JP5796473B2 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
JP5796473B2
JP5796473B2 JP2011261920A JP2011261920A JP5796473B2 JP 5796473 B2 JP5796473 B2 JP 5796473B2 JP 2011261920 A JP2011261920 A JP 2011261920A JP 2011261920 A JP2011261920 A JP 2011261920A JP 5796473 B2 JP5796473 B2 JP 5796473B2
Authority
JP
Japan
Prior art keywords
inertia compensation
energization amount
electric motor
time
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011261920A
Other languages
English (en)
Other versions
JP2013112261A (ja
Inventor
安井 由行
由行 安井
博之 児玉
博之 児玉
直敏 佐竹
直敏 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2011261920A priority Critical patent/JP5796473B2/ja
Priority to CN201280065582.0A priority patent/CN104039614B/zh
Priority to US14/361,760 priority patent/US9604608B2/en
Priority to PCT/JP2012/081118 priority patent/WO2013081117A1/ja
Priority to EP12852714.0A priority patent/EP2786907B1/en
Publication of JP2013112261A publication Critical patent/JP2013112261A/ja
Application granted granted Critical
Publication of JP5796473B2 publication Critical patent/JP5796473B2/ja
Priority to US15/422,078 priority patent/US9975531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車両の制動制御装置に関する。
従来より、電気モータによって制動トルクを発生する車両の制動制御装置が知られている。この種の装置では、通常、運転者による車両の制動操作部材の操作量に基づいて指示電流(目標電流)が演算され、指示電流に基づいて電気モータが制御される。これにより、制動操作部材の操作に応じた制動トルクが車輪に付与される。
この種の装置では、電気モータの慣性を含む装置全体の慣性(慣性モーメント、慣性質量)の影響に起因して、特に急制動時(急激に制動トルクが増加するとき)等において、電気モータの回転速度が増加する加速時(例えば、電気モータが起動するとき)における制動トルクの応答遅れ(立上りの遅れ)、並びに、電気モータの回転速度が減少する減速時(例えば、電気モータが停止に向かうとき)における制動トルクのオーバシュートが発生し得る。従って、特に急制動時において、上記慣性の影響を補償すること、即ち、電気モータの加速時における制動トルクの応答性(立上り性能)の向上、並びに、電気モータの減速時における制動トルクのオーバシュートの抑制(収束性の向上)が望まれている。
この問題に対処するため、例えば、特許文献1には、以下のことが記載されている。即ち、指示電流と目標モータ回転角との関係を規定するマップに基づいて、演算された指示電流に対応する目標モータ回転角が求められ、この目標モータ回転角を2階微分することにより、目標モータ回転角加速度が求められる。この目標モータ回転角加速度に基づいて、装置全体の慣性の影響を補償するための慣性補償電流が演算される。この場合、慣性補償電流は、電気モータの加速時には正の値に演算され、電気モータの減速時には負の値に演算される。この慣性補償電流が指示電流に加算されて、補償後指示電流(目標電流)が決定される。これにより、電気モータが起動するときには補償後指示電流が指示電流より大きめに演算されて、制動トルクの応答性が向上し得る。電気モータが停止に向かうときには補償後指示電流が指示電流より小さめに演算されて、制動トルクのオーバシュートが抑制され得る。
また、特許文献1には、安定した制御を行うため、指示電流が電気モータの能力を超えた場合には、指示電流に「傾き制限」を設けることも記載されている。
特開2002−225690号公報
ところで、上記文献に記載のように、指示電流から演算される目標モータ回転角加速度に基づいて慣性補償電流が演算される場合において、指示電流に傾き制限が設けられると、指示電流に基づいて得られる目標モータ回転角を2階微分して得られる目標モータ回転角加速度が適正に演算され得なくなる。例えば、指示電流が一定の傾き制限値で制限されている場合、指示電流の2階微分値に相当する目標モータ回転角加速度は「ゼロ(0)」に維持される。この結果、上記慣性の影響の適切な(高精度な)補償が困難となる場合がある。
以下、このことについて図9を参照しながら説明する。図9に示す例では、時刻t0にて電気モータが起動し、「時刻t0の短期間後の時点」から「本来の指示電流(実線を参照)と傾き制限がなされた指示電流(一点鎖線を参照)とが交わる時刻t1」までの間、指示電流が一定の傾き制限値で制限されている。この場合、時刻t0からの前記短期間だけ電気モータの回転速度が増加し(従って、正の目標モータ回転角加速度が発生し)、時刻t1からの極短期間だけ電気モータの回転速度が減少し(従って、負の目標モータ回転角加速度が発生し)、その他の期間は電気モータの回転速度が一定に維持される(従って、目標モータ回転角加速度がゼロ(0)に維持される)。即ち、図9に示すように、時刻t0からの前記短期間だけ正の慣性補償電流が発生し、時刻t1からの極短期間だけ負の慣性補償電流が発生し、その他の期間は慣性補償電流がゼロ(0)に維持される。
このため、電気モータの加速時における制動トルクの応答性が十分に向上され得ず、また、電気モータの減速時における制動トルクのオーバシュートが十分に抑制され得なかった。上記慣性の影響の更なる適正な補償が望まれているところである。
本発明は、上記問題に対処するためになされたものであり、その目的は、電気モータによって制動トルクを発生する車両の制動制御装置であって、電気モータの慣性を含む装置全体の慣性の影響を適正に補償し得るものを提供することにある。
本発明に係る車両の制動制御装置は、運転者による車両の制動操作部材(BP)の操作量(Bpa)を取得する操作量取得手段(BPA)と、前記車両の車輪(WHL)に対する制動トルクを電気モータ(MTR)によって発生させる制動手段(BRK)と、前記操作量(Bpa)に基づいて目標通電量(Imt)を演算し、前記目標通電量(Imt)に基づいて前記電気モータ(MTR)を制御する制御手段(CTL)とを備える。
本発明の特徴は、前記制御手段(CTL)が、前記操作量(Bpa)に基づいて、前記制動手段(BRK)の慣性(慣性モーメント、慣性質量)の影響を補償する慣性補償制御が必要であるか否かを判定し、前記慣性補償制御が必要であると判定した場合(FLj←1、又は、FLk←1)、前記制動手段(BRK)の最大応答(例えば、ステップ応答)に基づく予め設定された時系列のパターン(CHj,CHk)に基づいて、前記制動手段(BRK)の慣性の影響を補償する慣性補償通電量(Ijt,Ikt)を演算し、前記慣性補償通電量(Ijt,Ikt)に基づいて前記目標通電量(Imt)を演算するように構成されたことにある。
より具体的には、前記制御手段(CTL)は、前記操作量(Bpa)に基づいて、前記電気モータの回転速度が増加する加速時における前記慣性補償制御が必要であるか否かを判定し、前記加速時の慣性補償制御が必要であると判定した場合(FLj←1)、前記時系列のパターン(CHj)として、前記慣性補償通電量(Ijt)が、前記電気モータ(MTR)に対して前記目標通電量(Imt)のステップ入力がなされた場合における前記電気モータ(MTR)の実際の位置の変化(例えば、実際の回転角加速度)に基づいて予め設定された増加勾配でゼロから増加した後に、前記増加勾配よりも緩やかな予め設定された減少勾配でゼロまで減少する第1のパターンを使用するように構成され得る。
同様に、前記制御手段(CTL)は、前記操作量(Bpa)に基づいて、前記電気モータの回転速度が減少する減速時における前記慣性補償制御が必要であるか否かを判定し、前記減速時の慣性補償制御が必要であると判定した場合(FLk←1)、前記時系列のパターン(CHk)として、前記慣性補償通電量(Ikt)が、前記電気モータ(MTR)に対して前記目標通電量(Imt)のステップ入力がなされた場合における前記電気モータ(MTR)の実際の位置の変化(例えば、実際の回転角加速度)に基づいて予め設定された減少勾配でゼロから減少した後に、前記減少勾配よりも緩やかな予め設定された増加勾配でゼロまで増加する第2のパターンを使用するように構成され得る。
電気モータの加速時(特に、起動時)の制動トルクの応答性を確保するためには、電気モータの軸受け等の静摩擦の影響を補償するとともに、装置全体の慣性の影響を補償して電気モータの動き出し(停止状態からの動き始め)を改善することが重要である。上記構成によれば、加速時の慣性補償制御が必要であるとの判定がなされた時点以降、予め設定された時系列の第1のパターン(時間の経過に対応した波形)の慣性補償通電量が出力され得る。従って、電気モータを含む装置全体の慣性、及び、軸受け等の静摩擦の影響が補償され、電気モータの動き出しの制動トルクの応答性が効率的に向上され得る。
同様に、電気モータの減速時(電気モータが運動状態から停止状態に移行する場合)においても、電気モータの減速初期の慣性の補償が重要となる。上記構成によれば、減速時の慣性補償制御が必要であるとの判定がなされた時点以降、予め設定された時系列の第2のパターン(時間の経過に対応した波形)の慣性補償通電量が出力され得る。従って、電気モータの減速開始直後における電気モータの減速度が増大され、制動トルクのオーバシュートが効率的に抑制され得る。以上、上記構成によれば、電気モータの慣性を含む装置全体の慣性の影響が効率的且つ適正に補償され得る。
上記制動制御装置においては、前記制御手段(CTL)は、前記加速時の慣性補償制御が必要である(FLj←1)と判定する直前に前記電気モータ(MTR)が運動している場合、前記慣性補償通電量(Ijt)をゼロに維持するように構成されることが好適である。換言すれば、加速時の慣性補償制御が必要であると判定された時点で電気モータが既に回転している場合には、加速時の慣性補償制御が実行されない。
一般に、電気モータの加速時における制動トルクの応答性の向上が必要とされるのは、制動制御開始前にて電気モータが停止している場合である。上記構成によれば、加速時の慣性補償制御が必要であると判定された時点にて電気モータが停止している場合にのみ加速時の慣性補償制御が実行される。従って、加速時の慣性補償制御が不必要に実行される事態の発生が抑制されて、制御の信頼性が向上され得る。
また、上記制動制御装置においては、前記制御手段(CTL)は、前記第1のパターン(CHj)に基づいて前記慣性補償通電量(Ijt)を演算している間において前記減速時の慣性補償制御が必要であると判定した場合(FLk←1)、前記第1のパターン(CHj)に代えて前記第2のパターン(CHk)に基づいて前記慣性補償通電量(Ikt)を演算するように構成されることが好適である。
これによれば、運転者による急制動操作に起因して開始された加速時の慣性補償制御の実行中において、運転者が急制動を中止した場合、加速時の慣性補償制御が直ちに中止され、これに代えて減速時の慣性補償制御が直ちに開始され得る。従って、制動トルクのオーバシュートが確実に抑制され得る。
また、上記制動制御装置においては、前記制御手段(CTL)は、前記加速時の慣性補償制御が必要であるとの判定がなされていない状態で前記減速時の慣性補償制御が必要であると判定した場合(FLk←1)、前記慣性補償通電量(Ikt)をゼロに維持するように構成されることが好適である。
一般に、電気モータの起動時に慣性補償制御が必要とされない場合には、減速時にも慣性補償制御が必要とされる蓋然性が低い。上記構成によれば、電気モータの起動時に加速時の慣性補償制御が必要とされる場合にのみ減速時の慣性補償制御が実行される。従って、減速時の慣性補償制御が不必要に実行される事態の発生が抑制されて、制御の信頼性が向上され得る。
本発明の実施形態に係る制動制御装置を搭載した車両の概略構成図である。 図1に示した制動手段(ブレーキアクチュエータ)(Z部)の構成を説明するための図である。 図1に示した制御手段(ブレーキコントローラ)を説明するための機能ブロック図である。 図3に示した慣性補償制御ブロックの第1実施形態を説明するための機能ブロック図である。 制動手段(ブレーキアクチュエータ)の最大応答を説明するための図である。 図3に示した慣性補償制御ブロックの第2実施形態を説明するための機能ブロック図である。 図3に示した慣性補償制御ブロックの第3実施形態を説明するための機能ブロック図である。 図3に示した慣性補償制御ブロックの第4実施形態を説明するための機能ブロック図である。 従来の制動制御装置によって指示電流に傾き制限が設けられる場合における、慣性補償電流の演算結果の一例を示したタイムチャートである。
以下、本発明に係る車両の制動制御装置の実施形態について図面を参照しつつ説明する。
<本発明に係る車両の制動制御装置を搭載した車両全体の構成>
図1に示すように、この車両には、運転者が車両を減速するために操作する制動操作部材(例えば、ブレーキペダル)BP、各車輪の制動トルクを調整して各車輪に制動力を発生させる制動手段(ブレーキアクチュエータ)BRK、BRKを制御する電子制御ユニットECU、及び、BRK、ECU等に電力を供給する電源としての蓄電池BATが搭載されている。
また、この車両には、BPの操作量Bpaを検出する制動操作量取得手段(例えば、ストロークセンサ、踏力センサ)BPA、運転者によるステアリングホイールSWの操作角Saaを検出する操舵角検出手段SAA、車両のヨーレイトYraを検出するヨーレイト検出手段YRA、車両の前後加速度Gxaを検出する前後加速度検出手段GXA、車両の横加速度Gyaを検出する横加速度検出手段GYA、及び、各車輪WHLの回転速度(車輪速度)Vwaを検出する車輪速度検出手段VWAが備えられている。
制動手段BRKには、電気モータMTR(図示せず)が備えられ、MTRによって車輪WHLの制動トルクが制御される。また、BRKには、摩擦部材が回転部材を押す力Fbaを検出する押し力検出手段(例えば、軸力センサ)FBA、MTRの通電量(例えば、電流値)Imaを検出する通電量検出手段(例えば、電流センサ)IMA、MTRの位置(例えば、回転角)Mkaを検出する位置検出手段(例えば、回転角センサ)MKAが備えられている。
上述した種々の検出手段の検出信号(Bpa等)は、ノイズ除去(低減)フィルタ(例えば、ローパスフィルタ)の処理がなされて、ECUに供給される。ECUでは、本発明に係わる制動制御の演算処理が実行される。即ち、後述する制御手段CTLがECU内にプログラムされ、Bpa等に基づいて電気モータMTRを制御するための目標通電量(例えば、目標電流値、目標デューティ比)Imtが演算される。また、ECUでは、Vwa、Yra等に基づいて、公知のアンチスキッド制御(ABS)、トラクション制御(TCS)、車両安定化制御(ESC)等の演算処理が実行される。
<制動手段(ブレーキアクチュエータ)BRKの構成>
本発明に係る制動制御装置では、車輪WHLの制動トルクの発生、及び調整が、電気モータMTRによって行われる。
図1のZ部の拡大図である図2に示すように、制動手段BRKは、ブレーキキャリパCPR、回転部材KTB、摩擦部材MSB、電気モータMTR、駆動手段DRV、減速機GSK、回転・直動変換機構KTH、押し力取得手段FBA、位置検出手段MKA、及び、通電量取得手段IMAにて構成されている。
ブレーキアクチュエータBRKには、公知の制動装置と同様に、公知のブレーキキャリパCPR、及び、摩擦部材(例えば、ブレーキパッド)MSBが備えられる。MSBが公知の回転部材(例えば、ブレーキロータ)KTBに押し付けられることによって摩擦力が発生し、車輪WHLに制動トルクが生じる。
駆動手段(電気モータMTRの駆動回路)DRVにて、目標通電量(目標値)Imtに基づき電気モータMTRへの通電量(最終的には電流値)が制御される。具体的には、駆動手段DRVには、パワートランジスタ(例えば、MOS−FET)が用いられたブリッジ回路が構成され、目標通電量Imtに基づいてパワートランジスタが駆動され、電気モータMTRの出力が制御される。
電気モータMTRの出力(出力トルク)は、減速機(例えば、歯車)GSKを介して回転・直動変換機構KTHに伝達される。そして、KTHによって、回転運動が直線運動に変換されて摩擦部材(ブレーキパッド)MSBが回転部材(ブレーキディスク)KTBに押し付けられる。KTBは車輪WHLに固定されており、MSBとKTBとの摩擦によって、車輪WHLに制動トルクが発生し、調整される。回転・直動変換機構KTHとして、「滑り」によって動力伝達(滑り伝達)を行う滑りネジ(例えば、台形ネジ)、或いは、「転がり」によって動力伝達(転がり伝達)を行うボールネジが用いられ得る。
モータ駆動回路DRVには、実際の通電量(例えば、実際に電気モータに流れる電流)Imaを検出する通電量取得手段(例えば、電流センサ)IMAが備えられる。また、電気モータMTRには位置(例えば、回転角)Mkaを検出する位置検出手段(例えば、角度センサ)MKAが備えられる。さらに、摩擦部材MSBが回転部材KTBを実際に押す力(実押し力)Fbaを取得(検出)するために、押し力取得手段(例えば、力センサ)FBAが備えられる。
図2では、制動手段BRKとして、所謂、ディスク型制動装置(ディスクブレーキ)の構成が例示されているが、制動手段BRKは、ドラム型制動装置(ドラムブレーキ)であってもよい。ドラムブレーキの場合、摩擦部材MSBはブレーキシューであり、回転部材KTBはブレーキドラムである。同様に、電気モータMTRによってブレーキシューがブレーキドラムを押す力(押し力)が制御される。電気モータMTRとして回転運動にてトルクを発生させるものが示されるが、直線運動にて力を発生させるリニアモータでもあってもよい。
<制御手段CTLの全体構成>
図3に示すように、図1に示した制御手段CTLは、目標押し力演算ブロックFBT、指示通電量演算ブロックIST、押し力フィードバック制御ブロックIPT、慣性補償制御ブロックINR、及び、通電量調整演算ブロックIMTにて構成されている。制御手段CTLは、電子制御ユニットECU内にプログラムされている。
制動操作部材BP(例えば、ブレーキペダル)の操作量Bpaが制動操作量取得手段BPAによって取得される。制動操作部材の操作量(制動操作量)Bpaは、運転者による制動操作部材の操作力(例えば、ブレーキ踏力)、及び、変位量(例えば、ブレーキペダルストローク)のうちの少なくとも何れかに基づいて演算される。Bpaにはローパスフィルタ等の演算処理がなされ、ノイズ成分が除去(低減)されている。
目標押し力演算ブロックFBTにて、予め設定された目標押し力演算特性(演算マップ)CHfbを用いて、操作量Bpaに基づき目標押し力Fbtが演算される。「押し力」は、制動手段(ブレーキアクチュエータ)BRKにおいて、摩擦部材(例えば、ブレーキパッド)MSBが回転部材(例えば、ブレーキディスク)KTBを押し力である。目標押し力Fbtは、その押し力の目標値である。
指示通電量演算ブロックISTにて、予め設定された演算マップCHs1,CHs2を用いて、目標押し力Fbtに基づき指示通電量Istが演算される。指示通電量Istは、制動手段BRKの電気モータMTRを駆動し、目標押し力Fbtを達成するための、電気モータMTRへの通電量の目標値である。演算マップ(指示通電量の演算特性)は、ブレーキアクチュエータのヒステリシスを考慮して、2つの特性CHs1,CHs2で構成される。特性(第1の指示通電量演算特性)CHs1は押し力を増加する場合に対応し、特性(第2の指示通電量演算特性)CHs2は押し力を減少する場合に対応する。そのため、特性CHs2に比較して、特性CHs1は相対的に大きい指示通電量Istを出力するように設定されている。
ここで、通電量とは、電気モータMTRの出力トルクを制御するための状態量(変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値として電気モータの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調(PWM,pulse width modulation)におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比が通電量として用いられ得る。
押し力フィードバック制御ブロックIPTにて、目標押し力(目標値)Fbt、及び、実押し力(実際値)Fbaに基づき押し力フィードバック通電量Iptが演算される。指示通電量Istは目標押し力Fbtに相当する値として演算されるが、ブレーキアクチュエータの効率変動により目標押し力Fbtと実際の押し力Fbaとの間に誤差(定常的な誤差)が生じる場合がある。押し力フィードバック通電量Iptは、目標押し力Fbtと実押し力Fbaとの偏差(押し力偏差)ΔFb、及び、演算特性(演算マップ)CHpに基づいて演算され、上記の誤差(定常的な誤差)を減少するように決定される。なお、Fbaは押し力取得手段FBAによって取得される。
慣性補償制御ブロックINRにて、BRK(特に、電気モータMTR)の慣性(イナーシャであり、回転運動における慣性モーメント、又は、直線運動における慣性質量)の影響が補償される。慣性補償制御ブロックINRでは、BRKの慣性(慣性モーメント、或いは、慣性質量)の影響を補償するための通電量の目標値Ijt,Iktが演算される。電気モータが停止、或いは、低速で運動している状態から運動(回転運動)が加速される場合に、押し力発生の応答性を向上させることが必要である。この場合に対応する加速時慣性補償通電量Ijtが演算される。Ijtは、慣性補償制御における加速時制御の通電量の目標値である。
また、電気モータが運動(回転運動)している状態から減速して停止していく場合に、押し力のオーバシュートを抑制し、収束性を向上することも必要である。この場合に対応する減速時慣性補償通電量Iktが演算される。Iktは、慣性補償制御における減速時制御の通電量の目標値である。ここで、Ijtは電気モータの通電量を増加させる値(Istに加算される正の値)であり、Iktは電気モータの通電量を減少させる値(Istに加算される負の値)である。
そして、通電量調整演算ブロックIMTにて、指示通電量Istが、押し力フィードバック通電量Ipt、及び慣性補償通電量Ijt(加速時)、Ikt(減速時)によって調整されて、目標通電量Imtが演算される。具体的には、指示通電量Istに対して、フィードバック通電量Ipt、及び、慣性補償通電量Ijt,Iktが加算されて、その総和が目標通電量Imtとして演算される。目標通電量Imtは、電気モータMTRの出力を制御するための最終的な通電量の目標値である。
<慣性補償制御ブロックの第1実施形態の構成>
図4を参照しながら、慣性補償制御ブロックINRの第1実施形態について説明する。図4に示すように、この慣性補償制御ブロックINRでは、MTR等の慣性(MTRの慣性を含むBRK全体の慣性)に起因する押し力の応答性、及び、収束性を向上する慣性補償制御が実行される。慣性補償制御ブロックINRは、慣性補償制御の要否を判定する制御要否判定演算ブロックFLG、慣性補償制御の目標通電量を演算する慣性補償通電量演算ブロックIJK、及び、選択演算ブロックSNTにて構成される。
制御要否判定演算ブロックFLGでは、慣性補償制御の実行が必要であるか、不要であるかが判定される。制御要否判定演算ブロックFLGは、電気モータの加速時(例えば、電気モータが起動し、増速するとき)での要否判定を行う加速時判定演算ブロックFLJ、及び、電気モータの減速時(例えば、電気モータが停止に向かうとき)での要否判定を行う減速時判定演算ブロックFLKで構成されている。制御要否判定演算ブロックFLGからは、判定結果として、要否判定フラグFLj(加速時),FLk(減速時)が出力される。要否判定フラグFLj,FLkにおいて、「0」は慣性補償制御が不要である場合(不要状態)を表し、「1」は慣性補償制御が必要である場合(必要状態)を表す。
制御要否判定演算ブロックFLGは、操作速度演算ブロックDBP、加速時判定演算ブロックFLJ、及び、減速時判定演算ブロックFLKで構成される。
先ず、操作速度演算ブロックDBPにて、制動操作部材BPの操作量Bpaに基づいて、その操作速度dBpが演算される。操作速度dBpは、Bpaを微分して演算される。
加速時判定演算ブロックFLJでは、操作速度dBpに基づいて電気モータが加速する場合(例えば、電気モータの回転速度が増加する場合)の慣性補償制御が「必要状態(制御を実行する必要がある状態)」、及び、「不要状態(制御を実行する必要がない状態)」のうちで何れの状態であるかが判定される。その判定結果は、要否判定フラグ(制御フラグ)FLjとして出力される。要否判定フラグFLjとして、「0」が「不要状態」、「1」が「必要状態」にそれぞれ対応している。加速時の慣性補償制御の要否判定は、演算マップCFLjに従って、dBpが所定操作速度(所定値)db1を超過した時点において、加速時の要否判定フラグFLjが「0(不要状態)」から「1(必要状態)」に切り替えられる(FLj←1)。その後、要否判定フラグFLjはdBpが所定操作速度(所定値)db2未満となる時点で、「1」から「0」に切り替えられる(FLj←0)。なお、FLjは、制動操作が行われていない場合には、初期値として「0」に設定されている。
更に、加速時慣性補償制御の要否判定には、操作速度dBpに加えて、制動操作部材の操作量Bpaが用いられ得る。この場合、Bpaが所定操作量(所定値)bp1を超過し、且つ、dBpが所定操作速度(所定値)db1を超過した時点において、要否判定フラグFLjが「0」から「1」に切り替えられる。Bpa>dp1の条件を判定基準に用いるため、dBpにおけるノイズ等の影響が補償され、確実な判定が行われ得る。
減速時判定演算ブロックFLKでは、dBpに基づいて電気モータが減速する場合(例えば、電気モータの回転速度が減少する場合)の慣性補償制御が「必要状態(制御を実行する必要がある状態)」、及び、「不要状態(制御を実行する必要がない状態)」のうちで何れの状態であるかが判定される。判定結果は、要否判定フラグ(制御フラグ)FLkとして出力される。要否判定フラグFLkは「0」が「不要状態」、「1」が「必要状態」にそれぞれ対応している。減速時の慣性補償制御の要否判定は、演算マップCFLkに従って、dBpが所定操作速度(所定値)db3以上の状態から所定操作速度(所定値)db4(<db3)未満となる時点において、要否判定フラグFLkが「0(不要状態)」から「1(必要状態)」に切り替えられる(FLk←1)。その後、dBpが加速時制御と減速時制御とが頻繁に繰り返されるのを防止するため、減速時制御の所定操作速度db3は加速時制御の所定操作速度db1よりも小さい値に設定され得る。なお、FLkは、制動操作が行われていない場合には、初期値として「0」に設定されている。
慣性補償制御の要否判定フラグFLj,FLkに関する情報は、制御要否判定演算ブロックFLGから慣性補償通電量演算ブロックIJKに送信される。
慣性補償通電量演算ブロックIJKでは、FLGにて慣性補償制御が必要であると判定された場合(FLj=1、又は、FLk=1の場合)における慣性補償通電量(目標値)が演算される。慣性補償通電量演算ブロックIJKは、電気モータの加速時(例えば、電気モータが起動し、増速するとき)の慣性補償通電量Ijtを演算する加速時通電量演算ブロックIJT、及び、電気モータの減速時(例えば、電気モータが停止に向かうとき)の慣性補償通電量Iktを演算する減速時通電量演算ブロックIKTにて構成されている。
加速時通電量演算ブロックIJTでは、要否判定フラグFLj、及び、加速時演算特性(演算マップであり、第1のパターンに対応)CHjに基づき、加速時慣性補償通電量(第1の慣性補償通電量)Ijtが演算される。加速時演算特性CHjは、加速時慣性補償制御の必要状態が判定された時点からの経過時間Tに対するIjtの特性(演算マップ)としてECU内に予め記憶されている。演算特性CHjは、時間Tが「0」のときから時間の経過に従い、Ijtが「0」から所定通電量(所定値)ij1にまで急峻に増加され、その後、時間の経過に従いIjtが所定通電量(所定値)ij1から「0」にまで緩やかに減少される。具体的には、CHjは、Ijtが「0」から所定通電量ij1にまで増加されるのに要する時間tupが、Ijtが所定通電量ij1から「0」にまで減少されるのに要する時間tdnよりも短く設定されている。
また、図4に破線で示すように、通電量が増加する場合には、Ijtは「上に凸」の特性で、初めに急増され、その後、緩やかに増加する特性として、CHjが設定され得る。また、通電量が減少する場合には、Ijtは「下に凸」の特性で、初めは急減され、その後、緩やかに減少する特性として、CHjが設定され得る。そして、要否判定フラグFLjが「0(不要状態)」から「1(必要状態)」に切り替えられた時点をCHjでの経過時間の原点(T=0)とし、切替時点からの経過時間Tと加速時演算特性CHjとに基づき、電気モータ加速時の慣性補償通電量(第1の慣性補償通電量)Ijtが決定される。Ijtの演算中に、要否判定フラグFLjが「1」から「0」に切り替えられても、演算特性CHjで予め設定されている継続時間に亘って加速時通電量Ijtは演算され続ける。なお、Ijtは正の値として演算され、Ijtによって電気モータMTRへの通電量が増加されるように調整される。
減速時通電量演算ブロックIKTにて、要否判定フラグFLk、及び、減速時演算特性(演算マップであり、第2のパターンに対応)CHkに基づき減速時慣性補償通電量(第2の慣性補償通電量)Iktが演算される。減速時演算特性CHkは、減速時慣性補償制御の必要状態が判定された時点からの経過時間Tに対するIktの特性(演算マップ)としてECU内に予め記憶されている。CHkは、時間Tが「0」のときから時間の経過に従い、Iktが「0」から所定通電量(所定値)ik1にまで急峻に減少され、その後、時間の経過に従いIktが所定通電量(所定値)ik1から「0」にまで緩やかに増加される。具体的には、CHkは、Iktが「0」から所定通電量ik1にまで減少されるのに要する時間tvpが、Iktが所定通電量ik1から「0」にまで増加されるのに要する時間tenよりも短く設定されている。
また、図4に破線で示すように、通電量が減少する場合には、Iktは「下に凸」の特性で、初めに急減され、その後、緩やかに減少する特性として、CHkが設定され得る。また、通電量が増加する場合には、Iktは「上に凸」の特性で、初めは急増され、その後、緩やかに増加する特性として、CHkが設定され得る。そして、要否判定フラグFLkが「0」から「1」に切り替えられた時点をCHkでの経過時間の原点(T=0)とし、切替時点からの経過時間Tと減速時演算特性CHkとに基づき、電気モータ減速時の慣性補償通電量(第2の慣性補償通電量)Iktが決定される。Iktの演算中に、要否判定フラグFLkが「1」から「0」に切り替えられても、演算特性CHkで予め設定されている継続時間に亘ってIktは演算され続ける。なお、Iktは負の値として演算され、Iktによって電気モータMTRへの通電量が減少されるように調整される。
ここで、加速時慣性補償制御の演算特性CHj(第1のパターン)、及び、減速時慣性補償制御の演算特性CHk(第2のパターン)は、制動手段(ブレーキアクチュエータ)BRKの最大応答に基づいて決定される。BRKへの入力(目標通電量)の変化に対して出力(電気モータの変位)が遅れて現れる。BRKの最大応答(BRKが入力に対して応答し得る最大の状態)とは、電気モータMTRへステップ入力を与えた場合のMTRの応答(入力の時間変化量に対応する出力の時間変化量の有様)である。即ち、電気モータMTRに所定量の目標通電量Imtが(ゼロから増加方向に)ステップ入力された場合におけるMTRの実際の変位(回転角)Mkaの変化である。図5に示すように、電気モータMTRに対して、(所定の)目標通電量のステップ入力(従って、回転角の目標値Mktが(所定量mks0の)ステップ入力)としてなされた場合、回転角の実際値(出力)Mkaが、目標値(入力)Mktに追い着くように(遅れを伴って目標値に追従するように)変化する。CHj及びCHkは、このMkaの変化に基づいて決定される。
装置全体の慣性(特に、電気モータの慣性)を補償するトルクは、電気モータの回転角加速度に比例する。この点を考慮し、慣性補償を適切に行うためには、慣性補償通電量が電気モータの実際の加速度(回転角加速度)ddMkaに基づいて演算される。そのため、MTRの変位(回転角)の実際値Mkaが2階微分されて、加速度(回転角加速度)d
dMkaが演算され、ddMkaに基づいてCHj,CHkが決定される。例えば、第1及び第2のパターンCHj、CHkは、ddMkaに係数K(定数)が乗算されることによって設定され得る。
CHjにおいて、Ijtが急峻に増加する際の増加勾配(時間に対するIjtの傾き)は、前記ステップ入力の開始時点t1から回転角加速度ddMkaが最大値ddm1となる時点t2までの間におけるddMkaの増加勾配(時間に対して増加するddMkaの傾き)の最大値又は平均値に基づいて決定される。また、Ijtが緩やかに減少する際の減少勾配(時間に対するIjtの傾き)は、ddMkaが最大値ddm1となる時点t2から概ゼロとなる時点t3までの間におけるddMkaの減少勾配(時間に対して減少するddMkaの傾き)の最大値又は平均値に基づいて決定される。
また、最大応答(ステップ応答)におけるddMkaに基づいて(時点t1〜t2のddMkaの変化に基づいて)、通電量が増加される場合には、Ijtは「上に凸」の特性で、初めに急増され、その後、緩やかに増加する特性として、CHjが設定され得る。同様に、最大応答におけるddMkaに基づいて(時点t2〜t3のddMkaの変化に基づいて)、通電量が減少される場合には、Ijtは「下に凸」の特性で、初めは急減され、その後、緩やかに減少する特性として、CHjが設定され得る。
CHkにおいて、Iktが急峻に減少する際の減少勾配(時間に対するIktの傾き)は、ddMkaがゼロから減少を開始する時点t4から最小値ddm2となる時点t5までの間におけるddMkaの減少勾配(時間に対して減少するddMkaの傾き)の最小値又は平均値に基づいて決定される。また、Iktが緩やかに増加する際の増加勾配(時間に対するIktの傾き)は、ddMkaが最小値ddm2となる時点t5から概ゼロに戻る時点t6までの間におけるddMkaの増加勾配(時間に対して増加するddMkaの傾き)の最大値又は平均値に基づいて決定される。
また、最大応答(ステップ応答)におけるddMkaに基づいて(時点t4〜t5のddMkaの変化に基づいて)、通電量が減少される場合には、Iktは「下に凸」の特性で、初めに急減され、その後、緩やかに減少する特性として、CHkが設定され得る。同様に、最大応答におけるddMkaに基づいて(時点t5〜t6のddMkaの変化に基づいて)、通電量が増加される場合には、Iktは「上に凸」の特性で、初めは急増され、その後、緩やかに増加する特性として、CHkが設定され得る。
電気モータMTRの加速時(特に、MTRが起動する場合)は、MTRの軸受け等の摩擦に打ち克つトルクを発生させる必要がある一方で、MTRの減速時(MTRが停止に向かう場合)は、その摩擦がMTRを減速させるように作用する。そのため、加速時の所定通電量(第1の所定通電量)ij1の絶対値は、減速時の所定通電量(第2の所定通電量)ik1の絶対値よりも大きい値に設定される(|ij1|>|ik1|)。
選択演算ブロックSNTにて、電気モータ加速時の慣性補償通電量Ijtの出力、電気モータ減速時の慣性補償通電量Iktの出力、及び、制御停止(値「0」の出力)のうちから、何れか1つが選択されて出力される。選択演算ブロックSNTでは、加速時慣性補償通電量Ijt(>0)が出力されている途中で減速時慣性補償通電量Ikt(<0)が出力された場合には、Ijtに代えて、Iktが優先的に出力され得る。慣性補償制御は、「必要状態」の判定(要否判定フラグ)をトリガにして予め設定された時系列波形CHj,CHkに基づいて行われる。上記構成によれば、運転者が急制動を中止した際、加速時の慣性補償制御(Ijtの演算)が直ちに停止され、減速時の慣性補償制御(Iktの演算)に切り替えられる。そのため、押し力のオーバシュートが確実に抑制され得る。
制御要否判定演算ブロックFLGでは、操作速度dBpに基づいて慣性補償制御の要否が判定されるが、dBpに代えて、目標押し力Fbtを微分した目標押し力速度dFbが用いられ得る。また、目標値として電気モータの位置(例えば、目標回転角)Mktが用いられる場合には、要否判定に目標回転角Mktを微分した目標回転速度dMkが利用され得る。即ち、制動操作量Bpaを微分して得られる操作速度に相当する値(速度相当値)dBp,dFb,dMkに基づいて慣性補償制御の要否が判定され得る。
<慣性補償制御ブロックの第2実施形態の構成>
次に、図6を参照しながら、慣性補償制御ブロックINRの第2実施形態について説明する。図6に示すように、この慣性補償制御ブロックINRは、制御要否判定演算ブロックFLG、慣性補償通電量演算ブロックIJK、及び、選択演算ブロックSNTにて構成される。IJK、及び、SNTの構成は、図4に示したINRの第1実施形態と同一であるため、それらの詳細な説明を省略する。以下、制御要否判定演算ブロックFLGについてのみ説明する。
制御要否判定演算ブロックFLGは、操作加速度演算ブロックDDBP、加速時判定演算ブロックFLJ、及び、減速時判定演算ブロックFLKにて構成される。
操作加速度演算ブロックDDBPでは、制動操作部材の操作量Bpaに基づき、その操作加速度ddBpが演算される。操作加速度ddBpは、Bpaを2階微分して演算される。即ち、操作量Bpaを微分して操作速度dBpが演算され、さらに、操作速度dBpが微分されて操作加速度ddBpが演算される。
加速時判定演算ブロックFLJでは、操作加速度ddBpに基づいて電気モータMTRが加速する場合の慣性補償制御が「必要状態(制御を実行する必要がある状態)」、及び、「不要状態(制御を実行する必要がない状態)」のうちで何れの状態であるかが判定される。判定結果は、要否判定フラグ(制御フラグ)FLjとして出力される。要否判定フラグFLjは、「0」が「不要状態」、「1」が「必要状態」に夫々対応している。演算マップDFLjに従って、操作加速度ddBpが第1の所定加速度(所定値)ddb1(>0)を超過した時点で、加速時制御の要否判定フラグFLjは、「0(不要状態)」から「1(必要状態)」に変更される(FLj←1)。その後、操作加速度ddBpが所定加速度(所定値)ddb2(<ddb1)未満となるときに、FLjは「1」から「0」に変更される(FLj←0)。なお、FLjは、制動操作が行われていない場合には、初期値として「0」に設定されている。
減時判定演算ブロックFLKでは、操作加速度ddBpに基づいて電気モータMTRが減速する場合の慣性補償制御が「必要状態(制御を実行する必要がある状態)」、及び、「不要状態(制御を実行する必要がない状態)」のうちで何れの状態であるかが判定される。判定結果は、要否判定フラグ(制御フラグ)FLkとして出力される。要否判定フラグFLkは「0」が「不要状態」、「1」が「必要状態」に夫々対応している。演算マップDFLkに従って、操作加速度ddBpが第2の所定加速度(所定値)ddb3(<0)を下回った時点で、減速時制御の要否判定フラグFLkは、「0(不要状態)」から「1(必要状態)」に変更される(FLk←1)。その後、操作加速度ddBpが所定加速度(所定値)ddb4(>ddb3,<0)以上となるときに、FLkは「1」から「0」に変更される(FLk←0)。なお、FLkは、制動操作が行われていない場合には、初期値として「0」に設定されている。
要否判定フラグFLj,FLkは、上記第1実施形態(図4を参照)と同様、慣性補償通電量演算ブロックIJK(IJT、及び、IKT)に送信され、時系列の予め設定されたパターン(演算マップ)CHj,CHkに基づいて慣性補償通電量Ijt,Iktが演算される。
制御要否判定演算ブロックFLGにおいて遅れ要素演算ブロックDLYを設けることができる。遅れ要素演算ブロックDLYでは、操作量Bpaに遅れ要素の演算処理が行われ、この処理後の操作量fBpに基づいて、操作加速度ddfBpが演算され得る。遅れ要素演算ブロックDLYでは、ブレーキアクチュエータBRK(特に、電気モータMTR)の応答(入力変化に対する出力変化の有様)が、遅れ要素を有する伝達関数によって考慮される。ここで、遅れ要素とは、n次遅れ要素(nは「1」以上の整数)であり、例えば、一次遅れ要素である。具体的には、ブレーキアクチュエータBRKの応答を表す時定数τmが用いられて、遅れ要素演算(例えば、一次遅れ演算)が行われる。ブレーキアクチュエータBRKの応答が遅れ要素によって考慮されるため、適切な慣性補償制御が行われ得る。
制御要否判定演算ブロックFLGでは、操作加速度ddBp(或いは、前記の遅れ要素の演算処理された操作加速度ddfBp)に基づいて慣性補償制御の要否が判定されるが、ddBp,ddfBpに代えて、目標押し力Fbt(或いは、前記遅れ演算処理後のfFb)を2階微分した目標押し力加速度ddFb(前記の遅れ演算処理されたddfFb)が用いられ得る。また、目標値として電気モータの位置(例えば、目標回転角)Mktが用いられる場合には、要否判定に目標回転角Mkt(或いは、前記処理後のfMk)を2階微分した目標回転加速度ddMk(前記の遅れ演算処理されたddfMk)が利用され得る。即ち、制動操作量Bpaを2階微分して得られる制動操作の加速度に相当する値(加速度相当値)ddBp,ddFb,ddMk(或いは、遅れ演算処理後のddfBp,ddfFb,ddfMk)に基づいて慣性補償制御の要否が判定され得る。
なお、上記INRの第1実施形態(図4を参照)では、電気モータの加速時の判定演算(FLjの演算)、及び、減速時の判定演算(FLkの演算)が共に操作速度(速度相当値)dBp等に基づいて行われ、上記INRの第2実施形態(図6を参照)では、加速時の判定演算(FLjの演算)、及び、減速時の判定演算(FLkの演算)が共に操作加速度(加速度相当値)ddBp等に基づいて行われている。これに対し、「dBp等に基づくFLjの演算」と「ddBp等に基づくFLkの演算」とを組み合わせて制御要否判定演算ブロックFLGが構成され得る。或いは、「ddBp等に基づくFLjの演算」と「dBp等に基づくFLkの演算」とが組み合わせて制御要否判定演算ブロックFLGが構成され得る。
<慣性補償制御ブロックの第3実施形態の構成>
次に、図7を参照しながら、慣性補償制御ブロックINRの第3実施形態について説明する。電気モータMTRの応答性が考慮された値として加速時慣性補償通電量Ijtが出力されたとしても、電源電圧の状態によっては(例えば、電圧低下がある場合等)、電気モータMTRの実際の通電量が目標値と一致するとは限らない。例えば、電気モータMTRの起動時において実際の通電量が不足していた場合に、予め設定された減速時慣性補償通電量Iktが出力されるとブレーキアクチュエータBRKにおいて押し力の不足が生じる場合があり得る。そのため、本実施形態では、通電量取得手段(例えば、電流センサ)IMAが取得する実際の通電量(例えば、電流値)Imaに基づいて減速時慣性補償通電量Iktが演算され得る。
図7に示すように、この慣性補償制御ブロックINRは、制御要否判定演算ブロックFLG、慣性補償通電量演算ブロックIJK、及び、選択演算ブロックSNTにて構成される。FLG、及び、SNTの構成は、図4、図6に示したINRの第1、第2実施形態と同一であるため、それらの詳細な説明を省略する。以下、慣性補償通電量演算ブロックIJKについてのみ説明する。
慣性補償通電量演算ブロックIJKは、加速時通電量演算ブロックIJT、及び、減速時通電量演算ブロックIKTにて構成される。加速時通電量演算ブロックIJTは、図4に示したINRの第1実施形態と同一であるため、その詳細な説明を省略する。
減速時通電量演算ブロックIKTにはデータ記憶演算ブロックJDKが備えられ、Ijtが出力されている間に亘って、実際の通電量Imaに基づく時系列データJdkが記憶される。実際の通電量Imaは、通電量取得手段(例えば、電流センサ)IMAによって、加速時の慣性補償通電量Ijtに対応させて取得される。時系列データJdkは、Ijtに対応した実際の通電量Ijaの時間経過Tに対する特性として、データ記憶演算ブロックJDKに記憶される。そして、時系列データJdkに基づいて減速時慣性補償通電量Iktが演算される。
減速時通電量演算ブロックIKTでは、先ず、実際の通電量Imaから、指示通電量Ist、及び、フィードバック通電量Iptが除かれて(減算されて)、加速時の慣性補償通電量(目標値)Ijtに相当する実際の通電量(実際値)Ijaが演算される。即ち、ImaからIstによる成分とIptによる成分が除かれて、Ijtに対応する通電量Ijaが演算される。そして、対応通電量Ijaに「−1」が乗算され(符号が反転されて)、更に、係数k_ijが乗ぜられて、データ記憶演算ブロックJDKに記憶される通電量Ikbが演算される。
データ記憶演算ブロックJDKでは、記憶通電量Ikbが、加速時制御の要否判定フラグFLjが「0(不要状態)」から「1(必要状態)」へ遷移した時点(T=0)からの経過時間(即ち、加速時の慣性補償制御の開始からの経過時間)Tと関連付けて、時系列データJdkとして記憶される。そして、実通電量Imaに基づく時系列データJdkが、Iktを演算するための特性(演算マップ)とされる。減速時制御の要否判定フラグFLkが「0(不要状態)」から「1(必要状態)」へ遷移した時点(T=0)からの経過時間T、及び、Jdkに基づいて減速時の慣性補償通電量Iktが演算される。
加速時(特に、起動する場合)は電気モータMTRの軸受け等の摩擦に打ち克つトルクを発生させる必要があるが、減速時(停止に向かう場合)はその摩擦がMTRを減速させるように作用することに起因して、係数k_ijは「1」未満の値に設定され得る。
前述の説明では、演算周期毎に記憶通電量Ikbが演算されるが、経過時間Tに対応したIma、Ist、及び、Iptの値が時系列データとして記憶されて、これらを用いて特性Jdkが演算され得る。即ち、時系列データJdk=(−1)×(k_ij)×{(Imaの時系列データ)−(Istの時系列データ)−(Iptの時系列データ)}の演算に基づいて特性(演算マップ)Jdkが決定され得る。
このINRの第3実施形態によれば、加速時の慣性補償制御が行われた際の実際の通電量Imaに基づいて減速時の慣性補償制御が実行されるため、電源等の影響によって目標値と実際値との間に誤差が発生したとしても、適切な慣性補償制御が実行され得る。
<慣性補償制御ブロックの第4実施形態の構成>
次に、図8を参照しながら、慣性補償制御ブロックINRの第4実施形態について説明する。本実施形態では、制御可否判定演算ブロックFLHが設けられ、FLHでの判定結果に基づき、INRの第1〜第3の実施形態(図4、図6、図7を参照)で説明された選択演算ブロックSNTにおける選択条件(Ijt、Ikt、及び、制御停止の切り替え)が決定され得る。制御可否判定演算ブロックSNTには、第1〜第3の実施形態と同様の慣性補償通電量Ijt,Iktが提供される。
制御可否判定演算ブロックFLHにて、位置取得手段(例えば、電気モータの回転角センサ)MKAによって取得される実際の位置(実位置であり、例えば、電気モータの回転角)Mkaに基づいて加速時の慣性補償制御の実行(即ち、Ijtの演算)を「許可する(FLm=1)」か、「禁止する(FLm=0)」かの制御実行の可否が判定される。
制御可否判定演算ブロックFLHにて、実位置Mkaに基づいて電気モータMTRの速度(回転速度)dMkaが演算される。電気モータMTRの回転速度dMkaが所定速度(所定値)dm1未満の場合には、制御実行が許可され、可否判定フラグFLmとして「1」が出力される。一方、電気モータMTRの回転速度dMkaが所定速度(所定値)dm1以上の場合には、制御実行が禁止され、可否判定フラグFLmとして「0」が出力される。そして、選択演算ブロックSNTでは、可否判定フラグFLmが「0」とされている場合には「0(制御停止)」が選択され、可否判定フラグFLmが「1」とされている場合には加速時の慣性補償通電量Ijtが選択される。
慣性補償制御の可否判定は、実位置Mkaに基づき電気モータMTRが停止しているか否かによって判定し得る。電気モータが停止している(回転速度がゼロである)場合には、制御実行が許可され、可否判定フラグFLmとして「1」が出力される。一方、電気モータが運動している(例えば、回転運動を行い、回転速度が発生している)場合には、制御実行が禁止され、可否判定フラグFLmとして「0」が出力される。そして、選択演算ブロックSNTでは、可否判定フラグFLmが「0」とされている場合には「0(制御停止)」が選択され、可否判定フラグFLmが「1」とされている場合には加速時の慣性補償通電量Ijtが選択される。
上述の加速時慣性補償制御の必要状態が判定される直前(FLjが「0」から「1」に変更される直前)において、電気モータの回転速度が高い場合(dMka≧dm1)、或いは、既に運動(回転)している場合(dMka≠0)には、電気モータ等の慣性を補償する必要性が高くないため、慣性補償制御の実行が禁止される。電気モータの回転速度が低い場合(dMka<dm1)、或いは、停止している場合(dMka=0)に限り、加速時の慣性補償制御が実行されるため、信頼性の高い慣性補償制御が行われ得る。
制御可否判定演算ブロックFLHでは、位置取得手段MKAによって取得される実際の位置Mkaに基づいて減速時の慣性補償制御の実行(即ち、Iktの演算)を「許可する(FLn=1)」か、「禁止する(FLn=0)」かの制御実行の可否が判定される。実位置Mkaに基づいて電気モータの速度(回転速度)dMkaが演算される。電気モータMTRの実回転速度dMkaが、所定速度(所定値)dm1以上の場合(dMka≧dm1)には、制御実行が許可され、可否判定フラグFLnとして「1」が出力される。一方、電気モータの実回転速度dMkaが所定速度(所定値)dm1未満の場合(dMka<dm1)には、制御実行が禁止され、可否判定フラグFLnとして「0」が出力される。そして、選択演算ブロックSNTでは、可否判定フラグFLnが「0」とされている場合には「0(制御停止)」が選択され、可否判定フラグFLnが「1」とされている場合には減速時の慣性補償通電量Iktが選択される。
減速時の慣性補償制御は、電気モータMTRのオーバシュートを抑制し得る。しかしながら、電気モータが速い運動を行っていない場合には、減速時の慣性補償制御の必要性が低いため、電気モータの回転速度が低い場合(dMka<dm1の場合)には慣性補償制御が禁止され得る。
また、制御可否判定演算ブロックFLHでは、加速時慣性補償制御の通電量(目標値)Ijt、及び、要否判定フラグFLjのうちの少なくとも何れか一方に基づいて、減速時の慣性補償制御の実行(即ち、Iktの演算)を「許可する(FLo=1)」か、「禁止する(FLo=0)」かの制御実行可否が判定され得る。上述した減速時慣性補償制御(減速時制御)の必要状態が判定される前の状態において、加速時の慣性補償制御(加速時制御)が実行されたか否かに基づいて、減速時制御の可否が判定される。加速時制御が実行されていない場合には「禁止」と判定され、可否判定フラグFLoとして「0」が出力される。一方、加速時制御が実行されている場合には「許可」と判定され、可否判定フラグFLoとして「1」が出力される。選択演算ブロックSNTでは、可否判定フラグFLoが「0(禁止状態)」とされている場合には「0(制御停止)」が選択され、可否判定フラグFLoが「1(許可状態)」とされている場合には減速時の慣性補償通電量Iktが選択される。
電気モータMTRの加速時に慣性補償制御が必要とされない場合には、その減速時に必要とされる蓋然性が低い。上記構成によれば、加速時に「必要状態」が判定された場合に限って減速時の制御が実行されるため、慣性補償制御の信頼性が向上され、確実な制御が実行され得る。
更に、選択演算ブロックSNTでは、加速時通電量Ijtが「0」にまで低減されていなくても(即ち、加速時の慣性補償制御が終了していなくても)、減速時通電量Iktが出力される場合には、Ijtが「0」とされ、減速時通電量Iktが、選択演算ブロックSNTから出力され得る。IjtよりもIktを優先することにより、制動操作が急ではあるが操作量が小さい場合における電気モータMTRのオーバシュート、及び、押し力の余剰が適切に防止され得る。
以下、慣性補償制御ブロックINRにおける慣性補償制御の各実施形態に共通の作用・効果について述べる。慣性補償制御は、慣性をもつ装置の可動部(MTR等)が加速運動、或いは、減速運動を行うために必要な力(トルク)に相当する通電量(Ijt,Ikt)を、目標通電量Imtに対して調整する制御である。具体的には、電気モータが加速する場合には目標通電量を増加することによって補償(修正)し、電気モータが減速する場合には目標通電量を減少することによって補償(修正)する。
電気モータMTRの加速時(特に、起動時)の制動トルクの応答性を確保するためには、電気モータMTRの慣性、及び、軸受け等の静摩擦の影響を補償して、電気モータMTRの動き出し(停止状態からの動き始め)を改善することが重要である。上記各実施形態によれば、加速時の慣性補償制御が必要であるとの判定がなされた時点以降、予め設定された時系列の第1のパターンCHjの慣性補償通電量Ijtが出力され得る。CHjはブレーキアクチュエータBRK(特に、電気モータMTR)の最大応答(目標通電量のステップ入力の変化に対するMTRの実際の変位Mkaの変化の状態)に基づいて設定されるため、BRKの慣性の影響が適切に補償されるとともに、電気モータMTR等の軸受け等の静摩擦の影響が補償され、電気モータMTRが動き出す際の制動トルクの応答性が効率的に向上され得る。
同様に、電気モータMTRの減速時(運動状態から停止状態に移行する場合)においても、電気モータMTRの減速初期の慣性の補償が重要となる。上記の各実施形態によれば、減速時の慣性補償制御が必要であるとの判定がなされた時点以降、予め設定された時系列の第2のパターンCHkの慣性補償通電量Iktが出力され得る。CHkもブレーキアクチュエータBRK(特に、電気モータMTR)の最大応答(目標通電量のステップ入力の変化に対するMTRの実際の変位Mkaの変化の状態)に基づいて設定されるため、BRKの慣性の影響が適切に補償され、電気モータMTRの減速開始直後における電気モータMTRの減速度が増大され、制動トルクのオーバシュートが効率的に抑制され得る。以上、上記の各実施形態によれば、電気モータMTRの慣性を含む制動手段BRKの慣性の影響が効率的且つ適正に補償され得る。
BRK…ブレーキアクチュエータ、ECU…電子制御ユニット、MTR…電気モータ、BPA…制動操作量検出手段、SAA…操舵角検出手段、YRA…ヨーレイト検出手段、GXA…前後加速度検出手段、GYA…横加速度検出手段、VWA…車輪速度検出手段、FBA…押し力検出手段、IMA…通電量検出手段、位置検出手段…MKA

Claims (10)

  1. 運転者による車両の制動操作部材の操作量を取得する操作量取得手段と、
    前記車両の車輪に対する制動トルクを電気モータによって発生させる制動手段と、
    前記操作量に基づいて目標通電量を演算し、前記目標通電量に基づいて前記電気モータを制御する制御手段と、
    を備えた車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて、前記制動手段の慣性の影響を補償する慣性補償制御が必要であるか否かを判定し、
    前記慣性補償制御が必要であると判定した場合、前記制動手段の最大応答に基づく予め設定された時系列のパターンに基づいて、前記制動手段の慣性の影響を補償する慣性補償通電量を演算し、
    前記慣性補償通電量に基づいて前記目標通電量を演算するように構成された、車両の制動制御装置。
  2. 請求項1に記載の車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて、前記電気モータの回転速度が増加する加速時における前記慣性補償制御が必要であるか否かを判定し、
    前記加速時の慣性補償制御が必要であると判定した場合、前記時系列のパターンとして、前記慣性補償通電量が、前記電気モータに対して前記目標通電量のステップ入力がなされた場合における前記電気モータの実際の位置の変化に基づいて予め設定された増加勾配でゼロから増加した後に、前記増加勾配よりも緩やかな予め設定された減少勾配でゼロまで減少する第1のパターンを使用するように構成された、車両の制動制御装置。
  3. 請求項1に記載の車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて、前記電気モータの回転速度が減少する減速時における前記慣性補償制御が必要であるか否かを判定し、
    前記減速時の慣性補償制御が必要であると判定した場合、前記時系列のパターンとして、前記慣性補償通電量が、前記電気モータに対して前記目標通電量のステップ入力がなされた場合における前記電気モータの実際の位置の変化に基づいて予め設定された減少勾配でゼロから減少した後に、前記減少勾配よりも緩やかな予め設定された増加勾配でゼロまで増加する第2のパターンを使用するように構成された、車両の制動制御装置。
  4. 請求項1に記載の車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて、前記電気モータの回転速度が増加する加速時における前記慣性補償制御が必要であるか否かを判定し、
    前記加速時の慣性補償制御が必要であると判定した場合、前記時系列のパターンとして、前記慣性補償通電量が、前記電気モータに対して前記目標通電量のステップ入力がなされた場合における前記電気モータの実際の位置の変化に基づいて予め設定された増加勾配でゼロから増加した後に、前記増加勾配よりも緩やかな予め設定された減少勾配でゼロまで減少する第1のパターンを使用するように構成されるとともに、
    前記操作量に基づいて、前記電気モータの回転速度が減少する減速時における前記慣性補償制御が必要であるか否かを判定し、
    前記減速時の慣性補償制御が必要であると判定した場合、前記時系列のパターンとして、前記慣性補償通電量が、前記電気モータに対して前記目標通電量のステップ入力がなされた場合における前記電気モータの実際の位置の変化に基づいて予め設定された減少勾配でゼロから減少した後に、前記減少勾配よりも緩やかな予め設定された増加勾配でゼロまで増加する第2のパターンを使用するように構成された、車両の制動制御装置。
  5. 請求項4に記載の車両の制動制御装置において、
    前記制御手段は、
    前記加速時の慣性補償制御が必要であると判定する直前に前記電気モータが運動している場合、前記慣性補償通電量をゼロに維持するように構成された、車両の制動制御装置。
  6. 請求項4又は請求項5に記載の車両の制動制御装置において、
    前記制御手段は、
    前記第1のパターンに基づいて前記慣性補償通電量を演算している間において前記減速時の慣性補償制御が必要であると判定した場合、前記第1のパターンに代えて前記第2のパターンに基づいて前記慣性補償通電量を演算するように構成された、車両の制動制御装置。
  7. 請求項4乃至請求項6の何れか一項に記載の車両の制動制御装置において、
    前記制御手段は、
    前記加速時の慣性補償制御が必要であるとの判定がなされていない状態で前記減速時の慣性補償制御が必要であると判定した場合、前記慣性補償通電量をゼロに維持するように構成された、車両の制動制御装置。
  8. 請求項2、及び、請求項4乃至請求項7の何れか一項に記載の車両の制動制御装置において、
    前記制御手段は、
    前記第1のパターンとして、前記慣性補償通電量が、上に凸の特性を持ってゼロから増加した後に、下に凸の特性を持ってゼロまで減少するパターンを使用するように構成された、車両の制動制御装置。
  9. 請求項3、及び、請求項4乃至請求項7の何れか一項に記載の車両の制動制御装置において、
    前記制御手段は、
    前記第2のパターンとして、前記慣性補償通電量が、下に凸の特性を持ってゼロから減少した後に、上に凸の特性を持ってゼロまで増加するパターンを使用するように構成された、車両の制動制御装置。
  10. 請求項1乃至請求項9の何れか一項に記載の車両の制動制御装置において、
    前記制御手段は、
    前記操作量に基づいて、操作加速度、及び、操作速度のうちの少なくとも何れか1つに相当する操作状態変数を演算し、
    前記操作状態変数に基づいて、前記慣性補償制御が必要であるか否かを判定するように構成された、車両の制動制御装置。
JP2011261920A 2011-11-30 2011-11-30 車両の制動制御装置 Active JP5796473B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011261920A JP5796473B2 (ja) 2011-11-30 2011-11-30 車両の制動制御装置
CN201280065582.0A CN104039614B (zh) 2011-11-30 2012-11-30 车辆的制动控制装置
US14/361,760 US9604608B2 (en) 2011-11-30 2012-11-30 Braking control device for vehicle
PCT/JP2012/081118 WO2013081117A1 (ja) 2011-11-30 2012-11-30 車両の制動制御装置
EP12852714.0A EP2786907B1 (en) 2011-11-30 2012-11-30 Braking control device for vehicle
US15/422,078 US9975531B2 (en) 2011-11-30 2017-02-01 Braking control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261920A JP5796473B2 (ja) 2011-11-30 2011-11-30 車両の制動制御装置

Publications (2)

Publication Number Publication Date
JP2013112261A JP2013112261A (ja) 2013-06-10
JP5796473B2 true JP5796473B2 (ja) 2015-10-21

Family

ID=48708208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261920A Active JP5796473B2 (ja) 2011-11-30 2011-11-30 車両の制動制御装置

Country Status (1)

Country Link
JP (1) JP5796473B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112262A (ja) * 2011-11-30 2013-06-10 Advics Co Ltd 車両の制動制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110065479B (zh) * 2019-03-28 2023-03-31 南京航空航天大学 一种位移与力矩耦合控制的电子机械制动系统及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112262A (ja) * 2011-11-30 2013-06-10 Advics Co Ltd 車両の制動制御装置

Also Published As

Publication number Publication date
JP2013112261A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5764103B2 (ja) 車両の制動制御装置
JP5796483B2 (ja) 車両の制動制御装置
US9475471B2 (en) Braking control apparatus for vehicle
JP5845889B2 (ja) 車両の制動制御装置
JP6011175B2 (ja) 車両の制動制御装置
US9975531B2 (en) Braking control device for vehicle
JP5915840B2 (ja) 車両の制動制御装置
JP5910037B2 (ja) 車両の制動制御装置
JP5962356B2 (ja) 車両の制動制御装置
JP5796473B2 (ja) 車両の制動制御装置
JP6152863B2 (ja) 車両の電動制動装置
JP5895481B2 (ja) 車両の制動制御装置
JP5910424B2 (ja) 車両の制動制御装置
JP5910425B2 (ja) 車両の制動制御装置
JP5962355B2 (ja) 車両の制動制御装置
WO2014038700A1 (ja) 車両の制動制御装置
WO2022186093A1 (ja) 電動ブレーキ装置
WO2014038699A1 (ja) 車両の制動制御装置
JP2017177902A (ja) 車両の制動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150803

R150 Certificate of patent or registration of utility model

Ref document number: 5796473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150