WO2016136893A1 - 車両の電動制動装置 - Google Patents

車両の電動制動装置 Download PDF

Info

Publication number
WO2016136893A1
WO2016136893A1 PCT/JP2016/055669 JP2016055669W WO2016136893A1 WO 2016136893 A1 WO2016136893 A1 WO 2016136893A1 JP 2016055669 W JP2016055669 W JP 2016055669W WO 2016136893 A1 WO2016136893 A1 WO 2016136893A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing force
energization amount
electric motor
vehicle
braking device
Prior art date
Application number
PCT/JP2016/055669
Other languages
English (en)
French (fr)
Inventor
駿 塚本
浩一 小久保
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Priority to DE112016000912.7T priority Critical patent/DE112016000912T5/de
Priority to US15/546,128 priority patent/US10640097B2/en
Publication of WO2016136893A1 publication Critical patent/WO2016136893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • F16D63/006Positive locking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/001Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/183Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with force-transmitting members arranged side by side acting on a spot type force-applying member

Definitions

  • the present invention relates to an electric braking device for a vehicle.
  • a power transmission mechanism that transmits power to the pressing member to generate a pressing force of the pressing member against the friction member” and “a pressing force according to the operation of the braking operation member (brake pedal) of the vehicle by the driver is generated.
  • a vehicle electric braking device including a control means for controlling an energization amount to an electric motor ”(see, for example, Patent Document 1).
  • the hysteresis characteristic in the relationship between “the amount of current applied to the electric motor” and “the pressing force of the pressing member” is acquired in advance.
  • the energization amount is reduced within a range in which the braking force can be maintained in consideration of the hysteresis characteristic. Thereby, the current consumption of this apparatus can be reduced.
  • the hysteresis characteristic can be successively changed due to the friction coefficient of the sliding portion changing due to the secular change and temperature change of the sliding portion in the power transmission mechanism.
  • the above document does not describe any change in hysteresis characteristics.
  • the energization amount that can maintain the pressing force
  • the energization amount is reduced. In this case, there is room for further reducing the current consumption of this device.
  • the energization amount can be reduced beyond the range in which the braking force can be maintained. In this case, a situation may occur in which the braking force cannot be maintained (decreased).
  • the present invention has been made in order to cope with the above-described problem.
  • the purpose of the present invention is to appropriately set the energization amount to the electric motor in the holding state of the pressing force even when the hysteresis characteristic fluctuates, and to increase the braking force. It is an object of the present invention to provide an electric braking device for a vehicle that can surely reduce the current consumption of the device without causing a decrease in the vehicle.
  • An electric braking device for a vehicle includes an electric motor (MTR) that generates power, a pressing member (PSN) that presses a friction member (MSB) against a rotating member (KTB) that rotates integrally with a vehicle wheel, A power transmission mechanism (INP, GSK, SFT, NJB) for transmitting the power generated by the electric motor to the pressing member to generate a pressing force (Fba) of the pressing member against the friction member;
  • the pressing force determined based on the operation of the braking operation member (BP), the pressing force determined based on the parking brake function (FPK), and the automatic application that generates the braking force regardless of the operation of the braking operation member.
  • the electric motor so as to generate a post-selection pressing force that is a pressing force selected based on the state of the vehicle, out of the pressing force determined by the pressure control means (FAT).
  • a control means for controlling the energization amount (Ima) ECU, DRV, the against.
  • the electric braking apparatus is characterized in that the control means includes determination means for determining whether or not the pressing force is held constant, and the control means reaches a predetermined time point. Every time, when the hysteresis characteristic in the relationship between the energization amount and the pressing force is detected and it is determined that the holding state is present, based on the detected hysteresis characteristic, the current current Acquiring a minimum value of the energization amount capable of maintaining a pressing force, and setting the energization amount for the electric motor to a value determined based on the acquired minimum value of the energization amount; It is in.
  • the hysteresis characteristic used for setting the energization amount in the holding state is updated every time the predetermined time point comes. Accordingly, the minimum value of the energization amount within the range in which the current braking force can be maintained can be acquired relatively accurately, and the energization amount in the holding state based on the minimum value of the energization amount thus acquired relatively accurately. Is determined. As a result, the current consumption of the apparatus can be reliably reduced without causing a reduction in braking force by appropriately setting the energization amount in the holding state.
  • the minimum value of the energization amount can be acquired, for example, by performing an automatic hysteresis characteristic detection operation in the holding state. Specifically, for example, the energization amount is gradually decreased to reduce the pressing force, and the detected position (the position of the electric motor or the power transmission member included in the power transmission mechanism) is changed. Thus, the minimum value of the energization amount can be acquired. Alternatively, the energization amount is gradually decreased to reduce the pressing force, and the minimum value of the energization amount can be acquired based on the detected pressing force changing.
  • the braking force (pressing force) is actually reduced from the “held value” in order to obtain the minimum value of the energization amount.
  • simply setting the energization amount to the minimum value of the acquired energization amount (a value determined based on the value) will result in a state where the braking force is decreasing. There may still be a continuing situation.
  • the energization amount for the electric motor is increased to return to the “value when the pressing force is determined to be in the holding state”. Then, it is preferable that the energization amount for the electric motor is set to a value determined based on the acquired minimum value of the energization amount. According to this, after the automatic hysteresis characteristic detection operation is performed, the braking force that has been decreased can be reliably returned to the “held value”.
  • the electric braking device may include “a pressing force increasing unit that executes a pressing force increasing control for adjusting the pressing force to a value larger than the selected pressing force”.
  • the control means executes the pressing force increase control, and then executes an automatic hysteresis characteristic detecting operation, and during execution of the automatic hysteresis characteristic detecting operation. It is preferable that the energization amount is adjusted so that the pressing force does not fall below the pressing force after the selection. As a result, it is possible to prevent a situation in which the braking force (pressing force) is lower than the post-selection pressing force when the automatic hysteresis characteristic detecting operation is performed.
  • the electric braking device when the electric braking device is mounted for each wheel, when it is determined that the holding state is established, the automatic hysteresis characteristic detecting operation is simultaneously performed for all the wheels. It is preferable not to execute.
  • the automatic hysteresis characteristic detection operation when an automatic hysteresis characteristic detection operation is performed for a certain wheel, the braking force for that wheel is actually reduced from the “held value” in order to obtain the minimum value of the energization amount. Therefore, when the automatic hysteresis characteristic detection operation is simultaneously performed on all the wheels of the vehicle, the amount of decrease in the braking force of the entire vehicle increases. On the other hand, according to the above configuration, the automatic hysteresis characteristic detection operation is not simultaneously executed for all the wheels of the vehicle. Therefore, the amount of decrease in the braking force of the entire vehicle can be made relatively small.
  • the automatic hysteresis characteristic detection operation (the energization amount is reduced to obtain the minimum value of the energization amount). It is preferable to be configured to execute (control).
  • the braking force is actually reduced from the “held value”. Therefore, if an automatic hysteresis characteristic detection operation is performed while the vehicle is traveling (particularly during deceleration due to a normal braking operation), it is easy for the vehicle occupant to sense that the braking force has decreased.
  • the above configuration is based on such knowledge. According to this, it is possible to prevent the occurrence of “a situation where the vehicle occupant senses that the automatic hysteresis characteristic detection operation has been performed while the vehicle is running”.
  • the energization amount to the electric motor is determined based on the specifications of the electric motor and the power transmission mechanism. It is also configured to set a value determined based on a predetermined relationship (CHI, hereinafter referred to as “reference characteristic”) having no hysteresis between the energization amount obtained based on the pressure and the pressing force. Can be done.
  • CHI predetermined relationship
  • the “energization amount corresponding to the current pressing force in the reference characteristic” is necessarily larger than the “minimum value of the energization amount within the range in which the current pressing force can be maintained in consideration of the hysteresis characteristic”. In other words, if the energization amount in the holding state is set to “a value corresponding to the current pressing force in the reference characteristic”, it is possible to reliably prevent the occurrence of a situation where the pressing force is lower than the current pressing force.
  • the current consumption of the apparatus can be reliably reduced.
  • the above configuration is based on such knowledge.
  • the energization amount to the electric motor set when it is determined that the holding state is made is corrected based on the acquired temperature of the electric motor. .
  • the higher the temperature of the electric motor the smaller the “ratio of output torque to the amount of energization” (so-called torque constant) in the electric motor. This is due to the fact that the higher the temperature of the electric motor, the smaller the magnetic flux density of the permanent magnet in the electric motor. Therefore, the “reference characteristics” can also vary depending on the temperature of the electric motor. Therefore, according to the above configuration, the energization amount in the holding state can be accurately set based on the accurate “reference characteristic” regardless of the temperature of the electric motor.
  • FIG. 1 is an overall configuration diagram of an electric braking device for a vehicle according to an embodiment of the present invention. It is a fragmentary sectional view for mainly explaining a power transmission mechanism. It is a principal sectional view for explaining a parking brake mechanism (lock mechanism) LOK. It is a figure which shows the map which prescribes
  • FIG. 6 is a diagram corresponding to FIG. 5, showing how the reference characteristic (and hence the hysteresis characteristic) varies depending on the temperature of the electric motor.
  • a vehicle including this electric braking device includes a braking operation member BP, an operation amount acquisition unit BPA, an acceleration operation member AP, an acceleration operation amount acquisition unit APA, a parking brake switch MSW, a wheel speed acquisition unit.
  • VWA vehicle speed acquisition means VXA, electronic control unit ECU, braking means (brake actuator) BRK, rotating member (brake disc) KTB, and friction member MSB are provided. This electric control device is provided for each wheel.
  • Brake operation member (for example, brake pedal) BP is a member that the driver operates to decelerate the vehicle.
  • the braking torque of the wheel WHL is adjusted by the braking means BRK in accordance with the operation of the braking operation member BP.
  • the braking operation member BP is provided with a braking operation amount acquisition means BPA.
  • the BPA acquires (detects) an operation amount (braking operation amount) Bpa of the braking operation member BP by the driver.
  • the braking operation amount acquisition means BPA at least one of a sensor (brake pedal depression force sensor) for detecting the operating force of the braking operation member BP and a sensor (brake pedal stroke sensor) for detecting the displacement amount of the BP is employed.
  • a sensor brake pedal depression force sensor
  • a sensor brake pedal stroke sensor
  • Acceleration operation member (for example, accelerator pedal) AP is a member that the driver operates to accelerate the vehicle.
  • the acceleration operation member AP is provided with acceleration operation amount acquisition means APA.
  • the APA acquires (detects) an operation amount (acceleration operation amount) Apa of the acceleration operation member AP by the driver.
  • a sensor that detects the throttle opening of the engine throttle opening sensor
  • an operation force of the acceleration operation member AP and / or a sensor that detects the displacement (accelerator pedal force sensor, accelerator pedal stroke sensor)
  • the acceleration operation amount Apa is calculated based on at least one of the throttle opening, the accelerator pedal depression force, and the accelerator pedal stroke.
  • Parking brake switch (also simply referred to as a switch) MSW is a manual switch operated by a driver, and outputs a switch MSW ON / OFF signal Msw.
  • the parking brake operation is instructed when Msw is on (ON), and the parking brake is instructed when Msw is off (OFF).
  • Vehicle speed acquisition means VXA acquires (detects) vehicle speed (vehicle speed) Vxa.
  • the vehicle speed Vxa can be calculated based on the detection signal (wheel speed) Vwa of the wheel speed acquisition means VWA and a known method. For example, the fastest speed among the rotational speeds Vwa of the wheels can be calculated as the vehicle speed Vxa.
  • the braking operation amount Bpa, the acceleration operation amount Apa, the vehicle speed Vxa, and the instruction signal Msw are input to the electronic control unit ECU.
  • Bpa, Apa, Vxa, and Msw can be calculated or acquired by another electronic control unit, and the calculated value (signal) can be transmitted to the electronic control unit ECU via the communication bus.
  • the electronic control unit ECU is fixed to the vehicle body.
  • a target pressing force calculation block FBT a parking brake necessity determination block FPK, an automatic pressurization control calculation block FAT, and a selection block SLT are programmed.
  • a target pressing force Fbt related to the force (pressing force) by which the friction member (brake pad) MSB presses the rotating member (brake disc) KTB is calculated.
  • the target pressing force Fbt can be corrected based on the state of the vehicle. For example, when the vehicle is stopped, the lower limit value of the pressing force required to maintain the stopped state is calculated based on the slope of the road surface on which the vehicle is stopped, and is set slightly larger than the calculated lower limit value of the pressing force.
  • the target pressing force Fbt can be limited so as not to exceed the set limit value.
  • the opportunity for holding the pressing force that is, the chance that the hysteresis characteristic is detected and the energization amount to the electric motor MTR can be reduced as will be described later. obtain.
  • the calculated Fbt is transmitted to the drive circuit DRV fixed to the wheel side via the SLT.
  • the instruction signal FLpk is transmitted to the drive circuit DRV via the SLT.
  • the parking brake is necessary (actuated or released) is automatically determined in conjunction with the operation of the acceleration operation member (accelerator pedal) AP or the like without depending on the driver's operation of the switch MSW. Specifically, in the automatic mode, whether or not the parking brake is necessary is determined based on the vehicle speed Vxa, the acceleration operation amount Apa, and the like.
  • the vehicle stops that is, when Vxa becomes zero
  • the necessity state of the parking brake is determined, and the control flag FLpk is switched from “0” to “1”.
  • the driver operates the acceleration operation member AP and the acceleration operation amount Apa exceeds the predetermined value ap1
  • the control flag FLpk is switched from “1” to “0”. It is done.
  • automatic pressurization control for generating a braking force is executed regardless of the operation of the brake operation member BP (even when the BP is not operated).
  • the target pressing force Fat related to the pressing force is calculated based on the above signal.
  • Automatic pressurization control typically includes suppression of wheel skidding and wheel slip, determination of whether or not the device is normal (initial check), suppression of vehicle slippage on a hill (uphill) (hill) Hold control), and execution of an automatic hysteresis characteristic detection operation, which will be described later, and the like.
  • the calculated Fat is transmitted to the drive circuit DRV via the SLT.
  • one of the signals Fbt, FLpk, and Fat is selected by one of well-known selection methods based on the state of the vehicle, and the selected signal is transmitted to the drive circuit DRV. .
  • Brake means (brake actuator) BRK is provided on the wheel WHL and applies a braking torque to the wheel WHL to generate a braking force.
  • BRK brake actuator
  • the vehicle is decelerated by BRK (normally functions as a brake). Further, while the vehicle is stopped, it functions as a parking brake (pressing force increasing means) that maintains the stopped state.
  • the braking means BRK may be a drum type braking device (drum brake). In the case of a drum brake, the friction member MSB is a brake shoe, and the rotating member KTB is a brake drum.
  • the braking means BRK includes a brake caliper CRP, a pressing member PSN, an electric motor MTR, a position acquisition means MKA, a reduction gear GSK, a shaft member SFT, a screw member NJB, a pressing force acquisition means FBA, a parking brake lock mechanism LOK, and a drive.
  • the circuit DRV is used.
  • Brake caliper (simply called caliper) CRP is configured to sandwich a rotating member (brake disc) KTB via two friction members (brake pads) MSB.
  • the caliper CRP has a space (space) inside, and various members (such as a drive circuit DRV) are accommodated in this space.
  • the pressing member (brake piston) PSN is moved (advanced or retracted) with respect to the rotating member KTB.
  • the friction member MSB is pressed against the rotating member KTB, and a frictional force is generated.
  • PSN has a cylindrical shape and has a central axis Jps. Therefore, the PSN is moved in the direction of the axis Jps.
  • the movement of the pressing member PSN is performed by the power of the electric motor MTR. Specifically, the output of the electric motor MTR (rotational power around the motor shaft) is transmitted to the shaft member SFT via the reduction gear GSK. Then, the rotational power (torque about the shaft axis) of the shaft member SFT is converted into linear power (thrust in the axial direction of the pressing member) by the power conversion member NJB and transmitted to the pressing member PSN. As a result, the pressing member PSN is moved (advanced or retracted) with respect to the rotating member KTB.
  • the central axis Jps of PSN coincides with the rotation axis of SFT.
  • the movement of the pressing member PSN adjusts the force (pressing force) by which the friction member MSB presses the rotating member KTB. Since rotating member KTB is fixed to wheel WHL, a frictional force is generated between friction member MSB and rotating member KTB, and the braking force of wheel WHL is adjusted.
  • the electric motor MTR is a power source for driving (moving) the pressing member PSN.
  • a motor with a brush or a brushless motor can be employed as the electric motor MTR.
  • the forward rotation direction corresponds to the direction in which the friction member MSB approaches the rotation member KTB (the direction in which the pressing force increases and the braking torque increases)
  • the reverse rotation direction corresponds to the friction member MSB.
  • the direction away from the rotating member KTB the direction in which the pressing force decreases and the braking torque decreases).
  • Position acquisition means for example, rotation angle sensor
  • MKA acquires (detects) the position (for example, rotation angle) Mka of the rotor (rotor) of the electric motor MTR.
  • the MKA is provided inside the electric motor MTR and on the rotation axis Jmt of the MTR.
  • the detected position (rotation angle) Mka is input to the drive circuit DRV.
  • the input member INP, the reduction gear GSK, the shaft member SFT, and the screw member NJB constitute a power transmission mechanism for transmitting the power of the electric motor MTR to the pressing member PSN.
  • the input member INP is coaxially connected to the output shaft MOT of the electric motor MTR via the Oldham coupling OLD.
  • GSK decelerates the rotation of INP and transmits it to SFT. Due to the reduction gear GSK, the rotational torque of the SFT is increased to a value obtained by multiplying the rotational torque of the electric motor MTR by the GSK reduction ratio (> 1).
  • a two-stage reduction gear can be adopted as the reduction gear GSK.
  • the first-stage deceleration is performed by “a set of the small-diameter gear SK1 fixed to the INP and the large-diameter gear DK1 fixed to the intermediate shaft CHU”.
  • the shaft member SFT is a rotating shaft member, and transmits the rotational power transmitted from the reduction gear GSK to the screw member NJB.
  • the screw member NJB is a power conversion mechanism (rotation / linear motion conversion member) that converts the rotational power of the shaft member SFT into linear power.
  • a sliding screw such as a trapezoidal screw
  • a rolling screw such as a ball screw
  • the pressing force acquisition means (for example, a pressing force sensor) FBA acquires (detects) a force (pressing force) Fba that the pressing member PSN presses the friction member MSB.
  • the detected actual pressing force Fba is input to the drive circuit DRV.
  • the pressing force acquisition means FBA is provided between the shaft member SFT and the caliper CRP. That is, it is provided on the rotating shaft of the shaft member SFT and is fixed to the caliper CRP.
  • the power transmission mechanism is configured to transmit the power of the electric motor MTR to the pressing member PSN using only mechanical coupling of a plurality of power transmission members.
  • a configuration in which the power of the electric motor MTR is transmitted to the pressing member PSN using a mechanical connection of a plurality of power transmission members and a hydraulic circuit (including a master cylinder) may be employed.
  • a configuration in which a hydraulic circuit including a master cylinder is interposed between the screw member NJB and the pressing member PSN, and the screw member NJB pressurizes the master cylinder may be employed.
  • the parking brake mechanism (also referred to as a lock mechanism) LOK is a mechanism that locks the electric motor MTR so as not to rotate in the reverse rotation direction in order to exhibit a brake function (so-called parking brake) for maintaining the stopped state of the vehicle. As a result, the pressing state of the rotating member KTB by the friction member MSB is maintained.
  • the lock mechanism LOK can be provided between the electric motor MTR and the reduction gear GSK (that is, coaxially with the electric motor MTR).
  • the lock mechanism LOK includes a ratchet gear (also referred to as a pawl gear) RCH, a pawl member TSU, and a solenoid actuator (also simply referred to as a solenoid) SOL.
  • the ratchet gear RCH is fixed to the input member INP coaxially with the INP.
  • teeth are directional unlike ordinary gears (for example, spur gears).
  • the solenoid SOL is fixed to the caliper CRP. In the non-energized state of the solenoid SOL, the pawl member TSU is maintained at a position where it cannot be engaged with the ratchet gear RCH (a position where it cannot be engaged) by the urging force of the elastic member (return spring) SPR (FIG. 3A). See).
  • the pressing member PSN cannot move in the decreasing direction of the pressing force Fba.
  • the braking means BRK electric motor MTR
  • the drive circuit (electric circuit) DRV is an electric circuit (printed circuit board) that drives the electric motor MTR and a solenoid actuator (also simply referred to as a solenoid) SOL.
  • the DRV is disposed (fixed) inside the caliper CRP.
  • the normal brake is a brake function that generates a braking force according to the driver's operation of the braking operation member BP.
  • the normal brake function is exhibited when the electric motor MTR is driven by the drive circuit DRV based on Fbt (corresponding to the post-selection pressing force) when the target pressing force Fbt is selected in the selection block SLT.
  • the DRV is a target energization amount Imt based on the target pressing force Fbt determined based on the braking operation amount Bpa and the preset calculation characteristics (calculation maps) CHs1 and CHs2 shown in FIG. Is calculated.
  • the target energization amount Imt is a target value of the energization amount to the electric motor MTR for achieving the target pressing force Fbt.
  • the calculation map of Imt takes into account the “hysteresis in the relationship between the energization amount and the pressing force” in the braking means BRK, and the pressure increase side characteristic CHs1, the pressure reduction side characteristic CHs2, and It consists of This hysteresis will be described later.
  • the energization amount is a state amount (variable) for controlling the output torque of the electric motor MTR. Since the electric motor MTR outputs a torque substantially proportional to the current, the current target value of the electric motor MTR can be used as the target value of the energization amount. Further, if the supply voltage to the electric motor MTR is increased, the current is increased as a result, so that the supply voltage value can be used as the target energization amount. Furthermore, since the supply voltage value can be adjusted by the duty ratio in the pulse width modulation, this duty ratio can be used as the energization amount.
  • the target energization amount Imt calculated based on the calculation characteristics shown in FIG. 4 is “detected by the target pressing force (target value) Fbt calculated by the calculation block FBT (see FIG. 1) and the pressing force sensor FBA. Can be corrected based on the “feedback amount calculated based on the pressing force (actual value) Fba”.
  • the rotation direction of the electric motor MTR is determined based on the sign (the sign of the value) of the target energization amount Imt, and the output (rotational power) of the electric motor MTR is controlled based on the magnitude of the target energization amount Imt.
  • the sign of the target energization amount Imt is a positive sign (Imt> 0)
  • the electric motor MTR is driven in the forward rotation direction Fwd (increase in pressing force, see FIG. 3)
  • Imt Is a negative sign Imt ⁇ 0
  • the electric motor MTR is driven in the reverse rotation direction Rvs (decreasing direction of pressing force, see FIG. 3).
  • the output torque of the electric motor MTR is controlled to increase as the absolute value of the target energization amount Imt increases, and the output torque is controlled to decrease as the absolute value of Imt decreases.
  • the pressing force Fba (and hence the braking force) is adjusted according to the operation of the braking operation member BP by the driver.
  • the parking brake function is exhibited when the electric motor MTR and the solenoid SOL are controlled by the drive circuit DRV based on FLpk when the instruction signal (control flag) FLpk is selected in the selection block SLT. .
  • the parking brake has two operations: a “starting operation” for switching the parking brake from the non-operating state to the operating state, and a “release operation” for switching the parking brake from the operating state to the non-operating state. The start and release are determined based on a change (0 ⁇ 1 or 1 ⁇ 0) of the instruction signal FLpk.
  • a target energization amount Imt for the start operation and a solenoid instruction signal FLs for instructing energization to the solenoid SOL are output.
  • the target energization amount Imt for the start operation is determined according to a preset characteristic.
  • the DRV sets the target energization amount Imt for the start operation to a value (> 0) corresponding to the braking force necessary for maintaining the vehicle in the stop state on the slope.
  • the electric motor MTR is driven to rotate forward based on the target energization amount Imt (> 0) for the start operation.
  • the pressing force Fba increases to a value (corresponding to the pressing force after selection) corresponding to the braking force necessary to keep the vehicle stopped on the slope.
  • the signal FLs is switched from “0” to “1”.
  • the pawl member TSU moves from the “non-engageable position” (see FIG. 3A) to the “engageable position” (FIG. 3B).
  • the target energization amount Imt is reduced, so that the RCH is in the reverse rotation direction Rvs (see FIG. 3). ).
  • tip part Tme of TSU engages with the tooth
  • the DRV sets the target energization amount Imt for the release operation to a value (> 0) necessary for driving the ratchet gear RCH to rotate forward. Then, the electric motor MTR is driven to rotate forward based on the target energization amount Imt for the release operation in a state where the tip portion Tme of the TSU and the teeth of the RCH are engaged.
  • the RCH rotates in the forward rotation direction Fwd
  • the engagement between the tip portion Tme of the TSU and the teeth of the RCH is released.
  • the TSU returns from the engageable position (see FIG. 3B) to the non-engageable position (see FIG. 3A). As a result, the parking brake function that has been maintained is released.
  • the automatic pressurization control function is a brake function that generates a braking force in order to achieve the above-described automatic pressurization control.
  • the automatic pressurization control function is based on driving the electric motor MTR by the drive circuit DRV based on Fat (corresponding to the pressing force after selection). Demonstrated.
  • the DRV calculates a target energization amount Imt for automatic pressurization control using one of well-known methods based on the target pressing force Fat.
  • the target energization amount Imt for automatic pressurization control is a target value of the energization amount to the electric motor MTR for achieving the target pressing force Fat.
  • the output (rotational power) of the electric motor MTR is controlled based on the target energization amount Imt for automatic pressurization control.
  • the pressing force Fba (and hence the braking force) is adjusted so that automatic pressurization control is achieved.
  • Hysteresis characteristics Between the “energization amount (actual value) Ima for the electric motor MTR” and the “pressing force (actual value) Fba”, the “power transmission mechanism” (input member INP, reduction gear GSK, shaft in the braking means BRK) Hysteresis characteristics inevitably occur as shown in FIG. 5 due to the friction of the sliding portion inside the member SFT and the screw member NJB).
  • the hysteresis characteristic indicated by the thick solid line in FIG. 5 includes a pressure-increasing side characteristic CHS1 and a pressure-reducing side characteristic CHS2.
  • the characteristic CHI shown in FIG. 5 is based on only the specifications of the electric motor MTR and the “power transmission mechanism” when it is assumed that there is no hysteresis between the energization amount Ima and the pressing force Fba. This characteristic is uniquely obtained (hereinafter referred to as “reference characteristic”).
  • the reference characteristic CHI can be expressed by the following equation (1).
  • Fba (K ⁇ G / L) ⁇ Ima (1)
  • K is the torque constant (Nm / A) of the electric motor MTR
  • G is the reduction ratio (dimensionless) of the reduction gear GSK
  • L is It is a lead (m / rad) of the screw member NJB.
  • the friction coefficient of the sliding part in the “power transmission mechanism” inevitably fluctuates due to aging and temperature changes. Due to the variation of the friction coefficient, etc., the hysteresis characteristic also varies around the reference characteristic CHI. Specifically, in the graph shown in FIG. 5, as the friction coefficient increases, the pressure-increasing side characteristic moves from CHI to the right and the pressure-reducing side characteristic moves from CHI to the left. For example, in the situation where the hysteresis characteristic indicated by the thick solid line in FIG. 5 described above is obtained, if the friction coefficient increases due to aging, temperature change, etc., the hysteresis characteristic is increased on the pressure increasing side as indicated by the broken line in FIG. The characteristic moves from CHS1 to CHW1, and the decompression side characteristic moves from CHS2 to CHW2.
  • the energization amount Ima that can maintain the braking force at the current value due to the existence of the “hysteresis between the energization amount Ima and the pressing force Fba” described above depends on the hysteresis characteristics. Range exists. For example, as shown in FIG. 5, in the case where the hysteresis characteristic is composed of the pressure-increasing side characteristic CHS1 and the pressure-reducing side characteristic CHS2, the range of the energization amount Ima that can maintain the pressing force Fba at the value fba1 is It is expressed as Has (ims to imu).
  • the energization amount Ima can be maintained at the current value of the energization amount Ima from the viewpoint of “reducing the current consumption of the device without causing a decrease in the braking force”. It is considered preferable to set the minimum value of the range (or a value slightly larger than the minimum value).
  • the “minimum value of the range in which the braking force can be maintained at the current value” may be simply referred to as “minimum value”.
  • This “minimum value of the energization amount” is the lower limit value ims of the range Has when “the hysteresis characteristic is composed of the pressure-increasing side characteristic CHS1 and the pressure-reducing side characteristic CHS2”.
  • the lower limit value imw of the range Haw is obtained.
  • the “minimum value of the energization amount” varies according to the variation of the hysteresis characteristic.
  • the hysteresis characteristics that can vary from moment to moment are successively detected and updated to control the current. It is considered that it is preferable to set the energization amount Ima to the latest “minimum value of energization amount” (or a value slightly larger than the minimum value) every time it is determined that the power is held.
  • a hysteresis characteristic is newly detected and stored.
  • the “predetermined time point” include when a normal brake is applied by the driver and when a parking brake is applied.
  • the energization amount ima and the pressing force Fba that change from moment to moment based on the detection result of the pressing force sensor FBA and a sensor (not shown) that detects the energization amount ima.
  • the hysteresis characteristics as shown in FIG. 5 can be newly acquired / updated by sequentially detecting the relationship (every short time).
  • the acquired / updated hysteresis characteristics are stored in a storage area in the ECU.
  • the value is stored every time a determination is made that “the brake force is being maintained” (regardless of whether the parking brake is being operated and whether automatic pressure control is being performed).
  • the “minimum value of the energization amount that can maintain the current pressing force” is acquired from the latest hysteresis characteristics, and the target energization amount Imt (and hence the energization amount Ima) for the electric motor MTR is obtained as the “minimum value of the energization amount”. (Or a value slightly larger than the minimum value).
  • the determination that “the braking force is being held” is detected by, for example, the pressing force Fba detected by the pressing force sensor FBA, the braking operation amount Bpa detected by the braking operation amount acquisition unit BPA, and the position acquisition unit MKA.
  • One or two or more fluctuation ranges of the rotation angle Mka of the electric motor MTR, the energization amount ima detected by the sensor for detecting the energization amount ima, and the target energization amount imt are predetermined over a predetermined time. This can be done when a condition such as being within the range is established. This determination is made by the ECU.
  • the hysteresis characteristic used for setting the energization amount ima in the holding state is updated every time a predetermined time point comes. Therefore, the minimum value of the energization amount ima within the range in which the current braking force can be maintained can be obtained relatively accurately. Then, the energization amount ima in the holding state is determined based on the minimum value of the energization amount obtained relatively accurately as described above. As a result, the current consumption of the apparatus can be reliably reduced without causing a reduction in braking force by appropriately setting the energization amount in the holding state.
  • the automatic hysteresis characteristic detection operation can be performed every time it is determined that the braking force is maintained.
  • FIG. 6 shows an example of the operation in this case.
  • the braking force is held substantially constant before time t1.
  • the target energization amount imt (and hence the energization amount ima) is gradually decreased to reduce the pressing force Fba. .
  • each power transmission member of the “power transmission mechanism” starts to move in the reverse rotation direction Rvs, and the pressing force Fba starts to decrease from fba1.
  • the rotation angle Mka of the electric motor MTR detected by the position acquisition unit MKA starts to change (decrease).
  • the change amount (decrease amount) of the rotation angle Mka reaches a predetermined value Hm1 at time t3, it is determined that “the rotation angle Mka has changed (decrease)”.
  • the energization amount Ima at the time when this determination is made is stored as the minimum value im3 of the energization amount for maintaining the current braking force.
  • the braking force (pressing force) is actually reduced from the “held value” in order to obtain the minimum value of the energization amount.
  • the current amount is set to the minimum value (or a value slightly larger than the minimum value) of the acquired current amount. There may be a situation where the state in which the power is decreasing is still continued.
  • the pressing force Fba is set to ims (or a value slightly larger than ims).
  • the state where the pressure Fba is reduced from fba1 is maintained. It is desirable to return the pressing force Fba to the value (fba1) at the time when it is determined that “the braking force is maintained”.
  • the energization amount ima is increased again after the minimum value im3 of the energization amount is acquired at time t3.
  • the pressing force Fba returns to the value at the time when it is determined that “the braking force is maintained”, and thereafter the energization is performed.
  • the amount ima is maintained at a value (im3 + hi1) obtained by adding a predetermined value (small value) hi1 to the “stored minimum value im3 of energization amount”.
  • a value (im3 + hi1) obtained by adding a predetermined value (small value) hi1 to the “stored minimum value im3 of energization amount”.
  • the energization amount ima is set to (im3 + hi1) when it is detected that the energization amount ima has reached im1 (time t4), but the pressing force Fba has returned to fba1. When this is detected, the energization amount ima may be set to (im3 + hi1).
  • the energization amount ima at the time when it is determined that “the rotation angle Mka has changed (decreased)” is acquired as the minimum value of the energization amount.
  • the energization amount ima at the time when it is determined that the pressing force Fba detected by the pressing force sensor FBA has changed (decreased) may be acquired as the minimum value of the energizing amount.
  • the pressing force Fba is actually decreased from the “held value fba2”.
  • the energization is performed so that the pressing force Fba does not fall below the pressing force fba1 after selection (fmin ⁇ fba1). It is preferable to adjust the amount ima.
  • the electric braking device is mounted for each wheel.
  • the automatic hysteresis characteristic detection operation is not performed for all the electric braking devices (and therefore all the wheels) at the same time. Specifically, for example, when it is determined once that “the braking force is maintained”, the automatic hysteresis characteristic detection operation is first executed for only some of the wheels, and the completion is completed. It is preferable that the automatic hysteresis characteristic detecting operation is started and executed later for the remaining wheels.
  • the automatic hysteresis characteristic detection operation is executed for only some of the wheels, and “the braking force is maintained”. It is preferable that the wheel on which the automatic hysteresis characteristic detecting operation is performed is changed every time the determination is made.
  • the electric braking device is not mounted for each wheel, but the vehicle includes a plurality of the electric braking devices. More specifically, for example, the first electric braking device is configured to provide the first power transmission circuit for controlling the braking force of any two of the four wheels (two wheels in the first group). A second hydraulic circuit (first hydraulic circuit and a second hydraulic circuit) for controlling the braking force of the remaining two wheels (two wheels of the second group). Are different) as a part of the “power transmission control device”. In this case, for example, when it is determined once that "the braking force is maintained", the automatic hysteresis characteristic detection operation is first executed for only the two wheels of the first group, and after the completion, the second group of the second group is detected.
  • the automatic hysteresis characteristic detection operation is started and executed for the two wheels. Alternatively, every time it is determined that “the braking force is being held”, the automatic hysteresis characteristic detection operation is executed for only two wheels of one of the first and second groups. It is preferable that the group in which the automatic hysteresis characteristic detection operation is performed is changed every time it is determined that the state is “holding state”.
  • the automatic hysteresis characteristic detection operation when an automatic hysteresis characteristic detection operation is performed for a certain wheel, the braking force for that wheel is actually reduced from the “held value” in order to obtain the minimum value of the energization amount. Therefore, when the automatic hysteresis characteristic detection operation is simultaneously performed on all the wheels of the vehicle, the amount of decrease in the braking force of the entire vehicle increases. On the other hand, according to the above configuration, the automatic hysteresis characteristic detection operation is not simultaneously executed for all the wheels of the vehicle. Therefore, the amount of decrease in the braking force of the entire vehicle can be made relatively small.
  • the automatic hysteresis characteristic detection operation is executed only when it is determined that the vehicle is stopped.
  • the determination that the vehicle is stopped can be made based on the detection result of the vehicle speed acquisition means VXA.
  • the braking force is actually reduced from the “held value”. Therefore, if an automatic hysteresis characteristic detection operation is performed while the vehicle is traveling (particularly during deceleration by normal braking), it is easy for the vehicle occupant to sense that the braking force has decreased.
  • the above configuration is based on such knowledge. According to this, it is possible to prevent the occurrence of “a situation where the vehicle occupant senses that the automatic hysteresis characteristic detection operation has been performed while the vehicle is running”.
  • the automatic hysteresis characteristic detection operation is not performed and the above-described “reference characteristic CHI” (see FIG. 5) is used.
  • the energization amount ima in the holding state can be set.
  • the energization amount ima in the holding state can be set to “a value corresponding to the current pressing force Fba in the reference characteristic CHI”.
  • the energization amount ima in the holding state is “obtained by shifting the reference characteristic CHI in the decreasing direction of the energization amount ima (leftward in FIG. 5) by an amount corresponding to the range of the minimum hysteresis characteristic within the possible range.
  • the energization amount ima in the holding state can be set based on the “reference characteristic CHI” based on the following reason. That is, as described above, the hysteresis characteristic fluctuates centering on the “reference characteristic CHI” (fluctuated in the left-right direction in FIG. 5) due to fluctuations in the friction coefficient of the sliding portion in the power transmission mechanism. Therefore, the “energization amount ima corresponding to the current pressing force Fba in the reference characteristic CHI” is always greater than the “minimum value of the energizing amount within the range in which the current pressing force Fba can be maintained in consideration of the hysteresis characteristics”. growing.
  • the energization amount Ima in the holding state is set to “a value corresponding to the current pressing force Fba in the reference characteristic CHI”, the occurrence of a situation in which the pressing force Fba is lower than the current pressing force is surely prevented. it can.
  • the energization amount Ima in the holding state is maintained in the vicinity of “the maximum value of the energization amount within the range in which the current pressing force Fba can be maintained”, the current consumption of the apparatus can be reliably reduced.
  • the set “energization amount ima in the holding state” is set to the temperature of the electric motor MTR. You may correct
  • the reference is based on the difference between the reference temperature and the current temperature of the electric motor MTR.
  • the characteristic CHI is corrected, and the “energization amount ima in the holding state” can be set based on the corrected reference characteristic CHI.
  • MTR Electric motor
  • KTB Rotating member
  • MSB Friction member
  • PSN Pressing member
  • INP GSK
  • SFT NJB
  • Power transmission mechanism LOK ... Parking brake mechanism
  • RCH Ratchet gear
  • TSU Pawl member
  • SOL Solenoid
  • CTL control means, FBA ... pressed state quantity acquisition means, MKA ... position detection means, BP ... braking operation member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

この装置は、電気モータMTRが発生する動力を押圧部材PSNに伝達して、摩擦部材MSBに対する押圧部材PSNの押圧力を発生する電動制動装置である。所定時点が到来する毎に、電気モータに対する通電量と押圧部材の押圧力との間の関係におけるヒステリシス特性が検出される。「押圧力が一定に保持される保持状態」であると判定された場合、検出された最新のヒステリシス特性に基づいて、現在の押圧力を維持できる通電量の最小値が取得され、通電量が、取得された通電量の最小値に基づいて決定された値に設定される。

Description

車両の電動制動装置
 本発明は、車両の電動制動装置に関する。
 従来より、「動力を発生する電気モータ」と、「車両の車輪と一体回転する回転部材(ブレーキディスク)に摩擦部材(パッド)を押し付ける押圧部材(ブレーキピストン)」と、「電気モータが発生する動力を押圧部材に伝達して摩擦部材に対する押圧部材の押圧力を発生する動力伝達機構」と、「運転者による前記車両の制動操作部材(ブレーキペダル)の操作に応じた押圧力が発生するように、電気モータに対する通電量を制御する制御手段」と、を備えた車両の電動制動装置が知られている(例えば、特許文献1を参照)。
 上記文献に記載の装置では、「電気モータに対する通電量」と「押圧部材の押圧力」との間の関係におけるヒステリシス特性が予め取得されている。そして、略同等の大きさの制動力が一定時間以上継続したときは、前記ヒステリシス特性を考慮して、通電量をその制動力を維持できる範囲内で小さくすること、が記載されている。これにより、この装置の消費電流を低減できる。
 ところで、上記ヒステリシス特性は、動力伝達機構内の摺動部分の経年変化及び温度変化等によってその摺動部分の摩擦係数が変動すること等に起因して、逐次変動し得る。しかしながら、上記文献には、ヒステリシス特性の変動については何ら記載されていない。
 実際のヒステリシス特性の範囲(押圧力を維持できる通電量の範囲)が予め取得されているヒステリシス特性の範囲よりも大きい場合、その制動力を維持できる範囲内で通電量を更に小さくできる余地が残るように通電量が小さくされる。この場合、この装置の消費電流を更に低減できる余地がある。一方、実際のヒステリシス特性の範囲が予め取得されているヒステリシス特性の範囲よりも小さい場合、その制動力を維持できる範囲を超えて通電量が小さくされ得る。この場合、その制動力が維持され得ない(低下する)事態が発生し得る。
特開2000-16279号公報
 本発明は、上記問題に対処するためになされたものであり、その目的は、上記ヒステリシス特性が変動しても、押圧力の保持状態において電気モータに対する通電量を適切に設定して、制動力の低下を招くことなく装置の消費電流を確実に低減できる、車両の電動制動装置を提供することである。
 本発明に係る車両の電動制動装置は、動力を発生する電気モータ(MTR)と、車両の車輪と一体回転する回転部材(KTB)に摩擦部材(MSB)を押し付ける押圧部材(PSN)と、前記電気モータが発生する動力を前記押圧部材に伝達して前記摩擦部材に対する前記押圧部材の押圧力(Fba)を発生する動力伝達機構(INP、GSK、SFT、NJB)と、運転者による前記車両の制動操作部材(BP)の操作に基づいて決定された押圧力、駐車ブレーキ機能(FPK)に基づいて決定された押圧力、及び、前記制動操作部材の操作にかかわらず制動力を発生させる自動加圧制御手段(FAT)により決定された押圧力、のうち前記車両の状態に基づいて選択された押圧力である選択後押圧力が発生するように、前記電気モータに対する通電量(Ima)を制御する制御手段(ECU、DRV)と、を備えている。
 本発明に係る電動制動装置の特徴は、前記制御手段が、前記押圧力が一定に保持される保持状態であるか否かを判定する判定手段を備え、前記制御手段が、所定時点が到来する毎に、前記通電量と前記押圧力との間の関係におけるヒステリシス特性を検出するとともに、前記保持状態であるとの判定がなされた場合、前記検出された前記ヒステリシス特性に基づいて、現在の前記押圧力を維持できる前記通電量の最小値を取得し、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成されたこと、にある。
 これによれば、所定時点の到来毎に、保持状態における通電量の設定に使用されるヒステリシス特性が更新されていく。従って、現在の制動力を維持できる範囲内における通電量の最小値が比較的正確に取得され得、このように比較的正確に取得された通電量の最小値に基づいて、保持状態における通電量が決定される。この結果、保持状態において通電量を適切に設定して、制動力の低下を招くことなく装置の消費電流を確実に低減することができる。
 前記通電量の最小値は、例えば、保持状態において、自動ヒステリシス特性検出動作を行うことによって取得され得る。具体的には、例えば、押圧力を減少するために通電量を徐々に減少し、検出された位置(電気モータ、又は、動力伝達機構に含まれる動力伝達部材の位置)が変化したことに基づいて、通電量の最小値が取得され得る。或いは、押圧力を減少するために通電量を徐々に減少し、検出された押圧力が変化したことに基づいて、通電量の最小値が取得され得る。
 このように、自動ヒステリシス特性検出動作がなされた場合、通電量の最小値を取得するために、制動力(押圧力)が「保持されていた値」から実際に減少させられる。このように制動力が減少している状態にて、通電量を、取得された通電量の最小値(に基づいて決定される値)に設定しただけでは、制動力が減少している状態がなおも継続される事態が発生し得る。
 この点に鑑み、前記通電量の最小値を取得した後、前記電気モータに対する前記通電量を増加して「前記押圧力を前記保持状態であるとの判定がなされたときの値」まで復帰させ、その後、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成されることが好適である。これによれば、自動ヒステリシス特性検出動作がなされた後、減少していた制動力を「保持されていた値」にまで確実に戻すことができる。
 本発明に係る電動制動装置が、「前記押圧力を前記選択後押圧力より大きい値に調整する押圧力増大制御を実行する押圧力増大手段」を備える場合がある。この場合、前記制御手段は、前記保持状態であるとの判定がなされた場合、前記押圧力増大制御を実行し、その後、自動ヒステリシス特性検出動作を実行し、自動ヒステリシス特性検出動作の実行中において、前記押圧力が前記選択後押圧力より下回らないように前記通電量を調整するよう構成されることが好適である。これにより、自動ヒステリシス特性検出動作がなされた場合において、制動力(押圧力)が前記選択後押圧力より低下する事態の発生を防止できる。
 また、本発明に係る電動制動装置において、前記電動制動装置が車輪毎に搭載されている場合、前記保持状態であるとの判定がなされた場合、自動ヒステリシス特性検出動作を、全ての車輪について同時に実行しないことが好適である。
 上述のように、ある車輪について自動ヒステリシス特性検出動作がなされた場合、通電量の最小値を取得するために、その車輪について制動力が「保持されていた値」から実際に減少させられる。従って、車両の全車輪に対して自動ヒステリシス特性検出動作が同時になされると、車両全体としての制動力の低下量が大きくなる。これに対し、上記構成によれば、車両の全車輪に対して自動ヒステリシス特性検出動作が同時に実行されない。従って、車両全体としての制動力の低下量を相対的に小さくできる。
 また、本発明に係る電動制動装置においては、前記車両が停止していると判定される場合にのみ、自動ヒステリシス特性検出動作(前記通電量の最小値の取得のために前記通電量を減少する制御)を実行するように構成されることが好適である。
 上述のように、自動ヒステリシス特性検出動作がなされた場合、制動力が「保持されていた値」から実際に減少させられる。従って、車両の走行中(特に、通常の制動動作による減速中)に自動ヒステリシス特性検出動作がなされると、制動力が減少したことを車両の乗員が感知し易い。上記構成は、係る知見に基づく。これによれば、「車両の走行中にて自動ヒステリシス特性検出動作がなされたことを車両の乗員が感知する事態」の発生を防止できる。
 ところで、本発明に係る電動制動装置の前記制御手段は、前記保持状態であるとの判定がなされた場合、前記電気モータに対する前記通電量を、前記電気モータ及び前記動力伝達機構のそれぞれの諸元に基づいて得られる前記通電量と前記押圧力との間のヒステリシスがない予め定められた関係(CHI、以下、「基準特性」と呼ぶ)に基づいて決定された値に設定するようにも構成され得る。
 動力伝達機構内の摺動部分の摩擦係数の変動等によって、上記ヒステリシス特性は、「基準特性」を中心に変動する。従って、「基準特性における現在の押圧力に対応する通電量」は、「ヒステリシス特性を考慮した場合における現在の押圧力を維持できる範囲内の通電量の最小値」よりも必ず大きくなる。換言すれば、保持状態における通電量を、「基準特性における現在の押圧力に対応する値」に設定すれば、押圧力が現在の押圧力より低下する事態の発生を確実に防止できる。加えて、保持状態における通電量が「現在の押圧力を維持できる範囲内の通電量の最大値」近傍に維持される場合と比べて、装置の消費電流を確実に低減できる。上記構成は係る知見に基づく。
 この場合、保持状態であるとの判定がなされた場合において設定される前記電気モータに対する前記通電量を、前記取得された電気モータの温度に基づいて補正するように構成されることが好適である。
 一般に、電気モータの温度が高いほど、電気モータにおける「通電量に対する出力トルクの割合」(所謂、トルク定数)が小さくなる。これは、電気モータの温度が高いほど、電気モータ内の永久磁石の磁束密度が小さくなることに起因する。従って、電気モータの温度によって、「基準特性」も変動し得る。よって、上記構成によれば、電気モータの温度にかかわらず、保持状態における通電量を、正確な「基準特性」に基づいて正確に設定することができる。
本発明の実施形態に係る車両の電動制動装置の全体構成図である。 主として動力伝達機構を説明するための部分断面図である。 駐車ブレーキ機構(ロック機構)LOKを説明するための主要断面図である。 目標押圧力と目標通電量との関係を規定するマップを示す図である。 通電量と押圧力との間の関係におけるヒステリシス特性が変動する様子を説明するためのグラフである。 自動ヒステリシス特性検出動作が行われる場合の一例を示すタイムチャートである。 自動ヒステリシス特性検出動作が行われる場合の他の例を示すタイムチャートである。 駐車ブレーキ作動中において、自動ヒステリシス特性検出動作が行われる場合の一例を示す図5に対応する図である。 電気モータの温度によって基準特性(従って、ヒステリシス特性)が変動する様子を示す図5に対応する図である。
 以下、本発明の実施形態に係る車両の電動制動装置について図面を参照しつつ説明する。
(構成)
 図1に示すように、この電動制動装置を備える車両には、制動操作部材BP、操作量取得手段BPA、加速操作部材AP、加速操作量取得手段APA、駐車ブレーキ用スイッチMSW、車輪速度取得手段VWA、車速取得手段VXA、電子制御ユニットECU、制動手段(ブレーキアクチュエータ)BRK、回転部材(ブレーキディスク)KTB、及び、摩擦部材MSBが備えられている。この電動制御装置は、各輪にそれぞれ備えられている。
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。制動操作部材BPの操作に応じて、制動手段BRKによって、車輪WHLの制動トルクが調整される。制動操作部材BPには、制動操作量取得手段BPAが設けられる。BPAによって、運転者による制動操作部材BPの操作量(制動操作量)Bpaが取得(検出)される。
 制動操作量取得手段BPAとして、制動操作部材BPの操作力を検出するセンサ(ブレーキペダル踏力センサ)、及び、BPの変位量を検出するセンサ(ブレーキペダルストロークセンサ)のうち、少なくとも1つが採用される。従って、制動操作量Bpaは、ブレーキペダル踏力、及び、ブレーキペダルストロークのうちの少なくとも何れか1つに基づいて演算される。
 加速操作部材(例えば、アクセルペダル)APは、運転者が車両を加速するために操作する部材である。加速操作部材APには、加速操作量取得手段APAが設けられる。APAは、運転者による加速操作部材APの操作量(加速操作量)Apaを取得(検出)する。APAとして、エンジンのスロットル開度を検出するセンサ(スロットル開度センサ)、加速操作部材APの操作力、及び/又は、変位量を検出するセンサ(アクセルペダル踏力センサ、アクセルペダルストロークセンサ)が採用される。従って、加速操作量Apaは、スロットル開度、アクセルペダル踏力、及び、アクセルペダルストロークのうちの少なくとも何れか1つに基づいて演算される。
 駐車ブレーキ用スイッチ(単に、スイッチともいう)MSWは、運転者によって操作されるマニュアルスイッチであり、スイッチMSWのオン/オフ(ON/OFF)の信号Mswを出力する。Mswのオン(ON)状態で駐車ブレーキの作動が指示され、Mswのオフ(OFF)状態で駐車ブレーキの解除が指示される。
 車速取得手段VXAは、車両の速度(車速)Vxaを取得(検出)する。車速Vxaは、車輪速度取得手段VWAの検出信号(車輪速度)Vwa、及び、公知の方法に基づいて演算され得る。例えば、各車輪の回転速度Vwaのうちで最速のものが車両速度Vxaとして演算され得る。
 制動操作量Bpa、加速操作量Apa、車両速度Vxa、及び、指示信号Mswは、電子制御ユニットECUに入力される。なお、Bpa、Apa、Vxa、及び、Mswは他の電子制御ユニットにて演算、又は、取得され、その演算値(信号)が通信バスを介して、電子制御ユニットECUに送信され得る。
 電子制御ユニットECUは、車体に固定される。電子制御ユニットECUのCPU内には、目標押圧力演算ブロックFBT、駐車ブレーキ要否判定ブロックFPK、自動加圧制御演算ブロックFAT、及び、選択ブロックSLTがプログラムされている。
 FBTでは、Bpa、及び、予め設定された演算マップCHfbに基づいて、摩擦部材(ブレーキパッド)MSBが回転部材(ブレーキディスク)KTBを押す力(押圧力)に関する目標押圧力Fbtが演算される。目標押圧力Fbtは、車両の状態に基づいて修正され得る。例えば、車両の停車時では、車両が停車している路面の勾配に基づいて、停車状態の維持に必要な押圧力の下限値を算出し、前記算出された押圧力の下限値より若干大きく設定された制限値を超えないように、目標押圧力Fbtが制限され得る。この場合、目標押圧力Fbtが修正されない場合と比べて、押圧力が保持される機会、即ち、後述するように、ヒステリシス特性が検出されて電気モータMTRに対する通電量が低減され得る機会、を増やし得る。演算されたFbtは、SLTを介して、車輪側に固定される駆動回路DRVに送信される。
 FPKでは、Msw等に基づいて、駐車ブレーキの要否が判定される。具体的には、駐車ブレーキの作動、或いは、解除を指示するための信号FLpkが決定される。「FLpk=0」が駐車ブレーキの不要状態、「FLpk=1」が駐車ブレーキの必要状態を表す。指示信号FLpkは、SLTを介して、駆動回路DRVに送信される。
 マニュアルモードでは、運転者によって操作されるマニュアルスイッチMSWの操作信号Mswに基づいて、駐車ブレーキの要否が判定される。例えば、スイッチMSWのオフ状態によって、「駐車ブレーキの不要状態(FLpk=0)」が選択され、MSWのオン状態によって、「駐車ブレーキの必要状態(FLpk=1)」が選択される。
 自動モードでは、運転者のスイッチMSWの操作には依らず、加速操作部材(アクセルペダル)APの操作等に連動して、自動で駐車ブレーキの要否(作動又は解除)が判定される。具体的には、自動モードでは、車両速度Vxa、及び、加速操作量Apa等に基づいて、駐車ブレーキの要否が決定される。
 例えば、車両の走行中(Vxa>0)には、駐車ブレーキの不要状態(FLpk=0)が判定されている。車両が停止した(即ち、Vxaがゼロになった)時点で、駐車ブレーキの必要状態が判定され、制御フラグFLpkが、「0」から「1」に切り替えられる。また、運転者が加速操作部材APを操作し、加速操作量Apaが所定値ap1を超過する時点で、駐車ブレーキの不要状態が判定され、制御フラグFLpkが、「1」から「0」に切り替えられる。
 FATでは、制動操作部材BPの操作にかかわらず(BPの操作がなされていない場合においても)制動力(押圧力)を発生させる自動加圧制御を実行するため、車両の状態を示す各種センサからの信号等に基づいて、押圧力に関する目標押圧力Fatが演算される。自動加圧制御とは、典型的には、車輪の横滑りや車輪のスリップの抑制、装置が正常か否かの判定(イニシャルチェック)、坂路(登坂路)上における車両のずり下がりの抑制(ヒルホールド制御)、及び、後述する自動ヒステリシス特性検出動作の実行、等のために実行される制御である。演算されたFatは、SLTを介して、駆動回路DRVに送信される。
 SLTでは、車両の状態に基づいて、周知の選択手法の一つによって、信号Fbt、FLpk、及び、Fatのうち何れか一つの信号が選択され、選択された信号が駆動回路DRVに送信される。
 制動手段(ブレーキアクチュエータ)BRKは、車輪WHLに設けられ、車輪WHLに制動トルクを与え、制動力を発生させる。車両は、走行中に、BRKによって減速される(通常ブレーキとして機能する)。また、車両の停止中には、その停止状態を維持する駐車ブレーキ(押圧力増大手段)として機能する。
 BRKとして、所謂、ディスク型制動装置(ディスクブレーキ)の構成が例示されているが、この場合、摩擦部材MSBはブレーキパッドであり、回転部材KTBはブレーキディスクである。制動手段BRKは、ドラム型制動装置(ドラムブレーキ)であってもよい。ドラムブレーキの場合、摩擦部材MSBはブレーキシューであり、回転部材KTBはブレーキドラムである。
 制動手段BRKは、ブレーキキャリパCRP、押圧部材PSN、電気モータMTR、位置取得手段MKA、減速機GSK、シャフト部材SFT、ねじ部材NJB、押圧力取得手段FBA、駐車ブレーキ用ロック機構LOK、及び、駆動回路DRVにて構成される。
 ブレーキキャリパ(単に、キャリパともいう)CRPは、2つの摩擦部材(ブレーキパッド)MSBを介して、回転部材(ブレーキディスク)KTBを挟み込むように構成される。キャリパCRPは、内部に空間(スペース)を有し、この空間に各種部材(駆動回路DRV等)が収納される。
 キャリパCRPの内部にて、押圧部材(ブレーキピストン)PSNが、回転部材KTBに対して移動(前進、又は、後退)される。押圧部材PSNの移動によって、摩擦部材MSBが回転部材KTBに押し付けられて摩擦力が発生する。例えば、PSNは円筒形状をもち、中心軸Jpsを有する。従って、PSNは、軸Jpsの方向に移動される。
 押圧部材PSNの移動は、電気モータMTRの動力によって行われる。具体的には、電気モータMTRの出力(モータ軸まわりの回転動力)が、減速機GSKを介して、シャフト部材SFTに伝達される。そして、シャフト部材SFTの回転動力(シャフト軸まわりのトルク)が、動力変換部材NJBによって、直線動力(押圧部材の軸方向の推力)に変換され、押圧部材PSNに伝達される。その結果、押圧部材PSNが、回転部材KTBに対して移動(前進又は後退)される。ここで、PSNの中心軸Jpsと、SFTの回転軸とは一致する。
 押圧部材PSNの移動によって、摩擦部材MSBが、回転部材KTBを押す力(押圧力)が調整される。回転部材KTBは車輪WHLに固定されているので、摩擦部材MSBと回転部材KTBとの間に摩擦力が発生し、車輪WHLの制動力が調整される。
 電気モータMTRは、押圧部材PSNを駆動(移動)するための動力源である。例えば、電気モータMTRとして、ブラシ付モータ、又は、ブレシレスモータが採用され得る。電気モータMTRの回転方向において、正転方向が、摩擦部材MSBが回転部材KTBに近づいていく方向(押圧力が増加し、制動トルクが増加する方向)に相当し、逆転方向が、摩擦部材MSBが回転部材KTBから離れていく方向(押圧力が減少し、制動トルクが減少する方向)に相当する。
 位置取得手段(例えば、回転角センサ)MKAは、電気モータMTRのロータ(回転子)の位置(例えば、回転角)Mkaを取得(検出)する。例えば、MKAは、電気モータMTRの内部であって、MTRの回転軸Jmt上に設けられる。検出された位置(回転角)Mkaは、駆動回路DRVに入力される。
 入力部材INP、減速機GSK、シャフト部材SFT、及び、ねじ部材NJBは、電気モータMTRの動力を押圧部材PSNに伝達するための動力伝達機構を構成している。入力部材INPは、オルダム継手OLDを介して、電気モータMTRの出力軸MOTと同軸的に連結されている。GSKは、INPの回転を減速してSFTに伝達する。減速機GSKの介在によって、SFTの回転トルクは、電気モータMTRの回転トルクにGSKの減速比(>1)を乗じた値に増大される。
 図2に示すように、減速機GSKとして、2段の減速機が採用され得る。図2に示す例では、第1段の減速が、「INPに固定された小径歯車SK1と、中間軸CHUに固定された大径歯車DK1と、の組」によって行われ、第2段の減速が、「CHUに固定された小径歯車SK2と、SFTに固定された大径歯車DK2と、の組」によって行われている。
 再び、図1を参照して、シャフト部材SFTは、回転軸部材であって、減速機GSKから伝達された回転動力をねじ部材NJBに伝達する。ねじ部材NJBは、シャフト部材SFTの回転動力を、直線動力に変換する動力変換機構(回転・直動変換部材)である。例えば、NJBとして、滑りねじ(台形ねじ等)、又は、転がりねじ(ボールねじ等)が採用され得る。
 押圧力取得手段(例えば、押圧力センサ)FBAは、押圧部材PSNが摩擦部材MSBを押す力(押圧力)Fbaを取得(検出)する。検出された実際の押圧力Fbaは、駆動回路DRVに入力される。例えば、押圧力取得手段FBAは、シャフト部材SFTとキャリパCRPとの間に設けられる。即ち、シャフト部材SFTの回転軸上に設けられ、キャリパCRPに固定される。
 なお、図1、及び、図2に示す例では、動力伝達機構として、複数の動力伝達部材の機械的な連結のみを利用して電気モータMTRの動力を押圧部材PSNに伝達する構成が採用されているが、複数の動力伝達部材の機械的な連結、及び、液圧回路(マスタシリンダを含む)を利用して電気モータMTRの動力を押圧部材PSNに伝達する構成が採用されてもよい。具体的には、例えば、ねじ部材NJBと、押圧部材PSNとの間に、マスタシリンダを含む液圧回路が介装され、ねじ部材NJBがマスタシリンダを加圧する構成が採用され得る。
 駐車ブレーキ機構(ロック機構ともいう)LOKは、車両の停止状態を維持するブレーキ機能(所謂、駐車ブレーキ)を発揮させるため、電気モータMTRを、逆転方向に回転しないようにロックする機構である。この結果、摩擦部材MSBによる回転部材KTBの押圧状態が維持される。
 図2、及び図3に示すように、ロック機構LOKは、電気モータMTRと減速機GSKとの間に(即ち、電気モータMTRと同軸に)設けられ得る。図2及び図3に示す例では、ロック機構LOKは、ラチェット歯車(つめ歯車ともいう)RCH、つめ部材TSU、及び、ソレノイドアクチュエータ(単に、ソレノイドともいう)SOLにて構成される。
 ラチェット歯車RCHは、入力部材INPに、INPと同軸で固定されている。RCHは、一般的な歯車(例えば、平歯車)とは異なり、歯が方向性をもつ。ソレノイドSOLは、キャリパCRPに固定されている。ソレノイドSOLの非通電状態では、弾性部材(復帰スプリング)SPRの付勢力によって、つめ部材TSUは、ラチェット歯車RCHと係合不能な位置(係合不能位置)に維持される(図3(a)を参照)。
 一方、SOLの通電状態では、ソレノイドSOLの一部であるプッシュバーPBRがつめ部材TSUをRCHに向けて押圧する電磁力が発生し、TSUは、SPRの付勢力に対抗しながら、RCHと係合可能な位置(係合可能位置)に移動し、係合可能位置に維持される(図3(b)を参照)。押圧部材PSNの押圧力Fba(>0)が発生し且つTSUが係合可能位置に維持された状態にて、TSUの先端部TmeがRCHの歯と係合すると、RCHの逆転方向Rvsの回転運動が不能となる。これにより、押圧部材PSNの押圧力Fbaの減少方向への移動が不能となる。この結果、制動手段BRK(電気モータMTR)への通電が停止されても、押圧力Fbaが保持され、駐車ブレーキ機能が発揮される。
 駆動回路(電気回路)DRVは、電気モータMTR、及び、ソレノイドアクチュエータ(単に、ソレノイドともいう)SOLを駆動する電気回路(プリント基板)である。DRVは、キャリパCRPの内部に配置(固定)される。
(通常ブレーキ機能)
 通常ブレーキとは、運転者の制動操作部材BPの操作に応じた制動力を発生するブレーキ機能である。通常ブレーキ機能は、選択ブロックSLTにて目標押圧力Fbtが選択された場合において、Fbt(前記選択後押圧力に相当)に基づいて、駆動回路DRVによって電気モータMTRが駆動されることによって発揮される。
 具体的には、DRVは、制動操作量Bpaに基づいて決定された目標押圧力Fbt、及び、予め設定された図4に示す演算特性(演算マップ)CHs1、CHs2に基づいて、目標通電量Imtを演算する。目標通電量Imtは、目標押圧力Fbtを達成するための、電気モータMTRへの通電量の目標値である。図4に示すように、Imtの演算マップは、制動手段BRKにおける「通電量と押圧力との間の関係におけるヒステリシス」を考慮して、増圧側の特性CHs1と、減圧側の特性CHs2と、で構成されている。このヒステリシスについては後述する。
 なお、通電量とは、電気モータMTRの出力トルクを制御するための状態量(変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値として電気モータMTRの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比が通電量として用いられ得る。
 図4に示す演算特性に基づいて算出された目標通電量Imtは、「演算ブロックFBT(図1を参照)により算出される目標押圧力(目標値)Fbt、及び、押圧力センサFBAにより検出される押圧力(実際値)Fbaに基づいて算出されるフィードバック量」に基づいて補正され得る。
 目標通電量Imtの符号(値の正負)に基づいて電気モータMTRの回転方向が決定され、目標通電量Imtの大きさに基づいて電気モータMTRの出力(回転動力)が制御される。具体的には、目標通電量Imtの符号が正符号である場合(Imt>0)には、電気モータMTRが正転方向Fwd(押圧力の増加方向、図3を参照)に駆動され、Imtの符号が負符号である場合(Imt<0)には、電気モータMTRが逆転方向Rvs(押圧力の減少方向、図3を参照)に駆動される。また、目標通電量Imtの絶対値が大きいほど電気モータMTRの出力トルクが大きくなるように制御され、Imtの絶対値が小さいほど出力トルクが小さくなるように制御される。これにより、押圧力Fba(従って、制動力)が、運転者の制動操作部材BPの操作に応じて調整される。
(駐車ブレーキ機能)
 駐車ブレーキ機能は、選択ブロックSLTにて指示信号(制御フラグ)FLpkが選択された場合において、FLpkに基づいて、駆動回路DRVによって電気モータMTR、及び、ソレノイドSOLが制御されることによって発揮される。駐車ブレーキには、駐車ブレーキを非作動状態から作動状態に切り替える「開始作動」、及び、駐車ブレーキを作動状態から非作動状態に切り替える「解除作動」の2つの作動が存在する。開始、及び、解除は、指示信号FLpkの変化(0→1、又は、1→0)に基づいて決定される。
 開始作動では、開始作動用の目標通電量Imt、及び、ソレノイドSOLへの通電を指示するソレノイド指示信号FLsが出力される。ここで、開始作動用の目標通電量Imtは、予め設定された特性に従って決定される。信号FLsは、制御フラグであって、「FLs=0」がソレノイドSOLへの非通電、「FLs=1」がソレノイドSOLへの通電を指示する。
 具体的には、開始作動では、DRVは、開始作動用の目標通電量Imtを、坂路上で車両を停止状態に維持するために必要な制動力に応じた値(>0)に設定する。この開始作動用の目標通電量Imt(>0)に基づいて電気モータMTRが正転駆動される。これにより、押圧力Fbaが、坂路上で車両を停止状態に維持するために必要な制動力に応じた値(前記選択後押圧力に相当)まで増大する。
 その後、信号FLsが、「0」から「1」へ切り替えられる。これにより、つめ部材TSUが「係合不能位置」(図3(a)を参照)から「係合可能位置」(図3(b))に移動する。このように、押圧力Fba(>0)が発生し且つTSUが係合可能位置に維持された状態にて、目標通電量Imtが減少させられることによって、RCHが逆転方向Rvs(図3を参照)に回転させられる。これにより、TSUの先端部TmeがRCHの歯と係合する。この係合によって、RCHの逆転方向Rvsの回転運動が不能となり、電気モータMTRへの通電が停止されても押圧力Fbaが現在値に保持される状態となる。その後、電気モータMTRへの通電が停止される。即ち、駐車ブレーキ機能が開始・維持される。
 解除作動では、DRVは、解除作動用の目標通電量Imtを、ラチェット歯車RCHを正転駆動するために必要な値(>0)に設定する。そして、TSUの先端部TmeとRCHの歯とが係合した状態にて、この解除作動用の目標通電量Imtに基づいて電気モータMTRが正転駆動される。RCHが正転方向Fwdに回転すると、TSUの先端部TmeとRCHの歯とが係合が解除される。この結果、弾性部材SPRの付勢力によって、TSUが係合可能位置(図3(b)を参照)から係合不能位置(図3(a)を参照)に戻る。これにより、維持されてきた駐車ブレーキ機能が解除される。
(自動加圧制御機能)
 自動加圧制御機能は、上述した自動加圧制御を達成するために制動力を発生するブレーキ機能である。自動加圧制御機能は、選択ブロックSLTにて目標押圧力Fatが選択された場合において、Fat(前記選択後押圧力に相当)に基づいて、駆動回路DRVによって電気モータMTRが駆動されることによって発揮される。
 具体的には、DRVは、目標押圧力Fatに基づいて、周知の手法の一つを利用して、自動加圧制御用の目標通電量Imtを演算する。自動加圧制御用の目標通電量Imtは、目標押圧力Fatを達成するための、電気モータMTRへの通電量の目標値である。この自動加圧制御用の目標通電量Imtに基づいて電気モータMTRの出力(回転動力)が制御される。これにより、押圧力Fba(従って、制動力)が、自動加圧制御が達成されるように調整される。
(ヒステリシス特性)
 「電気モータMTRに対する通電量(実際値)Ima」と、「押圧力(実際値)Fba」との間には、制動手段BRK内の「動力伝達機構」(入力部材INP、減速機GSK、シャフト部材SFT、及び、ねじ部材NJB)の内部での摺動部分の摩擦等に起因して、図5に示すようなヒステリシス特性が不可避的に発生する。一例として、図5に太い実線で示すヒステリシス特性は、増圧側の特性CHS1と、減圧側の特性CHS2と、で構成される。
 ここで、図5に示す特性CHIは、通電量Imaと押圧力Fbaとの間にヒステリシスがないと仮定したときの、電気モータMTR、及び「動力伝達機構」のそれぞれの諸元のみに基づいて一義的に得られる特性(以下、「基準特性」と呼ぶ)である。本実施形態では、基準特性CHIは、下記(1)式にて示すことができる。Fba=(K・G/L)・Ima …(1)
 上記(1)式にて、「K」は、電気モータMTRのトルク定数(Nm/A)であり、「G」は、減速機GSKの減速比(無次元)であり、「L」は、ねじ部材NJBのリード(m/rad)である。
 一般に、「動力伝達機構」内の摺動部分の摩擦係数は、経年変化及び温度変化等によって不可避的に変動する。この摩擦係数の変動等によって、ヒステリシス特性も、基準特性CHIを中心に変動する。具体的には、図5に示すグラフにおいて、前記摩擦係数が大きくなるにつれて、増圧側の特性がCHIから右に移動し且つ減圧側の特性がCHIから左に移動していく。例えば、上述した図5に太い実線で示すヒステリシス特性が得らえる状況において、経年変化及び温度変化等によって前記摩擦係数が増大すると、ヒステリシス特性は、図5に破線で示すように、増圧側の特性がCHS1からCHW1に移動し、減圧側の特性がCHS2からCHW2に移動する。
(制動力の保持状態における電気モータMTRに対する通電量)
 制動力が保持されている場合、上述した「通電量Imaと押圧力Fbaとの間のヒステリシス」の存在に起因して、制動力を現在値に維持できる通電量Imaには、ヒステリシス特性に応じた範囲が存在する。例えば、図5に示すように、ヒステリシス特性が、増圧側の特性CHS1と、減圧側の特性CHS2と、で構成される場合において、押圧力Fbaを値fba1に維持できる通電量Imaの範囲は、Has(ims~imu)で表される。
 従って、制動力の保持状態との判定がなされる場合には、「制動力の低下を招くことなく装置の消費電流を低減する観点」から、通電量Imaを、制動力を現在値に維持できる範囲の最小値(又は、その最小値より若干大きい値)に設定することが好ましい、と考えられる。以下、「制動力を現在値に維持できる範囲の最小値」を単に「最小値」と呼ぶこともある。
 この「通電量の最小値」は、「ヒステリシス特性が、増圧側の特性CHS1と、減圧側の特性CHS2と、で構成される場合」には、範囲Hasの下限値imsとなり、「ヒステリシス特性が、増圧側の特性CHW1と、減圧側の特性CHW2と、で構成される場合」には、範囲Hawの下限値imwとなる。
 即ち、ヒステリシス特性の変動に応じて「通電量の最小値」も変動する。制動力の低下を招くことなく装置の消費電流を最大限に低減するためには、このように時々刻々と変動し得るヒステリシス特性(従って、通電量の最小値)を逐次検出・更新し、制動力の保持状態と判定される毎に、通電量Imaを、最新の「通電量の最小値」(又は、その最小値より若干大きい値)に設定することが好ましい、と考えられる。
 係る知見に基づき、本実施形態では、所定時点が到来する毎に、ヒステリシス特性が新たに検出され、記憶される。「所定時点」として、運転者による通常ブレーキがなされたとき、及び、駐車ブレーキがなされたとき、が挙げられる。通常ブレーキ又は駐車ブレーキがなされる際、押圧力センサFBA、及び、通電量imaを検出するセンサ(図示せず)の検出結果に基づいて、時々刻々と変動していく通電量ima及び押圧力Fbaの関係を逐次(極短時間の経過毎に)検出していくことで、図5に示すようなヒステリシス特性を新たに取得・更新することができる。取得・更新されたヒステリシス特性は、ECU内の記憶領域に記憶される。
 本実施形態では、(駐車ブレーキの作動中、及び、自動加圧制御の実行中であるか否かにかかわらず)「制動力の保持状態である」との判定がなされる毎に、記憶されている最新のヒステリシス特性から「現在の押圧力を維持できる通電量の最小値」が取得され、電気モータMTRに対する目標通電量Imt(従って、通電量Ima)が、その「通電量の最小値」(又は、その最小値より若干大きい値)に設定される。「制動力の保持状態である」との判定は、例えば、押圧力センサFBAによって検出される押圧力Fba、制動操作量取得手段BPAによって検出される制動操作量Bpa、位置取得手段MKAによって検出される電気モータMTRの回転角Mka、通電量imaを検出するセンサによって検出される通電量ima、及び、目標通電量imt、の何れか一つ又は二つ以上の変動幅が所定時間に亘って所定の範囲内に入っていること、等の条件が成立したときに、なされ得る。この判定は、ECUによってなされる。
 これにより、所定時点の到来毎に、保持状態における通電量imaの設定に使用されるヒステリシス特性が更新されていく。従って、現在の制動力を維持できる範囲内における通電量imaの最小値が比較的正確に取得され得る。そして、このように比較的正確に取得された通電量の最小値に基づいて、保持状態における通電量imaが決定される。この結果、保持状態において通電量を適切に設定して、制動力の低下を招くことなく装置の消費電流を確実に低減することができる。
 また、本実施形態では、通常ブレーキ又は駐車ブレーキがなされるときとは別に、「自動ヒステリシス特性検出動作」(ヒステリシス特性を新たに検出するためのみに通電量が変更される動作)がなされるときにも、ヒステリシス特性(より具体的には、現在の押圧力を維持できる通電量の最小値)が新たに取得される。
 自動ヒステリシス特性検出動作は、「制動力の保持状態である」との判定がなされる毎になされ得る。図6は、この場合の作動の一例を示す。この例では、時刻t1以前にて、制動力が略一定に保持されている。その結果、時刻t1にて、「制動力の保持状態である」との判定がなされると、押圧力Fbaを減少するために目標通電量imt(従って、通電量ima)が徐々に減少される。
 例えば、時刻t1にて、図5に太い実線で示すヒステリシス特性において、通電量imaがimu(=im1)であり、押圧力Fbaがfba1であるものとする。この場合、時刻t1以降、通電量imaがimu(=im1)から減少していく。しかしながら、通電量imaがims(=im2)に達するまで、押圧力Fbaはfba1に維持される。
 時刻t2にて、通電量imaがims(=im2)に達すると、「動力伝達機構」の各動力伝達部材が逆転方向Rvsに運動を開始して押圧力Fbaがfba1から減少を開始する。この結果、位置取得手段MKAによって検出される電気モータMTRの回転角Mkaが変化(減少)を開始する。時刻t3にて、回転角Mkaの変化量(減少量)が所定値Hm1に達すると、「回転角Mkaが変化(減少)した」と判定される。この判定がなされた時点での通電量Imaが、現在の制動力を維持するための通電量の最小値im3として記憶される。
 このように、自動ヒステリシス特性検出動作がなされた場合、通電量の最小値を取得するために、制動力(押圧力)が「保持されていた値」から実際に減少させられる。ヒステリシス特性を考慮すると、このように制動力が減少している状態にて、通電量を、取得された通電量の最小値(又は、その最小値より若干大きい値)に設定しただけでは、制動力が減少している状態がなおも継続される事態が発生し得る。
 上述した図5に示した例では、押圧力Fbaがfba1から減少した状態にて、通電量imaをims(又は、imsより若干大きい値)に設定しても、ヒステリシス特性に起因して、押圧力Fbaがfba1から減少した状態が維持される。押圧力Fbaを「制動力の保持状態である」と判定された時点での値(fba1)に復帰させることが望ましい。
 この点に鑑み、図6に示す例では、時刻t3にて、通電量の最小値im3が取得された後、通電量imaが再び増加される。そして、時刻t4にて、通電量imaがim1に達することによって、押圧力Fbaが「制動力の保持状態である」との判定がなされた時点での値まで復帰されると、それ以降、通電量imaが、上記「記憶されている通電量の最小値im3」に所定値(微小値)hi1を加えた値(im3+hi1)に維持される。なお、図6に示す例では、通電量imaがim1に達したことを検出した時点で、通電量imaが(im3+hi1)に設定されているが(時刻t4)、押圧力Fbaがfba1に復帰したことを検出した時点で、通電量imaが(im3+hi1)に設定されてもよい。
 これにより、自動ヒステリシス特性検出動作がなされた後、減少していた制動力を「保持されていた値」にまで確実に戻すことができる。
 図6に示す例では、「回転角Mkaが変化(減少)した」と判定された時点での通電量imaが通電量の最小値として取得されているが、図7に示すように、回転角Mkaに代えて、押圧力センサFBAによって検出される押圧力Fbaが変化(減少)したと判定された時点での通電量imaが通電量の最小値として取得されてもよい。図7に示す例では、押圧力Fbaの変化量(減少量)が所定値Hf1に達したときに「押圧力Fbaが変化(減少)した」と判定されている。
 また、本実施形態では、「制動力の保持状態である」との判定がなされた場合、押圧力を「選択後押圧力」より大きい値に調整する「押圧力増大制御」を実行し、その後、自動ヒステリシス特性検出動作が行われ得る。例えば、図8に示す例では、図8に太い実線で示すヒステリシス特性CHSにおいて、通電量imaがimuであり、押圧力Fbaがfba1(=選択後押圧力)である状態(点P)にて、「制動力の保持状態である」との判定がなされたことによって、「押圧力増大制御」が実行されて、通電量imaがimuからimu2まで増加し、押圧力Fbaがfba1からfba2まで増加した状態(点Q)にあるものとする。この状態(点Q)にて、自動ヒステリシス特性検出動作がなされる。
 この場合、通電量の最小値を取得するために、押圧力Fbaが「保持されていた値fba2」から実際に減少させられる。このとき(即ち、通電量imaが減少されていく過程において)、図8にて太い破線で示すように、押圧力Fbaが、選択後押圧力fba1より下回らない(fmin≧fba1)ように、通電量imaを調整することが好ましい。これにより、自動ヒステリシス特性検出動作がなされた場合において、制動力(押圧力)が「選択後押圧力」より低下する事態の発生を防止できる。
 また、本実施形態では、上述のように、電動制動装置が車輪毎に搭載されている。本実施形態では、「制動力の保持状態である」との判定がなされたとき、自動ヒステリシス特性検出動作を、全ての電動制動装置(従って、全ての車輪)について同時に実行しないことが好ましい。具体的には、例えば、「制動力の保持状態である」との判定が1回なされたとき、全ての車輪のうちの一部の車輪のみについて先ず自動ヒステリシス特性検出動作が実行され、その完了後に、残りの車輪について自動ヒステリシス特性検出動作が開始・実行されること、が好ましい。或いは、「制動力の保持状態である」との判定がなされる毎に、全ての車輪のうちの一部の車輪のみについて自動ヒステリシス特性検出動作が実行され、「制動力の保持状態である」との判定がなされる毎に、自動ヒステリシス特性検出動作が行われる車輪が変更されること、が好ましい。
 また、電動制動装置が車輪毎に搭載されていないが、車両が複数の前記電動制動装置を備えている場合を想定する。具体的には、例えば、第1の電動制動装置が、4輪のうち何れか2輪(第1グループの2輪)の制動力を制御するための第1の液圧回路を前記「動力伝達機構」の一部として備え、第2の電動制動装置が、残りの2輪(第2グループの2輪)の制動力を制御するための第2の液圧回路(第1の液圧回路とは異なる)を前記「動力伝達制御装置」の一部として備える構成を想定する。この場合、例えば、「制動力の保持状態である」との判定が1回なされたとき、第1グループの2輪のみについて先ず自動ヒステリシス特性検出動作が実行され、その完了後に、第2グループの2輪について自動ヒステリシス特性検出動作が開始・実行されること、が好ましい。或いは、「制動力の保持状態である」との判定がなされる毎に、第1、第2グループのうち何れか1つのグループの2輪のみについて自動ヒステリシス特性検出動作が実行され、「制動力の保持状態である」との判定がなされる毎に、自動ヒステリシス特性検出動作が行われるグループが変更されること、が好ましい。
 上述のように、ある車輪について自動ヒステリシス特性検出動作がなされた場合、通電量の最小値を取得するために、その車輪について制動力が「保持されていた値」から実際に減少させられる。従って、車両の全車輪に対して自動ヒステリシス特性検出動作が同時になされると、車両全体としての制動力の低下量が大きくなる。これに対し、上記構成によれば、車両の全車輪に対して自動ヒステリシス特性検出動作が同時に実行されない。従って、車両全体としての制動力の低下量を相対的に小さくできる。
 また、本実施形態では、車両が停止していると判定される場合にのみ、自動ヒステリシス特性検出動作を実行するように構成されることが好適である。車両が停止しているとの判定は、車速取得手段VXAの検出結果に基づいてなされ得る。
 上述のように、自動ヒステリシス特性検出動作がなされた場合、制動力が「保持されていた値」から実際に減少させられる。従って、車両の走行中(特に、通常ブレーキによる減速中)に自動ヒステリシス特性検出動作がなされると、制動力が減少したことを車両の乗員が感知し易い。上記構成は、係る知見に基づく。これによれば、「車両の走行中にて自動ヒステリシス特性検出動作がなされたことを車両の乗員が感知する事態」の発生を防止できる。
 また、本実施形態では、「制動力の保持状態である」との判定がなされたとき、自動ヒステリシス特性検出動作を行うことなく、上述した「基準特性CHI」(図5を参照)に基づいて、保持状態における通電量imaが設定されるように構成され得る。
 具体的には、保持状態における通電量imaは、「基準特性CHIにおける、現在の押圧力Fbaに対応する値」に設定され得る。或いは、保持状態における通電量imaは、「基準特性CHIを、想定され得る範囲内で最小のヒステリシス特性の範囲に相当する分だけ通電量imaの減少方向(図5において左方向)にずらして得られる特性」(即ち、ヒステリシス特性の範囲が想定され得る範囲内で最小となるヒステリシス特性における減圧側の特性)における、現在の押圧力Fbaに対応する値、に設定されてもよい。
 このように、「基準特性CHI」に基づいて保持状態における通電量imaが設定され得るのは、以下の理由に基づく。即ち、上述のように、動力伝達機構内の摺動部分の摩擦係数の変動等によって、ヒステリシス特性は、「基準特性CHI」を中心に変動する(図5において、左右方向に変動する)。従って、「基準特性CHIにおける、現在の押圧力Fbaに対応する通電量ima」は、「ヒステリシス特性を考慮した場合における現在の押圧力Fbaを維持できる範囲内の通電量の最小値」よりも必ず大きくなる。
 換言すれば、保持状態における通電量Imaを、「基準特性CHIにおける現在の押圧力Fbaに対応する値」に設定すれば、押圧力Fbaが現在の押圧力より低下する事態の発生を確実に防止できる。加えて、保持状態における通電量Imaが「現在の押圧力Fbaを維持できる範囲内の通電量の最大値」近傍に維持される場合と比べて、装置の消費電流を確実に低減できる。
 このように、「基準特性CHI」に基づいて「保持状態における通電量ima」が設定される場合、本実施形態では、設定された「保持状態における通電量ima」を、電気モータMTRの温度に基づいて補正してもよい。これは、以下の理由に基づく。
 一般に、電気モータの温度が高いほど、電気モータにおける「通電量に対する出力トルクの割合」(=上記(1)式におけるトルク定数K)が小さくなる。これは、電気モータの温度が高いほど、電気モータ内の永久磁石の磁束密度が小さくなることに起因する。従って、図9に示すように、トルク定数Kに基づいて決定される「基準特性CHI」も、電気モータの温度が高い(低い)ほど、図9において右側(左側)に移動する。よって、上記構成によれば、電気モータの温度にかかわらず、「保持状態における通電量ima」を、正確な「基準特性CHI」に基づいて正確に設定することができる。
 具体的には、例えば、ECUが記憶している基準特性CHIに対応する電気モータMTRの温度(基準温度)が既知の場合、基準温度と現在の電気モータMTRの温度との差に基づいて基準特性CHIを補正し、補正された基準特性CHIに基づいて「保持状態における通電量ima」が設定され得る。
 MTR…電気モータ、KTB…回転部材、MSB…摩擦部材、PSN…押圧部材、INP、GSK、SFT、NJB…動力伝達機構、LOK…駐車ブレーキ機構、RCH…ラチェット歯車、TSU…つめ部材、SOL…ソレノイド、CTL…制御手段、FBA…押圧状態量取得手段、MKA…位置検出手段、BP…制動操作部材

Claims (9)

  1.  動力を発生する電気モータと、
     車両の車輪と一体回転する回転部材に摩擦部材を押し付ける押圧部材と、
     前記電気モータが発生する動力を前記押圧部材に伝達して前記摩擦部材に対する前記押圧部材の押圧力を発生する動力伝達機構と、
     運転者による前記車両の制動操作部材の操作に基づいて決定された押圧力、駐車ブレーキ機能に基づいて決定された押圧力、及び、前記制動操作部材の操作にかかわらず制動力を発生させる自動加圧制御手段により決定された押圧力、のうち前記車両の状態に基づいて選択された押圧力である選択後押圧力が発生するように、前記電気モータに対する通電量を制御する制御手段と、
     を備えた車両の電動制動装置であって、
     前記制御手段は、
     前記押圧力が一定に保持される保持状態であるか否かを判定する判定手段を備え、
     前記制御手段は、
     所定時点が到来する毎に、前記通電量と前記押圧力との間の関係におけるヒステリシス特性を検出するとともに、
     前記保持状態であるとの判定がなされた場合、前記検出された前記ヒステリシス特性に基づいて、現在の前記押圧力を維持できる前記通電量の最小値を取得し、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成された、車両の電動制動装置。
  2.  請求項1に記載の車両の電動制動装置において、
     前記制御手段は、
     前記電気モータ、又は、前記動力伝達機構に含まれる動力伝達部材の位置を検出する位置検出手段を備え、
     前記制御手段は、
     前記保持状態であるとの判定がなされた場合、前記押圧力を減少するために前記電気モータに対する前記通電量を徐々に減少し、前記検出された位置が変化したことに基づいて前記通電量の最小値を取得し、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成された、車両の電動制動装置。
  3.  請求項1に記載の車両の電動制動装置において、
     前記制御手段は、
     前記押圧力を検出する押圧力検出手段を備え、
     前記制御手段は、
     前記保持状態であるとの判定がなされた場合、前記押圧力を減少するために前記電気モータに対する前記通電量を徐々に減少し、前記検出された押圧力が変化したことに基づいて前記通電量の最小値を取得し、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成された、車両の電動制動装置。
  4.  請求項2又は請求項3に記載の車両の電動制動装置において、
     前記制御手段は、
     前記通電量の最小値を取得した後、前記電気モータに対する前記通電量を増加して前記押圧力を前記保持状態であるとの判定がなされたときの値まで復帰させ、その後、前記電気モータに対する前記通電量を、前記取得された通電量の最小値に基づいて決定された値に設定するように構成された、車両の電動制動装置。
  5.  請求項2乃至請求項4の何れか一項に記載の車両の電動制動装置において、
     前記制御手段は、
     前記押圧力を前記選択後押圧力より大きい値に調整する押圧力増大制御を実行する押圧力増大手段を備え、
     前記保持状態であるとの判定がなされた場合、前記押圧力増大制御を実行し、その後、前記通電量の最小値の取得のために前記通電量を減少する制御を実行し、前記通電量を減少する制御の実行中において、前記押圧力が前記選択後押圧力より下回らないように前記通電量を調整するよう構成された、車両の電動制動装置。
  6.  請求項2乃至請求項5の何れか一項に記載の車両の電動制動装置において、
     前記車両は、複数の前記電動制動装置を備えており、
     前記保持状態であるとの判定がなされた場合、前記通電量の最小値の取得のために前記通電量を減少する制御を、全ての前記電動制動装置について同時に実行しない、車両の電動制動装置。
  7.  請求項2乃至請求項6の何れか一項に記載の車両の電動制動装置において、
     前記制御手段は、
     前記車両が停止していると判定される場合にのみ、前記通電量の最小値の取得のために前記通電量を減少する制御を実行するように構成された、車両の電動制動装置。
  8.  動力を発生する電気モータと、
     車両の車輪と一体回転する回転部材に摩擦部材を押し付ける押圧部材と、
     前記電気モータが発生する動力を前記押圧部材に伝達して前記摩擦部材に対する前記押圧部材の押圧力を発生する動力伝達機構と、
     運転者による前記車両の制動操作部材の操作に応じた前記押圧力が発生するように、前記電気モータに対する通電量を制御する制御手段と、
     を備えた車両の電動制動装置であって、
     前記制御手段は、
     前記押圧力が一定に保持される保持状態であるか否かを判定する判定手段を備え、
     前記制御手段は、
     前記保持状態であるとの判定がなされた場合、前記電気モータに対する前記通電量を、前記電気モータ及び前記動力伝達機構のそれぞれの諸元に基づいて得られる前記通電量と前記押圧力との間のヒステリシスがない予め定められた関係に基づいて決定された値に設定するように構成された、車両の電動制動装置。
  9.  請求項8に記載の車両の電動制動装置において、
     前記制御手段は、
     前記電気モータの温度を取得する温度取得手段を備え、
     前記保持状態であるとの判定がなされた場合において設定される前記電気モータに対する前記通電量を、前記取得された電気モータの温度に基づいて補正するように構成された、車両の電動制動装置。
PCT/JP2016/055669 2015-02-25 2016-02-25 車両の電動制動装置 WO2016136893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000912.7T DE112016000912T5 (de) 2015-02-25 2016-02-25 Elektrische Bremsvorrichtung für ein Fahrzeug
US15/546,128 US10640097B2 (en) 2015-02-25 2016-02-25 Electric braking device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015034742A JP6152863B2 (ja) 2015-02-25 2015-02-25 車両の電動制動装置
JP2015-034742 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136893A1 true WO2016136893A1 (ja) 2016-09-01

Family

ID=56789426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055669 WO2016136893A1 (ja) 2015-02-25 2016-02-25 車両の電動制動装置

Country Status (4)

Country Link
US (1) US10640097B2 (ja)
JP (1) JP6152863B2 (ja)
DE (1) DE112016000912T5 (ja)
WO (1) WO2016136893A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6527789B2 (ja) * 2015-08-21 2019-06-05 Ntn株式会社 電動ブレーキ装置
CN107806482B (zh) * 2017-11-20 2024-04-02 清华大学苏州汽车研究院(相城) 一种可消除机械滞后的拉伸式片状刹车系统
WO2020217788A1 (ja) * 2019-04-22 2020-10-29 日立オートモティブシステムズ株式会社 ディスクブレーキ
EP3862235B1 (de) * 2020-02-05 2022-04-27 IMS Gear SE & Co. KGaA Verriegelungsvorrichtung einer parkbremse und eine parkbremse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016279A (ja) * 1998-06-30 2000-01-18 Tokico Ltd 電動ブレーキ装置
JP2006327587A (ja) * 1997-12-16 2006-12-07 Toyota Motor Corp 電動式ブレーキ装置
JP2009220807A (ja) * 2008-02-22 2009-10-01 Hitachi Ltd 自動車ブレーキ用モータ駆動装置
JP2011213201A (ja) * 2010-03-31 2011-10-27 Hitachi Automotive Systems Ltd 電動ブレーキ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043649A (en) * 1988-12-28 1991-08-27 Nippondenso Co., Ltd. Stepping motor unit and rotary control valve incorporating the same
JP4033281B2 (ja) * 2000-09-06 2008-01-16 日産自動車株式会社 制動装置
DE10233673A1 (de) * 2001-07-31 2003-03-20 Tokico Ltd Elektrische Bremsvorrichtung
JP4254332B2 (ja) * 2003-04-28 2009-04-15 株式会社日立製作所 電動ディスクブレーキ装置
JP4512868B2 (ja) * 2004-03-31 2010-07-28 日立オートモティブシステムズ株式会社 電動ブレーキ装置
US7540571B2 (en) * 2004-05-19 2009-06-02 Hitachi, Ltd. Motor-driven disk brake system
EP1824698B1 (de) * 2004-12-09 2014-03-05 Continental Teves AG & Co. oHG Verfahren zur steuerung eines bremssystems eines kraftfahrzeuges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327587A (ja) * 1997-12-16 2006-12-07 Toyota Motor Corp 電動式ブレーキ装置
JP2000016279A (ja) * 1998-06-30 2000-01-18 Tokico Ltd 電動ブレーキ装置
JP2009220807A (ja) * 2008-02-22 2009-10-01 Hitachi Ltd 自動車ブレーキ用モータ駆動装置
JP2011213201A (ja) * 2010-03-31 2011-10-27 Hitachi Automotive Systems Ltd 電動ブレーキ装置

Also Published As

Publication number Publication date
DE112016000912T5 (de) 2017-11-16
US10640097B2 (en) 2020-05-05
JP6152863B2 (ja) 2017-06-28
JP2016155462A (ja) 2016-09-01
US20180009420A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6150080B2 (ja) 車両の電動制動装置
CA2423875C (en) Vehicular brake control apparatus and control method of vehicular brake apparatus
WO2016136893A1 (ja) 車両の電動制動装置
JP5928723B2 (ja) 車両の電動制動装置
US20150175137A1 (en) Electric parking brake control device
US20170267246A1 (en) Control device and control method for vehicle
CN109421685B (zh) 电动制动装置
JP5796483B2 (ja) 車両の制動制御装置
US9934626B2 (en) Brake system
JP6011175B2 (ja) 車両の制動制御装置
CN112969618A (zh) 电动制动器及控制装置
JP6260238B2 (ja) 車両の電動制動装置
JP6164071B2 (ja) 車両の電動制動装置
JP6361621B2 (ja) 車両用停車制御装置
JP5915840B2 (ja) 車両の制動制御装置
WO2013081117A1 (ja) 車両の制動制御装置
JP5910037B2 (ja) 車両の制動制御装置
JP5796473B2 (ja) 車両の制動制御装置
WO2020251920A1 (en) Electromechanical park brake strategy for transmission park pawl engagement
JP6572685B2 (ja) 車両の電動制動装置
JP6278179B2 (ja) 車両の電動制動装置
KR20050088160A (ko) 분리된 제동 시스템을 구비한 자동차의 정차 및 출발 단계동안의 제동 제어 장치 및 방법
JP2013112262A (ja) 車両の制動制御装置
JP2017177902A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546128

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000912

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755637

Country of ref document: EP

Kind code of ref document: A1