JP5761576B2 - Multilayer battery and method for manufacturing multilayer electrode body - Google Patents

Multilayer battery and method for manufacturing multilayer electrode body Download PDF

Info

Publication number
JP5761576B2
JP5761576B2 JP2012093576A JP2012093576A JP5761576B2 JP 5761576 B2 JP5761576 B2 JP 5761576B2 JP 2012093576 A JP2012093576 A JP 2012093576A JP 2012093576 A JP2012093576 A JP 2012093576A JP 5761576 B2 JP5761576 B2 JP 5761576B2
Authority
JP
Japan
Prior art keywords
negative electrode
separator
positive electrode
electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012093576A
Other languages
Japanese (ja)
Other versions
JP2013222602A (en
Inventor
尚哉 佐藤
尚哉 佐藤
克典 久保田
克典 久保田
春美 加藤
春美 加藤
雅人 龍崎
雅人 龍崎
貴彦 山本
貴彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012093576A priority Critical patent/JP5761576B2/en
Publication of JP2013222602A publication Critical patent/JP2013222602A/en
Application granted granted Critical
Publication of JP5761576B2 publication Critical patent/JP5761576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、例えば、自動車用電池等に用いられる積層型電池に関し、特に高速積層が可能な積層電極体構造とその製造方法に関する。   The present invention relates to a laminated battery used for, for example, an automobile battery, and more particularly to a laminated electrode body structure capable of high-speed lamination and a manufacturing method thereof.

ハイブリッド自動車、電気自動車等に用いられるリチウムイオン電池は、一般に、正極と負極とをセパレータを挟んで積層した電極を、電解液とともに容器内に封入して構成される。積層型電極は、比較的簡易な構成で、積層数による容量変更が容易であることから、大容量化への対応が期待されている。   Generally, a lithium ion battery used in a hybrid vehicle, an electric vehicle, or the like is configured by enclosing an electrode in which a positive electrode and a negative electrode are stacked with a separator interposed between them and an electrolytic solution in a container. The multilayer electrode has a relatively simple configuration, and the capacity can be easily changed depending on the number of stacked layers.

従来技術として、特許文献1には、連続シート状のセパレータ間に正極板を挟んだ正極板包装体を有する積層型リチウムイオン電池構造が開示されている。正極板包装体は、所定数の正極板が連続帯状のセパレータに挟まれて所定間隔で配置され、中間部および底部に位置するセパレータがヒートシールされたもので、セパレータで挟む工程、セパレータをヒートシールして正極板包装体を得るシール工程、これをジグザグ状に屈曲させる屈曲工程、両側から負極板を挿入する負極板挿入工程、押圧して扁平の積層体を得る押圧工程にて製造される。   As a conventional technique, Patent Document 1 discloses a stacked lithium ion battery structure having a positive electrode plate package in which a positive electrode plate is sandwiched between continuous sheet-like separators. A positive electrode plate package is a product in which a predetermined number of positive electrode plates are sandwiched between continuous strip-shaped separators and arranged at predetermined intervals, and the separators located at the intermediate and bottom portions are heat-sealed. Produced in a sealing step for obtaining a positive electrode plate package by sealing, a bending step for bending this zigzag, a negative plate insertion step for inserting the negative plate from both sides, and a pressing step for obtaining a flat laminate by pressing. .

特開2011−181395号公報JP 2011-181395 A

リチウムイオン電池の実用化に際しては、所定の積層数で正確に重ね合わされた積層電極を、連続的に製造することが要求されている。ところが、従来の電極は、正極または負極、あるいはその両方が1枚ずつカットされて積層されており、連続で高速積層するには、1枚ずつ電極を投入する手間がかかる。また、セパレータは薄く軽いため位置ずれを生じやすく、取り扱いが難しい。   In putting lithium ion batteries into practical use, it is required to continuously manufacture stacked electrodes that are accurately stacked with a predetermined number of stacked layers. However, the conventional electrodes are laminated by cutting the positive electrode and / or the negative electrode one by one, and it takes time to put the electrodes one by one for continuous high-speed lamination. Further, since the separator is thin and light, it is likely to be displaced and difficult to handle.

これについて特許文献1は、セパレータを帯状としてラインに供給し、所定枚数の正極板をセパレータ間に挟みこみ、ヒートシールすることで、予め一体化している。ヒートシールは、正極板と正極板の間のセパレータ中間部を加熱押圧することにより、セパレータ同士を熱融着させる。正極板は三方がシールされるので、セパレータに対する位置決めがなされ、その後、負極板を両側から挿入して、積層体とすることができる。   In this regard, Patent Document 1 is integrated in advance by supplying a separator as a strip to the line, sandwiching a predetermined number of positive electrode plates between the separators, and heat-sealing. In heat sealing, the separator intermediate portion between the positive electrode plate and the positive electrode plate is heated and pressed to heat-separate the separators. Since the positive electrode plate is sealed on three sides, positioning with respect to the separator is performed, and then the negative electrode plate can be inserted from both sides to form a laminate.

しかしながら、ヒートシールされた部位は硬化することから、次工程でジグザク状に折り畳むことが難しい。このため、特許文献1では、折り畳み位置となる正極板間の中心線を挟んで2本の線状のシールラインを形成しているが、2本のシールラインが接近すると折り畳みが困難になり、正極板間の間隔を大きくすると折り畳み後の電極が大型化する。また、ライン幅やライン間隔を高度に制御する必要があり、装置や工程の複雑化をまねくおそれがある。   However, since the heat-sealed portion is cured, it is difficult to fold it in a zigzag shape in the next step. For this reason, in Patent Document 1, two linear seal lines are formed across the center line between the positive electrode plates at the folding position, but folding becomes difficult when the two seal lines approach, Increasing the distance between the positive plates increases the size of the folded electrode. Further, it is necessary to control the line width and the line interval highly, and there is a risk that the apparatus and the process become complicated.

また、負極板は単極板であるため、製造後の取り扱いや組み付けに手間がかかる。特許文献1では、ジグザク状に折り畳んだ正極板包装体の屈曲部開口に、所定枚数の負極板を両側から同時に挿通しているが、正極板に対して位置決めし、さらにその状態を保持したまま押圧して、位置ずれのない積層体とすることは容易ではない。   Moreover, since the negative electrode plate is a monopolar plate, it takes time to handle and assemble after production. In Patent Document 1, a predetermined number of negative electrode plates are simultaneously inserted from both sides into a bent portion opening of a positive electrode plate package that is folded in a zigzag shape. It is not easy to press and make a laminated body without positional displacement.

そこで、本願発明は、セパレータを介して正極と負極を積層する際の、位置精度および取り扱い性を向上して、高速で積層できる電極体構造とその製造方法を確立し、連続積層可能で電池性能に優れる積層型電池を提供することを目的とするものである。   Therefore, the present invention establishes an electrode body structure that can be stacked at a high speed by improving positional accuracy and handleability when laminating a positive electrode and a negative electrode via a separator, and a battery performance that can be continuously laminated. It is an object of the present invention to provide a laminated battery having excellent resistance.

上記課題を解決するために、本発明の請求項1に記載の発明は、
正極リードが形成された正極と負極リードが形成された負極とがセパレータを介して交互に重ね合わされた積層電極体を有する積層型電池であって、上記積層電極体は、
帯状に連続する一対のセパレータ間に帯状の負極体を圧着した負極・セパレータ圧着体と、
帯状に連続する正極リードにて複数の正極が互いに連結された正極連結体とからなり、
上記負極・セパレータ圧着体は、隣り合う負極間において山折りと谷折りが交互となるように入れられた折り目を有し、
上記正極連結体は、その隣り合う正極が、上記負極・セパレータ圧着体の一面側と他面側に交互に挿入され、セパレータを介して負極に対向するように組み付けられるとともに、上記折り目に沿って折り畳まれた上記負極・セパレータ圧着体の層間に挟持されることを特徴とする。
In order to solve the above problem, the invention according to claim 1 of the present invention provides:
A laminated battery having a laminated electrode body in which a positive electrode on which a positive electrode lead is formed and a negative electrode on which a negative electrode lead is formed are alternately stacked via a separator, wherein the laminated electrode body includes:
A negative electrode / separator pressure-bonded body in which a band-shaped negative electrode body is pressure-bonded between a pair of separators continuous in a band shape;
It consists of a positive electrode linking body in which a plurality of positive electrodes are connected to each other by a continuous positive electrode lead in a strip shape,
The negative electrode / separator pressure-bonded body has a crease inserted so that mountain folds and valley folds alternate between adjacent negative electrodes,
The positive electrode assembly is assembled so that the adjacent positive electrodes are alternately inserted on one side and the other side of the negative electrode / separator crimped body and face the negative electrode via the separator, and along the fold line. It is sandwiched between layers of the above-mentioned negative electrode / separator pressure-bonded body.

また、上記負極・セパレータ圧着体の上記セパレータは、セパレータ基材表面にセラミック層を有し、上記負極体は、帯状の負極基材の一方の側縁部を上記負極リードとし、上記負極となる表面に負極活物質層を有している。 The separator of the negative electrode / separator pressure-bonded body has a ceramic layer on the surface of the separator substrate, and the negative electrode body serves as the negative electrode with one side edge of the strip-shaped negative electrode substrate as the negative electrode lead. A negative electrode active material layer is provided on the surface.

さらに、上記負極・セパレータ圧着体は、上記セラミック層を形成するセラミック粒子径が、上記負極活物質層の粒子径より小さい。 Further , in the negative electrode / separator pressure-bonded body, the ceramic particle diameter forming the ceramic layer is smaller than the particle diameter of the negative electrode active material layer.

本発明の請求項に記載の発明において、上記負極・セパレータ圧着体は、上記負極の端縁部を圧着部とし、上記負極表面の負極活物質層と、上記セパレータ表面のセラミックス層とが、圧着されて一体となっている。 In the invention according to claim 2 of the present invention, the negative electrode / separator pressure-bonded body uses an end edge of the negative electrode as a pressure-bonding portion, and the negative electrode active material layer on the negative electrode surface and the ceramic layer on the separator surface include: Crimped and integrated.

本発明の請求項に記載の発明において、上記正極連結体は、帯状の正極体の一部を切り抜いて形成され、上記正極の面積は対向する上記負極より小さい。 In the invention according to claim 3 of the present invention, the positive electrode coupling body is formed by cutting out a part of a belt-like positive electrode body, and the area of the positive electrode is smaller than the opposing negative electrode.

本発明の請求項に記載の発明は、上記積層電極体の製造方法であって、
帯状に連続する一対のセパレータ間に帯状の負極体を挿入し、押圧して負極・セパレータ圧着体とする圧着工程と、
上記負極・セパレータ圧着体に対し、上下に配置した一対の刃状具を交互に上下動すること、または回転体に刃状具を取り付け連続的に圧着と折り目入れを行うことにより、隣り合う負極間において山折りと谷折りが交互となるように折り目を入れる折目入工程と、
帯状の正極体の、一方の側縁部を正極リードとし、他方の側縁部側において、所定形状の正極を所定間隔で切り抜いて、正極連結体とする切抜工程と、
上記正極連続体の上記正極を、上記負極・セパレータ圧着体の一面側と他面側に交互に挿入する組付工程と、
上記負極・セパレータ圧着体を上記折り目に沿って折り畳む積層工程と、を有することを特徴とする。
Invention of Claim 4 of this invention is a manufacturing method of the said laminated electrode body, Comprising:
A pressure bonding step in which a band-shaped negative electrode body is inserted between a pair of separators continuous in a band shape and pressed to form a negative electrode / separator pressure-bonded body;
Adjacent negative electrodes by alternately moving up and down a pair of upper and lower blades on the negative electrode / separator crimped body or by attaching a blade tool to a rotating body and continuously crimping and creasing A crease entering step for folds so that mountain folds and valley folds alternate in between,
A stripping step in which one side edge of the strip-shaped positive electrode body is used as a positive electrode lead, and a positive electrode having a predetermined shape is cut out at a predetermined interval on the other side edge portion side to form a positive electrode coupling body;
An assembly step of alternately inserting the positive electrode of the positive electrode continuum into one surface side and the other surface side of the negative electrode / separator pressure-bonded body;
And a laminating step of folding the negative electrode / separator crimped body along the crease.

本発明の請求項1の積層型電池は、主要部である積層電極体を、負極・セパレータ圧着体と正極連結体とを組み合わせて構成する。負極・セパレータ圧着体は、取り扱いが難しい薄セパレータを予め負極と一体化し、折り目を入れてあるので、取り扱い性が向上し、折り目に沿って折り畳むことで、高速積層を可能にする。また、正極と負極の両方を連続体とするので、組み付けや位置決めが容易で、負極間の折り目を利用して、所定位置に所定形状の正極を挿入し、位置決め精度を向上できる。   In the multilayer battery according to the first aspect of the present invention, the multilayer electrode body as the main part is configured by combining the negative electrode / separator crimp body and the positive electrode connector. In the negative electrode / separator crimped body, a thin separator that is difficult to handle is integrated with the negative electrode in advance and creased, so that handling is improved and folding along the crease enables high-speed lamination. Further, since both the positive electrode and the negative electrode are continuous, assembly and positioning are easy, and a positive electrode having a predetermined shape can be inserted into a predetermined position by using a fold between the negative electrodes, thereby improving positioning accuracy.

よって、負極・セパレータ圧着体と正極連結体をそれぞれ積層枚数に対応する連続体とすることで、積層時の位置ずれ等を抑制しながら、所望の積層構造を有する積層電極体を実現し、高性能な積層型電池を得ることができる。具体的には、基材表面にセラミック層を有するセパレータが好適に用いられ、負極体と良好に圧着して負極・セパレータ圧着体を構成し、その取り扱い性を向上させる。 Therefore, the negative electrode / separator crimped body and the positive electrode coupling body are each a continuous body corresponding to the number of laminated layers, thereby realizing a laminated electrode body having a desired laminated structure while suppressing misalignment during lamination. A high performance stacked battery can be obtained. Specifically, the separator having a ceramic layer on the substrate surface is preferably used, in good crimp and negative electrode body constitutes a negative electrode separator crimp body, Ru to improve its handling properties.

この時、セラミック層の粒子径が負極活物質層の粒子径より小さくなるように、電極構成材を選択するのがよく、小径のセラミック粒子径が負極活物質粒子間の隙間に入り込むアンカー効果により、両者を密着させることができる。
特に、負極・セパレータ圧着体の圧着部を、負極端縁部に設定すると、正極と圧着部が対向することを回避して、電池性能の低下を防止および短絡等の性能異常を抑制する効果が得られる(請求項)。正極連結体は、正極の面積が対向する負極より小さくなるように、帯状の正極体を切り抜くことで容易に形成できる(請求項)。
At this time, it is preferable to select the electrode constituent material so that the particle size of the ceramic layer is smaller than the particle size of the negative electrode active material layer, and the anchor effect that the small ceramic particle size enters the gap between the negative electrode active material particles. , Ru can be brought into close contact with each other.
In particular, if the crimping part of the negative electrode / separator crimped body is set to the negative edge part, the positive electrode and the crimping part are avoided from facing each other, preventing the deterioration of battery performance and suppressing performance abnormalities such as short circuits. (Claim 2 ). The positive electrode connecting body so as to be smaller than the negative electrode area of the positive electrode are opposed, it can be easily formed by cutting out strip-shaped positive electrode body (claim 3).

このような積層電極体は、請求項の方法によって製造することができる。すなわち、圧着工程によって一体化された負極・セパレータ圧着体は、予め折目入工程で折り目を入れた後、切抜工程で形成された正極連結体と、組付工程にて組み付けられる。ここで、正極連結体は、帯状の正極体から所定形状の正極を、正極リードを残して切り抜くことで、容易に連続体とすることができる。 Such a laminated electrode body can be manufactured by the method of claim 4 . That is, the negative electrode / separator crimped body integrated in the crimping process is creased in advance in the crease inserting process, and then assembled in the assembling process with the positive electrode connector formed in the cutting process. Here, the positive electrode coupling body can be easily formed into a continuous body by cutting out a positive electrode having a predetermined shape from the belt-like positive electrode body, leaving a positive electrode lead.

一般に、電極体では、正極より負極の面積が大きいことが要求されるが、この切り抜き工程では、正極を任意の大きさに切り抜き、かつ正極リードで連結された取り扱い容易な形状とすることができる。また、正極間の隙間によって、負極・セパレータ圧着体との組み付け、位置合わせが容易になり、その後、積層工程で折り畳む際に、位置ずれを抑制しながら、連続的に積層することができる。よって、高品質な積層電極体を、連続的に高速で製造することが可能になる。   In general, the electrode body is required to have a larger area of the negative electrode than the positive electrode, but in this cutting process, the positive electrode can be cut into an arbitrary size and formed into an easy-to-handle shape connected by the positive electrode lead. . In addition, the gap between the positive electrodes facilitates assembly and positioning with the negative electrode / separator pressure-bonding body, and thereafter, when folding is performed in the stacking step, it is possible to continuously stack while suppressing displacement. Therefore, it becomes possible to manufacture a high-quality laminated electrode body continuously at high speed.

本発明の第1実施形態であり、積層型電池の要部である積層電極体構成とその製造方法を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, and is the schematic which shows the laminated electrode body structure which is the principal part of a laminated battery, and its manufacturing method. 積層電極体の詳細構造を示す斜視図である。It is a perspective view which shows the detailed structure of a laminated electrode body. 積層電極体を用いた製品例で、積層型電池であるリチウムイオン電池の全体構造を示す斜視図である。It is a perspective view which shows the whole structure of the lithium ion battery which is a product example using a laminated electrode body and is a laminated type battery. 積層電極体の積層例を模式的に示す図である。It is a figure which shows typically the lamination example of a laminated electrode body. 積層電極体を構成する正極、セパレータ、負極の詳細構造を示す拡大断面図である。It is an expanded sectional view which shows the detailed structure of the positive electrode, separator, and negative electrode which comprise a laminated electrode body. セパレータと負極体の圧着構造を説明するための模式図である。It is a schematic diagram for demonstrating the crimping | compression-bonding structure of a separator and a negative electrode body. 積層電極体を構成する正極、セパレータ、負極のサイズと配置を比較して示す図である。It is a figure which compares and shows the size and arrangement | positioning of the positive electrode which comprises a laminated electrode body, a separator, and a negative electrode. セパレータと負極体の圧着構造の一例を示す上面図である。It is a top view which shows an example of the crimping | compression-bonding structure of a separator and a negative electrode body. セパレータと負極体の圧着構造の一例を示す断面図である。It is sectional drawing which shows an example of the crimping | compression-bonding structure of a separator and a negative electrode body. 負極・セパレータ圧着体の圧着のメカニズムを説明するための模式的な図である。It is a schematic diagram for demonstrating the crimping | compression-bonding mechanism of a negative electrode and separator crimping body. 正極とセパレータを非圧着のメカニズムを説明するための模式的な図である。It is a schematic diagram for demonstrating the mechanism of non-crimping a positive electrode and a separator. 第1実施形態の積層電極体を製造するための工程図である。It is process drawing for manufacturing the laminated electrode body of 1st Embodiment.

以下、図面を参照しながら、本発明を適用した第1実施形態について説明する。図1は、本発明の積層型電池を構成する積層電極体の製造方法の概略を示しており、図2に、積層電極体の積層構造を示す。図3は、積層型電池としてのリチウムイオン電池構造を示している。図3において、リチウムイオン電池は、積層電極体としての電極体Eと電解液Sを、ラミネートフィルムFで構成した容器C内に封入してなる。電極体Eは、それぞれ正極1、セパレータ2、負極3が交互に重ね合わされた角型形状で、正極1と負極3は、容器Cから外方に突出する正極端子1b、負極端子3bに接続されている。正極端子1bは、例えば、短冊状のアルミニウム板(Al)、負極端子3bは、例えば、短冊状の銅板(Cu)にて構成され、それぞれ容器Cの長手方向の一端側と他端側に配置される。   Hereinafter, a first embodiment to which the present invention is applied will be described with reference to the drawings. FIG. 1 shows an outline of a method for producing a laminated electrode body constituting the laminated battery of the present invention, and FIG. 2 shows a laminated structure of the laminated electrode body. FIG. 3 shows a lithium ion battery structure as a stacked battery. In FIG. 3, the lithium ion battery is formed by enclosing an electrode body E as a laminated electrode body and an electrolytic solution S in a container C composed of a laminate film F. The electrode body E has a square shape in which the positive electrode 1, the separator 2, and the negative electrode 3 are alternately stacked. The positive electrode 1 and the negative electrode 3 are connected to the positive electrode terminal 1b and the negative electrode terminal 3b that protrude outward from the container C. ing. The positive electrode terminal 1b is composed of, for example, a strip-shaped aluminum plate (Al), and the negative electrode terminal 3b is composed of, for example, a strip-shaped copper plate (Cu), and is disposed on one end side and the other end side in the longitudinal direction of the container C, respectively. Is done.

図2に示すように、電極体Eは、負極・セパレータ圧着体4と、正極連結体5とを組み合わせ、蛇腹状に折り畳んで構成される。負極・セパレータ圧着体4は、矩形平板状の金属箔を負極基材とする負極体31をセパレータ2で挟み、圧着して一体としたもので、セパレータ2に密着する表面に負極活物質が塗布されて、負極3を形成している。セパレータ2の側方に露出する金属箔部分は、負極リード3aを形成する。   As shown in FIG. 2, the electrode body E is configured by combining the negative electrode / separator pressure-bonding body 4 and the positive electrode connector 5 and folding it in a bellows shape. The negative electrode / separator pressure-bonding body 4 is formed by sandwiching a negative electrode body 31 having a rectangular flat metal foil as a negative electrode base material between the separators 2 and press-bonding them together. Thus, the negative electrode 3 is formed. The metal foil portion exposed to the side of the separator 2 forms the negative electrode lead 3a.

正極連結体5は、矩形平板状の金属箔を正極基材とする正極体11からなり、セパレータ2と負極3の間に挿通位置される表面に正極活物質が塗布されて、正極1を形成している。セパレータ2の側方に露出する金属箔部分は、正極リード1aを形成する。正極リード1aと負極リード3aは、セパレータ2を挟んで反対側に位置し、それぞれ積層一体化されて、図3の正極端子1b、負極端子3bに接続される。   The positive electrode coupling body 5 is composed of a positive electrode body 11 having a rectangular flat metal foil as a positive electrode base material, and a positive electrode active material is applied to a surface inserted between the separator 2 and the negative electrode 3 to form the positive electrode 1. doing. The metal foil portion exposed to the side of the separator 2 forms the positive electrode lead 1a. The positive electrode lead 1a and the negative electrode lead 3a are located on opposite sides of the separator 2, and are laminated and integrated, respectively, and connected to the positive electrode terminal 1b and the negative electrode terminal 3b in FIG.

図1は、電極体Eを構成する負極・セパレータ圧着体4、正極連結体5の詳細と、これら負極・セパレータ圧着体4と正極連結体5を組み付け、積層する手順を示している。以下、(1)〜(4)により順に説明する。(1)において、負極・セパレータ圧着体4は、帯状に連続する一対のセパレータ2間に帯状の負極体31を圧着したもので、全体が帯状の連続体となっている。負極・セパレータ圧着体4は、隣り合う負極3間において、山折りと谷折りが交互となるように予め入れられた折り目を有し、組み付けおよび折り畳みを容易にしている。   FIG. 1 shows details of the negative electrode / separator pressure-bonding body 4 and the positive electrode connector 5 constituting the electrode body E, and a procedure for assembling and laminating the negative electrode / separator pressure-bonding body 4 and the positive electrode connector 5. Hereinafter, it demonstrates in order by (1)-(4). In (1), the negative electrode / separator pressure-bonding body 4 is formed by pressure-bonding a band-shaped negative electrode body 31 between a pair of separators 2 that are continuous in a band shape, and the whole is a band-shaped continuous body. The negative electrode / separator pressure-bonding body 4 has folds that are preliminarily placed between adjacent negative electrodes 3 such that mountain folds and valley folds are alternated, and is easy to assemble and fold.

正極連結体5は、帯状に連続する正極リード1aにて複数の正極1が互いに連結された連続体となっている。このような正極連結体5は、帯状の正極体11から、正極リード1aとなる一方の側縁部を残して、所定の正極1形状に切り抜くことにより形成することができる。これにより、隣り合う正極1間に隙間を有して連結された形状となり、製造や取り扱いが容易になるとともに、個々の正極1を負極・セパレータ圧着体4と容易に組み付けることができる。   The positive electrode connecting body 5 is a continuous body in which a plurality of positive electrodes 1 are connected to each other by a positive electrode lead 1a that is continuous in a strip shape. Such a positive electrode coupling body 5 can be formed by cutting out from the belt-like positive electrode body 11 into a predetermined shape of the positive electrode 1, leaving one side edge portion to be the positive electrode lead 1a. Thereby, it becomes the shape connected with the clearance gap between the adjacent positive electrodes 1, manufacture and handling become easy, and it can assemble | attach each positive electrode 1 with the negative electrode / separator crimping | compression-bonding body 4 easily.

(2)において、正極連続体5は、その隣り合う正極1が、負極・セパレータ圧着体4の一方の表面側(図の上面側)と他方の表面側(図の下面側)に交互に挿入される。正極連続体5および負極・セパレータ圧着体4は、いずれも一体化されているので取り扱いが容易で、折り目によって区画された隣り合う負極3に対して、切り抜かれた正極1を、セパレータを介して負極3と確実に対向位置させることができる。   In (2), in the positive electrode continuum 5, the adjacent positive electrodes 1 are alternately inserted on one surface side (upper surface side in the figure) and the other surface side (lower surface side in the figure) of the negative electrode / separator crimping body 4. Is done. Since the positive electrode continuum 5 and the negative electrode / separator pressure bonding body 4 are both integrated, handling is easy, and the cut-out positive electrode 1 is passed through the separator with respect to the adjacent negative electrode 3 partitioned by a fold. The negative electrode 3 can be reliably opposed to the negative electrode 3.

(3)は組み付け後の状態を示しており、負極3の長手方向に対して、表側と裏側に正極1が交互に配置される。(4)は、この組付体を、負極・セパレータ圧着体4の折り目に沿って折り畳むことで、電極体Eが形成される。図示するように、電極体Eとなる積層体は、蛇腹状に折り畳まれた負極・セパレータ圧着体4の間に、正極連続体5の正極1が挿入、挟持されている。個々の正極1は、セパレータの一端側に延出する正極リード1aによって一体となっており、位置決めされて動きが規制されるので、位置ずれ等のおそれがない。   (3) shows a state after assembly. The positive electrodes 1 are alternately arranged on the front side and the back side with respect to the longitudinal direction of the negative electrode 3. In (4), this assembly is folded along the folds of the negative electrode / separator crimping body 4 to form the electrode body E. As shown in the drawing, the positive electrode 1 of the positive electrode continuum 5 is inserted and sandwiched between the negative electrode / separator pressure-bonded body 4 folded in a bellows shape in the laminated body to be the electrode body E. The individual positive electrodes 1 are integrated by a positive electrode lead 1a extending to one end side of the separator, and are positioned and restricted in movement, so that there is no possibility of displacement or the like.

したがって、単極板のように単極板のように1枚ずつ切り抜いて保管し、個々に位置決めして組み付ける手間が不要となるだけでなく、組み付け後の折り畳みの際の取り扱いも容易である。このため、大容量化するために、積層数を増加させた構成においても、位置精度よく積層された電極体Eを得ることができる。   Therefore, not only is it necessary to cut out and store one by one like a monopolar plate but store them individually and to assemble them, and handling during folding after assembly is also easy. For this reason, in order to increase the capacity, it is possible to obtain an electrode body E that is stacked with high positional accuracy even in a configuration in which the number of stacked layers is increased.

図4Aは、電極体Eの積層例を模式的に示したもので、セパレータ2に挟まれた負極3と正極1を交互に配置し、所定容量となるように必要な枚数を重ね合わせる。ここでは、負極3:1枚とセパレータ2:2枚と正極1:1枚の組を、1層としており、これを所定層(例えば25層)上下方向に積層し、さらに最下層にセパレータ2を追加する。これにより、セパレータ2数は51枚となる。   FIG. 4A schematically shows a stacking example of the electrode body E. The negative electrodes 3 and the positive electrodes 1 sandwiched between the separators 2 are alternately arranged, and a necessary number of sheets are overlapped so as to have a predetermined capacity. Here, a set of a negative electrode 3: 1 sheet, a separator 2: 2 sheet, and a positive electrode 1: 1 sheet is formed as a single layer, which is laminated in a vertical direction with a predetermined layer (for example, 25 layers), and further on the lowermost layer, a separator 2 Add As a result, the number of separators 2 is 51.

図4Bは、電極体Eを構成する正極体11、負極体31、セパレータ2の構造例を示しており、正極1、負極3は、それぞれ薄板状の金属材料の表面に電極活物質を塗布した公知の構成を有する。具体的には、正極体11は、例えばアルミニウム(Al)等の金属箔を基材とし、正極リード1aとなる部位を除いて、基材両面に正極活物質層12が形成されている。正極体11は連続する帯状で、正極活物質層12が形成された部位を所定形状に切り抜いて、正極リード1aで互いに接続する多数の正極1が形成される(図1(1)参照)。   FIG. 4B shows a structural example of the positive electrode body 11, the negative electrode body 31, and the separator 2 constituting the electrode body E. The positive electrode 1 and the negative electrode 3 are each coated with an electrode active material on the surface of a thin metal material. It has a known configuration. Specifically, the positive electrode body 11 uses, for example, a metal foil such as aluminum (Al) as a base material, and the positive electrode active material layers 12 are formed on both surfaces of the base material except for a portion that becomes the positive electrode lead 1a. The positive electrode body 11 has a continuous belt shape, and a portion where the positive electrode active material layer 12 is formed is cut out in a predetermined shape to form a large number of positive electrodes 1 connected to each other by the positive electrode lead 1a (see FIG. 1 (1)).

正極活物質としては、例えば、LiCoO等の酸化物系材料が好適に用いられる。具体的には、正極活物質の粒子(例えば、粒径約0.5μm)とバインダ等を含むスラリーを調製し、正極体11の基材となる金属箔の両面に、塗布して乾燥させる。この時、一側縁側(図の右側)に所定幅で非塗布領域を形成して、正極リード1aとする。正極体11の厚さは、例えば、0.20mm程度である。 As the positive electrode active material, for example, an oxide-based material such as LiCoO 2 is preferably used. Specifically, a slurry containing positive electrode active material particles (for example, a particle size of about 0.5 μm) and a binder is prepared, applied to both surfaces of a metal foil serving as a base material of the positive electrode body 11, and dried. At this time, a non-application region is formed with a predetermined width on one side edge side (right side in the figure) to form the positive electrode lead 1a. The thickness of the positive electrode body 11 is, for example, about 0.20 mm.

負極体31は、例えば銅(Cu)等の金属箔を基材とし、負極リード3aとなる部位を除いて、基材両面に負極活物質層32が形成されている。この負極体31を、所定間隔で折り畳むことで、所定形状の多数の負極3が形成される(図1(1)参照)。負極活物質としては、例えば、カーボンが好適に用いられる。負極活物質には、その他、シリコン、Sn合金、Al合金等を用いることもできる。   The negative electrode body 31 uses, for example, a metal foil such as copper (Cu) as a base material, and a negative electrode active material layer 32 is formed on both surfaces of the base material except for a portion to be the negative electrode lead 3a. A large number of negative electrodes 3 having a predetermined shape are formed by folding the negative electrode body 31 at predetermined intervals (see FIG. 1A). As the negative electrode active material, for example, carbon is suitably used. In addition, silicon, Sn alloy, Al alloy, etc. can also be used for the negative electrode active material.

そして、負極活物質の粒子(例えば、粒径約15μm)とバインダ等を含むスラリーを調製し、負極体31の基材となる金属箔の両面に、塗布して乾燥させる。この時、一側縁側(図の右側)に所定幅で非塗布領域を形成して、負極リード3aとする。負極体31の厚さは、例えば、0.15mm程度である。   Then, a slurry containing negative electrode active material particles (for example, a particle size of about 15 μm) and a binder is prepared, applied to both surfaces of the metal foil serving as the base material of the negative electrode body 31, and dried. At this time, a non-application region is formed with a predetermined width on one side edge side (right side in the figure) to form the negative electrode lead 3a. The thickness of the negative electrode body 31 is, for example, about 0.15 mm.

セパレータ2は、例えば、ポリフェニレンサルファイド(PPS)等の合成樹脂からなる多孔性薄膜の帯状体からなる。好適には、多孔性薄膜の両面に薄膜状のセラミック層21が形成されたセパレータ2を用いるのがよく、絶縁性、強度を高めるとともに、後述するように負極・セパレータ圧着体4の密着性を高める。セラミック層21は、例えば、シリカ等の絶縁性セラミック粒子からなる。セパレータ2の幅は、正極体11、負極体31より小さく、これにより、正極リード1a、負極リード3aがその側方に露出する。セパレータ2の厚さは、例えば、0.02mm程度である。   The separator 2 is made of, for example, a strip of porous thin film made of a synthetic resin such as polyphenylene sulfide (PPS). Preferably, the separator 2 in which the thin film-like ceramic layers 21 are formed on both surfaces of the porous thin film is used, and the insulation and strength are improved, and the adhesion of the negative electrode / separator crimped body 4 is improved as described later. Increase. The ceramic layer 21 is made of insulating ceramic particles such as silica. The width of the separator 2 is smaller than that of the positive electrode body 11 and the negative electrode body 31, whereby the positive electrode lead 1a and the negative electrode lead 3a are exposed to the sides. The thickness of the separator 2 is, for example, about 0.02 mm.

これら電極体Eの構成材は、いずれも薄く柔らかい材質で、特に、セパレータ2は薄膜状の軽量材であるため、取り扱いが難しい。また、微小の力により位置ずれを起こしやすく、積層後に短絡等、電池の性能異常につながるおそれがある。そこで、本発明では、予め負極3とセパレータ2を一体化した、負極・セパレータ圧着体4を用いる。図4Cに示すように、負極・セパレータ圧着体4は、帯状の負極体31の両面に、それぞれ帯状のセパレータ2を配置して、プレス等により圧着することにより得られる。   The constituent materials of these electrode bodies E are all thin and soft materials, and in particular, the separator 2 is a thin film-like lightweight material, so that it is difficult to handle. In addition, the position is likely to be displaced by a minute force, which may lead to abnormal battery performance such as a short circuit after lamination. Therefore, in the present invention, the negative electrode / separator crimped body 4 in which the negative electrode 3 and the separator 2 are integrated in advance is used. As shown in FIG. 4C, the negative electrode / separator pressure-bonding body 4 is obtained by disposing the band-shaped separators 2 on both surfaces of the band-shaped negative electrode body 31 and pressing them with a press or the like.

ここで、図5に、セパレータ2と両電極1、3の配置詳細を示す。図5Aは、積層後の各構成材のサイズを比較して示しており、正極1(正極活物質の塗工面)の面積は、負極3(負極活物質の塗工面)の面積より小さい。これは、電池反応に起因する内部短絡等を防止するために要求される特性であり、このため、正極1は、負極3と略同形で、一回り小さくなるように切り抜かれる。セパレータ2は、これら正極1、負極3を内側にして折り畳まれる積層状態において、折り目間の長さ(図の左右方向)、両側縁部間の長さ(図の上下方向)のいずれも両電極(電極活物質の塗工面)より大きく、両電極間を確実に絶縁分離する。両側縁部間の長さは、正極リード1aを含む正極体11、負極リード3aを含む負極体31より小さく、正極リード1a、負極リード3aが露出可能となっている。   Here, the arrangement | positioning detail of the separator 2 and both the electrodes 1 and 3 is shown in FIG. FIG. 5A shows a comparison of the sizes of the components after lamination, and the area of the positive electrode 1 (the coated surface of the positive electrode active material) is smaller than the area of the negative electrode 3 (the coated surface of the negative electrode active material). This is a characteristic required to prevent an internal short circuit or the like caused by a battery reaction. For this reason, the positive electrode 1 is substantially the same shape as the negative electrode 3 and is cut out to be slightly smaller. In the laminated state in which the separator 2 is folded with the positive electrode 1 and the negative electrode 3 inside, both the length between the creases (the horizontal direction in the figure) and the length between both side edges (the vertical direction in the figure) are both electrodes. It is larger than the (electrode active material coating surface), and the two electrodes are reliably insulated and separated. The length between both side edges is smaller than the positive electrode body 11 including the positive electrode lead 1a and the negative electrode body 31 including the negative electrode lead 3a, and the positive electrode lead 1a and the negative electrode lead 3a can be exposed.

図5B、図5Cは、セパレータ2と負極3の圧着位置の一例である。負極体31は、セパレータ2の両側縁部に沿って、負極3(負極活物質の塗工面)の対向する両端縁部を、上下から押圧し、帯状の圧着面とする。圧着部は、正極1(正極活物質の塗工面)が配置される部位より外側とし、これより内側に、正負極が重ならない面と、正負極が重なる面とが形成される。このように、正極1が圧着面と対向せず、実質的に機能する負極3の面積が正極1の面積より大きくなるようにすることで、電極性能の低下を防止できる。   5B and 5C are examples of the crimping positions of the separator 2 and the negative electrode 3. The negative electrode body 31 presses the opposite edge portions of the negative electrode 3 (the coated surface of the negative electrode active material) from above and below along both side edge portions of the separator 2 to form a band-shaped pressure-bonding surface. The crimping portion is outside the portion where the positive electrode 1 (coating surface of the positive electrode active material) is disposed, and a surface where the positive and negative electrodes do not overlap and a surface where the positive and negative electrodes overlap each other are formed. In this way, the positive electrode 1 is not opposed to the crimping surface, and the area of the negative electrode 3 that substantially functions is larger than the area of the positive electrode 1, thereby preventing a decrease in electrode performance.

図6Aに、負極・セパレータ圧着体4の、圧着のメカニズムを示す。セパレータ2の表面には、微細なセラミック粒子21a(例えばφ0.2〜1μm程度)からなるセラミック層21が形成されており、対向する負極3表面には負極活物質32a(例えばφ15μm程度)からなる負極活物質層32が形成されている。ここで、プレス等によりセパレータ2と負極3の対向面が押圧されると、微細なセラミック粒子21aが、比較的粒径の大きい負極活物質32aの隙間に入り込む。このアンカー効果により、強固な圧着が可能となり、負極・セパレータ圧着体4とすることができる。   FIG. 6A shows a pressure bonding mechanism of the negative electrode / separator pressure-bonding body 4. A ceramic layer 21 made of fine ceramic particles 21a (for example, about φ0.2 to 1 μm) is formed on the surface of the separator 2, and a negative electrode active material 32a (for example, about φ15 μm) is formed on the opposing negative electrode 3 surface. A negative electrode active material layer 32 is formed. Here, when the opposing surfaces of the separator 2 and the negative electrode 3 are pressed by a press or the like, the fine ceramic particles 21a enter the gaps of the negative electrode active material 32a having a relatively large particle size. Due to this anchor effect, strong pressure bonding is possible, and the negative electrode / separator pressure body 4 can be obtained.

一方、図6Bにおいて、負極3に代えて正極1を用いた場合は、セパレータ2と圧着しない。これは、正極1表面の正極活物質層12において、正極活物質12a(例えばφ0.15μm程度)がセラミック粒子21より小さく、また硬いために、セラミック粒子21が隙間に入り込みにくく、入り込んでも互いに変形しないため、アンカー効果が期待できないものと推測される。   On the other hand, in FIG. 6B, when the positive electrode 1 is used instead of the negative electrode 3, the separator 2 is not crimped. This is because, in the positive electrode active material layer 12 on the surface of the positive electrode 1, the positive electrode active material 12 a (for example, about φ0.15 μm) is smaller and harder than the ceramic particles 21. Therefore, it is presumed that the anchor effect cannot be expected.

このように、本発明では、予め負極・セパレータ圧着体4、正極連結体5を製作することで、取り扱い性が向上する。また、負極・セパレータ圧着体4は、従来のように熱融着等による接合でないため、接合箇所を高度に制御しながらヒートシールする必要がなく、また折り畳み可能な部位が制限されない。したがって、装置構成を複雑化することなく、正極連結体5を連続的に折り畳みながら、積層することが可能になる。   Thus, in the present invention, the negative electrode / separator pressure-bonding body 4 and the positive electrode coupling body 5 are manufactured in advance, thereby improving the handleability. Further, since the negative electrode / separator crimped body 4 is not joined by heat fusion or the like as in the prior art, it is not necessary to heat-seal while highly controlling the joining portion, and the foldable portion is not limited. Therefore, it is possible to stack the positive electrode assemblies 5 while continuously folding them without complicating the device configuration.

図7は、このような装置の概略構成を示すものであり、連続的な工程で積層型の電極体Eを製造する。まず、圧着工程では、帯状の一対のセパレータ2の間に、帯状の負極体31を挿入しながら、回転する一対のローラ6間に送り、セパレータ2と負極3を圧着する。この時、上述したように、負極3の対向する側縁部に沿って帯状に圧着面が形成され、負極・セパレータ圧着体4が形成される。   FIG. 7 shows a schematic configuration of such an apparatus, and a laminated electrode body E is manufactured in a continuous process. First, in the crimping step, the separator 2 and the negative electrode 3 are pressure-bonded by feeding between the pair of rotating rollers 6 while inserting the strip-shaped negative electrode body 31 between the pair of strip-shaped separators 2. At this time, as described above, the pressure-bonding surface is formed in a band shape along the opposing side edge portions of the negative electrode 3, and the negative electrode / separator pressure-bonded body 4 is formed.

なお、圧着位置は、連続する帯状とする必要はなく、セパレータ2と負極3の密着性が確保される範囲であれば、どのように圧着させてもよい。例えば、部分的に圧着させるために、外周に突起や凸状部を有するローラで押圧することにより、点線状や破線状の圧着部を管轄的に形成することもできる。   The crimping position does not need to be a continuous band, and may be crimped in any way as long as the adhesion between the separator 2 and the negative electrode 3 is ensured. For example, in order to perform partial pressure bonding, a pressure-bonding portion having a dotted line shape or a broken line shape can be formed under jurisdiction by pressing with a roller having protrusions or convex portions on the outer periphery.

負極・セパレータ圧着体4は、続く折目入工程で、上下に配置した一対の刃状具7を交互に上下動すること、または回転体に刃状具を取り付け連続的に圧着と折り目入れを行うことにより、所定間隔で交互に山折りまたは谷折りとなる折り目が形成される。一方、正極体11は、正極切抜工程に供され、打ち抜き型等を使用して、所定の正極1形状に切り抜くことで、正極連結体5が形成される。これら負極・セパレータ圧着体4、正極連結体5は、所望の積層数に応じた長さとなるように、図示しないカッタ等で切断される。   In the subsequent folding process, the negative electrode / separator crimping body 4 alternately moves up and down a pair of upper and lower blade tools 7 or attaches the blade tool to a rotating body and continuously crimps and creases. By doing so, folds that are alternately mountain-folded or valley-folded at predetermined intervals are formed. On the other hand, the positive electrode body 11 is subjected to a positive electrode cutting step, and is cut into a predetermined positive electrode 1 shape using a punching die or the like, whereby the positive electrode connector 5 is formed. The negative electrode / separator crimped body 4 and the positive electrode connector 5 are cut with a cutter or the like (not shown) so as to have a length corresponding to a desired number of layers.

次いで、正極・負極組付工程において、負極・セパレータ圧着体4を一対のベルト81間に搬送しながら、正極連結体5の正極1を挿入する。この時、隣り合う正極1が交互に負極・セパレータ圧着体4の上面または下面となるようにして、セパレータ2を介して負極3と対向位置させる。負極・セパレータ圧着体4は、予め負極間に折り目を入れているので、正極1の挿入、位置決めが精度よく行なわれる。さらに、一対のベルト82間を搬送して、組付体を上下から押圧して整えた後、積層工程で、折り目に沿って折り畳んで、電極体Eとする。   Next, in the positive electrode / negative electrode assembly step, the positive electrode 1 of the positive electrode connector 5 is inserted while the negative electrode / separator pressure-bonding body 4 is conveyed between the pair of belts 81. At this time, the adjacent positive electrodes 1 are alternately positioned on the upper surface or the lower surface of the negative electrode / separator pressure-bonding body 4 so as to face the negative electrode 3 through the separator 2. Since the negative electrode / separator crimping body 4 has a crease between the negative electrodes in advance, the positive electrode 1 can be inserted and positioned with high accuracy. Furthermore, after conveying between a pair of belts 82 and pressing and arranging the assembly from above and below, it is folded along the crease in the laminating step to form an electrode body E.

このようにすれば、正極体11、セパレータ2、負極体31を連続搬送しながら、圧着工程、折目入工程、正極切抜工程に順次供することにより、容易に組付可能で電池特性上の要求を満足する形状とすることができる。さらに、得られた負極・セパレータ圧着体4、正極連結体5を正極・負極組付工程、積層工程により、連続的に、高速で積層することができる。   In this way, the positive electrode body 11, the separator 2, and the negative electrode body 31 are sequentially conveyed to the crimping process, the crease forming process, and the positive electrode cutting process, so that they can be easily assembled and the battery characteristics are required. Can be obtained. Furthermore, the obtained negative electrode / separator pressure-bonded body 4 and positive electrode connector 5 can be stacked continuously at a high speed by the positive electrode / negative electrode assembly step and the stacking step.

本発明の積層電極体を有する積層型電池は、電気自動車等に用いられるリチウムイオン電池等に限らず、積層型電池が使用可能な工業用、家庭用蓄電池その他、種々の用途に利用でき、大容量で高性能な電池として実用性に優れ、産業上の利用価値が高い。   The laminated battery having the laminated electrode body of the present invention is not limited to a lithium ion battery or the like used for an electric vehicle or the like, but can be used for various applications such as industrial and household storage batteries in which the laminated battery can be used. It has excellent practicality as a high-performance battery with high capacity, and has high industrial utility value.

E 電極体(積層電極体)
1 正極
11 正極体
1a 正極リード
2 セパレータ
3 負極
31 負極体
3a 負極リード
4 負極・セパレータ圧着体
5 正極連結体
E Electrode body (Laminated electrode body)
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Positive electrode body 1a Positive electrode lead 2 Separator 3 Negative electrode 31 Negative electrode body 3a Negative electrode lead 4 Negative electrode and separator crimping body 5 Positive electrode coupling body

Claims (4)

正極リード(1a)が形成された正極(1)と負極リード(3a)が形成された負極(3)とがセパレータ(2)を介して交互に重ね合わされた積層電極体(E)を有する積層型電池であって、上記積層電極体は、
帯状に連続する一対のセパレータ間に帯状の負極体(31)を圧着した負極・セパレータ圧着体(4)と、
帯状に連続する正極リードにて複数の正極が互いに連結された正極連結体(5)とからなり、
上記負極・セパレータ圧着体は、隣り合う負極間において山折りと谷折りが交互となるように入れられた折り目を有し、
上記正極連結体は、その隣り合う正極が、上記負極・セパレータ圧着体の一面側と他面側に交互に挿入され、セパレータを介して負極に対向するように組み付けられるとともに、上記折り目に沿って折り畳まれた上記負極・セパレータ圧着体の層間に挟持され
上記負極・セパレータ圧着体の上記セパレータは、セパレータ基材表面にセラミック層(21)を有し、上記負極体は、帯状の負極基材の一方の側縁部を上記負極リードとし、上記負極となる表面に負極活物質層(32)を有しており、
上記負極・セパレータ圧着体は、上記セラミック層を形成するセラミック粒子径が、上記負極活物質層の粒子径より小さいことを特徴とする積層型電池。
A laminate having a laminated electrode body (E) in which a positive electrode (1) on which a positive electrode lead (1a) is formed and a negative electrode (3) on which a negative electrode lead (3a) is formed are alternately stacked via a separator (2). The laminated electrode body is a type battery,
A negative electrode / separator pressure-bonded body (4) in which a band-shaped negative electrode body (31) is pressure-bonded between a pair of separators that are continuous in a band shape;
A positive electrode assembly (5) in which a plurality of positive electrodes are connected to each other by a positive electrode lead continuous in a strip shape,
The negative electrode / separator pressure-bonded body has a crease inserted so that mountain folds and valley folds alternate between adjacent negative electrodes,
The positive electrode assembly is assembled so that the adjacent positive electrodes are alternately inserted on one side and the other side of the negative electrode / separator crimped body and face the negative electrode via the separator, and along the fold line. It is sandwiched between the layers of the negative electrode / separator crimped body folded ,
The separator of the negative electrode / separator crimped body has a ceramic layer (21) on the surface of the separator substrate, and the negative electrode body has one side edge of the strip-shaped negative electrode substrate as the negative electrode lead, A negative electrode active material layer (32) on the surface,
The negative electrode / separator pressure-bonded body has a ceramic particle diameter forming the ceramic layer smaller than the particle diameter of the negative electrode active material layer .
上記負極・セパレータ圧着体は、上記負極の端縁部を圧着部とし、上記負極表面の負極活物質層と、上記セパレータ表面のセラミックス層とが、圧着されて一体となっている請求項記載の積層型電池。 The negative electrode separator crimp body, the edge portion of the negative electrode and the crimp portion, a negative electrode active material layer of the negative electrode surface, and a ceramic layer of the separator surface, is crimped according to claim 1, characterized in that together Laminated battery. 上記正極連結体は、帯状の正極体(11)の一部を切り抜いて形成され、上記正極の面積は対向する上記負極より小さい請求項記載の積層型電池。 The stacked battery according to claim 2 , wherein the positive electrode assembly is formed by cutting out a part of a strip-like positive electrode body (11), and the area of the positive electrode is smaller than the opposing negative electrode. 上記請求項1ないしのいずれか1項に記載の上記積層電極体の製造方法であって、
帯状に連続する一対のセパレータ間に帯状の負極体を挿入し、押圧して負極・セパレータ圧着体とする圧着工程と、
上記負極・セパレータ圧着体に対し、上下に配置した一対の刃状具を交互に上下動すること、または回転体に刃状具を取り付け連続的に圧着と折り目入れを行うことにより、隣り合う負極間において山折りと谷折りが交互となるように折り目を入れる折目入工程と、
帯状の正極体の、一方の側縁部を正極リードとし、他方の側縁部側において、所定形状の正極を所定間隔で切り抜いて、正極連結体とする切抜工程と、
上記正極連続体の上記正極を、上記負極・セパレータ圧着体の一面側と他面側に交互に挿入する組付工程と、
上記負極・セパレータ圧着体を上記折り目に沿って折り畳む積層工程と、を有することを特徴とする積層電極体の製造方法。
The method for producing the laminated electrode body according to any one of claims 1 to 3 ,
A pressure bonding step in which a band-shaped negative electrode body is inserted between a pair of separators continuous in a band shape and pressed to form a negative electrode / separator pressure-bonded body;
Adjacent negative electrodes by alternately moving up and down a pair of upper and lower blades on the negative electrode / separator crimped body or by attaching a blade tool to a rotating body and continuously crimping and creasing A crease entering step for folds so that mountain folds and valley folds alternate in between,
A stripping step in which one side edge of the strip-shaped positive electrode body is used as a positive electrode lead, and a positive electrode having a predetermined shape is cut out at a predetermined interval on the other side edge portion side to form a positive electrode coupling body;
An assembly step of alternately inserting the positive electrode of the positive electrode continuum into one surface side and the other surface side of the negative electrode / separator pressure-bonded body;
And a lamination step of folding the negative electrode / separator crimped body along the crease.
JP2012093576A 2012-04-17 2012-04-17 Multilayer battery and method for manufacturing multilayer electrode body Expired - Fee Related JP5761576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093576A JP5761576B2 (en) 2012-04-17 2012-04-17 Multilayer battery and method for manufacturing multilayer electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093576A JP5761576B2 (en) 2012-04-17 2012-04-17 Multilayer battery and method for manufacturing multilayer electrode body

Publications (2)

Publication Number Publication Date
JP2013222602A JP2013222602A (en) 2013-10-28
JP5761576B2 true JP5761576B2 (en) 2015-08-12

Family

ID=49593439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093576A Expired - Fee Related JP5761576B2 (en) 2012-04-17 2012-04-17 Multilayer battery and method for manufacturing multilayer electrode body

Country Status (1)

Country Link
JP (1) JP5761576B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060683A (en) * 2017-11-24 2019-06-03 도요타 지도샤(주) Method of manufacturing wound electrode body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020437B2 (en) * 2013-12-18 2016-11-02 トヨタ自動車株式会社 Folding battery
KR101590997B1 (en) 2014-01-13 2016-02-02 주식회사 엘지화학 Battery Cell Comprising Electrode Assembly Coated with Inactive Particles
KR102260835B1 (en) * 2016-09-20 2021-06-03 삼성에스디아이 주식회사 Secondary battery, electrode assembly and method for manufacturing the same
JP6970912B2 (en) * 2017-09-12 2021-11-24 株式会社Gsユアサ A power storage element and a power storage device including a power storage element
JP7071706B2 (en) * 2017-12-26 2022-05-19 株式会社Gsユアサ Power storage element
DE112022002454T5 (en) 2021-06-29 2024-02-22 Tohoku University Film for folding batteries, folding battery and method for producing a folding battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097872A (en) * 1996-09-20 1998-04-14 Denso Corp Layered product and formation of layered product
KR101499284B1 (en) * 2008-12-26 2015-03-05 제온 코포레이션 Separator for lithium ion secondary battery, and lithium ion secondary battery
JP5115591B2 (en) * 2010-06-10 2013-01-09 株式会社デンソー Battery electrode stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190060683A (en) * 2017-11-24 2019-06-03 도요타 지도샤(주) Method of manufacturing wound electrode body
KR102183181B1 (en) * 2017-11-24 2020-11-25 도요타 지도샤(주) Method of manufacturing wound electrode body
US10854925B2 (en) 2017-11-24 2020-12-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing wound electrode body

Also Published As

Publication number Publication date
JP2013222602A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5761576B2 (en) Multilayer battery and method for manufacturing multilayer electrode body
JP5716701B2 (en) Manufacturing method and manufacturing apparatus of laminated electrode body
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP4869740B2 (en) Laminated lithium ion battery, method for producing the same, and laminated body
JP2009289418A (en) Manufacturing method of laminated secondary battery
EP1348223B1 (en) Combination of sheets and method for forming an energy storage device
CN108807854B (en) Electrode laminate and method for producing battery
US20140349167A1 (en) Method for manufacturing packed electrode, and packed electrode, secondary battery and heat sealing machine
EP2874225B1 (en) Method for securing electrode assembly using tape
WO2020259048A1 (en) Secondary battery, device, and manufacturing method for secondary battery
WO2016136550A1 (en) Electrode unit and method for producing electrode unit
WO2014058001A1 (en) Bagged electrode, layered electrical device, and method for manufacturing bagged electrode
WO2013031889A1 (en) Method for manufacturing cell electrode
JP5971095B2 (en) Storage element and method for manufacturing the same
JP2011181395A (en) Laminated lithium ion secondary battery, and method and device of manufacturing the same
JP6560877B2 (en) Laminated battery and method of manufacturing the same
WO2014141640A1 (en) Laminate exterior cell
JP6095120B2 (en) Lithium ion secondary battery
US11508970B2 (en) Battery and battery manufacturing method
JP6357776B2 (en) Method for manufacturing power storage device
JP2000164243A (en) Manufacture of laminated electrode
JP6413277B2 (en) Electric device separator bonding method, electric device separator bonding apparatus, and electric device
CN110462879A (en) The joint method of separator, the manufacturing method of electrochemical device and electrochemical device
JP2019102196A (en) Manufacturing method of battery
JP2000182594A (en) Manufacture of layered electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

LAPS Cancellation because of no payment of annual fees