1100的模块的操作和功能可以参考上述图3的方法,为了避免重复,在此不再赘述。
图12是根据本发明的一个实施例的基站1200的结构示意图。基站1200包括:发送模块1210、接收模块1220和确定模块1230。
发送模块1210用于向至少一个第一用户设备发送第一消息,第一消息用于通知至少一个第一用户设备报告协作译码的能力的信息。
接收模块1220,用于接收至少一个第一用户设备报告的协作译码的能力的信息。
其中发送模块1210根据所述第一用户设备报告的所述协作译码的能力的信息向广播或多播的至少一个用户设备的译码信息,以便至少一个第一用户设备根据第二用户设备的译码信息对待译码数据进行译码,并向第二用户设备发送第三消息,第三消息用于指示协作集,协作集信息包括至少一个用户设备。
根据本发明的实施例,基站可以根据第一用户设备的协作译码的能力的信息确定第一用户设备能够为第二用户设备进行协作译码,并且将第二用户 设备的译码信息发送给第一用户设备,使得第一用户设备根据该译码信息能够分担第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
UE 1200的模块的操作和功能可以参考上述图4的方法,为了避免重复,在此不再赘述。
图13是根据本发明的另一实施例的用户设备1300的结构示意图。用户设备1300包括处理器1310、存储器1320、通信总线1330、接收器1340和发送器1350。
接收器1340用于获取第二用户设备的译码信息,并获取第二用户设备的待译码数据中的第一待译码数据,其中译码信息用于对第一待译码数据进行译码,用户设备为协作第二用户设备对待译码数据进行译码的至少一个用户设备之一,用户设备和第二用户设备采用非正交多址接入方式与基站进行通信。
处理器1310用于通过通信总线1330调用存储器1320中存储的代码,以根据译码信息对第一待译码数据进行译码,得到第一译码数据。
发送器1350用于向第二用户设备发送第一译码数据。
根据本发明的实施例,一个用户设备可以获取第二用户设备的一部分待译码数据和该部分待译码数据的译码信息,根据该译码信息对该部分待译码数据进行译码,并将译码结果发送给第二用户设备,从而实现协作译码。该用户设备分担了第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得该用户设备得到了合理、有效的利用。
根据本发明的实施例,接收器1340获取基站发送的译码信息,并获取第二用户设备发送的第一待译码数据。
可选地,作为另一实施例,接收器1340还接收基站发送的第一消息,第一消息用于通知用户设备报告协作译码的能力的信息,发送器1350还用于向基站协作译码的能力的信息,以便基站根据协作译码的能力的信息确定协作集,协作集包括至少一个用户设备,其中,接收器1340接收基站广播或多播的协作集中的用户设备的译码信息。
根据本发明的实施例,接收器1340获取第二用户设备发送的译码信息,并获取第二用户设备发送的第一待译码数据。
根据本发明的实施例,用户设备与第二用户设备复用相同的时频资源,接收器1340获取第二用户设备发送的译码信息,获取第二用户设备发送的第一待译码数据的时频资源位置信息,并且用户设备根据时频资源位置信息获取基站发送的第一待译码数据。
可选地,作为另一实施例,接收器1340接收第二用户设备发送的第二消息,用于请求用户设备协作第二用户设备进行译码,其中第二消息携带译码信息和第一待译码数据的大小,其中,处理器1310还用于根据第一待译码数据的大小确定协作第二用户设备进行译码,其中发送器1350还用于向第二用户设备发送第三消息,用于确认协作第二用户设备进行译码。
可选地,作为另一实施例,接收器1340在接收第二用户设备发送的第二消息之前,还接收第二用户设备发送的第四消息,第四消息用于通知用户设备报告协作译码的能力的信息,处理器1310还用于向用户设备报告协作译码的能力的信息,以便第二用户设备根据协作译码的能力的信息确定用户设备协作第二用户设备进行译码。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,第一用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二 用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
UE 1300的模块的操作和功能可以参考上述图2的方法,为了避免重复,在此不再赘述。
图14是根据本发明的另一实施例的用户设备的结构示意图。用户设备1400包括:处理器1410、存储器1420、通信总线1430、接收器1440和接收器1450。
接收器1440用于接收用户设备发送的第一译码数据,其中第一用户设备为协作用户设备对待译码数据进行译码的至少一个用户设备之一,第一译码数据由第一用户设备根据用户设备的译码信息对用户设备的待译码数据中的第一待译码数据进行译码得到的,第一用户设备和用户设备采用非正交多址接入方式与基站进行通信,译码信息用于对第一待译码数据进行译码,。
处理器1410用于通过通信总线1430调用存储器1420中存储的代码,以根据第一译码数据得到待译码数据对应的译码数据。
根据本发明的实施例,用户设备可以获取其它用户设备协作译码得到的译码数据,并根据这些用户设备得到的译码数据得到最终的译码数据。由于第一用户设备分担了该用户设备的一部分译码工作,从而提高了该用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
可选地,作为另一实施例,发送器1450还用于向第一用户设备发送第一待译码数据。
可选地,作为另一实施例,接收器1440还在用户设备向第一用户设备发送第一待译码数据之前,接收基站发送的第三消息,第三消息用于指示协作集,协作集包括至少一个用户设备,其中,处理器1410还用于根据第三消息确定第一用户设备协作用户设备进行译码。
可选地,作为另一实施例,发送器1450还用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据。
可选地,作为另一实施例,第一用户设备与用户设备复用相同的时频资源,发送器1450还用于向第一用户设备发送译码信息,并向第一用户设备发送第一待译码数据的时频资源位置信息。
可选地,作为另一实施例,发送器1450向第一用户设备发送第二消息,用于请求第一用户设备协作用户设备进行译码,其中第二消息携带译码信息 和第一待译码数据的大小,其中,接收器1440还接收第一用户设备发送的第三消息,第三消息用于确认协作用户设备进行译码。
可选地,作为另一实施例,发送器1450还在用户设备向第一用户设备发送第二消息之前,向第一用户设备发送第四消息,第四消息用于通知第一用户设备报告协作译码的能力的信息,其中接收器1440还接收第一用户设备报告的协作译码的能力的信息,其中,处理器1410还用于根据据协作译码的能力的信息确定第一用户设备协作用户设备进行译码。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
UE 1400模块的操作和功能可以参考上述图3的方法,为了避免重复,在此不再赘述。
图15是根据本发明的一个实施例的基站1500的结构示意图。基站1500包括:处理器1510、存储器1520、通信总线1530、接收器1540和发送器1550。
发送器1550用于向至少一个第一用户设备发送第一消息,第一消息用于通知至少一个第一用户设备报告协作译码的能力的信息。
接收器1540用于接收至少一个第一用户设备报告的协作译码的能力的信息。
其中发送器1550用于根据所述第一用户设备报告的所述协作译码的能力的信息向广播或多播的至少一个用户设备的译码信息,以便至少一个第一用户设备根据第二用户设备的译码信息对待译码数据进行译码,并向第二用户设备发送第三消息,第三消息用于指示协作集,协作集信息包括至少一个 用户设备。
根据本发明的实施例,基站可以根据第一用户设备的协作译码的能力的信息确定第一用户设备能够为第二用户设备进行协作译码,并且将第二用户设备的译码信息发送给第一用户设备,使得第一用户设备根据该译码信息能够分担第二用户设备的一部分译码工作,从而提高了第二用户设备处理待译码数据的能力,同时使得第一用户设备得到了合理、有效的利用。
根据本发明的实施例,译码信息为第一待译码数据使用的码本,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于码本与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息包括第一待译码数据采用的功率分配因子,用户设备与基站之间传输第一待译码数据时,第一待译码数据基于功率分配因子与至少一个数据流复用相同的时频资源。
根据本发明的实施例,译码信息为签名矩阵的信息,签名矩阵用于生成预编码矩阵,预编码矩阵用于使得待译码数据在基站的多个发射天线与第二用户设备和至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
UE 1500模块的操作和功能可以参考上述图4的方法,为了避免重复,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (48)

  1. 一种基于终端协作的译码方法,其特征在于,包括:
    第一用户设备获取第二用户设备的译码信息,并获取所述第二用户设备的待译码数据中的第一待译码数据,其中所述译码信息用于对所述第一待译码数据进行译码,所述第一用户设备为协作所述第二用户设备对所述待译码数据进行译码的至少一个用户设备之一,所述第一用户设备和所述第二用户设备采用非正交多址接入方式与基站进行通信;
    所述第一用户设备根据所述译码信息对所述第一待译码数据进行译码,得到第一译码数据;
    所述第一用户设备向所述第二用户设备发送所述第一译码数据。
  2. 根据权利要求1所述的译码方法,其特征在于,所述第一用户设备获取第二用户设备的译码信息,并获取所述第二用户设备的待译码数据中的第一待译码数据,包括:
    所述第一用户设备获取所述基站发送的所述译码信息,并且获取所述第二用户设备发送的所述第一待译码数据。
  3. 根据权利要求1或2所述的译码方法,其特征在于,还包括:
    所述第一用户设备接收所述基站发送的第一消息,所述第一消息用于通知所述第一用户设备报告协作译码的能力的信息;
    所述第一用户设备向所述基站报告所述协作译码的能力的信息,以便所述基站根据所述协作译码的能力的信息确定协作集,所述协作集包括所述至少一个用户设备,
    其中,所述第一用户设备获取所述基站发送的译码信息,包括:
    所述第一用户设备接收所述基站广播或多播的所述协作集中的用户设备的译码信息。
  4. 根据权利要求1所述的译码方法,其特征在于,所述第一用户设备获取第二用户设备的译码信息,并获取所述第二用户设备的待译码数据中的第一待译码数据,包括:
    所述第一用户设备获取所述第二用户设备发送的所述译码信息;
    所述第一用户设备获取所述第二用户设备发送的所述第一待译码数据。
  5. 根据权利要求1所述的译码方法,其特征在于,所述第一用户设备与所述第二用户设备复用相同的时频资源,所述第一用户设备获取第二用户 设备的译码信息,并获取所述第二用户设备的待译码数据中的第一待译码数据,包括:
    所述第一用户设备获取所述第二用户设备发送的所述译码信息;
    所述第一用户设备获取所述第二用户设备发送的所述第一待译码数据的时频资源位置信息;
    所述第一用户设备根据所述时频资源位置信息获取所述基站发送的所述第一待译码数据。
  6. 根据权利要求4或5所述的译码方法,其特征在于,所述第一用户设备获取所述第二用户设备发送的所述译码信息,包括:
    所述第一用户设备接收所述第二用户设备发送的第二消息,用于请求所述第一用户设备协作所述第二用户设备进行译码,其中所述第二消息携带所述译码信息和所述第一待译码数据的大小,
    其中,所述译码方法还包括:
    所述第一用户设备根据所述第一待译码数据的大小确定协作所述第二用户设备进行译码;
    所述第一用户设备向所述第二用户设备发送第三消息,用于确认协作所述第二用户设备进行译码。
  7. 根据权利要求6所述的译码方法,其特征在于,在所述第一用户设备接收所述第二用户设备发送的第二消息之前,所述译码方法还包括:
    所述第一用户设备接收所述第二用户设备发送的第四消息,所述第四消息用于通知第一用户设备报告协作译码的能力的信息;
    所述第一用户设备向所述第一用户设备报告协作译码的能力的信息,以便所述第二用户设备根据所述协作译码的能力的信息确定所述第一用户设备协作所述第二用户设备进行译码。
  8. 根据权利要求1至7中的任一项所述的方法,其特征在于,所述译码信息为所述第一待译码数据使用的码本,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  9. 根据权利要求1至7中的任一项所述的方法,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功 率分配因子与至少一个数据流复用相同的时频资源。
  10. 根据权利要求1至7中的任一项所述的译码方法,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述第二用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
  11. 一种基于终端协作的译码方法,其特征在于,包括:
    所述第二用户设备接收第一用户设备发送的第一译码数据,其中所述第一用户设备为协作第二用户设备对所述待译码数据进行译码的至少一个用户设备之一,所述第一译码数据由所述第一用户设备根据第二用户设备的译码信息对第二用户设备的待译码数据中的第一待译码数据进行译码得到的,所述第一用户设备和所述第二用户设备采用非正交多址接入方式与基站进行通信,所述译码信息用于对所述第一待译码数据进行译码,;
    所述第二用户设备根据所述第一译码数据得到所述待译码数据对应的译码数据。
  12. 根据权利要求11所述的译码方法,其特征在于,所述方法还包括:
    所述第二用户设备向所述第一用户设备发送所述第一待译码数据。
  13. 根据权利要求12所述的译码方法,其特征在于,在所述第二用户设备向所述第一用户设备发送所述第一待译码数据之前,所述方法还包括:
    所述第二用户设备接收基站发送的第三消息,所述第三消息用于指示协作集,所述协作集包括所述至少一个用户设备;
    所述第二用户设备根据所述第三消息确定所述第一用户设备协作所述第二用户设备进行译码。
  14. 根据权利要求11所述的译码方法,其特征在于,所述方法还包括:
    所述第二用户设备向所述第一用户设备发送所述译码信息;
    所述第二用户设备向所述第一用户设备发送所述第一待译码数据。
  15. 根据权利要求11所述的译码方法,其特征在于,所述第一用户设备与所述第二用户设备复用相同的时频资源,所述方法还包括:
    所述第二用户设备向所述第一用户设备发送所述译码信息;
    所述第二用户设备向所述第一用户设备发送所述第一待译码数据的时频资源位置信息。
  16. 根据权利要求14或15所述的译码方法,其特征在于,所述第二用户设备向所述第一用户设备发送所述译码信息,包括:
    所述第二用户设备向所述第一用户设备发送第二消息,用于请求所述第一用户设备协作所述第二用户设备进行译码,其中所述第二消息携带所述译码信息和所述第一待译码数据的大小,
    其中,所述方法还包括:
    所述第二用户设备接收所述第一用户设备发送的第三消息,所述第三消息用于确认协作所述第二用户设备进行译码。
  17. 根据权利要求16所述的译码方法,其特征在于,在所述第二用户设备向所述第一用户设备发送第二消息之前,所述译码方法还包括:
    所述第二用户设备向第一用户设备发送第四消息,所述第四消息用于通知第一用户设备报告协作译码的能力的信息;
    所述第二用户设备接收所述第一用户设备报告的所述协作译码的能力的信息;
    所述第二用户设备根据所述协作译码的能力的信息确定所述第一用户设备协作所述第二用户设备进行译码。
  18. 根据权利要求11至17中的任一项所述的方法,其特征在于,所述译码信息为所述第一待译码数据使用的码本,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  19. 根据权利要求11至17中的任一项所述的方法,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功率分配因子与至少一个数据流复用相同的时频资源。
  20. 根据权利要求11至17中的任一项所述的译码方法,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述第二用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
  21. 一种基于终端协作的译码方法,其特征在于,包括:
    基站向至少一个第一用户设备发送第一消息,所述第一消息用于通知所 述至少一个第一用户设备报告协作译码的能力的信息;
    所述基站接收所述至少一个第一用户设备报告的所述协作译码的能力的信息;
    所述基站根据所述第一用户设备报告的所述协作译码的能力的信息向广播或多播的所述至少一个用户设备的译码信息,以便所述至少一个第一用户设备根据所述第二用户设备的译码信息对所述待译码数据进行译码;
    所述基站向所述第二用户设备发送第三消息,所述第三消息用于指示协作集,所述协作集信息包括所述至少一个用户设备。
  22. 根据权利要求21所述的方法,其特征在于,所述译码信息为所述第一待译码数据使用的码本,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  23. 根据权利要求21任一项所述的方法,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功率分配因子与至少一个数据流复用相同的时频资源。
  24. 根据权利要求21所述的译码方法,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述第二用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
  25. 一种用户设备,其特征在于,包括:
    获取模块,用于获取第二用户设备的译码信息,并获取所述第二用户设备的待译码数据中的第一待译码数据,其中所述译码信息用于对所述第一待译码数据进行译码,所述用户设备为协作所述第二用户设备对所述待译码数据进行译码的至少一个用户设备之一,所述用户设备和所述第二用户设备采用非正交多址接入方式与基站进行通信;
    译码模块,用于根据所述译码信息对所述第一待译码数据进行译码,得到第一译码数据;
    发送模块,用于向所述第二用户设备发送所述第一译码数据。
  26. 根据权利要求25所述的用户设备,其特征在于,所述获取模块获 取所述基站发送的所述译码信息,并获取所述第二用户设备发送的所述第一待译码数据。
  27. 根据权利要求25或26所述的用户设备,其特征在于,所述获取模块还接收所述基站发送的第一消息,所述第一消息用于通知所述用户设备报告协作译码的能力的信息,所述发送模块还用于向所述基站所述协作译码的能力的信息,以便所述基站根据所述协作译码的能力的信息确定协作集,所述协作集包括所述至少一个用户设备,其中,所述获取模块接收所述基站广播或多播的所述协作集中的用户设备的译码信息。
  28. 根据权利要求25所述的用户设备,其特征在于,所述获取模块获取所述第二用户设备发送的所述译码信息,并获取所述第二用户设备发送的所述第一待译码数据。
  29. 根据权利要求25所述的用户设备,其特征在于,所述用户设备与所述第二用户设备复用相同的时频资源,所述获取模块获取所述第二用户设备发送的所述译码信息,获取所述第二用户设备发送的所述第一待译码数据的时频资源位置信息,并且所述用户设备根据所述时频资源位置信息获取所述基站发送的所述第一待译码数据。
  30. 根据权利要求25或26所述的用户设备,其特征在于,所述获取模块接收所述第二用户设备发送的第二消息,用于请求所述用户设备协作所述第二用户设备进行译码,其中所述第二消息携带所述译码信息和所述第一待译码数据的大小,
    其中,所述用户设备还包括:
    确定模块,用于根据所述第一待译码数据的大小确定协作所述第二用户设备进行译码,其中所述发送模块还用于向所述第二用户设备发送第三消息,用于确认协作所述第二用户设备进行译码。
  31. 根据权利要求30所述的用户设备,其特征在于,所述获取模块在接收所述第二用户设备发送的第二消息之前,还接收所述第二用户设备发送的第四消息,所述第四消息用于通知用户设备报告协作译码的能力的信息,
    所述发送模块还用于向所述用户设备报告协作译码的能力的信息,以便所述第二用户设备根据所述协作译码的能力的信息确定所述用户设备协作所述第二用户设备进行译码。
  32. 根据权利要求25至31中的任一项所述的用户设备,其特征在于, 所述译码信息为所述第一待译码数据使用的码本,所述用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  33. 根据权利要求25至31中的任一项所述的用户设备,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功率分配因子与至少一个数据流复用相同的时频资源。
  34. 根据权利要求25至31中的任一项所述的用户设备,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述第二用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
  35. 一种用户设备,其特征在于,包括:
    接收模块,用于接收用户设备发送的第一译码数据,其中所述第一用户设备为协作用户设备对所述待译码数据进行译码的至少一个用户设备之一,所述第一译码数据由所述第一用户设备根据用户设备的译码信息对用户设备的待译码数据中的第一待译码数据进行译码得到的,所述第一用户设备和所述用户设备采用非正交多址接入方式与基站进行通信,所述译码信息用于对所述第一待译码数据进行译码;
    译码模块,用于根据所述第一译码数据得到所述待译码数据对应的译码数据。
  36. 根据权利要求35所述的用户设备,其特征在于,还包括:
    发送模块,用于向所述第一用户设备发送所述第一待译码数据。
  37. 根据权利要求36所述的用户设备,其特征在于,所述接收模块在所述用户设备向所述第一用户设备发送所述第一待译码数据之前,还接收基站发送的第三消息,所述第三消息用于指示协作集,所述协作集包括所述至少一个用户设备,
    其中,所述用户设备还包括:
    确定模块,用于根据所述第三消息确定所述第一用户设备协作所述用户设备进行译码。
  38. 根据权利要求35所述的用户设备,其特征在于,还包括:
    发送模块,用于向所述第一用户设备发送所述译码信息,并向所述第一用户设备发送所述第一待译码数据。
  39. 根据权利要求35所述的用户设备,其特征在于,所述第一用户设备与所述用户设备复用相同的时频资源,所述用户设备还包括:
    发送模块,用于向所述第一用户设备发送所述译码信息,并向所述第一用户设备发送所述第一待译码数据的时频资源位置信息。
  40. 根据权利要求38或39所述的用户设备,其特征在于,所述发送模块向所述第一用户设备发送第二消息,用于请求所述第一用户设备协作所述用户设备进行译码,其中所述第二消息携带所述译码信息和所述第一待译码数据的大小,其中,所述接收模块还接收所述第一用户设备发送的第三消息,所述第三消息用于确认协作所述用户设备进行译码。
  41. 根据权利要求40所述的用户设备,其特征在于,所述发送模块还在所述用户设备向所述第一用户设备发送第二消息之前,向第一用户设备发送第四消息,所述第四消息用于通知第一用户设备报告协作译码的能力的信息,其中所述接收模块还接收所述第一用户设备报告的所述协作译码的能力的信息,
    其中,所述用户设备还包括:
    确定模块,用于根据据所述协作译码的能力的信息确定所述第一用户设备协作所述用户设备进行译码。
  42. 根据权利要求35至41中的任一项所述的用户设备,其特征在于,所述译码信息为所述第一待译码数据使用的码本,所述用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  43. 根据权利要求35至41中的任一项所述的用户设备,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功率分配因子与至少一个数据流复用相同的时频资源。
  44. 根据权利要求35至41中的任一项所述的用户设备,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输 入输出MIMO传输。
  45. 一种基站,其特征在于,包括:
    发送模块,用于向至少一个第一用户设备发送第一消息,所述第一消息用于通知所述至少一个第一用户设备报告协作译码的能力的信息;
    接收模块,用于接收所述至少一个第一用户设备报告的所述协作译码的能力的信息,其中所述发送模块用于根据所述第一用户设备报告的所述协作译码的能力的信息向广播或多播的所述至少一个用户设备的译码信息,以便所述至少一个第一用户设备根据所述第二用户设备的译码信息对所述待译码数据进行译码,并向所述第二用户设备发送第三消息,所述第三消息用于指示协作集,所述协作集信息包括所述至少一个用户设备。
  46. 根据权利要求45所述的基站,其特征在于,所述译码信息为所述第一待译码数据使用的SCMA码本,所述第一用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述码本与至少一个数据流复用相同的时频资源。
  47. 根据权利要求45任一项所述的基站,其特征在于,所述译码信息包括所述第一待译码数据采用的功率分配因子,所述用户设备与所述基站之间传输所述第一待译码数据时,所述第一待译码数据基于所述功率分配因子与至少一个数据流复用相同的时频资源。
  48. 根据权利要求45所述的译码基站,其特征在于,所述译码信息为签名矩阵的信息,所述签名矩阵用于生成预编码矩阵,所述预编码矩阵用于使得所述待译码数据在所述基站的多个发射天线与所述第二用户设备和所述至少一个用户设备的天线构成的多个接收天线之间实现多输入输出MIMO传输。
PCT/CN2015/073900 2015-03-09 2015-03-09 协作译码的方法和、基站和用户设备 WO2016141540A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580077452.2A CN107409108B (zh) 2015-03-09 2015-03-09 协作译码的方法和、基站和用户设备
PCT/CN2015/073900 WO2016141540A1 (zh) 2015-03-09 2015-03-09 协作译码的方法和、基站和用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073900 WO2016141540A1 (zh) 2015-03-09 2015-03-09 协作译码的方法和、基站和用户设备

Publications (1)

Publication Number Publication Date
WO2016141540A1 true WO2016141540A1 (zh) 2016-09-15

Family

ID=56878757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073900 WO2016141540A1 (zh) 2015-03-09 2015-03-09 协作译码的方法和、基站和用户设备

Country Status (2)

Country Link
CN (1) CN107409108B (zh)
WO (1) WO2016141540A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601796A (zh) * 2019-09-19 2019-12-20 哈尔滨工业大学 下行多用户联合信道编码发射、接收方法及系统
CN111464467A (zh) * 2020-04-02 2020-07-28 山东交通学院 一种适用于非正交多址的功率-频率分组编码方法
WO2022040845A1 (en) * 2020-08-24 2022-03-03 Qualcomm Incorporated Downlink and uplink processing for a cooperative user equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457560A (zh) * 2001-02-17 2003-11-19 皇家菲利浦电子有限公司 移动手机内的多信道联合译码
CN103841065A (zh) * 2014-02-17 2014-06-04 清华大学 非正交多用户接入发送及联合接收解调译码系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457560A (zh) * 2001-02-17 2003-11-19 皇家菲利浦电子有限公司 移动手机内的多信道联合译码
CN103841065A (zh) * 2014-02-17 2014-06-04 清华大学 非正交多用户接入发送及联合接收解调译码系统及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601796A (zh) * 2019-09-19 2019-12-20 哈尔滨工业大学 下行多用户联合信道编码发射、接收方法及系统
CN110601796B (zh) * 2019-09-19 2022-04-15 哈尔滨工业大学 下行多用户联合信道编码发射、接收方法及系统
CN111464467A (zh) * 2020-04-02 2020-07-28 山东交通学院 一种适用于非正交多址的功率-频率分组编码方法
WO2022040845A1 (en) * 2020-08-24 2022-03-03 Qualcomm Incorporated Downlink and uplink processing for a cooperative user equipment
CN116097626A (zh) * 2020-08-24 2023-05-09 高通股份有限公司 用于协作用户设备的下行链路和上行链路处理

Also Published As

Publication number Publication date
CN107409108B (zh) 2020-02-14
CN107409108A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US11082964B2 (en) Data and control multiplexing for uplink data transmission method and device
US11122561B2 (en) System and method for terminal cooperation based on sparse multi-dimensional spreading
US10623069B2 (en) System and method for open-loop MIMO communications in a SCMA communications system
CN107615845B (zh) 传输上行数据的方法、装置和计算机存储介质
US10264601B2 (en) Downlink control information transmission method and apparatus
WO2016172875A1 (zh) 传输信息的方法、网络设备和终端设备
US10171142B2 (en) Data transmission method, apparatus, and device
US10778287B2 (en) Multipoint data transmission method and apparatus
WO2016090587A1 (zh) 数据处理的方法、装置和设备
JP2018504026A (ja) データ送信方法、送信側装置、および受信側装置
WO2017148429A1 (zh) 传输数据的方法和装置
WO2017000900A1 (zh) 传输信息的方法和设备
US10256954B2 (en) Data transmission method, device and system for downlink virtual multi-antenna system
WO2016141540A1 (zh) 协作译码的方法和、基站和用户设备
CN107294574B (zh) 多传输点数据传输的方法及装置
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
US10637612B2 (en) Information transmission method and apparatus
WO2016138668A1 (zh) 传输数据的方法、发送端设备、接收端设备和中继设备
WO2017148430A1 (zh) 传输信息的方法和装置
WO2018066138A1 (ja) 基地局、端末、無線通信システムおよび無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884223

Country of ref document: EP

Kind code of ref document: A1