WO2016136550A1 - Electrode unit and method for producing electrode unit - Google Patents

Electrode unit and method for producing electrode unit Download PDF

Info

Publication number
WO2016136550A1
WO2016136550A1 PCT/JP2016/054542 JP2016054542W WO2016136550A1 WO 2016136550 A1 WO2016136550 A1 WO 2016136550A1 JP 2016054542 W JP2016054542 W JP 2016054542W WO 2016136550 A1 WO2016136550 A1 WO 2016136550A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode plate
electrode
tab
active material
Prior art date
Application number
PCT/JP2016/054542
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 弘瀬
寛恭 西原
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2016550657A priority Critical patent/JP6693419B2/en
Publication of WO2016136550A1 publication Critical patent/WO2016136550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode unit having an electrode plate, and a method of manufacturing the electrode unit.
  • the electrode unit is used, for example, in a secondary battery.
  • the secondary battery disclosed in Japanese Patent Application Laid-Open No. 2007-27027 has an electrode assembly in which a plurality of positive electrode plates and negative electrode plates are alternately stacked with a thin film separator interposed therebetween.
  • the electrode assembly is manufactured by repeatedly overlapping a separator-wrapped positive electrode plate and a negative electrode plate, which are separately provided in advance.
  • JP 2007-27027 A an electrode assembly is manufactured by repeatedly stacking a positive electrode plate and a negative electrode plate. Therefore, it takes a long time to laminate by the number of electrode plates, which is inefficient.
  • an electrode unit includes a first electrode plate on which a first active material layer is formed, a first separator covering a first surface of the first electrode plate, and a first electrode plate It has the 2nd separator which covers the 2nd side opposite to a side. Furthermore, the electrode unit has a second electrode plate facing the first electrode plate via the first separator or the second separator, and the second electrode plate has a second active material different in polarity from the first electrode plate. A layer is formed.
  • the first electrode plate includes the first separator and the second electrode formed by bonding a first bonding portion formed in a part of the first separator and a second bonding portion formed in a portion of the second separator.
  • the edge part of a 2nd electrode plate is provided with the 2nd active material layer non-formation area
  • the second electrode plate is bonded to either the first bonding portion of the first separator or the second bonding portion of the second separator in the second active material layer non-forming region to form the first separator and the first electrode. It is integrated with the plate and the second separator.
  • the first electrode plate integrally covered with the first separator and the second separator and the second electrode plate are integrated via the first separator or the second separator.
  • the electrode units By stacking the electrode units in order, it is possible to manufacture an electrode assembly in which a plurality of first electrode plates and a plurality of second electrode plates are alternately stacked via a separator.
  • a conventional electrode assembly is manufactured by sequentially laminating the first electrode plate and the second electrode plate wrapped in the separator. Compared to the method, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
  • the second active material layer non-forming region may include a tab portion having a shape protruding from the edge of the second electrode plate.
  • the second electrode plate may be joined to either the first joining portion of the first separator or the second joining portion of the second separator in the tab portion.
  • the electrode unit may have the following configuration instead of the above configuration.
  • the electrode unit includes a first electrode plate on which a first active material layer is formed, a first separator covering a first surface of the first electrode plate, and a second of the first electrode plate opposite to the first surface. It has the 2nd separator which covers a field.
  • the electrode unit has a second electrode plate facing the first electrode plate via the first separator or the second separator, and the second electrode plate has a second active material different in polarity from the first electrode plate.
  • a layer is formed.
  • the first electrode plate is formed by welding the first welded portion formed in a part of the first separator and the second welded portion formed in a part of the second separator.
  • the second electrode plate has a tab portion that protrudes in one direction.
  • the tab portion is a second active material layer non-forming region in which the second active material layer is not formed.
  • the second electrode plate is welded to either the first weld portion of the first separator or the second weld portion of the second separator in the tab portion, and the first separator, the first electrode plate, and the second separator It is considered one.
  • the first electrode plate integrally covered with the first separator and the second separator and the second electrode plate are integrated via the first separator or the second separator.
  • the electrode units By stacking the electrode units in order, it is possible to manufacture an electrode assembly in which a plurality of first electrode plates and a plurality of second electrode plates are alternately stacked via a separator.
  • a conventional electrode assembly is manufactured by sequentially laminating the first electrode plate and the second electrode plate wrapped in the separator. Compared to the method, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
  • each of the first welded portion of the first separator and the second welded portion of the second separator is a portion where the first electrode plate is opposed in a direction parallel to the first surface or the second surface.
  • the welds are located on both the upper and lower sides or both left and right sides of the first electrode plate. Therefore, the movement of the first electrode plate is restricted by the welding portion. The first electrode plate is then positioned between the facing welds.
  • the first electrode plate may have a first tab portion protruding in one direction.
  • the first tab portion is a first active material layer non-forming region in which the first active material layer is not formed.
  • the first tab portion is welded to the first welded portion of the first separator and the second welded portion of the second separator. This prevents the first electrode plate from being displaced relative to the two separators.
  • the second active material layer non-forming region is at least a tab facing edge peripheral portion that is a periphery of the edge opposite to the projecting direction of the tab portion; It can be provided on the part.
  • the periphery of the tab facing edge of the second electrode plate may be welded to either the first weld of the first separator or the second weld of the second separator.
  • the second electrode plate end portions on opposite sides in the surface thereof are welded to the first separator or the second separator.
  • both upper and lower sides or both left and right sides of the second electrode plate are welded to the first separator or the second separator.
  • the first electrode plate may be a positive electrode and the second electrode plate may be a negative electrode. Therefore, by laminating the electrode unit, an electrode assembly in which the positive electrode and the negative electrode are alternately stacked can be formed.
  • Another feature relates to a method of manufacturing an electrode unit.
  • the first surfaces of the plurality of first electrode plates arranged in a line at predetermined intervals are covered with the elongated first separator, and the second surfaces of the plurality of first electrode plates are elongated. Covered with a second separator.
  • the second electrode plate is overlapped from the side of the first separator or the side of the second separator so as to face the first electrode plate via the first separator or the second separator. Welding is performed between the first welding portion of the first separator and the second welding portion of the second separator.
  • the first separator and the second separator are cut between the adjacent first electrode plates.
  • the first separator, the first electrode plate, the second separator, and the second electrode plate are integrated by the first welded portion of the first separator and the second welded portion of the second separator.
  • both separators are welded in the first separator, the first electrode plate, the second separator, and the second electrode plate which are stacked. Thereafter, both separators are cut between the adjacent first electrode plates. Thereby, an electrode unit can be manufactured.
  • the first separator, the first electrode plate, the second separator, and the second electrode plate, which are stacked are made of the first separator from both sides in the stacking direction.
  • the heated melting tool is pressed at the positions of the first welded portion and the second welded portion of the second separator. Thereby, the first welded portion of the first separator and the second welded portion of the second separator are welded. Then, the first separator, the first electrode plate, the second separator, and the second electrode plate are integrated.
  • the first separator, the first electrode plate, the second separator, and the second electrode plate are integrated only by welding the welded portions of the first separator and the second separator. Therefore, the manufacturing efficiency of the electrode unit is improved.
  • FIG. 10 is a cross-sectional view in the direction of arrows XI-XI in FIG. 9; It is a front view of the electrode unit concerning other embodiments. It is a front view of the electrode unit concerning other embodiments.
  • an electrode assembly 20 and an electrolyte (not shown) are accommodated in the storage device 10 which is a lithium ion secondary battery.
  • Power storage device 10 supplies power to the outside at the time of discharge through two external connection terminals 14 and 16 penetrating the upper surface of case 12 and is supplied from the outside at the time of charge.
  • the electrode assembly 20 is configured by laminating a plurality of electrode units 30, as shown in FIG.
  • the electrode unit 30 includes a positive electrode plate 40 which is a first electrode plate, a first separator 50 which covers the entire area of the first surface (the back surface side in FIG. 3) of the positive electrode plate 40; A second separator 60 which covers the entire area of the second surface opposite to the first surface of the plate 40, and a negative electrode which is a second electrode plate facing the entire second surface of the positive electrode plate 40 with the second separator 60 in between. And a plate 70.
  • a portion of the negative electrode plate 70 excluding the leading end portion of the negative electrode plate tab portion 70T described later is located within the range of both the separators 50 and 60.
  • the negative electrode plate 70 be disposed on either side of the electrode assembly 20 in the stacking direction of the electrode unit 30.
  • the positive electrode plate 40 is disposed at the end of the stacked electrode unit 30 group with the first separator 50 interposed therebetween. Ru. Therefore, it is preferable to add one negative electrode plate 70 to the end of the stacked electrode unit 30 group.
  • the positive electrode plate 40 has a substantially rectangular current collector 42 as shown in FIGS.
  • the current collector 42 is a metal foil such as an aluminum foil, for example.
  • a positive electrode active material layer 44 which is a first active material layer is formed on substantially the entire area of both surfaces of the current collector 42.
  • the positive electrode active material layer 44 is formed, for example, by applying a positive electrode active material such as a lithium-containing metal oxide to the current collector 42.
  • the positive electrode plate 40 has a substantially rectangular positive electrode plate tab portion (first tab portion) 40T which protrudes from a positive electrode plate tab side 40a which is one side of a substantially rectangular shape.
  • the positive electrode plate tab portion 40T extends beyond the upper edges of both the separators 50, 60 as shown in FIGS.
  • Both surfaces of the positive electrode plate tab portion 40T are a positive electrode active material layer non-forming region (first active material layer non-forming region) 40N in which the positive electrode active material layer 44 is not formed. As shown in FIG. 1, the positive electrode plate tab portions 40T of the respective positive electrode plates 40 are combined into one and connected to one external connection terminal 14.
  • the negative electrode plate 70 has a current collector 72.
  • the current collector 72 is configured in a substantially rectangular shape that is slightly larger than the current collector 42 of the positive electrode plate 40.
  • the current collector 72 is a metal foil such as copper foil, for example.
  • a negative electrode active material layer 74 which is a second active material layer is formed on the entire area of both surfaces of the current collector 72.
  • the negative electrode active material layer 74 is formed, for example, by applying a negative electrode active material such as carbon to the current collector 72.
  • the negative electrode plate 70 has a substantially rectangular negative electrode plate tab portion (tab portion) 70T which protrudes from the negative electrode plate tab side 70a which is one side of a substantially rectangular shape.
  • the negative electrode tab portion 70T extends beyond the upper edges of the separators 50 and 60 as shown in FIGS.
  • a negative electrode active material layer non-forming region (second active material layer non-forming region) 70N in which the negative electrode active material layer 74 is not formed is both surfaces of the negative electrode plate tab portion 70T.
  • the negative electrode tab portions 70T of the respective negative electrode plates 70 are combined into one and connected to one external connection terminal 16.
  • the first separator 50 and the second separator 60 are, for example, thin films made of an insulating resin material as shown in FIGS. Both of the separators 50 and 60 are formed in a substantially rectangular shape which is one size larger than the current collector 72 of the negative electrode plate 70.
  • the positive electrode plate 40, the negative electrode plate 70, the first separator 50, and the second separator 60 are joined and integrated in two joining regions (F 1 and F 2).
  • the bonding regions (F1, F2) are welding regions formed by, for example, melting a part of the first separator 50 and the second separator 60 with a laser or the like.
  • the tab side welding area (bonding area) F1 which is one of the bonding areas is continuous from the outside of the negative electrode tab side 70a along the entire length of the negative electrode tab side 70a in the front view shown in FIG. It extends to a position beyond both ends of the tab edge 70a.
  • the tab-facing side welding area (joining area) F2 which is the other joining area, is continuous with the outside of the negative-plate tab opposing side 70b along the entire length of the negative-plate tab opposing side 70b in the front view shown in FIG. , And extends to a position beyond both ends of the negative electrode plate tab opposing side 70b.
  • the negative electrode tab side 70a is one side of the negative electrode plate 70 on which the negative electrode tab portion 70T is formed.
  • the negative electrode plate tab opposing side 70 b is another side of the negative electrode plate 70 opposite to the negative electrode plate tab side 70 a.
  • the tab side welding area F1 includes a first tab side joint (first joint or first weld) 50a and a second tab side joint (second joint or second weld) 60a.
  • the first tab side joint portion 50a and the second tab side joint portion 60a are formed, for example, by melting the first separator 50 and the second separator 60 with a laser.
  • the first tab side joint portion 50a and the second tab side joint portion 60a are continuously formed across the entire tab side welding area F1 (see FIG. 2).
  • both tab edge joint portions 50a and 60a are intermittently provided in the tab edge welding area F1 (see FIG. 2).
  • FIG. 1 As shown in FIG.
  • the first tab side joint portion 50a and the second tab side joint portion 60a are joined, for example, welded to the positive plate tab portion 40T at a position corresponding to the positive plate tab portion 40T.
  • the second tab side joint portion 60a is joined, for example, welded to the negative electrode tab portion 70T at a position corresponding to the negative electrode tab portion 70T.
  • the welding (joining) point Y is shown by a thick solid line.
  • the tab opposing side welding area F2 has a first tab opposing side joint (first joint or first welding) 50b and a second tab opposing side joint (second joint or second welding). Part) 60b.
  • the first tab facing side joint portion 50b and the second tab facing side joint portion 60b are formed, for example, by melting a part of the first separator 50 and the second separator 60 with a laser.
  • the first tab facing side joint portion 50b and the second tab facing side joint portion 60b are continuously formed across the entire tab facing side welding area F2 (see FIG. 2).
  • both tab facing side joint portions 50b and 60b are formed intermittently in the tab facing side welding area F2.
  • the tab side joint portions 50a and 60a are joined to each other by welding or the like in the tab side welding area F1.
  • the two tab opposing side joint portions 50b and 60b are joined to each other by welding or the like in the tab opposing side welding region F2.
  • the tab side welding area F1 is positioned along the positive electrode plate tab side 40a
  • the tab opposing side welding area F2 is positioned along the positive electrode plate tab opposing side 40b.
  • the two separators 50 and 60 are welded to each other at two opposing positions located on both sides of the positive electrode plate 40. Therefore, the positive electrode plate 40 is encased in both separators 50 and 60, and is integrated with both separators 50 and 60.
  • the negative electrode tab portion 70T is welded to the second tab side joint portion 60a. Therefore, the negative electrode plate 70 is integrated with the positive electrode plate 40 and the first separator 50 by the second separator 60.
  • the positive electrode plate tab side 40a is one side of the positive electrode plate 40 on which the positive electrode plate tab portion 40T is formed.
  • the positive electrode plate tab opposing side 40 b is another side of the positive electrode plate 40 opposite to the positive electrode plate tab side 40 a.
  • the positive electrode plate 40 is directed in the vertical direction in FIGS. 2 and 4 by two joint portions facing each other with the positive electrode plate 40 in between, that is, both tab side joint portions 50a and 60a and both tab opposite side joint portions 50b and 60b. Movement is regulated. Thereby, the positive electrode plate 40 is positioned between the both tab side joint portions 50a, 60a and the both tab opposing side joint portions 50b, 60b. By welding the positive electrode plate tab portion 40T to the both tab side joint portions 50a and 60a, displacement of the positive electrode plate 40 with respect to both the separators 50 and 60 is prevented.
  • the positive electrode plate tab portion 40T may be welded to only one of the both tab side joint portions 50a and 60a.
  • the electrode unit 30 is manufactured in each process shown in FIG. First, in the wrapping step S1, the positive electrode plate 40 transported in a line at a predetermined interval is covered with separators from both upper and lower sides. A first surface of the positive electrode plate 40 is covered by a long first separator 50, and a second surface is covered by a long second separator 60. Each of the first separator 50 and the second separator 60 is unwound from the corresponding roll body 302 and pressed against the positive electrode plate 40 by the two opposing pressing rolls 304.
  • the negative electrode plate 70 is stacked from the side of the second separator 60 on the positive electrode plate 40 sandwiched between the separators 50 and 60.
  • the negative electrode plate 70 is superimposed on the second separator 60 such that the negative electrode plate 70 faces the entire second surface of the positive electrode plate 40 with the second separator therebetween.
  • both the melting tools 306 have a cylindrical main portion 306a, and have disk portions 306b larger in diameter than the main portion 306a at both axial ends of the main portion 306a.
  • the tab side welding area F1 and the tab opposing side welding area F2 are respectively melted.
  • both tab side joint portions 50a and 60a shown in FIG. 4 are melted, and both tab side joint portions 50a and 60a and the positive electrode plate tab portion 40T are welded, and a second tab side joint portion 60a and the negative electrode tab portion 70T are welded.
  • both tab facing side joint portions 50b and 60b shown in FIG. 4 are welded.
  • the disc portions 306 b of the two melting tools 306 are continuously pressed against each other while rotating while being superimposed on the stacked first separator 50, positive electrode plate 40, second separator 60, and negative electrode plate 70.
  • the tab side welding area F1 and the tab opposing side welding area F2 are continuously formed.
  • a cutting step S4 is performed.
  • the first separator 50 and the second separator 60 are cut, for example, by a cutter (not shown) between the adjacent negative electrode plates 70.
  • the electrode unit 30 in which the first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70 are integrated is completed.
  • the laminating apparatus 320 has a laminating box 324 for laminating the electrode unit 30, and a slide surface 322 located above the laminating box 324 for dropping the electrode unit 30 into the laminating box 324.
  • the stacked box 324 is in the form of a rectangular parallelepiped opened upward, and the bottom surface 324 a is arranged to be inclined at a predetermined angle V with respect to the horizontal surface W.
  • the electrode units 30 dropped into the stack box 324 from the slide surface 322 are stacked in order on the side surface of the stack box 324 located on the lower side.
  • Each electrode unit 30 is dropped into the stacking box 324 in a standing state in which both tab portions 40T and 70T face upward, and is stacked in the standing state.
  • the positive electrode plate 40 and the negative electrode plate 70 integrally covered with the first separator 50 and the second separator 60 are integrated with the second separator 60 in between. Therefore, when the electrode units 30 are sequentially stacked in the stacking box 324, an electrode assembly 20 in which a plurality of positive electrode plates 40 and a plurality of negative electrode plates 70 are alternately stacked with a separator interposed therebetween is manufactured. According to the method of manufacturing the electrode assembly 20 by sequentially stacking the electrode units 30 in this manner, compared to the conventional method of manufacturing the electrode assembly by sequentially laminating the positive electrode plate and the negative electrode plate wrapped by the separator Thus, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
  • the negative electrode plate 70 be disposed at each end of the electrode assembly 20 in the stacking direction of the electrode unit 30.
  • the positive electrode plate 40 is interposed with the first separator 50 at the end of the stacked electrode unit 30 group. Will be placed. Therefore, it is preferable that one negative electrode plate 70 be additionally disposed at the end of the stacked electrode unit 30 group.
  • the tab side welding area F1 and the tab opposing side welding area F2 with respect to the stacked first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70. Weld the position of. The first separator 50, the positive electrode plate 40, the second separator 60, and the second negative electrode plate 70 are integrated by only this welding step. Thereby, the manufacturing efficiency of the electrode unit 30 is good.
  • the negative electrode plate 70 may be superimposed from the side of the first separator 50.
  • the negative electrode plate 70 is disposed to face the entire first surface of the positive electrode plate 40 with the first separator 50 therebetween.
  • the first tab side joint portion 50a and the negative electrode plate tab portion 70T are welded in the tab side welding area F1.
  • the negative electrode plate 70 may be wrapped by the first separator 50 and the second separator 60, and the positive electrode plate 40 may be stacked on the first separator 50 or the second separator 60.
  • the tab side welding area F1 includes a portion where both tab side joint portions 50a and 60a are welded, a portion where both tab side joint portions 50a and 60a and the negative electrode tab portion 70T are welded, and a positive electrode plate A tab edge welding portion of the separator facing the tab portion 40T and a portion to which the positive electrode plate tab portion 40T is welded are provided.
  • electrode units 30 a to 30 c shown in FIGS. 6 to 8 may be employed.
  • the electrode unit 30a shown in FIG. 6 has a tab side welding area F3 formed only on the periphery of the negative electrode tab portion 70T instead of the tab side welding area F1 shown in FIG.
  • the electrode unit 30b shown in FIG. 7 has a tab side welding area F3 formed only on the periphery of the negative electrode tab portion 70T instead of the tab side welding area F1 shown in FIG. There is no area F2.
  • the electrode unit 30c shown in FIG. 8 has the tab side welding area F1, it does not have the tab facing side welding area F2 shown in FIG.
  • FIGS. 6 to 8 and FIGS. 9 to 13 described below the same reference numerals are given to portions having the same or equivalent configurations and functions as those of FIGS.
  • an electrode unit 30d shown in FIGS. 9 to 11 may be employed.
  • the negative electrode active material layer non-forming region 70N is formed on both sides of the peripheral portion (tab peripheral edge peripheral portion) 76 which is a periphery of the negative electrode plate tab opposing side 70b in the negative electrode plate 70.
  • the negative electrode active material layer non-forming region 70N of the peripheral portion 76 has a predetermined width H from the negative electrode plate tab opposing side 70b, and is continuous along the negative electrode plate tab opposing side 70b.
  • the negative electrode tab opposite side 70b is located on the opposite side of the edge having the negative electrode tab portion 70T, as is clear from FIGS.
  • the tab facing side welding area F4 of the electrode unit 30d is provided at a position corresponding to the negative electrode active material layer non-forming area 70N of the peripheral portion 76.
  • the tab facing side welding area F4 is continuous along the entire length of both tab facing sides 40b and 70b between the positive plate tab facing side 40b and the negative plate tab facing side 70b, as shown in FIG. It extends beyond the both ends of the negative electrode tab opposite side 70b.
  • both tab facing side joint portions 50c and 60c are welded to each other. Further, in the tab facing side welding area F4, the second tab facing side joint portion 60c is welded to the negative electrode active material layer non-forming area 70N of the peripheral portion 76.
  • the tab side welding area F1 is located in the vicinity of the negative electrode tab side 70a of the negative electrode plate 70, and the negative electrode tab portion 70T is welded to the second separator 60 in the tab side welding area F1.
  • a peripheral portion 76 is provided in the vicinity of the negative electrode plate tab opposing side 70 b facing the negative electrode plate tab side 70 a, and the peripheral portion 76 is welded to the second separator 60. Therefore, both ends of the negative electrode plate 70 are welded to the second separator 60. As a result, the negative electrode plate 70 is difficult to move relative to the second separator 60, and the state in which the negative electrode plate 70 faces the positive electrode plate 40 is always maintained.
  • the tab facing side welding area F4 may be formed along the entire length in the longitudinal direction of the negative electrode plate 70 or the entire length in the longitudinal direction of the separators 50, 60, or may be formed intermittently along the edge of the negative electrode plate 70.
  • the mutual welding of both tab facing side joints 50c, 60c may be intermittent along the edge of the separators 50, 60.
  • the welding between the second tab facing side joint portion 60c and the negative electrode active material layer non-forming region 70N of the peripheral portion 76 may be intermittently formed along the edge of the negative electrode plate 70.
  • the electrode unit 30e has a tab side welding area F3 formed only around the negative electrode plate tab portion 70T, and a tab opposing side welding area F4 for welding the negative electrode plate 70 and the second separator 60. It may be As shown in FIG. 13, the electrode unit 30f may not have the tab side welding area F1 shown in FIG. 9 etc., and may have the tab facing side welding area F4. In FIGS. 12 and 13, parts having the same or equivalent configurations and functions as those in FIGS.
  • the second electrode plate is joined to either the first joining portion of the first separator or the second joining portion of the second separator in the region where the second active material layer is not formed.
  • the negative electrode plate 70 of FIG. 4 is welded to the second tab side joint portion 60a of the second separator 60 in the negative electrode active material layer non-forming region 70N.
  • the negative electrode plate 70 of FIG. 13 is welded to a part of the second separator 60 in the negative electrode active material layer non-forming region 70N.
  • the second electrode plate may be bonded by an adhesive to the first bonding portion or the second bonding portion, and may be bonded by a bonding double-sided tape.

Abstract

This electrode unit (30) comprises: a first electrode plate (40) that is provided with a first active material layer; a first separator (50) that covers a first surface of the first electrode plate (40); and a second separator (60) that covers a second surface of the first electrode plate (40). This electrode unit (30) additionally comprises a second electrode plate (70) that is provided with a second active material layer which has a polarity different from that of the first electrode plate (40). The first electrode plate (40) is enclosed by the first separator (50) and the second separator (60) by having first bonding parts (50a, 50b) of the first separator (50) and second bonding parts (60a, 60b) of the second separator (60) bonded with each other. A peripheral part of the second electrode plate (70) is provided with a second active material layer-free region (70N), in which the second active material layer is not formed. The second active material layer-free region (70N) is bonded with the first bonding parts (50a, 50b) or the second bonding parts (60a, 60b).

Description

電極ユニット、及び電極ユニットの製造方法Electrode unit and method of manufacturing electrode unit
 本発明は、電極板を有する電極ユニット、及び当該電極ユニットの製造方法に関する。電極ユニットは、例えば2次電池に使用される。 The present invention relates to an electrode unit having an electrode plate, and a method of manufacturing the electrode unit. The electrode unit is used, for example, in a secondary battery.
 特開2007-27027号公報に開示された2次電池は、複数の正極板と負極板とが薄膜状のセパレータを挟んで交互に積層された電極組立体を有する。この電極組立体は、予め別体として設けられた、セパレータで包まれた正極板と、負極板とを繰り返し重ね合わせて製造されている。 The secondary battery disclosed in Japanese Patent Application Laid-Open No. 2007-27027 has an electrode assembly in which a plurality of positive electrode plates and negative electrode plates are alternately stacked with a thin film separator interposed therebetween. The electrode assembly is manufactured by repeatedly overlapping a separator-wrapped positive electrode plate and a negative electrode plate, which are separately provided in advance.
 特開2007-27027号公報では、正極板と、負極板とを繰り返し重ね合わせて電極組立体を製造する。そのため電極板の枚数分だけ積層に時間がかかり、効率が悪い。 In JP 2007-27027 A, an electrode assembly is manufactured by repeatedly stacking a positive electrode plate and a negative electrode plate. Therefore, it takes a long time to laminate by the number of electrode plates, which is inefficient.
 電極板の積層時間が短く、これにより電極組立体の製造効率の高い電極ユニットが従来必要とされている。 There has been a need in the past for an electrode unit having a short lamination time of the electrode plate, whereby the production efficiency of the electrode assembly is high.
 本発明の1つの特徴によると、電極ユニットは、第1活物質層が形成された第1電極板と、第1電極板の第1面を覆う第1セパレータと、第1電極板の第1面とは反対側の第2面を覆う第2セパレータを有する。さらに電極ユニットは、第1セパレータもしくは第2セパレータを介して第1電極板と対向する第2電極板を有し、第2電極板には、第1電極板とは極性の異なる第2活物質層が形成されている。第1電極板は、第1セパレータの一部に形成された第1接合部と、第2セパレータの一部に形成された第2接合部と、が接合されることで第1セパレータと第2セパレータとに包まれて第1セパレータ及び第2セパレータと一体とされている。第2電極板の縁部には、第2活物質層が形成されていない第2活物質層非形成領域が設けられる。第2電極板は、第2活物質層非形成領域において、第1セパレータの第1接合部もしくは第2セパレータの第2接合部、のいずれか一方と接合されて、第1セパレータと第1電極板と第2セパレータと一体とされている。 According to one aspect of the present invention, an electrode unit includes a first electrode plate on which a first active material layer is formed, a first separator covering a first surface of the first electrode plate, and a first electrode plate It has the 2nd separator which covers the 2nd side opposite to a side. Furthermore, the electrode unit has a second electrode plate facing the first electrode plate via the first separator or the second separator, and the second electrode plate has a second active material different in polarity from the first electrode plate. A layer is formed. The first electrode plate includes the first separator and the second electrode formed by bonding a first bonding portion formed in a part of the first separator and a second bonding portion formed in a portion of the second separator. It is wrapped in a separator and made integral with the first separator and the second separator. The edge part of a 2nd electrode plate is provided with the 2nd active material layer non-formation area | region in which the 2nd active material layer is not formed. The second electrode plate is bonded to either the first bonding portion of the first separator or the second bonding portion of the second separator in the second active material layer non-forming region to form the first separator and the first electrode. It is integrated with the plate and the second separator.
 したがって第1セパレータと第2セパレータとに一体に包まれた第1電極板と、第2電極板とが第1セパレータもしくは第2セパレータを介して一体となっている。この電極ユニットを順に積層することで、複数の第1電極板と複数の第2電極板とがセパレータを介して交互に積層された電極組立体を製造することができる。このようにして電極ユニットを順に積層して電極組立体を製造する方法によると、セパレータに包まれた第1電極板と、第2電極板とを順に積層して電極組立体を製造する従来の方法に比べて、電極板の積層時間が短縮され、電極組立体の製造効率が向上する。 Therefore, the first electrode plate integrally covered with the first separator and the second separator and the second electrode plate are integrated via the first separator or the second separator. By stacking the electrode units in order, it is possible to manufacture an electrode assembly in which a plurality of first electrode plates and a plurality of second electrode plates are alternately stacked via a separator. According to the method of manufacturing the electrode assembly by sequentially laminating the electrode units in this manner, a conventional electrode assembly is manufactured by sequentially laminating the first electrode plate and the second electrode plate wrapped in the separator. Compared to the method, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
 他の特徴によると、第2活物質層非形成領域は、第2電極板の縁部から突出した形状のタブ部を含み得る。第2電極板は、タブ部において、第1セパレータの第1接合部、もしくは第2セパレータの第2接合部、のいずれか一方と接合され得る。 According to another feature, the second active material layer non-forming region may include a tab portion having a shape protruding from the edge of the second electrode plate. The second electrode plate may be joined to either the first joining portion of the first separator or the second joining portion of the second separator in the tab portion.
 他の特徴によると、電極ユニットは、上述の構成に代えて以下の構成であっても良い。例えば電極ユニットは、第1活物質層が形成された第1電極板と、第1電極板の第1面を覆う第1セパレータと、第1電極板の第1面とは反対側の第2面を覆う第2セパレータを有する。さらに電極ユニットは、第1セパレータもしくは第2セパレータを介して第1電極板と対向する第2電極板を有し、第2電極板には、第1電極板とは極性の異なる第2活物質層が形成されている。第1電極板は、第1セパレータの一部に形成された第1溶着部と、第2セパレータの一部に形成された第2溶着部と、が溶着されることで第1セパレータと第2セパレータとに包まれて第1セパレータ及び第2セパレータと一体とされている。第2電極板は、一方向に突出したタブ部を有する。タブ部は、第2活物質層が形成されていない第2活物質層非形成領域である。第2電極板は、タブ部において、第1セパレータの第1溶着部もしくは第2セパレータの第2溶着部、のいずれか一方と溶着されて、第1セパレータと第1電極板と第2セパレータと一体とされている。 According to another feature, the electrode unit may have the following configuration instead of the above configuration. For example, the electrode unit includes a first electrode plate on which a first active material layer is formed, a first separator covering a first surface of the first electrode plate, and a second of the first electrode plate opposite to the first surface. It has the 2nd separator which covers a field. Furthermore, the electrode unit has a second electrode plate facing the first electrode plate via the first separator or the second separator, and the second electrode plate has a second active material different in polarity from the first electrode plate. A layer is formed. The first electrode plate is formed by welding the first welded portion formed in a part of the first separator and the second welded portion formed in a part of the second separator. It is wrapped in a separator and made integral with the first separator and the second separator. The second electrode plate has a tab portion that protrudes in one direction. The tab portion is a second active material layer non-forming region in which the second active material layer is not formed. The second electrode plate is welded to either the first weld portion of the first separator or the second weld portion of the second separator in the tab portion, and the first separator, the first electrode plate, and the second separator It is considered one.
 したがって第1セパレータと第2セパレータとに一体に包まれた第1電極板と、第2電極板とが第1セパレータもしくは第2セパレータを介して一体となっている。この電極ユニットを順に積層することで、複数の第1電極板と複数の第2電極板とがセパレータを介して交互に積層された電極組立体を製造することができる。このようにして電極ユニットを順に積層して電極組立体を製造する方法によると、セパレータに包まれた第1電極板と、第2電極板とを順に積層して電極組立体を製造する従来の方法に比べて、電極板の積層時間が短縮され、電極組立体の製造効率が向上する。 Therefore, the first electrode plate integrally covered with the first separator and the second separator and the second electrode plate are integrated via the first separator or the second separator. By stacking the electrode units in order, it is possible to manufacture an electrode assembly in which a plurality of first electrode plates and a plurality of second electrode plates are alternately stacked via a separator. According to the method of manufacturing the electrode assembly by sequentially laminating the electrode units in this manner, a conventional electrode assembly is manufactured by sequentially laminating the first electrode plate and the second electrode plate wrapped in the separator. Compared to the method, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
 他の特徴によると、第1セパレータの第1溶着部と第2セパレータの第2溶着部とのそれぞれは、第1電極板を第1面もしくは第2面に平行な方向に跨いで対向する箇所に設けられ得る。例えば溶着部は、第1電極板の上下両側、あるいは左右両側に位置する。そのため第1電極板の移動が溶着部によって規制される。そして第1電極板は、対向する溶着部の間で位置決めされる。 According to another feature, each of the first welded portion of the first separator and the second welded portion of the second separator is a portion where the first electrode plate is opposed in a direction parallel to the first surface or the second surface. Can be provided. For example, the welds are located on both the upper and lower sides or both left and right sides of the first electrode plate. Therefore, the movement of the first electrode plate is restricted by the welding portion. The first electrode plate is then positioned between the facing welds.
 他の特徴によると、第1電極板は、一方向に突出した第1タブ部を有し得る。第1タブ部は、第1活物質層が形成されていない第1活物質層非形成領域である。第1タブ部は、第1セパレータの第1溶着部及び第2セパレータの第2溶着部と溶着されている。これにより第1電極板が両セパレータに対して位置ズレすることが防止される。 According to another feature, the first electrode plate may have a first tab portion protruding in one direction. The first tab portion is a first active material layer non-forming region in which the first active material layer is not formed. The first tab portion is welded to the first welded portion of the first separator and the second welded portion of the second separator. This prevents the first electrode plate from being displaced relative to the two separators.
 他の特徴によると、第2活物質層非形成領域は、第2電極板において、少なくとも、タブ部の突出方向に対して反対側の縁部の周囲であるタブ対向縁部周囲部と、タブ部とに設けられ得る。第2電極板のタブ対向縁部周囲部が、第1セパレータの第1溶着部もしくは第2セパレータの第2溶着部のいずれか一方と溶着され得る。 According to another feature, in the second electrode plate, the second active material layer non-forming region is at least a tab facing edge peripheral portion that is a periphery of the edge opposite to the projecting direction of the tab portion; It can be provided on the part. The periphery of the tab facing edge of the second electrode plate may be welded to either the first weld of the first separator or the second weld of the second separator.
 したがって第2電極板は、その面上における相反する方向側の端部箇所が、第1セパレータもしくは第2セパレータと溶着されている。例えば第2電極板の上下両側、あるいは左右両側が第1セパレータもしくは第2セパレータと溶着されている。これにより第2電極板は、自身が溶着されたセパレータに対して位置決めされ、自身が溶着されたセパレータを介して常に正極板と対向した状態が維持される。 Therefore, in the second electrode plate, end portions on opposite sides in the surface thereof are welded to the first separator or the second separator. For example, both upper and lower sides or both left and right sides of the second electrode plate are welded to the first separator or the second separator. Thus, the second electrode plate is positioned with respect to the separator to which the second electrode plate is welded, and the state in which the second electrode plate always faces the positive electrode plate is maintained via the separator to which the second electrode plate is welded.
 他の特徴によると、第1電極板が正極であり、第2電極板が負極であり得る。したがって電極ユニットを積層することで、正極と負極とが交互に重ねられた電極組立体が形成され得る。 According to another feature, the first electrode plate may be a positive electrode and the second electrode plate may be a negative electrode. Therefore, by laminating the electrode unit, an electrode assembly in which the positive electrode and the negative electrode are alternately stacked can be formed.
 他の特徴は、電極ユニットの製造方法に関する。該製造方法によると、所定間隔をあけて一列に並べられた複数の第1電極板の第1面を長尺状の第1セパレータで覆い、複数の第1電極板の第2面を長尺状の第2セパレータで覆う。第1セパレータもしくは第2セパレータを介して第2電極板を第1電極板と対向するように第1セパレータの側もしくは第2セパレータの側から重ねる。第1セパレータの第1溶着部と第2セパレータの第2溶着部との溶着を行う。隣り合う第1電極板の間で第1セパレータと第2セパレータとを切断する。第1セパレータと第1電極板と第2セパレータと第2電極板とが第1セパレータの第1溶着部及び第2セパレータの第2溶着部によって一体とされる。 Another feature relates to a method of manufacturing an electrode unit. According to the manufacturing method, the first surfaces of the plurality of first electrode plates arranged in a line at predetermined intervals are covered with the elongated first separator, and the second surfaces of the plurality of first electrode plates are elongated. Covered with a second separator. The second electrode plate is overlapped from the side of the first separator or the side of the second separator so as to face the first electrode plate via the first separator or the second separator. Welding is performed between the first welding portion of the first separator and the second welding portion of the second separator. The first separator and the second separator are cut between the adjacent first electrode plates. The first separator, the first electrode plate, the second separator, and the second electrode plate are integrated by the first welded portion of the first separator and the second welded portion of the second separator.
 したがって重ねられた第1セパレータと第1電極板と第2セパレータと第2電極板とにおいて、両セパレータの溶着部の溶着を行う。その後、隣り合う第1電極板の間で両セパレータを切断する。これにより電極ユニットが製造され得る。 Therefore, the welded portions of both separators are welded in the first separator, the first electrode plate, the second separator, and the second electrode plate which are stacked. Thereafter, both separators are cut between the adjacent first electrode plates. Thereby, an electrode unit can be manufactured.
 他の特徴によると、電極ユニットの製造方法において、重ねられた第1セパレータと第1電極板と第2セパレータと第2電極板とに対して、これらの積層方向の両側から、第1セパレータの第1溶着部及び第2セパレータの第2溶着部の位置において、加熱状態の溶融具を押し付ける。これにより第1セパレータの第1溶着部と第2セパレータの第2溶着部とを溶着する。そして第1セパレータと第1電極板と第2セパレータと第2電極板とを一体とする。 According to another feature, in the method of manufacturing an electrode unit, the first separator, the first electrode plate, the second separator, and the second electrode plate, which are stacked, are made of the first separator from both sides in the stacking direction. The heated melting tool is pressed at the positions of the first welded portion and the second welded portion of the second separator. Thereby, the first welded portion of the first separator and the second welded portion of the second separator are welded. Then, the first separator, the first electrode plate, the second separator, and the second electrode plate are integrated.
 したがって第1セパレータ及び第2セパレータの溶着部を溶着するのみで、第1セパレータと第1電極板と第2セパレータと第2電極板とが一体とされる。そのため電極ユニットの製造効率が向上する。 Therefore, the first separator, the first electrode plate, the second separator, and the second electrode plate are integrated only by welding the welded portions of the first separator and the second separator. Therefore, the manufacturing efficiency of the electrode unit is improved.
電極組立体が収容された蓄電装置(2次電池)の外観斜視図である。It is an external appearance perspective view of the electrical storage apparatus (secondary battery) in which the electrode assembly was accommodated. 電極ユニットの正面図である。It is a front view of an electrode unit. 電極ユニットを分解斜視図である。It is an exploded perspective view of an electrode unit. 図2のIV-IV矢視方向の断面図である。It is sectional drawing of the IV-IV arrow direction of FIG. 電極ユニットの製造方法を表した工程説明図である。It is process explanatory drawing showing the manufacturing method of an electrode unit. 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments. 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments. 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments. 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments. 図9の電極ユニットの分解斜視図である。It is a disassembled perspective view of the electrode unit of FIG. 図9のXI-XI矢視方向の断面図である。FIG. 10 is a cross-sectional view in the direction of arrows XI-XI in FIG. 9; 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments. 他の実施形態に係る電極ユニットの正面図である。It is a front view of the electrode unit concerning other embodiments.
 以下、本発明を実施するための形態を、図面を用いて説明する。リチウムイオン2次電池である蓄電装置10の内部には、図1に示すように、電極組立体20と電解液(図示省略)とが収容されている。蓄電装置10は、ケース12の上面を貫通する2つの外部接続端子14,16を通じて、放電時においては外部に電力を供給し、充電時においては外部から電力が供給される。 Hereinafter, modes for carrying out the present invention will be described using the drawings. As shown in FIG. 1, an electrode assembly 20 and an electrolyte (not shown) are accommodated in the storage device 10 which is a lithium ion secondary battery. Power storage device 10 supplies power to the outside at the time of discharge through two external connection terminals 14 and 16 penetrating the upper surface of case 12 and is supplied from the outside at the time of charge.
 電極組立体20は、図1に示すように、複数の電極ユニット30を積層して構成されている。電極ユニット30は、図2~4で示すように、第1電極板である正極板40と、正極板40の第1面(図3において裏面側)の全域を覆う第1セパレータ50と、正極板40の第1面とは反対側の第2面の全域を覆う第2セパレータ60と、第2セパレータ60を間にして正極板40の第2面全域と対向する第2電極板である負極板70と、を有する。負極板70は、図2に示す正面視で、後述の負極板タブ部70Tの先端部を除く部分が両セパレータ50,60の範囲内に位置している。 The electrode assembly 20 is configured by laminating a plurality of electrode units 30, as shown in FIG. As shown in FIGS. 2 to 4, the electrode unit 30 includes a positive electrode plate 40 which is a first electrode plate, a first separator 50 which covers the entire area of the first surface (the back surface side in FIG. 3) of the positive electrode plate 40; A second separator 60 which covers the entire area of the second surface opposite to the first surface of the plate 40, and a negative electrode which is a second electrode plate facing the entire second surface of the positive electrode plate 40 with the second separator 60 in between. And a plate 70. In the front view shown in FIG. 2, a portion of the negative electrode plate 70 excluding the leading end portion of the negative electrode plate tab portion 70T described later is located within the range of both the separators 50 and 60.
 電極ユニット30の積層方向における電極組立体20の両側のいずれにも負極板70が配置されることが好ましい。例えば上述の電極ユニット30を、負極板70の側を前面側として順に積層していくと、積層された電極ユニット30群の最後尾には、第1セパレータ50を介して正極板40が配置される。そこで、この積層された電極ユニット30群の最後尾に負極板70を一枚追加して配置することが好ましい。 It is preferable that the negative electrode plate 70 be disposed on either side of the electrode assembly 20 in the stacking direction of the electrode unit 30. For example, when the above-described electrode unit 30 is sequentially stacked with the side of the negative electrode plate 70 as the front side, the positive electrode plate 40 is disposed at the end of the stacked electrode unit 30 group with the first separator 50 interposed therebetween. Ru. Therefore, it is preferable to add one negative electrode plate 70 to the end of the stacked electrode unit 30 group.
 正極板40は、図3,4に示すように、略矩形の集電体42を有する。集電体42は、例えばアルミニウム箔といった金属箔である。集電体42の両面の略全域には、第1活物質層である正極活物質層44が形成されている。正極活物質層44は、例えばリチウム含有金属酸化物といった正極活物質を集電体42に塗工することで形成されている。正極板40は、略矩形の一辺である正極板タブ辺40aから突出した略矩形の正極板タブ部(第1タブ部)40Tを有する。正極板タブ部40Tは、図2,4に示すように、両セパレータ50,60の上縁を越えて延びている。正極板タブ部40Tの両面は、正極活物質層44が形成されていない正極活物質層非形成領域(第1活物質層非形成領域)40Nである。各正極板40の正極板タブ部40Tは、図1に示すように、1つにまとめられて一方の外部接続端子14に接続されている。 The positive electrode plate 40 has a substantially rectangular current collector 42 as shown in FIGS. The current collector 42 is a metal foil such as an aluminum foil, for example. A positive electrode active material layer 44 which is a first active material layer is formed on substantially the entire area of both surfaces of the current collector 42. The positive electrode active material layer 44 is formed, for example, by applying a positive electrode active material such as a lithium-containing metal oxide to the current collector 42. The positive electrode plate 40 has a substantially rectangular positive electrode plate tab portion (first tab portion) 40T which protrudes from a positive electrode plate tab side 40a which is one side of a substantially rectangular shape. The positive electrode plate tab portion 40T extends beyond the upper edges of both the separators 50, 60 as shown in FIGS. Both surfaces of the positive electrode plate tab portion 40T are a positive electrode active material layer non-forming region (first active material layer non-forming region) 40N in which the positive electrode active material layer 44 is not formed. As shown in FIG. 1, the positive electrode plate tab portions 40T of the respective positive electrode plates 40 are combined into one and connected to one external connection terminal 14.
 負極板70は、図3,4に示すように、集電体72を有する。集電体72は、正極板40の集電体42より一回り大きい略矩形に構成されている。集電体72は、例えば銅箔といった金属箔である。集電体72の両面の全域には、第2活物質層である負極活物質層74が形成されている。負極活物質層74は、例えば炭素といった負極活物質を集電体72に塗工することで形成されている。負極板70は、略矩形の一辺である負極板タブ辺70aから突出した略矩形の負極板タブ部(タブ部)70Tを有する。負極板タブ部70Tは、図2,4に示すように、両セパレータ50,60の上縁を越えて延びている。負極板タブ部70Tの両面は、負極活物質層74が形成されていない負極活物質層非形成領域(第2活物質層非形成領域)70Nである。各負極板70の負極板タブ部70Tは、図1に示すように、1つにまとめられて一方の外部接続端子16に接続されている。 As shown in FIGS. 3 and 4, the negative electrode plate 70 has a current collector 72. The current collector 72 is configured in a substantially rectangular shape that is slightly larger than the current collector 42 of the positive electrode plate 40. The current collector 72 is a metal foil such as copper foil, for example. A negative electrode active material layer 74 which is a second active material layer is formed on the entire area of both surfaces of the current collector 72. The negative electrode active material layer 74 is formed, for example, by applying a negative electrode active material such as carbon to the current collector 72. The negative electrode plate 70 has a substantially rectangular negative electrode plate tab portion (tab portion) 70T which protrudes from the negative electrode plate tab side 70a which is one side of a substantially rectangular shape. The negative electrode tab portion 70T extends beyond the upper edges of the separators 50 and 60 as shown in FIGS. A negative electrode active material layer non-forming region (second active material layer non-forming region) 70N in which the negative electrode active material layer 74 is not formed is both surfaces of the negative electrode plate tab portion 70T. As shown in FIG. 1, the negative electrode tab portions 70T of the respective negative electrode plates 70 are combined into one and connected to one external connection terminal 16.
 第1セパレータ50と第2セパレータ60は、図2~4に示すように、例えば絶縁性の有る樹脂材製の薄膜である。両セパレータ50,60は、負極板70の集電体72よりも一回り大きい略矩形に構成されている。 The first separator 50 and the second separator 60 are, for example, thin films made of an insulating resin material as shown in FIGS. Both of the separators 50 and 60 are formed in a substantially rectangular shape which is one size larger than the current collector 72 of the negative electrode plate 70.
 正極板40と負極板70と第1セパレータ50と第2セパレータ60は、図2,4に示すように、2つの接合領域(F1,F2)において接合されて一体となっている。接合領域(F1,F2)は、例えば第1セパレータ50と第2セパレータ60の一部がレーザなどによって溶融されることで形成される溶着領域である。一方の接合領域であるタブ辺溶着領域(接合領域)F1は、図2に示す正面視で、負極板タブ辺70aの外側を負極板タブ辺70aの全長に沿って連続し、かつ、負極板タブ辺70aの両端部を越えた位置まで延びている。他方の接合領域であるタブ対向辺溶着領域(接合領域)F2は、図2に示す正面視で、負極板タブ対向辺70bの外側を負極板タブ対向辺70bの全長に沿って連続し、かつ、負極板タブ対向辺70bの両端部を越えた位置まで延びている。負極板タブ辺70aは、負極板タブ部70Tが形成された負極板70の1辺である。負極板タブ対向辺70bは、負極板タブ辺70aと対向する負極板70の他の1辺である。 As shown in FIGS. 2 and 4, the positive electrode plate 40, the negative electrode plate 70, the first separator 50, and the second separator 60 are joined and integrated in two joining regions (F 1 and F 2). The bonding regions (F1, F2) are welding regions formed by, for example, melting a part of the first separator 50 and the second separator 60 with a laser or the like. The tab side welding area (bonding area) F1 which is one of the bonding areas is continuous from the outside of the negative electrode tab side 70a along the entire length of the negative electrode tab side 70a in the front view shown in FIG. It extends to a position beyond both ends of the tab edge 70a. The tab-facing side welding area (joining area) F2, which is the other joining area, is continuous with the outside of the negative-plate tab opposing side 70b along the entire length of the negative-plate tab opposing side 70b in the front view shown in FIG. , And extends to a position beyond both ends of the negative electrode plate tab opposing side 70b. The negative electrode tab side 70a is one side of the negative electrode plate 70 on which the negative electrode tab portion 70T is formed. The negative electrode plate tab opposing side 70 b is another side of the negative electrode plate 70 opposite to the negative electrode plate tab side 70 a.
 タブ辺溶着領域F1は、図4に示すように第1タブ辺接合部(第1接合部または第1溶着部)50aと第2タブ辺接合部(第2接合部または第2溶着部)60aを有する。第1タブ辺接合部50aと第2タブ辺接合部60aは、例えば第1セパレータ50と第2セパレータ60をレーザによって溶融することで形成される。第1タブ辺接合部50aと第2タブ辺接合部60aは、タブ辺溶着領域F1全域(図2参照)に亘って連続して形成される。あるいは両タブ辺接合部50a,60aは、タブ辺溶着領域F1(図2参照)において断続的に設けられる。第1タブ辺接合部50aと第2タブ辺接合部60aは、図4に示すように、正極板タブ部40Tに対応する位置で、正極板タブ部40Tと接合、例えば溶着されている。第2タブ辺接合部60aは、負極板タブ部70Tと対応する位置で、負極板タブ部70Tと接合、例えば溶着されている。図4では、太実線にて溶着(接合)箇所Yが示されている。 As shown in FIG. 4, the tab side welding area F1 includes a first tab side joint (first joint or first weld) 50a and a second tab side joint (second joint or second weld) 60a. Have. The first tab side joint portion 50a and the second tab side joint portion 60a are formed, for example, by melting the first separator 50 and the second separator 60 with a laser. The first tab side joint portion 50a and the second tab side joint portion 60a are continuously formed across the entire tab side welding area F1 (see FIG. 2). Alternatively, both tab edge joint portions 50a and 60a are intermittently provided in the tab edge welding area F1 (see FIG. 2). As shown in FIG. 4, the first tab side joint portion 50a and the second tab side joint portion 60a are joined, for example, welded to the positive plate tab portion 40T at a position corresponding to the positive plate tab portion 40T. The second tab side joint portion 60a is joined, for example, welded to the negative electrode tab portion 70T at a position corresponding to the negative electrode tab portion 70T. In FIG. 4, the welding (joining) point Y is shown by a thick solid line.
 タブ対向辺溶着領域F2は、図4に示すように第1タブ対向辺接合部(第1接合部または第1溶着部)50bと第2タブ対向辺接合部(第2接合部または第2溶着部)60bを有する。第1タブ対向辺接合部50bと第2タブ対向辺接合部60bは、例えば第1セパレータ50と第2セパレータ60の一部をレーザによって溶融することで形成される。第1タブ対向辺接合部50bと第2タブ対向辺接合部60bは、タブ対向辺溶着領域F2全域(図2参照)に亘って連続して形成される。あるいは両タブ対向辺接合部50b,60bは、タブ対向辺溶着領域F2において断続的に形成される。 As shown in FIG. 4, the tab opposing side welding area F2 has a first tab opposing side joint (first joint or first welding) 50b and a second tab opposing side joint (second joint or second welding). Part) 60b. The first tab facing side joint portion 50b and the second tab facing side joint portion 60b are formed, for example, by melting a part of the first separator 50 and the second separator 60 with a laser. The first tab facing side joint portion 50b and the second tab facing side joint portion 60b are continuously formed across the entire tab facing side welding area F2 (see FIG. 2). Alternatively, both tab facing side joint portions 50b and 60b are formed intermittently in the tab facing side welding area F2.
 図2,4に示すように、両タブ辺接合部50a,60aは、タブ辺溶着領域F1において相互に溶着等によって接合されている。両タブ対向辺接合部50b,60bは、タブ対向辺溶着領域F2において相互に溶着等によって接合されている。タブ辺溶着領域F1は、正極板タブ辺40aに沿って位置し、タブ対向辺溶着領域F2は、正極板タブ対向辺40bに沿って位置する。両セパレータ50,60は、正極板40の両側に位置する対向する2箇所で相互に溶着されている。そのため、正極板40は両セパレータ50,60に包まれ、かつ、両セパレータ50,60と一体となっている。タブ辺溶着領域F1では、第2タブ辺接合部60aに負極板タブ部70Tが溶着されている。そのため、負極板70は、第2セパレータ60によって正極板40及び第1セパレータ50と一体となっている。正極板タブ辺40aは、正極板タブ部40Tが形成される正極板40の1辺である。正極板タブ対向辺40bは、正極板タブ辺40aと対向する正極板40の他の1辺である。 As shown in FIGS. 2 and 4, the tab side joint portions 50a and 60a are joined to each other by welding or the like in the tab side welding area F1. The two tab opposing side joint portions 50b and 60b are joined to each other by welding or the like in the tab opposing side welding region F2. The tab side welding area F1 is positioned along the positive electrode plate tab side 40a, and the tab opposing side welding area F2 is positioned along the positive electrode plate tab opposing side 40b. The two separators 50 and 60 are welded to each other at two opposing positions located on both sides of the positive electrode plate 40. Therefore, the positive electrode plate 40 is encased in both separators 50 and 60, and is integrated with both separators 50 and 60. In the tab side welding area F1, the negative electrode tab portion 70T is welded to the second tab side joint portion 60a. Therefore, the negative electrode plate 70 is integrated with the positive electrode plate 40 and the first separator 50 by the second separator 60. The positive electrode plate tab side 40a is one side of the positive electrode plate 40 on which the positive electrode plate tab portion 40T is formed. The positive electrode plate tab opposing side 40 b is another side of the positive electrode plate 40 opposite to the positive electrode plate tab side 40 a.
 正極板40は、正極板40を間にして対向する2箇所の接合部、すなわち、両タブ辺接合部50a,60aと両タブ対向辺接合部50b,60bとによって図2,4の上下方向への移動が規制される。これにより正極板40は、両タブ辺接合部50a,60aと両タブ対向辺接合部50b,60bとの間に位置決めされている。正極板タブ部40Tが両タブ辺接合部50a,60aと溶着されることで、正極板40が両セパレータ50,60に対して位置ズレすることが防止されている。なお、正極板タブ部40Tは、両タブ辺接合部50a,60aのうち、いずれか一方のみと溶着されていてもよい。 The positive electrode plate 40 is directed in the vertical direction in FIGS. 2 and 4 by two joint portions facing each other with the positive electrode plate 40 in between, that is, both tab side joint portions 50a and 60a and both tab opposite side joint portions 50b and 60b. Movement is regulated. Thereby, the positive electrode plate 40 is positioned between the both tab side joint portions 50a, 60a and the both tab opposing side joint portions 50b, 60b. By welding the positive electrode plate tab portion 40T to the both tab side joint portions 50a and 60a, displacement of the positive electrode plate 40 with respect to both the separators 50 and 60 is prevented. The positive electrode plate tab portion 40T may be welded to only one of the both tab side joint portions 50a and 60a.
 電極ユニット30は、図5に示す各工程にて製造される。まず包み工程S1にて、所定間隔で一列に搬送される正極板40が、上下両面からセパレータで覆われる。正極板40は、その第1面が長尺状の第1セパレータ50によって覆われ、第2面が長尺状の第2セパレータ60によって覆われる。第1セパレータ50および第2セパレータ60は、それぞれ対応するロール体302から巻き出され、相対向する2つの押し付けロール304で正極板40に押し付けられる。 The electrode unit 30 is manufactured in each process shown in FIG. First, in the wrapping step S1, the positive electrode plate 40 transported in a line at a predetermined interval is covered with separators from both upper and lower sides. A first surface of the positive electrode plate 40 is covered by a long first separator 50, and a second surface is covered by a long second separator 60. Each of the first separator 50 and the second separator 60 is unwound from the corresponding roll body 302 and pressed against the positive electrode plate 40 by the two opposing pressing rolls 304.
 この後、負極板重ね工程S2にて、両セパレータ50,60に挟まれた正極板40に対して、第2セパレータ60の側から負極板70が重ねられる。負極板70は、第2セパレータを間にして、当該負極板70が正極板40の第2面全域と対向するように第2セパレータ60に重ねられる。 Thereafter, in the negative electrode plate stacking step S2, the negative electrode plate 70 is stacked from the side of the second separator 60 on the positive electrode plate 40 sandwiched between the separators 50 and 60. The negative electrode plate 70 is superimposed on the second separator 60 such that the negative electrode plate 70 faces the entire second surface of the positive electrode plate 40 with the second separator therebetween.
 この後、溶着工程S3にて、タブ辺溶着領域F1とタブ対向辺溶着領域F2を形成する。溶着工程S3では、溶着可能な温度に加熱された一対の溶融具306が使用される。例えば、両溶融具306は円柱状の主部306aを有するとともに、主部306aの軸線方向の両端部に、主部306aよりも径の大きい円盤部306bを有する。両溶融具306の円盤部306bが、重ねられた第1セパレータ50と正極板40と第2セパレータ60と負極板70とに対して、これらの積層方向の両側から、タブ辺溶着領域F1とタブ対向辺溶着領域F2との位置に押し付けられる。これによりタブ辺溶着領域F1とタブ対向辺溶着領域F2がそれぞれ溶融される。タブ辺溶着領域F1では、図4に示す両タブ辺接合部50a,60aが溶融されるとともに、両タブ辺接合部50a,60aと正極板タブ部40Tとが溶着され、第2タブ辺接合部60aと負極板タブ部70Tが溶着される。また、タブ対向辺溶着領域F2では、図4に示す両タブ対向辺接合部50b,60bが溶着される。こうしてタブ辺溶着領域F1とタブ対向辺溶着領域F2とがそれぞれ形成されることで、第1セパレータ50と正極板40と第2セパレータ60と負極板70とが一体とされる。 Thereafter, in the welding step S3, the tab side welding area F1 and the tab opposing side welding area F2 are formed. In the welding step S3, a pair of melting tools 306 heated to a temperature at which welding can be performed is used. For example, both the melting tools 306 have a cylindrical main portion 306a, and have disk portions 306b larger in diameter than the main portion 306a at both axial ends of the main portion 306a. The disc portion 306b of both the melting tools 306, with respect to the stacked first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70, the tab side welding area F1 and the tabs It is pressed against the position of the facing side welding area F2. Thereby, the tab side welding area F1 and the tab opposing side welding area F2 are respectively melted. In the tab side welding area F1, both tab side joint portions 50a and 60a shown in FIG. 4 are melted, and both tab side joint portions 50a and 60a and the positive electrode plate tab portion 40T are welded, and a second tab side joint portion 60a and the negative electrode tab portion 70T are welded. Further, in the tab facing side welding area F2, both tab facing side joint portions 50b and 60b shown in FIG. 4 are welded. By forming the tab side welding area F1 and the tab opposing side welding area F2 in this manner, the first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70 are integrated.
 両溶融具306の円盤部306bが、重ねられた第1セパレータ50と正極板40と第2セパレータ60と負極板70とに対して、回転しながら連続的に互いに押し付けられる。これによりタブ辺溶着領域F1とタブ対向辺溶着領域F2が連続して形成される。 The disc portions 306 b of the two melting tools 306 are continuously pressed against each other while rotating while being superimposed on the stacked first separator 50, positive electrode plate 40, second separator 60, and negative electrode plate 70. Thus, the tab side welding area F1 and the tab opposing side welding area F2 are continuously formed.
 溶着工程S3の後、切断工程S4が行われる。切断工程S4では、隣り合う負極板70の間で、第1セパレータ50と第2セパレータ60が、例えばカッター装置(図示省略)にて切断される。こうして、第1セパレータ50と正極板40と第2セパレータ60と負極板70とが一体とされた電極ユニット30が完成する。 After the welding step S3, a cutting step S4 is performed. In the cutting step S4, the first separator 50 and the second separator 60 are cut, for example, by a cutter (not shown) between the adjacent negative electrode plates 70. Thus, the electrode unit 30 in which the first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70 are integrated is completed.
 この後、電極ユニット30は、積層工程S5に送られて、順に積層される。積層工程S5では、積層装置320が使用される。積層装置320は、電極ユニット30を積層するための積層ボックス324と、積層ボックス324の上方に位置して積層ボックス324に電極ユニット30を落とし込むためのスライド面322を有する。積層ボックス324は、上に開放された直方体状であり、その底面324aが水平面Wに対して所定角度Vで傾斜して配置されている。スライド面322から積層ボックス324に落とし込まれた電極ユニット30は、下方側に位置する積層ボックス324の側面の上に順に積層されていく。各電極ユニット30は、両タブ部40T,70Tが上方を向いた起立状態にて積層ボックス324に落とし込まれ、その起立状態のまま積層されていく。 Thereafter, the electrode unit 30 is sent to the stacking step S5 and stacked in order. In the stacking step S5, the stacking device 320 is used. The laminating apparatus 320 has a laminating box 324 for laminating the electrode unit 30, and a slide surface 322 located above the laminating box 324 for dropping the electrode unit 30 into the laminating box 324. The stacked box 324 is in the form of a rectangular parallelepiped opened upward, and the bottom surface 324 a is arranged to be inclined at a predetermined angle V with respect to the horizontal surface W. The electrode units 30 dropped into the stack box 324 from the slide surface 322 are stacked in order on the side surface of the stack box 324 located on the lower side. Each electrode unit 30 is dropped into the stacking box 324 in a standing state in which both tab portions 40T and 70T face upward, and is stacked in the standing state.
 既に説明したように、電極ユニット30では、第1セパレータ50と第2セパレータ60とに一体に包まれた正極板40と、負極板70とが第2セパレータ60を間において一体となっている。したがって、積層ボックス324にて電極ユニット30を順に積層すると、複数の正極板40と複数の負極板70とがセパレータを間において交互に積層された電極組立体20が製造される。このように電極ユニット30を順に積層して電極組立体20を製造する方法によると、セパレータに包まれた正極板と、負極板とを順に積層して電極組立体を製造する従来の方法に比べて、電極板の積層時間が短縮され、電極組立体の製造効率が向上する。 As described above, in the electrode unit 30, the positive electrode plate 40 and the negative electrode plate 70 integrally covered with the first separator 50 and the second separator 60 are integrated with the second separator 60 in between. Therefore, when the electrode units 30 are sequentially stacked in the stacking box 324, an electrode assembly 20 in which a plurality of positive electrode plates 40 and a plurality of negative electrode plates 70 are alternately stacked with a separator interposed therebetween is manufactured. According to the method of manufacturing the electrode assembly 20 by sequentially stacking the electrode units 30 in this manner, compared to the conventional method of manufacturing the electrode assembly by sequentially laminating the positive electrode plate and the negative electrode plate wrapped by the separator Thus, the lamination time of the electrode plate is shortened, and the manufacturing efficiency of the electrode assembly is improved.
 既に述べたように、電極ユニット30の積層方向における電極組立体20の両端部のそれぞれに負極板70が配置されることが好ましい。電極ユニット30を、図5に示すようにして負極板70の側を前面側として順に重ねていくと、積層された電極ユニット30群の最後尾においては、第1セパレータ50を介して正極板40が配置されることとなる。そこで、積層された電極ユニット30群の最後尾に負極板70を一枚追加して配置することが好ましい。 As described above, it is preferable that the negative electrode plate 70 be disposed at each end of the electrode assembly 20 in the stacking direction of the electrode unit 30. When the electrode unit 30 is stacked in order with the side of the negative electrode plate 70 as the front side as shown in FIG. 5, the positive electrode plate 40 is interposed with the first separator 50 at the end of the stacked electrode unit 30 group. Will be placed. Therefore, it is preferable that one negative electrode plate 70 be additionally disposed at the end of the stacked electrode unit 30 group.
 上述した電極ユニット30の製造方法によれば、重ねられた第1セパレータ50と正極板40と第2セパレータ60と負極板70とに対して、タブ辺溶着領域F1とタブ対向辺溶着領域F2との位置を溶着する。この溶着の工程のみで、第1セパレータ50と正極板40と第2セパレータ60と第2の負極板70とが一体とされる。これにより電極ユニット30の製造効率がよい。 According to the method of manufacturing the electrode unit 30 described above, the tab side welding area F1 and the tab opposing side welding area F2 with respect to the stacked first separator 50, the positive electrode plate 40, the second separator 60, and the negative electrode plate 70. Weld the position of. The first separator 50, the positive electrode plate 40, the second separator 60, and the second negative electrode plate 70 are integrated by only this welding step. Thereby, the manufacturing efficiency of the electrode unit 30 is good.
 図2~5に示す電極ユニット30において、負極板70を第1セパレータ50の側から重ね合わせてもよい。この場合、負極板70は、第1セパレータ50を間において正極板40の第1面全域と対向するように配置される。この場合、タブ辺溶着領域F1にて第1タブ辺接合部50aと負極板タブ部70Tとが溶着される。 In the electrode unit 30 shown in FIGS. 2 to 5, the negative electrode plate 70 may be superimposed from the side of the first separator 50. In this case, the negative electrode plate 70 is disposed to face the entire first surface of the positive electrode plate 40 with the first separator 50 therebetween. In this case, the first tab side joint portion 50a and the negative electrode plate tab portion 70T are welded in the tab side welding area F1.
 図2~5に示す構成に代えて、第1セパレータ50と第2セパレータ60とで負極板70を包み、第1セパレータ50もしくは第2セパレータ60の上に正極板40を重ねてもよい。この場合、タブ辺溶着領域F1は、両タブ辺接合部50a,60a同士が溶着される部分と、両タブ辺接合部50a,60aと負極板タブ部70Tとが溶着される部分と、正極板タブ部40Tと対向するセパレータのタブ辺溶着部と正極板タブ部40Tとが溶着される部分とを有する。 Instead of the configuration shown in FIGS. 2 to 5, the negative electrode plate 70 may be wrapped by the first separator 50 and the second separator 60, and the positive electrode plate 40 may be stacked on the first separator 50 or the second separator 60. In this case, the tab side welding area F1 includes a portion where both tab side joint portions 50a and 60a are welded, a portion where both tab side joint portions 50a and 60a and the negative electrode tab portion 70T are welded, and a positive electrode plate A tab edge welding portion of the separator facing the tab portion 40T and a portion to which the positive electrode plate tab portion 40T is welded are provided.
 図2~5に示す電極ユニット30に代えて、図6~8に示す電極ユニット30a~30cを採用してもよい。図6に示す電極ユニット30aは、図2に示すタブ辺溶着領域F1に代えて負極板タブ部70Tの周囲のみに形成されたタブ辺溶着領域F3を有する。図7に示す電極ユニット30bは、図2に示すタブ辺溶着領域F1に代えて負極板タブ部70Tの周囲のみに形成されたタブ辺溶着領域F3を有し、図2に示すタブ対向辺溶着領域F2を有していない。図8に示す電極ユニット30cは、タブ辺溶着領域F1を有するものの、図2に示すタブ対向辺溶着領域F2を有していない。図6~8および、つぎに説明する図9~13において、図2~5と同一もしくは均等な構成・機能を有する箇所には同一の符号を付すことで、重複した説明を省略する。 Instead of the electrode unit 30 shown in FIGS. 2 to 5, electrode units 30 a to 30 c shown in FIGS. 6 to 8 may be employed. The electrode unit 30a shown in FIG. 6 has a tab side welding area F3 formed only on the periphery of the negative electrode tab portion 70T instead of the tab side welding area F1 shown in FIG. The electrode unit 30b shown in FIG. 7 has a tab side welding area F3 formed only on the periphery of the negative electrode tab portion 70T instead of the tab side welding area F1 shown in FIG. There is no area F2. Although the electrode unit 30c shown in FIG. 8 has the tab side welding area F1, it does not have the tab facing side welding area F2 shown in FIG. In FIGS. 6 to 8 and FIGS. 9 to 13 described below, the same reference numerals are given to portions having the same or equivalent configurations and functions as those of FIGS.
 図2~5に示す電極ユニット30に代えて、図9~11に示す電極ユニット30dを採用してもよい。図9~11に示すように、負極板70における負極板タブ対向辺70bの周囲である周囲部(タブ対向辺縁部周囲部)76の両面は、負極活物質層非形成領域70Nとなっている。周囲部76の負極活物質層非形成領域70Nは、負極板タブ対向辺70bから所定幅Hを有し、かつ、負極板タブ対向辺70bに沿って連続している。負極板タブ対向辺70bは、図9,10から明らかなように、負極板タブ部70Tを有する縁部の反対側に位置している。 Instead of the electrode unit 30 shown in FIGS. 2 to 5, an electrode unit 30d shown in FIGS. 9 to 11 may be employed. As shown in FIGS. 9 to 11, the negative electrode active material layer non-forming region 70N is formed on both sides of the peripheral portion (tab peripheral edge peripheral portion) 76 which is a periphery of the negative electrode plate tab opposing side 70b in the negative electrode plate 70. There is. The negative electrode active material layer non-forming region 70N of the peripheral portion 76 has a predetermined width H from the negative electrode plate tab opposing side 70b, and is continuous along the negative electrode plate tab opposing side 70b. The negative electrode tab opposite side 70b is located on the opposite side of the edge having the negative electrode tab portion 70T, as is clear from FIGS.
 電極ユニット30dのタブ対向辺溶着領域F4は、図11に示すように、周囲部76の負極活物質層非形成領域70Nに対応した位置に設けられている。タブ対向辺溶着領域F4は、図9に示すように、正極板タブ対向辺40bと負極板タブ対向辺70bとの間で、両タブ対向辺40b,70bの全長に沿って連続し、かつ、負極板タブ対向辺70bの両端部を越えて延びている。 As shown in FIG. 11, the tab facing side welding area F4 of the electrode unit 30d is provided at a position corresponding to the negative electrode active material layer non-forming area 70N of the peripheral portion 76. The tab facing side welding area F4 is continuous along the entire length of both tab facing sides 40b and 70b between the positive plate tab facing side 40b and the negative plate tab facing side 70b, as shown in FIG. It extends beyond the both ends of the negative electrode tab opposite side 70b.
 タブ対向辺溶着領域F4では、図9,11に示すように、両タブ対向辺接合部50c,60cが相互に溶着する。さらにタブ対向辺溶着領域F4では、第2タブ対向辺接合部60cが周囲部76の負極活物質層非形成領域70Nと溶着する。 In the tab facing side welding area F4, as shown in FIGS. 9 and 11, both tab facing side joint portions 50c and 60c are welded to each other. Further, in the tab facing side welding area F4, the second tab facing side joint portion 60c is welded to the negative electrode active material layer non-forming area 70N of the peripheral portion 76.
 図9に示すようにタブ辺溶着領域F1が負極板70の負極板タブ辺70aの近傍に位置し、タブ辺溶着領域F1において負極板タブ部70Tが第2セパレータ60と溶着されている。負極板タブ辺70aに対向する負極板タブ対向辺70bの近傍に周囲部76を有し、周囲部76が第2セパレータ60と溶着されている。したがって負極板70の両端部が第2セパレータ60に溶着される。これにより負極板70は第2セパレータ60に対して移動し難く、常に正極板40と対向した状態が維持される。 As shown in FIG. 9, the tab side welding area F1 is located in the vicinity of the negative electrode tab side 70a of the negative electrode plate 70, and the negative electrode tab portion 70T is welded to the second separator 60 in the tab side welding area F1. A peripheral portion 76 is provided in the vicinity of the negative electrode plate tab opposing side 70 b facing the negative electrode plate tab side 70 a, and the peripheral portion 76 is welded to the second separator 60. Therefore, both ends of the negative electrode plate 70 are welded to the second separator 60. As a result, the negative electrode plate 70 is difficult to move relative to the second separator 60, and the state in which the negative electrode plate 70 faces the positive electrode plate 40 is always maintained.
 タブ対向辺溶着領域F4は、負極板70の長手方向全長あるいはセパレータ50,60の長手方向全長において形成されても良いし、負極板70の端縁に沿って断続的に形成されても良い。換言すると、両タブ対向辺接合部50c,60cの相互の溶着は、セパレータ50,60の端縁に沿って断続的であっても良い。第2タブ対向辺接合部60cと周囲部76の負極活物質層非形成領域70Nとの溶着は、負極板70の端縁に沿って断続的に形成されても良い。 The tab facing side welding area F4 may be formed along the entire length in the longitudinal direction of the negative electrode plate 70 or the entire length in the longitudinal direction of the separators 50, 60, or may be formed intermittently along the edge of the negative electrode plate 70. In other words, the mutual welding of both tab facing side joints 50c, 60c may be intermittent along the edge of the separators 50, 60. The welding between the second tab facing side joint portion 60c and the negative electrode active material layer non-forming region 70N of the peripheral portion 76 may be intermittently formed along the edge of the negative electrode plate 70.
 図12に示すように電極ユニット30eは、負極板タブ部70Tの周囲のみに形成されたタブ辺溶着領域F3と、負極板70と第2セパレータ60を溶着するタブ対向辺溶着領域F4を有していてもよい。図13に示すように電極ユニット30fは、図9等に示すタブ辺溶着領域F1を有さず、タブ対向辺溶着領域F4を有していてもよい。図12,13において、図9~11と同一もしくは均等な構成・機能を有する箇所には同一の符号を付すことで、重複した説明を省略する。 As shown in FIG. 12, the electrode unit 30e has a tab side welding area F3 formed only around the negative electrode plate tab portion 70T, and a tab opposing side welding area F4 for welding the negative electrode plate 70 and the second separator 60. It may be As shown in FIG. 13, the electrode unit 30f may not have the tab side welding area F1 shown in FIG. 9 etc., and may have the tab facing side welding area F4. In FIGS. 12 and 13, parts having the same or equivalent configurations and functions as those in FIGS.
 上述するように第2電極板は、第2活物質層非形成領域において、第1セパレータの第1接合部もしくは第2セパレータの第2接合部のいずれか一方と接合されている。例えば図4の負極板70は、負極活物質層非形成領域70Nにおいて、第2セパレータ60の第2タブ辺接合部60aと溶着されている。図13の負極板70は、負極活物質層非形成領域70Nにおいて、第2セパレータ60の一部と溶着されている。これに代えて、第2電極板は、例えば第1接合部もしくは第2接合部に対して接着剤によって接着、接合両面テープによって接合されても良い。 As described above, the second electrode plate is joined to either the first joining portion of the first separator or the second joining portion of the second separator in the region where the second active material layer is not formed. For example, the negative electrode plate 70 of FIG. 4 is welded to the second tab side joint portion 60a of the second separator 60 in the negative electrode active material layer non-forming region 70N. The negative electrode plate 70 of FIG. 13 is welded to a part of the second separator 60 in the negative electrode active material layer non-forming region 70N. Instead of this, for example, the second electrode plate may be bonded by an adhesive to the first bonding portion or the second bonding portion, and may be bonded by a bonding double-sided tape.
 添付の図面を参照して詳細に上述した種々の実施例は、本発明の代表例であって本発明を限定するものではありません。詳細な説明は、本教示の様々な態様を作成、使用および/または実施するために、当業者に教示するものであって、本発明の範囲を限定するものではありません。更に、上述した各付加的な特徴および教示は、改良された燃料蒸気処理装置および/またはその製造方法と使用方法を提供するため、別々にまたは他の特徴および教示と一緒に適用および/または使用され得るものです。 The various embodiments described above in detail with reference to the accompanying drawings are representative of the present invention and are not intended to limit the present invention. The detailed description teaches those skilled in the art to make, use, and / or practice various aspects of the present teachings, and is not intended to limit the scope of the present invention. Furthermore, each additional feature and teaching described above may be applied and / or used separately or in conjunction with other features and teaching to provide an improved fuel vapor processing apparatus and / or a method of making and using the same. It can be done.

Claims (9)

  1.  電極ユニットであって、
     第1活物質層が形成された第1電極板と、
     前記第1電極板の第1面を覆う第1セパレータと、
     前記第1電極板の前記第1面とは反対側の第2面を覆う第2セパレータと、
     前記第1セパレータもしくは前記第2セパレータを介して前記第1電極板と対向し、かつ、前記第1電極板とは極性の異なる第2活物質層が形成された第2電極板と、を有し、
     前記第1電極板は、前記第1セパレータの一部に形成された第1接合部と、前記第2セパレータの一部に形成された第2接合部と、が接合されることで前記第1セパレータと前記第2セパレータとに包まれて前記第1セパレータ及び前記第2セパレータと一体とされており、
     前記第2電極板の縁部には、前記第2活物質層が形成されていない第2活物質層非形成領域を有し、
     前記第2電極板は、前記第2活物質層非形成領域において、前記第1セパレータの前記第1接合部もしくは前記第2セパレータの前記第2接合部、のいずれか一方と接合されて、前記第1セパレータと前記第1電極板と前記第2セパレータと一体とされている電極ユニット。
    An electrode unit,
    A first electrode plate on which a first active material layer is formed;
    A first separator covering a first surface of the first electrode plate;
    A second separator covering a second surface opposite to the first surface of the first electrode plate;
    A second electrode plate facing the first electrode plate via the first separator or the second separator and having a second active material layer having a polarity different from that of the first electrode plate; And
    The first electrode plate is formed by bonding a first bonding portion formed in a portion of the first separator and a second bonding portion formed in a portion of the second separator. Being enclosed by a separator and the second separator, and integral with the first separator and the second separator;
    The edge portion of the second electrode plate has a second active material layer non-forming region in which the second active material layer is not formed,
    The second electrode plate is bonded to either the first bonding portion of the first separator or the second bonding portion of the second separator in the second active material layer non-forming region, An electrode unit integrated with a first separator, the first electrode plate, and the second separator.
  2.  請求項1に記載の電極ユニットであって、
     前記第2活物質層非形成領域は、前記第2電極板の前記縁部から突出した形状のタブ部を含み、前記第2電極板は、前記タブ部において、前記第1セパレータの前記第1接合部、もしくは前記第2セパレータの前記第2接合部、のいずれか一方と接合されている電極ユニット。
    An electrode unit according to claim 1, wherein
    The second active material layer non-forming region includes a tab portion having a shape protruding from the edge portion of the second electrode plate, and the second electrode plate has the first portion of the first separator in the tab portion. An electrode unit joined to any one of a junction and the second junction of the second separator.
  3.  電極ユニットであって、
     第1活物質層が形成された第1電極板と、
     前記第1電極板の第1面を覆う第1セパレータと、
     前記第1電極板の前記第1面とは反対側の第2面を覆う第2セパレータと、
     前記第1セパレータもしくは前記第2セパレータを介して前記第1電極板と対向し、かつ、前記第1電極板とは極性の異なる第2活物質層が形成された第2電極板と、を有し、
     前記第1電極板は、前記第1セパレータの一部に形成された第1溶着部と、前記第2セパレータの一部に形成された第2溶着部と、が溶着されることで前記第1セパレータと前記第2セパレータとに包まれて前記第1セパレータ及び前記第2セパレータと一体とされており、
     前記第2電極板は、一方向に突出したタブ部を有し、
     前記タブ部は、前記第2活物質層が形成されていない第2活物質層非形成領域であり、
     前記第2電極板は、前記タブ部において、前記第1セパレータの前記第1溶着部もしくは前記第2セパレータの前記第2溶着部、のいずれか一方と溶着されて、前記第1セパレータと前記第1電極板と前記第2セパレータと一体とされている電極ユニット。
    An electrode unit,
    A first electrode plate on which a first active material layer is formed;
    A first separator covering a first surface of the first electrode plate;
    A second separator covering a second surface opposite to the first surface of the first electrode plate;
    A second electrode plate facing the first electrode plate via the first separator or the second separator and having a second active material layer having a polarity different from that of the first electrode plate; And
    The first electrode plate is formed by welding a first welding portion formed in a portion of the first separator and a second welding portion formed in a portion of the second separator. Being enclosed by a separator and the second separator, and integral with the first separator and the second separator;
    The second electrode plate has a tab portion protruding in one direction,
    The tab portion is a second active material layer non-forming region where the second active material layer is not formed,
    The second electrode plate is welded to one of the first welding portion of the first separator or the second welding portion of the second separator in the tab portion, and the first separator and the second electrode plate are 1) An electrode unit integrated with an electrode plate and the second separator.
  4.  請求項3に記載の電極ユニットであって、
     前記第1セパレータの前記第1溶着部と前記第2セパレータの前記第2溶着部とのそれぞれは、前記第1電極板を前記第1面もしくは前記第2面に平行な方向に跨いで対向する箇所に設けられている電極ユニット。
    The electrode unit according to claim 3, wherein
    Each of the first welding portion of the first separator and the second welding portion of the second separator opposes the first electrode plate in a direction parallel to the first surface or the second surface. Electrode unit provided at the place.
  5.  請求項3または4に記載の電極ユニットであって、
     前記第1電極板は、一方向に突出した第1タブ部を有し、
     前記第1タブ部は、前記第1活物質層が形成されていない前記第1活物質層非形成領域であり、かつ、前記第1セパレータの前記第1溶着部及び前記第2セパレータの前記第2溶着部と溶着されている電極ユニット。
    The electrode unit according to claim 3 or 4, wherein
    The first electrode plate has a first tab portion protruding in one direction,
    The first tab portion is a region where the first active material layer is not formed and the first active material layer is not formed, and the first welded portion of the first separator and the second of the second separator are 2 Electrode unit welded with welded part.
  6.  請求項3~5のいずれか1つに記載の電極ユニットであって、
     前記第2活物質層非形成領域は、前記第2電極板において、少なくとも、前記タブ部の突出方向に対して反対側の縁部の周囲であるタブ対向縁部周囲部と、前記タブ部と、に設けられ、
     前記第2電極板の前記タブ対向縁部周囲部が、前記第1セパレータの前記第1溶着部もしくは前記第2セパレータの前記第2溶着部、のいずれか一方と溶着されている電極ユニット。
    The electrode unit according to any one of claims 3 to 5, wherein
    In the second electrode plate, the second active material layer non-forming region is at least a tab facing edge peripheral portion that is a periphery of an edge opposite to the projecting direction of the tab portion, and the tab portion Provided in
    An electrode unit in which the tab facing edge peripheral portion of the second electrode plate is welded to any one of the first welding portion of the first separator or the second welding portion of the second separator.
  7.  請求項3~6のいずれか1つに記載の電極ユニットであって、
     前記第1電極板が正極であり、前記第2電極板が負極である電極ユニット。
    The electrode unit according to any one of claims 3 to 6, wherein
    An electrode unit in which the first electrode plate is a positive electrode and the second electrode plate is a negative electrode.
  8.  請求項3~7のいずれか1つに記載の電極ユニットの製造方法であって、
     所定間隔をあけて一列に並べられた複数の前記第1電極板の前記第1面を長尺状の前記第1セパレータで覆い、複数の前記第1電極板の前記第2面を長尺状の前記第2セパレータで覆い、
     前記第1セパレータもしくは前記第2セパレータを介して、前記第2電極板を、前記第1電極板と対向するように前記第1セパレータの側もしくは前記第2セパレータの側から重ね、
     前記第1セパレータの前記第1溶着部と前記第2セパレータの前記第2溶着部との溶着を行い、
     隣り合う前記第1電極板の間で前記第1セパレータと前記第2セパレータとを切断し、前記第1セパレータと前記第1電極板と前記第2セパレータと前記第2電極板とが前記第1セパレータの前記第1溶着部及び前記第2セパレータの前記第2溶着部によって一体とされた電極ユニットの製造方法。
    A method of manufacturing an electrode unit according to any one of claims 3 to 7, wherein
    The first surfaces of the plurality of first electrode plates arranged in a line at predetermined intervals are covered with the elongated first separators, and the second surfaces of the plurality of first electrode plates are elongated. Cover with the second separator of
    The second electrode plate is stacked from the side of the first separator or the side of the second separator so as to face the first electrode plate via the first separator or the second separator.
    Welding between the first welding portion of the first separator and the second welding portion of the second separator;
    The first separator and the second separator are cut between the adjacent first electrode plates, and the first separator, the first electrode plate, the second separator, and the second electrode plate are members of the first separator. The manufacturing method of the electrode unit integrated by the said 1st welding part and the said 2nd welding part of the said 2nd separator.
  9.  請求項8に記載の電極ユニットの製造方法であって、
     重ねられた前記第1セパレータと前記第1電極板と前記第2セパレータと前記第2電極板とに対して、これらの積層方向の両側から、前記第1セパレータの前記第1溶着部及び前記第2セパレータの前記第2溶着部の位置において、加熱状態の溶融具を押し付けることで、前記第1セパレータの前記第1溶着部と前記第2セパレータの前記第2溶着部とを溶着して、前記第1セパレータと前記第1電極板と前記第2セパレータと前記第2電極板とを一体とする電極ユニットの製造方法。
    A method of manufacturing an electrode unit according to claim 8, wherein
    With respect to the stacked first separator, the first electrode plate, the second separator, and the second electrode plate, the first welded portion of the first separator and the first welded portion of the first separator are viewed from both sides in the stacking direction thereof. (2) The first welding portion of the first separator and the second welding portion of the second separator are welded by pressing the melting tool in the heated state at the position of the second welding portion of the separator. The manufacturing method of the electrode unit which unites a 1st separator, the said 1st electrode plate, the said 2nd separator, and the said 2nd electrode plate.
PCT/JP2016/054542 2015-02-26 2016-02-17 Electrode unit and method for producing electrode unit WO2016136550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550657A JP6693419B2 (en) 2015-02-26 2016-02-17 Electrode unit and method of manufacturing electrode unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036392 2015-02-26
JP2015-036392 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136550A1 true WO2016136550A1 (en) 2016-09-01

Family

ID=56788479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054542 WO2016136550A1 (en) 2015-02-26 2016-02-17 Electrode unit and method for producing electrode unit

Country Status (2)

Country Link
JP (2) JP6693419B2 (en)
WO (1) WO2016136550A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073679A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Electrode assembly and method of manufacturing electrode assembly
WO2018159625A1 (en) * 2017-02-28 2018-09-07 株式会社 豊田自動織機 Power storage apparatus
EP3401978A1 (en) * 2017-05-09 2018-11-14 Lithium Energy and Power GmbH & Co. KG Method for producing an electrode assembly for a battery cell and battery cell
JP2019506710A (en) * 2016-01-21 2019-03-07 ルートジェイド インコーポレイテッド Thin film battery
JP2019530176A (en) * 2016-09-27 2019-10-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method for manufacturing electrode unit for battery cell and electrode unit
WO2021080239A1 (en) * 2019-10-21 2021-04-29 주식회사 엘지화학 Electrode assembly manufacturing method and electrode assembly manufactured thereby
JP2022105897A (en) * 2021-01-05 2022-07-15 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN116154416A (en) * 2023-04-24 2023-05-23 宁德时代新能源科技股份有限公司 Pole piece, electrode assembly, battery monomer, battery and electric equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514112A (en) * 2006-12-20 2010-04-30 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical device comprising adhesive bonded composite of electrode and separator
JP2012190784A (en) * 2011-02-24 2012-10-04 Hitachi Ltd Lithium ion battery and method for manufacturing the same
JP2014038801A (en) * 2012-08-20 2014-02-27 Toyota Industries Corp Power storage device
JP2014049206A (en) * 2012-08-29 2014-03-17 Toyota Industries Corp Apparatus of manufacturing electrode assembly, electrode assembly, and power storage device
JP2014110160A (en) * 2012-12-03 2014-06-12 Toyota Industries Corp Power storage device and process of manufacturing the same
WO2014209054A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Method for manufacturing electrode assembly including separator cutting process
JP2015135736A (en) * 2014-01-16 2015-07-27 株式会社Gsユアサ Electric storage element
JP2015162337A (en) * 2014-02-27 2015-09-07 日立マクセル株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2015197977A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Separator bonding method for electric device, separator bonding apparatus for electric device and electric device
JP2016031909A (en) * 2014-07-30 2016-03-07 株式会社豊田自動織機 Electrode assembly and method for manufacturing electrode assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767976B2 (en) * 1992-07-17 1995-07-26 西部電機株式会社 How to collect goods
JPH08175651A (en) * 1994-12-26 1996-07-09 Sumitomo Heavy Ind Ltd Recovering device for objects to be conveyed and sorting and recovering device therewith
JP3796515B2 (en) * 1995-10-31 2006-07-12 西部電機株式会社 Device for transferring stacked items
JPH11263406A (en) * 1998-03-17 1999-09-28 Toyo Kanetsu Kk Automatic picking system
JP4784730B2 (en) * 2005-07-21 2011-10-05 ソニー株式会社 battery
KR101269943B1 (en) * 2010-12-02 2013-05-31 주식회사 엘지화학 Manufacture Device of Battery Cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514112A (en) * 2006-12-20 2010-04-30 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical device comprising adhesive bonded composite of electrode and separator
JP2012190784A (en) * 2011-02-24 2012-10-04 Hitachi Ltd Lithium ion battery and method for manufacturing the same
JP2014038801A (en) * 2012-08-20 2014-02-27 Toyota Industries Corp Power storage device
JP2014049206A (en) * 2012-08-29 2014-03-17 Toyota Industries Corp Apparatus of manufacturing electrode assembly, electrode assembly, and power storage device
JP2014110160A (en) * 2012-12-03 2014-06-12 Toyota Industries Corp Power storage device and process of manufacturing the same
WO2014209054A1 (en) * 2013-06-28 2014-12-31 주식회사 엘지화학 Method for manufacturing electrode assembly including separator cutting process
JP2015135736A (en) * 2014-01-16 2015-07-27 株式会社Gsユアサ Electric storage element
JP2015162337A (en) * 2014-02-27 2015-09-07 日立マクセル株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2015197977A (en) * 2014-03-31 2015-11-09 日産自動車株式会社 Separator bonding method for electric device, separator bonding apparatus for electric device and electric device
JP2016031909A (en) * 2014-07-30 2016-03-07 株式会社豊田自動織機 Electrode assembly and method for manufacturing electrode assembly

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506710A (en) * 2016-01-21 2019-03-07 ルートジェイド インコーポレイテッド Thin film battery
JP2019530176A (en) * 2016-09-27 2019-10-17 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method for manufacturing electrode unit for battery cell and electrode unit
JP2018073679A (en) * 2016-10-31 2018-05-10 株式会社豊田自動織機 Electrode assembly and method of manufacturing electrode assembly
WO2018159625A1 (en) * 2017-02-28 2018-09-07 株式会社 豊田自動織機 Power storage apparatus
US10777365B2 (en) 2017-02-28 2020-09-15 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus
CN110679006A (en) * 2017-05-09 2020-01-10 罗伯特·博世有限公司 Method for producing an electrode assembly for a battery cell and battery cell
WO2018206186A1 (en) * 2017-05-09 2018-11-15 Robert Bosch Gmbh Method for producing an electrode assembly for a battery cell and battery cell
EP3401978A1 (en) * 2017-05-09 2018-11-14 Lithium Energy and Power GmbH & Co. KG Method for producing an electrode assembly for a battery cell and battery cell
CN110679006B (en) * 2017-05-09 2022-08-12 罗伯特·博世有限公司 Method for producing an electrode assembly for a battery cell and battery cell
WO2021080239A1 (en) * 2019-10-21 2021-04-29 주식회사 엘지화학 Electrode assembly manufacturing method and electrode assembly manufactured thereby
CN114556648A (en) * 2019-10-21 2022-05-27 株式会社Lg新能源 Method of manufacturing electrode assembly and electrode assembly manufactured by the same
JP2022105897A (en) * 2021-01-05 2022-07-15 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7304369B2 (en) 2021-01-05 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN116154416A (en) * 2023-04-24 2023-05-23 宁德时代新能源科技股份有限公司 Pole piece, electrode assembly, battery monomer, battery and electric equipment
CN116154416B (en) * 2023-04-24 2023-07-18 宁德时代新能源科技股份有限公司 Pole piece, electrode assembly, battery monomer, battery and electric equipment

Also Published As

Publication number Publication date
JP6693419B2 (en) 2020-05-13
JP6638593B2 (en) 2020-01-29
JP2017216219A (en) 2017-12-07
JPWO2016136550A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016136550A1 (en) Electrode unit and method for producing electrode unit
JP6407297B2 (en) BATTERY CELL CONTAINING OUTER PERIPHERAL SEALING PORTION FORMED WITH SEALING LINE AND BATTERY CELL SEALING DEVICE FOR PRODUCING THE SAME
JP2007335156A (en) Power storage element
JP5858158B2 (en) Secondary battery current collection structure
EP3159953A1 (en) Battery pack tab welding method
JP6679829B2 (en) Electric storage device separator accommodating electrode body, electric storage device electrode assembly, and electric storage device manufacturing apparatus
KR102342211B1 (en) Laminate type battery and manufacturing method thereof
KR20180001458A (en) Stacking Apparatus for Secondary Battery, Stacking Method of The Same and Secondary Battery thereof
JP2008004274A (en) Storage element
JP5761576B2 (en) Multilayer battery and method for manufacturing multilayer electrode body
WO2014141640A1 (en) Laminate exterior cell
JP2017076576A (en) Battery cell and manufacturing method for the same
JP6579023B2 (en) Manufacturing method of secondary battery
JP2013004222A (en) Square battery and manufacturing method of the same
JP5838837B2 (en) Electrode storage separator, power storage device, and vehicle
JP2016025014A (en) Battery pack
KR20140088343A (en) Electrode Assembly Having Separators Attached to Each Other and Battery Cell Comprising the Same
JP2016046023A (en) Battery pack
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP6582426B2 (en) Method for manufacturing electrode separator assembly
JP7190821B2 (en) power storage device
JP6702139B2 (en) Electrode assembly and method of manufacturing electrode assembly
US9786886B2 (en) Nonaqueous battery
JP2013254751A (en) Battery pack
JP4391861B2 (en) Electric double layer capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550657

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755297

Country of ref document: EP

Kind code of ref document: A1