JP2019102196A - Manufacturing method of battery - Google Patents

Manufacturing method of battery Download PDF

Info

Publication number
JP2019102196A
JP2019102196A JP2017229652A JP2017229652A JP2019102196A JP 2019102196 A JP2019102196 A JP 2019102196A JP 2017229652 A JP2017229652 A JP 2017229652A JP 2017229652 A JP2017229652 A JP 2017229652A JP 2019102196 A JP2019102196 A JP 2019102196A
Authority
JP
Japan
Prior art keywords
active material
material layer
electrode active
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017229652A
Other languages
Japanese (ja)
Inventor
誠二 石津
Seiji Ishizu
誠二 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017229652A priority Critical patent/JP2019102196A/en
Publication of JP2019102196A publication Critical patent/JP2019102196A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method of a battery which prevents short-circuiting of the battery and improves material yield.SOLUTION: A manufacturing method of a battery includes the steps of: forming a coated part which is coated with a first active material layer and a non-coated part which is not coated with the first active material layer, by coating a top of a collector with the first active material layer in an intermittent manner; coating a top of the coated part with an electrolyte layer; coating a top of the electrolyte later inside of an end of the electrolyte layer with a second active material layer; cutting the collector in the non-coated part; and using the non-coated part to form a current extraction tab.SELECTED DRAWING: Figure 1

Description

本発明は、電池の製造方法に関する。   The present invention relates to a method of manufacturing a battery.

二次電池は、集電体の両面に正極活物質を塗布した電極板と負極活物質を塗布した電極板とをセパレータを介して積層した積層電極体を備えている。積層電極体を構成する電極板の製造方法として、帯状の集電体の両面に活物質を間欠的に塗工する方法が提案されている(例えば、特許文献1〜3)。集電体は活物質が塗工されていない未塗工部において切断され、切断された各部材の未塗工部に電流取出し用のタブが形成される。   The secondary battery includes a laminated electrode body in which an electrode plate having a positive electrode active material coated on both sides of a current collector and an electrode plate having a negative electrode active material coated are laminated via a separator. As a manufacturing method of the electrode plate which comprises a lamination | stacking electrode body, the method of coating an active material intermittently on both surfaces of a strip shaped collector is proposed (for example, patent documents 1-3). The current collector is cut in the uncoated area where the active material is not coated, and a tab for current extraction is formed on the uncoated area of each of the cut members.

また、特許文献4には、活物質と導電体の2層を同時に塗工して、活物質と導電体とが水平方向にストライプ状に交互に形成する技術が開示されている。この活物質と導電体からなる電極塗膜は、電極基材上に連続して形成される。   Further, Patent Document 4 discloses a technology in which two layers of an active material and a conductor are simultaneously coated to alternately form the active material and the conductor in a stripe shape in the horizontal direction. The electrode coating film composed of the active material and the conductor is continuously formed on the electrode substrate.

近年、電解液を硫化物系固体電解質や酸化物系固体電解質等の固体電解質に置換した全固体電池が注目されている。電解液を用いる二次電池と比較して、電解液を用いない全固体電池は、電池の過充電に起因する電解液の分解等を生じることなく、高いサイクル耐久性及びエネルギー密度を有している。   In recent years, an all solid battery in which an electrolyte solution is replaced with a solid electrolyte such as a sulfide-based solid electrolyte or an oxide-based solid electrolyte has attracted attention. Compared to a secondary battery using an electrolytic solution, the all solid battery using no electrolytic solution has high cycle durability and energy density without causing decomposition or the like of the electrolytic solution caused by overcharging of the battery. There is.

このような全固体電池は、正極活物質層、固体電解質層、負極活物質層を積層した電池用積層体を備えている。この電池用積層体では、裁断等の加工による変形や使用中の振動等による破損によって、正極活物質層と負極活物質層とが互いに接触して短絡する恐れがある。   Such an all-solid-state battery includes a battery laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are stacked. In this battery laminate, the positive electrode active material layer and the negative electrode active material layer may be in contact with each other to cause a short circuit due to deformation due to processing such as cutting or damage due to vibration during use.

そこで、正極活物質層と負極活物質層の大きさに差異を設け、短絡を抑制する技術が提案されている(例えば、特許文献5)。特許文献5では、活物質層及び固体電解質層が積層された電池用積層体に、活物質層の側からレーザーを照射することによって、固体電解質層を維持しつつ、活物質層の周縁部を除去している。   Then, the technique which provides a difference in the magnitude | size of a positive electrode active material layer and a negative electrode active material layer, and suppresses a short circuit is proposed (for example, patent document 5). In Patent Document 5, the periphery of the active material layer is maintained while the solid electrolyte layer is maintained by irradiating a laser from the side of the active material layer to the battery stack in which the active material layer and the solid electrolyte layer are stacked. It is removing.

特開平11−354110号公報Japanese Patent Application Laid-Open No. 11-354110 国際公開第2013/031889号International Publication No. 2013/031889 特開2007−329050号公報Unexamined-Japanese-Patent No. 2007-329050 特開2014−229479号公報JP, 2014-229479, A 特開2016−213070号公報JP, 2016-213070, A

全固体電池の短絡を防止するために、正極活物質層が負極活物質層よりも小さくした電池用積層体を製造する場合、まず、積層された正極活物質層の周縁部に額縁状に、当該正極活物質層をレーザーで除去した溝が形成される。そして、当該溝に沿って、負極活物質層が正極活物質層よりも大きくなるように切断することにより電池用積層体が切り出される。電池用積層体が切り出された後の不要部分は廃棄されるため、材料の歩留まりが悪くなってしまう。   In the case of producing a battery laminate in which the positive electrode active material layer is smaller than the negative electrode active material layer in order to prevent a short circuit of the all solid battery, first, the peripheral portion of the stacked positive electrode active material layer is framed. A groove in which the positive electrode active material layer is removed by laser is formed. Then, the battery laminate is cut out by cutting along the grooves so that the negative electrode active material layer is larger than the positive electrode active material layer. Since the unnecessary part after the battery laminate is cut out is discarded, the yield of the material is deteriorated.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、電池の短絡を防止するとともに、材料歩留まりを向上した電池の製造方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method of manufacturing a battery in which the material yield is improved while preventing the short circuit of the battery.

本発明の一態様に係る電池の製造方法は、集電体上に間欠的に第1活物質層を塗工して、当該該第1活物質層が塗工された塗工部と、当該第1活物質層が塗工されていない未塗工部とを形成する工程と、前記塗工部上に電解質層を塗工する工程と、前記電解質層上に、当該電解質層の端部よりも内側に第2活物質層を塗工する工程と、前記未塗工部で前記集電体を切断する工程と、前記未塗工部を用いて電流取出し用のタブを形成する工程とを備える。   In the method of manufacturing a battery according to one aspect of the present invention, a first active material layer is intermittently applied on a current collector, and a coated portion on which the first active material layer is applied; A step of forming an uncoated portion on which the first active material layer is not coated, a step of applying an electrolyte layer on the coated portion, and an end portion of the electrolyte layer on the electrolyte layer A step of coating the second active material layer on the inside, a step of cutting the current collector in the uncoated portion, and a step of forming a tab for current extraction using the uncoated portion Prepare.

本発明によれば、電池の短絡を防止するとともに、材料歩留まりを向上した電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while preventing the short circuit of a battery, the manufacturing method of the battery which improved material yield can be provided.

実施の形態1に係る電池の製造方法を説明する製造工程図である。FIG. 6 is a manufacturing process diagram illustrating the method of manufacturing a battery in accordance with Embodiment 1. 実施の形態1に係る電池の製造方法を説明する製造工程図である。FIG. 6 is a manufacturing process diagram illustrating the method of manufacturing a battery in accordance with Embodiment 1. 実施の形態2に係る電池の製造方法を説明する製造工程図である。FIG. 7 is a manufacturing process diagram illustrating a method of manufacturing a battery according to Embodiment 2. 比較例の電池の製造方法を説明する製造工程図である。It is a manufacturing-process figure explaining the manufacturing method of the battery of a comparative example. 比較例の電池の製造方法を説明する製造工程図である。It is a manufacturing-process figure explaining the manufacturing method of the battery of a comparative example. 比較例の電池の製造方法を説明する製造工程図である。It is a manufacturing-process figure explaining the manufacturing method of the battery of a comparative example.

以下、図面を参照して本発明の実施形態について説明する。各図における同等の構成要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same components in the respective drawings, and the overlapping description will be omitted.

本発明は、積層型の全固体電池の製造方法に関する。全固体電池は、正極活物質層、固体電解質層、負極活物質層を積層した電池用積層体を備えている。正極活物質層及び負極活物質層の一方が、特許請求の範囲に記載の第1活物質層に相当し、他方が第2活物質層に相当する。正極活物質層と負極活物質層との間に、固体電解質層が配置される。実施の形態に係る製造方法は、第1活物質層、電解質層を間欠塗工し、電解質層上に、第2活物質層を電解質層よりも一回り小さく形成することによって、電池の短絡を防止するとともに、材料歩留まりを向上させることができるものである。   The present invention relates to a method of manufacturing a laminated all solid state battery. The all-solid-state battery includes a battery laminate in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are stacked. One of the positive electrode active material layer and the negative electrode active material layer corresponds to the first active material layer described in the claims, and the other corresponds to the second active material layer. A solid electrolyte layer is disposed between the positive electrode active material layer and the negative electrode active material layer. The manufacturing method according to the embodiment intermittently applies the first active material layer and the electrolyte layer, and forms the second active material layer one size smaller than the electrolyte layer on the electrolyte layer, so that the short circuit of the battery is achieved. While preventing, it is possible to improve the material yield.

実施の形態1
図1、2は、実施の形態1に係る電池の製造方法を説明する製造工程図である。図1、2において、上部に各工程のフローが示されており、下部に各行程中の電池用積層体の状態が示されている。図1の製造方法により得られる電池用積層体Pは、負極箔10上に、負極活物質層11、固体電解質層12、正極活物質層13を積層した構成を備えている。
Embodiment 1
1 and 2 are manufacturing process diagrams illustrating the method of manufacturing a battery according to the first embodiment. The flow of each process is shown in the upper part in FIG. 1, 2, and the state of the battery laminated body in each process is shown in the lower part. The battery laminate P obtained by the manufacturing method of FIG. 1 has a configuration in which the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13 are stacked on the negative electrode foil 10.

電池用積層体Pの各層の積層順としては、下から順に、負極活物質層11、固体電解質層12、正極活物質層13の順であることが好ましい。これは、正極活物質層13は負極活物質層11よりもクラックが生じやすいため、クラックの発生を抑制する目的である。なお、負極活物質層11と正極活物質層13をと置き換えることも可能である。以下の実施の形態では、負極活物質層11が第1活物質層であり、正極活物質層13が第2活物質層であるものとする。帯状の負極箔10から電池用積層体Pが切り出された後に、正極活物質層13上に正極箔14が貼り付けられる。   It is preferable that it is order of the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13 in order of a lamination | stacking order of each layer of battery laminated body P sequentially from the bottom. This is because the positive electrode active material layer 13 is more easily cracked than the negative electrode active material layer 11, and therefore, the purpose is to suppress the generation of the crack. Note that the negative electrode active material layer 11 and the positive electrode active material layer 13 can be replaced with each other. In the following embodiment, the negative electrode active material layer 11 is a first active material layer, and the positive electrode active material layer 13 is a second active material layer. After the battery laminate P is cut out from the strip-shaped negative electrode foil 10, the positive electrode foil 14 is attached onto the positive electrode active material layer 13.

負極箔10は、負極活物質層11用の集電体である。負極箔10としては、金属箔、例えばSUS箔、Cu箔を用いることができる。正極活物質層13用の集電体である正極箔としては、金属箔、例えばSUS箔、Al箔を用いることができる。正極箔、負極箔は、それぞれ外部に通じる図示しない正極端子、負極端子に電流取出し用のタブにより接続される。   The negative electrode foil 10 is a current collector for the negative electrode active material layer 11. As the negative electrode foil 10, a metal foil, for example, a SUS foil or a Cu foil can be used. As a positive electrode foil which is a current collector for the positive electrode active material layer 13, a metal foil, for example, a SUS foil or an Al foil can be used. The positive electrode foil and the negative electrode foil are connected to a positive electrode terminal and a negative electrode terminal (not shown) leading to the outside, respectively, by a tab for current extraction.

負極活物質層11に含有される負極活物質としては、Liを挿入することができる材料、例えばグラファイト等のカーボン系負極活物質を用いることができる。また、負極活物質層11に含有される固体電解質としては、硫化物固体電解質や酸化物電解質などを任意の固体電解質を用いることができる。また、負極活物質層11は任意のバインダーや導電助剤等を含有し得る。   As a negative electrode active material contained in the negative electrode active material layer 11, a material capable of inserting Li, for example, a carbon-based negative electrode active material such as graphite can be used. Moreover, as a solid electrolyte contained in the negative electrode active material layer 11, arbitrary solid electrolytes, such as a sulfide solid electrolyte and an oxide electrolyte, can be used. In addition, the negative electrode active material layer 11 may contain any binder, conductive auxiliary agent, and the like.

正極活物質層13に含有される正極活物質としては、Liを挿入することができる材料、例え正極活物質層13に含有される固体電解質としては硫化物固体電解質や酸化物電解質など任意の固体電解質を用いることができる。また、正極活物質層13は任意のバインダーや導電助剤等を含有し得る。   As a positive electrode active material contained in the positive electrode active material layer 13, a material capable of inserting Li, for example, as a solid electrolyte contained in the positive electrode active material layer 13, any solid such as a sulfide solid electrolyte or an oxide electrolyte An electrolyte can be used. In addition, the positive electrode active material layer 13 may contain any binder, conductive additive and the like.

固体電解質層12に用いられる固体電解質としては、特に限定はなく、例えば負極活物質層11、正極活物質層13に適用される硫化物固体電解質や酸化物固体電解質を用いることができる。   The solid electrolyte used for the solid electrolyte layer 12 is not particularly limited. For example, a sulfide solid electrolyte or an oxide solid electrolyte applied to the negative electrode active material layer 11 and the positive electrode active material layer 13 can be used.

図1に示すように、実施の形態1の電池の製造方法は、負極活物質層11を塗工する負極塗工工程(S11)、固体電解質層12を塗工する電解質塗工工程(S12)、負極プレス工程(S13)、正極活物質層13を転写により塗工する転写工程(S14)、緻密化プレス工程(S15)、負極箔10を切断するシートカット工程(S16)、電池用積層体を切出す裁断工程(S17)を含む。   As shown in FIG. 1, in the method of manufacturing the battery of Embodiment 1, a negative electrode coating step (S11) of coating the negative electrode active material layer 11 and an electrolyte coating step of coating the solid electrolyte layer 12 (S12) A negative electrode pressing step (S13), a transfer step (S14) for applying the positive electrode active material layer 13 by transfer, a densification pressing step (S15), a sheet cutting step (S16) for cutting the negative electrode foil 10, a laminate for a battery Cutting step (S17) for cutting out

図1において、矢印は負極箔10の流れ方向を示している。図1に示すように、略矩形状の複数の電池用積層体Pは、流れる帯状の負極箔10上に連続して形成される。図1に示す例では、電池用積層体Pの長手方向が帯状の負極箔10の長さ方向に沿って形成され、電池用積層体Pの短手方向が帯状の負極箔10の幅方向に沿って形成されている。電流取出し用のタブTは、電池用積層体Pの流れ方向の下流側に配置されている。このような負極箔10上の電池用積層体Pの配置を縦向きと称する。   In FIG. 1, the arrows indicate the flow direction of the negative electrode foil 10. As shown in FIG. 1, a plurality of substantially rectangular battery laminates P are continuously formed on the flowing strip-like negative electrode foil 10. In the example shown in FIG. 1, the longitudinal direction of the battery laminate P is formed along the length direction of the strip-like negative electrode foil 10, and the short direction of the battery laminate P is in the width direction of the strip-like negative electrode foil 10. It is formed along. The tab T for current extraction is disposed on the downstream side in the flow direction of the battery stack P. Such arrangement of the battery laminate P on the negative electrode foil 10 is referred to as vertical orientation.

まず、負極塗工工程(S11)において、負極箔10の両面にそれぞれ負極活物質層11が塗工される。負極活物質層11は、例えば、負極活物質、導電補助剤、バインダー等に溶媒を加えて混合してスラリーを得て、スラリーを負極箔10上に塗工して乾燥させることにより作製される。負極活物質層11の塗工法は特に限定されないが、例えば、バー塗工法、ダイ塗工法、スクリーン塗工法、インクジェット塗工法等を用いることができる。負極活物質層11は、負極箔10の両面に間欠的に塗工される。これにより、負極箔10上に、負極活物質層11が塗工された塗工部と、負極活物質層11が塗工されていない未塗工部が形成される。   First, in the negative electrode coating step (S11), the negative electrode active material layer 11 is coated on both surfaces of the negative electrode foil 10. The negative electrode active material layer 11 is prepared, for example, by adding a solvent to a negative electrode active material, a conductive auxiliary agent, a binder, etc. and mixing them to obtain a slurry, and coating the slurry on the negative electrode foil 10 and drying it. . Although the coating method of the negative electrode active material layer 11 is not particularly limited, for example, a bar coating method, a die coating method, a screen coating method, an inkjet coating method, or the like can be used. The negative electrode active material layer 11 is intermittently applied to both surfaces of the negative electrode foil 10. Thereby, on the negative electrode foil 10, the coated part in which the negative electrode active material layer 11 was coated, and the uncoated part in which the negative electrode active material layer 11 is not coated are formed.

次に、電解質塗工工程(S12)において、負極箔10の両面にそれぞれ形成された負極活物質層11上に、それぞれ固体電解質層12が形成される。そして、負極プレス工程(S13)において、電池の入出力性能を高めるために、負極活物質層11及び固体電解質層12が第1プレス機構20によりプレスされる。第1プレス機構20は、例えばロール式の加圧手段であり、回転可能な複数の加圧ローラ(本実施形態では、上下二つのローラ)を有する。   Next, in the electrolyte coating step (S12), the solid electrolyte layer 12 is formed on the negative electrode active material layer 11 formed on both sides of the negative electrode foil 10, respectively. Then, in the negative electrode pressing step (S13), the negative electrode active material layer 11 and the solid electrolyte layer 12 are pressed by the first pressing mechanism 20 in order to enhance the input / output performance of the battery. The first pressing mechanism 20 is, for example, a roll-type pressing unit, and has a plurality of rotatable pressing rollers (in the present embodiment, two upper and lower rollers).

そして、固体電解質層12上にそれぞれ正極活物質層13が塗工される(S14)。正極活物質層13は、固体電解質層12の端部よりも内側に形成される。すなわち、正極活物質層13は、固体電解質層12の周囲の端よりも一回り小さく、固体電解質層12の周囲からはみ出さないように配置される。   Then, the positive electrode active material layer 13 is coated on the solid electrolyte layer 12 (S14). The positive electrode active material layer 13 is formed inside the end of the solid electrolyte layer 12. That is, the positive electrode active material layer 13 is disposed so as to be slightly smaller than the peripheral edge of the solid electrolyte layer 12 and not to protrude from the periphery of the solid electrolyte layer 12.

正極活物質層13は、例えば、正極活物質、導電補助剤、バインダー等に溶媒を加えて混合してスラリーを得て、スラリーを固体電解質層12上に塗工して乾燥させることにより作製される。図1に示す例では、正極活物質層13は、転写機構30により固体電解質層12上に転写塗工される。   The positive electrode active material layer 13 is prepared, for example, by adding a solvent to a positive electrode active material, a conductive auxiliary agent, a binder, etc. and mixing them to obtain a slurry, coating the slurry on the solid electrolyte layer 12 and drying it. Ru. In the example shown in FIG. 1, the positive electrode active material layer 13 is transfer-coated on the solid electrolyte layer 12 by the transfer mechanism 30.

フィルム状の柔軟性を有する帯状の基材の上には、固体電解質層12よりも一回り小さい、複数の薄膜状の正極活物質層13が連続して形成されている。基材の両端はそれぞれ供給ローラー31、巻取ローラー33に連結されている。正極活物質層13が形成された基材は、供給ローラー31に巻き回された状態である。供給ローラー31、転写ローラー32、巻取ローラー33は、その長手方向に延びる軸を中心として回転可能である。   A plurality of thin film-like positive electrode active material layers 13 which are slightly smaller than the solid electrolyte layer 12 are continuously formed on the strip-like substrate having film-like flexibility. Both ends of the substrate are connected to the supply roller 31 and the winding roller 33, respectively. The substrate on which the positive electrode active material layer 13 is formed is in a state of being wound around the supply roller 31. The feed roller 31, the transfer roller 32, and the take-up roller 33 are rotatable about an axis extending in the longitudinal direction.

供給ローラー31及び巻取ローラー33の回転により、正極活物質層13は供給ローラー31から繰り出され、転写ローラー32に案内されて固体電解質層12上に積層される。正極活物質層13が転写された後の基材は、転写ローラー32に巻き取られる。なお、正極活物質層13の塗工法は特に限定されず、上述した塗工法のいずれかを採用することも可能である。   The positive electrode active material layer 13 is fed out from the supply roller 31 by the rotation of the supply roller 31 and the winding roller 33, guided by the transfer roller 32, and laminated on the solid electrolyte layer 12. The substrate on which the positive electrode active material layer 13 has been transferred is taken up by the transfer roller 32. In addition, the coating method of the positive electrode active material layer 13 is not specifically limited, It is also possible to employ | adopt any of the coating method mentioned above.

その後、緻密化プレス工程(S15)において、第2プレス機構40により積層された負極活物質層11、固体電解質層12、正極活物質層13が積層方向にプレスされ、各層が緻密化される。第2プレス機構40は、例えばロール式の加圧手段であり、回転可能な複数の加圧ローラ(本実施形態では、上下二つのローラ)を有する。   Thereafter, in the densifying pressing step (S15), the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13 stacked by the second pressing mechanism 40 are pressed in the stacking direction to densify each layer. The second pressing mechanism 40 is, for example, a roll-type pressing unit, and has a plurality of rotatable pressing rollers (in the present embodiment, two upper and lower rollers).

そして、負極箔10の未塗工部において、負極箔10が切断される(S16)。これにより、負極箔10の両面に、それぞれ、負極活物質層11、固体電解質層12、正極活物質層13が積層された積層体シートWが得られる。その後、積層体シートWに含まれる未塗工部を裁断し、電流取出し用のタブTが形成される(S17)。このようにして、枚葉化した電池用積層体Pが得られる。   Then, in the uncoated portion of the negative electrode foil 10, the negative electrode foil 10 is cut (S16). Thereby, the laminated sheet W in which the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13 are laminated on both surfaces of the negative electrode foil 10 is obtained. Thereafter, the uncoated portion included in the laminate sheet W is cut to form a tab T for current extraction (S17). In this manner, a single-layered battery laminate P is obtained.

その後、図2に示すように、枚葉化した電池用積層体Pを用いて全固体電池の組み立てが行われる。実施の形態1に係る電池の製造方法は、端部絶縁工程(S21)、正極箔切出し工程(S22)、第1の箔貼付け工程(S23)、積層工程(S24)、第2の箔貼付け工程(S25)、端子溶接工程(S26)、封止工程(S27)をさらに含む。   Thereafter, as shown in FIG. 2, assembly of the all-solid-state battery is performed using the single-sheet battery laminate P. In the method of manufacturing a battery according to the first embodiment, an end insulation step (S21), a positive electrode foil cutting step (S22), a first foil bonding step (S23), a laminating step (S24), and a second foil bonding step (S25), further including a terminal welding step (S26) and a sealing step (S27).

端部絶縁工程(S21)では、タブTに熱可塑性樹脂等のホットメルトが塗布される。これにより、タブTの絶縁性が確保され、電池用積層体Pを積層する際に、重ね合わせたタブTの電極間で短絡が発生するのを防止することができる。また、正極箔切出し工程(S22)では、正極箔シートから、電池用積層体Pの形状に合わせた正極箔14が切出される。なお、正極箔14の片面には、ホットメルトが塗布される。   In the end insulation step (S21), the tab T is coated with a hot melt such as a thermoplastic resin. Thereby, the insulation of the tab T is secured, and when stacking the battery stack P, it is possible to prevent the occurrence of a short circuit between the electrodes of the tab T that are stacked. In addition, in the positive electrode foil cutting step (S22), the positive electrode foil 14 is cut out from the positive electrode foil sheet according to the shape of the battery laminate P. Hot melt is applied to one side of the positive electrode foil 14.

そして、片面にホットメルトが塗布された正極箔14が、電池用積層体Pの正極活物質層13上に貼り付けられる(S23)。その後、正極箔14を貼り付け後の電池用積層体Pを反転させ、正極箔14を貼り付けた面を下にして、既に反転された電池用積層体Pの正極箔14を貼り付けていない面の正極活物質層13の上に積層する(S24)。S21からS24の工程を繰り返して、所定の枚数の電池用積層体Pが積層される。   Then, the positive electrode foil 14 coated with hot melt on one side is attached onto the positive electrode active material layer 13 of the battery laminate P (S23). Thereafter, the battery laminate P after the positive electrode foil 14 is attached is inverted, and the positive electrode foil 14 of the already inverted battery laminate P is not attached with the surface on which the positive electrode foil 14 is attached facing down. The surface is laminated on the positive electrode active material layer 13 (S24). The process from S21 to S24 is repeated to stack a predetermined number of battery stacks P.

所定の枚数の電池用積層体Pを積層した後に、最上面の正極活物質層13の上に正極箔14が貼り付けられる(S25)。そして、正極、負極のそれぞれの端部を溶接し(S26)、ラミネートフィルム等の電池ケース内に真空封止する(S27)ことによって、積層型全固体電池Fを作製できる。なお、この組立て手順は一例であり、これ以外の手順によっても積層型全固体電池Fを作製することが可能である。   After laminating a predetermined number of battery laminates P, the positive electrode foil 14 is attached onto the uppermost positive electrode active material layer 13 (S25). Then, the end portions of the positive electrode and the negative electrode are welded (S26), and vacuum sealing is performed in a battery case such as a laminate film (S27), whereby the laminated all solid battery F can be manufactured. Note that this assembly procedure is an example, and the laminated all-solid battery F can be manufactured by other procedures.

ここで、図4〜6を参照して比較例について説明する。図4〜6は、比較例の電池の製造方法を説明する製造工程図である。図4において、上部に各工程のフローが示されており、下部に各行程中の電池用積層体の状態が示されている。   Here, the comparative example will be described with reference to FIGS. 4 to 6 are manufacturing process diagrams illustrating a method of manufacturing the battery of the comparative example. In FIG. 4, the flow of each process is shown in the upper part, and the state of the battery stack during each process is shown in the lower part.

図4に示すように、比較例の製造方法は、負極活物質層11を塗工する負極塗工工程(S1)、固体電解質層12を塗工する電解質塗工工程(S2)、負極プレス工程(S3)、正極活物質層13を転写により塗工する転写工程(S4)、緻密化プレス工程(S5)、正極除去高齢(S6)、電池用積層体を切出す裁断工程(S7)を含む。   As shown in FIG. 4, in the manufacturing method of the comparative example, a negative electrode coating step (S1) of coating the negative electrode active material layer 11, an electrolyte coating step of coating the solid electrolyte layer 12 (S2), a negative electrode pressing step (S3), including a transfer step (S4) for applying the positive electrode active material layer 13 by transfer, a densification press step (S5), a positive electrode removal step (S6), and a cutting step (S7) for cutting out the battery laminate .

比較例では、上述した実施の形態1の負極塗工工程(S11)と異なり、電池用積層体Pの長手方向が帯状の負極箔10の幅方向に沿って形成され、電池用積層体Pの短手方向が帯状の負極箔10の長さ方向に沿って形成されている。負極箔10の一方の端辺には、長さ方向に延在する未塗工部が形成されている。電流取出し用のタブは、この未塗工部に形成される。すなわち、タブTは、電池用積層体Pと幅方向に並んで配置される。
このような負極箔10上の電池用積層体Pの配置を横向きと称する。
In the comparative example, unlike the negative electrode coating step (S11) of the first embodiment described above, the longitudinal direction of the battery laminate P is formed along the width direction of the strip-like negative electrode foil 10 The short side direction is formed along the length direction of the strip-like negative electrode foil 10. At one end side of the negative electrode foil 10, an uncoated portion extending in the length direction is formed. A tab for current extraction is formed on this uncoated portion. That is, the tabs T are arranged side by side with the battery stack P in the width direction.
Such arrangement of the battery laminate P on the negative electrode foil 10 is referred to as horizontal orientation.

負極箔10上に負極活物質層11が連続して塗工される(S1)。また、連続して形成された負極活物質層11上に、固体電解質層12が連続して形成される(S2)。そして、負極活物質層11及び固体電解質層12をプレスした後に(S3)、正極活物質層13が固体電解質層12上に塗工される(S4)。供給ローラー31には、正極活物質層13が連続して形成された基材が巻き回されており、正極活物質層13は固体電解質層12上に連続して転写される。   The negative electrode active material layer 11 is continuously coated on the negative electrode foil 10 (S1). Also, the solid electrolyte layer 12 is continuously formed on the continuously formed negative electrode active material layer 11 (S2). Then, after the negative electrode active material layer 11 and the solid electrolyte layer 12 are pressed (S3), the positive electrode active material layer 13 is coated on the solid electrolyte layer 12 (S4). The base on which the positive electrode active material layer 13 is continuously formed is wound around the supply roller 31, and the positive electrode active material layer 13 is continuously transferred onto the solid electrolyte layer 12.

その後、緻密化プレス工程(S5)を経て、正極活物質層13を固体電解質層12よりも一回り小さくするために、正極活物質層13の一部をレーザーにて除去(トリミング)する(S6)。図5、6は、比較例の正極除去工程(S6)を詳細に説明する製造工程図である。図5に示すように、電池用積層体Pにおいて、正極活物質層13が固体電解質層12の周囲よりも一回り小さくなるように、積層された正極活物質層13の周縁部に額縁状に、正極活物質層13をレーザーで除去した溝15が形成される。   Thereafter, through the densification pressing step (S5), in order to make the positive electrode active material layer 13 smaller than the solid electrolyte layer 12, a part of the positive electrode active material layer 13 is removed (trimmed) by a laser (S6) ). 5 and 6 are manufacturing process diagrams for explaining in detail the positive electrode removing step (S6) of the comparative example. As shown in FIG. 5, in the battery laminate P, the peripheral portion of the stacked positive electrode active material layer 13 is shaped like a frame so that the positive electrode active material layer 13 is smaller than the periphery of the solid electrolyte layer 12. The groove 15 is formed by removing the positive electrode active material layer 13 by laser.

そして、溝15に沿って、固体電解質層12、負極活物質層11が正極活物質層13よりも大きくなるように、切断線Lにおいてレーザー走査することで、電池用積層体Pが切り出される(S7)。このようにして製造される電池用積層体Pでは、負極活物質層11、固体電解質層12、正極活物質層13のいずれも塗工した時の大きさよりも小さくなる。図6に示すように、電池用積層体Pが切り出された後の不要部分Dには、負極活物質層11、固体電解質層12、正極活物質層13の一部が含まれる。この不要部分Dは廃棄されるため、材料の歩留まりが悪くなる。特に、活物質は高価であるため、量産化した際に製品コストが高くなる要因となる。   Then, the battery laminate P is cut out by laser scanning along the cutting line L so that the solid electrolyte layer 12 and the negative electrode active material layer 11 become larger than the positive electrode active material layer 13 along the groove 15 ( S7). In the battery laminate P manufactured in this manner, the sizes of the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13 are smaller than those of when applied. As shown in FIG. 6, the unnecessary portion D after the battery laminate P is cut out includes a part of the negative electrode active material layer 11, the solid electrolyte layer 12, and the positive electrode active material layer 13. Since the unnecessary portion D is discarded, the yield of the material is deteriorated. In particular, since the active material is expensive, it causes an increase in product cost when mass-produced.

また、比較例では、レーザーを用いてトリミング、裁断を行うため、ヒュームが気化、飛散する。所定の大きさ(例えば、50μm以上)の異物が電池に付着すると短絡が発生する場合がある。   Further, in the comparative example, fumes are vaporized and scattered because trimming and cutting are performed using a laser. If foreign matter of a predetermined size (for example, 50 μm or more) adheres to the battery, a short circuit may occur.

さらに、全固体電池として良好な性能を得るためには、固体電解質層12は薄く(例えば30μm)形成する必要がある。しかし、固体電解質層12が薄いと、レーザーで正極活物質層13をトリミングするときに、固体電解質層12まで除去される恐れがある。固体電解質層12が除去されると、負極活物質層11が露出し、電池用積層体Pを積層するときに短絡の要因となる。このため、レーザーで正極活物質層13をトリミングする場合、固体電解質層12を薄くすることができない。また、固体電解質層12を厚くすると、複数枚重ねて製造される積層型全固体電池の全体の厚さが厚くなり、電池の体積当たりのエネルギー効率が悪くなるという問題も生じる。   Furthermore, in order to obtain good performance as an all solid state battery, the solid electrolyte layer 12 needs to be formed thin (for example, 30 μm). However, when the solid electrolyte layer 12 is thin, there is a risk that the solid electrolyte layer 12 may be removed when trimming the positive electrode active material layer 13 with a laser. When the solid electrolyte layer 12 is removed, the negative electrode active material layer 11 is exposed, which causes a short circuit when the battery stack P is stacked. Therefore, when trimming the positive electrode active material layer 13 with a laser, the solid electrolyte layer 12 can not be thinned. In addition, when the solid electrolyte layer 12 is thickened, the entire thickness of the laminated all-solid-state battery manufactured by stacking a plurality of sheets becomes thick, which causes a problem that energy efficiency per volume of the battery is deteriorated.

これに対し、実施の形態1では、負極活物質層11、固体電解質層12ともに所定の大きさに間欠塗工されている。また、正極活物質層13は固体電解質層12より一回り小さく、固体電解質層12の周囲からはみ出さないように間欠塗工される。これにより、電池の短絡を防止することができるとともに、レーザーによって正極活物質層13を除去するレーザートリミング工程が不要となる。また、未塗工部において負極箔10が切断され、積層体シートWに含まれる未塗工部を用いてタブTを形成している。これにより、正極活物質、負極活物質、電解質を廃棄する必要がなく、材料歩留まりを向上させることが可能となる。   On the other hand, in the first embodiment, both the negative electrode active material layer 11 and the solid electrolyte layer 12 are intermittently applied to a predetermined size. In addition, the positive electrode active material layer 13 is smaller than the solid electrolyte layer 12 and intermittent coating is performed so as not to protrude from the periphery of the solid electrolyte layer 12. Thereby, a short circuit of the battery can be prevented, and a laser trimming process of removing the positive electrode active material layer 13 by a laser becomes unnecessary. Moreover, the negative electrode foil 10 is cut | disconnected in an uncoated part, and tab T is formed using the uncoated part contained in the laminated sheet W. As shown in FIG. As a result, there is no need to discard the positive electrode active material, the negative electrode active material, and the electrolyte, and the material yield can be improved.

実施の形態2
図3は、実施の形態2に係る電池の製造方法を説明する製造工程図である。図3において、上部に各工程のフローが示されており、下部に各行程中の電池用積層体の状態が示されている。実施の形態2において、実施の形態1と異なる点は、負極活物質層11、固体電解質層12が連続して塗工される点である。
Embodiment 2
FIG. 3 is a manufacturing process diagram illustrating the method of manufacturing a battery according to the second embodiment. In FIG. 3, the flow of each process is shown in the upper part, and the state of the battery laminate during each process is shown in the lower part. The second embodiment differs from the first embodiment in that the negative electrode active material layer 11 and the solid electrolyte layer 12 are continuously coated.

実施の形態2では、電池用積層体Pが負極箔10上に横向きに配置されている。すなわち、電池用積層体Pの長手方向が帯状の負極箔10の幅方向に沿って形成され、電池用積層体Pの短手方向が帯状の負極箔10の長さ方向に沿って形成されている。負極箔10の一方の端辺には、長さ方向に延在する未塗工部が形成されている。この未塗工部に、電流取出し用のタブが形成される。   In the second embodiment, the battery laminate P is disposed laterally on the negative electrode foil 10. That is, the longitudinal direction of the battery laminate P is formed along the width direction of the strip-like negative electrode foil 10, and the short direction of the battery laminate P is formed along the length direction of the strip-like negative electrode foil 10 There is. At one end side of the negative electrode foil 10, an uncoated portion extending in the length direction is formed. At this uncoated portion, a tab for current extraction is formed.

負極箔10上に負極活物質層11が連続して塗工される(S31)。また、連続して形成された負極活物質層11上に、固体電解質層12が連続して形成される(S32)。
そして、負極活物質層11及び固体電解質層12をプレスした後に(S33)、正極活物質層13が固体電解質層12上に塗工される(S34)。実施の形態1と同様に、正極活物質層13は固体電解質層12より一回り小さく、固体電解質層12の周囲からはみ出さないように間欠塗工される。その後、緻密化プレス工程(S35)を経て、未塗工部を用いてタブTを形成した電池用積層体Pが切り出される(S17)。
The negative electrode active material layer 11 is continuously coated on the negative electrode foil 10 (S31). Also, the solid electrolyte layer 12 is continuously formed on the continuously formed negative electrode active material layer 11 (S32).
Then, after the negative electrode active material layer 11 and the solid electrolyte layer 12 are pressed (S33), the positive electrode active material layer 13 is coated on the solid electrolyte layer 12 (S34). As in the first embodiment, the positive electrode active material layer 13 is intermittently smaller than the solid electrolyte layer 12 so as not to protrude from the periphery of the solid electrolyte layer 12. Thereafter, through the densification pressing step (S35), the battery laminate P having the tab T formed using the uncoated portion is cut out (S17).

このように、実施の形態2においても、電池の短絡を防止することができるとともに、レーザーによって正極活物質層13を除去するレーザートリミング工程が不要となる。これにより、正極活物質を廃棄する必要がなく、材料歩留まりを向上させることが可能となる。   As described above, also in the second embodiment, the short circuit of the battery can be prevented, and the laser trimming process of removing the positive electrode active material layer 13 by the laser becomes unnecessary. As a result, it is not necessary to discard the positive electrode active material, and the material yield can be improved.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the scope of the present invention.

10 負極箔
11 負極活物質層
12 固体電解質層
13 正極活物質層
14 正極箔
15 溝
20 第1プレス機構
30 転写機構
31 供給ローラー
32 転写ローラー
33 巻取ローラー
40 第2プレス機構
F 積層型全固体電池
P 電池用積層体
W 積層体シート
T タブ
L 切断線
D 不要部分
DESCRIPTION OF SYMBOLS 10 Negative electrode foil 11 Negative electrode active material layer 12 Solid electrolyte layer 13 Positive electrode active material layer 14 Positive electrode foil 15 Groove 20 1st press mechanism 30 Transfer mechanism 31 Supply roller 32 Transfer roller 33 Winding roller 40 2nd press mechanism F Multilayer whole solid Battery P Battery laminate W laminate sheet T tab L cutting line D unnecessary part

Claims (1)

集電体上に間欠的に第1活物質層を塗工して、当該該第1活物質層が塗工された塗工部と、当該第1活物質層が塗工されていない未塗工部とを形成する工程と、
前記塗工部上に電解質層を塗工する工程と、
前記電解質層上に、当該電解質層の端部よりも内側に第2活物質層を塗工する工程と、
前記未塗工部で前記集電体を切断する工程と、
前記未塗工部を用いて電流取出し用のタブを形成する工程と、
を備える、電池の製造方法。
The first active material layer is intermittently coated on the current collector, and the coated portion on which the first active material layer is coated, and the uncoated portion on which the first active material layer is not coated Forming a work portion;
Applying an electrolyte layer on the coating unit;
Applying a second active material layer on the electrolyte layer inside the end of the electrolyte layer;
Cutting the current collector at the uncoated portion;
Forming a tab for current extraction using the uncoated portion;
A method of manufacturing a battery, comprising:
JP2017229652A 2017-11-29 2017-11-29 Manufacturing method of battery Pending JP2019102196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229652A JP2019102196A (en) 2017-11-29 2017-11-29 Manufacturing method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229652A JP2019102196A (en) 2017-11-29 2017-11-29 Manufacturing method of battery

Publications (1)

Publication Number Publication Date
JP2019102196A true JP2019102196A (en) 2019-06-24

Family

ID=66977082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229652A Pending JP2019102196A (en) 2017-11-29 2017-11-29 Manufacturing method of battery

Country Status (1)

Country Link
JP (1) JP2019102196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952533A (en) * 2020-07-29 2020-11-17 江西省倍特力新能源有限责任公司 Manufacturing device for negative electrode of power type battery
KR20220036355A (en) * 2020-09-15 2022-03-22 폭스바겐 악티엔 게젤샤프트 Method and device for producing a cell stack for battery cells

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176549A (en) * 1999-12-16 2001-06-29 Sony Corp Non-aqueous electrolytic battery
JP2001266944A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery
JP2009163942A (en) * 2007-12-28 2009-07-23 Panasonic Corp Nonaqueous secondary battery, and its manufacturing method thereof
WO2010064288A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
JP2011070788A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Method of manufacturing all-solid battery
JP2011129398A (en) * 2009-12-18 2011-06-30 Konica Minolta Holdings Inc Sheet-like secondary battery cell and method of manufacturing the same
JP2014107218A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Power storage device and method of manufacturing electrode assembly
JP2017199668A (en) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 Battery, and battery manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176549A (en) * 1999-12-16 2001-06-29 Sony Corp Non-aqueous electrolytic battery
JP2001266944A (en) * 2000-03-17 2001-09-28 Sony Corp Manufacturing method of battery
JP2009163942A (en) * 2007-12-28 2009-07-23 Panasonic Corp Nonaqueous secondary battery, and its manufacturing method thereof
WO2010064288A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
JP2011070788A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Method of manufacturing all-solid battery
JP2011129398A (en) * 2009-12-18 2011-06-30 Konica Minolta Holdings Inc Sheet-like secondary battery cell and method of manufacturing the same
JP2014107218A (en) * 2012-11-29 2014-06-09 Toyota Industries Corp Power storage device and method of manufacturing electrode assembly
JP2017199668A (en) * 2016-04-25 2017-11-02 パナソニックIpマネジメント株式会社 Battery, and battery manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952533A (en) * 2020-07-29 2020-11-17 江西省倍特力新能源有限责任公司 Manufacturing device for negative electrode of power type battery
CN111952533B (en) * 2020-07-29 2023-01-10 江西省倍特力新能源有限责任公司 Manufacturing device for negative electrode of power type battery
KR20220036355A (en) * 2020-09-15 2022-03-22 폭스바겐 악티엔 게젤샤프트 Method and device for producing a cell stack for battery cells
KR102637991B1 (en) * 2020-09-15 2024-02-20 폭스바겐 악티엔 게젤샤프트 Method and device for producing a cell stack for battery cells

Similar Documents

Publication Publication Date Title
JP5114036B2 (en) Manufacturing method of stacked battery
JP6477769B2 (en) Power storage device
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP4632860B2 (en) Secondary battery and manufacturing method thereof
JP7038964B2 (en) Electrodes with improved welding characteristics of electrode tabs and secondary batteries containing them
KR101707357B1 (en) Electric device, and apparatus and method for bonding separator of electric device
CN108292730B (en) Electrochemical device
JP7018576B2 (en) Batteries, battery manufacturing methods, and battery manufacturing equipment
EP2874225A1 (en) Method for securing electrode assembly using tape
JP5277736B2 (en) Bipolar battery manufacturing method and bipolar battery manufacturing apparatus
JP2008293793A (en) Solid thin film battery, and manufacturing method of solid thin film battery
JP2018181528A (en) All-solid battery and manufacturing method thereof
JP2016006718A (en) Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode
US11367864B2 (en) Intermittently coated dry electrode for energy storage device and method of manufacturing the same
WO2013031889A1 (en) Method for manufacturing cell electrode
JP5761576B2 (en) Multilayer battery and method for manufacturing multilayer electrode body
JP2016167416A (en) Separator housing type electrode body of power storage device, electrode assembly of power storage device, and manufacturing apparatus of power storage device
JP2016181345A (en) Method for manufacturing secondary battery
US20200280104A1 (en) Anode Subassemblies for Lithium-Metal Batteries, Lithium-Metal Batteries Made Therewith, and Related Methods
JP4603857B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2019102196A (en) Manufacturing method of battery
JP2014116080A (en) Electricity storage device and method for manufacturing electricity storage device
JP6902731B2 (en) Battery manufacturing method
JP2012190697A (en) Battery
JP2023519948A (en) Electrode assembly manufacturing apparatus including ultrasonic cutting machine and electrode assembly manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308