JP2016006718A - Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode - Google Patents

Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode Download PDF

Info

Publication number
JP2016006718A
JP2016006718A JP2012227394A JP2012227394A JP2016006718A JP 2016006718 A JP2016006718 A JP 2016006718A JP 2012227394 A JP2012227394 A JP 2012227394A JP 2012227394 A JP2012227394 A JP 2012227394A JP 2016006718 A JP2016006718 A JP 2016006718A
Authority
JP
Japan
Prior art keywords
heat
electrode
separators
resistant layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012227394A
Other languages
Japanese (ja)
Inventor
正司 渡辺
Masaji Watanabe
正司 渡辺
浩 油原
Hiroshi Yuhara
浩 油原
澤田 康宏
Yasuhiro Sawada
康宏 澤田
岳洋 柳
Takehiro Yanagi
岳洋 柳
直希 守里
Naoki Morisato
直希 守里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012227394A priority Critical patent/JP2016006718A/en
Priority to PCT/JP2013/077548 priority patent/WO2014058001A1/en
Publication of JP2016006718A publication Critical patent/JP2016006718A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a bagging electrode, lamination type electric device, and manufacturing method for a bagging device by which separators with heat-resistant layers can easily be jointed to at least one side of a resin layer, thus facilitating manufacture.SOLUTION: A bagging electrode 50 comprises: two separators 30 in which a heat-resistant layer 32 is provided on one side of a resin layer 31; and a cathode 10 sandwiched between the two separators. The bagging electrode 50 has a heat-resistant-layer-less part 33 disposed further outside than the cathode as seen in a plane view on the side of a face where the heat-resistant layers of the two separators are provided and the thickness of each the heat-resistant layer is thin or none, compared to a portion sandwiching the cathode. A joint part 34 for joining the separators is provided in this heat-resistant-layer-less part.

Description

本発明は、袋詰電極、積層型電気デバイス、および袋詰電極の製造方法に関する。   The present invention relates to a packaged electrode, a stacked electrical device, and a method for manufacturing a packaged electrode.

二次電池のような電気デバイスにおける発電要素は、電極とセパレータとを交互に積層して構成している。セパレータは、加熱されると収縮し易い。セパレータが収縮すると、電気的な短絡が局所的に発生して、電気デバイスの出力が低下する。   A power generation element in an electric device such as a secondary battery is configured by alternately laminating electrodes and separators. The separator easily contracts when heated. When the separator contracts, an electrical short circuit occurs locally and the output of the electrical device decreases.

従来、樹脂層の少なくとも一方の面に樹脂層よりも溶融温度が高い耐熱層を設け、それによって、セパレータの収縮を低減するようにした技術が提案されている(例えば、特許文献1参照。)   Conventionally, a technique has been proposed in which a heat-resistant layer having a melting temperature higher than that of the resin layer is provided on at least one surface of the resin layer, thereby reducing the shrinkage of the separator (see, for example, Patent Document 1).

特開2011−210524JP2011-210524

特許文献1に記載されたセパレータにあっては、樹脂層の全面にわたって耐熱層を設けている。熱刃やレーザーなどの熱によってセパレータを切断するときに、樹脂層における熱収縮と耐熱層における熱収縮との間に差が生じ、セパレータに反りの変形が生じる。特に、樹脂層の片面のみに耐熱層を設けたセパレータにあっては、反りの変形が顕著に現れる。セパレータに反りの変形が生じると、セパレータ同士を密着させることが難しく、セパレータ同士を接合することが難しくなる。その結果、2枚のセパレータの間に電極を挟んだ袋詰電極、袋詰電極を適用した電気デバイスの製造の容易化が阻害される。   In the separator described in Patent Document 1, a heat-resistant layer is provided over the entire surface of the resin layer. When the separator is cut by heat such as a hot blade or a laser, a difference occurs between the heat shrinkage in the resin layer and the heat shrinkage in the heat resistant layer, and the warp deformation occurs in the separator. In particular, in a separator in which a heat-resistant layer is provided only on one side of the resin layer, warping deformation appears significantly. When warp deformation occurs in the separator, it is difficult to bring the separators into close contact with each other, and it becomes difficult to join the separators. As a result, it becomes difficult to manufacture a packaged electrode having an electrode sandwiched between two separators and an electrical device using the packaged electrode.

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、樹脂層の少なくとも一方の面に耐熱層を設けたセパレータ同士を容易に接合でき、もって製造の容易化を図り得る、袋詰電極、積層型電気デバイス、および袋詰電極の製造方法を提供することを目的とする。   The present invention has been made to solve the problems associated with the prior art described above, and can easily join the separators provided with the heat-resistant layer on at least one surface of the resin layer, thereby facilitating the production. An object of the present invention is to provide a packaged electrode, a laminated electrical device, and a method for producing the packaged electrode.

上記目的を達成する本発明の袋詰電極は、樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層が設けられた2枚のセパレータと、2枚の前記セパレータの間に挟まれた電極と、を有する。袋詰電極はさらに、2枚の前記セパレータの前記耐熱層が設けられた面の側において平面視で視て前記電極よりも外側に配置され、かつ、耐熱層の厚みが前記電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部を有する。この耐熱層レス部に前記セパレータ同士を接合する接合部を設けている。   The packaged electrode of the present invention that achieves the above object is provided between two separators each provided with a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of the resin layer, and between the two separators. And sandwiched electrodes. The packaged electrode is further disposed on the outer side of the electrode in a plan view on the surface of the two separators on which the heat-resistant layer is provided, and the thickness of the heat-resistant layer sandwiches the electrode. It has a heat-resistant layer-less portion that is thin or zero compared to the portion. A joining part for joining the separators to each other is provided in the heat-resistant layer-less part.

本発明の積層型電気デバイスは、樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層が設けられた2枚のセパレータと、2枚の前記セパレータの間に挟まれた第1の電極と、2枚の前記セパレータの前記第1の電極に対向しない面の側に積層される第2の電極と、を有する。積層型電気デバイスはさらに、2枚の前記セパレータの前記耐熱層が設けられた面の側において平面視で視て前記第1と第2の電極よりも外側に配置され、かつ、耐熱層の厚みが前記第1の電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部を有する。この耐熱層レス部のうち平面視で視て前記第1と第2の電極よりも外側に位置する部位に、前記セパレータ同士を接合する接合部を設けている。   The multilayer electrical device of the present invention includes two separators each having a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of the resin layer, and a second sandwiched between the two separators. 1 electrode and the 2nd electrode laminated | stacked on the side of the surface which does not oppose the said 1st electrode of the said 2 sheets of separator. The multilayer electrical device is further disposed on the outer side of the first and second electrodes in a plan view on the side of the surface of the two separators where the heat-resistant layer is provided, and the thickness of the heat-resistant layer Has a heat-resistant layer-less portion which is thinner or zero than the portion sandwiching the first electrode. A joining portion for joining the separators is provided in a portion of the heat-resistant layer-less portion located outside the first and second electrodes as viewed in a plan view.

本発明の袋詰電極の製造方法にあっては、まず、基材である樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層を設けた2枚のセパレータを準備し、2枚の前記セパレータの間に電極を挟む。そして、2枚の前記セパレータを、平面視で視て前記電極よりも外側において、かつ、耐熱層の厚みが前記電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部において接合する。   In the method for producing a packaged electrode of the present invention, first, two separators provided with a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of the resin layer as a base material are prepared, An electrode is sandwiched between the two separators. Then, the two separators are joined to each other outside the electrode in a plan view and in a heat-resistant layer-less portion where the thickness of the heat-resistant layer is thinner or zero than the portion sandwiching the electrode. .

本発明の袋詰電極によれば、セパレータに耐熱層レス部を設けてあるので、熱によってセパレータを切断するときに、耐熱層レス部においては材料の相違に起因した熱収縮の差が小さくなり、セパレータに反りの変形が生じることを抑制できる。セパレータの反りが抑えられるので、セパレータ同士を容易に密着させることができ、セパレータ同士の接合が容易になる。その結果、2枚のセパレータの間に電極を挟んだ袋詰電極の製造の容易化を図ることができる。   According to the packaged electrode of the present invention, since the heat resistant layer-less portion is provided in the separator, when the separator is cut by heat, the difference in heat shrinkage due to the difference in material is reduced in the heat resistant layer-less portion. The deformation of the warp in the separator can be suppressed. Since the warpage of the separator is suppressed, the separators can be easily adhered to each other, and the separators can be easily joined. As a result, it is possible to facilitate the manufacture of a packaged electrode in which an electrode is sandwiched between two separators.

本発明の積層型電気デバイスによれば、使用する袋詰電極は、上述したのと同様に、セパレータの反りが抑えられるので、セパレータ同士を容易に密着させることができ、セパレータ同士の接合が容易になる。その結果、2枚のセパレータの間に電極を挟んだ袋詰電極、およびそれを適用した積層型電気デバイスの製造の容易化を図ることができる。さらに、接合部が平面視で視て第1と第2の電極の外側に配置されることから、接合部において接合不良が生じた場合であっても、第1の電極と第2の電極との内部短絡を確実に防止することができる。   According to the multilayer electric device of the present invention, the packaged electrode to be used can suppress the warpage of the separator in the same manner as described above, so that the separators can be easily adhered to each other, and the separators can be easily joined. become. As a result, it is possible to facilitate the manufacture of a packaged electrode in which an electrode is sandwiched between two separators and a laminated electric device to which the electrode is applied. Furthermore, since the joint portion is disposed outside the first and second electrodes in a plan view, even if a joint failure occurs in the joint portion, the first electrode and the second electrode Can be reliably prevented.

本発明の袋詰電極の製造方法によれば、セパレータに耐熱層レス部を設けてあるので、熱によってセパレータを切断するときに、耐熱層レス部においては材料の相違に起因した熱収縮の差が小さくなり、セパレータに反りの変形が生じることを抑制できる。セパレータの反りが抑えられるので、セパレータ同士を容易に密着させることができ、セパレータ同士の接合が容易になる。その結果、2枚のセパレータの間に電極を挟んだ袋詰電極の製造の容易化を図ることができる。   According to the method of manufacturing a packaged electrode of the present invention, since the heat resistant layer-less portion is provided in the separator, when the separator is cut by heat, the heat shrinkage difference due to the material difference in the heat resistant layer-less portion. Can be suppressed, and warping deformation of the separator can be suppressed. Since the warpage of the separator is suppressed, the separators can be easily adhered to each other, and the separators can be easily joined. As a result, it is possible to facilitate the manufacture of a packaged electrode in which an electrode is sandwiched between two separators.

本発明の実施形態に係る積層型電気デバイスとしてのリチウムイオン二次電池を示す斜視図である。It is a perspective view which shows the lithium ion secondary battery as a laminated | stacked electrical device which concerns on embodiment of this invention. リチウムイオン二次電池を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows a lithium ion secondary battery. リチウムイオン二次電池の要部を示す断面図である。It is sectional drawing which shows the principal part of a lithium ion secondary battery. 図4(a)(b)は、セパレータの耐熱層レス部に設けた接合部の形態を示す図である。4 (a) and 4 (b) are views showing the form of the joint provided in the heat resistant layer-less part of the separator. 袋詰電極におけるセパレータを接合する接合装置の加熱加圧部材を示す斜視図である。It is a perspective view which shows the heating-pressing member of the joining apparatus which joins the separator in a bagging electrode. 図6(a)〜(c)は、袋詰電極におけるセパレータを接合する手順を示す断面図である。FIGS. 6A to 6C are cross-sectional views showing a procedure for joining the separators in the packaged electrode.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and are different from the actual ratios.

図1は、本発明の実施形態に係る積層型電気デバイスとしてのリチウムイオン二次電池1を示す斜視図、図2は、リチウムイオン二次電池1を分解して示す斜視図、図3は、リチウムイオン二次電池1の要部を示す断面図である。図4(a)(b)は、セパレータ30の耐熱層レス部33に設けた接合部34の形態を示す図であり、図4(a)は、接合部34が隙間なく連続的に伸びている形態を示し、図4(b)は、接合部34が隙間35を隔てて間欠的に配置されている形態を示している。   FIG. 1 is a perspective view showing a lithium ion secondary battery 1 as a stacked electric device according to an embodiment of the present invention, FIG. 2 is an exploded perspective view showing the lithium ion secondary battery 1, and FIG. 1 is a cross-sectional view showing a main part of a lithium ion secondary battery 1. 4 (a) and 4 (b) are views showing the form of the joining portion 34 provided in the heat-resistant layer-less portion 33 of the separator 30, and FIG. 4 (a) shows that the joining portion 34 extends continuously without a gap. FIG. 4B shows a form in which the joint portions 34 are intermittently arranged with a gap 35 therebetween.

図1および図2を参照して、積層型電気デバイスとしてのリチウムイオン二次電池1は、充放電を行う発電要素60を外装材40によって封止している。発電要素60は、2枚のセパレータ30の間に正極10を挟んだいわゆる袋詰電極50と、負極20とを交互に積層して構成している。   Referring to FIGS. 1 and 2, in a lithium ion secondary battery 1 as a stacked electric device, a power generation element 60 that performs charging and discharging is sealed with an exterior material 40. The power generation element 60 is configured by alternately stacking so-called packaged electrodes 50 in which the positive electrode 10 is sandwiched between two separators 30 and the negative electrode 20.

図3を参照して、本実施形態のリチウムイオン二次電池1は、概説すれば、樹脂層31の少なくとも一方の面に樹脂層31よりも溶融温度が高い耐熱層32が設けられた2枚のセパレータ30と、2枚のセパレータ30の間に挟まれた正極10(第1の電極に相当する)と、2枚のセパレータ30の正極10に対向しない面の側に積層される負極20(第2の電極に相当する)と、を有している。リチウムイオン二次電池1は、さらに、2枚のセパレータ30の耐熱層32が設けられた面の側において平面視で視て正負の電極10、20よりも外側にまで伸び、かつ、耐熱層32の厚みが正極10を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部33を有する。この耐熱層レス部33のうち平面視で視て正負の電極10、20よりも外側に位置する部位に、セパレータ30同士を接合する接合部34を設けている。負極20は正極10の大きさと同じでもよいが、図示する実施形態では、負極20は、電極厚み方向からの投影面積が正極10よりも大きい。   With reference to FIG. 3, the lithium ion secondary battery 1 of the present embodiment can be summarized as two sheets in which a heat-resistant layer 32 having a melting temperature higher than that of the resin layer 31 is provided on at least one surface of the resin layer 31. Separator 30, a positive electrode 10 (corresponding to a first electrode) sandwiched between two separators 30, and a negative electrode 20 (stacked on the side of the two separators 30 not facing the positive electrode 10 ( Corresponding to the second electrode). The lithium ion secondary battery 1 further extends to the outside of the positive and negative electrodes 10, 20 in a plan view on the side of the surface of the two separators 30 on which the heat resistant layer 32 is provided, and the heat resistant layer 32. Has a heat-resistant layer-less portion 33 that is thinner or zero compared to the portion sandwiching the positive electrode 10. A joining portion 34 for joining the separators 30 to each other is provided in a portion of the heat-resistant layer-less portion 33 that is positioned outside the positive and negative electrodes 10 and 20 in a plan view. The negative electrode 20 may have the same size as the positive electrode 10, but in the illustrated embodiment, the negative electrode 20 has a larger projected area than the positive electrode 10 in the electrode thickness direction.

袋詰電極50についてみれば、袋詰電極50は、概説すれば、樹脂層31の少なくとも一方の面に樹脂層31よりも溶融温度が高い耐熱層32が設けられた2枚のセパレータ30と、2枚のセパレータ30の間に挟まれた正極10と、を有する。袋詰電極50はさらに、2枚のセパレータ30の耐熱層32が設けられた面の側において平面視で視て正極10よりも外側にまで伸び、かつ、耐熱層32の厚みが電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部33を有する。この耐熱層レス部33に、セパレータ30同士を接合する接合部34を設けている。以下、詳述する。   Looking at the packaged electrode 50, the packaged electrode 50, if outlined, includes two separators 30 provided with a heat-resistant layer 32 having a melting temperature higher than that of the resin layer 31 on at least one surface of the resin layer 31; A positive electrode 10 sandwiched between two separators 30. The packaged electrode 50 further extends to the outside of the positive electrode 10 in a plan view on the surface of the two separators 30 on which the heat resistant layer 32 is provided, and the thickness of the heat resistant layer 32 sandwiches the electrodes. It has a heat-resistant layer-less portion 33 that is thin or zero compared to the existing portion. The heat-resistant layer-less portion 33 is provided with a joint portion 34 that joins the separators 30 together. Details will be described below.

正極10は、導電体である正極集電体11の両面に正極活物質12を結着して形成している。電力を取り出す正極電極端子11a(図1、図2を参照)は、正極集電体11の一端の一部から延在して形成している。複数積層された正極電極端子11aは、溶接または接着によって互いに固定している。   The positive electrode 10 is formed by binding a positive electrode active material 12 to both surfaces of a positive electrode current collector 11 which is a conductor. The positive electrode terminal 11 a (see FIGS. 1 and 2) from which power is extracted extends from a part of one end of the positive electrode current collector 11. A plurality of stacked positive electrode terminals 11a are fixed to each other by welding or adhesion.

正極集電体11の材料には、たとえば、アルミニウム製エキスパンドメタル、アルミニウム製メッシュ、またはアルミニウム製パンチドメタルを用いている。正極活物質12の材料には、リチウムイオン二次電池1の場合、種々の酸化物(LiMnO4のようなリチウムマンガン酸化物;二酸化マンガン;LiNiOのようなリチウムニッケル酸化物;LiCoOのようなリチウムコバルト酸化物;リチウム含有ニッケルコバルト酸化物;リチウムを含む非晶質五酸化バナジウム)またはカルコゲン化合物(二硫化チタン、二硫化モリブテン)等を用いている。 As the material of the positive electrode current collector 11, for example, an aluminum expanded metal, an aluminum mesh, or an aluminum punched metal is used. In the case of the lithium ion secondary battery 1, various materials (lithium manganese oxide such as LiMn 2 O 4; manganese dioxide; lithium nickel oxide such as LiNiO 2 ; LiCoO 2 ; Such lithium cobalt oxide; lithium-containing nickel cobalt oxide; amorphous vanadium pentoxide containing lithium) or chalcogen compound (titanium disulfide, molybdenum disulfide) or the like is used.

負極20は、2枚のセパレータ30の正極10に対向しない面の側に積層されている。負極20は、電極厚み方向からの投影面積が正極10よりも大きい。より詳しくは、負極20の長手方向の長さ(図3の左右方向の長さ)は、正極10の長手方向の長さよりも長い。負極20の短手方向の長さ(図3の紙面に交差する方向の長さ)は、正極10の短手方向の長さと同様である。   The negative electrode 20 is laminated on the side of the surface of the two separators 30 that does not face the positive electrode 10. The negative electrode 20 has a larger projected area from the electrode thickness direction than the positive electrode 10. More specifically, the length of the negative electrode 20 in the longitudinal direction (the length in the left-right direction in FIG. 3) is longer than the length of the positive electrode 10 in the longitudinal direction. The length of the negative electrode 20 in the short direction (the length in the direction intersecting the paper surface of FIG. 3) is the same as the length of the positive electrode 10 in the short direction.

負極20は、導電体である負極集電体21の両面に負極活物質22を結着して形成している。負極電極端子21a(図1、図2を参照)は、正極電極端子11aと重ならないように、負極集電体21の一端の一部から延在して形成している。複数積層された負極電極端子21aは、溶接または接着によって互いに固定している。   The negative electrode 20 is formed by binding a negative electrode active material 22 to both surfaces of a negative electrode current collector 21 which is a conductor. The negative electrode terminal 21a (see FIGS. 1 and 2) is formed to extend from a part of one end of the negative electrode current collector 21 so as not to overlap the positive electrode terminal 11a. A plurality of laminated negative electrode terminals 21a are fixed to each other by welding or adhesion.

負極集電体21の材料には、たとえば、銅製エキスパンドメタル、銅製メッシュ、または銅製パンチドメタルを用いている。負極活物質22の材料には、リチウムイオン二次電池1の場合、リチウムイオンを吸蔵して放出する炭素材料を用いている。このような炭素材料には、たとえば、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、または有機前駆体(フェノール樹脂、ポリアクリロニトリル、またはセルロース)を不活性雰囲気中で熱処理して合成した炭素を用いている。   As the material of the negative electrode current collector 21, for example, a copper expanded metal, a copper mesh, or a copper punched metal is used. In the case of the lithium ion secondary battery 1, a carbon material that occludes and releases lithium ions is used as the material of the negative electrode active material 22. For such carbon materials, for example, natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, or organic precursors (phenol resin, polyacrylonitrile, or cellulose) are heat-treated in an inert atmosphere and synthesized. Carbon is used.

セパレータ30は、正極10と負極20との間に設けられ、正極10と負極20とを電気的に隔離している。セパレータ30は、正極10と負極20との間に電解液を保持して、イオンの伝導性を担保している。セパレータ30は、矩形状に形成している。セパレータ30の長手方向の長さは、負極電極端子21aの部分を除いた負極20の長手方向の長さよりも長い。   The separator 30 is provided between the positive electrode 10 and the negative electrode 20 and electrically isolates the positive electrode 10 and the negative electrode 20. The separator 30 holds an electrolytic solution between the positive electrode 10 and the negative electrode 20 to ensure ion conductivity. The separator 30 is formed in a rectangular shape. The length in the longitudinal direction of the separator 30 is longer than the length in the longitudinal direction of the negative electrode 20 excluding the portion of the negative electrode terminal 21a.

図示するセパレータ30は、樹脂層31の一方の面に樹脂層31よりも溶融温度が高い耐熱層32が設けられている。樹脂層31の材料には、たとえば、ポリプロピレンを用いている。樹脂層31には、非水溶媒に電解質を溶解することによって調製した非水電解液を含浸させている。非水電解液を保持するために、ポリマーを含有させている。耐熱層32の材料には、たとえば、無機化合物を高温で成形したセラミックスを用いる。セラミックスは、シリカ、アルミナ、ジルコニウム酸化物、チタン酸化物等のセラミック粒子とバインダーの結合により形成された多孔質からなる。耐熱層32の材料は、セラミックスに限定されることはなく、樹脂層31よりも溶融温度が高ければよい。   In the illustrated separator 30, a heat resistant layer 32 having a melting temperature higher than that of the resin layer 31 is provided on one surface of the resin layer 31. For example, polypropylene is used as the material of the resin layer 31. The resin layer 31 is impregnated with a nonaqueous electrolytic solution prepared by dissolving an electrolyte in a nonaqueous solvent. In order to hold the non-aqueous electrolyte, a polymer is included. As the material of the heat-resistant layer 32, for example, a ceramic formed by molding an inorganic compound at a high temperature is used. The ceramic is made of a porous material formed by bonding a ceramic particle such as silica, alumina, zirconium oxide, titanium oxide or the like and a binder. The material of the heat-resistant layer 32 is not limited to ceramics, and may have a melting temperature higher than that of the resin layer 31.

セパレータ30における耐熱層レス部33は、耐熱層32が設けられた面の側、図3においては正極10に対向する内側に配置してある。耐熱層レス部33は、平面視で視て、正極10よりも外側にまで伸び、さらに負極20よりも外側にまで伸びている。耐熱層レス部33は、耐熱層32の厚みが正極10を挟んでいる部位に比べて薄いあるいはゼロである。これは、耐熱層レス部33に含まれる耐熱材料の量が、耐熱層32に含まれる耐熱材料の量よりも少ないあるいはゼロであることと同じである。図3には、耐熱層レス部33に含まれる耐熱材料の量がゼロである場合が示されている。耐熱層レス部33は、耐熱層32を形成する材料を樹脂層31上に間欠塗工することによって簡単に形成することができる。   The heat resistant layer-less portion 33 in the separator 30 is disposed on the side where the heat resistant layer 32 is provided, on the inner side facing the positive electrode 10 in FIG. The heat-resistant layer-less portion 33 extends to the outside of the positive electrode 10 and further extends to the outside of the negative electrode 20 when viewed in a plan view. In the heat-resistant layer-less portion 33, the thickness of the heat-resistant layer 32 is thinner or zero compared to the portion where the positive electrode 10 is sandwiched. This is the same as the amount of the heat-resistant material contained in the heat-resistant layer-less portion 33 being smaller or zero than the amount of the heat-resistant material contained in the heat-resistant layer 32. FIG. 3 shows a case where the amount of the heat-resistant material contained in the heat-resistant layer-less portion 33 is zero. The heat-resistant layer-less portion 33 can be easily formed by intermittently applying the material forming the heat-resistant layer 32 on the resin layer 31.

樹脂層の全面にわたって耐熱層を設けた場合、熱刃やレーザーなどの熱によってセパレータを切断するときに、樹脂層における熱収縮と耐熱層における熱収縮との間に差が生じ、セパレータに反りの変形が生じる。特に、樹脂層の片面のみに耐熱層を設けた場合には、反りの変形が顕著に現れる。一方、本実施形態のように、耐熱層レス部33を設けたセパレータ30にあっては、耐熱層レス部33においては材料の相違に起因した熱収縮の差が小さくなり、セパレータ30に反りの変形が生じることを抑制できる。セパレータ30の反りが抑えられるので、セパレータ30同士を密着させることも容易になる。   When a heat-resistant layer is provided over the entire surface of the resin layer, when the separator is cut by heat from a hot blade or a laser, a difference occurs between the heat shrinkage in the resin layer and the heat shrinkage in the heat-resistant layer, and the separator is warped. Deformation occurs. In particular, when a heat-resistant layer is provided only on one side of the resin layer, warping deformation appears significantly. On the other hand, in the separator 30 provided with the heat-resistant layer-less portion 33 as in the present embodiment, the heat-shrinkage difference due to the difference in material is reduced in the heat-resistant layer-less portion 33, and the separator 30 is warped. Deformation can be suppressed. Since the warpage of the separator 30 is suppressed, it is easy to bring the separators 30 into close contact with each other.

耐熱層レス部33に、セパレータ30同士を接合する接合部34を設けている。接合部34は、例えば、圧力、熱、あるいは圧力および熱の両者が付与されることによって、セパレータ30同士を接合するものであればよい。接合部34を耐熱層レス部33に設けることによって、耐熱層32に設ける場合に比べて、耐熱材料の量が少ないので、接合部34に付与する圧力や熱量を小さくすることができる。セパレータ30の反りを抑えてセパレータ30同士を密着させることが容易になることと相まって、セパレータ30同士の接合が容易になる。   A junction 34 that joins the separators 30 to each other is provided in the heat-resistant layer-less portion 33. The joining part 34 should just be what joins the separators 30 by applying pressure, heat, or both of pressure and heat, for example. By providing the bonding portion 34 in the heat-resistant layer-less portion 33, the amount of heat-resistant material is smaller than in the case where the bonding portion 34 is provided in the heat-resistant layer 32. Therefore, the pressure and heat applied to the bonding portion 34 can be reduced. Coupled with the fact that it is easy to keep the separators 30 in close contact with each other by suppressing the warpage of the separators 30, the joining of the separators 30 becomes easy.

接合部34は、セパレータ30の周縁のうち向かい合う周縁に設けることが好ましい(図4を参照)。袋詰電極50をハンドリングしているときなどにおいて、正極10からセパレータ30が抜け落ちることを低減できるからである。   It is preferable to provide the joining part 34 in the periphery which opposes among the periphery of the separator 30 (refer FIG. 4). This is because it is possible to reduce the separation of the separator 30 from the positive electrode 10 when the packaged electrode 50 is handled.

接合部34は、溶融樹脂材料から形成されていることが好ましい。一般的に行われている熱溶着を適用して、セパレータ30同士を接合することができるからである。   The joining portion 34 is preferably formed from a molten resin material. This is because the separators 30 can be joined to each other by applying heat welding that is generally performed.

溶融樹脂材料は、セパレータ30の樹脂層31を構成する材料であることが好ましい。樹脂層31と一体的に接合部34を構成でき、接合部34の形成が容易になるからである。   The molten resin material is preferably a material constituting the resin layer 31 of the separator 30. This is because the joint 34 can be formed integrally with the resin layer 31 and the formation of the joint 34 is facilitated.

接合部34は、図4(a)に示すように、隙間なく連続的に伸びていてもよいし、図4(b)に示すように、隙間35を隔てて間欠的に配置されていてもよい。前者の形態にあっては、セパレータ30同士の接合箇所が長くなることから、接合強度を強くすることができる。後者の形態は、セパレータ30同士を脱落しない程度に仮接合しておくような場合に、有利に適用することができる。   As shown in FIG. 4A, the joining portion 34 may extend continuously without a gap, or may be intermittently arranged with a gap 35 therebetween as shown in FIG. 4B. Good. In the former form, since the joining location between the separators 30 becomes long, the joining strength can be increased. The latter form can be advantageously applied in the case where the separators 30 are temporarily joined to the extent that they do not fall off.

外装材40は、たとえば、内部に金属板を備えたラミネートシート41および42から構成し、発電要素60を両側から被覆して封止している。ラミネートシート41および42で発電要素60を封止する際は、そのラミネートシート41および42の周囲の一部を開放して、その他の周囲を熱溶着などによって封止する。ラミネートシート41および42の開放されている部分から電解液を注入し、セパレータ30等に電荷液を含浸させる。ラミネートシート41および42の開放部から内部を減圧することで空気を抜きつつ、その開放部も熱融着して完全に密封する。   The exterior material 40 is composed of, for example, laminate sheets 41 and 42 each having a metal plate therein, and covers and seals the power generating element 60 from both sides. When the power generating element 60 is sealed with the laminate sheets 41 and 42, a part of the periphery of the laminate sheets 41 and 42 is opened, and the other periphery is sealed by heat welding or the like. An electrolyte solution is injected from the open portions of the laminate sheets 41 and 42, and the separator 30 and the like are impregnated with the charge solution. While decompressing the inside from the open portions of the laminate sheets 41 and 42, the open portions are also heat-sealed and completely sealed.

ラミネートシート41および42の材料には、たとえば、積層した3種類の材料を用いている。具体的には、負極20に隣接する1層目の熱融着性樹脂の材料には、たとえば、ポリエチレン(PE)、アイオノマー、またはエチレンビニルアセテート(EVA)を用いている。2層目の金属箔には、たとえば、Al箔またはNi箔を用いている。3層目の樹脂フィルムには、たとえば、剛性を有するポリエチレンテレフタレート(PET)またはナイロンを用いている。   As the material of the laminate sheets 41 and 42, for example, three kinds of laminated materials are used. Specifically, for example, polyethylene (PE), ionomer, or ethylene vinyl acetate (EVA) is used as the material of the first layer of the heat-fusible resin adjacent to the negative electrode 20. For example, Al foil or Ni foil is used for the second layer metal foil. For example, rigid polyethylene terephthalate (PET) or nylon is used for the third layer resin film.

次に、袋詰電極50の製造方法について、図5、図6を参照しながら説明する。図5は、袋詰電極50におけるセパレータ30を接合する接合装置の加熱加圧部材を示す斜視図、図6(a)〜(c)は、袋詰電極50におけるセパレータ30を接合する手順を示す断面図である。   Next, a method for manufacturing the packaged electrode 50 will be described with reference to FIGS. FIG. 5 is a perspective view showing a heating and pressing member of a joining device for joining the separator 30 in the bagging electrode 50, and FIGS. 6A to 6C show a procedure for joining the separator 30 in the bagging electrode 50. It is sectional drawing.

図5を参照して、加熱加圧部材710は、一対のセパレータ30の長手方向の両端の上方および下方に配設し、2枚のセパレータ30を挟み込んだり、離間したりするように上下に移動する。加熱加圧部材710は、たとえば、ステンレスや銅からなり、長方体形状に形成している。加熱加圧部材710は、図示せぬ駆動部によって上下に移動する。加熱加圧部材710は、たとえば、電熱線やヒータ電球により加熱している。   Referring to FIG. 5, the heating and pressing member 710 is disposed above and below both ends in the longitudinal direction of the pair of separators 30 and moves up and down so as to sandwich and separate the two separators 30. To do. The heating and pressing member 710 is made of stainless steel or copper, for example, and is formed in a rectangular shape. The heating and pressing member 710 moves up and down by a driving unit (not shown). The heating and pressing member 710 is heated by, for example, a heating wire or a heater bulb.

まず、図6(a)に示すように、基材である樹脂層31の少なくとも一方の面に樹脂層31よりも溶融温度が高い耐熱層32を設けた2枚のセパレータ30を準備し、2枚のセパレータ30の間に正極10を挟みこむ。複数の加熱加圧部材710を、一対のセパレータ30の長手方向の両端を上下方向から挟み込むように配設する。なお、図6(a)において、本来、下側のセパレータ30、正極10、および上側のセパレータ30は積層された状態であるが、ここでは離間させた状態で図示している。   First, as shown in FIG. 6A, two separators 30 each having a heat-resistant layer 32 having a melting temperature higher than that of the resin layer 31 are prepared on at least one surface of the resin layer 31 as a base material. The positive electrode 10 is sandwiched between the separators 30. The plurality of heating and pressing members 710 are disposed so as to sandwich both ends in the longitudinal direction of the pair of separators 30 from above and below. In FIG. 6A, the lower separator 30, the positive electrode 10, and the upper separator 30 are originally stacked, but are illustrated in a separated state here.

次に、図6(b)に示すように、2枚のセパレータ30を、平面視で視て正極10よりも外側において、かつ、耐熱層レス部33において接合する。複数の加熱加圧部材710を図中の矢印P1に示す方向に駆動することにより、加熱加圧部材710が一対のセパレータ30の長手方向の両端を上下方向から挟持して、その一対のセパレータ30を接合する。このとき、一対のセパレータ30が、加熱加圧部材710によって加熱および加圧されている。加熱加圧部材710は、耐熱層レス部33における樹脂層31を溶融し、耐熱層32を溶融しない温度に設定している。加熱加圧部材710によって溶融された樹脂層31が加圧されて、セパレータ30同士が接合する。図6(c)に示すように、複数の加熱加圧部材710は、図中の矢印P2に示す方向に駆動し、接合済みの一対のセパレータ30から離間する。このようにして袋詰電極50を製造する。   Next, as illustrated in FIG. 6B, the two separators 30 are bonded to each other outside the positive electrode 10 in a plan view and at the heat-resistant layer-less portion 33. By driving the plurality of heating and pressing members 710 in the direction indicated by the arrow P1 in the figure, the heating and pressing members 710 sandwich both ends in the longitudinal direction of the pair of separators 30 from above and below, and the pair of separators 30 Join. At this time, the pair of separators 30 are heated and pressurized by the heating and pressing member 710. The heating and pressing member 710 is set to a temperature at which the resin layer 31 in the heat resistant layer-less portion 33 is melted and the heat resistant layer 32 is not melted. The resin layer 31 melted by the heating and pressing member 710 is pressurized, and the separators 30 are joined. As shown in FIG. 6C, the plurality of heating and pressing members 710 are driven in the direction indicated by the arrow P <b> 2 in the figure and are separated from the pair of separators 30 that have been joined. In this way, the packed electrode 50 is manufactured.

以上説明したように、本実施形態の袋詰電極50は、樹脂層31の一方の面に耐熱層32が設けられた2枚のセパレータ30と、2枚のセパレータ30の間に挟まれた正極10と、2枚のセパレータ30の耐熱層32が設けられた面の側において平面視で視て正極10よりも外側にまで伸びる耐熱層レス部33と、耐熱層レス部33に設けられセパレータ30同士を接合する接合部34と、を有している。耐熱層レス部33を設けたセパレータ30にあっては、熱によってセパレータ30を切断するときに、耐熱層レス部33においては材料の相違に起因した熱収縮の差が小さくなり、セパレータ30に反りの変形が生じることを抑制できる。セパレータ30の反りが抑えられるので、セパレータ30同士を容易に密着させることができ、セパレータ30同士の接合が容易になる。その結果、2枚のセパレータ30の間に正極10を挟んだ袋詰電極50の製造の容易化を図ることができる。   As described above, the packaged electrode 50 according to the present embodiment includes the positive electrode sandwiched between the two separators 30 in which the heat-resistant layer 32 is provided on one surface of the resin layer 31 and the two separators 30. 10 and on the surface of the two separators 30 on which the heat-resistant layer 32 is provided, the heat-resistant layer-less part 33 extending to the outside of the positive electrode 10 in a plan view, and the separator 30 provided in the heat-resistant layer-less part 33. And a joining portion 34 for joining together. In the separator 30 provided with the heat-resistant layer-less portion 33, when the separator 30 is cut by heat, the heat-shrinkable-less portion 33 has a small difference in thermal shrinkage due to the difference in material and warps the separator 30. It is possible to suppress the occurrence of deformation. Since the warpage of the separator 30 is suppressed, the separators 30 can be easily adhered to each other, and the separators 30 can be easily joined. As a result, it is possible to facilitate the manufacture of the packaged electrode 50 in which the positive electrode 10 is sandwiched between the two separators 30.

接合部34を、セパレータ30の周縁のうち向かい合う周縁に設けることによって、袋詰電極50をハンドリングしているときなどにおいて、正極10からセパレータ30が抜け落ちることを低減できる。   By providing the joining portion 34 at the opposite peripheral edge of the separator 30, it is possible to reduce the separator 30 from falling off from the positive electrode 10 when handling the packaged electrode 50.

接合部34を、溶融樹脂材料から形成することによって、一般的に行われている熱溶着を適用して、セパレータ30同士を接合することができる。   By forming the joining portion 34 from a molten resin material, it is possible to join the separators 30 to each other by applying heat welding that is generally performed.

溶融樹脂材料を、セパレータ30の樹脂層31を構成する材料としたので、樹脂層31と一体的に接合部34を構成でき、接合部34の形成が容易になる。   Since the molten resin material is used as the material constituting the resin layer 31 of the separator 30, the joint portion 34 can be formed integrally with the resin layer 31, and the formation of the joint portion 34 is facilitated.

接合部34を、隙間なく連続的に伸びて、または隙間35を隔てて間欠的に配置することができる。前者の形態にあっては、セパレータ30同士の接合箇所が長くなることから、接合強度を強くすることができる。後者の形態にあっては、セパレータ30同士を脱落しない程度に仮接合しておくような場合に有利に適用することができる。   The joint 34 can be continuously extended without a gap, or can be intermittently arranged with a gap 35 therebetween. In the former form, since the joining location between the separators 30 becomes long, the joining strength can be increased. The latter form can be advantageously applied to the case where the separators 30 are temporarily joined to the extent that they do not fall off.

積層型電気デバイスとしてのリチウムイオン二次電池1は、樹脂層31の一方の面に耐熱層32が設けられた2枚のセパレータ30と、2枚のセパレータ30の間に挟まれた正極10と、2枚のセパレータ30の正極10に対向しない面の側に積層される負極20と、2枚のセパレータ30の耐熱層32が設けられた面の側において平面視で視て正負の電極10、20よりも外側にまで伸びる耐熱層レス部33と、耐熱層レス部33のうち平面視で視て正負の電極10、20よりも外側に位置する部位に設けられセパレータ30同士を接合する接合部34と、を有している。このリチウムイオン二次電池1における袋詰電極50にあっても、上述したのと同様に、セパレータ30の反りが抑えられるので、セパレータ30同士を容易に密着させることができ、セパレータ30同士の接合が容易になる。その結果、2枚のセパレータ30の間に正極10を挟んだ袋詰電極50、およびそれを適用したリチウムイオン二次電池1の製造の容易化を図ることができる。さらに、接合部34が平面視で視て正負の電極10、20の外側に配置されることから、接合部34において接合不良が生じた場合であっても、正負の電極10、20の内部短絡を確実に防止することができる。   A lithium ion secondary battery 1 as a stacked electrical device includes two separators 30 each having a heat-resistant layer 32 provided on one surface of a resin layer 31, and a positive electrode 10 sandwiched between the two separators 30. The negative electrode 20 stacked on the side of the two separators 30 that does not face the positive electrode 10, and the positive and negative electrodes 10 in plan view on the side of the surface on which the heat-resistant layer 32 of the two separators 30 is provided, A heat-resistant layer-less portion 33 extending to the outside of 20, and a joint portion for joining the separators 30 provided in a portion of the heat-resistant layer-less portion 33 located outside the positive and negative electrodes 10 and 20 in a plan view. 34. Even in the packaged electrode 50 in the lithium ion secondary battery 1, since the warpage of the separator 30 can be suppressed as described above, the separators 30 can be easily adhered to each other, and the separators 30 can be bonded to each other. Becomes easier. As a result, it is possible to facilitate the manufacture of the packaged electrode 50 in which the positive electrode 10 is sandwiched between the two separators 30 and the lithium ion secondary battery 1 to which the sealed electrode 50 is applied. Furthermore, since the joining portion 34 is disposed outside the positive and negative electrodes 10 and 20 in a plan view, even if a joining failure occurs in the joining portion 34, an internal short circuit between the positive and negative electrodes 10 and 20. Can be reliably prevented.

負極20は、電極厚み方向からの投影面積が正極10よりも大きい。かかる構成により、耐熱層レス部33に設けた接合部34が、袋詰電極50内の正極10よりも大きい負極20のさらに外側に位置することから、接合作業を負極20と干渉することなく容易に行うことができる。   The negative electrode 20 has a larger projected area from the electrode thickness direction than the positive electrode 10. With this configuration, the joining portion 34 provided in the heat-resistant layer-less portion 33 is located further outside the negative electrode 20 that is larger than the positive electrode 10 in the bagging electrode 50, and therefore, the joining operation can be easily performed without interfering with the negative electrode 20. Can be done.

袋詰電極50を製造するにあたっては、基材である樹脂層31の一方の面に耐熱層32を設けた2枚のセパレータ30を準備し、2枚のセパレータ30の間に正極10を挟み、2枚のセパレータ30を、平面視で視て正極10よりも外側の耐熱層レス部33において接合している。耐熱層レス部33を設けたセパレータ30にあっては、熱によってセパレータ30を切断するときに、耐熱層レス部33においては材料の相違に起因した熱収縮の差が小さくなり、セパレータ30に反りの変形が生じることを抑制できる。セパレータ30の反りが抑えられるので、セパレータ30同士を容易に密着させることができ、セパレータ30同士の接合が容易になる。その結果、2枚のセパレータ30の間に正極10を挟んだ袋詰電極50の製造の容易化を図ることができる。   In manufacturing the packaged electrode 50, two separators 30 provided with a heat-resistant layer 32 on one surface of the resin layer 31 as a base material are prepared, and the positive electrode 10 is sandwiched between the two separators 30, The two separators 30 are joined at the heat-resistant layer-less portion 33 outside the positive electrode 10 when viewed in plan. In the separator 30 provided with the heat-resistant layer-less portion 33, when the separator 30 is cut by heat, the heat-shrinkable-less portion 33 has a small difference in thermal shrinkage due to the difference in material and warps the separator 30. It is possible to suppress the occurrence of deformation. Since the warpage of the separator 30 is suppressed, the separators 30 can be easily adhered to each other, and the separators 30 can be easily joined. As a result, it is possible to facilitate the manufacture of the packaged electrode 50 in which the positive electrode 10 is sandwiched between the two separators 30.

(変形例)
本発明は、上述した実施形態に限定されるものではなく、適宜改変することができる。
(Modification)
The present invention is not limited to the above-described embodiment, and can be modified as appropriate.

樹脂層31の一方の面に耐熱層32を設けたセパレータ30を用いた実施形態について説明したが、本発明は、樹脂層31の両方の面に耐熱層32を設けたセパレータ30に適用することもできる。   Although the embodiment using the separator 30 provided with the heat-resistant layer 32 on one surface of the resin layer 31 has been described, the present invention is applied to the separator 30 provided with the heat-resistant layer 32 on both surfaces of the resin layer 31. You can also.

セパレータ30の樹脂層31の一方の面に耐熱層32を設けた場合において、樹脂層31を正極10に対向させ、耐熱層32を外側に臨ませてもよい。また、2枚のセパレータ30のうちの一方のセパレータ30については耐熱層32を正極10に対向させ、他方のセパレータ30については樹脂層31を正極10に対向させた袋詰電極50とすることもできる。   When the heat-resistant layer 32 is provided on one surface of the resin layer 31 of the separator 30, the resin layer 31 may be opposed to the positive electrode 10 and the heat-resistant layer 32 may be exposed to the outside. In addition, for one of the two separators 30, the heat-resistant layer 32 may be opposed to the positive electrode 10, and for the other separator 30, the packaged electrode 50 may be the resin layer 31 opposed to the positive electrode 10. it can.

正極10を袋詰電極50とし、この袋詰電極50に、正極10よりも大きい負極20を積層した積層型電気デバイス1について説明したが、これとは逆に、負極20を袋詰電極50とし、この袋詰電極50に、負極20よりも大きい正極10を積層した積層型電気デバイス1とすることもできる。積層型電気デバイス1は、リチウムイオン二次電池に限られるものではなく、キャパシターなど広く適用することができる。   The laminated electric device 1 in which the positive electrode 10 is the packaged electrode 50 and the negative electrode 20 larger than the positive electrode 10 is stacked on the packaged electrode 50 has been described. Conversely, the negative electrode 20 is the packaged electrode 50. The stacked electric device 1 may be formed by stacking the positive electrode 10 larger than the negative electrode 20 on the packaged electrode 50. The multilayer electrical device 1 is not limited to a lithium ion secondary battery, and can be widely applied to capacitors and the like.

セパレータ30の樹脂層31自体を接合部34とした形態を図示したが、本発明はこの場合に限定されるものではない。樹脂層31を構成する溶融樹脂材料と同種の溶融樹脂材料を耐熱層レス部33に塗布したり、樹脂層31を構成する溶融樹脂材料とは異なる材料を耐熱層レス部33に塗布したりして、接合部34を構成してもよい。   Although the embodiment in which the resin layer 31 itself of the separator 30 is used as the joint portion 34 is illustrated, the present invention is not limited to this case. A molten resin material of the same type as the molten resin material constituting the resin layer 31 is applied to the heat-resistant layer-less portion 33, or a material different from the molten resin material constituting the resin layer 31 is applied to the heat-resistant layer-less portion 33. Thus, the joint 34 may be configured.

1 リチウムイオン二次電池(積層型電気デバイス)、
10 正極(第1の電極)、
20 負極(第2の電極)、
30 セパレータ、
31 樹脂層、
32 耐熱層、
33 耐熱層レス部、
34 接合部、
35 隙間、
50 袋詰電極、
710 加熱加圧部材。
1 Lithium ion secondary battery (stacked electrical device),
10 positive electrode (first electrode),
20 negative electrode (second electrode),
30 separator,
31 resin layer,
32 heat-resistant layer,
33 Heat resistant layer-less part,
34 joints,
35 gap,
50 Packed electrodes,
710 Heating and pressing member.

Claims (8)

樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層が設けられた2枚のセパレータと、
2枚の前記セパレータの間に挟まれた電極と、
2枚の前記セパレータの前記耐熱層が設けられた面の側において平面視で視て前記電極よりも外側にまで伸び、かつ、耐熱層の厚みが前記電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部と、
前記耐熱層レス部に設けられ前記セパレータ同士を接合する接合部と、を有してなる袋詰電極。
Two separators provided with a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of the resin layer;
An electrode sandwiched between two separators;
Two separators extend to the outside of the electrode in plan view on the side where the heat-resistant layer is provided, and the thickness of the heat-resistant layer is thinner than the portion sandwiching the electrode, or Zero heat-resistant layer-less part,
A packaged electrode comprising: a joining portion provided in the heat-resistant layer-less portion and joining the separators.
前記接合部は、前記セパレータの周縁のうち向かい合う周縁に設けられている、請求項1に記載の袋詰電極。   The packaged electrode according to claim 1, wherein the joint portion is provided on a peripheral edge facing each other among peripheral edges of the separator. 前記接合部は、溶融樹脂材料から形成されている、請求項1または請求項2に記載の袋詰電極。   The packaged electrode according to claim 1, wherein the joint portion is formed of a molten resin material. 前記溶融樹脂材料は、前記セパレータの前記樹脂層を構成する材料である、請求項3に記載の袋詰電極。   The packaged electrode according to claim 3, wherein the molten resin material is a material constituting the resin layer of the separator. 前記接合部は、隙間なく連続的に伸びて、または隙間を隔てて間欠的に配置されている、請求項1〜請求項4のいずれか1つに記載の袋詰電極。   The packaged electrode according to any one of claims 1 to 4, wherein the joint portion extends continuously without a gap or is disposed intermittently with a gap. 樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層が設けられた2枚のセパレータと、
2枚の前記セパレータの間に挟まれた第1の電極と、
2枚の前記セパレータの前記第1の電極に対向しない面の側に積層される第2の電極と、
2枚の前記セパレータの前記耐熱層が設けられた面の側において平面視で視て前記第1と第2の電極よりも外側にまで伸び、かつ、耐熱層の厚みが前記第1の電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部と、
前記耐熱層レス部のうち平面視で視て前記第1と第2の電極よりも外側に位置する部位に設けられ前記セパレータ同士を接合する接合部と、を有してなる積層型電気デバイス。
Two separators provided with a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of the resin layer;
A first electrode sandwiched between two separators;
A second electrode laminated on a side of the two separators not facing the first electrode;
Two separators extend to the outside of the first and second electrodes in a plan view on the side where the heat-resistant layer is provided, and the thickness of the heat-resistant layer is the same as that of the first electrode. A heat-resistant layer-less part that is thin or zero compared to the sandwiched part,
A laminated electric device comprising: a joining portion that is provided in a portion located outside the first and second electrodes in a plan view of the heat-resistant layer-less portion, and joins the separators.
第2の電極は、電極厚み方向からの投影面積が前記第1の電極よりも大きい請求項6に記載の積層型電気デバイス。 The stacked electric device according to claim 6, wherein the second electrode has a larger projected area from the electrode thickness direction than the first electrode. 基材である樹脂層の少なくとも一方の面に前記樹脂層よりも溶融温度が高い耐熱層を設けた2枚のセパレータを準備し、
2枚の前記セパレータの間に電極を挟み、
2枚の前記セパレータを、平面視で視て前記電極よりも外側において、かつ、耐熱層の厚みが前記電極を挟んでいる部位に比べて薄いあるいはゼロである耐熱層レス部において接合する、袋詰電極の製造方法。
Preparing two separators provided with a heat-resistant layer having a melting temperature higher than that of the resin layer on at least one surface of a resin layer as a base material;
Sandwiching an electrode between the two separators,
A bag in which the two separators are joined to each other outside the electrode in a plan view and at a heat-resistant layer-less portion where the thickness of the heat-resistant layer is thinner or zero than the portion sandwiching the electrode A method for producing a packed electrode.
JP2012227394A 2012-10-12 2012-10-12 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode Pending JP2016006718A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012227394A JP2016006718A (en) 2012-10-12 2012-10-12 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode
PCT/JP2013/077548 WO2014058001A1 (en) 2012-10-12 2013-10-10 Bagged electrode, layered electrical device, and method for manufacturing bagged electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012227394A JP2016006718A (en) 2012-10-12 2012-10-12 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode

Publications (1)

Publication Number Publication Date
JP2016006718A true JP2016006718A (en) 2016-01-14

Family

ID=50477468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012227394A Pending JP2016006718A (en) 2012-10-12 2012-10-12 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode

Country Status (2)

Country Link
JP (1) JP2016006718A (en)
WO (1) WO2014058001A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130268A (en) * 2016-01-18 2017-07-27 株式会社Gsユアサ Power storage element
JP2017130269A (en) * 2016-01-18 2017-07-27 株式会社Gsユアサ Power storage element
WO2018043406A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Layered electrode body and power storage element
JP2019117703A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
JP2019117699A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
US10625475B2 (en) 2016-12-27 2020-04-21 Envision Aesc Japan Ltd. Ultrasonic bonding tool and ultrasonic bonding method
WO2021166720A1 (en) * 2020-02-19 2021-08-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing same
JPWO2020066108A1 (en) * 2018-09-25 2021-08-30 パナソニックIpマネジメント株式会社 Separator and non-aqueous electrolyte secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015026522A (en) * 2013-07-26 2015-02-05 株式会社豊田自動織機 Electrode housing separator and power storage device
WO2015145551A1 (en) * 2014-03-24 2015-10-01 日産自動車株式会社 Separator joining method for electrical device, and separator joining device for electrical device
DE112017004317T5 (en) * 2016-08-29 2019-05-16 Gs Yuasa International Ltd. Laminated electrode body and an electrical storage element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092100A (en) * 2001-09-19 2003-03-28 Nec Corp Laminated cell
JP5235715B2 (en) * 2009-02-25 2013-07-10 富士重工業株式会社 Electric storage device and manufacturing method thereof
JP2011159434A (en) * 2010-01-29 2011-08-18 Toyota Motor Corp Separator and manufacturing method thereof
JP5333617B2 (en) * 2012-02-03 2013-11-06 株式会社豊田自動織機 Electrode storage separator, power storage device, and vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130269A (en) * 2016-01-18 2017-07-27 株式会社Gsユアサ Power storage element
JP2017130268A (en) * 2016-01-18 2017-07-27 株式会社Gsユアサ Power storage element
JPWO2018043406A1 (en) * 2016-08-29 2019-09-05 株式会社Gsユアサ LAMINATED ELECTRODE BODY AND STORAGE ELEMENT
WO2018043406A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Layered electrode body and power storage element
CN110062975A (en) * 2016-08-29 2019-07-26 株式会社杰士汤浅国际 Multilayer electrode body and charge storage element
US10625475B2 (en) 2016-12-27 2020-04-21 Envision Aesc Japan Ltd. Ultrasonic bonding tool and ultrasonic bonding method
JP2019117703A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
JP2019117699A (en) * 2017-12-26 2019-07-18 株式会社Gsユアサ Power storage element
JP7068644B2 (en) 2017-12-26 2022-05-17 株式会社Gsユアサ Power storage element
JP7071706B2 (en) 2017-12-26 2022-05-19 株式会社Gsユアサ Power storage element
JPWO2020066108A1 (en) * 2018-09-25 2021-08-30 パナソニックIpマネジメント株式会社 Separator and non-aqueous electrolyte secondary battery
JP7357234B2 (en) 2018-09-25 2023-10-06 パナソニックIpマネジメント株式会社 Separators and non-aqueous electrolyte secondary batteries
WO2021166720A1 (en) * 2020-02-19 2021-08-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
WO2014058001A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
WO2014058001A1 (en) Bagged electrode, layered electrical device, and method for manufacturing bagged electrode
US20120244423A1 (en) Laminate case secondary battery
US20110244304A1 (en) Stack type battery
JP6623525B2 (en) Secondary battery, method of manufacturing secondary battery, and assembly of electrode-sealant of secondary battery
KR101707357B1 (en) Electric device, and apparatus and method for bonding separator of electric device
CN108292730B (en) Electrochemical device
WO2016208238A1 (en) Method for manufacturing electrochemical device
KR102342211B1 (en) Laminate type battery and manufacturing method thereof
JP2014086265A (en) Separator joining method and device
WO2014141640A1 (en) Laminate exterior cell
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP6560876B2 (en) Laminated battery and method of manufacturing the same
JP6343905B2 (en) Separator bonding method for electric device and separator bonding apparatus for electric device
JP2006278141A (en) Thin battery
JP2018142483A (en) Secondary battery
JP6343898B2 (en) Separator bonding method for electric device and separator bonding apparatus for electric device
JP2014086267A (en) Separator joining method and device
CN114391193A (en) Laminated battery and method for manufacturing laminated battery
WO2018008632A1 (en) Method for manufacturing cell
JP2014086266A (en) Separator joining method and device
JP2018156725A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP7109233B2 (en) Electrochemical device manufacturing method
JP2007018766A (en) Film-armored electric storage device and its manufacturing method
JP2010251085A (en) Laminated secondary battery