WO2016136765A1 - 酸化チタン粒子の有機溶媒分散体の製造方法 - Google Patents

酸化チタン粒子の有機溶媒分散体の製造方法 Download PDF

Info

Publication number
WO2016136765A1
WO2016136765A1 PCT/JP2016/055312 JP2016055312W WO2016136765A1 WO 2016136765 A1 WO2016136765 A1 WO 2016136765A1 JP 2016055312 W JP2016055312 W JP 2016055312W WO 2016136765 A1 WO2016136765 A1 WO 2016136765A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
dispersion
alcohol
organic solvent
Prior art date
Application number
PCT/JP2016/055312
Other languages
English (en)
French (fr)
Inventor
考則 森田
宮田 篤
香澄 大西
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to US15/552,525 priority Critical patent/US9963355B2/en
Priority to JP2016539341A priority patent/JP6028958B1/ja
Priority to EP16755509.3A priority patent/EP3263527B1/en
Priority to CN201680012193.XA priority patent/CN107250047B/zh
Priority to KR1020177026213A priority patent/KR102537747B1/ko
Publication of WO2016136765A1 publication Critical patent/WO2016136765A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints

Definitions

  • the present invention relates to an organic solvent dispersion of titanium oxide particles and a method for producing the same.
  • titanium oxide particles have excellent stability and transparency, and preferably have a low viscosity while containing titanium oxide particles at a high content.
  • the present invention relates to a method for producing an organic solvent dispersion of particles.
  • organic solvent dispersion of titanium oxide particles obtained by the present invention has the characteristics as described above, for example, various applications in the optical field, in particular, optical composite resins such as LED sealing resins and antireflection films. It is useful as a material.
  • inorganic oxide particle dispersions such as silica, alumina, zinc oxide, tin oxide, zirconia, and titania have been used in various industrial fields, particularly in the optical field, to adjust the refractive index. ing.
  • titania has a high refractive index and is preferably used to increase the refractive index of optical materials.
  • Inorganic oxide particles including titanium oxide particles, generally have good dispersibility in aqueous solvents, but generally have low dispersibility in organic solvents.
  • an organic solvent dispersion of titanium oxide In the production of an organic solvent dispersion of titanium oxide, a method using a silane coupling agent has been proposed.
  • the titanium oxide fine particle alcohol dispersion is mixed with a silane coupling agent in the presence of acetic acid and stirred to surface-treat the titanium oxide fine particles, and then the titanium oxide fine particle alcohol dispersion is a dispersion medium.
  • a method has been proposed in which the alcohol is replaced with a lipophilic organic solvent such as methyl ethyl ketone, thus obtaining a lipophilic organic solvent dispersion of titanium oxide fine particles (see Patent Document 3).
  • the obtained organic solvent dispersion may not be sufficiently satisfactory in transparency depending on the use, and the viscosity increases with time.
  • organic solvent dispersions of titanium oxide particles that are excellent in stability and transparency.
  • the present invention has been made in order to solve the above-described problems in the organic solvent dispersion of titanium oxide particles, and is excellent in stability and transparency, and preferably contains titanium oxide particles at a high content. However, it aims at providing the manufacturing method of the organic-solvent dispersion of the titanium oxide particle which has low viscosity.
  • a method for producing an organic solvent dispersion of titanium oxide particles obtained by dispersing titanium oxide particles in an organic solvent excluding methanol and ethanol (A) Treatment of an alcohol dispersion of titanium oxide particles obtained by dispersing titanium oxide particles in at least one alcohol solvent selected from methanol and ethanol with a surface treatment agent containing a silane coupling agent and 12-hydroxystearic acid And a surface treatment step for surface-treating the titanium oxide particles, (B) a solvent replacement step of replacing the alcohol solvent, which is a dispersion medium in the alcohol dispersion of the surface-treated titanium oxide particles, with an organic solvent other than the alcohol solvent;
  • the silane coupling agent is represented by the general formula (I) (RO) n- Si-X 4-n (I) (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, n represents 2 or 3, and X represents an alkyl group, a fluorinated alkyl group, a vinyl group, or a (meth)
  • an organic solvent dispersion in which titanium oxide particles are preferably dispersed in the organic solvent at a content of 10% by weight or more.
  • the titanium oxide particles are surface-treated using 1 to 40 parts by weight of the silane coupling agent and 1 to 80 parts by weight of 12-hydroxystearic acid with respect to 100 parts by weight of the titanium oxide particles.
  • the alcohol dispersion of titanium oxide particles contains 10% by weight or more of titanium oxide particles, D50 is in the range of 1 to 20 nm, and transmittance at a wavelength of 500 nm is 40% or more.
  • the transmittance at a wavelength of 800 nm is preferably 80% or more.
  • an alcohol dispersion of the titanium oxide particles used in the surface treatment step is converted into the following steps (a) to (c): (A) a step of wet dispersion treatment of an aqueous slurry of titanium oxide particles in the presence of acetic acid and nitric acid with a medium stirring mill or a high-pressure disperser to obtain an aqueous dispersion of titanium oxide particles; (B) a step of washing the aqueous dispersion of titanium oxide particles obtained in the step (a), (C) a step of replacing water, which is a dispersion medium of the aqueous dispersion of titanium oxide particles obtained in the step (b), with at least one alcohol solvent selected from methanol and ethanol; It is preferable that it was obtained by the method containing.
  • a surface treatment agent comprising a titanium oxide particle alcohol dispersion obtained by dispersing titanium oxide particles in at least one alcohol solvent selected from methanol and ethanol, and a silane coupling agent and 12-hydroxystearic acid.
  • a solvent replacement step of replacing the alcohol solvent, which is a dispersion medium of the alcohol dispersion, with an organic solvent other than the alcohol, preferably while containing titanium oxide particles at a high content rate In addition to low viscosity, there is no increase in viscosity over time, precipitation of particles, decrease in transparency, etc., and excellent stability and dispersion of titanium oxide particles with excellent transparency in organic solvent The body can be obtained easily and stably.
  • the organic solvent dispersion of titanium oxide particles obtained by the present invention has the above-described characteristics, it has low viscosity, excellent stability and transparency, while containing titanium oxide particles at a high content. Desirable properties inherent to titanium oxide particles such as refractive index are not impaired. For example, various applications in the optical field, particularly as materials for optical composite resins such as LED sealing resins and antireflection films. It can be used suitably.
  • the method for producing an organic solvent dispersion of titanium oxide particles according to the present invention is a method for producing an organic solvent dispersion of titanium oxide particles obtained by dispersing titanium oxide particles in an organic solvent excluding methanol and ethanol, (A) Treatment of an alcohol dispersion of titanium oxide particles obtained by dispersing titanium oxide particles in at least one alcohol solvent selected from methanol and ethanol with a surface treatment agent containing a silane coupling agent and 12-hydroxystearic acid And a surface treatment step for surface-treating the titanium oxide particles, (B) a solvent replacement step of replacing the alcohol solvent, which is a dispersion medium in the alcohol dispersion of the surface-treated titanium oxide particles, with an organic solvent other than the alcohol solvent;
  • the silane coupling agent is represented by the general formula (I) (RO) n- Si-X 4-n (I) (In the formula, R represents an alkyl group having 1 to 4 carbon atoms, n represents 2 or 3, and X represents an alkyl group, a fluorinated alkyl
  • the titanium oxide particles may be crystalline or amorphous, and in the case of being crystalline, rutile, anatase, brookite or A mixture of these may be used, and a mixture of crystalline and amorphous may be used.
  • the D50 of the titanium oxide particles in the alcohol dispersion of the titanium oxide particles is preferably in the range of 1 to 20 nm so that the obtained organic solvent dispersion is excellent in transparency. More preferably, it is in the range. D90 is preferably 40 nm or less.
  • the obtained organic solvent dispersion of titanium oxide particles contains titanium oxide particles at a high content of 10% by weight or more, has a low viscosity, and is excellent in stability and transparency.
  • the transmittance at a wavelength of 500 nm is 40% or more
  • the transmittance at a wavelength of 800 nm is 80% or more. Is preferred.
  • the D50 of the titanium oxide particles in the dispersion of titanium oxide particles is 50% of the volume-based cumulative distribution value obtained from the particle size distribution of the titanium oxide particles in the dispersion measured by the dynamic light scattering method.
  • the particle diameter at a certain time that is, the average particle diameter or the median diameter
  • D90 and D100 refer to the particle diameters when the volume-based integrated distribution values are 90% and 100%, respectively.
  • the content of the titanium oxide particles in the surface treatment of the alcohol dispersion of the titanium oxide particles is determined by the surface treatment of the titanium oxide particles with the surface treatment agent containing the silane coupling agent and 12-hydroxystearic acid. In order to carry out efficiently, it is usually in the range of 1 to 40% by weight, preferably in the range of 5 to 30% by weight.
  • the alkyl group R having 1 to 4 carbon atoms represents a methyl group, an ethyl group, a propyl group, or a butyl group, and has 3 or 4 carbon atoms.
  • a certain alkyl group may be linear or branched.
  • X when X is an alkyl group, the number of carbon atoms is usually in the range of 1 to 20, preferably in the range of 1 to 12. Therefore, specific examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, a decyl group, and an undecyl group.
  • the alkyl group having 3 or more carbon atoms may be linear or branched.
  • silane coupling agent in which X is an alkyl group for example, methyltrimethoxysilane, methyltriethoxysilane, isobutyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, Decyltrimethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, undecyltriethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, etc. Can be mentioned.
  • the alkyl group when X is a fluorinated alkyl group, the alkyl group usually has 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms. Accordingly, specific examples of such a fluorinated alkyl group include trifluoromethyl, trifluoroethyl, trifluoropropyl, perfluorooctylethyl groups, and the like.
  • silane coupling agent in which X is a fluorinated alkyl group for example, 3,3,3-trifluoropropyltrimethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctyl Examples thereof include ethyl triisopropoxysilane.
  • silane coupling agent represented by the general formula (I) when X is a vinyl group, specific examples include vinyltrimethoxysilane and vinyltriethoxysilane.
  • examples of the silane coupling agent in which X is a (meth) acryloyloxyalkyl group include (meth) acryloyloxymethyltrimethoxysilane, (meth ) Acryloyloxymethyltriethoxysilane, 2- (meth) acryloyloxyethyltrimethoxysilane, 2- (meth) acryloyloxyethyltriethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyl Examples thereof include oxypropyltriethoxysilane and 3-methacryloyloxypropylmethyldimethoxysilane.
  • (Meth) acryloyl means acryloyl or methacryloyl.
  • the surface treatment agent silane coupling agent and 12-hydroxystearic acid may be added to the alcohol dispersion of titanium oxide particles at the same time, or after either one is added first, Others may be added.
  • one or both of the surface treatment agents described above is an appropriate organic solvent, for example, the same alcohol solvent as the dispersion medium of the alcohol dispersion of titanium oxide particles (hereinafter simply referred to as alcohol solvent A for the sake of simplicity). Or dissolved in the same organic solvent as the dispersion medium of the organic solvent dispersion of the target titanium oxide particles (hereinafter simply referred to as the organic solvent S for simplicity). The solution may be added to the alcohol dispersion. Moreover, after adding the said surface treating agent to the alcohol dispersion of a titanium oxide particle, you may add the said organic solvent S to a dispersion.
  • alcohol solvent A the same alcohol solvent as the dispersion medium of the organic solvent dispersion of the target titanium oxide particles
  • the surface treatment of the titanium oxide particles in the alcohol dispersion with the surface treatment agent containing the silane coupling agent and 12-hydroxystearic acid can be performed, for example, by the following method. .
  • adding a solution obtained by dissolving the surface treatment agent in the organic solvent S to the alcohol dispersion of the titanium oxide particles, or adding the organic solvent S, namely, titanium oxide This means that the dispersion medium of the particle dispersion is changed to a mixture of alcohol and the organic solvent. Therefore, the dispersion of titanium oxide particles using the mixture of alcohol and the organic solvent S as a dispersion medium is used in the surface treatment agent. By processing, it means that the titanium oxide particles are surface-treated with the surface treatment agent.
  • a method of treating the alcohol dispersion of titanium oxide particles with the surface treatment agent in the presence of the organic solvent, that is, a mixture of the alcohol and the organic solvent S is used as a dispersion medium.
  • the method of treating the dispersion of titanium oxide particles to be treated with the surface treatment agent is one of the methods that can be preferably used in the surface treatment step in the present invention.
  • the surface treatment agent is used so as to contain 1 to 40 parts by weight of the silane coupling agent and 1 to 80 parts by weight of 12-hydroxystearic acid with respect to 100 parts by weight of the titanium oxide particles.
  • the silane coupling agent is preferably used in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the titanium oxide particles in the alcohol dispersion of titanium oxide particles.
  • 12-hydroxystearic acid is preferably used in the range of 1 to 10 parts by weight with respect to 100 parts by weight of titanium oxide particles in the alcohol dispersion of titanium oxide particles.
  • the surface treatment agent preferably comprises only the silane coupling agent and 12-hydroxystearic acid. That is, in the present invention, the surface treatment agent preferably does not contain any surface treatment agent other than the silane coupling agent and 12-hydroxystearic acid.
  • the total amount of the silane coupling agent and 12-hydroxystearic acid is 2 to 20 weights per 100 weight parts of the titanium oxide particles in the alcohol dispersion of titanium oxide particles. It is preferably used in a range of 5 parts by weight, and more preferably in a range of 5 to 20 parts by weight.
  • the surface treatment step of surface-treating the titanium oxide particles in the alcohol dispersion of titanium oxide particles with the surface treatment agent, and the dispersion medium of the alcohol dispersion of the surface-treated titanium oxide particles is obtained by performing a solvent substitution step of substituting the alcohol solvent with the organic solvent.
  • the solvent replacement step may be performed after the surface treatment step, or the solvent replacement step may be performed while performing the surface treatment step.
  • a silane coupling agent and 12-hydroxystearic acid are added to an alcohol dispersion of titanium oxide particles under normal temperature and normal pressure, mixed and stirred, and the titanium oxide particles are mixed. If the organic solvent is continuously or intermittently added to the alcohol dispersion and the solvent is replaced with the alcohol solvent that is the dispersion medium of the alcohol dispersion, the target is obtained. An organic solvent dispersion can be obtained.
  • a silane coupling agent and 12-hydroxystearic acid are dissolved in an organic solvent S, and the obtained solution is dispersed in alcohol of titanium oxide particles.
  • a silane coupling agent, 12-hydroxystearic acid and organic solvent S are added to the alcohol dispersion of titanium oxide particles, and the resulting dispersion of titanium oxide particles is added in the presence of the organic solvent, that is, In a dispersion of titanium oxide particles using a mixture of an alcohol and the organic solvent S as a dispersion medium, the titanium oxide particles are surface-treated with the surface treatment agent, and then the solvent is replaced. By removing the alcohol, a desired organic solvent dispersion can be obtained.
  • This method is one of the methods that can be preferably used in the solvent replacement step.
  • a silane coupling agent and 12-hydroxystearic acid are dissolved in an organic solvent S, and the resulting solution is added to an alcohol dispersion of titanium oxide particles, or a silane coupling agent and 12 -Hydroxystearic acid and organic solvent S are added to an alcohol dispersion of titanium oxide particles, and the resulting dispersion of titanium oxide particles is added to the dispersion medium in the presence of the organic solvent, that is, the mixture of alcohol and organic solvent S.
  • the alcohol is removed from the dispersion and the solvent is replaced.
  • a solvent dispersion can be obtained.
  • the organic solvent that is a dispersion medium in the organic solvent dispersion of titanium oxide particles is preferably an organic solvent that is more lipophilic than methanol and ethanol.
  • an organic solvent that is more lipophilic organic solvent include the number of carbon atoms. Examples thereof include three or more alcohols, glycols, ketones, ketone alcohols, esters, ethers, hydrocarbons, carbon halides, carboxylic acid amides, sulfoxides, and the like.
  • alcohols having 3 or more carbon atoms include propanols such as isopropanol and butanols such as 1-butanol, and glycols include ethylene glycol and propylene glycol as ketones.
  • MK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • ketone alcohols are diacetone alcohol
  • esters are ethyl acetate, butyl acetate
  • propylene glycol monomethyl ether Acetate, diethylene glycol monoethyl ether acetate, methyl acrylate, methyl methacrylate, etc.
  • ethers include dibutyl ether, propylene glycol monomethyl ether, dioxa As hydrocarbons, n-hexane, cyclohexane, toluene, xylene, solvent naphtha,
  • preferred lipophilic organic solvents include methyl isobutyl ketone, methyl ethyl ketone, diacetone alcohol, butanol, propanol, propylene glycol monomethyl ether, toluene, dimethyl sulfoxide, N, N-dimethylacetamide, N, N, There may be mentioned at least one selected from 2-trimethylpropionamide, ⁇ -butyrolactone and butyl acetate.
  • the method in order to replace the alcohol solvent, which is a dispersion medium of the alcohol dispersion of titanium oxide particles, with the above lipophilic organic solvent other than the alcohol solvent, the method itself is a well-known distillation substitution method or a limitation. It can be performed by an outer filtration concentration substitution method.
  • the distillation substitution method is a dispersion medium of the above-described alcohol dispersion by heating an alcohol dispersion of titanium oxide particles surface-treated with a surface treatment agent to a temperature equal to or higher than the boiling point of the alcohol as the dispersion medium.
  • the target organic solvent is added to the dispersion while distilling and removing the alcohol from the dispersion.
  • an alcohol dispersion of titanium oxide particles surface-treated with the surface treatment agent is heated under normal pressure or reduced pressure, and the alcohol solvent is distilled, preferably at the same rate as the distillation rate.
  • the alcohol solvent that is a dispersion medium of the alcohol dispersion of the titanium oxide particles can be replaced with the organic solvent.
  • the surface treatment agent is dissolved in the organic solvent, and the resulting solution is added to the alcohol dispersion of titanium oxide particles, or the surface treatment agent and
  • the organic solvent is added to the alcohol dispersion of titanium oxide particles, and the titanium oxide particles are surface-treated with the surface treatment agent in the presence of the organic solvent, and then heated under normal pressure or reduced pressure to form the alcohol dispersion.
  • the alcohol that is the dispersion medium is removed by distillation, and the alcohol solvent that is the dispersion medium of the alcohol dispersion of the titanium oxide particles can be replaced with the organic solvent.
  • the organic solvent to be used has a boiling point equal to or higher than that of the alcohol under the distillation conditions. It is desirable.
  • an alcohol dispersion of titanium oxide particles is subjected to ultrafiltration, the alcohol solvent is permeated through a membrane, and the alcohol is removed from the dispersion.
  • the target organic solvent is added, and thus the alcohol solvent, which is the dispersion medium of the alcohol dispersion of the titanium oxide particles, is replaced with the organic solvent.
  • the obtained alcohol dispersion is pumped to an ultrafiltration module, and the alcohol solvent is passed through the membrane by allowing the alcohol solvent to pass through the membrane.
  • the target organic solvent is added stepwise or continuously to the dispersion to replace the alcohol solvent, which is a dispersion medium of the alcohol dispersion of titanium oxide particles, with the organic solvent.
  • the transmittance at a wavelength of 800 nm is 70% or more, preferably the transmittance at a wavelength of 550 nm is 4% or more, and the transmittance at a wavelength of 600 nm is 8% or more.
  • an organic solvent dispersion having a viscosity immediately after production of 10 mPa ⁇ s or less and an increase in viscosity after 7 days with respect to the viscosity immediately after production is 40 mPa ⁇ s or less can be obtained.
  • the method of the present invention after surface-treating the titanium oxide particles in the alcohol dispersion of the titanium oxide particles used as a starting material with the surface treatment agent described above or while surface-treating with the surface treatment agent, by substituting the alcohol solvent, which is a dispersion medium, with the organic solvent, a fine average particle diameter D50 of the titanium oxide particles in the alcohol dispersion is inherited by the organic solvent dispersion of titanium oxide particles. It is possible to obtain an organic solvent dispersion of titanium oxide particles having a small D50 of the titanium oxide particles therein and having low viscosity and high stability and transparency.
  • the organic solvent dispersion of titanium oxide particles obtained by the present invention has low viscosity, excellent stability and transparency while containing titanium oxide particles in a high content, and the titanium oxide particles are Originally, it has desirable characteristics.
  • the alcohol dispersion of titanium oxide particles used in the surface treatment step may be a commercially available product.
  • the alcohol dispersion of titanium oxide particles used in the surface treatment step is peptized by adding acid to the titanium oxide water slurry, and wet-dispersed to obtain an aqueous dispersion.
  • Acetic acid and nitric acid are used in combination as the acid to obtain an aqueous dispersion, and then the dispersion medium of the aqueous dispersion is replaced with the alcohol, and thus an alcohol dispersion obtained in this manner is preferable.
  • an alcohol dispersion of titanium oxide particles that can be preferably used, (A) a step of wet dispersion treatment of an aqueous slurry of titanium oxide particles in the presence of acetic acid and nitric acid with a medium stirring mill or a high-pressure disperser to obtain an aqueous dispersion of titanium oxide particles; (B) a step of washing the aqueous dispersion of titanium oxide particles obtained in the step (a), (C) a step of replacing water, which is a dispersion medium of the aqueous dispersion of titanium oxide particles obtained in the step (b), with at least one alcohol solvent selected from methanol and ethanol; Can be obtained by a method comprising
  • the water slurry of titanium oxide particles used as a starting material is not particularly limited in its origin. Therefore, in the present invention, for example, an aqueous slurry of titanium oxide particles obtained by dispersing titanium oxide powder in water can also be used.
  • the water slurry of titanium oxide particles used as a starting material is preferably obtained by the following method, for example.
  • a titanium oxide water slurry used as a starting material is prepared by the following method: (1) After adjusting the chlorine ion concentration of the aqueous solution of titanium tetrachloride to 0.5 mol / L or more and less than 4.4 mol / L, the solution is heated at a temperature in the range of 25 to 75 ° C.
  • the first step is a step of hydrolyzing titanium tetrachloride in water to precipitate rutile titanium oxide particles to obtain a slurry containing such rutile titanium oxide particles. That is, in the first step, the titanium tetrachloride aqueous solution is in the range of 10 to 100 g / L as titanium oxide (TiO 2 , hereinafter the same), and the chlorine concentration is 0.5 mol / L or more. After adjusting by adding water to the titanium tetrachloride aqueous solution so as to be less than 4 mol / L, it is heated at a temperature in the range of 25 to 75 ° C. for 1 to 10 hours. Titanium chloride is hydrolyzed to deposit rutile titanium oxide particles.
  • titanium tetrachloride When the hydrolysis temperature of titanium tetrachloride exceeds 75 ° C., the anatase type is added to the titanium tetrachloride hydrolyzate even if the chlorine ion concentration is in the range of 0.5 mol / L or more and less than 4.4 mol / L. Titanium oxide and brookite type titanium oxide may be mixed.
  • the hydrolysis rate of titanium tetrachloride depends on the hydrolysis temperature, and the higher the temperature, the faster the hydrolysis rate, which is industrially advantageous.
  • the hydrolysis rate of titanium tetrachloride is lower than 25 ° C., it is difficult to hydrolyze the titanium tetrachloride aqueous solution at a practical rate.
  • the first step in particular, after adjusting the titanium tetrachloride aqueous solution by adding water so that the chlorine concentration of the titanium tetrachloride aqueous solution is 1.0 mol / L or more and 4.3 mol / L or less, although not limited to a temperature in the range of 30 to 75 ° C., it is preferable to heat for 1 to 5 hours to hydrolyze titanium tetrachloride to precipitate rutile titanium oxide particles.
  • the slurry obtained in the second step is hydrothermally reacted in the presence of an organic acid as a particle growth inhibitor to increase crystallinity while suppressing the growth of rutile titanium oxide particles.
  • an organic acid carboxylic acid or hydroxycarboxylic acid
  • the carboxylic acid or hydroxycarboxylic acid may be a salt.
  • organic acids include, for example, monocarboxylic acids such as formic acid, acetic acid and propionic acid and salts thereof, polybasic acids such as oxalic acid, malonic acid, succinic acid, fumaric acid and maleic acid and salts thereof.
  • the organic acid as described above is used in an amount of 75 parts by mole or more with respect to 100 parts by mole of titanium oxide, thereby suppressing the growth of the rutile-type titanium oxide particles obtained by the hydrothermal reaction. Can be effectively increased.
  • the amount of the organic acid is less than 75 mole parts relative to 100 mole parts of titanium oxide, the effect of suppressing the growth of rutile titanium oxide particles is not observed in the hydrothermal reaction.
  • a more preferable amount of the organic acid with respect to 100 mol parts of titanium oxide is 85 mol parts or more.
  • the upper limit of the amount of organic acid relative to titanium oxide is not particularly limited, but since the effect of increasing the crystallinity of rutile-type titanium oxide particles is not changed even when an excessive amount is used, the amount of organic acid is usually 200 mol parts or less is sufficient with respect to 100 mol parts of titanium oxide.
  • a suitable alkali for example, a sodium hydroxide aqueous solution is added to the aqueous slurry of titanium oxide particles obtained by the hydrothermal reaction in the third step, and the organic acid in the aqueous slurry is added to the aqueous slurry.
  • the obtained water slurry is filtered and washed, water-soluble salts dissolved in the water slurry are removed, and the obtained titanium oxide particles are repulped into water to obtain the desired titanium oxide particles.
  • the means and method for filtering and washing the water slurry of titanium oxide particles are not limited at all, but as described above, it is suitable for the water slurry obtained by hydrothermal reaction.
  • the aqueous slurry of titanium oxide particles is subjected to the steps (a) to (c) as described above.
  • the water slurry obtained in the fourth step of the above-described titanium oxide particle water slurry production process is peptized in the presence of acetic acid and nitric acid, and then wet dispersed to obtain an aqueous dispersion. It is the process of obtaining.
  • acetic acid and nitric acid are added to an aqueous slurry of titanium oxide particles to peptize the titanium oxide particles, and then wet dispersion treatment is performed.
  • water which is the dispersion medium of the aqueous slurry of titanium particles
  • alcohol even if the proportion of alcohol as the dispersion medium increases in the resulting dispersion, the aggregation of titanium oxide particles in the dispersion is suppressed and dispersed.
  • An alcohol dispersion of titanium oxide particles having excellent properties and transparency can be obtained.
  • the titanium oxide particles When only the nitric acid is added to the water slurry of titanium oxide particles, the titanium oxide particles are peptized, and then wet dispersion treatment is performed.
  • the water that is the dispersion medium of the water slurry is replaced with alcohol, As the proportion of alcohol as the dispersion medium increases, the titanium oxide particles in the dispersion aggregate and the dispersibility and transparency are impaired.
  • the viscosity of the dispersion increases as the water-soluble salts are removed in the step (b). It rises and eventually loses its fluidity and gels.
  • acetic acid when acetic acid and nitric acid are added to an aqueous slurry of titanium oxide particles to peptize the titanium oxide particles, acetic acid is in a range of 15 to 250 mol parts with respect to 100 mol parts of titanium oxide. Are preferably used in the range of 15 to 90 parts by mole.
  • the wet dispersion treatment in the step (a) uses a medium stirring mill or a high-pressure disperser, and for example, a bead mill is preferably used as the medium stirring mill.
  • a bead mill is preferably used as the medium stirring mill.
  • the beads those having a Mohs hardness higher than that of titania are preferable.
  • zirconia beads are preferably used. According to a preferred embodiment, zirconia beads having a diameter of 15 to 300 ⁇ m are charged into a bead mill and dispersed to obtain an aqueous dispersion of rutile-type titanium oxide particles.
  • the step (b) is a step of removing water-soluble salts dissolved in the aqueous dispersion in order to give dispersion stability to the aqueous dispersion of titanium oxide particles obtained in the step (a).
  • the means and method for removing the water-soluble salts dissolved in the aqueous dispersion are not particularly limited, and for example, dialysis or ultrafiltration can be used.
  • the titanium oxide aqueous dispersion obtained in the step (a) contains acetic acid and nitric acid used as a peptizer, its electrical conductivity is usually greater than 10 mS / cm.
  • the electric conductivity of the aqueous dispersion is in the range of 0.1 to 5 mS / cm, preferably in the range of 1 to 3 mS / cm, the aqueous dispersion having excellent dispersion stability of the rutile titanium oxide particles. You can get a body.
  • titanium tetrachloride is hydrolyzed in an aqueous solution to precipitate rutile-type titanium oxide particles, which are hydrothermally treated in the presence of an organic acid, while suppressing particle growth. Then, the crystallinity is improved, and then the water slurry of the rutile-type titanium oxide particles obtained in this way is added with a combination of acetic acid and nitric acid to peptize, followed by wet dispersion treatment, and further with excess acid. By removing the dissolved water-soluble salts, it is possible to obtain an aqueous dispersion that is stably dispersed in water without aggregation of the rutile titanium oxide particles.
  • the titanium oxide particle content is 10% by weight or more
  • the D50 of the titanium oxide particles is 1 in the particle size distribution measured by the dynamic light scattering method.
  • transmittance at a wavelength of 500 nm is 50% or more
  • transmittance at a wavelength of 800 nm is 90% or more
  • An aqueous dispersion of titanium oxide particles having a viscosity of 20 mPa ⁇ s or less, preferably 10 mPa ⁇ s or less, can be obtained.
  • an alcohol dispersion of titanium oxide particles that is, containing 10% by weight or more of titanium oxide particles, D50 in the range of 1 to 20 nm, preferably in the range of 2 to 10 nm, D90 of 40 nm or less, at a wavelength of 500 nm Alcohol dispersion of titanium oxide particles having a transmittance of 40% or more, a transmittance at a wavelength of 800 nm of 80% or more, and a viscosity immediately after production at a temperature of 25 ° C. of 20 mPa ⁇ s or less, preferably 10 mPa ⁇ s or less You can get a body.
  • the following reference examples show preparation examples of an aqueous dispersion and an alcohol dispersion of titanium oxide particles.
  • “Microza” model ACP-1010D, molecular weight cut off 13000 manufactured by Asahi Kasei Chemicals Corporation was used for ultrafiltration.
  • the following examples and comparative examples show preparation examples of an organic solvent dispersion of titanium oxide particles using the alcohol dispersion of titanium oxide particles obtained in the above reference example.
  • the dispersion diameter of the titanium oxide particles in the aqueous dispersion, alcohol dispersion and organic solvent dispersion of the titanium oxide particles that is, the size (diameter) of the particles dispersed in the dispersion, Turbidimeter transmittance, transmittance and viscosity at wavelengths of 500 nm, 550 nm, 600 nm and 800 nm were measured as follows.
  • the dispersion diameter of the titanium oxide particles was measured by a dynamic light scattering method (UPA-UT manufactured by Nikkiso Co., Ltd.).
  • the turbidimeter transmittance was measured by using a haze meter (NDH4000 manufactured by Nippon Denshoku Industries Co., Ltd.) to fill a cell with an optical path length of 10 mm with ion-exchanged water and measuring the total light transmittance (blank value) T 0.
  • the cell was filled with the dispersion, and the light transmittance T was measured to obtain (T / T 0 ) ⁇ 100.
  • the transmittance at wavelengths of 500 nm, 550 nm, 600 nm, and 800 nm was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation V-570) after filling the dispersion with a cell having an optical path length of 10 mm.
  • Viscosity was measured with a tuning-fork vibration type SV viscometer (A & D Co., Ltd. Sakai SV-1A (measured viscosity range: 0.3 to 1000 mPa ⁇ s)).
  • Reference example 1 Preparation of aqueous dispersion (I) of rutile-type titanium oxide particles
  • a separable flask equipped with a reflux apparatus was charged with 3 L of a titanium tetrachloride aqueous solution adjusted to 50.7 g / L as titanium oxide based on a chlorine ion concentration of 2.3 mol / L and a titanium ion concentration, and 70 ° C. was heated for 3 hours and hydrolyzed to obtain a water slurry containing precipitated rutile titanium oxide particles.
  • the water slurry was filtered using a glass fiber filter with a collection diameter of 300 nm to remove unreacted titanium tetrachloride and dissolved components.
  • the titanium oxide particles thus obtained are repulped into water, and an aqueous sodium hydroxide solution is added to the obtained water slurry until the pH of the water slurry becomes 7.0, and then a glass fiber filter paper having a collection diameter of 300 nm. And filtered.
  • the rutile titanium oxide is repulped into water so as to be 50 g / L as titanium oxide, it is filtered and washed with water until the electrical conductivity of the slurry becomes 100 ⁇ S / cm or less to remove water-soluble salts. did. *
  • the mixture After adding an aqueous sodium hydroxide solution to the slurry obtained by the hydrothermal reaction until the pH becomes 5.0, the mixture is filtered using a glass fiber filter with a collection diameter of 300 nm.
  • rutile type titanium oxide particles When water is repulped as titanium oxide to 100 g / L, the slurry is filtered and washed with water until the electrical conductivity of the slurry is 100 ⁇ S / cm or less to remove water-soluble salts, and thus the rutile thus obtained.
  • the titanium oxide particles were repulped into water so as to be 100 g / L as titanium oxide to obtain an aqueous slurry of titanium oxide particles. (4th process)
  • aqueous dispersion (I) of titanium oxide particles has a transmittance of 65.1% at a wavelength of 500 nm and a transmittance of 95.9% at a wavelength of 800 nm.
  • the viscosity was 2 mPa ⁇ s.
  • the dispersion diameter D50 of the titanium oxide particles in the aqueous dispersion (I) of the titanium oxide particles was 4 nm, and D90 was 6.4 nm. Therefore, it was found that the titanium oxide particles were hardly aggregated in the obtained aqueous dispersion (I) of titanium oxide particles.
  • Step (II) Preparation of methanol dispersion of titanium oxide (II)) Concentrating and diluting with methanol continuously and simultaneously in parallel by concentrating 500 g of the titanium oxide particle aqueous dispersion (I) using an ultrafiltration membrane and introducing methanol in an amount equal to the amount of the concentrated filtrate. By replacing the dispersion medium of the dispersion from water to methanol while maintaining the content of titanium oxide particles in the dispersion at 15% by weight (step (c)), the content of titanium oxide particles is 15% by weight. A methanol dispersion (II) of titanium oxide was obtained. At this time, the amount of methanol used for dilution was 2 L.
  • the thus obtained methanol dispersion (II) of titanium oxide particles has a transmittance of 57% at a wavelength of 500 nm, a transmittance of 95% at a wavelength of 800 nm, and a viscosity immediately after production at a temperature of 25 ° C. 1 mPa ⁇ s.
  • the obtained titanium oxide particles were dried.
  • the average primary particle diameter of the titanium oxide particles was about 4 nm.
  • the dispersion diameter D50 of the titanium oxide particles in the methanol dispersion (II) of the titanium oxide particles was 4 nm, and D90 was 9.2 nm. Therefore, it was found that in the obtained methanol dispersion (II) of titanium oxide particles, almost no aggregation of titanium oxide particles occurred.
  • Reference example 2 Preparation of water dispersion (III) of anatase-type titanium oxide particles
  • An anatase-type titanium oxide particle water slurry (CSB-M) manufactured by Sakai Chemical Industry Co., Ltd. was diluted with water to make the titanium oxide content 100 g / L.
  • To this aqueous slurry of titanium oxide particles 150 mol parts of acetic acid and 50 mol parts of nitric acid were added to 100 mol parts of titanium oxide, and peptized.
  • the aqueous slurry of titanium oxide particles thus obtained was subjected to a wet dispersion treatment for 10 hours using a circulating bead mill “Ultra Apex Mill UAM-05” manufactured by Kotobuki Industries Co., Ltd.
  • An aqueous dispersion was obtained.
  • zirconia beads having a diameter of 30 ⁇ m were used, and the rotation speed of the bead mill was set to 2350 rpm.
  • aqueous dispersion (III) of titanium oxide particles has a transmittance of 77.2% at a wavelength of 500 nm and a transmittance of 97.2% at a wavelength of 800 nm.
  • the viscosity was 3 mPa ⁇ s.
  • the average primary particle diameter of the titanium oxide particles was about 5 nm.
  • the dispersion diameter D50 of the titanium oxide particles in the aqueous dispersion (III) of the titanium oxide particles was 5 nm, and D90 was 5.8 nm. Therefore, it was found that the titanium oxide particles were hardly aggregated in the obtained aqueous dispersion (III) of titanium oxide particles.
  • Step (IV) Preparation of methanol dispersion of titanium oxide (IV)) Concentrating and diluting with methanol continuously and simultaneously in parallel by concentrating 500 g of the titanium oxide aqueous dispersion (III) using an ultrafiltration membrane and introducing methanol in an amount equal to the amount of the concentrated filtrate. By replacing the dispersion medium of the dispersion from water to methanol (step (c)) while maintaining the titanium oxide particle content in the dispersion at 15% by weight, oxidation with a titanium oxide particle content of 15% by weight is performed. A titanium methanol dispersion (IV) was obtained. At this time, the amount of methanol used for dilution was 2 L.
  • the methanol dispersion (IV) of titanium oxide particles thus obtained has a transmittance of 66% at a wavelength of 500 nm, a transmittance of 96% at a wavelength of 800 nm, and a viscosity immediately after production at a temperature of 25 ° C. 1 mPa ⁇ s.
  • the obtained titanium oxide particles were dried.
  • the average primary particle diameter of the titanium oxide particles was about 5 nm.
  • the dispersion diameter D50 of the titanium oxide particles in the methanol dispersion (IV) of the titanium oxide particles was 5 nm, and D90 was 6.2 nm. Therefore, it was found that in the obtained methanol dispersion (IV) of titanium oxide particles, aggregation of the titanium oxide particles hardly occurred.
  • Solvent substitution rate A sample was prepared by dissolving the obtained dispersion in deuterated chloroform, and a one-dimensional NMR spectrum of proton was measured for this sample using a nuclear magnetic resonance apparatus (AV400M manufactured by Bruker BioSpin Corporation). Based on this, the area ratio (substance ratio) of each solvent peak was converted to a mass ratio to calculate the solvent ratio, and the solvent substitution rate was determined based on this solvent ratio.
  • HSA in the column of surface treatment agent represents 12-hydroxystearic acid
  • (a) to (m) in the column of silane coupling agent are the silane coupling agents used.
  • the numerical value in the column of the surface treatment agent indicates the number of parts by weight of the used surface treatment agent with respect to 100 parts by weight of titanium oxide.
  • Silane coupling agents (a) to (m) represent the following silane coupling agents.
  • (k) N-2- (aminoethyl) -3-aminopropyltrimethoxysilane
  • Example 1 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) and 12-hydroxy Stearic acid (1.5 g) (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) was added, the mixture was stirred at a temperature of 26 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • the methanol dispersion of titanium oxide particles treated in this manner is heated under normal pressure to distill methanol, and MEK is added dropwise to the dispersion at the same rate as the methanol distillation rate, and a solvent is added. Substitution was performed to obtain a MEK dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight.
  • Example 2 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) and 12-hydroxy After adding 1.5 g of stearic acid (10.0 parts by weight with respect to 100 parts by weight of titanium oxide), MEK was added, and the resulting dispersion of titanium oxide particles in methanol and MEK was heated at 24 ° C. for 5 minutes. The dispersion was treated with a surface treatment agent with stirring.
  • the dispersion of titanium oxide particles treated in this way is heated under normal pressure to perform solvent replacement by distilling methanol to obtain a MEK dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight. Obtained.
  • solvent replacement method 2 As described above, after adding a surface treatment agent to a methanol dispersion of titanium oxide particles, an organic solvent is added, and thus the resulting dispersion is treated with the surface treatment agent, and then methanol is distilled under normal pressure.
  • the solvent replacement method is referred to as solvent replacement method 2.
  • Example 3 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) and 12-hydroxy After adding 1.5 g of stearic acid (10.0 parts by weight with respect to 100 parts by weight of titanium oxide), MEK was added, and the resulting dispersion of titanium oxide particles in methanol and MEK was stirred at a temperature of 25 ° C. for 5 minutes. The dispersion was treated with a surface treatment agent with stirring.
  • the dispersion of titanium oxide particles treated in this manner is heated under reduced pressure to perform solvent replacement by distilling methanol to obtain a MEK dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight. It was.
  • solvent replacement method 3 As described above, after adding the surface treatment agent to the methanol dispersion of titanium oxide particles, an organic solvent is added, and thus the resulting dispersion is treated with the surface treatment agent, and then methanol is distilled under reduced pressure.
  • the solvent replacement method is referred to as solvent replacement method 3.
  • Example 4 1.5 g of 3-methacryloyloxypropyltrimethoxysilane dissolved in MEK in 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) ) And 1.5 g of 12-hydroxystearic acid (10.0 parts by weight with respect to 100 parts by weight of titanium oxide), and the resulting dispersion of methanol and MEK of titanium oxide particles was stirred at a temperature of 24 ° C. for 5 minutes. And it processed with the said surface treating agent.
  • methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above (10.0 parts by weight with respect to 100 parts by weight of titanium oxide)
  • 12-hydroxystearic acid 10.0 parts by weight with respect to 100 parts by weight of titanium oxide
  • the dispersion of titanium oxide particles treated in this manner is heated under normal pressure, and solvent replacement is performed by distilling methanol to obtain a MEK dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight. It was.
  • the surface treatment agent is dissolved in the organic solvent, and the resulting solution is added to the methanol dispersion of titanium oxide particles.
  • methanol is distilled.
  • the solvent replacement method is referred to as solvent replacement method 4.
  • Examples 5 to 37 A silane coupling agent and 12-hydroxystearic acid (and an organic solvent) in the amounts shown in Table 1 and Table 2 were added to 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above, respectively. The resulting dispersion of titanium oxide particles in methanol (and of an organic solvent) was stirred at the temperatures shown in Tables 1 and 2 for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • the titanium oxide particle dispersion treated in this way was subjected to solvent substitution in the solvent substitution method 1, 2, 3 or 4, and the titanium oxide particle content was about 15% by weight.
  • An organic solvent dispersion of titanium oxide particles was obtained.
  • Examples 38 and 39 The silane coupling agent and 12-hydroxystearic acid (and organic solvent) in the amounts shown in Table 2 were added to 100 g of the methanol dispersion (IV) of titanium oxide particles obtained in Reference Example 2 above, and the resulting oxidation was obtained.
  • the methanol (and organic solvent) dispersion of titanium particles was stirred at the temperature shown in Table 2 for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • the dispersion of titanium oxide particles treated in this manner was subjected to solvent substitution by the solvent substitution method shown in Table 2 to obtain an organic solvent dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight.
  • Comparative Example 1 By adding only MEK to the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above without adding any of 3-methacryloyloxypropyltrimethoxysilane and 12-hydroxystearic acid, the resulting oxidation was obtained. A dispersion of titanium particles in methanol and MEK was stirred at a temperature of 23 ° C. for 5 minutes.
  • Comparative Example 2 After adding 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) to 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above. MEK was added, and the resulting dispersion of titanium oxide particles in methanol and MEK was stirred at a temperature of 24 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • methanol dispersion II
  • Comparative Example 3 After adding 1.5 g of 12-hydroxystearic acid (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) to 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, MEK was added. In addition, the resulting dispersion of titanium oxide particles in methanol and MEK was stirred at a temperature of 25 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • Comparative Example 4 After adding 3 g of 3-methacryloyloxypropyltrimethoxysilane (20.0 parts by weight with respect to 100 parts by weight of titanium oxide) to 100 g of methanol dispersion (II) of the titanium oxide particles obtained in Reference Example 1, MEK was added. And a dispersion of methanol and MEK of the obtained titanium oxide particles was stirred at a temperature of 26 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • Comparative Examples 5-7 Obtained by adding MEK to 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 in the amounts shown in Table 5 and / or one of 12-hydroxystearic acid and MEK. The dispersion of titanium oxide particles in methanol and MEK was stirred for 5 minutes each at the temperature shown in Table 5, and the dispersion was treated with the surface treatment agent.
  • methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 in the amounts shown in Table 5 and / or one of 12-hydroxystearic acid and MEK.
  • the dispersion of titanium oxide particles in methanol and MEK was stirred for 5 minutes each at the temperature shown in Table 5, and the dispersion was treated with the surface treatment agent.
  • Comparative Examples 8 and 9 The amount of silane coupling agent, 12-hydroxystearic acid and MEK shown in Table 5 was added to 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above, and methanol in the resulting titanium oxide particles was added. Each of the dispersions of MEK and MEK was stirred at the temperatures shown in Table 5 for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • the dispersion of titanium oxide particles thus treated was subjected to solvent substitution by solvent substitution method 3 to obtain an organic solvent dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight. did.
  • the dispersion of titanium oxide particles treated in this manner was subjected to solvent substitution by solvent substitution method 3 to obtain a MEK dispersion of titanium oxide particles having a titanium oxide particle content of about 15% by weight. did.
  • Comparative Example 11 After adding 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) to 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above. Then, MIBK was added, and the resulting dispersion of titanium oxide particles in methanol and MIBK was stirred at a temperature of 24 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • Comparative Example 12 After adding 1.5 g of 12-hydroxystearic acid (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) to 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, MIBK was added. In addition, the obtained dispersion of titanium oxide particles in methanol and MIBK was stirred at a temperature of 17 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • Comparative Example 13 100 g of methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 was heated under normal pressure to completely distill methanol, and then the residue was dried to obtain titanium oxide powder.
  • Comparative Example 14 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) and 12-hydroxy Stearic acid 1.5 g (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) was added and stirred at a temperature of 25 ° C. for 5 minutes to treat the dispersion with the surface treatment agent.
  • the titanium oxide powder thus obtained was added to MEK, stirred, and allowed to stand. As a result, titanium oxide particles settled and a MEK dispersion could not be obtained.
  • Comparative Example 15 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1, 1.5 g of 3-methacryloyloxypropyltrimethoxysilane (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) and acetic acid 1. 5 g (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) was added, the mixture was stirred at a temperature of 20 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • Comparative Example 16 To 100 g of the methanol dispersion (II) of titanium oxide particles obtained in Reference Example 1 above, 12 g of 3-methacryloyloxypropyltrimethoxysilane (80.0 parts by weight with respect to 100 parts by weight of titanium oxide) and 12-hydroxystearic acid 1.5 g (10.0 parts by weight with respect to 100 parts by weight of titanium oxide) was added, the mixture was stirred at a temperature of 24 ° C. for 5 minutes, and the dispersion was treated with the surface treatment agent.
  • the obtained organic solvent dispersion had a low transmittance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 本発明によれば、酸化チタン粒子をメタノール及びエタノールを除く有機溶媒に分散させてなる酸化チタン粒子の有機溶媒分散体の製造方法であり、(a)酸化チタン粒子をメタノールとエタノールから選ばれる少なくとも1種のアルコール溶媒に分散させてなる酸化チタン粒子のアルコール分散体をシランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて処理して、上記酸化チタン粒子を表面処理する表面処理工程と、(b)上記表面処理した酸化チタン粒子のアルコール分散体における分散媒である上記アルコール溶媒を上記アルコール溶媒以外の有機溶媒に置換する溶媒置換工程を含み、上記シランカップリング剤が一般式(I) (RO)-Si-X4-n …(I) (Rは炭素原子数1~4のアルキル基を示し、nは2又は3を示し、Xはアルキル基、フッ化アルキル基、ビニル基又は(メタ)アクリロイルオキシアルキル基を示す。)で表される。

Description

酸化チタン粒子の有機溶媒分散体の製造方法
 本発明は酸化チタン粒子の有機溶媒分散体とその製造方法に関し、詳しくは、安定性と透明性にすぐれ、しかも、好ましくは、酸化チタン粒子を高含有率で含みながら、低粘度を有する酸化チタン粒子の有機溶媒分散体の製造方法に関する。
 本発明によって得られる酸化チタン粒子の有機溶媒分散体は、上述したような特性を有するので、例えば、光学分野における種々の用途、特に、LED封止樹脂や反射防止膜等の光学用の複合樹脂の材料として有用である。
 従来、シリカ、アルミナ、酸化亜鉛、酸化スズ、ジルコニア、チタニア等の無機酸化物粒子分散体は、種々の産業分野において用いられており、特に、光学分野においては屈折率を調節するために用いられている。なかでも、チタニアは屈折率が高いので、光学材料の屈折率を高めるために好ましく用いられている。
 従来、このような無機酸化物粒子分散体は、分散媒が水であるものが用いられている。しかし、多くの光学材料用途、例えば、光学用フィルムの製造においては、通常、水分散体は樹脂成分と混合して用いられるところ、水分散体は、特に非水溶性の樹脂成分との混練が容易ではないので、近年、分散媒が有機溶媒である分散体が強く求められるに至っている。
 酸化チタン粒子を含めて、無機酸化物粒子は、一般に、水性溶媒には概ね、良好な分散性を有するが、有機溶媒に対しては、分散性は一般に低い。
 そこで、無機酸化物微粒子の有機溶媒分散体を製造するに際しては、無機酸化物微粒子を親油性に改質するために、シランカップリング剤にて表面処理することが有効であることが既に知られている(例えば、特許文献1及び2参照)。
 酸化チタンの有機溶媒分散体の製造においても、このように、シランカップリング剤を用いる方法が提案されている。例えば、酸化チタン微粒子のアルコール分散体に酢酸の存在下にシランカップリング剤を混合し、撹拌して、上記酸化チタン微粒子を表面処理した後、上記酸化チタン微粒子のアルコール分散体の分散媒である上記アルコールをメチルエチルケトンのような親油性有機溶媒に置換し、かくして、酸化チタン微粒子の親油性有機溶媒分散体を得る方法が提案されている(特許文献3参照)。
 しかし、従来から知られている上述した方法によれば、得られる有機溶媒分散体は、用途によっては、透明性において十分に満足すべきでない場合があり、また、経時的に粘度が増加する等、安定性に欠ける問題もあり、一方において、近年、光学材料においても、より高性能化への要望が強まっており、酸化チタン粒子を高含有率で含みながら、低粘度を有し、しかも、安定性と透明性にすぐれる酸化チタン粒子の有機溶媒分散体が強く要望されている。
特開2005-307158号公報 特開2009-35573号公報 国際公開WO2011/052762号公報
 本発明は、酸化チタン粒子の有機溶媒分散体における上述した問題を解決するためになされたものであって、安定性と透明性にすぐれ、しかも、好ましくは、酸化チタン粒子を高含有率で含みながら、低粘度を有する酸化チタン粒子の有機溶媒分散体の製造方法を提供することを目的とする。
 本発明によれば、酸化チタン粒子をメタノール及びエタノールを除く有機溶媒に分散させてなる酸化チタン粒子の有機溶媒分散体の製造方法であって、
(a)酸化チタン粒子をメタノールとエタノールから選ばれる少なくとも1種のアルコール溶媒に分散させてなる酸化チタン粒子のアルコール分散体をシランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて処理して、上記酸化チタン粒子を表面処理する表面処理工程と、
(b)上記表面処理した酸化チタン粒子のアルコール分散体における分散媒である上記アルコール溶媒を上記アルコール溶媒以外の有機溶媒に置換する溶媒置換工程を含み、
 上記シランカップリング剤が一般式(I)
        (RO)-Si-X4-n      …(I)
(式中、Rは炭素原子数1~4のアルキル基を示し、nは2又は3を示し、Xはアルキル基、フッ化アルキル基、ビニル基又は(メタ)アクリロイルオキシアルキル基を示す。)
で表されるものである、酸化チタン粒子の有機溶媒分散体の製造方法が提供される。
 本発明によれば、好ましくは、10重量%以上の含有率にて酸化チタン粒子を上記有機溶媒に分散させてなる有機溶媒分散体を得ることができる。
 本発明によれば、酸化チタン粒子100重量部に対して前記シランカップリング剤1~40重量部と12-ヒドロキシステアリン酸1~80重量部を用いて酸化チタン粒子を表面処理することが好ましい。
 更に、本発明によれば、前記酸化チタン粒子のアルコール分散体は10重量%以上の酸化チタン粒子を含有し、D50が1~20nmの範囲にあり、波長500nmにおける透過率が40%以上であり、波長800nmにおける透過率が80%以上であることが好ましい。
 本発明によれば、前記表面処理工程において用いる前記酸化チタン粒子のアルコール分散体が次の工程(a)~(c)、即ち、
(a)酢酸と硝酸の存在下に酸化チタン粒子の水スラリーを媒体撹拌ミル又は高圧分散機で湿式分散処理して、酸化チタン粒子の水分散体を得る工程、
(b)上記工程(a)で得られた酸化チタン粒子の水分散体を洗浄する工程、
(c)上記工程(b)で得られた酸化チタン粒子の水分散体の分散媒である水をメタノール及びエタノールから選ばれる少なくとも1種のアルコール溶媒に置換する工程、
を含む方法によって得られたものであることが好ましい。
 本発明によれば、酸化チタン粒子をメタノールとエタノールから選ばれる少なくとも1種のアルコール溶媒に分散させてなる酸化チタン粒子のアルコール分散体をシランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて処理する工程と、上記アルコール分散体の分散媒である上記アルコール溶媒を上記アルコール以外の有機溶媒と置換する溶媒置換工程を行うことによって、好ましくは、酸化チタン粒子を高含有率で含みながら、低粘度を有するうえに、経時的な粘度の上昇、粒子の沈殿、透明性の低下等が起こらず、安定性にすぐれており、しかも、透明性にすぐれている酸化チタン粒子の有機溶媒分散体を容易に且つ安定して得ることができる。
 本発明によって得られる酸化チタン粒子の有機溶媒分散体は、上述したような特性を有するので、酸化チタン粒子を高含有率で含みながら、低粘度で、安定性と透明性にすぐれており、高屈折率のような酸化チタン粒子が本来、有する望ましい特性が損なわれることがなく、例えば、光学分野における種々の用途、特に、LED封止樹脂や反射防止膜等の光学用の複合樹脂の材料として好適に用いることができる。
 本発明による酸化チタン粒子の有機溶媒分散体の製造方法は、酸化チタン粒子をメタノール及びエタノールを除く有機溶媒に分散させてなる酸化チタン粒子の有機溶媒分散体の製造方法であって、
(a)酸化チタン粒子をメタノールとエタノールから選ばれる少なくとも1種のアルコール溶媒に分散させてなる酸化チタン粒子のアルコール分散体をシランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて処理して、上記酸化チタン粒子を表面処理する表面処理工程と、
(b)上記表面処理した酸化チタン粒子のアルコール分散体における分散媒である上記アルコール溶媒を上記アルコール溶媒以外の有機溶媒に置換する溶媒置換工程を含み、
 上記シランカップリング剤が一般式(I)
        (RO)-Si-X4-n      …(I)
(式中、Rは炭素原子数1~4のアルキル基を示し、nは2又は3を示し、Xはアルキル基、フッ化アルキル基、ビニル基又は(メタ)アクリロイルオキシアルキル基を示す。)
で表されるものである。
 このような本発明による酸化チタン粒子の有機溶媒分散体において、酸化チタン粒子は、結晶質であっても、非晶質であってもよく、結晶質である場合は、ルチル、アナターゼ、ブルカイト又はこれらの混合物であってもよく、また、結晶質と非晶質の混合物であってもよい。
 上記酸化チタン粒子のアルコール分散体における分散媒であるアルコール溶媒は、前述したように、メタノールとエタノールから選ばれる少なくとも1種であり、特に、本発明においては、メタノールが好ましく用いられる。
 本発明において、上記酸化チタン粒子のアルコール分散体における酸化チタン粒子のD50は、得られる有機溶媒分散体が透明性にすぐれるように、1~20nmの範囲にあるのが好ましく、2~10nmの範囲にあるのがより好ましい。D90は40nm以下であることが好ましい。
 更に、本発明によれば、得られる酸化チタン粒子の有機溶媒分散体が酸化チタン粒子を10重量%以上の高含有率で含みながら、低粘度であり、しかも、安定性と透明性にすぐれるように、上記酸化チタン粒子のアルコール分散体は、10重量%以上の酸化チタン粒子を含有するとき、波長500nmにおける透過率が40%以上であり、波長800nmにおける透過率が80%以上であることが好ましい。
 本発明において、酸化チタン粒子の分散体における酸化チタン粒子のD50は、動的光散乱法にて測定した分散体中の酸化チタン粒子の粒度分布から得られる体積基準の積算分布値が50%であるときの粒子径(即ち、平均粒子径又はメディアン径)をいい、同じく、D90及びD100は、体積基準の積算分布値がそれぞれ90%及び100%であるときの粒子径をいう。
 本発明において、上記酸化チタン粒子のアルコール分散体を表面処理する際の酸化チタン粒子の含有率は、前記シランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤による酸化チタン粒子の表面処理が効率よく行うことができるように、通常、1~40重量%の範囲であり、好ましくは、5~30重量%の範囲である。
 上記一般式(I)で表されるシランカップリング剤において、炭素原子数1~4のアルキル基Rは、メチル基、エチル基、プロピル基又はブチル基を示し、炭素原子数が3又は4であるアルキル基は直鎖状でもよく、分岐鎖状でもよい。
 上記一般式(I)において、Xがアルキル基であるとき、炭素原子数は、通常、1~20の範囲であり、好ましくは、1~12の範囲である。従って、そのようなアルキル基の具体例として、例えば、メチル基、エチル基、プロピル基、ヘキシル基、デシル基、ウンデシル基等を挙げることができる。炭素原子数が3以上であるアルキル基は直鎖状でもよく、分岐鎖状でもよい。
 従って、上記一般式(I)において、Xがアルキル基である上記シランカップリング剤として、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、ウンデシルトリエトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等を挙げることができる。
 上記一般式(I)において、Xがフッ化アルキル基であるとき、そのアルキル基は、通常、炭素原子数1~18の範囲であり、好ましくは、1~10の範囲である。従って、そのようなフッ化アルキル基の具体例として、例えば、トリフルオロメチル、トリフルオロエチル、トリフルオロプロピル、パーフルオロオクチルエチル基等を挙げることができる。
 従って、Xがフッ化アルキル基であるシランカップリング剤として、例えば、3,3,3-トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン等を挙げることができる。
 上記一般式(I)で表されるシランカップリング剤において、Xがビニル基であるとき、具体例として、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン等を挙げることができる。
 また、上記一般式(I)で表されるシランカップリング剤において、Xが(メタ)アクリロイルオキシアルキル基であるシランカップリング剤としては、例えば、(メタ)アクリロイルオキシメチルトリメトキシシラン、(メタ)アクリロイルオキシメチルトリエトキシシラン、2-(メタ)アクリロイルオキシエチルトリメトキシシラン、2-(メタ)アクリロイルオキシエチルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン等を挙げることができる。(メタ)アクリロイルとはアクリロイル又はメタクリロイルを意味する。
 本発明において、上記表面処理剤であるシランカップリング剤と12-ヒドロキシステアリン酸は、これらを酸化チタン粒子のアルコール分散体に同時に加えてもよく、また、いずれか一方を先に加えた後に、他を加えてもよい。
 更に、上記表面処理剤は、いずれか一方又は両方を適宜の有機溶媒、例えば、酸化チタン粒子のアルコール分散体の分散媒と同じアルコール溶媒(以下、簡単のために、単に、アルコール溶媒Aということがある。)や、又は目的とする酸化チタン粒子の有機溶媒分散体の分散媒と同じ有機溶媒(以下、簡単のために、単に、有機溶媒Sということがある。)に溶解させ、得られた溶液をアルコール分散体に加えてもよい。また、酸化チタン粒子のアルコール分散体に上記表面処理剤を加えた後、分散体に上記有機溶媒Sを加えてもよい。
 より詳細には、アルコール分散体中の酸化チタン粒子を上記シランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて表面処理するには、例えば、以下のような方法で行うことができる。
(表面処理方法1)
 常圧下において、酸化チタン粒子のアルコール分散体に常温で、又は必要に応じて、その分散媒の沸点よりも低い温度に加熱した上記アルコール分散体にシランカップリング剤と12-ヒドロキシステアリン酸をそのまま加えて、混合、撹拌し、酸化チタン粒子を上記表面処理剤にて表面処理する。
(表面処理方法2)
 シランカップリング剤と12-ヒドロキシステアリン酸を適宜の有機溶媒、例えば、アルコール溶媒Aに溶解し、得られたアルコール溶液を常圧下において、酸化チタン粒子のアルコール分散体に常温で、又は必要に応じて、その分散媒の沸点よりも低い温度に加熱した上記アルコール分散体に加え、混合、撹拌し、かくして酸化チタン粒子の上記アルコール分散体を処理して、酸化チタン粒子を上記表面処理剤にて表面処理する。
(表面処理方法3)
 シランカップリング剤と12-ヒドロキシステアリン酸を適宜の有機溶媒、好ましくは、有機溶媒Sに溶解し、得られた溶液を常圧下において、酸化チタン粒子のアルコール分散体に常温で、又は必要に応じて、その分散媒の沸点よりも低い温度に加熱した上記アルコール分散体に加え、混合、撹拌して、かくして、酸化チタン粒子の上記アルコール分散体を上記有機溶媒の存在下に処理して、酸化チタン粒子を上記表面処理剤にて表面処理する。
(表面処理方法4)
 上記表面処理方法1~3に記載したように、シランカップリング剤と12-ヒドロキシステアリン酸を酸化チタン粒子のアルコール分散体に加えた後、有機溶媒Sを加え、混合、撹拌し、かくして、酸化チタン粒子の上記アルコール分散体を上記有機溶媒Sの存在下に処理して、酸化チタン粒子を上記表面処理剤にて表面処理する。
 上記表面処理方法3及び4のように、上記酸化チタン粒子のアルコール分散体に、有機溶媒Sに上記表面処理剤を溶解させた溶液を加え、又は有機溶媒Sを加えることは、即ち、酸化チタン粒子の分散体の分散媒をアルコールと上記有機溶媒の混合物に変えることを意味し、従って、アルコールと上記有機溶媒Sの混合物を分散媒とする酸化チタン粒子の分散体を上記表面処理剤にて処理することによって、酸化チタン粒子を上記表面処理剤にて表面処理することを意味する。
 このように、表面処理工程において、上記有機溶媒の存在下に上記酸化チタン粒子のアルコール分散体を上記表面処理剤にて処理する方法、即ち、上記アルコールと上記有機溶媒Sの混合物を分散媒とする酸化チタン粒子の分散体を上記表面処理剤にて処理する方法は、本発明において、上記表面処理工程において好ましく用いることができる方法の1つである。
 本発明においては、上記表面処理剤は、酸化チタン粒子100重量部に対して、上記シランカップリング剤1~40重量部と12-ヒドロキシステアリン酸1~80重量部を含むように用いられる。特に、本発明によれば、シランカップリング剤は、酸化チタン粒子のアルコール分散体における酸化チタン粒子100重量部に対して、好ましくは、1~10重量部の範囲で用いられる。同様に、12-ヒドロキシステアリン酸も、本発明においては、酸化チタン粒子のアルコール分散体における酸化チタン粒子100重量部に対して、好ましくは、1~10重量部の範囲で用いられる。
 本発明においては、上記表面処理剤は、前記シランカップリング剤と12-ヒドロキシステアリン酸のみからなることが好ましい。即ち、本発明においては、表面処理剤は、前記シランカップリング剤と12-ヒドロキシステアリン酸以外の表面処理剤は含まないことが好ましい。
 更に、本発明によれば、上記表面処理剤は、酸化チタン粒子のアルコール分散体における酸化チタン粒子100重量部に対して、シランカップリング剤と12-ヒドロキシステアリン酸の合計量が2~20重量部の範囲となるように用いられることが好ましく、5~20重量部の範囲となるように用いられることがより好ましい。
 本発明によれば、このようにして、酸化チタン粒子のアルコール分散体における酸化チタン粒子を上記表面処理剤で表面処理する表面処理工程と、上記表面処理した酸化チタン粒子のアルコール分散体の分散媒である上記アルコール溶媒を前記有機溶媒と置換する溶媒置換工程を行うことによって、目的とする上記酸化チタン粒子の有機溶媒分散体を得る。
 ここに、本発明によれば、上記表面処理工程を行った後に上記溶媒置換工程を行ってもよく、また、上記表面処理工程を行いつつ、上記溶媒置換工程を行ってもよい。
 例えば、前者の方法の1つとして、前述したように、常温常圧下に酸化チタン粒子のアルコール分散体にシランカップリング剤と12-ヒドロキシステアリン酸を加えて、混合、撹拌し、上記酸化チタン粒子を上記表面処理剤にて表面処理した後、このアルコール分散体に連続的に又は間欠的に前記有機溶媒を加えて、アルコール分散体の分散媒であるアルコール溶媒と溶媒置換すれば、目的とする有機溶媒分散体を得ることができる。
 また、別の方法として、例えば、前述した表面処理方法3及び4のように、シランカップリング剤と12-ヒドロキシステアリン酸を有機溶媒Sに溶解し、得られた溶液を酸化チタン粒子のアルコール分散体に加え、又はシランカップリング剤と12-ヒドロキシステアリン酸と有機溶媒Sを酸化チタン粒子のアルコール分散体に加え、得られた酸化チタン粒子の分散体を上記有機溶媒の存在下に、即ち、アルコールと上記有機溶媒Sの混合物を分散媒とする酸化チタン粒子の分散体中において、酸化チタン粒子を上記表面処理剤にて表面処理した後、溶媒置換する、即ち、得られた分散体から上記アルコールを除くことによって、目的とする有機溶媒分散体を得ることができる。この方法は、溶媒置換工程において、好ましく用いることができる方法の1つである。
 後者の方法の1つとして、例えば、シランカップリング剤と12-ヒドロキシステアリン酸を有機溶媒Sに溶解し、得られた溶液を酸化チタン粒子のアルコール分散体に加え、又はシランカップリング剤と12-ヒドロキシステアリン酸と有機溶媒Sを酸化チタン粒子のアルコール分散体に加え、得られた酸化チタン粒子の分散体を上記有機溶媒の存在下に、即ち、アルコールと上記有機溶媒Sの混合物を分散媒とする酸化チタン粒子の分散体中において、酸化チタン粒子を上記表面処理剤にて表面処理しながら、一方において、上記分散体から上記アルコールを除いて、溶媒置換することによっても、目的とする有機溶媒分散体を得ることができる。
 本発明において、酸化チタン粒子の有機溶媒分散体における分散媒である上記有機溶媒はメタノール及びエタノールよりも親油性である有機溶媒が好ましく、そのような親油性有機溶媒としては、例えば、炭素原子数3以上のアルコール類、グリコール類、ケトン類、ケトンアルコール類、エステル類、エーテル類、炭化水素類、ハロゲン化炭素類、カルボン酸アミド類、スルホキシド類等を挙げることができる。
 具体的には、炭素原子数3以上のアルコール類としては、イソプロパノールのようなプロパノール類や1-ブタノールのようなブタノール類等を、グリコール類としては、エチレングリコール、プロピレングリコール等を、ケトン類としては、メチルエチルケトン(MEK)、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルアミルケトン、シクロヘキサノン等を、ケトンアルコール類としてはジアセトンアルコールを、エステル類としては、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、アクリル酸メチル、メタクリル酸メチル等を、エーテル類としては、ジブチルエーテル、プロピレングリコールモノメチルエーテル、ジオキサン等を、炭化水素類としては、n-ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベントナフサ等を、また、ハロゲン化炭素水素類としては、四塩化炭素、ジクロロエタン、クロロベンゼン等を、カルボン酸アミドとしては、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N,2-トリメチルプロピオンアミド、N-メチルピロリドン等を、スルホキシド類としては、ジメチルスルホキシド、ジエチルスルホキシド類等を挙げることができる。
 特に、本発明によれば、好ましい親油性有機溶媒として、メチルイソブチルケトン、メチルエチルケトン、ジアセトンアルコール、ブタノール、プロパノール、プロピレングリコールモノメチルエーテル、トルエン、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N,2-トリメチルプロピオンアミド、γ―ブチロラクトン及び酢酸ブチルから選ばれる少なくとも1種を挙げることができる。
 本発明において、酸化チタン粒子のアルコール分散体の分散媒であるアルコール溶媒をこのアルコール溶媒以外の上記親油性有機溶媒と置換するには、方法それ自体は既によく知られている蒸留置換法や限外濾過濃縮置換法によることができる。
 蒸留置換法は、前述したように、表面処理剤で表面処理した酸化チタン粒子のアルコール分散体をその分散媒であるアルコールの沸点以上の温度に加熱して、上記アルコール分散体の分散媒であるアルコールを蒸留し、上記分散体から除去しながら、上記分散体に目的とする有機溶媒を加える方法である。
 例えば、1つの方法として、前記表面処理剤で表面処理した酸化チタン粒子のアルコール分散体を常圧下又は減圧下において加熱し、上記アルコール溶媒を蒸留しつつ、好ましくは、その留出速度と同じ速度にて有機溶媒を分散体に加えることによって、上記酸化チタン粒子のアルコール分散体の分散媒であるアルコール溶媒を上記有機溶媒に置換することができる。
 別の方法として、前述した表面処理方法3又は4のように、前記表面処理剤を前記有機溶媒に溶解させ、得られた溶液を酸化チタン粒子のアルコール分散体に加え、又は前記表面処理剤と前記有機溶媒を酸化チタン粒子のアルコール分散体に加え、酸化チタン粒子を上記有機溶媒の存在下に上記表面処理剤で表面処理した後、常圧下又は減圧下において加熱して、上記アルコール分散体の分散媒であるアルコールを蒸留によって除去して、上記酸化チタン粒子のアルコール分散体の分散媒である上記アルコール溶媒を上記有機溶媒に置換することもできる。
 従って、酸化チタン粒子のアルコール分散体の分散媒をこのように蒸留置換法によって有機溶媒と置換するには、用いる有機溶媒は、蒸留条件下において、上記アルコールと同程度か、より高い沸点を有することが望ましい。
 限外濾過濃縮置換法は、酸化チタン粒子のアルコール分散体を限外濾過に付して、そのアルコール溶媒を膜透過させて、分散体から上記アルコールを除去しながら、一方において、上記分散体に目的とする有機溶媒を加え、かくして、上記酸化チタン粒子のアルコール分散体の分散媒であるアルコール溶媒を上記有機溶媒と置換する方法である。
 例えば、酸化チタン粒子のアルコール分散体を前記表面処理剤で処理した後、得られたアルコール分散体を限外濾過モジュールに圧送し、そのアルコール溶媒を膜透過させることによってアルコール溶媒を上記分散体から除去しながら、一方において、段階的に又は連続的に目的とする前記有機溶媒を上記分散体に加えることによって、酸化チタン粒子のアルコール分散体の分散媒であるアルコール溶媒を上記有機溶媒に置換するものである。
 本発明によれば、このようにして、酸化チタン粒子のアルコール分散体を出発原料として用いて、アルコール分散媒中の酸化チタン粒子を前記表面処理剤で表面処理する工程と、上記表面処理した酸化チタン粒子のアルコール分散体の分散媒であるアルコール溶媒を前記有機溶媒に置換する溶媒置換工程を経ることによって、その酸化チタン粒子の凝集が殆どなしに、高い安定性と透明性にすぐれた酸化チタン粒子の有機溶媒分散体を得ることができる。通常、酸化チタン粒子含有率が10重量%以上、好ましくは、15~40重量%であって、D50が1~30nm、好ましくは、1~20nm、より好ましくは、2~10nmであり、波長500nmにおける透過率が2%以上であり、波長800nmにおける透過率が70%以上であり、好ましくは、波長550nmにおける透過率が4%以上であり、波長600nmにおける透過率が8%以上であり、25℃において、製造直後の粘度が10mPa・s以下であると共に、上記製造直後の粘度に対する7日後の粘度の増加量が40mPa・s以下である有機溶媒分散体を得ることができる。
 即ち、本発明の方法によれば、出発原料として用いる上記酸化チタン粒子のアルコール分散体中の酸化チタン粒子を前述した表面処理剤で表面処理した後、又は表面処理剤で表面処理しながら、その分散媒であるアルコール溶媒を前記有機溶媒と置換することによって、上記アルコール分散体における酸化チタン粒子の微細な平均粒子径D50が得られる酸化チタン粒子の有機溶媒分散体に承継され、かくして、分散体中の酸化チタン粒子のD50が小さく、低粘度で高い安定性と透明性を有する酸化チタン粒子の有機溶媒分散体を得ることができる。
 かくして、本発明によって得られる酸化チタン粒子の有機溶媒分散体は、酸化チタン粒子を高含有率で含みながら、低粘度を有し、安定性と透明性にすぐれており、しかも、酸化チタン粒子が本来、有する望ましい特性を保持している。
 本発明による酸化チタン粒子の有機溶媒分散体の製造方法において、前記表面処理工程において用いる酸化チタン粒子のアルコール分散体は、市販品であってもよい。しかし、本発明によれば、前記表面処理工程において用いる酸化チタン粒子のアルコール分散体は、酸化チタンの水スラリーに酸を加えて解膠し、湿式分散して、水分散体を得る際に、上記酸として酢酸と硝酸を併用して、水分散体を得、次いで、その水分散体の分散媒を前記アルコールと置換し、このようにして得たアルコール分散体であることが好ましい。
 以下に、本発明における前記表面処理工程において、好ましく用いることができる酸化チタン粒子のアルコール分散体の製造について説明する。
 本発明における前記表面処理工程において、好ましく用いることができる酸化チタン粒子のアルコール分散体は、
(a)酢酸と硝酸の存在下に酸化チタン粒子の水スラリーを媒体撹拌ミル又は高圧分散機で湿式分散処理して、酸化チタン粒子の水分散体を得る工程、
(b)上記工程(a)で得られた酸化チタン粒子の水分散体を洗浄する工程、
(c)上記工程(b)で得られた酸化チタン粒子の水分散体の分散媒である水をメタノール及びエタノールから選ばれる少なくとも1種のアルコール溶媒に置換する工程、
を含む方法によって得ることができる。
 上述した酸化チタン粒子のアルコール分散体の製造において、出発物質として用いる酸化チタン粒子の水スラリーは、その由来において、特に、限定されるものではない。従って、本発明においては、例えば、酸化チタン粉末を水に分散させて得られる酸化チタン粒子の水スラリーも用いることができる。
 しかし、本発明において、上述した酸化チタン粒子のアルコール分散体の製造において、出発物質として用いる酸化チタン粒子の水スラリーは、例えば、次の方法によって得られるものであることが好ましい。
 即ち、酸化チタン粒子のアルコール分散体の製造において、出発物質として用いる酸化チタンの水スラリーは、次のような方法、
(1)四塩化チタン水溶液の塩素イオン濃度を0.5モル/L以上、4.4モル/L未満に調整した後、25~75℃の範囲の温度にて加熱し、四塩化チタンを加水分解して、析出したルチル型酸化チタン粒子を含む水スラリーを得る第1工程、
(2)上記第1工程で得られた水スラリーを濾過、水洗して、溶存する水溶性塩類を除去した水スラリーを得る第2工程、
(3)上記第2工程で得られた水スラリーを有機酸の存在下に水熱反応させる第3工程、
(4)上記第3工程で得られた水スラリーを濾過、水洗して、溶存する水溶性塩類を除去して、得られた酸化チタン粒子を水にリパルプする第4工程
によって得ることができる。
 そして、本発明の方法によれば、このようにして得られる酸化チタン粒子の水スラリーを上述した工程(a)から(c)に付し、その分散媒である水をアルコールと置換し、かくして、得られる酸化チタン粒子のアルコール分散体を前述した表面処理工程と溶媒置換工程に付して、目的とする酸化チタン粒子の有機溶媒分散体を得ることが好ましい。
 そこで、上述した酸化チタン粒子を含む水スラリーの製造工程について説明する。
 先ず、上記第1工程は、四塩化チタンを水中にて加水分解して、ルチル型酸化チタン粒子を析出させて、そのようなルチル型酸化チタン粒子を含むスラリーを得る工程である。即ち、第1工程においては、四塩化チタン水溶液を酸化チタン(TiO2、以下、同じ。)として含有率10~100g/Lの範囲にあり、塩素濃度が0.5モル/L以上、4.4モル/L未満になるように、四塩化チタン水溶液に水を加えて調整した後、25~75℃の範囲の温度にて、限定されるものではないが、1~10時間加熱し、四塩化チタンを加水分解して、ルチル型酸化チタン粒子を析出させる。
 このような四塩化チタンの加水分解に際して、四塩化チタン水溶液の塩素濃度が4.4モル/L以上であるときは、加水分解温度75℃以下において四塩化チタン水溶液を実用的な速度で加水分解することが困難である。他方、四塩化チタン水溶液の塩素濃度が0.5モル/Lよりも小さいときは、四塩化チタン水溶液を工業的規模で加水分解するには、濃度が小さすぎて、非効率的、非実用的である。
 四塩化チタンの加水分解の温度が75℃を越えるときは、塩素イオン濃度を0.5モル/L以上、4.4モル/L未満の範囲としても、四塩化チタンの加水分解物にアナターゼ型酸化チタンやブルカイト型酸化チタンが混入することがある。
 四塩化チタンの加水分解速度は加水分解温度に依存しており、温度が高いほど、加水分解速度が速いので、工業上、有利である。四塩化チタンの加水分解速度が25℃よりも低いときは、四塩化チタン水溶液を実用的な速度で加水分解することが困難である。
 上記第1工程においては、特に、四塩化チタン水溶液の塩素濃度が1.0モル/L以上、4.3モル/L以下になるように、四塩化チタン水溶液に水を加えて調整した後、30~75℃の範囲の温度にて、限定されるものではないが、1~5時間加熱し、四塩化チタンを加水分解して、ルチル型酸化チタン粒子を析出させるのが好ましい。
 上記第2工程は、上記第1工程で得られたスラリーを濾過、水洗して、スラリーに溶存する水溶性塩類を除去する工程である。この第2工程において、スラリーを濾過、水洗するための手段、方法は、特に限定されるものではないが、濾過の前にスラリーに適宜のアルカリを加えて、スラリーのpHを酸化チタンの等電点にすることによって、スラリーを効率よく濾過、水洗することができる。
 上記第3工程は、上記第2工程で得られたスラリーを粒子成長抑制剤としての有機酸の存在下に水熱反応させて、ルチル型酸化チタン粒子の成長を抑制しながら、結晶性を高める工程である。上記有機酸としては、カルボン酸やヒドロキシカルボン酸が用いられ、これらカルボン酸やヒドロキシカルボン酸は塩であってもよい。そのような有機酸の具体例としては、例えば、蟻酸、酢酸、プロピオン酸等のモノカルボン酸とその塩、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸等の多塩基酸とその塩、乳酸、リンゴ酸、酒石酸、クエン酸、グルコン酸等のヒドロキシカルボン酸とその塩を挙げることができる。上記カルボン酸やヒドロキシカルボン酸の塩としては、例えば、ナトリウム塩やカリウム塩のようなアルカリ金属塩が好ましく用いられる。
 上記第3工程においては、上述したような有機酸を酸化チタン100モル部に対して75モル部以上用いることによって、水熱反応によって、得られるルチル型酸化チタン粒子の成長を抑えて、結晶性を効果的に高めることができる。有機酸の量が酸化チタン100モル部に対して75モル部よりも少ないときは、水熱反応において、ルチル型酸化チタン粒子の成長を抑制する効果がみられない。酸化チタン100モル部に対する有機酸のより好ましい量は85モル部以上である。一方、酸化チタンに対する有機酸の量の上限は特にないが、しかし、余りに多量を用いても、ルチル型酸化チタン粒子の結晶性を高める効果に変わりがないので、通常、有機酸の量は、酸化チタン100モル部に対して200モル部以下で十分である。
 上記第3工程において、上記水熱反応の温度は、120~180℃の範囲である。水熱反応の温度が120℃よりも低いときは、ルチル型酸化チタン粒子の結晶性が高められず、他方、180℃よりも高いときは、粒子の成長が著しい。即ち、粒子の成長を抑制しながら、結晶性を高めることが困難となる。特に、水熱反応を140~160℃の範囲で行うとき、ルチル型酸化チタン粒子の成長を抑制しながら、結晶性を高めるためのみならず、短時間の反応によって上記効果を得ることができることから有利である。
 上記第4工程は、上記第3工程において、水熱反応によって得られた酸化チタン粒子の水スラリーに適当なアルカリ、例えば、水酸化ナトリウム水溶液を加えて、上記水スラリー中の前記有機酸を中和した後、得られた水スラリーを濾過、水洗して、上記水スラリー中に溶存する水溶性塩類を除去して、得られた酸化チタン粒子を水にリパルプして、目的とする酸化チタン粒子の水スラリーを得る工程である。
 この第4工程においても、上記酸化チタン粒子の水スラリーを濾過、水洗するための手段、方法は何ら限定されるものではないが、上述したように、水熱反応によって得られた水スラリーに適当なアルカリを加えて、水スラリーのpHを酸化チタンの等電点にすることによって、効率よく濾過、水洗を行うことができる。特に、ルチル型酸化チタン粒子を100g/L濃度となるように水にリパルプしたときの電気伝導度が100μS/cm以下であるように濾過、水洗することが好ましい。
 本発明によれば、上述したようにして、酸化チタン粒子の水スラリーを得た後、前述したようにして、この酸化チタン粒子の水スラリーを前記(a)から(c)の工程に付して、酸化チタン粒子のアルコール分散体を得て、それを前述した表面処理工程と置換工程に付すことが好ましい。
 次に、本発明による前記表面処理工程において好ましく用いることができる酸化チタン粒子のアルコール分散体の製造工程について説明する。
 前記工程(a)は、上述した酸化チタン粒子の水スラリーの製造工程の第4工程で得られた水スラリーを酢酸と硝酸の存在下に解膠した後、湿式分散処理して、水分散体を得る工程である。
 即ち、本発明によれば、このように、酸化チタン粒子の水スラリーに酢酸と硝酸を加えて、酸化チタン粒子を解膠した後、湿式分散処理することによって、前記工程(c)において、酸化チタン粒子の水スラリーの分散媒である水をアルコールに置換する際に、得られる分散体において、分散媒であるアルコールの割合が増えても、分散体における酸化チタン粒子の凝集を抑えて、分散性と透明性にすぐれる酸化チタン粒子のアルコール分散体を得ることができる。
 酸化チタン粒子の水スラリーに硝酸のみを加えて、酸化チタン粒子を解膠した後、湿式分散処理したときは、水スラリーの分散媒である水をアルコールに置換する際に、得られる分散体において、分散媒であるアルコールの割合が増えるにつれて、分散体における酸化チタン粒子が凝集して、分散性と透明性が損なわれる。
 また、酸化チタン粒子の水スラリーに酢酸のみを加えて、酸化チタン粒子を解膠した後、湿式分散処理したときは、前記工程(b)において,水溶性塩類を除去するにつれて分散体の粘度が上昇し、遂には、流動性を失って、ゲル化する。
 本発明によれば、酸化チタン粒子の水スラリーに酢酸と硝酸を加えて、酸化チタン粒子を解膠する際、酸化チタン100モル部に対して、酢酸は15~250モル部の範囲で、硝酸は15~90モル部の範囲で、それぞれ用いることが好ましい。
 前記工程(a)における湿式分散処理は媒体撹拌ミル又は高圧分散機を用いるものであり、媒体撹拌ミルとしては、例えば、ビーズミルが好ましく用いられる。ビーズとしては、チタニアよりもモース硬度が高いものが好ましく、例えば、ジルコニアビーズが好ましく用いられる。好ましい態様によれば、15~300μmの直径を有するジルコニアビーズをビーズミルに仕込み、分散処理して、ルチル型酸化チタン粒子の水分散体を得る。
 前記工程(b)は、上記工程(a)で得られた酸化チタン粒子の水分散体に分散安定性を与えるために、水分散体に溶存している水溶性塩類を除去する工程である。この水分散体中に溶存している水溶性塩類を除去するための手段、方法は特に限定されるものではないが、例えば、透析や限外濾過等によることができる。
 上記工程(a)で得られた酸化チタンの水分散体は、解膠剤として用いた酢酸と硝酸を含んでいるので、その電気伝導度は、通常、10mS/cmよりも大きいが、この工程(b)において、水分散体の電気伝導度を0.1~5mS/cm、好ましくは、1~3mS/cmの範囲とすることによって、ルチル型酸化チタン粒子の分散安定性にすぐれた水分散体を得ることができる。
 このように、本発明によれば、四塩化チタンを水溶液中で加水分解してルチル型酸化チタン粒子を析出させ、これを有機酸の存在下に水熱処理して、粒子の成長を抑制しながら、その結晶性を向上させ、次いで、このようにして得られたルチル型酸化チタン粒子の水スラリーに酢酸と硝酸の組み合わせを加えて解膠した後、湿式分散処理し、更に、余剰の酸と溶存する水溶性塩類を除去することによって、ルチル型酸化チタン粒子が凝集することなく、安定して水に分散している水分散体を得ることができる。
 このようにして、上述した方法によって、四塩化チタンから出発して、酸化チタン粒子含有率が10重量%以上であり、動的光散乱法によって測定した粒度分布において、酸化チタン粒子のD50が1~20nm、好ましくは、2~10nmの範囲にあり、D90が40nm以下であり、波長500nmにおける透過率が50%以上であり、波長800nmにおける透過率が90%以上であり、温度25℃における製造直後の粘度が20mPa・s以下、好ましくは、10mPa・s以下である酸化チタン粒子の水分散体を得ることができる。
 次いで、このようにして得られる酸化チタン粒子の水分散体の分散媒である水を前記アルコール溶媒に置換することによって、本発明による酸化チタン粒子の有機溶媒分散体の製造方法において好ましく用いることができる酸化チタン粒子のアルコール分散体、即ち、10重量%以上の酸化チタン粒子を含有し、D50が1~20nm、好ましくは、2~10nmの範囲にあり、D90が40nm以下であり、波長500nmにおける透過率が40%以上であり、波長800nmにおける透過率が80%以上であり、温度25℃における製造直後の粘度が20mPa・s以下、好ましくは、10mPa・s以下である酸化チタン粒子のアルコール分散体を得ることができる。
 本発明によれば、このような酸化チタン粒子のアルコール分散体を出発物質として用いることによって、目的とする酸化チタン粒子の有機溶媒分散体を容易に且つ安定して得ることができる。
 以下の参考例は、酸化チタン粒子の水分散体及びアルコール分散体の調製例を示す。これらの参考例において、限外濾過には旭化成ケミカルズ(株)製「マイクローザ」(型式ACP-1010D、分画分子量13000)を用いた。
 以下の実施例及び比較例は、上記参考例において得られた酸化チタン粒子のアルコール分散体を用いる酸化チタン粒子の有機溶媒分散体の調製例を示す。
 上記酸化チタン粒子の水分散体、アルコール分散体及び有機溶媒分散体中の酸化チタン粒子の分散径、即ち、分散体中に分散している粒子の大きさ(直径)、上記有機溶媒分散体の濁度計透過率、波長500nm、550nm、600nm及び800nmにおける透 過率及び粘度は下記のようにして測定した。
 酸化チタン粒子の分散径は動的光散乱法(日機装(株)製UPA-UT)によって測定した。
 濁度計透過率は、ヘーズメーター(日本電色工業(株)製NDH4000)を用いて、光路長10mmのセルにイオン交換水を充填して全光線透過率(ブランク値)T0を測定し、同様にセルに分散体を充填して光線透過率Tを測定し、(T/T0)×100として求めた。
 波長500nm、550nm、600nm及び800nmにおける透過率は、光路長が10mmのセルに分散体を充填して、可視紫外分光光度計(日本分光(株)製 V-570)にて測定した。
 粘度は音叉型振動式SV型粘度計(エー・アンド・デイ(株)製 SV-1A(測定粘度範囲0.3~1000mPa・s))にて測定した。
 また、以下において用いた有機溶媒の略語は下記のとおりである。
  MEK:メチルエチルケトン
  MIBK:メチルイソブチルケトン
  IPA:イソプロピルアルコール
  PGME:プロピレングリコールモノメチルエーテル
  DMAC:N,N-ジメチルアセトアミド
 DMSO:ジメチルスルホキシド
 DMIB:N,N,2-トリメチルプロピオンアミド
参考例1
(ルチル型酸化チタン粒子の水分散体(I)の調製)
 還流装置を備えたセパラブルフラスコに塩素イオン濃度2.3モル/L、チタンイオン濃度に基づいて、酸化チタンとして50.7g/Lとなるように調整した四塩化チタン水溶液を3L仕込み、70℃で3時間加熱し、加水分解して、析出したルチル型酸化チタン粒子を含む水スラリーを得た。(第1工程)
 上記水スラリーを捕集径300nmのガラス繊維濾紙を用いて濾過し、未反応四塩化チタンと溶存成分を除去した。このようにして得られた酸化チタン粒子を水にリパルプし、得られた水スラリーに水酸化ナトリウム水溶液を水スラリーのpHが7.0となるまで加えた後、捕集径300nmのガラス繊維濾紙を用いて濾過した。この際、ルチル型酸化チタンを酸化チタンとして50g/Lとなるように水にリパルプしたときに、スラリーの電気伝導度が100μS/cm以下となるまで、濾過、水洗して、水溶性塩類を除去した。   
(第2工程)
 上記第2工程によって得られたルチル型酸化チタン粒子を酸化チタンとして50g/Lとなるように水にリパルプし、このスラリーに酢酸を酸化チタン100モル部に対して150モル部加え、150℃で水熱反応を3時間行って、ルチル型酸化チタン粒子の結晶性を高めた。(第3工程)
 上記水熱反応によって得られたスラリーにそのpHが5.0となるまで水酸化ナトリウム水溶液を加えた後、捕集径300nmのガラス繊維濾紙を用いて濾過し、この際、ルチル型酸化チタン粒子を酸化チタンとして100g/Lとなるように水にリパルプしたときに、スラリーの電気伝導度が100μS/cm以下となるまで、濾過、水洗して、水溶性塩類を除去し、かくして得られたルチル型酸化チタン粒子を酸化チタンとして100g/Lとなるように水にリパルプして、酸化チタン粒子の水スラリーを得た。(第4工程)
 次いで、得られた酸化チタン粒子の水スラリーに酸化チタン100モル部に対して酢酸150モル部と硝酸50モル部を加えて、酸化チタン粒子を解膠した。このようにして得られた酸化チタン粒子の水スラリーを寿工業(株)製循環型ビーズミル「ウルトラアペックスミルUAM-05」を 用いて10時間、湿式分散処理して、ルチル型酸化チタン粒子の水分散体を得た。この際、直径30μmのジルコニアビーズを用い、ビーズミルの回転数は2350rpmとした。(工程(a))
 上記ルチル型酸化チタン粒子の水分散体の電気伝導度が3.2mS/cmとなるまで限外濾過膜にて洗浄して、余剰の上記酸類と水溶性塩類を除去した後、濃縮して、ルチル型酸化チタン粒子の含有率15重量%の酸化チタン水分散体(I)を得た。(工程(b))
 このようにして得られた酸化チタン粒子の水分散体(I)は、波長500nmにおける透過率が65.1%、波長800nmにおける透過率が95.9%であり、温度25℃における製造直後の粘度が2mPa・sであった。
 また、得られた酸化チタン粒子の水分散体(I)から水を除去し、得られた酸化チタン粒子を乾燥した。得られた酸化チタン粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、酸化チタン粒子の平均一次粒子径は4nm程度であった。
 一方、上記酸化チタン粒子の水分散体(I)中の酸化チタン粒子の分散径D50は4nmであり、D90は6.4nmであった。従って、得られた酸化チタン粒子の水分散体(I)においては、酸化チタン粒子の凝集が殆ど生じていないことがわかった。
(酸化チタンのメタノール分散体(II)の調製)
 上記酸化チタン粒子水分散体(I)500gを限外濾過膜用いて濃縮し、濃縮濾液量と等量のメタノールを投入することにより、濃縮とメタノールによる希釈を連続的且つ同時に並行して行うことによって、分散体中の酸化チタン粒子の含有率を15重量%に維持しつつ、分散体の分散媒を水からメタノールに置換して(工程(c))、酸化チタン粒子含有率15重量%の酸化チタンのメタノール分散体(II)を得た。この際、希釈に用いたメタノール量は2Lであった。
 このようにして得られた酸化チタン粒子のメタノール分散体(II)は、波長500nmにおける透過率が57%であり、波長800nmにおける透過率が95%であり、温度25℃における製造直後の粘度が1mPa・sであった。
 また、この酸化チタン粒子のメタノール分散体(II)からメタノールを除去し、得られた酸化チタン粒子を乾燥した。得られた酸化チタン粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、酸化チタン粒子の平均一次粒子径は4nm程度であった。
 一方、上記酸化チタン粒子のメタノール分散体(II)中の酸化チタン粒子の分散径D50は4nmであり、D90は9.2nmであった。従って、得られた酸化チタン粒子のメタノール分散体(II)においては、酸化チタン粒子の凝集が殆ど生じていないことがわかった。
参考例2
(アナターゼ型酸化チタン粒子の水分散体(III)の調製)
 堺化学工業(株)製のアナターゼ型酸化チタン粒子の水スラリー(CSB-M)を水で希釈して、酸化チタン含有率を100g/Lとした。この酸化チタン粒子の水スラリーに酸化チタン100モル部に対して酢酸150モル部と硝酸50モル部とを加えて、解膠した。このようにして得られた酸化チタン粒子の水スラリーを寿工業(株)製循環型ビーズミル「ウルトラアペックスミルUAM-05」を用いて、10時間、湿式分散処理して、アナターゼ型酸化チタン粒子の水分散体を得た。この際、直径30μmのジルコニアビーズを用い、ビーズミルの回転数は2350rpmとした。(工程(a))
 上記アナターゼ型酸化チタン粒子の水分散体の電気伝導度が3.2mS/cmとなるまで限外濾過膜にて洗浄して、余剰の上記酸類と水溶性塩類を除去した後、濃縮して、アナターゼ型酸化チタン粒子の含有率15重量%の酸化チタン粒子の水分散体(III)を得た。(工程(b))
 このようにして得られた酸化チタン粒子の水分散体(III)は、波長500nmにおける透過率が77.2%、波長800nmにおける透過率が97.2%であり、温度25℃における製造直後の粘度が3mPa・sであった。
 また、上記酸化チタン水分散体(III)から水を除去し、得られた酸化チタン粒子を乾燥した。得られた酸化チタン粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、酸化チタン粒子の平均一次粒子径は5nm程度であった。
 一方、上記酸化チタン粒子の水分散体(III)中の酸化チタン粒子の分散径D50は5nm、D90は5.8nmであった。従って、得られた酸化チタン粒子の水分散体(III)においては、酸化チタン粒子の凝集が殆ど生じていないことがわかった。
(酸化チタンのメタノール分散体(IV)の調製)
 上記酸化チタン水分散体(III)500gを限外濾過膜を用いて濃縮し、濃縮濾液量と等量のメタノールを投入することにより、濃縮とメタノールによる希釈を連続的且つ同時に並行して行うことによって、分散体中の酸化チタン粒子含有率を15重量%に維持しつつ、分散体の分散媒を水からメタノールに置換して(工程(c))、酸化チタン粒子含有率15重量%の酸化チタンメタノール分散体(IV)を得た。この際、希釈に用いたメタノール量は2Lであった。
 このようにして得られた酸化チタン粒子のメタノール分散体(IV)は、波長500nmにおける透過率が66%であり、波長800nmにおける透過率が96%であり、温度25℃における製造直後の粘度が1mPa・sであった。
 また、この酸化チタン粒子のメタノール分散体(IV)からメタノールを除去し、得られた酸化チタン粒子を乾燥した。得られた酸化チタン粒子粉末をTEM(透過型電子顕微鏡)にて観察したところ、酸化チタン粒子の平均一次粒子径は5nm程度であった。
 一方、上記酸化チタン粒子のメタノール分散体(IV)中の酸化チタン粒子の分散径D50は5nm、D90は6.2nmであった。従って、得られた酸化チタン粒子のメタノール分散体(IV)においては、酸化チタン粒子の凝集が殆ど生じていないことがわかった。
 以下の実施例1~39及び比較例1~17において、用いた置換有機溶媒、用いた表面処理剤、表面処理温度、得られた有機溶媒分散体の固形分含有率と酸化チタン粒子含有率及び溶媒置換率を表1、表2及び表5に示し、得られた有機溶媒分散体の濁度計透過率、500nm、550nm、600nm及び800nmにおける透過率、得られた有機溶媒分散体中の酸化チタン粒子の粒度分布及び粘度を表3、表4及び表6に示す。溶媒置換方法は、実施例1、2、3及び4において説明する。
 表1、表2及び表5において、固形分含有率、酸化チタン粒子含有率及び溶媒置換率はそれぞれ、下記のようにして得られる値である。
固形分含有率(S)
 得られた分散体のW重量部を乾燥皿に取り、乾固させて、乾固分をw重量部得たとき、固形分含有率Sは次式
            S=(w/W)x100
から求めることができる。
酸化チタン粒子含有率(T)
 酸化チタン粒子含有率Tは、得られた分散体中の固形分中の酸化チタン粒子の割合であるので、酸化チタン粒子100重量部に対して用いた表面処理剤の重量部数をpとしたとき、次式
          T=Sx100/(100+p)
から求めることができる。
溶媒置換率
 得られた分散体を重クロロホルムに溶解させて試料を調製し、この試料について、核磁気共鳴装置(ブルカー・バイオスピン(株)製AV400M)を用いてプロトンの1次元NMRスペクトルを測定し、これに基づいて、各溶媒のピークの面積比(物質量比)を質量比に換算して溶媒比率を算出し、この溶媒比率に基づいて溶媒置換率を求めた。
 また、表1、表2及び表5において、表面処理剤の欄のHSAは12-ヒドロキシステアリン酸を示し、シランカップリング剤の欄の(a)から(m)はそれぞれ用いたシランカップリング剤を示し、表面処理剤の欄の数値は、用いた表面処理剤の酸化チタン100重量部に対する重量部数を示す。
 シランカップリング剤(a)から(m)はそれぞれ、下記のシランカップリング剤を示す。
(a):3-メタクリロイルオキシプロピルトリメトキシシラン
(b):3-メタクリロイルオキシプロピルメチルジメトキシシラン
(c):3-メタクリロイルオキシプロピルトリエトキシシラン
(d):ヘキシルトリメトキシシラン
(e):ビニルトリメトキシシラン
(f):3-アクリロイルオキシプロピルトリメトキシシラン
(g):デシルトリメトキシシラン
(h):トリフルオロプロピルトリメトキシシラン
(i):メチルトリメトキシシラン
(j):ジメチルジメトキシシラン
(k):N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
(l):3-グリシドキシプロピルトリメトキシシラン
(m):2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
実施例1
  上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えて、温度26℃で5分間、攪拌して、上記分散体を表面処理剤で処理した。
 このように処理した酸化チタン粒子のメタノール分散体を常圧下に加熱して、メタノールを留出させつつ、上記メタノールの留出速度と同じ速度でMEKを上記分散体に滴下しながら加えて、溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子のMEK分散体を得た。
 上述したように、表面処理剤で処理した酸化チタン粒子のメタノール分散体を常圧下に加熱して、メタノールを留出させつつ、上記メタノールの留出速度と同じ速度で有機溶媒を上記分散体に滴下しながら加えて溶媒置換する方法を溶媒置換方法1とする。
実施例2
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度24℃で5分間、攪拌して、上記分散体を表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を常圧下に加熱して、メタノールを留出させることによって溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子のMEK分散体を得た。
 上述したように、表面処理剤を酸化チタン粒子のメタノール分散体に加えた後、有機溶媒を加え、かくして、得られた分散体を表面処理剤で処理した後、メタノールを常圧下に蒸留して溶媒置換する方法を溶媒置換方法2とする。
実施例3
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度25℃で5分間、攪拌して、上記分散体を表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を減圧下において加熱し、メタノールを留出させることによって溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子のMEK分散体を得た。
 上述したように、表面処理剤を酸化チタン粒子のメタノール分散体に加えた後、有機溶媒を加え、かくして、得られた分散体を表面処理剤で処理した後、メタノールを減圧下に蒸留して溶媒置換する方法を溶媒置換方法3とする。
実施例4
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gにMEKに溶解させた3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度24℃で5分間、攪拌して、上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を常圧下において加熱し、メタノールを留出させることによって溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子のMEK分散体を得た。
 上述したように、有機溶媒に表面処理剤を溶解させ、得られた溶液を酸化チタン粒子のメタノール分散体に加え、かくして、得られた分散体を表面処理剤で処理した後、メタノールを蒸留して溶媒置換する方法を溶媒置換方法4とする。
実施例5~37
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gにそれぞれ表1及び表2に示す量のシランカップリング剤と12-ヒドロキシステアリン酸(と有機溶媒)を加えて、得られた酸化チタン粒子のメタノール(と有機溶媒の)分散体を表1及び表2に示す温度で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を表1及び表2に示すように、溶媒置換方法1、2、3又は4にて溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子の有機溶媒分散体を得た。
実施例38及び39
 上記参考例2において得られた酸化チタン粒子のメタノール分散体(IV)100gにそれぞれ表2に示す量のシランカップリング剤と12-ヒドロキシステアリン酸(と有機溶媒)を加えて、得られた酸化チタン粒子のメタノール(と有機溶媒の)分散体を表2に示す温度で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を表2に示す溶媒置換方法にて溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子の有機溶媒分散体を得た。
比較例1
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)に3-メタクリロイルオキシプロピルトリメトキシシランと12-ヒドロキシステアリン酸のいずれも加えることなく、MEKのみを加えて、得られた酸化チタン粒子のメタノールとMEKの分散体を温度23℃で5分間、攪拌した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、分散体は途中で白濁し、酸化チタン粒子が凝集してMEK分散体を得ることができなかった。
比較例2
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度24℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、分散体は途中で白濁し、酸化チタン粒子が凝集して、MEK分散体を得ることができなかった。
比較例3
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度25℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、途中で流動性を失ってゲル化してMEK分散体を得ることができなかった。
比較例4
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン3g(酸化チタン100重量部に対して20.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度26℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、途中で白濁し、酸化チタン粒子が凝集して、MEK分散体を得ることができなかった。
比較例5~7
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに表5に示す量のシランカップリング剤と12-ヒドロキシステアリン酸の両方またはいずれか一方とMEKを加えて、得られた酸化チタン粒子のメタノールとMEKの分散体を表5に示す温度にてそれぞれ5分間攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、途中で流動性を失ってゲル化してMEK分散体を得ることができなかった。
比較例8及び9
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに表5に示す量のシランカップリング剤と12-ヒドロキシステアリン酸とMEKを加えて、得られた酸化チタン粒子のメタノールとMEKの分散体を表5に示す温度にてそれぞれ5分間攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行って酸化チタン粒子含有率約15重量%の酸化チタン粒子の有機溶媒分散体を得たが、すぐにゲル化した。
比較例10
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)とステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MEKを加え、得られた酸化チタン粒子のメタノールとMEKの分散体を温度22℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子のMEK分散体を得たが、すぐにゲル化した。
比較例11
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MIBKを加え、得られた酸化チタン粒子のメタノールとMIBKの分散体を温度24℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行ったところ、途中で白濁し、酸化チタン粒子が凝集して、MIBK分散体を得ることができなかった。
比較例12
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えた後、MIBKを加え、得られた酸化チタン粒子のメタノールとMIBKの分散体を温度17℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法3にて溶媒置換を行って、酸化チタン粒子含有率約15重量%の酸化チタン粒子の有機溶媒分散体を得た。
得られた有機溶媒分散体はいずれも、製造から7日後にはゲル化した。
比較例13
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gを常圧下に加熱し、メタノールを完全に留出させた後、残留物を乾燥して、酸化チタン粉末を得た。
 得られた粉末に3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加え、乳鉢を用いて混合、即ち、乾式処理を行った。このようにして得られた酸化チタン粉末をMEKに加えて、攪拌し、放置したところ、酸化チタン粒子が沈降して、MEK分散体を得ることができなかった。
比較例14
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えて、温度25℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を常圧下に加熱し、メタノールを完全に留出させた後、残留物を乾燥して、酸化チタン粉末を得た。
 このようにして得られた酸化チタン粉末をMEKに加えて、攪拌し、放置したところ、酸化チタン粒子が沈降して、MEK分散体を得ることができなかった。
比較例15
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と酢酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えて、温度20℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法1にて溶媒置換を行ったところ、分散体は途中で白濁し、酸化チタン粒子が凝集してMEK分散体を得ることができなかった。
比較例16
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン12g(酸化チタン100重量部に対して80.0重量部)と12-ヒドロキシステアリン酸1.5g(酸化チタン100重量部に対して10.0重量部)を加えて、温度24℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法1にて溶媒置換を行ったところ、得られた有機溶媒分散体は、透過率の低いものであった。
比較例17
 上記参考例1において得られた酸化チタン粒子のメタノール分散体(II)100gに3-メタクリロイルオキシプロピルトリメトキシシラン1.5g(酸化チタン100重量部に対して10.0重量部)と12-ヒドロキシステアリン酸15g(酸化チタン100重量部に対して100.0重量部)を加えて、温度21℃で5分間、攪拌して、上記分散体を上記表面処理剤で処理した。
 このように処理した酸化チタン粒子の分散体を溶媒置換方法1にて溶媒置換を行ったところ、分散体は途中で白濁し、酸化チタン粒子が凝集してMEK分散体を得ることができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 

Claims (6)

  1.  酸化チタン粒子をメタノール及びエタノールを除く有機溶媒に分散させてなる酸化チタン粒子の有機溶媒分散体の製造方法であって、
    (a)酸化チタン粒子をメタノールとエタノールから選ばれる少なくとも1種のアルコール溶媒に分散させてなる酸化チタン粒子のアルコール分散体をシランカップリング剤と12-ヒドロキシステアリン酸を含む表面処理剤にて処理して、上記酸化チタン粒子を表面処理する表面処理工程と、
    (b)上記表面処理した酸化チタン粒子のアルコール分散体における分散媒である上記アルコール溶媒を上記アルコール溶媒以外の有機溶媒に置換する溶媒置換工程を含み、
     上記シランカップリング剤が一般式(I)
            (RO)-Si-X4-n      …(I)
    (式中、Rは炭素原子数1~4のアルキル基を示し、nは2又は3を示し、Xはアルキル基、フッ化アルキル基、ビニル基又は(メタ)アクリロイルオキシアルキル基を示す。)
    で表されるものである、酸化チタン粒子の有機溶媒分散体の製造方法。
  2.  酸化チタン粒子100重量部に対して前記シランカップリング剤1~40重量部と12-ヒドロキシステアリン酸1~80重量部を用いて酸化チタン粒子が表面処理されている請求項1に記載の酸化チタン粒子の有機溶媒分散体の製造方法。
  3.  前記有機溶媒がメチルイソブチルケトン、メチルエチルケトン、ブタノール、プロパノール、ジアセトンアルコール、プロピレングリコールモノメチルエーテル、トルエン、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N,2-トリメチルプロピオンアミド、γ―ブチロラクトン及び酢酸ブチルから選ばれる少なくとも1種である請求項1に記載の酸化チタン粒子の有機溶媒分散体の製造方法。
  4. 前記酸化チタン粒子のアルコール分散体が10重量%以上の酸化チタン粒子を含有し、D50が1~20nmの範囲にあり、波長500nmにおける透過率が40%以上であり、波長800nmにおける透過率が80%以上である請求項1に記載の酸化チタン粒子の有機溶媒分散体の製造方法。
  5.  前記表面処理工程において、前記酸化チタン粒子のアルコール分散体を前記アルコール溶媒以外の有機溶媒の存在下に前記表面処理剤にて処理する請求項1記載の酸化チタン粒子の有機溶媒分散体の製造方法。
  6.  前記表面処理工程において用いる前記酸化チタン粒子のアルコール分散体が次の工程(a)~(c)、即ち、
    (a)酢酸と硝酸の存在下に酸化チタン粒子の水スラリーを媒体撹拌ミル又は高圧分散機で湿式分散処理して、酸化チタン粒子の水分散体を得る工程、
    (b)上記工程(a)で得られた酸化チタン粒子の水分散体を洗浄する工程、
    (c)上記工程(b)で得られた酸化チタン粒子の水分散体の分散媒である水をメタノール及びエタノールから選ばれる少なくとも1種のアルコール溶媒に置換する工程、
    を含む方法によって得られたものである、請求項1に記載の酸化チタン粒子の有機溶媒分散体の製造方法。
PCT/JP2016/055312 2015-02-27 2016-02-23 酸化チタン粒子の有機溶媒分散体の製造方法 WO2016136765A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/552,525 US9963355B2 (en) 2015-02-27 2016-02-23 Method for producing organic solvent dispersion of titanium oxide particles
JP2016539341A JP6028958B1 (ja) 2015-02-27 2016-02-23 酸化チタン粒子の有機溶媒分散体の製造方法
EP16755509.3A EP3263527B1 (en) 2015-02-27 2016-02-23 Method for producing organic solvent dispersion of titanium oxide particles
CN201680012193.XA CN107250047B (zh) 2015-02-27 2016-02-23 氧化钛颗粒的有机溶剂分散体的制造方法
KR1020177026213A KR102537747B1 (ko) 2015-02-27 2016-02-23 산화티탄 입자의 유기 용매 분산체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038962 2015-02-27
JP2015-038962 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136765A1 true WO2016136765A1 (ja) 2016-09-01

Family

ID=56788616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055312 WO2016136765A1 (ja) 2015-02-27 2016-02-23 酸化チタン粒子の有機溶媒分散体の製造方法

Country Status (7)

Country Link
US (1) US9963355B2 (ja)
EP (1) EP3263527B1 (ja)
JP (1) JP6028958B1 (ja)
KR (1) KR102537747B1 (ja)
CN (1) CN107250047B (ja)
TW (1) TWI688548B (ja)
WO (1) WO2016136765A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163976A1 (ja) 2018-02-26 2019-08-29 丸善石油化学株式会社 表面修飾粒子およびその製造方法
JPWO2019189307A1 (ja) * 2018-03-28 2021-03-11 石原産業株式会社 酸化チタン粒子及びその製造方法
WO2023248996A1 (ja) * 2022-06-23 2023-12-28 東京応化工業株式会社 金属酸化物分散液、及びこれを用いた金属酸化物膜の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102466600B1 (ko) * 2015-02-27 2022-11-11 사까이가가꾸고오교가부시끼가이샤 산화티탄 입자의 유기 용매 분산체와 그 제조 방법
CN111253781B (zh) * 2020-03-13 2021-08-24 广东工业大学 一种复合改性钛白粉及其制备方法和应用
CN114539817A (zh) * 2022-03-11 2022-05-27 集美精化科技(广西)有限公司 一种改性钛白粉的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010533A1 (en) * 2006-07-18 2008-01-24 Nippon Shokubai Co., Ltd. Metal oxide nanoparticle and method for producing the same
WO2010095726A1 (ja) * 2009-02-19 2010-08-26 堺化学工業株式会社 ルチル型酸化チタン粒子の分散体とその製造方法とその利用
WO2011052762A1 (ja) * 2009-10-29 2011-05-05 堺化学工業株式会社 無機酸化物微粒子の有機溶媒分散体の製造方法
JP2012521442A (ja) * 2009-03-23 2012-09-13 コボ プロダクツ インコーポレイテッド 自己分散性金属酸化物コーティング粉末、その製造方法及び使用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181136A (ja) * 1999-12-27 2001-07-03 Daito Kasei Kogyo Kk 化粧料用顔料およびその顔料を含む化粧料
US7737187B2 (en) * 2003-12-19 2010-06-15 Nissan Chemical Industries, Ltd. Process for producing inorganic oxide organosol
JP5046482B2 (ja) 2003-12-26 2012-10-10 富士フイルム株式会社 無機酸化物微粒子分散物の製造方法、無機酸化物微粒子分散物、コーティング組成物、光学フィルム、反射防止フィルム、偏光板、及び液晶表示装置
US20060042512A1 (en) * 2004-08-30 2006-03-02 Craig Daniel H Surface-treated pigments
JP5239122B2 (ja) * 2006-03-03 2013-07-17 信越化学工業株式会社 オルガノポリシロキサン粉体処理剤及び該処理剤により処理された粉体並びに該粉体を含有する化粧料
JP5142617B2 (ja) 2007-07-31 2013-02-13 日揮触媒化成株式会社 金属酸化物粒子の表面処理方法、該表面処理金属酸化物粒子を含む分散液、透明被膜形成用塗布液および透明被膜付基材
JP2010192683A (ja) 2009-02-18 2010-09-02 Renesas Electronics Corp カラーccdリニアイメージセンサ
CA2808352C (en) * 2010-08-17 2018-01-30 Sakai Chemical Industry Co., Ltd. Process for producing dispersion of particles of rutile titanium oxide
KR102466600B1 (ko) * 2015-02-27 2022-11-11 사까이가가꾸고오교가부시끼가이샤 산화티탄 입자의 유기 용매 분산체와 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010533A1 (en) * 2006-07-18 2008-01-24 Nippon Shokubai Co., Ltd. Metal oxide nanoparticle and method for producing the same
WO2010095726A1 (ja) * 2009-02-19 2010-08-26 堺化学工業株式会社 ルチル型酸化チタン粒子の分散体とその製造方法とその利用
JP2012521442A (ja) * 2009-03-23 2012-09-13 コボ プロダクツ インコーポレイテッド 自己分散性金属酸化物コーティング粉末、その製造方法及び使用
WO2011052762A1 (ja) * 2009-10-29 2011-05-05 堺化学工業株式会社 無機酸化物微粒子の有機溶媒分散体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163976A1 (ja) 2018-02-26 2019-08-29 丸善石油化学株式会社 表面修飾粒子およびその製造方法
JPWO2019189307A1 (ja) * 2018-03-28 2021-03-11 石原産業株式会社 酸化チタン粒子及びその製造方法
JP7186362B2 (ja) 2018-03-28 2022-12-09 石原産業株式会社 酸化チタン粒子及びその製造方法
WO2023248996A1 (ja) * 2022-06-23 2023-12-28 東京応化工業株式会社 金属酸化物分散液、及びこれを用いた金属酸化物膜の製造方法

Also Published As

Publication number Publication date
KR102537747B1 (ko) 2023-05-26
JP6028958B1 (ja) 2016-11-24
US20180029897A1 (en) 2018-02-01
EP3263527A4 (en) 2018-08-22
US9963355B2 (en) 2018-05-08
CN107250047B (zh) 2020-01-24
KR20170124561A (ko) 2017-11-10
EP3263527B1 (en) 2020-05-27
TWI688548B (zh) 2020-03-21
JPWO2016136765A1 (ja) 2017-04-27
CN107250047A (zh) 2017-10-13
EP3263527A1 (en) 2018-01-03
TW201641429A (zh) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6011749B1 (ja) 酸化チタン粒子の有機溶媒分散体とその製造方法
JP5950060B1 (ja) 酸化ジルコニウム粒子の有機溶媒分散体とその製造方法
JP6028958B1 (ja) 酸化チタン粒子の有機溶媒分散体の製造方法
WO2012023621A1 (ja) ルチル型酸化チタン粒子の分散体の製造方法
JP6065164B1 (ja) 酸化チタン粒子の分散液の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016539341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15552525

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177026213

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755509

Country of ref document: EP