JP2016167416A - Separator housing type electrode body of power storage device, electrode assembly of power storage device, and manufacturing apparatus of power storage device - Google Patents

Separator housing type electrode body of power storage device, electrode assembly of power storage device, and manufacturing apparatus of power storage device Download PDF

Info

Publication number
JP2016167416A
JP2016167416A JP2015047256A JP2015047256A JP2016167416A JP 2016167416 A JP2016167416 A JP 2016167416A JP 2015047256 A JP2015047256 A JP 2015047256A JP 2015047256 A JP2015047256 A JP 2015047256A JP 2016167416 A JP2016167416 A JP 2016167416A
Authority
JP
Japan
Prior art keywords
separator
melting
storage device
power storage
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047256A
Other languages
Japanese (ja)
Other versions
JP6679829B2 (en
Inventor
寛恭 西原
Hiroyasu Nishihara
寛恭 西原
陽平 濱口
Yohei Hamaguchi
陽平 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015047256A priority Critical patent/JP6679829B2/en
Publication of JP2016167416A publication Critical patent/JP2016167416A/en
Application granted granted Critical
Publication of JP6679829B2 publication Critical patent/JP6679829B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To facilitate bending of a melted portion by providing a soft region becoming a fold of the melted portion, at each melted portion between respective electrode plates in a separator covering a plurality of electrode plates (positive electrode plates or negative electrode plates).SOLUTION: A positive electrode assembly 30 has a plurality of positive electrode plates 80, and a separator 40 covering the plurality of electrode plates. The separator has a first separator 50 covering the first surface of the plurality of positive electrode plates arranged in one row at predetermined intervals, a second separator 60 covering the second surface, and a melted portion 70 extending between the adjacent positive electrode plates, and where the first separator and second separator are melted. The melted portion has a pair of welded regions F1 extending between the adjacent positive electrode plates, and where the first separator and second separator are welded, and a molten region F2 where the first separator and second separator are melted between the pair of welded regions, but the melting amount is smaller than that in the welded region and softer than the welded region.SELECTED DRAWING: Figure 5

Description

本発明は、蓄電装置に用いられる正極又は負極の一方の電極をセパレータ内に収容したセパレータ収納式電極体、該セパレータ収納式電極体と正極又は負極の他方の電極板とにて構成された電極組立体、及び蓄電装置の製造装置に関する。   The present invention relates to a separator-housing electrode body in which one of a positive electrode and a negative electrode used in a power storage device is housed in a separator, and an electrode constituted by the separator-housing electrode body and the other electrode plate of the positive electrode or the negative electrode The present invention relates to an assembly and an apparatus for manufacturing a power storage device.

蓄電装置の用途は多岐に渡り、近年、特に2次電池は、デジタルカメラ等の携帯用電子機器や、近年では電気自動車等の電動用の車両に搭載されて、これらへの電力供給源として機能する。特許文献1に開示された2次電池においては、複数の正極板と負極板とが薄膜状のセパレータを介して交互に積層されている。この2次電池では、正極板と負極板とがつぎの工程にて積層されている。まず、複数の正極板を一列に並べて上下両面からセパレータで覆うとともに、上下両面のセパレータを各正極板の間で熱溶融して溶着する。そして、このセパレータを隣り合う正極板の間に亘ってつづら折りし、個々の折り返し部分に負極板を挟み込む。   Applications of power storage devices are diverse, and in recent years, especially secondary batteries are installed in portable electronic devices such as digital cameras, and in recent years, electric vehicles such as electric vehicles, and function as a power supply source for these. To do. In the secondary battery disclosed in Patent Document 1, a plurality of positive plates and negative plates are alternately stacked via thin film separators. In this secondary battery, a positive electrode plate and a negative electrode plate are laminated in the next step. First, a plurality of positive electrode plates are arranged in a row and covered with separators from the upper and lower surfaces, and the upper and lower separators are thermally melted and welded between the positive electrode plates. The separator is then folded between adjacent positive plates, and the negative plates are sandwiched between individual folded portions.

特開平7−57716号公報JP-A-7-57716

上述のつづら折りに際しては、各正極板の間の溶着部分が折り曲げられる。一般に、溶着部分は硬いので、該溶着部分の折り曲げには、ガイド部材等により予め折り目をつける作業が必要で手間がかかる。   At the time of the above-described zigzag folding, the welded portion between the positive plates is folded. In general, since the welded portion is hard, folding the welded portion requires a work of making a crease in advance with a guide member or the like, which is troublesome.

そこで、本発明の課題は、複数の電極板(正極板又は負極板)を覆うセパレータにおける各電極板の間の溶融部に、該溶融部の折り目となる柔らかい領域を設けることで、該溶融部の折り曲げを容易にすることである。   Then, the subject of this invention is providing the soft area | region which becomes the crease | fold of this fusion | melting part in the fusion | melting part between each electrode plate in the separator which covers several electrode plates (positive electrode plate or negative electrode plate), and bend | folds this fusion | melting part. To make it easier.

上記の課題を解決するため、本発明はつぎの手段をとる。   In order to solve the above problems, the present invention takes the following means.

本発明の第1の発明は、蓄電装置のセパレータ収納式電極体である。このセパレータ収納式電極体は、正極又は負極の一方よりなる複数の電極板と、それら複数の電極板を覆うセパレータとを有する。セパレータは、所定間隔をあけて一列に並べられた複数の電極板の第1面を覆う第1セパレータと、複数の電極板の第1面とは反対側の第2面を覆う第2セパレータと、隣り合う電極板の間に沿って延びかつ第1セパレータと第2セパレータとが溶融された溶融部とを有する。溶融部は、隣り合う電極板の間に沿って延びて第1セパレータと第2セパレータとが溶着された一対の溶着領域と、一対の溶着領域の間において第1セパレータと第2セパレータとが溶融はされているが溶着領域よりも溶融量が少ない少溶融領域と、を有する。   1st invention of this invention is the separator accommodation type electrode body of an electrical storage apparatus. This separator accommodation type electrode body has a plurality of electrode plates which consist of one of a positive electrode or a negative electrode, and a separator which covers these electrode plates. The separator includes a first separator that covers the first surfaces of the plurality of electrode plates arranged in a line at a predetermined interval, and a second separator that covers the second surface opposite to the first surfaces of the plurality of electrode plates; , And a melted portion that extends between adjacent electrode plates and in which the first separator and the second separator are melted. The fusion part extends along between the adjacent electrode plates, and the first separator and the second separator are melted between the pair of welded areas where the first separator and the second separator are welded. However, it has a small melting region having a smaller melting amount than the welding region.

この第1の発明のセパレータ収納式電極体では、各電極板の間の溶融部において、一対の溶着領域の間にそれらの溶着領域よりも溶融量が少ない少溶融領域が設けられている。少溶融領域は溶融量が少ないので溶着領域よりも柔らかい。そのため、例えばセパレータ収納式電極体を各電極板の間に亘ってつづら折り状に折り畳む場合には、この柔らかい少溶融領域を折り目として各溶融部を容易に折り曲げることができる。したがって、セパレータ収納式電極体では、その折り畳みに際してガイド部材等により予め折り目をつける作業が不要となり、該折り畳み作業が円滑とされる。   In the separator-accommodating electrode body according to the first aspect of the present invention, in the melted portion between the electrode plates, a small melt area having a smaller melt amount than the weld areas is provided between the pair of weld areas. The small melting region is softer than the welding region because the melting amount is small. Therefore, for example, when the separator-housing electrode body is folded in a zigzag manner across each electrode plate, each melting portion can be easily folded using this soft small melting region as a fold. Therefore, in the separator housing type electrode body, it is not necessary to make a crease in advance by a guide member or the like when the separator is folded, and the folding work is made smooth.

本発明の第2の発明は、上記第1の発明に記載の蓄電装置のセパレータ収納式電極体であって、第1セパレータは、溶融部以外において第1セパレータ厚みを有する。第2セパレータは、溶融部以外において第2セパレータ厚みを有する。溶着領域は、第1セパレータ厚みと第2セパレータ厚みとを加えた厚みよりも薄い第1溶融厚みを有する。少溶融領域は、第1溶融厚みよりも厚い第2溶融厚みを有する。   According to a second aspect of the present invention, there is provided a separator-housing electrode body for a power storage device according to the first aspect, wherein the first separator has a thickness of the first separator other than the melting portion. The second separator has a second separator thickness at a portion other than the melting portion. The weld region has a first melt thickness that is thinner than the sum of the first separator thickness and the second separator thickness. The small melt region has a second melt thickness that is greater than the first melt thickness.

この第2の発明のセパレータ収納式電極体では、少溶融領域が溶着領域よりも厚い。例えば、溶融時に、溶着領域における加熱量を多くし、少溶融領域における加熱量を溶着領域に対して少なくすることで、溶着領域と少溶融領域とを適切に形成することができる。   In the separator-housing electrode body according to the second aspect of the invention, the small melting region is thicker than the welding region. For example, at the time of melting, the amount of heating in the welding region is increased, and the amount of heating in the small melting region is decreased with respect to the welding region, whereby the welding region and the small melting region can be appropriately formed.

本発明の第3の発明は、上記第1または第2の発明に記載の蓄電装置のセパレータ収納式電極体であって、溶着領域と少溶融領域とは、それぞれが隣接する電極板における、隣り合う電極板と対向する辺である第1辺の全長に沿って延びている。   According to a third aspect of the present invention, there is provided the separator-housing electrode body of the power storage device according to the first or second aspect, wherein the welding region and the low melting region are adjacent to each other in the adjacent electrode plates. It extends along the entire length of the first side that is the side facing the mating electrode plate.

この第3の発明のセパレータ収納式電極体では、溶着領域と少溶融領域とが、電極板における、隣り合う電極板と対向する辺である第1辺の全長に沿って延びていることから、例えば、セパレータ収納式電極体を各電極板の間に亘ってつづら折り状に折り畳む場合、容易かつ確実に、各電極板の間で少溶融領域を電極板の第1辺に沿って折り曲げることができる。これにより、例えばセパレータ収納式電極体を構成する電極板が正極板である場合、正極板の第1辺に対して溶融部が傾斜して折れ曲がることに起因する正極板同士の積層ズレが防止される。さらに、例えば、つづら折り状態に折り畳まれたセパレータ収納式電極体に対してその各正極板の間に負極板を挟み込む場合、負極板が矩形状であれば、該負極板を、各正極板の間の折り曲げ箇所である少溶融領域まで差し込んで該少溶融領域に沿って一辺を位置決めすることで、負極板における位置決めされた一辺は、少溶融領域に沿うことで正極板の第1辺と平行に配置されることとなり、結果として、正極板と負極板とが斜めにズレて積層されることが防止される。   In the separator-housing electrode body according to the third aspect of the invention, the welding region and the low melting region extend along the entire length of the first side that is the side facing the adjacent electrode plate in the electrode plate, For example, when the separator-housing electrode body is folded in a zigzag manner between the electrode plates, the small melting region can be easily and reliably folded along the first side of the electrode plates. Thereby, for example, when the electrode plate constituting the separator-housing electrode body is a positive electrode plate, the stacking misalignment between the positive electrode plates due to the melting portion being inclined and bent with respect to the first side of the positive electrode plate is prevented. The Further, for example, when the negative electrode plate is sandwiched between the positive electrode plates with respect to the separator-accommodating electrode body folded in a zigzag state, if the negative electrode plate is rectangular, the negative electrode plate is bent at a position between the positive electrode plates. By inserting one small melting region and positioning one side along the small melting region, the positioned one side of the negative electrode plate is arranged parallel to the first side of the positive electrode plate along the small melting region. As a result, the positive electrode plate and the negative electrode plate are prevented from being obliquely displaced and stacked.

本発明の第4の発明は、上記第1〜第3の発明のいずれかに記載の蓄電装置のセパレータ収納式電極体を含んで構成される蓄電装置の電極組立体である。この電極組立体では、セパレータ収納式電極体における少溶融領域のそれぞれが山折りと谷折りとが交互に繰り返されて、セパレータ収納式電極体がつづら折り状態に形成されており、各電極板が対向している隙間のそれぞれに、正極又は負極の他方の電極板が挟み込まれている。   According to a fourth aspect of the present invention, there is provided an electrode assembly for a power storage device including the separator-housing electrode body for the power storage device according to any one of the first to third aspects. In this electrode assembly, each of the small melting regions in the separator-accommodating electrode body is alternately folded and folded, and the separator-accommodating electrode body is formed in a zigzag folded state, and each electrode plate is opposed to each other. The other electrode plate of the positive electrode or the negative electrode is sandwiched between the gaps.

この第4の発明の電極組立体では、つづら折り状態に折り畳まれたセパレータ収納式電極体に対して、各電極板が対向している隙間のそれぞれに正極又は負極の他方の電極板が挟みこまれていることから、複数の正極板と負極板とが交互に順次積層されて、効率よく電流を流すことができる。   In the electrode assembly according to the fourth aspect of the present invention, the other electrode plate of the positive electrode or the negative electrode is sandwiched between the gaps facing each electrode plate with respect to the separator-housing electrode body folded in a zigzag folded state. Therefore, a plurality of positive plates and negative plates are alternately laminated in order, and a current can flow efficiently.

本発明の第5の発明は、上記第1の発明に記載の蓄電装置のセパレータ収納式電極体における溶融部を形成する蓄電装置の製造装置である。この製造装置は、第1セパレータの側から押し付けられる第1溶融具と、第2セパレータの側から押し付けられる第2溶融具と、を有し、加熱された状態の第1溶融具と第2溶融具とでセパレータを挟み込んで溶融部を形成する。そして、第1溶融具における第1セパレータに押し付けられる面は、一対の溶着領域を形成するために隣り合う電極板の間に沿って延びる一対の溶着部形成面と、少溶融領域を形成するために一対の溶着部形成面の間において隣り合う電極板の間に沿って延びるとともに溶着部形成面に対して凹んだ少溶融部形成凹部と、を有する。   According to a fifth aspect of the present invention, there is provided a power storage device manufacturing apparatus for forming a melting portion in the separator-housing electrode body of the power storage device according to the first aspect. The manufacturing apparatus includes a first melting tool pressed from the first separator side and a second melting tool pressed from the second separator side, and the heated first melting tool and second melting tool. A melting part is formed by sandwiching the separator with the tool. And the surface pressed against the 1st separator in a 1st melting tool is a pair of welding part formation surfaces which extend along between a pair of adjacent electrode plates in order to form a pair of welding region, and a small melting region. And a small melted portion forming concave portion extending between adjacent electrode plates and recessed with respect to the welded portion forming surface.

この第5の発明の製造装置では、第1溶融具と第2溶融具とを加熱した状態でセパレータに押し付けることで、第1溶融具の溶着部形成面によって隣り合う電極板の間に一対の溶着領域を形成でき、少溶融部形成凹部によって一対の溶着部形成面の間に少溶融領域を形成できることから、この製造装置によって確実に、溶着領域と少溶融領域とを形成できる。   In the manufacturing apparatus according to the fifth aspect of the present invention, a pair of welding regions are formed between adjacent electrode plates by the welding portion forming surface of the first melting tool by pressing the first melting tool and the second melting tool against the separator in a heated state. Since the small melting region can be formed between the pair of welded portion forming surfaces by the small melted portion forming concave portion, the manufacturing region can surely form the welded region and the small melted region.

本発明の第6の発明は、上記第5の発明に記載の蓄電装置の製造装置である。この製造装置において、第1溶融具の形状と第2溶融具の形状は円柱状であり、円柱状の第1溶融具と第2溶融具の軸線は、隣り合う電極板の間に沿う方向に平行となるように設定されている。そして、第1溶融具の外周面に溶着部形成面と少溶融部形成凹部とが設けられている。   A sixth invention of the present invention is the power storage device manufacturing apparatus according to the fifth invention. In this manufacturing apparatus, the shape of the first melting tool and the shape of the second melting tool are columnar, and the axis of the columnar first melting tool and the second melting tool is parallel to the direction along the adjacent electrode plates. It is set to be. And the welding part formation surface and the small fusion part formation recessed part are provided in the outer peripheral surface of the 1st melting tool.

この第6の発明の製造装置では、第1溶融具と第2溶融具とが円柱状に形成され、かつ、両溶融具の軸線は隣り合う電極板の間に沿う方向に平行に配置され、また、第1溶融具の外周面に溶着部形成面と少溶融部形成凹部とが設けられていることから、両溶融具を加熱した状態で、連続して搬送されるセパレータに対して両溶融具を互いに押し付けながら回転させることで、溶着領域と少溶融領域とを順次セパレータに形成することができる。   In the manufacturing apparatus of the sixth invention, the first melting tool and the second melting tool are formed in a columnar shape, and the axes of the two melting tools are arranged in parallel in the direction between the adjacent electrode plates, and Since the welded portion forming surface and the small melted portion forming concave portion are provided on the outer peripheral surface of the first melting tool, both the melting tools are attached to the separator that is continuously conveyed while both the melting tools are heated. By rotating while pressing each other, a welding region and a small melting region can be sequentially formed in the separator.

本発明の第7の発明は、上記第5の発明に記載の蓄電装置の製造装置である。製造装置において、電極板は矩形状であり、溶着部形成面は平面状である。そして、第1溶融具は、電極板における隣り合う電極板と対向する辺である第1辺の全長に沿うとともに溶着部形成面と少溶融部形成凹部とが形成された第1辺部と、第1辺部の一方端から電極板における第1辺に直交する一方の辺である第2辺の全長に沿うとともに溶着部形成面と同一平面となるように形成された第2辺部溶着部形成面が形成された第2辺部と、第1辺部の他方端から電極板における第1辺に直交する他方の辺である第3辺の全長に沿うとともに溶着部形成面と同一平面となるように形成された第3辺部溶着部形成面が形成された第3辺部と、を有して略コの字状の形状を有している。   A seventh invention of the present invention is the power storage device manufacturing apparatus according to the fifth invention. In the manufacturing apparatus, the electrode plate has a rectangular shape, and the weld portion forming surface has a flat shape. And the 1st fusion tool is along the full length of the 1st side which is the side which counters the adjacent electrode plate in an electrode plate, and the 1st side part in which the welding part formation surface and the small fusion part formation recessed part were formed, A second side welded portion formed so as to be along the entire length of the second side which is one side orthogonal to the first side of the electrode plate from one end of the first side and to be flush with the welded portion forming surface. The second side portion on which the formation surface is formed, and the entire length of the third side, which is the other side orthogonal to the first side of the electrode plate, from the other end of the first side portion and the same plane as the weld portion formation surface And a third side part formed with a third side part welded part forming surface, and has a substantially U-shaped shape.

この第7の発明の製造装置では、第1溶融具が、溶着部形成面と少溶融部形成凹部とを有する第1辺部と、電極板における第1辺と直交する一方の辺である第2辺に沿う第2辺部溶着部形成面を有する第2辺部と、電極板における第1辺と直交する他方の辺である第3辺に沿う第3辺部溶着部形成面を有する第3辺部とを備えることから、第1溶融具を加熱した状態でセパレータに押し付ければ、隣り合う電極板の間に溶着領域と少溶融領域とを形成するのと並行して、電極板の第2辺と第3辺とに沿う個所を溶融でき、セパレータの溶融作業を効率化できる。   In the manufacturing apparatus according to the seventh aspect of the invention, the first melting tool is a first side part having a weld part forming surface and a small melt part forming concave part, and one side perpendicular to the first side of the electrode plate. A second side having a second side welded portion forming surface along two sides and a third side welded portion forming surface along the third side which is the other side orthogonal to the first side of the electrode plate. If the first melter is pressed against the separator in a heated state, the second electrode plate is formed in parallel with the formation of the welded region and the small melt region between the adjacent electrode plates. The part along the side and the third side can be melted, and the melting operation of the separator can be made efficient.

蓄電装置に収容された電極組立体を表した外観斜視図である。It is an external appearance perspective view showing the electrode assembly accommodated in the electrical storage apparatus. 電極組立体を表した断面図である。It is sectional drawing showing the electrode assembly. 電極組立体を分解状態で表した断面図である。It is sectional drawing which represented the electrode assembly in the decomposition | disassembly state. 正極組立体を広げた状態で表した正面図である。It is the front view represented in the state which expanded the positive electrode assembly. 図4のV-V矢視方向の断面図である。It is sectional drawing of the VV arrow direction of FIG. 電極組立体の製造工程を表した説明図である。It is explanatory drawing showing the manufacturing process of the electrode assembly. 溶融具を表した斜視図である。It is a perspective view showing a melting tool. 図7の溶融具の使用状態を表した断面図である。It is sectional drawing showing the use condition of the melting tool of FIG. 図8の仮想線IXの部分を拡大して表した断面図である。It is sectional drawing which expanded and represented the part of the virtual line IX of FIG. 他の実施形態に係る溶融具を表した斜視図である。It is a perspective view showing the fusion tool concerning other embodiments. 図10の溶融具の使用状態を表した断面図である。It is sectional drawing showing the use condition of the melting tool of FIG. 溶融具における少溶融部形成凹部の変形例を表した断面図である。It is sectional drawing showing the modification of the small fusion part formation recessed part in a melting tool. 溶融具における少溶融部形成凹部の変形例を表した断面図である。It is sectional drawing showing the modification of the small fusion part formation recessed part in a melting tool.

●[蓄電装置10の全体構成(図1)]
以下、本発明を実施するための形態を、図面を用いて説明する。本実施形態では、蓄電装置10をリチウムイオン2次電池とする。リチウムイオン2次電池である蓄電装置10の内部には、電極組立体20と電解液(図示省略)とが収容されている。蓄電装置10は、そのケース12の上面を貫通する外部接続端子14,16を通じて、放電時においては外部に電力を供給し、充電時においては外部から電力が供給される。
● [Entire configuration of power storage device 10 (FIG. 1)]
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the present embodiment, the power storage device 10 is a lithium ion secondary battery. An electrode assembly 20 and an electrolytic solution (not shown) are accommodated inside the power storage device 10 that is a lithium ion secondary battery. The power storage device 10 supplies power to the outside at the time of discharging through the external connection terminals 14 and 16 penetrating the upper surface of the case 12, and power is supplied from the outside at the time of charging.

●[電極組立体20の概略構成(図1〜3)]
リチウムイオン2次電池である蓄電装置10では、セパレータ収納式電極体は、正極を含む正極組立体30である。電極組立体20は、正極組立体30と負極板90とで構成されている。正極組立体30は、図3に示すように、複数の正極板80とセパレータ40とを含んで構成されており、詳細には、複数の正極板80が両面からセパレータ40で覆われ、かつ、それら複数の正極板80がセパレータ40で1つながりに繋がれている。この正極組立体30は、隣り合う正極板80の間に亘ってつづら折りされており、個々の折り返し部分に負極板90が挟み込まれている。これによって、電極組立体20は、図2に示すように、複数(例えば約50枚以上)の正極板80と負極板90とがセパレータ40を介して相対向して積層された積層構造を形成している。なお、正極組立体30については、後で詳しく説明する。
● [Schematic configuration of electrode assembly 20 (FIGS. 1 to 3)]
In power storage device 10 that is a lithium ion secondary battery, the separator-housing electrode body is positive electrode assembly 30 that includes a positive electrode. The electrode assembly 20 includes a positive electrode assembly 30 and a negative electrode plate 90. As shown in FIG. 3, the positive electrode assembly 30 includes a plurality of positive electrode plates 80 and separators 40. Specifically, the plurality of positive electrode plates 80 are covered with the separators 40 from both sides, and The plurality of positive electrode plates 80 are connected to each other by the separator 40. The positive electrode assembly 30 is folded between adjacent positive electrode plates 80, and the negative electrode plate 90 is sandwiched between the individual folded portions. Thus, as shown in FIG. 2, the electrode assembly 20 forms a laminated structure in which a plurality of (for example, about 50 or more) positive electrode plates 80 and negative electrode plates 90 are laminated to face each other with the separator 40 interposed therebetween. doing. The positive electrode assembly 30 will be described in detail later.

正極板80は、図2,3に示すように、金属箔(例えばアルミニウム箔)を基材80aとし、その基材80aの両面に正極活物質(例えばリチウム含有金属酸化物)層80bが塗工(塗布)されている。また、負極板90は、金属箔(例えば銅箔)を基材90aとし、その基材90aの両面に負極活物質(例えば炭素)層90bが塗工(塗布)されている。正極板80と負極板90とは極めて薄く(例えば約100μm)、また、図1に示すようにともに矩形状である。なお、負極板90の外周寸法は正極板80の外周寸法よりも一回り大きい。これは、詳細は省略するが、リチウムイオン2次電池の課題であるリチウム析出を抑制する目的で採用される、公知の設計である   As shown in FIGS. 2 and 3, the positive electrode plate 80 has a metal foil (for example, aluminum foil) as a base material 80a, and a positive electrode active material (for example, lithium-containing metal oxide) layer 80b is coated on both surfaces of the base material 80a. (Applied). The negative electrode plate 90 has a metal foil (for example, copper foil) as a base material 90a, and a negative electrode active material (for example, carbon) layer 90b is coated (applied) on both surfaces of the base material 90a. The positive electrode plate 80 and the negative electrode plate 90 are extremely thin (for example, about 100 μm), and are both rectangular as shown in FIG. The outer peripheral dimension of the negative electrode plate 90 is slightly larger than the outer peripheral dimension of the positive electrode plate 80. This is a well-known design that is employed for the purpose of suppressing lithium deposition, which is a problem of lithium ion secondary batteries, although details are omitted.

正極板80と負極板90とは、図1に示すように、蓄電装置10の外部接続端子14,16に対向する一辺にそれぞれ集電タブTを有している。正極板80の集電タブTは、図1,4に示すように、セパレータ40から外方に露出している。そして各正極板80の集電タブTは1つにまとめられて、一方の外部接続端子14に、直接又は間接的に接続されている。また、各負極板90の集電タブTは1つにまとめられて他方の外部接続端子16に、直接又は間接的に接続されている。なお、正極板80の集電タブT、及び負極板90の集電タブT、のどちらにも活物質層は形成されていない。   As shown in FIG. 1, the positive electrode plate 80 and the negative electrode plate 90 each have a current collecting tab T on one side facing the external connection terminals 14 and 16 of the power storage device 10. The current collecting tab T of the positive electrode plate 80 is exposed outward from the separator 40 as shown in FIGS. The current collecting tabs T of the respective positive electrode plates 80 are combined into one, and are directly or indirectly connected to one external connection terminal 14. Further, the current collecting tabs T of the respective negative electrode plates 90 are combined into one and directly or indirectly connected to the other external connection terminal 16. Note that neither the current collecting tab T of the positive electrode plate 80 nor the current collecting tab T of the negative electrode plate 90 is formed with an active material layer.

●[正極組立体30の構成(図4,5)]
正極組立体30を構成するセパレータ40は、図4,5に示すように、帯状の第1セパレータ50と第2セパレータ60とを有している。これらの第1セパレータ50及び第2セパレータ60は、所定間隔をあけて一列に並べられた複数の正極板80を両面から覆っている。なお、第1セパレータ50と第2セパレータ60とは、例えば絶縁性で多孔質の樹脂材で形成されているとともに、極めて薄い(例えば約20μm)。
● [Configuration of positive electrode assembly 30 (FIGS. 4 and 5)]
As shown in FIGS. 4 and 5, the separator 40 constituting the positive electrode assembly 30 includes a strip-shaped first separator 50 and a second separator 60. The first separator 50 and the second separator 60 cover a plurality of positive electrode plates 80 arranged in a line at a predetermined interval from both sides. The first separator 50 and the second separator 60 are made of, for example, an insulating and porous resin material and are extremely thin (for example, about 20 μm).

セパレータ40は、図4,5に示すように、隣り合う正極板80の間に沿って延び、かつ、第1セパレータ50と第2セパレータ60とが溶融された溶融部70を有している。この溶融部70によって、各正極板80の間が仕切られている。   As shown in FIGS. 4 and 5, the separator 40 has a melting portion 70 that extends between adjacent positive electrode plates 80 and in which the first separator 50 and the second separator 60 are melted. The melting part 70 partitions the positive electrode plates 80.

溶融部70は、図4,5に示すように、隣り合う正極板80の間に沿って連続して延びる一対の溶着領域F1(図4中にハッチングにて示した領域)と、この一対の溶着領域F1の間を連続して延びる少溶融領域F2と、を有している。溶着領域F1では、第1セパレータ50と第2セパレータ60とが(強固に)溶着されている。一方、少溶融領域F2では、溶着領域F1よりも溶融量が少ない。なお、少溶融領域F2では、第1セパレータ50と第2セパレータ60とが溶着されていても、溶着されていなくてもよいが、本実施形態では、ほぼ溶着されていないものとする。溶融量が少ない為、少溶融領域F2は、溶着領域F1よりも柔らかくなっている。なお、溶着領域F1と少溶融領域F2とは、それぞれ隣接する(近い位置の)正極板80の第1辺A1の全長に沿って連続して延びている。正極板80の第1辺A1は、隣り合う正極板80と対向する辺である。   As shown in FIGS. 4 and 5, the melting part 70 includes a pair of welding regions F <b> 1 (regions indicated by hatching in FIG. 4) extending continuously between the adjacent positive electrode plates 80, A small melting region F2 extending continuously between the welding regions F1. In the welding region F1, the first separator 50 and the second separator 60 are welded (strongly). On the other hand, in the small melting region F2, the amount of melting is smaller than in the welding region F1. In the low melting region F2, the first separator 50 and the second separator 60 may or may not be welded, but in the present embodiment, they are not substantially welded. Since the melting amount is small, the small melting region F2 is softer than the welding region F1. The welding region F1 and the small melting region F2 continuously extend along the entire length of the first side A1 of the adjacent (close position) positive electrode plate 80. The first side A <b> 1 of the positive electrode plate 80 is a side facing the adjacent positive electrode plate 80.

溶着領域F1の厚みである第1溶融厚みS1は、図5に示すように、第1セパレータ50の厚みである第1セパレータ厚みT1と第2セパレータ60の厚みである第2セパレータ厚みT2とを加えた厚みよりも薄い。また、図5に示す例では、少溶融領域F2の厚みである第2溶融厚みS2は、第1セパレータ厚みT1と第2セパレータ厚みT2とを加えた厚みよりも薄く、かつ、第1溶融厚みS1よりも厚い。なお、第2溶融厚みS2は、第1溶融厚みS1よりも厚く形成されていればよく、該第2溶融厚みS2は、第1セパレータ厚みT1と第2セパレータ厚みT2とを加えた厚みよりも薄くなくてもよい。   As shown in FIG. 5, the first melt thickness S <b> 1 that is the thickness of the welding region F <b> 1 includes a first separator thickness T <b> 1 that is the thickness of the first separator 50 and a second separator thickness T <b> 2 that is the thickness of the second separator 60. Thinner than the added thickness. In the example shown in FIG. 5, the second melt thickness S2, which is the thickness of the small melt region F2, is thinner than the sum of the first separator thickness T1 and the second separator thickness T2, and the first melt thickness. Thicker than S1. The second melt thickness S2 only needs to be formed thicker than the first melt thickness S1, and the second melt thickness S2 is greater than the thickness obtained by adding the first separator thickness T1 and the second separator thickness T2. It does not have to be thin.

なお、図2,3に示すつづら折り状態の正極組立体30は、各溶融部70にて少溶融領域F2を折り目として山折りと谷折りとが交互に繰り返されて形成されている。そして、このつづら折りされた正極組立体30に対して、該正極組立体30における各正極板80が対向している隙間のそれぞれに負極板90が挟み込まれている。これによって、電極組立体20が形成されている。各正極板80の間に挟み込まれる負極板90は、少溶融領域F2まで内方へ差し込まれて、少溶融領域F2にて一辺が位置決めされている。   2 and 3, the positive electrode assembly 30 in the zigzag folded state is formed by alternately repeating mountain folds and valley folds at each melting portion 70 with the small melting region F2 as a fold. In addition, the negative electrode plate 90 is sandwiched between the positive electrode assembly 30 that is folded in a zigzag manner in which the positive electrode plates 80 of the positive electrode assembly 30 face each other. Thereby, the electrode assembly 20 is formed. The negative electrode plate 90 sandwiched between the positive electrode plates 80 is inserted inward to the small melting region F2, and one side is positioned in the small melting region F2.

ところで、第1セパレータ50と第2セパレータ60とは、図4に示すように、正極板80における第1辺A1と直交する第2辺A2と第3辺A3においても、それらの全長に沿って溶着されている。なお、第2辺A2には集電タブTが設けられている。第2辺A2に沿う溶着領域であるタブ辺溶着領域F3と、第3辺A3に沿う溶着領域であるタブ対向辺溶着領域F4とは、上述の溶着領域F1と同様、強固に溶着されている。つまり、第1セパレータ50と第2セパレータ60とは、正極板80の4辺の周縁に亘って強固に溶着されており、この溶着によって、各正極板80は、第1セパレータ50と第2セパレータ60との間で袋詰め状態とされている。この結果、各正極板80は位置ズレが防止される。   By the way, as shown in FIG. 4, the 1st separator 50 and the 2nd separator 60 are along those full length also in 2nd edge | side A2 and 3rd edge | side A3 which are orthogonal to 1st edge | side A1 in the positive electrode plate 80. It is welded. A current collecting tab T is provided on the second side A2. The tab side welding region F3 which is a welding region along the second side A2 and the tab opposing side welding region F4 which is a welding region along the third side A3 are firmly welded as in the above-described welding region F1. . In other words, the first separator 50 and the second separator 60 are firmly welded around the peripheral edges of the four sides of the positive electrode plate 80, and each positive electrode plate 80 is bonded to the first separator 50 and the second separator by this welding. Between 60 and 60. As a result, each positive electrode plate 80 is prevented from being displaced.

●[正極組立体30、及び電極組立体20の製造工程(図6)]
つづいて、電極組立体20の製造工程について説明する。いま、複数の正極板80が所定間隔をあけて一列に並べて搬送されているものとする。正極セパ包み工程R1では、搬送される正極板80を第1セパレータ50と第2セパレータ60とで上下両面からそれぞれ覆う。第1セパレータ50と第2セパレータ60とは、個々に巻回体302から巻き出され、ロール体304にて正極板80に押し付けられる。なお、正極板80の上面が第1面に相当し、正極板80の下面が第2面(第1面の反対側の面)に相当している。
● [Production Process of Positive Electrode Assembly 30 and Electrode Assembly 20 (FIG. 6)]
Next, the manufacturing process of the electrode assembly 20 will be described. Now, it is assumed that a plurality of positive electrode plates 80 are conveyed in a line at predetermined intervals. In the positive electrode separator packaging step R1, the conveyed positive electrode plate 80 is covered with the first separator 50 and the second separator 60 from both the upper and lower surfaces. The first separator 50 and the second separator 60 are individually unwound from the wound body 302 and pressed against the positive electrode plate 80 by the roll body 304. The upper surface of the positive electrode plate 80 corresponds to the first surface, and the lower surface of the positive electrode plate 80 corresponds to the second surface (the surface opposite to the first surface).

この後、溶融工程R2にて、第1セパレータ50と第2セパレータ60との溶融を行う。ここでは、後述の溶融具100が使用される。この溶融工程R2にて、隣り合う正極板80の間に溶融部70が形成される。また、タブ辺溶着領域F3とタブ対向辺溶着領域F4も、この溶融工程R2にて形成され、正極組立体30(図3,4参照)が製造される。   Thereafter, the first separator 50 and the second separator 60 are melted in the melting step R2. Here, a melting tool 100 described later is used. In this melting step R2, a melting portion 70 is formed between adjacent positive electrode plates 80. Further, the tab side welding region F3 and the tab opposite side welding region F4 are also formed in this melting step R2, and the positive electrode assembly 30 (see FIGS. 3 and 4) is manufactured.

この後、つづら折り工程R3にて、例えば山折り治具306と谷折り治具308とで溶融部70を折り曲げる。そして、負極板差込工程R4にて、各溶融部70に向けて負極板90を差し込む。こうして、各正極板80の間に負極板90が挟みこまれ、電極組立体20が製造される。   Thereafter, in the spelling step R3, the melting part 70 is bent by, for example, a mountain folding jig 306 and a valley folding jig 308. And the negative electrode plate 90 is inserted toward each fusion | melting part 70 by negative electrode plate insertion process R4. Thus, the negative electrode plate 90 is sandwiched between the positive electrode plates 80, and the electrode assembly 20 is manufactured.

●[溶融部70を形成する溶融工程R2における、溶融用の製造装置(図7〜図9)]
本発明の蓄電装置10の製造装置は、図7に示す溶融具100を有する。この溶融具100を使用して、上述の溶融工程R2が実施される。
● [Production device for melting in the melting step R2 for forming the melting portion 70 (FIGS. 7 to 9)]
The apparatus for manufacturing the power storage device 10 of the present invention has a melting tool 100 shown in FIG. Using the melting tool 100, the above-described melting step R2 is performed.

溶融具100は、図7に示すように、第1溶融具102と第2溶融具104とを有している。両溶融具102,104は、コの字型のブロック状に構成され、同寸法である。両溶融具102,104は、図8に示すようにしてセパレータ40に押し付けられることで使用される。なお、第1溶融具102が第1セパレータ50に押し付けられ、第2溶融具104が第2セパレータ60に押し付けられる。   As shown in FIG. 7, the melting tool 100 includes a first melting tool 102 and a second melting tool 104. Both melting tools 102 and 104 are formed in a U-shaped block shape and have the same dimensions. Both melting tools 102 and 104 are used by being pressed against the separator 40 as shown in FIG. The first melting tool 102 is pressed against the first separator 50, and the second melting tool 104 is pressed against the second separator 60.

第1溶融具102は、図7に示すように、直線状に延びる第1辺部110と、この第1辺部110の一方端から略直角に延びる第2辺部120と、第1辺部110の他方端から略直角に延びる第3辺部130とを有している。第1辺部110は、セパレータ40の幅H(図4参照)に相当する長さを有する。そして、第1辺部110は、セパレータ40に対する押し付け動作において、隣り合う正極板80の間で正極板80の第1辺A1(図4参照)の全長に沿って配置され、図4に示す溶融部70を形成する。なお、セパレータ40に対する押し付け動作については、後で詳しく説明する。第2辺部120は、正極板80の第2辺A2(図4参照)の全長に相当する長さを有している。そして、第2辺部120は、セパレータ40に対する押し付け動作において、正極板80の第2辺A2の外縁で該第2辺A2の全長に沿って配置され、図4に示すタブ辺溶着領域F3を形成する。第3辺部130は、正極板80の第3辺A3(図4参照)の全長に相当する長さを有している。そして、第3辺部130は、セパレータ40に対する押し付け動作において、正極板80の第3辺A3の外縁で該第3辺A3の全長に沿って配置され、図4に示すタブ対向辺溶着領域F4を形成する。なお、第1辺部110と第2辺部120と第3辺部130とは、第1セパレータ50に押し付けられる、連続した押し付け面Mを有している。   As shown in FIG. 7, the first melting tool 102 includes a first side portion 110 that extends linearly, a second side portion 120 that extends substantially perpendicularly from one end of the first side portion 110, and a first side portion. And a third side portion 130 extending substantially at a right angle from the other end of 110. The first side portion 110 has a length corresponding to the width H of the separator 40 (see FIG. 4). And the 1st edge part 110 is arrange | positioned along the full length of 1st edge | side A1 (refer FIG. 4) of the positive electrode plate 80 between the adjacent positive electrode plates 80 in the pressing operation with respect to the separator 40, and the fusion | melting shown in FIG. Part 70 is formed. The pressing operation against the separator 40 will be described in detail later. The second side portion 120 has a length corresponding to the entire length of the second side A2 (see FIG. 4) of the positive electrode plate 80. The second side 120 is arranged along the entire length of the second side A2 at the outer edge of the second side A2 of the positive electrode plate 80 in the pressing operation against the separator 40, and the tab side welding region F3 shown in FIG. Form. The third side portion 130 has a length corresponding to the entire length of the third side A3 (see FIG. 4) of the positive electrode plate 80. The third side portion 130 is arranged along the entire length of the third side A3 at the outer edge of the third side A3 of the positive electrode plate 80 in the pressing operation against the separator 40, and the tab facing side welding region F4 shown in FIG. Form. The first side 110, the second side 120, and the third side 130 have a continuous pressing surface M that is pressed against the first separator 50.

第1辺部110の押し付け面Mは、図7に示すように、第1辺部110の全長に亘って延びる一対の溶着部形成面P1と、両溶着部形成面P1の間で第1辺部110の全長に亘って延び、かつ、両溶着部形成面P1対して凹んだ少溶融部形成凹部P2とを有している。また、第2辺部120の押し付け面Mは、溶着部形成面P1と同一平面を形成する第2辺部溶着部形成面P3となっている。また、第3辺部130の押し付け面Mは、溶着部形成面P1と同一平面を形成する第3辺部溶着部形成面P4となっている。各溶着部形成面P1,P3,P4及び少溶融部形成凹部P2の機能については後で説明する。なお、少溶融部形成凹部P2は第1辺部110の全長に亘ってコの字状に凹んでいる(図8参照)。   As shown in FIG. 7, the pressing surface M of the first side portion 110 has a first side between a pair of welded portion forming surfaces P1 extending over the entire length of the first side portion 110 and both welded portion forming surfaces P1. It extends over the entire length of the portion 110 and has a small melted portion forming recess P2 that is recessed with respect to both welded portion forming surfaces P1. Further, the pressing surface M of the second side portion 120 is a second side welded portion forming surface P3 that forms the same plane as the welded portion forming surface P1. The pressing surface M of the third side portion 130 is a third side welded portion forming surface P4 that forms the same plane as the welded portion forming surface P1. The functions of the welded portion forming surfaces P1, P3, P4 and the small melted portion forming concave portion P2 will be described later. In addition, the small melting part formation recessed part P2 is dented in U shape over the full length of the 1st edge part 110 (refer FIG. 8).

第2溶融具104は、第1溶融具102における第1辺部110の少溶融部形成凹部P2を省略した構成となっている。そして、第2溶融具104の第1辺部110では、その押し付け面Mが面一に構成されている。なお、第2溶融具104において第1溶融具102と同一もしくは均等な構成・機能を有する箇所には同一の符号を付すことで、重複した説明を省略する。   The second melting tool 104 has a configuration in which the small melt part forming recess P <b> 2 of the first side part 110 in the first melting tool 102 is omitted. And in the 1st edge part 110 of the 2nd melting tool 104, the pressing surface M is comprised flush. In the second melting tool 104, portions having the same or equivalent configuration / function as the first melting tool 102 are denoted by the same reference numerals, and redundant description is omitted.

以上のように構成された両溶融具102,104は、搬送されるセパレータ40を挟んで例えば図8に示すように上下に配置され、その所定の配置箇所にて同期して接近・離反するように設定されている。両溶融具102,104は、それらの第1辺部110、第2辺部120、第3辺部130が互いに相対向して配置される。そして、両溶融具102,104は、セパレータ40の溶融部70に相当する箇所にて互いの第1辺部110が押し付け合うように設定されている。なお、両溶融具102,104は、セパレータ40を溶着できる温度に加熱されている。   The two melting tools 102 and 104 configured as described above are arranged up and down, for example, as shown in FIG. 8 with the separator 40 being conveyed in between, and approach and leave in synchronization at the predetermined arrangement location. Is set to Both the melting tools 102 and 104 are arranged such that the first side 110, the second side 120, and the third side 130 face each other. The two melting tools 102 and 104 are set so that the first side portions 110 are pressed against each other at a location corresponding to the melting portion 70 of the separator 40. Both melting tools 102 and 104 are heated to a temperature at which the separator 40 can be welded.

図8に示すように、両溶融具102,104がセパレータ40に押し付けられると、両溶融具102,104の第1辺部110によって、隣り合う正極板80の間に溶融部70が形成される。詳細には、第1溶融具102の両溶着部形成面P1が、隣り合う正極板80の間に沿って延びる一対の溶着領域F1を形成する。また、第1溶融具102の少溶融部形成凹部P2が、一対の溶着領域F1の間において隣り合う正極板80の間に沿って延びる少溶融領域F2を形成する。   As shown in FIG. 8, when both the melting tools 102 and 104 are pressed against the separator 40, the melting portion 70 is formed between the adjacent positive electrode plates 80 by the first side portions 110 of the both melting tools 102 and 104. . Specifically, both welded portion forming surfaces P <b> 1 of the first melting tool 102 form a pair of welded regions F <b> 1 extending along the adjacent positive electrode plates 80. Moreover, the small melt part formation recessed part P2 of the 1st melting tool 102 forms the small melt area | region F2 extended along between the adjacent positive electrode plates 80 between a pair of welding area | regions F1.

両溶融具102,104の押し付け動作に際して、図9に示すように、第1溶融具102の溶着部形成面P1と溶着領域F1とを接触させ、第1溶融具102の少溶融部形成凹部P2と少溶融領域F2との間に隙間Sをあけるようにしてもよい。これにより、少溶融領域F2では溶着領域F1に比べて第1溶融具102からの加熱量が少なくなる。このようにして加熱量を少なくすることで、少溶融領域F2での溶融量を溶着領域F1に比べて少なくし、少溶融領域F2にて第1セパレータ50と第2セパレータ60とを溶着させることなく溶融させることが容易にできる。   In the pressing operation of both the melting tools 102 and 104, as shown in FIG. 9, the welding portion forming surface P1 of the first melting tool 102 and the welding area F1 are brought into contact with each other, and the small melting portion forming concave portion P2 of the first melting tool 102 is contacted. A gap S may be formed between the small melting region F2 and the small melting region F2. Thereby, the amount of heating from the first melting tool 102 is smaller in the small melting region F2 than in the welding region F1. By reducing the heating amount in this way, the amount of melting in the small melting region F2 is reduced as compared with the welding region F1, and the first separator 50 and the second separator 60 are welded in the small melting region F2. And can be easily melted.

なお、少溶融領域F2の形成方法としては、加熱量を変えるほかに、溶着領域F1と比較して両溶融具102,104の圧着時に少溶融領域F2に加わる力を弱くする、あるいは少溶融領域F2を加熱する時間を短くする、といった方法でも可能である。   As a method for forming the small melting region F2, in addition to changing the heating amount, the force applied to the small melting region F2 when the two melting tools 102 and 104 are pressed is weakened compared to the welding region F1, or the small melting region It is also possible to shorten the time for heating F2.

なお、両溶融具102,104がセパレータ40に押し付けられると、該両溶融具102,104の第2辺部120がセパレータ40を挟んで押し付けあう。これにより、両溶融具102,104の第2辺部溶着部形成面P3が図4に示すタブ辺溶着領域F3を形成する。また、図7に示す両溶融具102,104がセパレータ40に押し付けられると、両溶融具102,104の第3辺部130がセパレータ40を挟んで押し付けあう。これにより、両溶融具102,104の第3辺部溶着部形成面P4が図4に示すタブ対向辺溶着領域F4を形成する。   When both the melting tools 102 and 104 are pressed against the separator 40, the second sides 120 of the both melting tools 102 and 104 are pressed against each other with the separator 40 interposed therebetween. Thereby, the 2nd edge part welding part formation surface P3 of both the melting tools 102 and 104 forms the tab edge welding area | region F3 shown in FIG. Further, when both the melting tools 102 and 104 shown in FIG. 7 are pressed against the separator 40, the third sides 130 of both the melting tools 102 and 104 are pressed against each other with the separator 40 interposed therebetween. Thereby, the 3rd edge part welding part formation surface P4 of both the melting tools 102 and 104 forms the tab opposing edge welding area | region F4 shown in FIG.

このように、図7〜9に示す両溶融具102,104では、隣り合う正極板80の間に溶着領域F1と少溶融領域F2とを形成するのと併行して、正極板80の第2辺に沿うタブ辺溶着領域F3と、正極板80の第3辺に沿うタブ対向辺溶着領域F4とを形成でき、セパレータ40の溶融作業を効率化できる。そして、連続して搬送されるセパレータ40に対して、これらの両溶融ブロック102,104の押し付けと離反とを繰り返せば、正極板80の4辺の周縁が連続的に溶融されることとなり、順次正極板80を袋詰め状態にして位置決めできる。   As described above, in both the melting tools 102 and 104 shown in FIGS. 7 to 9, the second region of the positive electrode plate 80 is formed in parallel with the formation of the welding region F <b> 1 and the small melting region F <b> 2 between the adjacent positive electrode plates 80. The tab side welding region F3 along the side and the tab opposing side welding region F4 along the third side of the positive electrode plate 80 can be formed, and the melting operation of the separator 40 can be made efficient. If the pressing and separation of these melting blocks 102 and 104 are repeated with respect to the separator 40 that is continuously conveyed, the peripheral edges of the four sides of the positive electrode plate 80 are continuously melted. The positive electrode plate 80 can be positioned in a packaged state.

なお、両溶融ブロック102,104において第2辺部120を省略し、タブ辺溶着領域F3を形成しなくしてもよい。   In addition, the 2nd edge part 120 may be abbreviate | omitted in both fusion | melting blocks 102 and 104, and the tab edge welding area | region F3 may not be formed.

本発明の第1の実施形態は以上のように構成される。正極組立体30では、各正極板80の間の溶融部70において、一対の溶着領域F1の間にそれらの溶着領域F1よりも柔らかい少溶融領域F2が設けられている(図4,5)ことから、該正極組立体30を各正極板80の間に亘ってつづら折り状に折り畳む場合には、この柔らかい少溶融領域F2を折り目として各溶融部70を容易に折り曲げることができる。したがって、正極組立体80では、その折り畳みに際してガイド部材等により予め折り目をつける作業が不要となり、該折り畳み作業が円滑とされる。   The first embodiment of the present invention is configured as described above. In the positive electrode assembly 30, in the fusion | melting part 70 between each positive electrode plate 80, the small melting area | region F2 softer than those welding area | regions F1 is provided between a pair of welding area | regions F1 (FIGS. 4 and 5). Therefore, when the positive electrode assembly 30 is folded in a zigzag manner across the positive electrode plates 80, the melting portions 70 can be easily bent using the soft low melting region F2 as a fold. Therefore, in the positive electrode assembly 80, the folding operation is not required by the guide member or the like when the folding is performed, and the folding operation is made smooth.

なお、折り曲げの容易化のみを考えた場合、少溶融領域に代わり、完全な非溶着領域を設けることが考えられる。しかしながら、溶着領域と近接させて非溶着領域を設ける場合、溶融時の温度のバラツキなどを考慮すると、設計上、非溶着領域の幅は、あまり狭く設定出来ない。その場合、折り曲げは容易となるが、折り目の位置にバラツキが生じやすくなる。少溶融領域として、セパレータ間の溶着有無に関らず、溶融量で制御すれば、幅を狭く設定し、折り目の位置のバラツキを抑えることが出来る。   Note that when only bending is considered, it is conceivable to provide a complete non-welded region instead of a small melting region. However, in the case where the non-welding region is provided close to the welding region, the width of the non-welding region cannot be set so narrow in terms of design in consideration of variations in temperature at the time of melting. In that case, the folding becomes easy, but the position of the crease tends to vary. Regardless of the presence or absence of welding between the separators as a small melting region, if the amount of melting is controlled, the width can be set narrow and the variation in the position of the crease can be suppressed.

また、正極組立体30では、溶着領域F1と少溶融領域F2とが、隣り合う正極板80の間の辺である第1辺A1の全長に沿って延びている(図4参照)ことから、正極組立体30をつづら折り状に折り畳む際、容易かつ確実に、各正極板80の間で少溶融領域F2を正極板80の第1辺A1に沿って折り曲げることができる。これにより、各正極板80の間で溶融部70が正極板80の第1辺A1に対して傾斜して折れ曲がることに起因する正極板80同士の積層ズレが防止される。さらに、つづら折り状態に折り畳まれた正極組立体30に対してその各正極板80の間に挟みこまれる負極板90は、正極板80の間の折り曲げ箇所である少溶融領域F2まで差し込まれて該少溶融領域F2に沿って一辺を位置決めされていることから、この位置決めされた一辺は、少溶融領域F2に沿うことによって正極板80の第1辺A1と平行に配置されることとなり、この結果、正極板80と負極板90とが斜めにズレて積層されることが防止される。   Further, in the positive electrode assembly 30, the welding region F1 and the small melting region F2 extend along the entire length of the first side A1 that is a side between the adjacent positive electrode plates 80 (see FIG. 4). When the positive electrode assembly 30 is folded in a zigzag shape, the small melting region F <b> 2 can be bent along the first side A <b> 1 of the positive electrode plate 80 easily and reliably. Thereby, the lamination | stacking shift | offset | difference of positive electrode plates 80 resulting from the bending part 70 inclining with respect to 1st edge | side A1 of the positive electrode plate 80 and bending between each positive electrode plate 80 is prevented. Further, the negative electrode plate 90 sandwiched between the positive electrode plates 80 with respect to the positive electrode assembly 30 folded in a zigzag state is inserted into the small melting region F2 which is a bent portion between the positive electrode plates 80. Since one side is positioned along the small melting region F2, the positioned one side is arranged in parallel with the first side A1 of the positive electrode plate 80 along the small melting region F2. As a result, Further, the positive electrode plate 80 and the negative electrode plate 90 are prevented from being stacked obliquely.

●[溶融工程に使用する溶融具における他の構成(図10,11)]
図6に示す溶融工程R2では、図7〜9に示す溶融具100に代えて、図10,11に示す溶融具200を使用してもよい。
● [Other configurations of the melting tool used in the melting process (FIGS. 10 and 11)]
In the melting step R2 shown in FIG. 6, the melting tool 200 shown in FIGS. 10 and 11 may be used instead of the melting tool 100 shown in FIGS.

図10に示す溶融具200は、第1溶融ロール202と第2溶融ロール204とを有している。両溶融ロール202,204は、同寸法の円柱状に構成されており、それらの軸線方向に関して、ともにセパレータ40の幅H(図4参照)に相当する長さを有している。これらの両溶融具202,204は、図11に示すようにしてセパレータ40に押し付けられることで使用される。なお、第1溶融具202が第1セパレータ50に押し付けられ、第2溶融具104が第2セパレータ60に押し付けられる。   A melting tool 200 shown in FIG. 10 has a first melting roll 202 and a second melting roll 204. Both the melting rolls 202 and 204 are configured in a columnar shape having the same dimensions, and both have a length corresponding to the width H (see FIG. 4) of the separator 40 in the axial direction. These two melting tools 202 and 204 are used by being pressed against the separator 40 as shown in FIG. The first melting tool 202 is pressed against the first separator 50, and the second melting tool 104 is pressed against the second separator 60.

第1溶融具202は、その外周に、該第1溶融具202の軸線202J方向の全長に亘る加熱突部210を有している。また、第1溶融具202は、その軸線202J方向の両縁に、該第1溶融具202の主部230よりも径の大きい加熱円盤部220を有している。加熱突部210における突出方向の面と両加熱円盤部220の外周面とは、第1セパレータ50に対して押し付けられる、連続した押し付け面Mとなっている。なお、加熱突部210は、後で説明する押し付け動作において、隣り合う正極板80の間で正極板80の第1辺A1の全長に沿って配置される。   The 1st melting tool 202 has the heating protrusion 210 covering the full length of the axial line 202J direction of this 1st melting tool 202 in the outer periphery. Further, the first melting tool 202 has a heating disk portion 220 having a diameter larger than that of the main portion 230 of the first melting tool 202 at both edges in the axis 202J direction. The surface in the protruding direction of the heating protrusion 210 and the outer peripheral surface of both heating disk portions 220 form a continuous pressing surface M that is pressed against the first separator 50. In addition, the heating protrusion 210 is arrange | positioned along the full length of 1st edge | side A1 of the positive electrode plate 80 between the adjacent positive electrode plates 80 in the pressing operation demonstrated later.

加熱突部210の押し付け面Mは、図10に示すように、第1溶融具202の軸線202J方向の全長に亘って延びる一対の溶着部形成面P1と、両溶着部形成面P1の間で第1溶融具202の軸線202J方向の全長に亘って延び、かつ、両溶着部形成面P1に対して凹んだ少溶融部形成凹部P2とを有している。少溶融部形成凹部P2は加熱突部210の全長に亘ってコの字状に凹んでいる。溶着部形成面P1と少溶融部形成凹部P2との機能については後で説明する。   As shown in FIG. 10, the pressing surface M of the heating protrusion 210 is between a pair of welded portion forming surfaces P1 extending over the entire length in the axis 202J direction of the first melting tool 202 and the two welded portion forming surfaces P1. The first melting tool 202 has a small melted part forming recess P2 that extends over the entire length in the direction of the axis 202J and is recessed with respect to both welded part forming surfaces P1. The small melt part forming recess P2 is recessed in a U shape over the entire length of the heating protrusion 210. Functions of the welded portion forming surface P1 and the small melted portion forming recess P2 will be described later.

第2溶融具204は、第1溶融具202における加熱突部210の少溶融部形成凹部P2を省略した構成となっている。そして、第2溶融具204の加熱突部210では、その押し付け面Mが面一に構成されている。なお、第2溶融具204において第1溶融具202と同一もしくは均等な構成・機能を有する箇所には同一の符号を付すことで、重複した説明を省略する。   The second melting tool 204 has a configuration in which the small melting portion forming recess P2 of the heating projection 210 in the first melting tool 202 is omitted. And in the heating protrusion 210 of the 2nd melting tool 204, the pressing surface M is comprised flush. In the second melting tool 204, portions having the same or equivalent configuration / function as those of the first melting tool 202 are denoted by the same reference numerals, and redundant description is omitted.

以上のように構成された両溶融具202,204は、搬送されるセパレータ40を挟んで例えば図11に示すように上下に相対向して配置され、それぞれ所定の配置箇所にて個々の軸線202J,204Jまわりを回転するように設定されている。なお、両溶融具202,204の軸線202J,204Jは、隣り合う正極板80の間に沿う方向に平行となるように設定されている。また、両溶融具202,204は互いの間にセパレータ40を挟み込んだ状態で、同期して正逆反対方向に回転する。この回転に際し、両溶融具202,204の加熱突部210は、セパレータ40の溶融部70に相当する箇所で押し付け合うようになっている。また、両溶融具202,204の加熱円盤部220は、セパレータ40の幅方向の両縁で押し付け合うようになっている。なお、両溶融具202,204は、セパレータ40を溶着できる温度に加熱されている。両溶融具202,204の主部230は、セパレータ40に接触しない。   The two melting tools 202 and 204 configured as described above are disposed so as to face each other vertically as shown in FIG. 11, for example, with the separator 40 to be conveyed interposed therebetween. , 204J is set to rotate. In addition, the axis lines 202J and 204J of both the melting tools 202 and 204 are set so as to be parallel to the direction along the adjacent positive electrode plates 80. In addition, both the melting tools 202 and 204 rotate in the opposite direction in synchronism with the separator 40 sandwiched between them. During this rotation, the heating protrusions 210 of both the melting tools 202 and 204 are pressed against each other at a location corresponding to the melting part 70 of the separator 40. Further, the heating disk portions 220 of both the melting tools 202 and 204 are pressed against each other at both edges in the width direction of the separator 40. Both melting tools 202 and 204 are heated to a temperature at which the separator 40 can be welded. The main part 230 of both the melting tools 202 and 204 does not contact the separator 40.

図11に示すように、両溶融具202,204がセパレータ40を挟んで回転すると、両溶融具202,204の加熱突部210によって、隣り合う正極板80の間に溶融部70が形成される。詳細には、第1溶融具202の両溶着部形成面P1が、隣り合う正極板80の間に沿って延びる一対の溶着領域F1を形成する。また、第1溶融具202の少溶融部形成凹部P2が、一対の溶着領域F1間において隣り合う正極板80の間に沿って延びる少溶融領域F2を形成する。   As shown in FIG. 11, when both the melting tools 202 and 204 rotate with the separator 40 interposed therebetween, the melting portion 70 is formed between the adjacent positive electrode plates 80 by the heating protrusions 210 of both the melting tools 202 and 204. . Specifically, both welded portion forming surfaces P1 of the first melting tool 202 form a pair of welded regions F1 extending between adjacent positive electrode plates 80. Moreover, the small melt part formation recessed part P2 of the 1st melting tool 202 forms the small melt area | region F2 extended along between the adjacent positive electrode plates 80 between a pair of welding area | regions F1.

なお、両溶融具202,204が回転すると、該両溶融ロール202,204の両縁それぞれにおいて加熱円盤部220がセパレータ40を挟んで押し付けあう。これにより、セパレータ40の幅方向の両縁で、図4に示すタブ辺溶着領域F3と、タブ対向辺溶着領域F4とが形成される。   In addition, when both the melting tools 202 and 204 rotate, the heating disk portion 220 presses with the separator 40 sandwiched between the both edges of the both melting rolls 202 and 204. Thereby, the tab side welding area | region F3 shown in FIG. 4 and the tab opposing side welding area | region F4 are formed in the both edges of the width direction of the separator 40. As shown in FIG.

このように、図10,11に示す両溶融具202,204では、これらを回転させることによって、隣り合う正極板80の間に溶着領域F1と少溶融領域F2とを形成できるとともに、正極板80の第2辺A2に沿うタブ辺溶着領域F3と、正極板80の第3辺A3に沿うタブ対向辺溶着領域F4とを形成でき、セパレータ40の溶融作業の効率がよい。そして、連続して搬送されるセパレータ40に対して、これらの両溶融具202,204を連続して回転させれば、正極板80の4辺の周縁が連続的に溶融されることとなり、順次正極板80を袋詰め状態にして位置決めできる。   As described above, in both the melting tools 202 and 204 shown in FIGS. 10 and 11, by rotating them, the welding region F <b> 1 and the small melting region F <b> 2 can be formed between the adjacent positive electrode plates 80, and the positive electrode plate 80. The tab side welding region F3 along the second side A2 and the tab opposing side welding region F4 along the third side A3 of the positive electrode plate 80 can be formed, and the efficiency of the melting operation of the separator 40 is good. And if these both melting tools 202 and 204 are continuously rotated with respect to the separator 40 conveyed continuously, the peripheral edges of the four sides of the positive electrode plate 80 will be continuously melted. The positive electrode plate 80 can be positioned in a packaged state.

なお、両溶融具202,204において、タブ辺溶着領域F3に対応する加熱円盤部220を省略し、タブ辺溶着領域F3を形成なくしてもよい。   In both melting tools 202 and 204, the heating disk portion 220 corresponding to the tab side welding region F3 may be omitted, and the tab side welding region F3 may not be formed.

以上は本発明を実施するための形態を図面に関連して説明したが、本発明は他の実施形態でも実施可能である。第1溶融具102,202における少溶融部形成凹部P2の形状は、上述したコの字状に限定されるものではない。少溶融部形成凹部P2は、例えば図12に示すように、両サイドの溶融部形成面P1に向けて中央から広がるように傾斜させた略V字状の凹部でもよい。また、少溶融部形成凹部P2は、図13に示すように、両サイドの溶融部形成面P1に向けて中央から広がるように湾曲させた略円弧状もしくは略U字状の凹部でもよい。   Although the embodiment for carrying out the present invention has been described above with reference to the drawings, the present invention can be implemented in other embodiments. The shape of the small melt part forming recess P2 in the first melting tool 102, 202 is not limited to the above-described U-shape. For example, as shown in FIG. 12, the small melt portion forming recess P2 may be a substantially V-shaped recess inclined so as to spread from the center toward the melt portion forming surface P1 on both sides. Further, as shown in FIG. 13, the small melt part forming recess P <b> 2 may be a substantially arc-shaped or substantially U-shaped recess curved so as to spread from the center toward the melt part forming surface P <b> 1 on both sides.

また、上述の実施形態では、溶融具100,200(図7,10参照)について、第1溶融具102,202と第2溶融具202,204とがともに加熱されていたが、第1溶融具102,202もしくは第2溶融具202,204のいずれか一方のみの加熱で溶融部70を形成することも可能である。また、図7,8に示す溶融具100では、第1溶融具102と第2溶融具104とをともにコの字型に形成しているが、加熱する側の溶融具(例えば第1溶融具102)のみをコの字型とし、加熱しない側の溶融具を、その押し付け面がコの字を形成しない例えば矩形状の平面となるように構成してもよい。また、図10,11に示す溶融具200では、第1溶融具202と第2溶融具204とにともに加熱突部210を設けているが、加熱する側の溶融具(例えば第1溶融具202)のみに主部230から突出した加熱突部210を設け、加熱しない側の溶融具を凹凸のない単純な円柱状に構成してもよい。また、溶融具100,200による溶融に関して、正極板80の集電タブTに重なる箇所は溶着しなくてもよい。   In the above-described embodiment, the first melting tool 102, 202 and the second melting tool 202, 204 are both heated for the melting tool 100, 200 (see FIGS. 7 and 10). It is also possible to form the melted portion 70 by heating only one of the second melting tools 202 and 204. 7 and 8, the first melting tool 102 and the second melting tool 104 are both formed in a U-shape, but the melting tool on the heating side (for example, the first melting tool) is used. 102) may be a U-shape, and the melting tool on the non-heated side may be configured such that the pressing surface thereof is, for example, a rectangular plane that does not form a U-shape. Further, in the melting tool 200 shown in FIGS. 10 and 11, both the first melting tool 202 and the second melting tool 204 are provided with the heating protrusions 210, but the melting tool on the heating side (for example, the first melting tool 202). ) May be provided only with a heating projection 210 protruding from the main portion 230, and the melting tool on the non-heated side may be configured in a simple columnar shape without unevenness. Further, with respect to melting by the melting tools 100, 200, the portion overlapping the current collecting tab T of the positive electrode plate 80 may not be welded.

また、前述の実施形態では、溶融具100,200について、少溶融領域F2に対応する凹部である少溶融部形成凹部P2を、一部材により構成したが、二部材以上により構成してもよい。例えば、凸状辺を有する二部材を平行に配置することで、両者の間に小溶融部形成凹部P2を形成してもよい。   Further, in the above-described embodiment, the melting tool 100, 200 has the small melt portion forming recess P2 that is the recess corresponding to the small melt region F2, but it may be composed of two or more members. For example, the small melt part formation recessed part P2 may be formed between both by arrange | positioning the two members which have a convex-shaped side in parallel.

また、前述の実施形態では、蓄電装置の一例をリチウムイオン2次電池とし、セパレータ収納式電極体を正極組立体としたが、無論、蓄電装置はリチウムイオン2次電池に限定されるものではなく、セパレータ収納式電極体は正極組立体に限定されるものではない。セパレータ収納式電極体が負極を収納するものであってもよく、蓄電装置もニッケル水素電池など、他の電池であってもよい。   In the above-described embodiment, an example of the power storage device is a lithium ion secondary battery, and the separator housing electrode body is a positive electrode assembly. However, the power storage device is not limited to the lithium ion secondary battery. The separator-housing electrode body is not limited to the positive electrode assembly. The separator housing electrode body may house the negative electrode, and the power storage device may be another battery such as a nickel metal hydride battery.

10 蓄電装置
20 電極組立体
30 正極組立体
40 セパレータ
50 第1セパレータ
60 第2セパレータ
70 溶融部
80 正極板
90 負極板
100,200 溶融具
110 第1辺部
120 第2辺部
130 第3辺部
210 加熱突部
A1 第1辺
A2 第2辺
A3 第3辺
F1 溶着領域
F2 少溶融領域
P1 溶着部形成面
P2 少溶融部形成凹部
P3 第2辺部溶着部形成面
P4 第3辺部溶着部形成面
S1 第1溶融厚み
S2 第2溶融厚み
T1 第1セパレータ厚み
T2 第2セパレータ厚み

DESCRIPTION OF SYMBOLS 10 Power storage device 20 Electrode assembly 30 Positive electrode assembly 40 Separator 50 1st separator 60 2nd separator 70 Melting | fusion part 80 Positive electrode plate 90 Negative electrode plate 100,200 Melting tool 110 1st edge part 120 2nd edge part 130 3rd edge part 210 Heating projection A1 First side A2 Second side A3 Third side F1 Welding area F2 Small melting area P1 Welding part forming surface P2 Small melting part forming concave part P3 Second side welding part forming surface P4 Third side part welding part Forming surface S1 First melt thickness S2 Second melt thickness T1 First separator thickness T2 Second separator thickness

Claims (7)

蓄電装置のセパレータ収納式電極体であって、
正極又は負極の一方よりなる複数の電極板と、前記複数の電極板を覆うセパレータとを有し、
前記セパレータは、所定間隔をあけて一列に並べられた前記複数の電極板の第1面を覆う第1セパレータと、前記複数の電極板の前記第1面とは反対側の第2面を覆う第2セパレータと、隣り合う前記電極板の間に沿って延びかつ前記第1セパレータと前記第2セパレータとが溶融された溶融部とを有し、
前記溶融部は、隣り合う前記電極板の間に沿って延びて前記第1セパレータと前記第2セパレータとが溶着された一対の溶着領域と、前記一対の溶着領域の間において前記第1セパレータと前記第2セパレータとが溶融はされているが前記溶着領域よりも溶融量が少ない少溶融領域と、を有する蓄電装置のセパレータ収納式電極体。
A separator housing electrode body of a power storage device,
A plurality of electrode plates made of one of a positive electrode and a negative electrode, and a separator that covers the plurality of electrode plates;
The separator covers a first separator that covers the first surfaces of the plurality of electrode plates arranged in a line at a predetermined interval, and a second surface opposite to the first surface of the plurality of electrode plates. A second separator, and a melted portion that extends between the adjacent electrode plates and in which the first separator and the second separator are melted,
The melted portion extends between adjacent electrode plates, and a pair of welded areas where the first separator and the second separator are welded, and the first separator and the first between the pair of welded areas. 2. A separator-housing electrode body for a power storage device, comprising: a two-separator melted area, but a low-melting area having a smaller melting amount than the welding area.
請求項1に記載の蓄電装置のセパレータ収納式電極体であって、
前記第1セパレータは、前記溶融部以外において第1セパレータ厚みを有し、
前記第2セパレータは、前記溶融部以外において第2セパレータ厚みを有し、
前記溶着領域は、前記第1セパレータ厚みと前記第2セパレータ厚みとを加えた厚みよりも薄い第1溶融厚みを有し、
前記少溶融領域は、前記第1溶融厚みよりも厚い第2溶融厚みを有する蓄電装置のセパレータ収納式電極体。
It is a separator accommodation type electrode body of the electrical storage device according to claim 1,
The first separator has a first separator thickness at a portion other than the melting portion,
The second separator has a second separator thickness at a portion other than the melting portion,
The welding region has a first melt thickness that is thinner than the thickness of the first separator thickness and the second separator thickness,
The small melting region is a separator-housing electrode body of a power storage device having a second melting thickness that is thicker than the first melting thickness.
請求項1または2に記載の蓄電装置のセパレータ収納式電極体であって、
前記溶着領域と前記少溶融領域とは、それぞれが隣接する電極板における、隣り合う電極板と対向する辺である第1辺の全長に沿って延びている蓄電装置のセパレータ収納式電極体。
A separator-housing electrode body for a power storage device according to claim 1 or 2,
The welding region and the low melting region are separator storage type electrode bodies of a power storage device that extend along the entire length of the first side that is the side facing the adjacent electrode plate in the adjacent electrode plates.
請求項1〜3のいずれか一項に記載の蓄電装置のセパレータ収納式電極体における前記少溶融領域のそれぞれが山折りと谷折りとが交互に繰り返されて、前記セパレータ収納式電極体がつづら折り状態に形成されており、各電極板が対向している隙間のそれぞれに、正極又は負極の他方の電極板が挟み込まれている蓄電装置の電極組立体。   Each of the said small melting area | region in the separator accommodation-type electrode body of the electrical storage apparatus as described in any one of Claims 1-3 repeats a mountain fold and a valley fold alternately, and the said separator accommodation-type electrode body is folded in a zigzag manner. An electrode assembly of a power storage device in which the other electrode plate of the positive electrode or the negative electrode is sandwiched in each gap formed in a state where the electrode plates face each other. 請求項1に記載の蓄電装置のセパレータ収納式電極体における前記溶融部を形成する蓄電装置の製造装置であって、
前記製造装置は、前記第1セパレータの側から押し付けられる第1溶融具と、前記第2セパレータの側から押し付けられる第2溶融具と、を有し、加熱された状態の前記第1溶融具と前記第2溶融具とで前記セパレータを挟み込んで前記溶融部を形成し、
前記第1溶融具における前記第1セパレータに押し付けられる面は、前記一対の溶着領域を形成するために隣り合う前記電極板の間に沿って延びる一対の溶着部形成面と、前記少溶融領域を形成するために前記一対の溶着部形成面の間において隣り合う前記電極板の間に沿って延びるとともに前記溶着部形成面に対して凹んだ少溶融部形成凹部と、を有している蓄電装置の製造装置。
A power storage device manufacturing apparatus for forming the melting portion in the separator-housing electrode body of the power storage device according to claim 1,
The manufacturing apparatus includes a first melting tool pressed from the first separator side and a second melting tool pressed from the second separator side, and the heated first heating tool. Sandwiching the separator with the second melting tool to form the melting portion;
The surface pressed against the first separator in the first melting tool forms a pair of welding portion forming surfaces extending between the adjacent electrode plates to form the pair of welding regions, and the small melting region. Therefore, an apparatus for manufacturing a power storage device, comprising: a small melted portion forming recess that extends along between the adjacent electrode plates between the pair of welded portion forming surfaces and is recessed with respect to the welded portion forming surface.
請求項5に記載の蓄電装置の製造装置であって、
前記第1溶融具の形状と前記第2溶融具の形状は円柱状であり、円柱状の前記第1溶融具と前記第2溶融具の軸線は、隣り合う前記電極板の間に沿う方向に平行となるように設定されており、
前記第1溶融具の外周面に前記溶着部形成面と前記少溶融部形成凹部とが設けられている蓄電装置の製造装置。
The power storage device manufacturing apparatus according to claim 5,
The shape of the first melting tool and the shape of the second melting tool are cylindrical, and the axis of the cylindrical first melting tool and the second melting tool is parallel to the direction along the adjacent electrode plates. Is set to be
An apparatus for manufacturing a power storage device, wherein the weld portion forming surface and the small melt portion forming recess are provided on an outer peripheral surface of the first melting tool.
請求項5に記載の蓄電装置の製造装置であって、
前記電極板は矩形状であり、
前記溶着部形成面は平面状であり、
前記第1溶融具は、前記電極板における隣り合う前記電極板と対向する辺である第1辺の全長に沿うとともに前記溶着部形成面と前記少溶融部形成凹部とが形成された第1辺部と、前記第1辺部の一方端から前記電極板における前記第1辺に直交する一方の辺である第2辺の全長に沿うとともに前記溶着部形成面と同一平面となるように形成された第2辺部溶着部形成面が形成された第2辺部と、前記第1辺部の他方端から前記電極板における前記第1辺に直交する他方の辺である第3辺の全長に沿うとともに前記溶着部形成面と同一平面となるように形成された第3辺部溶着部形成面が形成された第3辺部と、を有して略コの字状の形状を有している蓄電装置の製造装置。

The power storage device manufacturing apparatus according to claim 5,
The electrode plate is rectangular,
The welded portion forming surface is planar.
The first melting tool extends along the entire length of the first side that is the side facing the adjacent electrode plate in the electrode plate, and the first side on which the welded portion forming surface and the small melted portion forming concave portion are formed. And along the entire length of the second side which is one side of the electrode plate perpendicular to the first side from the one end of the first side part, and is flush with the welded portion forming surface. The second side part where the second side part welded part forming surface is formed and the entire length of the third side which is the other side orthogonal to the first side of the electrode plate from the other end of the first side part. And a third side part formed with a third side part welded part forming surface formed so as to be flush with the welded part forming surface and having a substantially U-shaped shape A manufacturing device for a power storage device.

JP2015047256A 2015-03-10 2015-03-10 Electric storage device separator accommodating electrode body, electric storage device electrode assembly, and electric storage device manufacturing apparatus Expired - Fee Related JP6679829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047256A JP6679829B2 (en) 2015-03-10 2015-03-10 Electric storage device separator accommodating electrode body, electric storage device electrode assembly, and electric storage device manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047256A JP6679829B2 (en) 2015-03-10 2015-03-10 Electric storage device separator accommodating electrode body, electric storage device electrode assembly, and electric storage device manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2016167416A true JP2016167416A (en) 2016-09-15
JP6679829B2 JP6679829B2 (en) 2020-04-15

Family

ID=56898584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047256A Expired - Fee Related JP6679829B2 (en) 2015-03-10 2015-03-10 Electric storage device separator accommodating electrode body, electric storage device electrode assembly, and electric storage device manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6679829B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073916A1 (en) * 2017-10-11 2019-04-18 株式会社村田製作所 Secondary battery and method for manufacturing secondary battery
JP2019087324A (en) * 2017-11-02 2019-06-06 株式会社Gsユアサ Power storage element
JP2019133891A (en) * 2018-02-02 2019-08-08 株式会社Gsユアサ Power storage element
WO2019188724A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Manufacturing device and manufacturing method for layered body for secondary battery
WO2019188725A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Production device and production method for layered body for secondary battery
JP2019194978A (en) * 2018-04-20 2019-11-07 ロベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Gmbh Battery cell electrode assembly manufacturing method and battery cell
JPWO2019012825A1 (en) * 2017-07-14 2020-06-18 日本電気株式会社 Bag-shaped separator for power storage device, thermal bonding method and thermal bonding apparatus thereof, and power storage device
WO2023171547A1 (en) * 2022-03-10 2023-09-14 株式会社京都製作所 Stacked-type battery manufacturing method and manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117291A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Stacked secondary battery
JP2011181395A (en) * 2010-03-02 2011-09-15 Nippon Jido Seiki Kk Laminated lithium ion secondary battery, and method and device of manufacturing the same
JP2012074402A (en) * 2012-01-11 2012-04-12 Toray Eng Co Ltd Secondary battery manufacturing method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117291A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Stacked secondary battery
JP2011181395A (en) * 2010-03-02 2011-09-15 Nippon Jido Seiki Kk Laminated lithium ion secondary battery, and method and device of manufacturing the same
JP2012074402A (en) * 2012-01-11 2012-04-12 Toray Eng Co Ltd Secondary battery manufacturing method and device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019012825A1 (en) * 2017-07-14 2020-06-18 日本電気株式会社 Bag-shaped separator for power storage device, thermal bonding method and thermal bonding apparatus thereof, and power storage device
JP7047842B2 (en) 2017-07-14 2022-04-05 日本電気株式会社 A bag-shaped separator for a power storage device, its heat bonding method and heat bonding device, and a power storage device.
WO2019073916A1 (en) * 2017-10-11 2019-04-18 株式会社村田製作所 Secondary battery and method for manufacturing secondary battery
JP2019087324A (en) * 2017-11-02 2019-06-06 株式会社Gsユアサ Power storage element
JP2019133891A (en) * 2018-02-02 2019-08-08 株式会社Gsユアサ Power storage element
JP7096994B2 (en) 2018-02-02 2022-07-07 株式会社Gsユアサ Power storage element
WO2019188724A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Manufacturing device and manufacturing method for layered body for secondary battery
WO2019188725A1 (en) * 2018-03-30 2019-10-03 日本ゼオン株式会社 Production device and production method for layered body for secondary battery
JP2019194978A (en) * 2018-04-20 2019-11-07 ロベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Gmbh Battery cell electrode assembly manufacturing method and battery cell
JP7221122B2 (en) 2018-04-20 2023-02-13 ロベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Battery cell electrode assembly manufacturing method and battery cell
WO2023171547A1 (en) * 2022-03-10 2023-09-14 株式会社京都製作所 Stacked-type battery manufacturing method and manufacturing device

Also Published As

Publication number Publication date
JP6679829B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP2016167416A (en) Separator housing type electrode body of power storage device, electrode assembly of power storage device, and manufacturing apparatus of power storage device
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
JP5858158B2 (en) Secondary battery current collection structure
JP5448140B2 (en) Battery module and manufacturing method thereof
JP2012513076A (en) Secondary battery manufacturing method and secondary battery
JP5333617B2 (en) Electrode storage separator, power storage device, and vehicle
JP2006228551A (en) Current collector terminal, and power storage device provided with the same
JP2011129523A (en) Rechargeable battery
JP6693419B2 (en) Electrode unit and method of manufacturing electrode unit
JP6374599B2 (en) Electrode assembly wound in both directions and lithium secondary battery including the same
WO2014027606A1 (en) Electrical storage device
KR20180032083A (en) Rechageable battery
JP2014060045A (en) Electrode structure of secondary battery
JP5182685B2 (en) Multilayer secondary battery and manufacturing method thereof
JP2013222602A (en) Method for manufacturing laminated type cell and laminated electrode body
JP5277231B2 (en) Secondary battery
JP2017076478A (en) Folding type secondary battery
JP5765295B2 (en) Power storage device and method for manufacturing electrode assembly
JP2014067542A (en) Power storage device and method for manufacturing electrode assembly
KR20140088343A (en) Electrode Assembly Having Separators Attached to Each Other and Battery Cell Comprising the Same
WO2015146562A1 (en) Electricity-storage device
JP2017157346A (en) Manufacturing apparatus of separator material, manufacturing method of separator material, and manufacturing method of electrode housing separator
JP6582426B2 (en) Method for manufacturing electrode separator assembly
JP2015026522A (en) Electrode housing separator and power storage device
JP2019102196A (en) Manufacturing method of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees