WO2016137121A1 - 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템 - Google Patents

제조업체 간의 협업을 위한 통합 플랫폼 관리시스템 Download PDF

Info

Publication number
WO2016137121A1
WO2016137121A1 PCT/KR2016/000603 KR2016000603W WO2016137121A1 WO 2016137121 A1 WO2016137121 A1 WO 2016137121A1 KR 2016000603 W KR2016000603 W KR 2016000603W WO 2016137121 A1 WO2016137121 A1 WO 2016137121A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine module
solver
solver engine
management system
integrated platform
Prior art date
Application number
PCT/KR2016/000603
Other languages
English (en)
French (fr)
Inventor
김정하
Original Assignee
(주)유테크솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)유테크솔루션 filed Critical (주)유테크솔루션
Publication of WO2016137121A1 publication Critical patent/WO2016137121A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/101Collaborative creation, e.g. joint development of products or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to an integrated platform management system, and more particularly, to an integrated platform management system for collaboration between manufacturers that can simultaneously operate the planning and execution of small and medium manufacturers.
  • the supply chain management system optimizes the supply chain by appropriately managing the flow of material procurement, product production, distribution, and sales to reduce procurement time, reduce inventory cost and distribution cost, and respond quickly to customer inquiries.
  • the enterprise resource management system refers to an integrated information system in an enterprise. For example, SAP R / 3, Oracle applications, BPCS UniERP, etc., and companies with such enterprise resource management systems can enter the data in one department and process it immediately. This can double work efficiency.
  • the APS system is a system that helps the managers and managers to make decisions quickly by establishing an accurate plan using optimization techniques based on accurate reference information. In other words, it is a system that integrates the production plan of all manufacturing plants and warehouses in consideration of the demand forecast, so that a process and organization planning solution can be prepared to quickly create an optimal plan. There is an advantage.
  • the supply chain management system and the enterprise resource management system are mostly built and operated mainly by large companies.
  • the reality of small and mid-sized companies other than large companies is that the cost and investment required to build such a system is not so small that only a part of the system functions or a system can not be built and processes related tasks by hand.
  • MES plan management and manufacturing execution system
  • MOP Manufacturing Operation Platform
  • an object of the present invention is to solve the above problems, and to provide an integrated platform that can be operated by both small and medium manufacturers in the planning and execution at the same time based on global standards.
  • the present invention is expected to secure the competitiveness of the company by reducing costs, improving customer service, efficiency and synchronization of work, and securing a foundation for collaboration with the company.
  • At least one solver engine module provided in the platform engine for driving the integrated platform management system OBO (Order by Order) solver engine module, push solver engine module
  • OBO Organic by Order
  • push solver engine module A solver providing unit that provides one solver engine module, a hybrid solver engine module, a hybrid hybrid solver engine module, or an event push solver engine module. It provides an integrated platform management system including a solution server for selecting a solver engine module provided by the solver providing unit based on the solution and to establish a plan using the selected one solver engine module.
  • the solution server the static model load unit for loading a fixed value of information
  • a dynamic model loading unit for loading variable information
  • a plan establishment unit for selecting one solver engine module provided by the solver providing unit based on the loaded static model information and the dynamic model information and establishing a plan using the selected solver engine module.
  • OBO solver is applied to the assembly industry is planned by the pull method
  • the push solver is applied to the device industry is planned by the push method.
  • the hybrid solver, the hybrid hybrid solver, and the event push solver may be applied to an industry in which a pull method and a push method are planned in parallel.
  • the hybrid solver calculates work information for each process and establishes a plan while allocating work groups in consideration of all work information at the same time.
  • the work group assignment in the hybrid solver analyzes the entire work, selects the best work group, and then allocates the best work group, wherein the total work is time difference from previous process work, input capacity, work assignment. Information on available time and assignable equipment will be collected and analyzed.
  • hybrid hybrid solver uses a function of the order by order (OBO) solver, push solver, and hybrid solver to establish a plan around a key process.
  • OBO order by order
  • the event push solver extracts the task information based on the pool-based process and allocates the task based on the time point of the push-based event.
  • Such integrated platform management system for collaboration between manufacturers according to the present invention has the following effects.
  • the present invention provides a configuration in which a planner is selected by selecting an solver and an operation method suitable for production management by connecting an optimal solver. This provides an integrated operational infrastructure for implementation, with a single view / plan across the company, including all partners.
  • the present invention can maximize the operational efficiency of all the partners, and can actively support rational decision making.
  • 1 is a block diagram for explaining the functions provided by the integrated platform management system according to an embodiment of the present invention for each module
  • FIG. 2 is a block diagram illustrating a standard menu and each item information according to the present invention.
  • FIG. 4 is a block diagram of a platform engine of the integrated platform management system according to the present invention.
  • FIG. 5 is a configuration diagram illustrating a process of performing a plan management by a specific solver engine module according to the integrated platform management system of the present invention
  • FIG. 11 is a detailed flowchart of the second step disclosed in FIG. 10.
  • the present invention is to introduce an integrated platform suitable for the reality of small and mid-sized enterprises, and to establish a planning system and operating standards through the system. This aims to establish a decision support system that enables management, sales, and manufacturing to communicate with a single company-wide plan, including all suppliers.
  • the integrated platform is also referred to as smart manufacturing operation platform (MOP).
  • MOP smart manufacturing operation platform
  • Smart MOP refers to an integrated platform that can operate by applying a consistent process from the planning to execution of small and medium manufacturers based on global standards. This includes planning operations, production operations and management operations.
  • the plan operation is in charge of production planning, material supply and demand planning, and facility planning.
  • the production operation is in charge of production execution, process management, quality control, equipment management, material management, inventory / shipment management. In charge of performance management.
  • Such an integrated platform may be installed in a server of an operating entity operating the integrated platform or a server of a specific company so that all the partners can check in real time.
  • 1 is a block diagram for explaining the functions provided by the integrated platform management system according to an embodiment of the present invention for each module.
  • SMS System Management Service
  • RAS Resource Allocation Service
  • PSS Production Scheduling Service
  • POS Production Operation Service
  • EMS Equipment Management
  • PDS Production Dispatching Service
  • PCS Process Control Service
  • DAS Data Acquisition Service
  • PAS Performance Analysis Service
  • LMS Labelor Management Service
  • QMS Quality Management Service
  • DCS Document Control Service
  • At least one of the 12 modules is combined to handle tasks such as production management, process management, facility management, quality control, reference information management, plan management, execution / status management, and analysis.
  • the seven standard menus required from the user's point of view may be constructed using the twelve standard modules. These menus are actually displayed on the main screen of the integrated platform management system, as described below.
  • the main menu is the same as the current status management, plan management, material management, production management, sales management, performance inquiry, reference information.
  • a plurality of item information is provided in the seven main menus.
  • the status management menu shows the status of line operation and production performance.
  • the plan management menu allows you to manage demand planning, production planning and material requirements planning.
  • the main screen on which the seven main menus are displayed is shown in FIG. 3.
  • seven main menus are provided at the top, and the entire screen provides an expandable structure by a tab for the execution screen in consideration of user convenience. Also, by applying intelligent web method, it can be used regardless of screen resolution or size.
  • the screen of FIG. 3 is displayed as a main screen of all partner systems in which the integrated platform management system is built, and processes tasks such as data input and information checking through the main screen.
  • the screen of FIG. 3 is only an embodiment and may be designed in another form.
  • FIG. 4 is a block diagram of a platform engine of the integrated platform management system according to the present invention.
  • the platform engine 100 largely includes an APS solution 110, a Logistics Solutions 120, and an optimal solver 130.
  • the APS solution 110 includes a demand profiler 111, a G2 Planner (SCP) 112, a G2 Scheduler (FP) 113, and an APS.
  • the demand profiler handles volume management through demand netting, shipment deduction, inventory deduction, demand splitting, net demand generation and demand priority.
  • the solutions of the G2 Planner (SCP) 112 and the G2 Scheduler (FP) 113 complement the limitations of the existing Order by Order (OBO), enabling them to be applied to the parts / device industry.
  • Logistics solution 120 includes a Vehicle Route Optimizer (VRO) 121 and a load plan & optimization 122.
  • VRO Vehicle Route Optimizer
  • the optimization solver 130 is a cutting optimizer solver 131 which is a solution to find an optimal pattern combination and minimizes trim, and a transport optimization solver which is a solution to plan a vehicle dispatch / transport.
  • Optimizer Solver 132, Pattern Optimizer Solver 133, a solution for optimizing mixing, and Loading Optimizer Solver 134 a solution that provides a guide to optimize loading into containers. It is included.
  • the solvers 131, 132, 133, and 134 may be deleted as needed or a new solver engine module may be added in a plug-in manner to be selectively used. For example, it is possible to use the planning solver described below.
  • FIG. 5 is a block diagram illustrating a process of performing plan management by a specific solver engine module according to the integrated platform management system of the present invention.
  • a solution server (Solution Server) 200 a UI server 210, and a database 220 provided in an integrated platform management system are included, and a process for planning is planned management of the solution server 200. Is done through function.
  • the planning instruction step, the planning stage, and the step of confirming the planning results are carried out, where the planning instruction step and the planning result confirmation step is performed in the UI server 210, the planning stage is a solution server ( 200). Therefore, the solution server 200 serves as a planning solver.
  • the solution server 200 includes a configuration of a static model load unit, an operation model load unit, a planner, and the like.
  • the static model load step 201 in which the static model load unit receives information on fixed factory information such as equipment or apparatus, the dynamic model load unit such as production requirements
  • a dynamic model load step 202 for receiving variable information, a planning step 203 and a result output step 205 through the step 204 of linking the planner with the optimization solver 130. ) Is included. Accordingly, when the static model load information and the dynamic model load information are provided, in the planning step 203, the solution server 200 establishes a plan while receiving a specific solver engine module from the optimization solver 130, that is, the solver providing unit. will be.
  • a plan is established according to the planning method of the solver engine module designated according to the load information.
  • two or more multiple solver engine modules may be applied to the planning without being limited to one solver engine module.
  • an OBO (Order by Order) solver engine module is adopted as the pull method
  • a push solver engine module is adopted as the push method
  • a hybrid solver engine module as the pull method + push method.
  • Different solver engine modules are provided according to methods such as 'Complex Hybrid solver engine module' and 'Event Push solver engine module'. This can be summarized as Table 1 below.
  • the solver engine module to be applied is selected in association with the optimized solver engine module according to the characteristics of the related industry, and the plan is established using the selected solver engine module.
  • FIG. 6 is a flow chart of the planning phase by the OBO solver engine module.
  • static and dynamic model data is loaded (s601).
  • constraint information such as solver engine module designation and allocation method designation and policy are loaded and set (s602).
  • the plan is established in the order of backward planning (s603) and forward planning (s604).
  • the optimal candidate is extracted through the entire search for work in process (WIP), raw materials and resource allocation, and in the forward planning step (s604), the extracted blank / raw materials and Determining the best candidate from the candidate group of resources.
  • WIP information refers to a resource, a route work time, and the like.
  • the final planned result is derived and stored (s605).
  • FIG. 7 is a flow chart of the planning stage by the push solver engine module.
  • the planning step by the push solver engine module includes a first step (s701) of calculating work information for each process and a second step (s702) of allocating a push-based facility-based work.
  • the first step s701 is a step of calculating the input amount by calculating the operation information for each process based on the production demand amount.
  • the second step s702 is a step of allocating a job to a facility in consideration of constraints by a push method, which is a step 2-1 s703 of grouping by process level according to the result of the first step s701.
  • the process proceeds to step 2-2 (s704) of considering the work assignment and post-process input plan by selecting equipment and extracting model grouping work information for each process level.
  • the grouping criterion of step 2-1 (s703) is to group by models for which no model change occurs.
  • the work allocation method of the second step (s704) is a method of first selecting the equipment in which the WIP exists, and continuously assigning the work by finding the same model group as the WIP model group among the work information for each process based on the selected equipment This can be done in order to minimize MC), work assignments in order of the main production model of each facility, and LPST (Latest Possible Start Time) of work information, and assignment based on the work assignment plan of the previous facility.
  • the allocation is performed by reflecting the constraints (simultaneous MC count, JIG, etc.).
  • the planning step by the hybrid solver engine module includes a first step (s801) of calculating work information for each process and a second step (s802) of allocating an optimal work group in consideration of all the work information at the same time.
  • the first step s801 is a step of calculating the input amount by calculating the operation information for each process based on the production demand amount.
  • the second step (s802) proceeds in the order of the analysis step (s803) for the entire job, the selection step (s804) of the optimal workgroup, and the task group assignment step (s805) for the optimal job, and at this time can be assigned.
  • the above analysis step (s803), selection step (s804), and assignment step (s805) are repeated until all of them are allocated.
  • 9 is a flow chart of the planning phase by the hybrid hybrid solver engine module.
  • a planning step based on a key process center utilizing the functions of the OBO, push, and hybrid solver engine modules That is, first, the TAT calculation up to the key process is performed for the entire production demand (MRP method, OBO solver engine module) (s901). After that, a key process plan is established (s902). This is for the lead standard water, and the key process plan is established based on when the key process can be put in. Then, a plan is established from the time of input of the key process plan reference to the time before the key process (s903). In this case, a push solver engine module is utilized.
  • a plan is established from the key process point to the completion process point based on the production requirements (s904).
  • the OBO solver engine module is utilized.
  • the plan from the time point of input of key process plan to the time point of key process is established by JIT method (s905).
  • the planning process by the hybrid hybrid solver engine module is prioritized to optimize key processes.
  • 10 is a flow chart of the planning phase by the event push solver engine module.
  • the planning step by the event push solver engine module includes a first step (s1000) of calculating job information for each process and a second step (s1100) of assigning a job based on a push-based event time point.
  • the second step s1100 is a method of allocating work to a facility while considering constraints using push methods in order of event time.
  • the second step s1100 proceeds in the same order as in the flowchart shown in FIG.
  • event points are grouped, and in this case, grouping is performed by the earliest event points (s1110).
  • the task selection step of selecting a task having the earliest possible start time is performed (S1120), and the task is allocated while reflecting the constraint (S1130). If the event tasks are the same, the process levels will be selected in the order of rapidity.
  • the constraints include the number of concurrent model changes and a restriction on the JIG.
  • it is checked whether an event time point of a subsequent process is changed (s1140). As a result of the check, if the event time of the subsequent process is changed, the event time grouping information is reconfigured because the event time has changed (S1150). Then, it is determined whether there is an unassigned task (s1160). According to the determination result, if there is no unassigned task, the planning is completed (s1170). If there is no unassigned task, the process returns to step s1120 until all tasks are allocated, and the process is repeated.
  • the present embodiment has a technical gist of constructing an integrated platform management system that allows all partners participating in the production of a series of products to simultaneously operate the planning and execution, thereby improving work efficiency.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

본 발명은 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템에 관한 것이다. 본 발명의 통합 플랫폼 관리시스템은, 전체 협력사들을 포함하여 전사적으로 단일 계획(single view/plan)을 가지고 경영진, 영업, 제조 모두가 소통할 수 있는 의사결정지원 체계를 구축하고자 하는 것으로서, 통합 플랫폼 관리시스템을 구동시키는 플랫폼 엔진에 구비된 하나 이상의 솔버(solver) 엔진모듈로서, OBO (Order by Order) 솔버 엔진모듈, 푸쉬 솔버 엔진모듈, 하이브리드 솔버 엔진모듈, 복합 하이브리드 솔버 엔진모듈, 이벤트 푸쉬 솔버 엔진모듈 중 하나의 솔버 엔진모듈을 제공하는 솔버 제공유닛: 및 설비와 관련된 고정된 값의 정적 모델 정보 및 수요와 관련된 변동 가능한 동적 모델 정보를 기반으로 상기 솔버 제공유닛이 제공하는 하나의 솔버 엔진모듈을 선택하고 상기 선택된 하나의 솔버 엔진모듈을 이용하여 계획을 수립하는 계획 수립부가 포함되는 솔루션 서버가 포함된다.

Description

제조업체 간의 협업을 위한 통합 플랫폼 관리시스템
본 발명은 통합 플랫폼 관리시스템에 관한 것으로서, 더욱 상세하게는 중소/중견 제조회사들의 계획 및 실행을 동시에 운영할 수 있도록 하는 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템에 관한 것이다.
현재 많은 중소/중견 제조 기업들은 작업 공정상에 여러 문제점을 안고 있다. 즉, 수요(Demand) 측면, 물동 운영 가시성(visibility) 측면, 공급(supply) 측면, 운영 정보 시스템(Infra) 측면 등을 고려했을 때, OEM 제조업체와의 관계, 부품 조립산업 및 부품 가공산업과의 관계 등에 있어 여러 취약점이 있었다. 예를 들어, 수요 측면에서는 단납기 요구, 긴급 오더 및 오더 변경으로 인한 즉각적인 대응이 곤란하였고, 수요와 공급정보의 공유가 곤란하였다. 물동 운영 가시성 측면에서는 주문/생산/외주/자재 등의 전체 가시성이 미흡하였고, 기준정보의 관리 미흡으로 부분간 단절 문제 등이 있었다. 공급 측면에서는 원자재 적시 조달 및 재고관리의 취약, 자재조달 계획과 동기화된 생산계획 수립의 곤란, 단납기/긴급 오더 등으로 인한 생산 계획의 지속 변경, 제조 관련 시스템의 연계 관리 체계가 취약하였다. 운영 정보시스템 측면에서는 각 부분별 전문 시스템 도입 비용의 과다에 따른 시스템 투자 ROI(Return on investment)에 대한 우려, 시스템 운영조직 소수화에 따른 운영능력 한계, 제품/공정 등 현장 변화에 대한 대응 체계가 취약하였다.
이에 따라 계획 및 실행을 위한 통합 운영 인프라 구축에 대한 필요 및 요구가 끊이지 않았다.
물론, 이와 관련한 솔루션, 시스템에 대한 연구/개발 및 구축에 대한 노력이 전혀 없는 것은 아니었다. 이미 일부 대기업의 경우에 경쟁력 강화를 위해 공급망 관리(SCM, Supply Chain Management), 전사적 자원관리(ERP, Enterprise Resource Planning)와 같은 시스템이 구축, 운영되고 있는 것이 사실이다. 상기 공급망 관리 시스템은 자재조달, 제품생산, 유통, 판매라는 흐름을 적절히 관리하여 공급망 체인을 최적화하여 조달시간단축, 재고비용이나 유통비용 삭감, 고객 문의에 대한 빠른 대응을 실현하는 것이다. 그리고 상기 전사적 자원관리 시스템은 기업 내 통합정보시스템을 말한다. 예컨대, SAP R/3, 오라클 애플리케이션, BPCS UniERP 등을 말할 수 있고, 이와 같은 전사적 자원관리 시스템이 구축된 기업의 경우 한 부서에서 데이터를 입력하면 전 부서의 업무에 반영되기 때문에 즉시 처리가 가능하기 때문에 업무 효율성을 배가시킬 수 있다.
하지만, 상기 공급망 관리 시스템을 이용하여 효율적인 기업 운영을 위해서는 기업 내부의 환경변화, 자재부족, 설비고장, 생산능력의 변경 등뿐만 아니라 기업 외부적인 변화요소, 수주/공급 상황의 변경까지도 충분히 반영해야 하는 번거로움이 있다. 이를 갖추지 못할 경우 즉각적인 대안 수립이 어렵다. 또한 상기 전사적 자원관리 시스템은 계획시스템(MRP)이 안고 있는 구조적인 결함으로 인해 변화 요인을 반영한 최적의 의사결정을 즉시 수행하지 못하는 약점에 노출되어 있다.
이를 위해 근래에는 APS(Advanced Planning & Scheduling) 시스템을 활용하는 기업들이 늘고 있다. 상기 APS 시스템은 정확한 기준정보를 기반으로 최적화 기법을 이용하여 정확한 계획을 수립하고 이를 통해 경영자 및 관리자가 신속하게 의사결정을 할 수 있도록 도와주는 시스템이다. 즉, 수요 예측을 고려하여 모든 제조공장 및 창고의 물량에 대한 운영계획을 통합하여 작성하는 시스템으로서, 이를 통해 신속하게 최적의 계획을 작성할 수 있도록 하는 프로세스 및 조직 플래닝 솔루션(Planning Solution)을 갖추게 하는 장점이 있다.
그럼에도, 상기한 APS 시스템뿐만 아니라 공급망 관리 시스템 및 전사적 자원관리 시스템은 대부분이 대기업 위주로 구축 운영되는 실정이다. 즉 대기업 이외의 중소/중견 기업들의 현실은 이러한 시스템을 구축하는데 소요되는 비용 및 투자가 적지않은 상황이기 때문에 시스템의 일부 기능만을 운영하거나 또는 시스템을 구축하지 못하고 수작업으로 관련 업무를 처리하는 실정이다.
이러한 현실을 반영하면 종래에는 각 단위 사업장(또는 협력사들)마다 구축된 단위 시스템을 사용하고 있어 각 단위 사업장마다 정보 불일치가 발생함은 물론 자재 재고 등을 이중으로 관리해야 하는 문제가 있다.
또한 고객 주문을 기반으로 하여 계획 관리 및 MES(Manufacturing Execution System)을 통해 작업 지시가 실시되고 있으나, 계획과 연동하지 못하는 문제도 있다.
그리고 각종 기준 정보의 관리 체계의 부재 및 정규화된 업무 프로세스가 정립되지 않고 담당자의 노하우에 의존하는 형태이기 때문에 업무 효율성이 저하될 수밖에 없었다.
무엇보다 공급망 관리시스템이나 전사적 자원관리시스템 등의 기존 시스템들은 각 개별 기업마다 상이하기 때문에 관련 기업들과의 시스템 자원을 공유할 수 없는 문제를 초래하고 있다.
그렇기 때문에 중소/중견 제조업체들(또는 협력사들)이 통합적으로 운영할 수 있는 MOP(Manufacturing Operation Platform)와 같은 통합 시스템에 대한 필요성이 요구되고 있다.
따라서 본 발명의 목적은 상기한 문제점을 해결하기 위한 것으로, 글로벌 표준을 기반으로 중소/중견 제조업체들 모두가 계획 및 실행을 동시에 운영할 수 있는 통합 플랫폼을 제공하는 것이다.
이를 통해 본 발명은 비용 감소, 고객 서비스 향상, 업무의 효율화 및 동기화, 기업 내부 및 외부와의 협업 기반 확보를 통해 기업의 경쟁력 확보를 기대하는 것이다.
상기한 목적을 달성하기 위한 본 발명의 특징에 따르면, 통합 플랫폼 관리시스템을 구동시키는 플랫폼 엔진에 구비된 하나 이상의 솔버(solver) 엔진모듈로서, OBO (Order by Order) 솔버 엔진모듈, 푸쉬 솔버 엔진모듈, 하이브리드 솔버 엔진모듈, 복합 하이브리드 솔버 엔진모듈, 이벤트 푸쉬 솔버 엔진모듈 중 하나의 솔버 엔진모듈을 제공하는 솔버 제공유닛: 및 설비와 관련된 고정된 값의 정적 모델 정보 및 수요와 관련된 변동 가능한 동적 모델 정보를 기반으로 상기 솔버 제공유닛이 제공하는 하나의 솔버 엔진모듈을 선택하고 상기 선택된 하나의 솔버 엔진모듈을 이용하여 계획을 수립하는 솔루션 서버를 포함하는 통합 플랫폼 관리시스템을 제공한다.
여기서 상기 솔루션 서버는, 고정된 값의 정보를 로드하는 정적 모델 로드부; 변동 가능한 정보를 로드하는 동적 모델 로드부; 및 상기 로드된 정적 모델 정보 및 동적 모델 정보를 기반으로 상기 솔버 제공유닛이 제공하는 하나의 솔버 엔진모듈을 선택하고 상기 선택된 하나의 솔버 엔진모듈을 이용하여 계획을 수립하는 계획 수립부를 포함한다.
그리고 상기 OBO 솔버는 풀 방식에 의해 계획 수립되는 조립산업에 적용되고, 상기 푸쉬 솔버는 푸쉬 방식에 의해 계획 수립되는 장치산업에 적용된다.
또한 상기 하이브리드 솔버, 복합 하이브리드 솔버, 이벤트 푸쉬 솔버는 풀 방식과 푸쉬 방식이 병행되어 계획 수립되는 산업에 적용된다.
그리고 상기 하이브리드 솔버는, 공정별 작업정보를 산출하고, 전체 작업정보를 동시에 고려하여 작업 그룹을 할당하면서 계획을 수립한다.
그리고 상기 하이브리드 솔버에서의 상기 작업 그룹 할당은, 전체 작업을 분석하고, 최적 작업 그룹을 선택한 후 최적 작업그룹을 할당하고, 이때 상기 전체 작업은, 이전 공정 작업과의 시간차, 투입 가용량, 작업할당 가능 시간, 할당 가능 설비에 대한 정보를 수집하여 분석하게 된다.
또한 상기 복합 하이브리드 솔버는, 상기 OBO (Order by Order) 솔버, 푸쉬 솔버, 하이브리드 솔버의 기능을 이용하여 키(key) 공정을 중심으로 계획을 수립한다.
그리고 상기 이벤트 푸쉬 솔버는, 풀 기반의 공정 단계별 작업정보를 추출하고, 푸쉬 기반의 이벤트 시점을 중심으로 작업을 할당한다.
이와 같은 본 발명에 따른 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템은 다음과 같은 효과가 있다.
본 발명은 최적화 솔버(optimal solver)를 연계하여 생산관리에 적정한 솔버 및 운영 방식 등을 선택하여 계획을 수립하도록 하는 구성을 제공하고 있다. 그리고 이를 통해 전체 협력사들을 포함하여 전사적으로 단일 계획(single view/plan)을 가지면서 실행을 위한 통합 운영 인프라를 제공한다.
따라서 본 발명은 전체 협력사들의 운영 효율을 극대화시킬 수 있고, 합리적인 의사결정을 적극 지원할 수 있다.
뿐만 아니라, 통합적으로 운영되는 운영체계 기반의 통합 플랫폼 관리시스템 형태로 지원되기 때문에, 개별 사업장마다 구축해야 하는 시스템 구축 비용을 절감할 수 있어 수익 개선효과가 있다.
도 1은 본 발명의 바람직한 실시 예에 따른 통합 플랫폼 관리시스템이 제공하는 기능을 모듈별로 설명하는 구성도
도 2는 본 발명에 따른 표준 메뉴 및 각 항목 정보를 설명하는 구성도
도 3은 본 발명에 따른 통합 플랫폼 관리시스템의 메인 화면 예시도
도 4는 본 발명에 따라 통합 플랫폼 관리시스템의 플랫폼 엔진에 대한 구성도
도 5는 본 발명의 통합 플랫폼 관리시스템에 따라 특정 솔버 엔진모듈에 의하여 계획관리를 수행하는 과정을 설명하기 위한 구성도
도 6은 OBO 솔버 엔진모듈에 의한 계획 수립단계의 흐름도
도 7은 푸쉬 솔버 엔진모듈에 의한 계획 수립단계의 흐름도
도 8은 하이브리드 솔버 엔진모듈에 의한 계획 수립단계의 흐름도
도 9는 복합 하이브리드 솔버 엔진모듈에 의한 계획 수립단계의 흐름도
도 10은 이벤트 푸쉬 솔버 엔진모듈에 의한 계획 수립단계의 흐름도
도 11은 도 10에 개시된 제2 단계에 대한 구체적인 흐름도
<부호의 설명>
100 : 플랫폼 엔진
110 : APS 솔루션
120 : 로지스틱스 솔루션(Logistics Solutions)
130 : 최적화 솔버(optimal solver)
200 : 솔루션 서버(Solution Server)
210 : UI 서버
220 : 데이터베이스
본 발명은 중소/중견기업 현실에 맞는 통합 플랫폼을 도입하는 것이고, 시스템을 통한 계획 수립 체계 및 운영기준을 확립할 수 있도록 하는 것이다. 이를 통해 전체 협력사들을 포함하여 전사적으로 단일 계획(single view/plan)을 가지고 경영진, 영업, 제조 모두가 소통할 수 있는 의사결정지원 체계를 구축하고자 하는 것이다.
그리고 상기한 통합 플랫폼은 스마트 MOP(Manufacturing Operation Platform)라 불리기도 한다.
이하 본 발명에 의한 통합 플랫폼 관리시스템의 바람직한 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명에 따른 스마트 MOP는 글로벌 표준을 기반으로 중소/중견 제조회사의 계획부터 실행까지 일관된 프로세스를 적용하여 운영할 수 있는 통합 플랫폼을 말한다. 여기에는 계획 운영, 생산 운영, 관리 운영 등이 포함된다. 계획 운영은 생산계획, 자재수급계획, 설비계획을 담당하고, 생산 운영은 생산실행, 공정관리, 품질관리, 설비관리, 자재관리, 재고/출하관리를 담당하고, 관리운영은 수요관리, 구매관리, 실적관리를 담당한다. 이와 같은 통합 플랫폼은 모든 협력사들이 실시간으로 확인할 수 있도록 상기 통합 플랫폼을 운영하는 운영 주체의 서버(server) 또는 특정 업체의 서버에 설치될 수 있을 것이다.
도 1은 본 발명의 바람직한 실시 예에 따른 통합 플랫폼 관리시스템이 제공하는 기능을 모듈별로 설명하는 구성도이다.
이를 살펴보면, 통합 플랫폼 관리시스템에 제공하는 기능 모듈은 시스템 관리 모듈을 포함하여 총 12개의 표준 모듈이 제공된다.
즉, SMS(System Management Service) 모듈(10), RAS(Resource Allocation Service) 모듈(11), PSS(Production Scheduling Service) 모듈(12), POS(Production Operation Service)모듈(13), EMS(Equipment Management Service) 모듈(14), PDS(Production Dispatching Service)모듈(15), PCS(Process Control Service) 모듈(16), DAS(Data Acquisition Service) 모듈(17), PAS(Performance Analysis Service) 모듈(18), LMS(Labor Management Service) 모듈(19), QMS(Quality Management Service) 모듈(20), DCS(Document Control Service) 모듈(21)이다.
그리고 12개의 모듈 중 적어도 하나 이상의 모듈들이 조합되어 생산관리, 공정관리, 설비관리, 품질관리, 기준정보관리, 계획관리, 실행/현황관리, 분석 등에 대한 업무를 처리하게 된다.
또한 상기 12개의 표준 모듈을 이용하여 사용자 관점에서 필요한 7개의 표준 메뉴를 구성할 수 있다. 이러한 메뉴는 실질적으로 통합 플랫폼 관리 시스템의 메인 화면에 표시되는데, 이는 아래에서 설명한다.
도 2에 도시한 바와 같이 메인 메뉴는 현황관리, 계획관리, 자재관리, 생산관리, 영업관리, 실적조회, 기준정보와 같다. 상기 7개의 메인 메뉴에는 복수 개의 항목 정보가 마련된다. 예컨대, 현황관리 메뉴를 보면 라인 가동이나 생산 실적 현황 등을 알 수 있다. 계획관리 메뉴를 통해서는 수요 계획, 생산 계획, 자재 소요 계획 등을 관리할 수 있다.
그리고 상기 7개의 메인 메뉴가 표시된 메인화면은 도 3에 도시하였다. 도 3을 참고하면, 상단에 7개의 메인 메뉴가 마련되며, 전체 화면은 사용자 편의성을 고려하여 실행 화면에 대하여 탭(Tab)에 의한 확장 가능한 구조를 제공한다. 또한 지능형 웹(web) 방식을 적용하여 화면 해상도나 사이즈에 상관없이 사용할 수 있도록 하였다. 이러한 도 3의 화면은 통합 플랫폼 관리시스템을 구축한 모든 협력사 시스템의 메인 화면으로 표시되고, 메인 화면을 통해 자료 입력, 정보 확인 등의 업무를 처리하게 된다. 다만, 도 3의 화면은 일 실시 예에 불과하며 다른 형태로 디자인할 수 있음은 당연하다.
다음에는 통합 플랫폼 관리시스템을 구동하는 구동 엔진에 대해 살펴보기로 한다.
도 4는 본 발명에 따라 통합 플랫폼 관리시스템의 플랫폼 엔진에 대한 구성도이다.
플랫폼 엔진(100)은 크게 APS 솔루션(110), 로지스틱스 솔루션(Logistics Solutions)(120) 및 최적화 솔버(optimal solver)(130)을 포함한다.
APS 솔루션(110)은 수요 프로파일러(Demand profiler)(111), G2 Planner(SCP)(112), G2 Scheduler(FP)(113) 및 APS을 포함한다. 그리고 수요 프로파일러는 디맨드 네팅(demand netting), 출하 실적 차감, 재고 차감, 디맨드 분할, 순수 생산량(Net Demand) 생성 및 디맨드 우선권 부여 등을 통해 물량 관리 등을 처리하는 역할을 한다. 또한 G2 Planner(SCP)(112) 및 G2 Scheduler(FP)(113)의 솔루션은 기존의 OBO(Order by Order)의 한계를 보완하여 부품/장치 산업에 적용할 수 있도록 한다.
로지스틱스 솔루션(120)은 VRO(Vehicle Route Optimizer)(121) 및 load Plan & Optimizatio(122)을 포함한다.
최적화 솔버(130)는 최적의 패턴 조합을 찾아 트림(trim)을 최소화하는 솔루션인 커팅 최적화 솔버(Cutting Optimizer Solver)(131), 차량의 배차/수송 계획을 수립하는 솔루션인 트랜스포트 최적화 솔버(Transport Optimizer Solver)(132), 혼류의 최적화를 위한 솔루션인 패턴 최적화 솔버(Pattern Optimizer Solver)(133) 및 컨테이너에 최적화해서 적재시킬 가이드를 제공하는 솔루션인 로딩 최적화 솔버(Loading Optimizer Solver)(134)를 포함하고 있다. 다만 상기한 솔버(131)(132)(133)(134)들은 필요에 따라 삭제되거나 새로운 솔버 엔진모듈이 플러그-인 방식으로 추가되어 선택적으로 사용할 수 있도록 구현될 수 있다. 예컨대 아래에서 설명하게 되는 계획수립 솔버 등의 사용이 가능하다는 것이다.
도 5는 본 발명의 통합 플랫폼 관리시스템에 따라 특정 솔버 엔진모듈에 의하여 계획관리를 수행하는 과정을 설명하기 위한 구성도이다.
도 5를 보면, 통합 플랫폼 관리시스템에 구비된 솔루션 서버(Solution Server)(200), UI 서버(210) 및 데이터베이스(220)를 포함하며, 계획 수립을 위한 과정은 솔루션 서버(200)의 계획 관리기능을 통해 이루어진다. 즉 계획수립지시 단계, 계획수립 단계, 그리고 계획결과를 확인하는 단계를 포함하여 진행되며, 여기서 계획수립 지시 단계 및 계획결과 확인 단계는 UI 서버(210)에서 수행하고, 계획수립 단계는 솔루션 서버(200)에서 수행하고 있다. 따라서 솔루션 서버(200)가 계획수립 솔버의 역할을 수행하는 것이다. 이러한 솔루션 서버(200)에는 도면에는 미 도시하고 있지만 정적 모델 로드부, 동작 모델 로드부, 계획 수립부 등의 구성을 포함하게 된다.
상기 계획수립 단계를 더 구체적으로 살펴보면, 정적 모델 로드부가 설비나 장치와 같은 고정된 공장정보 등에 대한 정보를 입력받는 정적 모델 로드(static model load) 단계(201), 동적 모델 로드부가 생산 요구량과 같이 변동 가능한 정보를 입력받는 동적 모델 로드(dynamic model load) 단계(202), 계획 수립부가 최적화 솔버(130)와의 연계 단계(204)를 통한 계획(planning) 수립 단계(203) 및 결과 출력단계(205)를 포함하고 있다. 따라서 상기 정적 모델 로드 정보 및 동적 모델 로드 정보가 제공되면, 계획 수립 단계(203)에서 솔루션 서버(200)가 최적화 솔버(130), 즉 솔버 제공유닛으로부터 특정 솔버 엔진모듈을 제공받으면서 계획을 수립하는 것이다.
이때 계획수립 단계에서는 로드 정보에 따라 지정된 솔버 엔진모듈의 계획 수립 방식에 따라 계획이 수립되며, 이때 하나의 솔버 엔진모듈로 국한되지 않고 2개 이상의 다중 솔버 엔진모듈이 계획 수립에 적용될 수 있다.
여기에는 풀(Pull) 방식과 푸쉬(Push) 방식에 따라 적정한 솔버 엔진모듈이 채택되는 구성이 포함된다. 대체적으로 '풀 방식', '푸쉬 방식', 그리고 2개의 방식이 결합된 '풀 방식 + 푸쉬 방식'으로 구분할 수 있다. 그리고 상기 풀 방식에는 'OBO(Order by Order) 솔버 엔진모듈'이 채택되고, 상기 푸쉬 방식에는 '푸쉬 솔버 엔진모듈'이 채택되고, 상기 풀 방식 + 푸쉬 방식에는 '하이브리드(Hybrid) 솔버 엔진모듈', '복합 하이브리드(Complex Hybrid) 솔버 엔진모듈', '이벤트 푸쉬(Event Push) 솔버 엔진모듈'과 같이 방식에 따라 각각 서로 다른 솔버 엔진모듈이 제공되고 있다. 이는 다음 표 1과 같이 정리할 수 있다.
분류 솔버(Solver) 엔진모듈 내용
풀(pull) 방식 OBO 솔버 엔진모듈 수요 중심으로 진행, 조립 산업
푸쉬(push) 방식 푸쉬 솔버 엔진모듈 설비 중심으로 진행, 장치 산업
풀 + 푸쉬 방식 하이브리드 솔버 엔진모듈 수요 + 설비로 진행, 조립 + 장치산업에 적용할 수 있고, 전체 작업 정보를 고려하여 최적의 작업정보를 선택하여 진행
풀 + 푸쉬 방식 복합 하이브리드 솔버 엔진모듈 수요 + 설비로 진행, 조립 + 장치산업에 적용할 수 있고, 특정 키(key) 공정을 중심으로 진행
풀 + 푸쉬 방식 이벤트 푸쉬 솔버 엔진모듈 수요 + 설비로 진행, 조립 + 장치산업에 적용할 수 있고, 전체 작업정보를 고려하여 빠른 이벤트 발생 작업정보를 먼저 결정한 후 이후 공정 들을 진행
이처럼, 계획수립 단계(203)에서는 관련 산업의 특성에 따라 적용할 솔버 엔진모듈을 최적화 솔버 엔진모듈과 연계시켜 선택하고, 그 선택된 솔버 엔진모듈을 이용하여 계획을 수립하게 된다.
이어서는 솔버 엔진모듈별 계획 수립단계를 각각 설명한다.
도 6은 OBO 솔버 엔진모듈에 의한 계획 수립단계의 흐름도이다.
먼저, 정적 및 동적 모델 데이터를 로딩한다(s601). 그리고 이를 기반으로 하여 솔버 엔진모듈 지정, 할당 방식 지정 등과 같은 제약 정보와 정책을 로딩하고 설정한다(s602).
이후, 백워드 계획수립단계(s603)와 포워드 계획수립단계(s604) 순서로 계획을 수립하게 된다. 백워드 계획수립단계(s603)에서는 재공(WIP, Work In Process), 원자재 및 자원 할당을 위한 전체 탐색을 통해 최적 후보를 추출하는 단계이고, 포워드 계획수립단계(s604)에서는 추출된 재공/원자재 및 자원들의 후보군에서 최적 후보를 확정하는 단계이다. 상기 WIP 정보는 리소스(resource), 루트(route) 작업시간 등을 말한다.
이들 단계를 통해 최종 계획 수립된 결과를 도출하고, 이를 저장하게 된다(s605).
도 7은 푸쉬 솔버 엔진모듈에 의한 계획 수립단계의 흐름도이다.
푸쉬 솔버 엔진모듈에 의한 계획 수립단계는 공정별 작업정보를 산출하는 제1 단계(s701), 푸쉬 기반의 설비 중심의 작업을 할당하는 제2 단계(s702)를 포함하게 된다.
제1 단계(s701)는, 생산 요구량을 기준으로 공정별 작업 정보를 산출하여 투입량을 산출하는 단계이다. 그리고 제2 단계(s702)는 푸쉬 방식으로 제약사항을 고려하여 설비에 작업을 할당하는 단계로서, 이는 제1 단계(s701)의 결과에 따라 공정 레벨별로 그룹핑하는 제2-1 단계(s703)와, 상기 공정 레벨마다 설비 선택 및 모델 그룹핑 작업정보의 추출을 통해 작업할당과 후공정 투입 계획을 고려하는 제2-2 단계(s704)를 포함하여 진행한다. 여기서, 상기 제2-1 단계(s703)의 그룹핑 기준은 모델 변경이 발생하지 않는 모델별로 그룹핑을 하는 것이다. 또한 상기 제2-2 단계(s704)의 작업할당 방식은 WIP가 존재하는 설비를 우선 선택하고, 선택된 설비 기준으로 공정별 작업 정보 중 WIP 모델 그룹과 동일한 모델 그룹을 찾아 작업을 연속 할당하는 방식(이는 MC를 최소화하기 위함), 설비별 주 생산 모델과 작업정보의 LPST(Latest Possible Start Time) 순으로 작업을 할당하는 방식, 이전 설비의 작업할당 계획을 기준으로 할당하는 방식 등이 있다. 물론 이와 같은 작업 할당시에는 제약사항(동시 MC 회수, JIG 등)을 반영하여 할당하게 된다.
도 8은 하이브리드 솔버 엔진모듈에 의한 계획 수립단계의 흐름도이다.
하이브리드 솔버 엔진모듈에 의한 계획 수립단계는 공정별 작업정보를 산출하는 제1 단계(s801), 전체 작업정보를 동시에 고려하여 최적의 작업 그룹을 할당하는 제2 단계(s802)를 포함한다.
제1 단계(s801)는, 생산 요구량을 기준으로 공정별 작업 정보를 산출하여 투입량을 산출하는 단계이다. 제2 단계(s802)는 전체 작업에 대한 분석 단계(s803), 최적 작업 그룹의 선택단계(s804), 및 최적 작업을 위한 작업 그룹 할당 단계(s805) 순서로 진행되며, 이때 할당할 수 있는 작업이 전부 할당될 때까지 상기한 분석단계(s803), 선택단계(s804), 할당단계(s805)는 반복된다.
도 9는 복합 하이브리드 솔버 엔진모듈에 의한 계획 수립단계의 흐름도이다.
도 9는 OBO, 푸쉬, 하이브리드 솔버 엔진모듈의 기능을 활용한 키(key) 공정 중심에 따른 계획 수립단계를 제공하게 된다. 즉 먼저 전체 생산 요구량에 대해 키 공정까지의 TAT 산출을 한다(MRP 방식, OBO 솔버 엔진모듈)(s901). 이후 키 공정 계획을 수립한다(s902). 이는 납기준수를 위한 것으로서 키 공정 투입 가능한 시점을 기준으로 키 공정계획을 수립하는 것이다. 그런 다음에는 키 공정계획 기준 투입 시점부터 키 공정 이전 시점까지의 계획을 수립한다(s903). 이때는 푸쉬 솔버 엔진모듈이 활용된다. 푸쉬 솔버 엔진모듈에 의한 투입 ~ 키 공정계획이 수립되면 생산 요구량을 기준으로 키 공정 시점부터 완성 공정 시점까지의 계획을 수립한다(s904). 이때는 OBO 솔버 엔진모듈이 활용된다. 마지막으로 키 공정계획 기준 투입 시점부터 키 공정 시점까지의 계획을 JIT 방식으로 수립한다(s905).
이처럼 복합 하이브리드 솔버 엔진모듈에 의한 계획 수립단계는 키 공정의 최적화가 우선시된다.
도 10은 이벤트 푸쉬 솔버 엔진모듈에 의한 계획 수립단계의 흐름도이다.
이벤트 푸쉬 솔버 엔진모듈에 의한 계획 수립단계는 공정별 작업정보를 산출하는 제1 단계(s1000)와, 푸쉬 기반의 이벤트 시점을 중심으로 작업을 할당하는 제2 단계(s1100)를 포함한다. 특히 제2 단계(s1100)는 이벤트 시점 순서대로 푸쉬 방식을 이용하여 제약사항을 고려하면서 설비에 작업을 할당하는 방식이다.
여기서, 제2 단계(s1100)는 도 11에 도시한 흐름도와 같은 순서대로 진행된다.
우선, 이벤트 시점을 그룹핑하는데, 이 경우 가장 빠른 이벤트 시점별로 그룹핑을 한다(s1110). 그리고 작업 시작 가능한 시간이 가장 빠른 작업을 선택하는 작업 선택 단계가 진행되고(s1120), 제약사항을 반영하면서 작업을 할당하게 된다(s1130). 이때 이벤트 작업이 동일한 경우에는 공정 레벨이 빠른 순서대로 선택될 것이다. 또한 상기 제약사항은 동시 모델 변경 횟수나 JIG에 대한 제약 등이 포함된다. 이후 후속 공정의 이벤트 시점이 변경되었는지를 확인한다(s1140). 확인 결과, 만약 후속 공정의 이벤트 시점이 변경되면 이벤트 시점이 변경되었기 때문에 이벤트 시점 그룹핑 정보를 재구성한다(s1150). 그런 다음, 미 할당한 작업이 있는지를 판단한다(s1160). 판단 결과에 따라 미 할당 작업이 없으면 계획 수립을 완료하고(s1170), 미 할당 작업이 있으면 모든 작업이 할당될 때까지 단계 s1120로 복귀하여 상기 과정을 반복 수행한다.
이와 같이 본 실시 예는 일련의 상품을 생산하는데 참여하게 되는 모든 협력사마다 계획 및 실행을 동시에 운영할 수 있도록 하는 통합 플랫폼 관리시스템을 구성하여, 업무효율을 향상시키도록 구성됨을 기술적 요지로 한다.
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.

Claims (10)

  1. 통합 플랫폼 관리시스템을 구동시키는 플랫폼 엔진에 구비된 하나 이상의 솔버(solver) 엔진모듈로서, OBO (Order by Order) 솔버 엔진모듈, 푸쉬 솔버 엔진모듈, 하이브리드 솔버 엔진모듈, 복합 하이브리드 솔버 엔진모듈, 이벤트 푸쉬 솔버 엔진모듈 중 하나의 솔버 엔진모듈을 제공하는 솔버 제공유닛: 및
    설비와 관련된 고정된 값의 정적 모델 정보 및 수요와 관련된 변동 가능한 동적 모델 정보를 기반으로 상기 솔버 제공유닛이 제공하는 하나의 솔버 엔진모듈을 선택하고 상기 선택된 하나의 솔버 엔진모듈을 이용하여 계획을 수립하는 솔루션 서버
    를 포함하는 통합 플랫폼 관리시스템.
  2. 제 1 항에 있어서,
    상기 솔루션 서버는,
    고정된 값의 정보를 로드하는 정적 모델 로드부;
    변동 가능한 정보를 로드하는 동적 모델 로드부; 및
    상기 로드된 정적 모델 정보 및 동적 모델 정보를 기반으로 상기 솔버 제공유닛이 제공하는 하나의 솔버 엔진모듈을 선택하고 상기 선택된 하나의 솔버 엔진모듈을 이용하여 계획을 수립하는 계획 수립부를 포함하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  3. 제 1 항에 있어서,
    상기 OBO 솔버 엔진모듈은 풀 방식에 의해 계획 수립되는 조립산업에 적용되는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  4. 제 1 항에 있어서,
    상기 푸쉬 솔버 엔진모듈은 푸쉬 방식에 의해 계획 수립되는 장치산업에 적용되는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  5. 제 1 항에 있어서,
    상기 하이브리드 솔버 엔진모듈, 복합 하이브리드 솔버 엔진모듈, 이벤트 푸쉬 솔버 엔진모듈은 풀 방식과 푸쉬 방식이 병행되어 계획 수립되는 산업에 적용되는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  6. 제 5 항에 있어서,
    상기 하이브리드 솔버 엔진모듈은,
    공정별 작업정보를 산출하고, 전체 작업정보를 동시에 고려하여 작업 그룹을 할당하면서 계획을 수립하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  7. 제 6 항에 있어서,
    상기 작업 그룹 할당은,
    전체 작업을 분석하고, 최적 작업 그룹을 선택한 후 최적 작업그룹을 할당하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  8. 제 7 항에 있어서,
    상기 전체 작업은, 이전 공정 작업과의 시간차, 투입 가용량, 작업할당 가능 시간, 할당 가능 설비에 대한 정보를 수집하여 분석하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  9. 제 5 항에 있어서,
    상기 복합 하이브리드 솔버 엔진모듈은,
    상기 OBO (Order by Order) 솔버 엔진모듈, 푸쉬 솔버 엔진모듈, 하이브리드 솔버 엔진모듈의 기능을 이용하여 키(key) 공정을 중심으로 계획을 수립하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
  10. 제 5 항에 있어서,
    상기 이벤트 푸쉬 솔버 엔진모듈은,
    풀 기반의 공정 단계별 작업정보를 추출하고, 푸쉬 기반의 이벤트 시점을 중심으로 작업을 할당하는 것을 특징으로 하는 통합 플랫폼 관리시스템.
PCT/KR2016/000603 2015-02-27 2016-01-20 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템 WO2016137121A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0028448 2015-02-27
KR1020150028448A KR101656989B1 (ko) 2015-02-27 2015-02-27 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템

Publications (1)

Publication Number Publication Date
WO2016137121A1 true WO2016137121A1 (ko) 2016-09-01

Family

ID=56789427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000603 WO2016137121A1 (ko) 2015-02-27 2016-01-20 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템

Country Status (2)

Country Link
KR (1) KR101656989B1 (ko)
WO (1) WO2016137121A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974923B1 (ko) 2018-02-21 2019-05-07 김치곤 식품 포장용기 생산을 위한 통합 pop 플랫폼 시스템
KR101974922B1 (ko) 2018-02-21 2019-05-07 김치곤 식품 포장용기 생산을 위한 통합 pop 플랫폼 시스템
KR102043281B1 (ko) 2018-04-12 2019-11-11 김치곤 식품 포장용기 생산을 위한 통합 pop 플랫폼 시스템
KR102572690B1 (ko) 2023-03-28 2023-08-29 (주)에이치앤에프 캐릭터 라이센스 계약과 연동하는 상품 제조와 유통 통합 플랫폼 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200689A (ja) * 1993-12-28 1995-08-04 Kobe Steel Ltd 作業計画立案装置
KR20050041996A (ko) * 2003-10-31 2005-05-04 후지쯔 가부시끼가이샤 생산 계획 입안 방법 및 장치
JP2005301466A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 生産計画立案装置および方法
KR20070120305A (ko) * 2006-06-19 2007-12-24 티라에스앤씨 (주) 네트워크 기반의 생산계획시스템
JP2008287442A (ja) * 2007-05-16 2008-11-27 Panasonic Corp 生産管理システムおよび生産管理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104118B1 (ko) 2009-12-02 2012-01-13 정석길 Cpm 공법을 이용한 지능형 생산 관리 방법 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200689A (ja) * 1993-12-28 1995-08-04 Kobe Steel Ltd 作業計画立案装置
KR20050041996A (ko) * 2003-10-31 2005-05-04 후지쯔 가부시끼가이샤 생산 계획 입안 방법 및 장치
JP2005301466A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 生産計画立案装置および方法
KR20070120305A (ko) * 2006-06-19 2007-12-24 티라에스앤씨 (주) 네트워크 기반의 생산계획시스템
JP2008287442A (ja) * 2007-05-16 2008-11-27 Panasonic Corp 生産管理システムおよび生産管理方法

Also Published As

Publication number Publication date
KR20160105140A (ko) 2016-09-06
KR101656989B1 (ko) 2016-09-12

Similar Documents

Publication Publication Date Title
CN114004571B (zh) 一种智能化立体仓储货架货位分配系统及其方法
WO2016137121A1 (ko) 제조업체 간의 협업을 위한 통합 플랫폼 관리시스템
US20030149747A1 (en) Method and apparatus for modeling print jobs
Li et al. Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system
Wy et al. A data-driven generic simulation model for logistics-embedded assembly manufacturing lines
CN101452450A (zh) 一种多源数据转换服务方法及其装置
CN103473642A (zh) 一种面向生产调度的规则引擎方法
CN109032945B (zh) 一种软件可靠性工程集成环境框架设计方法
Jiang et al. An exact solution method for solving seru scheduling problems with past-sequence-dependent setup time and learning effect
CN101853438A (zh) 一种电能表产品测试信息管理系统
EP3933744A1 (en) Blockchain-based industrial manufacturing resource sharing method, device and system
Govindarajan et al. An approach for integrating legacy systems in the manufacturing industry
CN114925663A (zh) 一种基于检修票的智能成票方法及系统
CN101794417A (zh) 基于序号的工作流调度和业务流程建模方法
CN108062220B (zh) 一种快速构建信息系统软件的构架
CN113095622A (zh) 一种生产管控系统及方法
Fernandes et al. Worker assignment in dual resource constrained systems subject to machine failures: a simulation study
Schoech et al. Optimising plant layout decisions based on emulation models–technical framework and practical insights
Kaltwasser et al. Hierarchical control of flexible manufacturing systems
US20230082523A1 (en) Method for the deployment of a software module in a manufacturing operation management system
Duda Modelling of concurrent development of assembly process and system
WO2024106607A1 (ko) 차량의 통합 생산계획 시스템 및 그 방법
Ding et al. Research on Critical Technologies of Manufacturing Execution Based on Cloud-Service
US20060136289A1 (en) Method for computer-supported control of production processes
CN116485154B (zh) 一种生产排程自动管理方法、系统、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755771

Country of ref document: EP

Kind code of ref document: A1