JP5235715B2 - Electric storage device and manufacturing method thereof - Google Patents

Electric storage device and manufacturing method thereof Download PDF

Info

Publication number
JP5235715B2
JP5235715B2 JP2009042139A JP2009042139A JP5235715B2 JP 5235715 B2 JP5235715 B2 JP 5235715B2 JP 2009042139 A JP2009042139 A JP 2009042139A JP 2009042139 A JP2009042139 A JP 2009042139A JP 5235715 B2 JP5235715 B2 JP 5235715B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
storage device
separator
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009042139A
Other languages
Japanese (ja)
Other versions
JP2010199282A (en
Inventor
勉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2009042139A priority Critical patent/JP5235715B2/en
Priority to US12/702,853 priority patent/US20100216027A1/en
Priority to EP10153857.7A priority patent/EP2224514B1/en
Priority to KR1020100015156A priority patent/KR101578562B1/en
Priority to CN201010123133XA priority patent/CN101814372B/en
Publication of JP2010199282A publication Critical patent/JP2010199282A/en
Application granted granted Critical
Publication of JP5235715B2 publication Critical patent/JP5235715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/06Mounting in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A negative electrode mixture member (26) accommodated in a bag-like separator (18) includes a negative electrode (15) provided with a negative electrode current collector (23) and a negative electrode mixture layer (24) formed on one surface of the negative electrode current collector (23), and a metal lithium foil (16) adhered onto the negative electrode (15). Accordingly, even when metal lithium is dropped from the negative electrode current collector (23) of the negative electrode (15), the diffusion of the metal lithium in the electric storage device (10) can be prevented. Consequently, short-circuiting in the electric storage device (10) or corrosion of the outer casing (11) caused by the free metal lithium can be prevented, whereby the safety of the electric storage device (10) can be enhanced. Even when the metal lithium is dropped from the negative electrode current collector (23) of the negative electrode (15), the metal lithium can be retained in the vicinity of the negative electrode (15).

Description

本発明は、イオン供給源を備える負極複合材が組み込まれる蓄電デバイスおよびその製造方法に関する。   The present invention relates to an electricity storage device in which a negative electrode composite having an ion supply source is incorporated, and a method for manufacturing the same.

電気自動車やハイブリッド自動車等に搭載される蓄電デバイスとして、リチウムイオンキャパシタやリチウムイオン二次電池等がある。これら蓄電デバイスのエネルギー密度を向上させるため、蓄電デバイス内にイオン供給源としての金属リチウムを組み込むようにした蓄電デバイスが提案されている。この蓄電デバイスにおいては、金属リチウムが負極に対して電気化学的に接続され、金属リチウムから負極にリチウムイオンがドーピングされる。この後に正負極間で充放電を実施することにより、不可逆容量を多く有する負極活物質を負極に用いた場合における蓄電デバイスの容量ロスの低減が可能となる。また、負極へのリチウムイオンのドーピングにより、蓄電デバイスの充電状態や放電状態における負極電位を低下させることが可能となる。すなわち、負極の平均電位の低下によって蓄電デバイスの平均電圧を高めることが可能となる結果、蓄電デバイスのエネルギー密度を向上させることが可能となる。また、蓄電デバイス内に金属リチウムを組み込む方法としては、負極集電体に対して金属リチウム箔を貼り付ける方法が提案されている(例えば、特許文献1参照)。さらに、金属リチウム箔を直接負極合材上に貼り付ける方法(例えば、特許文献2参照)や、蒸着によって金属リチウム層を形成し、この金属リチウム層を負極合材層上に転写する方法が提案されている(例えば、特許文献3参照)。   Examples of power storage devices mounted on electric vehicles and hybrid vehicles include lithium ion capacitors and lithium ion secondary batteries. In order to improve the energy density of these electricity storage devices, an electricity storage device in which metallic lithium as an ion supply source is incorporated in the electricity storage device has been proposed. In this electricity storage device, metallic lithium is electrochemically connected to the negative electrode, and lithium ions are doped from the metallic lithium to the negative electrode. By performing charging / discharging between the positive and negative electrodes thereafter, it is possible to reduce the capacity loss of the electricity storage device when a negative electrode active material having a large irreversible capacity is used for the negative electrode. Further, by doping lithium ions into the negative electrode, it is possible to reduce the negative electrode potential in the charged or discharged state of the electricity storage device. That is, the average voltage of the electricity storage device can be increased by lowering the average potential of the negative electrode. As a result, the energy density of the electricity storage device can be improved. Further, as a method of incorporating metallic lithium into the electricity storage device, a method of attaching metallic lithium foil to the negative electrode current collector has been proposed (see, for example, Patent Document 1). Further, a method of directly attaching a metal lithium foil on the negative electrode mixture (for example, see Patent Document 2) and a method of forming a metal lithium layer by vapor deposition and transferring the metal lithium layer onto the negative electrode mixture layer are proposed. (For example, see Patent Document 3).

特開2008−123826号公報JP 2008-123826 A 特開平11−283676号公報JP-A-11-283676 特開2008−21901号公報JP 2008-21901 A

しかしながら、単に蓄電デバイス内に金属リチウムを組み込むことは、金属リチウムの一部が金属リチウム箔や金属リチウム層から脱落した場合に、蓄電デバイス内に金属リチウム片や金属リチウム微粒子を遊離させてしまうおそれがある。このように、蓄電デバイス内において金属リチウム片や金属リチウム微粒子が元来の配置場所から遊離することは、蓄電デバイスの内部短絡や外装材の腐食を招いて蓄電デバイスの安全性を低下させる要因となっていた。また、内部短絡や過充電等によって蓄電デバイスが開口するような異常事態が生じた場合には、前記脱落した金属リチウム片や金属リチウム微粒子が大気中に飛散してしまう。さらに、金属リチウムの一部が脱落して負極から遊離することは、リチウムイオンのドーピング量を低下させて蓄電デバイスの品質を低下させる要因となっていた。   However, simply incorporating metal lithium into the electricity storage device may cause metal lithium pieces or metal lithium particles to be released into the electricity storage device when a portion of the metal lithium falls off the metal lithium foil or metal lithium layer. There is. Thus, the release of metal lithium pieces and metal lithium fine particles from the original location in the electricity storage device is a factor that reduces the safety of the electricity storage device due to internal short circuit of the electricity storage device and corrosion of the exterior material. It was. Further, when an abnormal situation occurs in which the power storage device opens due to an internal short circuit or overcharge, the dropped metal lithium pieces and metal lithium fine particles are scattered in the atmosphere. Furthermore, a part of the metallic lithium falling off and liberated from the negative electrode has been a factor of lowering the lithium ion doping amount and lowering the quality of the electricity storage device.

本発明の目的は、蓄電デバイスの安全性を向上させるとともに品質を向上させることにある。   An object of the present invention is to improve the safety and quality of an electricity storage device.

本発明の蓄電デバイスは、正極集電体および正極合材層を備える正極と負極集電体および負極合材層を備える負極とを有する蓄電デバイスであって、前記負極の少なくとも1つは、前記負極集電体および前記負極合材層に加えてイオン供給源を備える負極複合材として構成され、前記負極複合材は袋状のセパレータに収容され、前記セパレータの縁部は全周に渡って閉じられ、前記負極複合材の負極集電体は突出する端子接合部を備え、前記端子接合部に重なる前記セパレータの縁部は熱融着処理または接着処理によって閉じられることを特徴とする。 An electricity storage device of the present invention is an electricity storage device having a positive electrode comprising a positive electrode current collector and a positive electrode mixture layer and a negative electrode comprising a negative electrode current collector and a negative electrode mixture layer, wherein at least one of the negative electrodes is The negative electrode current collector is configured as a negative electrode composite material having an ion supply source in addition to the negative electrode current collector and the negative electrode composite material layer. The negative electrode composite material is accommodated in a bag-shaped separator, and the edge of the separator is closed over the entire circumference. is, the negative electrode current collector of the negative electrode mixture member is provided with a terminal welding portion projecting edges of the separator overlapping the terminal junction characterized Rukoto closed by heat-sealing or adhesion treatment.

本発明の蓄電デバイスは、前記正極集電体および前記負極集電体には複数の貫通孔が形成されることを特徴とする。   The electricity storage device of the present invention is characterized in that a plurality of through holes are formed in the positive electrode current collector and the negative electrode current collector.

本発明の蓄電デバイスの製造方法は、正極集電体および正極合材層を備える正極と負極集電体および負極合材層を備える負極とを有する蓄電デバイスの製造方法であって、前記負極の少なくとも1つを、前記負極集電体および前記負極合材層に加えてイオン供給源を備える負極複合材とする工程と、前記負極複合材を袋状のセパレータに収容し、前記セパレータの縁部を全周に渡って閉じる工程と、を有し、前記負極複合材の負極集電体は突出する端子接合部を備え、前記端子接合部に重なる前記セパレータの縁部は熱融着処理または接着処理によって閉じられることを特徴とする。 A method for producing an electricity storage device of the present invention is a method for producing an electricity storage device having a positive electrode including a positive electrode current collector and a positive electrode mixture layer, and a negative electrode including a negative electrode current collector and a negative electrode mixture layer. A step of forming at least one negative electrode composite material including an ion supply source in addition to the negative electrode current collector and the negative electrode composite material layer; and housing the negative electrode composite material in a bag-shaped separator, the have a, a step of closing the entire circumference, the negative electrode current collector of the negative electrode mixture member is provided with a terminal welding portion projecting edges of the separator overlapping the terminal junction heat-sealing or adhesive It closed by process characterized Rukoto.

本発明では、袋状のセパレータに負極複合材を収容している。このため、負極複合材からイオン供給源が脱落した場合であっても、蓄電デバイス内における袋状のセパレータに収容された負極(負極複合材)近傍からのイオン供給源の遊離を防止することが可能となる。これにより、イオン供給源の蓄電デバイス内への拡散が原因となる蓄電デバイスの短絡や外装材の腐食を防止することができ、蓄電デバイスの安全性を向上させることが可能となる。また、袋状のセパレータ内に金属リチウムを留めておくことが可能であるため、蓄電デバイスが開口する事態が生じた際における大気中へのイオン供給源の飛散を防止し、異常時における蓄電デバイスの安全性を高めることが可能となる。さらには、袋状のセパレータに負極(負極複合材)を収容することにより、負極(負極複合材)からイオン供給源が脱落した場合であっても、負極(負極複合材)の近傍にイオン供給源を保持することが可能となる。これにより、イオンのドーピング量を設計通りに確保することができ、蓄電デバイスの性能低下を防止することが可能となる。しかも、負極上にイオン供給源を設けるようにしたので、イオン供給源用の集電体を削減することが可能となる。これにより、蓄電デバイスのエネルギー密度を向上させることが可能となる。   In the present invention, the negative electrode composite material is accommodated in a bag-shaped separator. Therefore, even when the ion supply source is dropped from the negative electrode composite material, it is possible to prevent the ion supply source from being released from the vicinity of the negative electrode (negative electrode composite material) housed in the bag-shaped separator in the electricity storage device. It becomes possible. As a result, it is possible to prevent a short circuit of the power storage device and corrosion of the exterior material caused by diffusion of the ion supply source into the power storage device, and it is possible to improve the safety of the power storage device. In addition, since it is possible to keep metallic lithium in the bag-shaped separator, it is possible to prevent scattering of the ion supply source to the atmosphere when the situation where the electricity storage device opens, and the electricity storage device in an abnormal state It is possible to improve the safety of Furthermore, by storing the negative electrode (negative electrode composite material) in a bag-shaped separator, even if the ion supply source falls off from the negative electrode (negative electrode composite material), the ion supply is near the negative electrode (negative electrode composite material). It is possible to hold the source. As a result, the ion doping amount can be ensured as designed, and the performance degradation of the electricity storage device can be prevented. Moreover, since the ion supply source is provided on the negative electrode, the current collector for the ion supply source can be reduced. Thereby, it becomes possible to improve the energy density of an electrical storage device.

本発明の一実施の形態である蓄電デバイスを示す斜視図である。It is a perspective view which shows the electrical storage device which is one embodiment of this invention. 図1のA−A線に沿って蓄電デバイスの内部構造を概略的に示す断面図である。It is sectional drawing which shows schematically the internal structure of an electrical storage device along the AA line of FIG. 蓄電デバイスの内部構造を部分的に拡大して示す断面図である。It is sectional drawing which expands and shows the internal structure of an electrical storage device partially. (A)は負極の内部構造を示す分解斜視図である。(B)は負極を示す斜視図である。(A) is an exploded perspective view showing the internal structure of the negative electrode. (B) is a perspective view showing a negative electrode. 本発明の他の実施の形態である蓄電デバイスの内部構造を部分的に示す断面図である。It is sectional drawing which shows partially the internal structure of the electrical storage device which is other embodiment of this invention.

図1は本発明の一実施の形態である蓄電デバイス10を示す斜視図である。図2は図1のA−A線に沿って蓄電デバイス10の内部構造を概略的に示す断面図である。図1および図2に示すように、ラミネートフィルムを用いて構成される外装材11内には電極積層ユニット12が収容されている。この電極積層ユニット12は、交互に積層される正極13および負極14,15によって構成されている。電極積層ユニット12の最外部に配置される負極15は、イオン供給源としての金属リチウム箔16を一体に備えた負極複合材26として構成されている。また、正極13と負極14との間にはセパレータ17が挟み込まれている。一方、負極15は袋状のセパレータ18に収容されている。なお、外装材11内には電解液が注入されている。この電解液はリチウム塩を含む非プロトン性極性溶媒によって構成されている。   FIG. 1 is a perspective view showing an electricity storage device 10 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the internal structure of the electricity storage device 10 along the line AA in FIG. As shown in FIGS. 1 and 2, an electrode stacking unit 12 is accommodated in an exterior material 11 configured using a laminate film. The electrode stacking unit 12 includes positive electrodes 13 and negative electrodes 14 and 15 that are alternately stacked. The negative electrode 15 disposed on the outermost part of the electrode laminate unit 12 is configured as a negative electrode composite material 26 integrally provided with a metal lithium foil 16 as an ion supply source. A separator 17 is sandwiched between the positive electrode 13 and the negative electrode 14. On the other hand, the negative electrode 15 is accommodated in a bag-shaped separator 18. Note that an electrolyte is injected into the exterior material 11. This electrolytic solution is composed of an aprotic polar solvent containing a lithium salt.

図3は蓄電デバイス10の内部構造を部分的に拡大して示す断面図である。図3に示すように、正極13は多数の貫通孔20aを備えた正極集電体20を有している。この正極集電体20には正極合材層21が設けられている。また、正極集電体20には凸状に伸びる端子接合部20bが設けられている。これら複数枚の端子接合部20bは重ねた状態で互いに接合されている。さらに、端子接合部20bには正極端子22が接合されている。   FIG. 3 is a cross-sectional view showing a partially enlarged internal structure of the electricity storage device 10. As shown in FIG. 3, the positive electrode 13 has a positive electrode current collector 20 having a large number of through holes 20a. The positive electrode current collector 20 is provided with a positive electrode mixture layer 21. The positive electrode current collector 20 is provided with a terminal joint portion 20b extending in a convex shape. The plurality of terminal joint portions 20b are joined to each other in a stacked state. Further, the positive terminal 22 is joined to the terminal joint portion 20b.

同様に、負極14,15は、多数の貫通孔23aを備えた負極集電体23を有している。負極14を構成する負極集電体23の両面には、負極合材層24が設けられている。また、負極15を構成する負極集電体23の一方面には負極合材層24が設けられている。さらに、負極15を構成する負極集電体23の負極合材層24が設けられていない面には金属リチウム箔16が貼り付けられており、負極15と金属リチウム箔16とによって負極複合材26が構成されている。また、負極集電体23には凸状に伸びる端子接合部23bが設けられている。これら複数枚の端子接合部23bは重ねた状態で互いに接合されている。さらに、端子接合部23bには負極端子25が接合されている。   Similarly, the negative electrodes 14 and 15 have a negative electrode current collector 23 having a large number of through holes 23a. A negative electrode mixture layer 24 is provided on both surfaces of the negative electrode current collector 23 constituting the negative electrode 14. Further, a negative electrode mixture layer 24 is provided on one surface of the negative electrode current collector 23 constituting the negative electrode 15. Further, a metal lithium foil 16 is attached to the surface of the negative electrode current collector 23 constituting the negative electrode 15 on which the negative electrode mixture layer 24 is not provided, and the negative electrode composite material 26 is formed by the negative electrode 15 and the metal lithium foil 16. Is configured. Further, the negative electrode current collector 23 is provided with a terminal joint portion 23b extending in a convex shape. The plurality of terminal joining portions 23b are joined to each other in an overlapped state. Further, the negative electrode terminal 25 is bonded to the terminal bonding portion 23b.

正極合材層21には正極活物質として活性炭が含まれている。この活性炭にはリチウムイオンやアニオンを可逆的にドーピング・脱ドーピングさせることが可能である。また、負極合材層24には負極活物質としてポリアセン系有機半導体(PAS)が含まれている。このPASにはリチウムイオンを可逆的にドーピング・脱ドーピングさせることが可能である。このように、正極活物質として活性炭を採用し、負極活物質としてPASを採用することにより、図示する蓄電デバイス10はリチウムイオンキャパシタとして機能することになる。   The positive electrode mixture layer 21 contains activated carbon as a positive electrode active material. This activated carbon can be reversibly doped and dedoped with lithium ions and anions. Further, the negative electrode mixture layer 24 includes polyacene organic semiconductor (PAS) as a negative electrode active material. This PAS can be reversibly doped / undoped with lithium ions. In this manner, by using activated carbon as the positive electrode active material and PAS as the negative electrode active material, the power storage device 10 illustrated functions as a lithium ion capacitor.

なお、本発明が適用される蓄電デバイス10としては、リチウムイオンキャパシタに限られることはなく、リチウムイオン二次電池や電気二重層キャパシタであっても良く、例えばマグネシウムイオン二次電池等の他の形式の電池やこれらとのハイブリッドキャパシタであっても良い。また、本明細書において、ドーピング(ドープ)とは、吸蔵、担持、吸着、挿入等を意味している。すなわち、ドープとは、正極活物質や負極活物質に対してアニオンやリチウムイオン等が入る状態を意味している。また、脱ドーピング(脱ドープ)とは、放出、脱離等を意味している。すなわち、脱ドープとは、正極活物質や負極活物質からアニオンやリチウムイオン等が出る状態を意味している。   The power storage device 10 to which the present invention is applied is not limited to a lithium ion capacitor, and may be a lithium ion secondary battery or an electric double layer capacitor. It may be a type of battery or a hybrid capacitor with these. Further, in this specification, doping (doping) means occlusion, support, adsorption, insertion, and the like. That is, dope means a state in which anions, lithium ions, and the like enter the positive electrode active material and the negative electrode active material. De-doping (de-doping) means release, desorption and the like. That is, dedoping means a state in which anions, lithium ions, and the like are emitted from the positive electrode active material and the negative electrode active material.

前述したように、負極15の負極集電体23には金属リチウム箔16が貼り付けられている。また、負極14,15の負極集電体23は互いに接合されている。すなわち、金属リチウム箔16と全ての負極合材層24とは電気的に接続されている。したがって、外装材11内に電解液を注入することにより、金属リチウム箔16から負極14,15に対してリチウムイオンがドープ(以下、プレドープという)されることになる。また、正極集電体20や負極集電体23には貫通孔20a,23aが形成されている。このため、金属リチウム箔16から放出されるリチウムイオンは、集電体20,23の貫通孔20a,23aを通過して積層方向に移動するようになっている。これにより、積層される全ての負極14,15に対してスムーズにリチウムイオンをプレドープすることが可能となる。   As described above, the metal lithium foil 16 is attached to the negative electrode current collector 23 of the negative electrode 15. The negative electrode current collectors 23 of the negative electrodes 14 and 15 are joined to each other. That is, the metal lithium foil 16 and all the negative electrode mixture layers 24 are electrically connected. Therefore, by injecting the electrolytic solution into the exterior material 11, lithium ions are doped (hereinafter referred to as pre-doping) from the metal lithium foil 16 to the negative electrodes 14 and 15. Further, through holes 20 a and 23 a are formed in the positive electrode current collector 20 and the negative electrode current collector 23. For this reason, the lithium ions released from the metal lithium foil 16 pass through the through holes 20a and 23a of the current collectors 20 and 23 and move in the stacking direction. This makes it possible to smoothly pre-dope lithium ions for all the negative electrodes 14 and 15 to be stacked.

このように、負極14,15にリチウムイオンをプレドープすることにより、負極電位を低下させることが可能となる。これにより、蓄電デバイス10のセル電圧を高めることが可能となる。また、負極14,15にリチウムイオンをプレドープすることにより、負極14,15の静電容量を高めることが可能となる。これにより、蓄電デバイス10の静電容量を高めることが可能となる。さらに、負極14,15の静電容量を高めることにより、正極13が作動する電位範囲(電位差)を拡大することができ、蓄電デバイス10のセル容量(放電容量)を高めることが可能となる。このように、蓄電デバイス10のセル電圧、セル容量、静電容量を高めることができるため、蓄電デバイス10のエネルギー密度を向上させることが可能となる。また、蓄電デバイス10の高容量化を図る観点から、正極13と負極14,15とを短絡させた後の正極電位が2.0V(vs.Li/Li)以下となるように、金属リチウム箔16の量を設定することが好ましい。 Thus, the negative electrode potential can be lowered by pre-doping lithium ions into the negative electrodes 14 and 15. Thereby, the cell voltage of the electricity storage device 10 can be increased. Moreover, it becomes possible to increase the electrostatic capacity of the negative electrodes 14 and 15 by pre-doping lithium ions into the negative electrodes 14 and 15. Thereby, the electrostatic capacity of the electricity storage device 10 can be increased. Furthermore, by increasing the capacitance of the negative electrodes 14 and 15, the potential range (potential difference) in which the positive electrode 13 operates can be expanded, and the cell capacity (discharge capacity) of the electricity storage device 10 can be increased. Thus, since the cell voltage, cell capacity, and electrostatic capacity of the electricity storage device 10 can be increased, the energy density of the electricity storage device 10 can be improved. Further, from the viewpoint of increasing the capacity of the electricity storage device 10, the metal lithium is adjusted so that the positive electrode potential after the positive electrode 13 and the negative electrodes 14 and 15 are short-circuited is 2.0 V (vs. Li / Li + ) or less. It is preferable to set the amount of the foil 16.

図2および図3に示すように、負極複合材26を電極積層ユニット12の最外部に配置した構成について説明したが、負極複合材を電極積層ユニット12の内層に位置する正極13間に挟み込むように配置しても良い。また、電極積層ユニット12の最外部に負極複合材26を配置するとともに、電極積層ユニット12の内層に位置する正極13間に負極複合材を配置しても良い。このように、電極積層ユニット12(蓄電デバイス10)内に、負極複合材を細かく分散配置させることにより、リチウムイオンのドーピング速度を速めることが可能となる。また、電極積層ユニット12の内層に配置するための負極複合材については、負極合材層24を両面に備えた負極14に金属リチウム箔16を貼り付けて構成することが、生産性の観点から好ましい。しかしながら、負極複合材を電極積層ユニット12の内層に配置することは、そもそも作業効率的に不利であることから、作業効率を考えた場合には、電極積層ユニット12の最外部に負極複合材を配置させることの方が好ましい。したがって、作業効率を向上させるとともにリチウムイオンのドーピング速度を速めたい場合には、最外部に負極複合材を配置した電極積層ユニットを複数作製した上で、これら複数の電極積層ユニットを積層して蓄電デバイスを構成することが望ましい。   As shown in FIGS. 2 and 3, the configuration in which the negative electrode composite material 26 is disposed on the outermost part of the electrode laminated unit 12 has been described. However, the negative electrode composite material is sandwiched between the positive electrodes 13 located in the inner layer of the electrode laminated unit 12. You may arrange in. Further, the negative electrode composite material 26 may be arranged on the outermost part of the electrode laminated unit 12, and the negative electrode composite material may be arranged between the positive electrodes 13 located in the inner layer of the electrode laminated unit 12. Thus, the lithium ion doping rate can be increased by finely disposing the negative electrode composite material in the electrode stack unit 12 (power storage device 10). Moreover, about the negative electrode composite material for arrange | positioning in the inner layer of the electrode lamination | stacking unit 12, it is from a viewpoint of productivity that it adheres and comprises the metal lithium foil 16 on the negative electrode 14 provided with the negative electrode compound material layer 24 on both surfaces. preferable. However, disposing the negative electrode composite material in the inner layer of the electrode laminate unit 12 is disadvantageous in terms of work efficiency in the first place. Therefore, in consideration of work efficiency, the negative electrode composite material is disposed on the outermost part of the electrode laminate unit 12. It is preferable to arrange them. Therefore, in order to improve the working efficiency and increase the doping rate of lithium ions, a plurality of electrode laminate units having a negative electrode composite material arranged on the outermost part are produced, and then the plurality of electrode laminate units are laminated to store electricity. It is desirable to configure the device.

さらに、図3に示すように、電極積層ユニット12の最外部に配置される負極複合材26は、負極集電体23の未塗工面に金属リチウム箔16を貼り付けることで構成されている。しかしながら、電極積層ユニット12の最外部に配置するための負極複合材を、負極合材層24を両面に備えた負極14に金属リチウム箔16を貼り付けて構成しても良い。このように、負極14および金属リチウム箔16からなる負極複合材を電極積層ユニット12の最外部に配置する際には、金属リチウム箔16が設けられた面を外側に向けて配置することが好ましい。金属リチウム箔16を外側に向けて配置することにより、金属リチウム箔16を電解液に接触させ易くイオン化を図り易いからである。   Further, as shown in FIG. 3, the negative electrode composite material 26 disposed on the outermost part of the electrode laminate unit 12 is configured by attaching a metal lithium foil 16 to the uncoated surface of the negative electrode current collector 23. However, the negative electrode composite material to be disposed on the outermost part of the electrode laminate unit 12 may be configured by attaching the metal lithium foil 16 to the negative electrode 14 provided with the negative electrode mixture layer 24 on both surfaces. Thus, when the negative electrode composite material composed of the negative electrode 14 and the metal lithium foil 16 is disposed on the outermost part of the electrode laminate unit 12, it is preferable to dispose the surface on which the metal lithium foil 16 is provided facing outward. . This is because by arranging the metal lithium foil 16 facing outward, the metal lithium foil 16 can be easily brought into contact with the electrolytic solution and ionization can be easily achieved.

しかしながら、2つの負極合材層24が設けられる負極複合材を、電極積層ユニット12の最外部に配置することは、正極合材層21に対向しない負極合材層24、すなわち充放電に寄与し難い負極合材層24を蓄電デバイス10に組み込むことになる。このことは、電解液量およびセル重量の増加や、蓄電デバイスの体積増加に伴うエネルギー密度の低下を招くだけでなく、蓄電デバイス10における正負極間の充放電バランスを崩す可能性があり、サイクル特性等に悪影響を及ぼすおそれがある。   However, disposing the negative electrode composite material provided with the two negative electrode mixture layers 24 at the outermost part of the electrode laminate unit 12 contributes to the negative electrode mixture layer 24 that does not face the positive electrode mixture layer 21, that is, charge / discharge. The difficult negative electrode mixture layer 24 is incorporated into the electricity storage device 10. This not only leads to an increase in the amount of electrolyte and cell weight and a decrease in energy density due to an increase in the volume of the electricity storage device, but also may disrupt the charge / discharge balance between the positive and negative electrodes in the electricity storage device 10. There is a risk of adversely affecting properties.

一方、図3に示すように、片面に負極合材層24を有する負極15を備えた負極複合材26を電極積層ユニット12の最外部に配置させるためには、両面に負極合材層24を備えた負極14を製造するだけでなく、片面に負極合材層24を備えた負極15を製造する必要がある。すなわち、2種類の負極14,15を製造する必要があるため、生産性を考えると好ましいことではない。また、電極積層ユニット12の積層過程においても、2種類の負極14,15を用いることから積層作業が複雑となり、生産性を考えると好ましいことではない。以上のことから、電極積層ユニット12の最外部に、片面に負極合材層24を有する負極15を備えた負極複合材26を配置するか、あるいは両面に負極合材層24を有する負極14を備えた負極複合材を配置するかについては、蓄電デバイス10の性能と生産性を考慮して適宜選択することが好ましい。   On the other hand, as shown in FIG. 3, in order to dispose the negative electrode composite material 26 including the negative electrode 15 having the negative electrode mixture layer 24 on one side on the outermost part of the electrode laminate unit 12, the negative electrode mixture layer 24 is formed on both surfaces. In addition to manufacturing the provided negative electrode 14, it is necessary to manufacture the negative electrode 15 including the negative electrode mixture layer 24 on one side. That is, since it is necessary to manufacture two types of negative electrodes 14 and 15, it is not preferable in view of productivity. Also, in the laminating process of the electrode laminating unit 12, since the two types of negative electrodes 14 and 15 are used, the laminating operation becomes complicated, which is not preferable in view of productivity. From the above, the negative electrode composite material 26 including the negative electrode 15 having the negative electrode mixture layer 24 on one side is disposed on the outermost part of the electrode laminate unit 12, or the negative electrode 14 having the negative electrode mixture layer 24 on both sides is disposed. It is preferable to appropriately select whether the provided negative electrode composite material is disposed in consideration of the performance and productivity of the electricity storage device 10.

なお、両面に負極合材層24を備えた負極14を電極積層ユニット12の最外部に配置する構成例について述べたが、これに限られることはなく、両面に正極合材層21を備えた正極13を電極積層ユニット12の最外部に配置しても良い。このように、両面に電極合材層(正極合材層または負極合材層)を備える電極(正極または負極)を、電極積層ユニット12の最外部に配置する場合には、正極または負極のうち容量の大きな電極を最外部に配置することが好ましい。すなわち、蓄電デバイス10の容量は、正極または負極のうち容量の小さな電極によって支配されることになるが、この電極を電極積層ユニット12の内層に配置することにより、電極が有する小さな容量を余すことなく利用することができ、蓄電デバイス10のエネルギー密度を向上させることが可能となる。   In addition, although the structural example which arrange | positions the negative electrode 14 provided with the negative mix layer 24 on both surfaces in the outermost part of the electrode lamination | stacking unit 12 was described, it was not restricted to this, The positive mix layer 21 was provided on both surfaces The positive electrode 13 may be disposed on the outermost part of the electrode laminated unit 12. Thus, in the case where the electrode (positive electrode or negative electrode) provided with the electrode mixture layer (positive electrode mixture layer or negative electrode mixture layer) on both sides is arranged on the outermost part of the electrode laminate unit 12, It is preferable to arrange an electrode having a large capacity at the outermost part. That is, the capacity of the electricity storage device 10 is governed by the electrode having a small capacity of the positive electrode or the negative electrode, but by arranging this electrode in the inner layer of the electrode laminated unit 12, the small capacity of the electrode is left. The energy density of the electricity storage device 10 can be improved.

続いて、本発明の蓄電デバイス10が備える負極15について説明する。図4(A)は袋状のセパレータ18に収容された負極複合材26の内部構造を示す分解斜視図である。また、図4(B)は袋状のセパレータ18に収容された負極複合材26を示す斜視図である。なお、図3に示すように、負極集電体23には多数の貫通孔23aが形成されているが、図4(A)には貫通孔23aを省略した負極集電体23が示されている。図4(A)に示すように、負極複合材26を構成する負極15の負極集電体23の一方面には金属リチウム箔16が貼り付けられる。そして、金属リチウム箔16が貼り付けられた負極15、すなわち負極複合材26は一対のセパレータ18によって挟み込まれる。さらに、図4(B)に一点鎖線で示すように、セパレータ18の縁部18aは全周に渡って閉じられる。なお、前述の説明では、負極複合材26を一対のセパレータ18によって挟み込んだ後に、セパレータ18の縁部18aを全周に渡って閉じるとしたが、これに限られることはない。例えば、一対のセパレータ18の縁部18aの三方を閉じてセパレータ18を袋状に形成し、この袋状のセパレータ18に負極複合材26を挿入した後に、開いている残りの縁部18aを閉じることでセパレータ18の縁部18aを全周に渡って閉じても良い。負極複合材26を袋状のセパレータ18に収容するまでの手順は適宜決めて良い。   Then, the negative electrode 15 with which the electrical storage device 10 of this invention is provided is demonstrated. FIG. 4A is an exploded perspective view showing the internal structure of the negative electrode composite material 26 accommodated in the bag-shaped separator 18. FIG. 4B is a perspective view showing the negative electrode composite material 26 accommodated in the bag-shaped separator 18. As shown in FIG. 3, the negative electrode current collector 23 has a large number of through holes 23a, but FIG. 4A shows the negative electrode current collector 23 with the through holes 23a omitted. Yes. As shown in FIG. 4A, a metallic lithium foil 16 is attached to one surface of the negative electrode current collector 23 of the negative electrode 15 constituting the negative electrode composite material 26. The negative electrode 15 to which the metal lithium foil 16 is attached, that is, the negative electrode composite material 26 is sandwiched between the pair of separators 18. Further, as shown by a one-dot chain line in FIG. 4B, the edge 18a of the separator 18 is closed over the entire circumference. In the above description, the negative electrode composite material 26 is sandwiched between the pair of separators 18 and then the edge 18a of the separator 18 is closed over the entire circumference. However, the present invention is not limited to this. For example, three sides of the edge portions 18a of the pair of separators 18 are closed to form the separator 18 in a bag shape, and after the negative electrode composite material 26 is inserted into the bag-shaped separator 18, the remaining open edge portion 18a is closed. Thus, the edge 18a of the separator 18 may be closed over the entire circumference. The procedure until the negative electrode composite material 26 is accommodated in the bag-shaped separator 18 may be appropriately determined.

セパレータ18の縁部18aを閉じる手段としては、例えば粘着テープによるテープ止め、高分子接着剤による接着等が挙げられる。これらの手段を用いることにより、セパレータ18の縁部18aを閉じることが可能である。なお、セパレータ18の材料にポリエチレンやポリプロピレン等の熱可塑性樹脂を含む場合には、上記手段に加えて熱融着処理によってセパレータ18の縁部18aを閉じることが可能である。さらに、粘着テープによるテープ止め、高分子接着剤による接着、熱融着処理を組み合わせてセパレータ18の縁部18aを閉じても良い。なお、負極集電体23には凸状に伸びる端子接合部23bが設けられている。この端子接合部23bに重なるセパレータ18の縁部18aを閉じる手段としては、熱融着処理もしくは高分子接着剤による接着を用いることが好ましい。当該縁部18aに熱融着処理もしくは高分子接着剤による接着処理を施すことにより、負極合材層24に近い端子接合部23bの表面に絶縁処理を施すことが可能となる。これにより、充放電サイクルに伴う端子接合部23bへの金属リチウムの析出を抑制できる。   Examples of means for closing the edge 18a of the separator 18 include tape fastening with an adhesive tape, adhesion with a polymer adhesive, and the like. By using these means, the edge 18a of the separator 18 can be closed. When the material of the separator 18 includes a thermoplastic resin such as polyethylene or polypropylene, the edge portion 18a of the separator 18 can be closed by a heat sealing process in addition to the above means. Further, the edge 18a of the separator 18 may be closed by combining tape fastening with an adhesive tape, adhesion with a polymer adhesive, and heat fusion treatment. The negative electrode current collector 23 is provided with a terminal joint portion 23b extending in a convex shape. As means for closing the edge portion 18a of the separator 18 that overlaps the terminal joint portion 23b, it is preferable to use heat fusion treatment or adhesion using a polymer adhesive. By subjecting the edge portion 18 a to heat fusion treatment or adhesion treatment using a polymer adhesive, it is possible to insulate the surface of the terminal joint portion 23 b close to the negative electrode mixture layer 24. Thereby, precipitation of metallic lithium to the terminal joint part 23b accompanying a charging / discharging cycle can be suppressed.

このように、金属リチウム箔16と負極15とを一体に形成した負極複合材26を設け、この負極複合材26を袋状のセパレータ18によって覆うようにしている。これにより、負極15の負極集電体23上から金属リチウムが脱落した場合であっても、全周に渡って閉じられた袋状のセパレータ18から金属リチウムが抜けることはなく、蓄電デバイス10内における金属リチウムの拡散を防止することが可能となる。その結果、遊離する金属リチウムが原因となる蓄電デバイス10内の短絡や外装材11の腐食を防止することができ、蓄電デバイス10の安全性を向上させることが可能となる。また、袋状のセパレータ18内に金属リチウムを留めておくことが可能であるため、蓄電デバイス10が開口する事態が生じた際における大気中への金属リチウムの飛散を防止し、異常時における蓄電デバイス10の安全性を高めることが可能となる。さらには、負極15の負極集電体23上から金属リチウムが脱落した場合であっても、負極15の近傍に金属リチウムを保持することができるため、リチウムイオンのドーピング量を設計通りに確保することが可能となる。これにより、蓄電デバイス10の容量低下や出力低下を防止することが可能となる。さらに、負極集電体23によって金属リチウム箔16を支持するようにしたので、金属リチウム箔16を保持するためのリチウム極集電体を削減することが可能となる。これにより、蓄電デバイス10の重量および体積を削減することができるため、蓄電デバイス10のエネルギー密度を向上させることが可能となる。   Thus, the negative electrode composite material 26 in which the metal lithium foil 16 and the negative electrode 15 are integrally formed is provided, and the negative electrode composite material 26 is covered with the bag-shaped separator 18. As a result, even when metallic lithium is dropped from the negative electrode current collector 23 of the negative electrode 15, the metallic lithium does not escape from the bag-shaped separator 18 that is closed over the entire circumference. This makes it possible to prevent the diffusion of metallic lithium. As a result, it is possible to prevent short circuit in the electricity storage device 10 and corrosion of the exterior material 11 caused by the liberated metallic lithium, and the safety of the electricity storage device 10 can be improved. Further, since it is possible to keep the metallic lithium in the bag-shaped separator 18, it is possible to prevent the metallic lithium from scattering into the atmosphere when the power storage device 10 is opened, and to store power in an abnormal state. The safety of the device 10 can be increased. Furthermore, even when metallic lithium is removed from the negative electrode current collector 23 of the negative electrode 15, the metallic lithium can be held in the vicinity of the negative electrode 15, so that the doping amount of lithium ions is ensured as designed. It becomes possible. Thereby, it becomes possible to prevent the capacity | capacitance fall and output fall of the electrical storage device 10. FIG. Furthermore, since the metal lithium foil 16 is supported by the negative electrode current collector 23, the lithium electrode current collector for holding the metal lithium foil 16 can be reduced. Thereby, since the weight and volume of the electrical storage device 10 can be reduced, the energy density of the electrical storage device 10 can be improved.

また、前述の説明では正極集電体20や負極集電体23に対して複数の貫通孔20a,23aを形成しているが、貫通孔20a,23aを持たない負極集電体や正極集電体を用いるようにしても良い。ここで、図5は本発明の他の実施の形態である蓄電デバイス30の内部構造を部分的に示す断面図である。なお、図3に示す部材と同一の部材については、同一の符号を付してその説明を省略する。   In the above description, the plurality of through holes 20a and 23a are formed in the positive electrode current collector 20 and the negative electrode current collector 23. However, the negative electrode current collector and the positive electrode current collector having no through holes 20a and 23a are formed. The body may be used. Here, FIG. 5 is a cross-sectional view partially showing the internal structure of an electricity storage device 30 according to another embodiment of the present invention. In addition, about the member same as the member shown in FIG. 3, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図5に示すように、蓄電デバイス30は、交互に積層される正極31と負極(負極複合材)32とによって構成されている。正極31は平板状の正極集電体33を有している。この正極集電体33には正極合材層21が設けられている。また、負極32は平板状の負極集電体34を有している。この負極集電体34には負極合材層24が設けられている。さらに、負極32の負極合材層24上にはイオン供給源としての金属リチウム箔35が貼り付けられている。そして、金属リチウム箔35を備えた負極32は、袋状のセパレータ18によって覆われている。なお、最外部の負極32においては、負極合材層24と金属リチウム箔35が負極集電体34の一方側(内側)にのみ設けられている。   As shown in FIG. 5, the electricity storage device 30 includes positive electrodes 31 and negative electrodes (negative electrode composite material) 32 that are alternately stacked. The positive electrode 31 includes a flat positive electrode current collector 33. The positive electrode current collector 33 is provided with the positive electrode mixture layer 21. The negative electrode 32 has a flat negative electrode current collector 34. The negative electrode current collector 34 is provided with a negative electrode mixture layer 24. Further, a metal lithium foil 35 as an ion supply source is attached on the negative electrode mixture layer 24 of the negative electrode 32. The negative electrode 32 including the metal lithium foil 35 is covered with a bag-shaped separator 18. In the outermost negative electrode 32, the negative electrode mixture layer 24 and the metal lithium foil 35 are provided only on one side (inner side) of the negative electrode current collector 34.

このように、全ての負極合材層24に金属リチウム箔35を貼り付けた場合には、全ての負極合材層24にリチウムイオンをドーピングする際に、正極集電体33や負極集電体34を越えてリチウムイオンを積層方向に移動させる必要がない。これにより、正極集電体33や負極集電体34から貫通孔を削減することができ、正極集電体33および負極集電体34の製造コストや、正極合材層21および負極合材層24の塗工コストを引き下げることが可能となる。このような負極32であっても、負極32を袋状のセパレータ18によって覆うことにより、前述した蓄電デバイス10と同様に、金属リチウムの遊離を防止することが可能となる。これにより、遊離した金属リチウムが原因となる短絡や外装材11の腐食を防止することができ、蓄電デバイス30の安全性を高めることが可能となる。また、袋状のセパレータ18内に金属リチウムを留めておくことが可能であるため、蓄電デバイス30が開口する事態が生じた際における大気中への金属リチウムの飛散を防止し、異常時における蓄電デバイス30の安全性を高めることが可能となる。さらには、リチウムイオンのドーピング量を設計通りに確保することができ、蓄電デバイス30の品質を向上させることが可能となる。   As described above, when the metal lithium foil 35 is attached to all the negative electrode mixture layers 24, the positive electrode current collector 33 and the negative electrode current collector are used when all the negative electrode mixture layers 24 are doped with lithium ions. It is not necessary to move lithium ions in the stacking direction beyond 34. Thereby, a through-hole can be reduced from the positive electrode current collector 33 or the negative electrode current collector 34, the manufacturing cost of the positive electrode current collector 33 and the negative electrode current collector 34, the positive electrode mixture layer 21, and the negative electrode mixture layer Thus, the coating cost of 24 can be reduced. Even in such a negative electrode 32, by covering the negative electrode 32 with the bag-shaped separator 18, it is possible to prevent liberation of metallic lithium as in the case of the electricity storage device 10 described above. Thereby, the short circuit and the corrosion of the exterior material 11 caused by the liberated metallic lithium can be prevented, and the safety of the electricity storage device 30 can be improved. Further, since it is possible to keep the metallic lithium in the bag-shaped separator 18, it is possible to prevent the metallic lithium from scattering into the atmosphere when the power storage device 30 is opened, and to store power in an abnormal state. The safety of the device 30 can be increased. Furthermore, the doping amount of lithium ions can be ensured as designed, and the quality of the electricity storage device 30 can be improved.

なお、図3に示すように、負極集電体23に対して金属リチウム箔16を直に貼り付けるようにしているが、これに限られることはなく、負極集電体23と金属リチウム箔16との間に、特開2001−15172号公報に記載されるような補助層を設けても良い。負極集電体23に補助層を介して金属リチウム箔16を貼り付けることにより、金属リチウム箔16の貼り付けに伴う電極抵抗の増加を抑制することが可能となる。また、図5に示すように、負極合材層24に対して金属リチウム箔35を直に貼り付けるようにしているが、これに限られることはなく、負極合材層24と金属リチウム箔35との間に、特開2001−15172号公報に記載されるような補助層を設けても良い。負極合材層24に補助層を介して金属リチウム箔35を貼り付けることにより、金属リチウム箔35の貼り付けに伴う電極抵抗の増加を抑制することが可能となる。   As shown in FIG. 3, the metal lithium foil 16 is directly attached to the negative electrode current collector 23. However, the present invention is not limited to this, and the negative electrode current collector 23 and the metal lithium foil 16 are not limited thereto. Between these, an auxiliary layer as described in JP-A-2001-15172 may be provided. By attaching the metal lithium foil 16 to the negative electrode current collector 23 via an auxiliary layer, it is possible to suppress an increase in electrode resistance accompanying the attachment of the metal lithium foil 16. Further, as shown in FIG. 5, the metal lithium foil 35 is directly attached to the negative electrode mixture layer 24. However, the present invention is not limited to this, and the negative electrode mixture layer 24 and the metal lithium foil 35 are not limited thereto. Between these, an auxiliary layer as described in JP-A-2001-15172 may be provided. By attaching the metal lithium foil 35 to the negative electrode mixture layer 24 via the auxiliary layer, it is possible to suppress an increase in electrode resistance accompanying the attachment of the metal lithium foil 35.

以下、前述した蓄電デバイスの構成要素について下記の順に詳細に説明する。[A]正極、[B]負極、[C]正極集電体および負極集電体、[D]イオン供給源、[E]セパレータ、[F]電解液、[G]外装材。   Hereinafter, the components of the electricity storage device described above will be described in detail in the following order. [A] positive electrode, [B] negative electrode, [C] positive electrode current collector and negative electrode current collector, [D] ion supply source, [E] separator, [F] electrolyte solution, [G] exterior material.

[A]正極
正極は、正極集電体とこれに一体となる正極合材層とを有している。蓄電デバイスをリチウムイオンキャパシタとして機能させる場合には、正極合材層に含まれる正極活物質として、リチウムイオン及び/又はアニオンを可逆的にドープ・脱ドープ可能な物質を採用することが可能である。すなわち、リチウムイオンとアニオンとの少なくともいずれか一方を可逆的にドープ・脱ドープ可能な物質であれば特に限定されることはない。例えば、活性炭、RuO等の金属酸化物、導電性高分子、ポリアセン系物質等を用いることが可能である。
[A] Positive Electrode The positive electrode has a positive electrode current collector and a positive electrode mixture layer integrated therewith. When the electric storage device functions as a lithium ion capacitor, it is possible to employ a material capable of reversibly doping and dedoping lithium ions and / or anions as the positive electrode active material contained in the positive electrode mixture layer. . That is, there is no particular limitation as long as it is a substance capable of reversibly doping and dedoping at least one of lithium ions and anions. For example, activated carbon, a metal oxide such as RuO 2 , a conductive polymer, a polyacene-based material, or the like can be used.

例えば、活性炭は、アルカリ賦活処理され、かつ比表面積600m/g以上を有する活性炭粒子から形成することが好ましい。活性炭の原料としては、フェノール樹脂、石油ピッチ、石油コークス、ヤシガラ、石炭系コークス等が使用される。フェノール樹脂や石炭系コークスは比表面積を高くできるという理由から好適である。これらの活性炭のアルカリ賦活処理に使用されるアルカリ活性化剤は、リチウム、ナトリウム、カリウムなどのアルカリ金属の水酸化物塩等が好ましい。中でも、水酸化カリウムや水酸化ナトリウムが好適である。アルカリ賦活の方法は、例えば、炭化物と活性化剤を混合した後、不活性ガス気流中で加熱することにより行う方法が挙げられる。また、活性炭の原材料に予め活性化剤を担持させた後加熱して、炭化および賦活の工程を行う方法が挙げられる。さらに、炭化物を水蒸気などのガス賦活法で賦活した後、アルカリ活性化剤で表面処理する方法も挙げられる。このようなアルカリ賦活処理が施された活性炭は、洗浄によって残留灰分の除去およびpH調整を施した後に、ボールミル等の既知の粉砕機を用いて粉砕される。活性炭の粒度としては、一般的に使用される広い範囲のものを使用することが可能である。例えば、D50%が2μm以上であり、好ましくは2〜50μm、特に2〜20μmが最も好ましい。また、平均細孔径は1.5nm以上が好適である。比表面積は600〜3000m/gが好適である。中でも、1500m/g以上、特には1800〜2600m/gであるのが好適である。 For example, the activated carbon is preferably formed from activated carbon particles having an alkali activation treatment and a specific surface area of 600 m 2 / g or more. As a raw material for the activated carbon, phenol resin, petroleum pitch, petroleum coke, coconut shell, coal-based coke and the like are used. Phenol resin and coal-based coke are preferable because the specific surface area can be increased. The alkali activator used for the alkali activation treatment of these activated carbons is preferably an alkali metal hydroxide salt such as lithium, sodium or potassium. Of these, potassium hydroxide and sodium hydroxide are preferred. Examples of the alkali activation method include a method in which a carbide and an activator are mixed and then heated in an inert gas stream. Further, there is a method in which an activation agent is supported on the raw material of activated carbon in advance and then heated to perform carbonization and activation processes. Furthermore, after activating carbide by a gas activation method such as water vapor, a method of surface treatment with an alkali activating agent is also included. The activated carbon that has been subjected to such alkali activation treatment is subjected to removal of residual ash and pH adjustment by washing, and then pulverized using a known pulverizer such as a ball mill. As the particle size of the activated carbon, a wide range of commonly used materials can be used. For example, D50% is 2 μm or more, preferably 2 to 50 μm, and most preferably 2 to 20 μm. The average pore diameter is preferably 1.5 nm or more. The specific surface area is preferably 600 to 3000 m 2 / g. Among them, 1500 m 2 / g or more, and particularly it is preferable that a 1800~2600m 2 / g.

また、蓄電デバイスをリチウムイオン二次電池として機能させる場合には、正極合材層に含まれる正極活物質として、ポリアニリン等の導電性高分子や、リチウムイオンを可逆的にドープ・脱ドープ可能な物質を採用することが可能である。例えば、正極活物質として五酸化バナジウム(V)やコバルト酸リチウム(LiCoO)を用いることが可能である。この他にも、LiCoO、LiNiO、LiMnO、LiFeO等のLi(x,y,zは正の数、Mは金属、2種以上の金属でも良い)の一般式で表されうるリチウム含有金属酸化物、あるいはコバルト、マンガン、バナジウム、チタン、ニッケル等の遷移金属酸化物または硫化物を用いることも可能である。特に、高電圧を求める場合には、金属リチウムに対して4V以上の電位を有するリチウム含有金属酸化物を用いることが好ましい。例えば、リチウム含有コバルト酸化物、リチウム含有ニッケル酸化物、あるいはリチウム含有コバルト−ニッケル複合酸化物が特に好適である。また、安全性を求める場合には、高温環境下でもその構造中から酸素を放出し難い材料を用いることが好ましい。例えば、燐酸鉄リチウム、珪酸鉄リチウム、バナジウム酸化物等を挙げることができる。なお、上記に例示した正極活物質は適宜用途や仕様に応じて単独で使用しても良く、複数種混合して使用しても良い。 In addition, when the power storage device functions as a lithium ion secondary battery, the positive electrode active material contained in the positive electrode mixture layer can be reversibly doped / dedoped with a conductive polymer such as polyaniline or lithium ions. It is possible to adopt a substance. For example, vanadium pentoxide (V 2 O 5 ) or lithium cobaltate (LiCoO 2 ) can be used as the positive electrode active material. In addition, Li X M Y O Z such as Li X CoO 2 , Li X NiO 2 , Li X MnO 2 , and Li X FeO 2 (x, y, z are positive numbers, M is a metal, two or more types It is also possible to use lithium-containing metal oxides that can be represented by the general formula (1), transition metal oxides such as cobalt, manganese, vanadium, titanium, nickel, or sulfides. In particular, when a high voltage is required, it is preferable to use a lithium-containing metal oxide having a potential of 4 V or more with respect to metal lithium. For example, lithium-containing cobalt oxide, lithium-containing nickel oxide, or lithium-containing cobalt-nickel composite oxide is particularly suitable. When safety is required, it is preferable to use a material that does not easily release oxygen from the structure even in a high temperature environment. For example, lithium iron phosphate, lithium iron silicate, vanadium oxide, and the like can be given. In addition, the positive electrode active material illustrated above may be used independently according to a use and a specification suitably, and may be used in mixture of multiple types.

前述した活性炭等の正極活物質は、粉末状、粒状、短繊維状等に形成される。この正極活物質とバインダーとを溶媒に分散させることで電極スラリーが形成される。そして、正極活物質を含有する電極スラリーを正極集電体に塗工して乾燥させることにより、正極集電体上に正極合材層が形成される。なお、正極活物質と混合されるバインダーとしては、例えばSBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン、ポリアクリレート等の熱可塑性樹脂、ポリビニルアルコールを用いることができる。溶媒としては、例えば、水やN−メチル−2−ピロリドンを用いることができる。また、正極合材層に対して、アセチレンブラック、グラファイト、ケッチェンブラック、カーボンブラック、金属粉末等の導電性材料を適宜加えるようにしても良い。   The positive electrode active material such as activated carbon described above is formed into a powder form, a granular form, a short fiber form, or the like. An electrode slurry is formed by dispersing the positive electrode active material and the binder in a solvent. Then, a positive electrode mixture layer is formed on the positive electrode current collector by applying and drying an electrode slurry containing the positive electrode active material on the positive electrode current collector. Examples of the binder mixed with the positive electrode active material include rubber-based binders such as SBR, fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, thermoplastic resins such as polypropylene, polyethylene, and polyacrylate, polyvinyl Alcohol can be used. As the solvent, for example, water or N-methyl-2-pyrrolidone can be used. In addition, a conductive material such as acetylene black, graphite, ketjen black, carbon black, or metal powder may be appropriately added to the positive electrode mixture layer.

[B]負極
負極は、負極集電体とこれに一体となる負極合材層とを有している。負極合材層に含まれる負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープできるものであれば特に限定されることはない。例えば、錫、ケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム、バナジウム酸化物等の酸化物、グラファイト(黒鉛)、易黒鉛化性炭素、ハードカーボン(難黒鉛化性炭素)等の種々の炭素材料、ポリアセン系物質等を用いることが可能である。チタン酸リチウムは優れたサイクル特性を有するために負極活物質として好ましい。錫、錫酸化物、ケイ素、ケイ素酸化物、グラファイト等は高容量化を図ることができるため負極活物質として好ましい。また、芳香族系縮合ポリマーの熱処理物であるポリアセン系有機半導体(PAS)は、高容量化を図ることができるため負極活物質として好適である。このPASはポリアセン系骨格構造を有する。このPASの水素原子/炭素原子の原子数比(H/C)は0.05以上、0.50以下の範囲内であることが好ましい。PASのH/Cが0.50を超える場合には、芳香族系多環構造が充分に発達していないことから、リチウムイオンのドープ・脱ドープがスムーズに行われず、蓄電デバイスの充放電効率が低下するおそれがある。PASのH/Cが0.05未満の場合には、蓄電デバイスの容量が低下するおそれがある。なお、上記に例示した負極活物質は適宜用途や仕様に応じて単独で使用しても良く、複数種混合して使用しても良い。
[B] Negative Electrode The negative electrode has a negative electrode current collector and a negative electrode mixture layer integrated therewith. The negative electrode active material contained in the negative electrode mixture layer is not particularly limited as long as it can reversibly dope and dedope lithium ions. For example, alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, lithium titanate, vanadium oxide, graphite (graphite), graphitizable carbon, hard carbon (non-graphitizable carbon) ) And other carbon materials, polyacene-based substances, and the like can be used. Lithium titanate is preferable as the negative electrode active material because it has excellent cycle characteristics. Tin, tin oxide, silicon, silicon oxide, graphite, and the like are preferable as the negative electrode active material because the capacity can be increased. In addition, a polyacene organic semiconductor (PAS), which is a heat-treated product of an aromatic condensation polymer, is suitable as a negative electrode active material because the capacity can be increased. This PAS has a polyacene skeleton structure. The hydrogen atom / carbon atom number ratio (H / C) of the PAS is preferably in the range of 0.05 to 0.50. When H / C of PAS exceeds 0.50, the aromatic polycyclic structure is not sufficiently developed, so that lithium ions are not doped and undoped smoothly, and the charge / discharge efficiency of the electricity storage device May decrease. When the H / C of PAS is less than 0.05, the capacity of the electricity storage device may be reduced. In addition, the negative electrode active material illustrated above may be used independently according to a use and a specification suitably, and may be used in mixture of multiple types.

前述したPAS等の負極活物質は、粉末状、粒状、短繊維状等に形成される。この負極活物質とバインダーと溶媒に分散させることで電極スラリーが形成される。そして、負極活物質を含有する電極スラリーを、負極集電体に塗工して乾燥させることにより、負極集電体上に負極合材層が形成される。なお、負極活物質と混合されるバインダーとしては、例えば、ポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン、ポリアクリレート等の熱可塑性樹脂、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、スチレン−ブタジエンゴム(SBR)、エチレン−プロピレン−ジエン共重合体(EPDM)等のバインダーを用いることができる。これらの中でも少量の添加で高い接着性を発現できるためにSBRゴムバインダーを用いることが好ましい。溶媒としては、水、N−メチル−2−ピロリドン等を用いることができる。また、負極合材層に対して、アセチレンブラック、グラファイト、膨張黒鉛、カーボンナノチューブ、気相成長炭素繊維、カーボンブラック、炭素繊維、金属粉末等の導電性材料を適宜加えるようにしても良い。   The negative electrode active material such as PAS described above is formed into a powder form, a granular form, a short fiber form, or the like. An electrode slurry is formed by dispersing the negative electrode active material, a binder, and a solvent. Then, the electrode slurry containing the negative electrode active material is applied to the negative electrode current collector and dried to form a negative electrode mixture layer on the negative electrode current collector. Examples of the binder mixed with the negative electrode active material include fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, thermoplastic resins such as polypropylene, polyethylene, and polyacrylate, polyvinyl alcohol, and carboxymethyl cellulose (CMC). ), Styrene-butadiene rubber (SBR), ethylene-propylene-diene copolymer (EPDM), and the like can be used. Among these, it is preferable to use an SBR rubber binder because high adhesiveness can be expressed with a small amount of addition. As the solvent, water, N-methyl-2-pyrrolidone, or the like can be used. In addition, a conductive material such as acetylene black, graphite, expanded graphite, carbon nanotube, vapor-grown carbon fiber, carbon black, carbon fiber, and metal powder may be added as appropriate to the negative electrode mixture layer.

[C]正極集電体および負極集電体
正極集電体および負極集電体の材料としては、一般に電池や電気二重層キャパシタに提案されている種々の材料を用いることが可能である。例えば、正極集電体の材料として、アルミニウム、ステンレス鋼等を用いることができる。負極集電体の材料として、ステンレス鋼、銅、ニッケル等を用いることができる。また、正極集電体や負極集電体に貫通孔を形成する場合において、貫通孔の開口率としては通常40〜60%である。なお、リチウムイオンの移動を阻害しないものであれば、貫通孔の大きさ、個数、形状等について特に限定されることはない。
[C] Positive electrode current collector and negative electrode current collector As materials for the positive electrode current collector and the negative electrode current collector, various materials generally proposed for batteries and electric double layer capacitors can be used. For example, aluminum, stainless steel, or the like can be used as a material for the positive electrode current collector. Stainless steel, copper, nickel, or the like can be used as a material for the negative electrode current collector. Moreover, when forming a through-hole in a positive electrode collector or a negative electrode collector, the opening rate of a through-hole is usually 40 to 60%. Note that the size, number, shape, and the like of the through holes are not particularly limited as long as they do not hinder the movement of lithium ions.

[D]イオン供給源
イオン供給源として金属リチウム箔を設けているが、イオン供給源としてリチウム−アルミニウム合金等を用いても良い。また、前述の説明では、金属リチウムを圧延した金属リチウム箔を用いているが、これに限られることはなく、蒸着によって負極集電体や負極合材層に対して金属リチウム層を形成しても良い。さらに、イオン供給源として細かな粒状の金属リチウムを負極合材層に含有させることにより、負極複合材としての負極に対してイオン供給源を設けるようにしても良い。
[D] Ion supply source Although the metal lithium foil is provided as the ion supply source, a lithium-aluminum alloy or the like may be used as the ion supply source. In the above description, a metal lithium foil obtained by rolling metal lithium is used. However, the present invention is not limited to this, and a metal lithium layer is formed on the negative electrode current collector or the negative electrode mixture layer by vapor deposition. Also good. Furthermore, an ion supply source may be provided for the negative electrode as the negative electrode composite material by including fine granular metallic lithium as an ion supply source in the negative electrode mixture layer.

[E]セパレータ
セパレータとしては、大きなイオン透過度(透気度)、所定の機械的強度、および電解液、正極活物質、負極活物質等に対する耐久性を有し、かつ連通気孔を有する絶縁性の多孔質体等を用いることができる。例えば、紙(セルロース)、ガラス繊維、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエステル、ポリテトラフルオロエチレン、ポリビニリデンジフルオライド、ポリイミド、ポリフェニレンスルフィド、ポリアミド、ポリアミドイミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルエーテルケトン等からなる隙間を有する布、不織布あるいは微多孔体が用いられる。
[E] Separator As a separator, it has high ion permeability (air permeability), predetermined mechanical strength, durability against electrolyte solution, positive electrode active material, negative electrode active material, and the like, and has an insulating hole. A porous body or the like can be used. For example, paper (cellulose), glass fiber, polyethylene, polypropylene, polystyrene, polyester, polytetrafluoroethylene, polyvinylidene difluoride, polyimide, polyphenylene sulfide, polyamide, polyamideimide, polyethylene terephthalate, polybutylene terephthalate, polyetheretherketone For example, a cloth, a nonwoven fabric or a microporous body having a gap composed of the like is used.

また、セパレータを閉じる際には粘着テープや高分子接着剤を用いることが可能であるが、これら粘着テープや高分子接着剤についても電解液に対して溶解せず、かつ電解液、正極活物質、負極活物質等に対して化学的および電気化学的に安定であることが好ましい。粘着テープとしては、例えば、ポリイミド粘着テープ等が挙げられる。高分子接着剤として用いる高分子としては、熱可塑性を有する高分子が好ましく、具体的に挙げるならば、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリエステルやポリフッ化ビニリデン、ポリエチレンオキシド等が挙げられる。接着方法としては、例えば、高分子接着剤を溶剤に溶解してセパレータの縁部に塗付した後に、接着部を加圧しながら加熱あるいは減圧操作によって溶剤を除去することにより接着を行う方法、あるいは前記高分子接着剤を含むポリマーフィルムをセパレータの縁部に配置し、熱加圧することによって接着を行う方法等が挙げられる。特に、電極合材層に高分子接着剤が付着した場合においても電極の特性低下を抑制できるという理由から、リチウムイオン伝導性を有するポリフッ化ビニリデンやポリエチレンオキシドを用いることが好ましい。高分子接着剤を溶解する溶剤としては、沸点が200℃以下の有機溶媒を用いることが望ましい。用いる高分子接着剤との溶解性にもよるが、溶媒を具体的に挙げるならば、例えば、ジメチルホルムアミド、アセトン等を挙げることができる。有機溶媒の沸点が200℃を超えると、100℃程度の加熱では溶媒除去に要する時間が長くなるために好ましくない。また、200℃以上に加熱することはセパレータ接着部の近傍に金属リチウムが存在するために安全上好ましくない。以上の理由により、有機溶媒の沸点は200℃以下、さらには180℃以下が好ましい。   Moreover, when closing the separator, it is possible to use a pressure-sensitive adhesive tape or a polymer adhesive, but these pressure-sensitive adhesive tape or polymer adhesive does not dissolve in the electrolyte solution, and the electrolyte solution and the positive electrode active material In addition, it is preferably chemically and electrochemically stable with respect to the negative electrode active material and the like. As an adhesive tape, a polyimide adhesive tape etc. are mentioned, for example. The polymer used as the polymer adhesive is preferably a thermoplastic polymer. Specific examples include polyolefins such as polyethylene and polypropylene, polyethylene terephthalate, polyester, polyvinylidene fluoride, and polyethylene oxide. It is done. As an adhesion method, for example, a method in which a polymer adhesive is dissolved in a solvent and applied to the edge of the separator and then the solvent is removed by heating or depressurizing operation while applying pressure to the adhesive portion, or For example, a method may be used in which a polymer film containing the polymer adhesive is disposed on the edge of a separator and is bonded by heat and pressure. In particular, it is preferable to use polyvinylidene fluoride or polyethylene oxide having lithium ion conductivity because the deterioration of the electrode characteristics can be suppressed even when a polymer adhesive adheres to the electrode mixture layer. As a solvent for dissolving the polymer adhesive, it is desirable to use an organic solvent having a boiling point of 200 ° C. or less. Depending on the solubility with the polymer adhesive used, specific examples of the solvent include dimethylformamide and acetone. When the boiling point of the organic solvent exceeds 200 ° C., heating at about 100 ° C. is not preferable because it takes a long time to remove the solvent. Further, heating to 200 ° C. or higher is not preferable for safety because metallic lithium is present in the vicinity of the separator bonding portion. For the above reasons, the boiling point of the organic solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.

また、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリエステル等、例として挙げたこれらの材料をセパレータに含ませることによって、熱融着処理を施してセパレータを閉じることが可能である。セパレータの熱融着条件は加熱温度と加熱時間を適宜検討することで決定される。セパレータの加熱温度は、セパレータの溶融温度付近にすることが好ましい。具体的な溶融温度はセパレータの材質および構成により種々異なるが、例えば、発明者が所有するポリエチレンとポリプロピレンからなる微多孔性のセパレータは110℃付近で溶融する。したがって、上記セパレータを熱融着させる場合は、110℃前後の温度で加熱温度と加熱時間を変化させながらセパレータを融着し、その接着強度を確かめることで熱融着条件は決定される。加熱時間が短い、もしくは溶融温度が低いとセパレータの溶融が不十分となって接着不十分となるために好ましくない。また、加熱時間が長い、もしくは溶融温度が高いとセパレータにたわみが生じたり、電極合材面に接触する部位までセパレータが溶融して蓄電デバイスの抵抗上昇を招いたりするために好ましくない。   In addition, by including these materials exemplified as polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polyester and the like in the separator, it is possible to perform a heat-sealing treatment and close the separator. The heat fusion conditions of the separator are determined by appropriately examining the heating temperature and the heating time. The heating temperature of the separator is preferably close to the melting temperature of the separator. The specific melting temperature varies depending on the material and configuration of the separator. For example, a microporous separator made of polyethylene and polypropylene owned by the inventors melts at around 110 ° C. Accordingly, when the separator is heat-sealed, the heat-sealing condition is determined by fusing the separator while changing the heating temperature and heating time at a temperature of about 110 ° C. and confirming the adhesive strength. If the heating time is short or the melting temperature is low, the separator is not sufficiently melted and insufficient adhesion is not preferable. Further, it is not preferable that the heating time is long or the melting temperature is high because the separator is bent or the separator melts to a portion in contact with the electrode composite surface to increase the resistance of the electricity storage device.

また、セパレータの透気度は5秒/100mL以上〜600秒/100mL以下であることが好ましい。透気度は100mLの空気が多孔質シートを透過するのに要した時間(秒)を意味する。透気度が600秒/100mLを超えるとセパレータにおいて高いリチウムイオン移動度を得ることが困難となり、リチウムイオンプレドープ速度に支障をきたすために好ましくない。透気度が5秒/100mL未満になると、セパレータの強度が不十分となるために好ましくない。より好ましいセパレータの透気度は30秒/100mL以上〜500秒/100mL以下である。   Moreover, it is preferable that the air permeability of a separator is 5 second / 100 mL or more and 600 second / 100 mL or less. The air permeability means time (seconds) required for 100 mL of air to pass through the porous sheet. When the air permeability exceeds 600 seconds / 100 mL, it is difficult to obtain a high lithium ion mobility in the separator, which is not preferable because it impedes the lithium ion pre-doping rate. An air permeability of less than 5 seconds / 100 mL is not preferable because the strength of the separator becomes insufficient. The air permeability of the separator is more preferably 30 seconds / 100 mL to 500 seconds / 100 mL.

セパレータの気孔度は、30%以上〜90%以下であることが好ましい。セパレータの気孔度を30%未満にすると、セパレータの電解液の保持量が少なくなり蓄電デバイスの内部抵抗が増大するために好ましくない。また、セパレータの気孔度が90%以上を超えると、十分なセパレータ強度を得られないために好ましくない。セパレータの気孔度は35%以上〜80%以下がより好ましい。   The separator preferably has a porosity of 30% to 90%. When the porosity of the separator is less than 30%, the amount of electrolyte retained in the separator is reduced and the internal resistance of the electricity storage device is increased, which is not preferable. Further, if the porosity of the separator exceeds 90% or more, it is not preferable because sufficient separator strength cannot be obtained. The porosity of the separator is more preferably 35% to 80%.

セパレータの厚さは5μm以上〜100μm以下が好ましい。厚さが100μmを超えると、正負極間の距離が大きくなって内部抵抗が増大するために好ましくない。また、厚さが5μm未満になると、セパレータの強度が著しく低下して内部ショートが生じ易くなるために好ましくない。セパレータの厚さとしてより好ましいのは10μm以上〜30μm以下である。   The thickness of the separator is preferably 5 μm to 100 μm. A thickness exceeding 100 μm is not preferable because the distance between the positive and negative electrodes increases and the internal resistance increases. On the other hand, when the thickness is less than 5 μm, the strength of the separator is remarkably lowered and an internal short circuit is easily generated, which is not preferable. The thickness of the separator is more preferably 10 μm or more and 30 μm or less.

また、蓄電デバイスの内部温度が仕様の上限温度以上に到達した場合にセパレータ構成成分の溶融によってセパレータの隙間が閉塞される特性(セパレータのシャットダウン機能)をセパレータに持たせることが蓄電デバイスの安全性のために好ましい。閉塞開始温度は蓄電デバイスの仕様にもよるが、通常90℃以上180℃以下である。耐熱性が高く、前記温度でセパレータが溶融し難いポリイミド等の材料をセパレータに使用している場合は、ポリエチレン等の前記温度で溶融可能な物質をセパレータに混合させることが好ましい。ここでいう混合とは、単なる複数の材質の混ぜ合わせだけでなく、材質の異なる2種以上のセパレータを積層したもの、セパレータの材質の共重合化等の意味を含む。なお、蓄電デバイスの内部温度が仕様上限温度を超えても熱収縮が小さいセパレータは蓄電デバイスの安全性の面においてより好ましい。   In addition, when the internal temperature of the electricity storage device reaches or exceeds the upper limit temperature of the specification, it is possible to provide the separator with the characteristic that the separator gap is closed by the melting of the separator components (separator shutdown function). Preferred for. The blockage start temperature is usually 90 ° C. or higher and 180 ° C. or lower, although it depends on the specifications of the electricity storage device. When a material such as polyimide that has high heat resistance and is difficult to melt at the above temperature is used for the separator, it is preferable to mix a material that can be melted at the above temperature such as polyethylene. The term “mixing” as used herein includes not only simple mixing of a plurality of materials, but also means that two or more types of separators having different materials are stacked, copolymerization of separator materials, and the like. Note that a separator having a small thermal shrinkage even when the internal temperature of the electricity storage device exceeds the specified upper limit temperature is more preferable in terms of safety of the electricity storage device.

以上、例示したセパレータは適宜用途や仕様に応じて単独で使用しても良く、同一種のセパレータを重ねて使用しても良い。また、複数種のセパレータを重ねて使用しても良い。   As described above, the exemplified separators may be used singly according to the application and specifications, or the same type of separators may be used in an overlapping manner. A plurality of types of separators may be used in an overlapping manner.

[F]電解液
電解液としては、高電圧でも電気分解を起こさないという点、リチウムイオンが安定に存在できるという点から、リチウム塩を含む非プロトン性極性溶媒を用いることが好ましい。非プロトン性極性溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等を単独あるいは混合した溶媒が挙げられる。充放電特性に寄与する比誘電率、蓄電デバイスの作動温度範囲に寄与する凝固点および沸点、そして安全性に寄与する引火点の観点からはプロピレンカーボネートを用いることが好ましい。しかし、負極の活物質に黒鉛を用いる場合においては、負極の電位が約0.8V(vs.Li/Li)においてプロピレンカーボネートは黒鉛上で分解してしまうために代替溶媒としてエチレンカーボネートを使用することが好ましい。エチレンカーボネートの融点は36℃であり、常温では固体である。このため、エチレンカーボネートを電解液の溶媒として用いる場合には、エチレンカーボネート以外の非プロトン性極性溶媒と混合させることが必須となる。さらに、エチレンカーボネートと併用する非プロトン性極性溶媒には、充放電特性および蓄電デバイスの作動温度範囲の観点から、ジエチルカーボネートやエチルメチルカーボネート等に代表される低粘度かつ凝固点の低い非プロトン性極性溶媒を選択することが好ましい。しかしながら、溶媒がジエチルカーボネート等の低粘度かつ凝固点の低い非プロトン性極性溶媒とエチレンカーボネートからなる電解液は、雰囲気温度が約−10℃以下になることでエチレンカーボネートの凝固にともなう急激なイオン伝導度の低下を引き起こすために低温特性が優れない。そのため、低温特性を改善するには電解液の溶媒に上述したプロピレンカーボネートを含むことが好ましく、負極の活物質および導電性材料に黒鉛を用いる場合にはプロピレンカーボネートの還元分解性が低い黒鉛を用いることが好ましい。
[F] Electrolytic Solution As the electrolytic solution, it is preferable to use an aprotic polar solvent containing a lithium salt from the viewpoint that electrolysis does not occur even at a high voltage and that lithium ions can exist stably. Examples of the aprotic polar solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. Or the mixed solvent is mentioned. Propylene carbonate is preferably used from the viewpoint of the relative permittivity contributing to the charge / discharge characteristics, the freezing point and boiling point contributing to the operating temperature range of the electricity storage device, and the flash point contributing to safety. However, when graphite is used as the negative electrode active material, propylene carbonate decomposes on graphite when the negative electrode potential is about 0.8 V (vs. Li / Li + ), so ethylene carbonate is used as an alternative solvent. It is preferable to do. Ethylene carbonate has a melting point of 36 ° C. and is solid at room temperature. For this reason, when using ethylene carbonate as a solvent for an electrolytic solution, it is essential to mix it with an aprotic polar solvent other than ethylene carbonate. In addition, the aprotic polar solvent used in combination with ethylene carbonate has a low viscosity and a low freezing point, such as diethyl carbonate and ethyl methyl carbonate, from the viewpoint of charge / discharge characteristics and the operating temperature range of the electricity storage device. It is preferred to select a solvent. However, an electrolyte solution composed of ethylene carbonate and an aprotic polar solvent having a low viscosity and a low freezing point, such as diethyl carbonate, has a rapid ion conduction due to the solidification of ethylene carbonate when the ambient temperature is about −10 ° C. or lower. Low temperature characteristics are not good because it causes a decrease in temperature. Therefore, in order to improve the low temperature characteristics, it is preferable to include the above-mentioned propylene carbonate in the solvent of the electrolytic solution, and when graphite is used for the negative electrode active material and the conductive material, graphite having low reductive decomposability of propylene carbonate is used. It is preferable.

リチウム塩としては、例えば、LiClO、LiAsF、LiBF、LiPF、LIN(CSO)等が挙げられる。また、電解液中の電解質濃度は、電解液による内部抵抗を小さくするため、少なくとも0.1モル/L以上とすることが好ましい。更には、0.5〜1.5モル/Lの範囲内とすることが好ましい。また、リチウム塩は単独あるいは混合して使用しても良い。 Examples of the lithium salt include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , and LIN (C 2 F 5 SO 2 ) 2 . The electrolyte concentration in the electrolytic solution is preferably at least 0.1 mol / L or more in order to reduce the internal resistance due to the electrolytic solution. Furthermore, it is preferable to set it within the range of 0.5-1.5 mol / L. The lithium salts may be used alone or in combination.

なお、特性改善のための添加剤としてビニレンカーボネート(VC)、エチレンサルファイト(ES)、フルオロエチレンカーボネート(FEC)およびこれらの誘導体を電解液に添加しても構わない。添加量としては0.01〜10体積%の範囲内にすることが好ましい。さらに蓄電デバイスの難燃化のための添加剤として、ホスファゼン化合物やその誘導体、フッ素化カルボン酸エステル、フッ素化リン酸エステル等の物質を電解液に添加しても構わない。難燃化のための添加剤としては、例えば、ホスライト(日本化学工業株式会社製)や(CFCHO)PO、(HCFCFCHO)CO等が挙げられる。 Note that vinylene carbonate (VC), ethylene sulfite (ES), fluoroethylene carbonate (FEC), and derivatives thereof may be added to the electrolytic solution as additives for improving characteristics. The addition amount is preferably in the range of 0.01 to 10% by volume. Further, as an additive for making the electricity storage device flame-retardant, a substance such as a phosphazene compound or a derivative thereof, a fluorinated carboxylic acid ester, or a fluorinated phosphoric acid ester may be added to the electrolytic solution. Examples of the flame retardant additive include phoslite (manufactured by Nippon Chemical Industry Co., Ltd.), (CF 3 CH 2 O) 3 PO, (HCF 2 CF 2 CH 2 O) 2 CO, and the like.

また、有機溶媒に代えてイオン性液体(イオン液体)を用いても良い。イオン性液体は各種カチオン種とアニオン種の組み合わせが提案されている。カチオン種としては、例えば、N−メチル−N−プロピルピペリジニウム(PP13)、1−エチル−3−メチルイミダゾリウム(EMI)、ジエチルメチル−2−メトキシエチルアンモニウム(DEME)等が挙げられる。また、アニオン種としては、ビス(フルオロスルフォニル)イミド(FSI)、ビス(トリフルオロメタンスルフォニル)イミド(TFSI)、PF 、BF 等が挙げられる。 Further, an ionic liquid (ionic liquid) may be used instead of the organic solvent. As the ionic liquid, combinations of various cationic species and anionic species have been proposed. Examples of the cationic species include N-methyl-N-propylpiperidinium (PP13), 1-ethyl-3-methylimidazolium (EMI), diethylmethyl-2-methoxyethylammonium (DEME), and the like. Examples of the anion species include bis (fluorosulfonyl) imide (FSI), bis (trifluoromethanesulfonyl) imide (TFSI), PF 6 , BF 4 − and the like.

[G]外装材
外装材としては、一般に電池に用いられている種々の材質を用いることができる。例えば、鉄やアルミニウム等の金属材料を使用しても良い。また、樹脂等のフィルム材料を使用しても良い。また、外装材の形状についても特に限定されることはない。円筒型や角型など用途に応じて適宜選択することが可能である。蓄電デバイスの小型化や軽量化の観点からは、アルミニウムのラミネートフィルムを用いたフィルム型の外装材を用いることが好ましい。一般的には、外側にナイロンフィルム、中心にアルミニウム箔、内側に変性ポリプロピレン等の接着層を有した3層ラミネートフィルムが用いられている。
[G] Exterior Material As the exterior material, various materials generally used for batteries can be used. For example, a metal material such as iron or aluminum may be used. Moreover, you may use film materials, such as resin. Further, the shape of the exterior material is not particularly limited. It can be appropriately selected depending on the application such as a cylindrical shape or a rectangular shape. From the viewpoint of reducing the size and weight of the electricity storage device, it is preferable to use a film-type exterior material using an aluminum laminate film. In general, a three-layer laminate film having a nylon film on the outside, an aluminum foil in the center, and an adhesive layer such as modified polypropylene on the inside is used.

以上、本発明を図面に基づいて詳細に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。たとえば、本発明の蓄電デバイスの構造は、リチウムイオン二次電池やリチウムイオンキャパシタだけでなく、マグネシウムイオン二次電池等の様々な形式の電池やこれらのハイブリッドキャパシタに適用することが可能である。   As mentioned above, although this invention was demonstrated in detail based on drawing, this invention is not limited to the said embodiment, It cannot be overemphasized that it can change variously in the range which does not deviate from the summary. For example, the structure of the electricity storage device of the present invention can be applied not only to lithium ion secondary batteries and lithium ion capacitors, but also to various types of batteries such as magnesium ion secondary batteries and hybrid capacitors thereof.

(実施例)
前述した構成を有する蓄電デバイスを用いて、本発明の有効性を検証した。蓄電デバイスとして、リチウムイオンキャパシタを用いた。このリチウムイオンキャパシタは、負極上に金属リチウム箔を貼り付けた負極複合材を電極積層ユニットの最外部に備え、この負極複合材を挟むセパレータの縁部を全周に渡って閉じた構成を有している。かかるリチウムイオンキャパシタを、次のように作製した。
(Example)
The effectiveness of the present invention was verified using the electricity storage device having the above-described configuration. A lithium ion capacitor was used as the electricity storage device. This lithium ion capacitor has a configuration in which a negative electrode composite material in which a metal lithium foil is bonded on the negative electrode is provided at the outermost part of the electrode stack unit, and the edge of the separator sandwiching the negative electrode composite material is closed over the entire circumference. doing. Such a lithium ion capacitor was produced as follows.

[正極の作製方法]
フェノール樹脂をアルカリ賦活することでBET比表面積2200m/gの活性炭を得た。この活性炭に対し、十分に洗浄することで残留灰分の除去、pH調製を実施した。このように作製した活性炭を正極活物質として用いた。
[Production method of positive electrode]
Activated carbon having a BET specific surface area of 2200 m 2 / g was obtained by alkali activation of the phenol resin. This activated carbon was thoroughly washed to remove residual ash and adjust pH. The activated carbon thus produced was used as a positive electrode active material.

上記正極用の活物質100重量部、電気化学工業株式会社製アセチレンブラック6重量部、カルボキシメチルセルロース4重量部を水と混練することでペーストに調製した。かかるペーストに、アクリレート系ゴムバインダーのエマルジョンを固形分として6重量部になるように添加し、水を加えて粘度調製を行うことで正極スラリーを調製した。かかる正極スラリーを、貫通孔を有するアルミニウム箔の両面に塗布することで正極を得た。   A paste was prepared by kneading 100 parts by weight of the positive electrode active material, 6 parts by weight of acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd., and 4 parts by weight of carboxymethyl cellulose with water. The positive electrode slurry was prepared by adding the emulsion of an acrylate-type rubber binder to this paste so that it might become 6 weight part as solid content, and adding water, and adjusting a viscosity. This positive electrode slurry was applied to both surfaces of an aluminum foil having a through hole to obtain a positive electrode.

[負極の作製方法]
株式会社クレハ製の難黒鉛化性炭素カーボトロンP−S(F)を負極活物質として88重量部、電気化学工業株式会社製アセチレンブラックの特殊プレス品HS−100を6重量部、カルボキシメチルセルロースのナトリウム塩3重量部を、水と混練することでペーストに調製した。かかるペーストに、スチレンブタジエンジゴムバインダーのラテックスを固形分として4重量部になるよう添加し、水を加えて粘度調製を行うことで負極スラリーを調製した。かかる負極スラリーを、貫通孔を有する銅のエキスパンドメタルの両面に塗布することで負極を得た。
[Production method of negative electrode]
88 parts by weight of a non-graphitizable carbon carbotron PS (F) manufactured by Kureha Co., Ltd. as a negative electrode active material, 6 parts by weight of an acetylene black special press product HS-100 manufactured by Denki Kagaku Kogyo Co., Ltd., sodium carboxymethylcellulose A paste was prepared by kneading 3 parts by weight of salt with water. To this paste, a latex of styrene butadiene dirubber binder was added to a solid content of 4 parts by weight, and water was added to adjust the viscosity to prepare a negative electrode slurry. The negative electrode slurry was applied to both surfaces of a copper expanded metal having through holes to obtain a negative electrode.

[セルの作製方法]
上記の様にして得られた正極および負極に対してそれぞれ減圧乾燥を施した。乾燥後、合材部のサイズが3.8cm×2.4cmである正極14枚と、合材部のサイズが4.0cm×2.6cmである負極15枚を切り出した。次に、35μmの厚みで4.6cm×3.2cmのサイズの紙セパレータを30枚切り出した。以上の様にして用意された正極、負極、セパレータのうち、正極14枚、負極13枚、セパレータ26枚を、正極、セパレータ、負極、セパレータ、正極、セパレータ、負極・・・正極となる様に積層することで電極積層ユニットを作製した。
[Cell fabrication method]
Each of the positive electrode and the negative electrode obtained as described above was dried under reduced pressure. After drying, 14 positive electrodes having a size of the composite portion of 3.8 cm × 2.4 cm and 15 negative electrodes having a size of the composite portion of 4.0 cm × 2.6 cm were cut out. Next, 30 paper separators having a thickness of 4.6 μm × 3.2 cm with a thickness of 35 μm were cut out. Of the positive electrodes, negative electrodes, and separators prepared as described above, 14 positive electrodes, 13 negative electrodes, and 26 separators become positive electrodes, separators, negative electrodes, separators, positive electrodes, separators, negative electrodes... The electrode lamination unit was produced by laminating.

次に、前記電極積層ユニットにおいて、3.8cm×2.4cmのサイズで切り出され、かつリチウムイオンプレドープ後に正負極間で3.8Vの電圧に印加した際の負極電位が20mV(vs.Li/Li)となる重量の1/2の重量の金属リチウム箔を、電極の積層に用いなかった負極の一方面に貼り付けることで負極複合材を作製した。そして、電極の積層に用いなかったセパレータ2枚を負極複合材の両面に配置し、さらに厚さ30μm、幅2mmのポリエチレンフィルムを、前記負極複合材を挟むセパレータの間で、かつセパレータの縁部の全周にくまなく設置した。次に、富士インパルス株式会社製のチャンバー式脱気シーラーFCB−200を用いることにより、前記ポリエチレンフィルムを挟むセパレータの縁部に熱加圧を施してセパレータの縁部を閉じた。この熱加圧操作を繰り返すことで、縁部が全周に渡って閉じられた袋状のセパレータ内に前記負極複合材を収容させた。さらに、この操作を繰り返すことで負極複合材のセパレータ収容物を2体作製した。 Next, in the electrode laminated unit, the negative electrode potential when cut into a size of 3.8 cm × 2.4 cm and applied to a voltage of 3.8 V between the positive and negative electrodes after lithium ion pre-doping is 20 mV (vs. Li A negative electrode composite material was prepared by sticking a metal lithium foil having a weight half of the weight of / Li + ) to one surface of a negative electrode that was not used for electrode lamination. Then, two separators that were not used for electrode lamination were arranged on both sides of the negative electrode composite material, and a polyethylene film having a thickness of 30 μm and a width of 2 mm was interposed between the separators sandwiching the negative electrode composite material and the edge of the separator It was installed all around. Next, by using a chamber type degassing sealer FCB-200 manufactured by Fuji Impulse Co., Ltd., the edge of the separator sandwiching the polyethylene film was subjected to heat and pressure to close the edge of the separator. By repeating this heat-pressing operation, the negative electrode composite material was accommodated in a bag-shaped separator whose edge was closed over the entire circumference. Further, by repeating this operation, two separator composites of the negative electrode composite material were produced.

次いで、前記負極複合材のセパレータ収容物2体を、前記電極積層ユニットの最外部の両側に配置させることで、リチウムイオン供給源を具備する電極積層ユニットを完成させた。なお、前記電極積層ユニットの最外部に配置する負極複合材について、金属リチウム箔が電極積層ユニットの最外層となる様に配置した。さらに、正極集電体の端子接合部に正極端子を配置して溶接し、負極集電体の端子接合部に負極端子を配置して溶接した。   Subsequently, the electrode laminate unit including the lithium ion supply source was completed by disposing two separator composites of the negative electrode composite material on both outermost sides of the electrode laminate unit. In addition, about the negative electrode composite material arrange | positioned at the outermost part of the said electrode laminated unit, it has arrange | positioned so that metal lithium foil may become the outermost layer of an electrode laminated unit. Furthermore, the positive electrode terminal was disposed and welded to the terminal joint portion of the positive electrode current collector, and the negative electrode terminal was disposed and welded to the terminal joint portion of the negative electrode current collector.

次に、蓄電デバイス内の正極および負極電位を測定するための参照電極として、120μmの厚みのステンレスメッシュに金属リチウム箔を圧着し、かつステンレスメッシュにニッケル製端子を溶接してリチウム極を作製した。そして、前記リチウムイオン供給源を具備する電極積層ユニットの最外部の一方面に前記リチウム極を配置し、さらに電極積層ユニットと電位参照用リチウム極の外周を厚み35μmの紙セパレータで覆い、当該セパレータが重なった部分をポリイミド粘着テープで止めてリチウムイオンキャパシタ素子を完成させた。   Next, as a reference electrode for measuring the positive and negative electrode potentials in the electricity storage device, a metal lithium foil was crimped to a stainless mesh having a thickness of 120 μm, and a nickel terminal was welded to the stainless mesh to produce a lithium electrode. . Then, the lithium electrode is disposed on the outermost one surface of the electrode laminate unit including the lithium ion supply source, and the outer periphery of the electrode laminate unit and the potential reference lithium electrode is covered with a paper separator having a thickness of 35 μm. The overlapped portion was stopped with a polyimide adhesive tape to complete a lithium ion capacitor element.

次いで、リチウムイオンキャパシタ素子を外装材であるアルミラミネートフィルムで覆い、アルミラミネートフィルムの三辺を加熱融着した。その後に、LiPFを1.2モル/Lの濃度になるようにプロピレンカーボネートに溶解することで調製した電解液を、アルミラミネートフィルム内に注液し、減圧含浸工程を経て含浸させた。そして、アルミラミネートフィルムの残りの一辺を真空封止することで、実施例となるリチウムイオンキャパシタを100セル作製した。 Next, the lithium ion capacitor element was covered with an aluminum laminate film as an exterior material, and three sides of the aluminum laminate film were heated and fused. Thereafter, an electrolytic solution prepared by dissolving LiPF 6 in propylene carbonate so as to have a concentration of 1.2 mol / L was poured into an aluminum laminate film and impregnated through a vacuum impregnation step. And 100 cells of the lithium ion capacitor used as an Example were produced by vacuum-sealing the remaining one side of an aluminum laminate film.

(比較例)
負極複合材を挟み込みように配置される一対のセパレータの端部を閉じなかったこと以外は、実施例のリチウムイオンキャパシタと全く同様にして、比較例となるリチウムイオンキャパシタを100セル作製した。
(Comparative example)
100 cells of a lithium ion capacitor serving as a comparative example were produced in the same manner as the lithium ion capacitor of the example except that the ends of the pair of separators arranged so as to sandwich the negative electrode composite material were not closed.

(実施例および比較例についての検討)
実施例および比較例にて作製したリチウムイオンキャパシタセルを室温下で2週間静置することでリチウムイオンプレドープを終了させた。比較例のセルは34セルが膨張しており、不良セルとなった。リチウム極を用いて正極および負極の電位を確認したところ、正極の電位が2V(vs.Li/Li)を大きく下回っていることが確認された。金属リチウムから脱落した金属リチウム片が正極に接触(ショート)し、正極電位が低下することによって、正極上で電解液の還元分解に起因するガスが発生していると考えられる。一方、実施例のセルにおいては上述の状態のセルは全く見られなかった。セルの膨張が見られない実施例の100セル、および比較例の66セルのセル電圧、正極電位、負極電位を測定した結果を表1に示した。実施例のセルの方が測定サンプル数は多いにもかかわらず、セル電圧、正極電位、負極電位のバラつきが小さいことが確認できる。比較例のセルにおいては、セル膨張にまでには至らないがマイクロショートを引き起こした可能性のあるセルが潜在していると推察される。
(Examination of Examples and Comparative Examples)
Lithium ion pre-doping was terminated by allowing the lithium ion capacitor cells produced in Examples and Comparative Examples to stand at room temperature for 2 weeks. 34 cells of the comparative example were expanded and became defective cells. When the potentials of the positive electrode and the negative electrode were confirmed using the lithium electrode, it was confirmed that the potential of the positive electrode was significantly lower than 2 V (vs. Li / Li + ). It is considered that a metal lithium piece dropped from the metal lithium comes into contact with the positive electrode (short circuit), and the positive electrode potential is lowered, so that gas resulting from reductive decomposition of the electrolytic solution is generated on the positive electrode. On the other hand, in the cell of the example, the cell in the above-described state was not seen at all. Table 1 shows the results of measuring the cell voltage, positive electrode potential, and negative electrode potential of 100 cells of the example in which no cell expansion was observed and 66 cells of the comparative example. Although the cell of the example has a larger number of measurement samples, it can be confirmed that variations in cell voltage, positive electrode potential, and negative electrode potential are smaller. In the cell of the comparative example, it is presumed that there is a cell that does not reach the cell expansion but may cause the micro short circuit.

次に、実施例および比較例のセルから10セルを任意に抜き取り、セルの解体を実施することでセル内部の状況を調査した。比較例のセルについては、負極複合材を設置した場所以外の電解液中や電極積層ユニット中から、金属リチウムと思われる金属光沢を有する微粒子が存在していることが確認された。これにより、比較例のセルは金属リチウムの遊離により所定のリチウムイオンプレドープ量が負極にドーピングできていないこと、および突発的にセルがショートする危険性を有していることがわかる。これに対し、実施例のセルからは金属リチウムと思われる物質の存在は認められなかった。以上のことから、本発明における実施の形態を構成する実施例のセルは品質に優れていることが示された。   Next, 10 cells were arbitrarily extracted from the cells of the example and the comparative example, and the inside of the cell was investigated by disassembling the cell. About the cell of the comparative example, it was confirmed that the microparticles | fine-particles which have the metallic luster considered to be metallic lithium exist from electrolyte solution other than the place which installed the negative electrode composite material, or the electrode laminated unit. Accordingly, it can be seen that the cell of the comparative example has a risk that the predetermined lithium ion pre-doping amount cannot be doped into the negative electrode due to liberation of metallic lithium and that the cell suddenly shorts. On the other hand, the presence of a substance considered to be metallic lithium was not recognized from the cell of the example. From the above, it has been shown that the cell of the example constituting the embodiment of the present invention is excellent in quality.

Figure 0005235715
Figure 0005235715

10 蓄電デバイス
13 正極
14 負極
15 負極
16 金属リチウム箔(イオン供給源)
18 セパレータ
20 正極集電体
20a 貫通孔
21 正極合材層
23 負極集電体
23a 貫通孔
24 負極合材層
26 負極複合材
30 蓄電デバイス
31 正極
32 負極(負極複合材)
33 正極集電体
34 負極集電体
35 金属リチウム箔(イオン供給源)
DESCRIPTION OF SYMBOLS 10 Power storage device 13 Positive electrode 14 Negative electrode 15 Negative electrode 16 Metal lithium foil (ion supply source)
18 Separator 20 Positive electrode current collector 20a Through hole 21 Positive electrode composite material layer 23 Negative electrode current collector 23a Through hole 24 Negative electrode composite material layer 26 Negative electrode composite material 30 Power storage device 31 Positive electrode 32 Negative electrode (negative electrode composite material)
33 Positive electrode current collector 34 Negative electrode current collector 35 Metal lithium foil (ion source)

Claims (3)

正極集電体および正極合材層を備える正極と負極集電体および負極合材層を備える負極とを有する蓄電デバイスであって、
前記負極の少なくとも1つは、前記負極集電体および前記負極合材層に加えてイオン供給源を備える負極複合材として構成され、
前記負極複合材は袋状のセパレータに収容され、前記セパレータの縁部は全周に渡って閉じられ
前記負極複合材の負極集電体は突出する端子接合部を備え、前記端子接合部に重なる前記セパレータの縁部は熱融着処理または接着処理によって閉じられることを特徴とする蓄電デバイス。
An electricity storage device having a positive electrode including a positive electrode current collector and a positive electrode mixture layer and a negative electrode including a negative electrode current collector and a negative electrode mixture layer,
At least one of the negative electrodes is configured as a negative electrode composite material including an ion supply source in addition to the negative electrode current collector and the negative electrode mixture layer,
The negative electrode composite material is accommodated in a bag-shaped separator, and the edge of the separator is closed over the entire circumference .
Storage device wherein the negative electrode current collector of the negative electrode mixture member is provided with a terminal welding portion projecting edges of the separator overlapping the terminal junction, wherein Rukoto closed by heat sealing process or adhesive process.
請求項1記載の蓄電デバイスにおいて、
前記正極集電体および前記負極集電体には複数の貫通孔が形成されることを特徴とする蓄電デバイス。
The electricity storage device according to claim 1, wherein
A power storage device, wherein the positive electrode current collector and the negative electrode current collector are formed with a plurality of through holes.
正極集電体および正極合材層を備える正極と負極集電体および負極合材層を備える負極とを有する蓄電デバイスの製造方法であって、
前記負極の少なくとも1つを、前記負極集電体および前記負極合材層に加えてイオン供給源を備える負極複合材とする工程と、
前記負極複合材を袋状のセパレータに収容し、前記セパレータの縁部を全周に渡って閉じる工程と、を有し、
前記負極複合材の負極集電体は突出する端子接合部を備え、前記端子接合部に重なる前記セパレータの縁部は熱融着処理または接着処理によって閉じられることを特徴とする蓄電デバイスの製造方法。
A method for producing an electricity storage device having a positive electrode comprising a positive electrode current collector and a positive electrode mixture layer and a negative electrode comprising a negative electrode current collector and a negative electrode mixture layer,
A step of forming at least one of the negative electrodes into a negative electrode composite material including an ion supply source in addition to the negative electrode current collector and the negative electrode mixture layer;
The negative electrode mixture member is accommodated in a bag-like separator, have a, a step of closing over the edge of the separator the entire circumference,
The negative electrode current collector of the negative electrode mixture member is provided with a terminal welding portion projecting, producing the electric storage device the edge of the separator overlapping the terminal junction, wherein Rukoto closed by heat-sealing or adhesion treatment Method.
JP2009042139A 2009-02-25 2009-02-25 Electric storage device and manufacturing method thereof Active JP5235715B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009042139A JP5235715B2 (en) 2009-02-25 2009-02-25 Electric storage device and manufacturing method thereof
US12/702,853 US20100216027A1 (en) 2009-02-25 2010-02-09 Electric storage device, and production method thereof
EP10153857.7A EP2224514B1 (en) 2009-02-25 2010-02-17 Electric Storage Device, And Production Method Thereof
KR1020100015156A KR101578562B1 (en) 2009-02-25 2010-02-19 Electrical storage device and method for manufacturing the same
CN201010123133XA CN101814372B (en) 2009-02-25 2010-02-25 Electric storage device, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042139A JP5235715B2 (en) 2009-02-25 2009-02-25 Electric storage device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010199282A JP2010199282A (en) 2010-09-09
JP5235715B2 true JP5235715B2 (en) 2013-07-10

Family

ID=42224287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042139A Active JP5235715B2 (en) 2009-02-25 2009-02-25 Electric storage device and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20100216027A1 (en)
EP (1) EP2224514B1 (en)
JP (1) JP5235715B2 (en)
KR (1) KR101578562B1 (en)
CN (1) CN101814372B (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329310B2 (en) * 2009-06-10 2013-10-30 第一工業製薬株式会社 Lithium secondary battery using ionic liquid
US8551660B2 (en) * 2009-11-30 2013-10-08 Tai-Her Yang Reserve power supply with electrode plates joined to auxiliary conductors
JP5618706B2 (en) * 2010-08-26 2014-11-05 日立マクセル株式会社 Stacked battery
KR101155915B1 (en) * 2010-09-13 2012-06-20 삼성에스디아이 주식회사 Lithium secondary battery including same
JP5668396B2 (en) * 2010-10-01 2015-02-12 新神戸電機株式会社 Lithium ion storage device
KR101457319B1 (en) * 2010-12-07 2014-11-04 닛본 덴끼 가부시끼가이샤 Lithium secondary battery
US9583757B2 (en) 2010-12-22 2017-02-28 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
JP2012186145A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Method for manufacturing electrode for electrochemical element
JP5820138B2 (en) * 2011-04-07 2015-11-24 株式会社京都製作所 Bagging electrode manufacturing apparatus and bagging electrode manufacturing method
KR20120127938A (en) * 2011-05-16 2012-11-26 삼성전기주식회사 Hybrid capacitor
JP5852926B2 (en) * 2011-07-01 2016-02-03 株式会社Gsユアサ Storage element and spacer
JP5686076B2 (en) * 2011-09-08 2015-03-18 株式会社豊田自動織機 Method for producing lithium ion secondary battery
JP5840429B2 (en) * 2011-09-12 2016-01-06 Fdk株式会社 Lithium ion capacitor
JP5851785B2 (en) * 2011-09-29 2016-02-03 オートモーティブエナジーサプライ株式会社 Battery and manufacturing method thereof
JP2013098142A (en) * 2011-11-07 2013-05-20 Sumitomo Electric Ind Ltd Molten salt battery
JP5696648B2 (en) * 2011-11-21 2015-04-08 住友電気工業株式会社 Method for manufacturing molten salt battery
KR101904160B1 (en) 2012-02-08 2018-10-05 에스케이이노베이션 주식회사 micro-porous hybrid polyolefin film having excellent thermal property and stability and manufacturing method thereof
US10177404B2 (en) * 2012-04-05 2019-01-08 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
US9455469B2 (en) * 2012-05-14 2016-09-27 Nanotek Instruments, Inc. Rechargeable magnesium-ion cell having a high-capacity cathode
CN102683639B (en) * 2012-06-12 2016-03-23 宁德新能源科技有限公司 A kind of anode sheet of lithium ion battery and use the lithium ion battery of this anode strip
EP2889933B1 (en) * 2012-07-24 2017-07-05 Kabushiki Kaisha Toshiba Secondary battery
DE102012215878A1 (en) * 2012-09-07 2014-03-13 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
JP2016006718A (en) * 2012-10-12 2016-01-14 日産自動車株式会社 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode
JPWO2014068903A1 (en) * 2012-10-30 2016-09-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2014084061A1 (en) * 2012-11-27 2014-06-05 日本ゴア株式会社 Secondary battery and separator used therein
KR102247506B1 (en) * 2013-06-10 2021-04-30 캘리포니아 인스티튜트 오브 테크놀로지 Systems and methods for implementing high-temperature tolerant supercapacitors
US10593988B2 (en) 2013-06-20 2020-03-17 GM Global Technology Operations LLC Electrochemical cell for lithium-based batteries
US9379418B2 (en) * 2013-06-20 2016-06-28 Hrl Laboratories, Llc Battery with reference electrode for voltage monitoring
WO2015012817A2 (en) * 2013-07-24 2015-01-29 Empire Technology Development Llc Energy storage device
KR101631127B1 (en) * 2013-07-29 2016-06-16 주식회사 엘지화학 Anode for Preventing Dissolution of Manganese and Battery Cell Having the Same
JP6400391B2 (en) * 2013-09-18 2018-10-03 株式会社東芝 Non-aqueous electrolyte battery
JP6349730B2 (en) * 2014-01-06 2018-07-04 日新電機株式会社 Power storage device
CN105098220B (en) * 2014-05-07 2017-08-29 黄炳照 The manufacture method of energy accumulating device and battery
US9613760B2 (en) * 2014-06-12 2017-04-04 Corning Incorporated Energy storage device and methods for making and use
TWI528619B (en) 2014-07-16 2016-04-01 輝能科技股份有限公司 Lithium metal electrode
US10158108B2 (en) * 2014-10-24 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Power storage device including separator surrounding electrode
US20160268064A1 (en) * 2015-03-09 2016-09-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
WO2016159058A1 (en) 2015-03-30 2016-10-06 日立化成株式会社 Lithium ion secondary battery and method of manufacturing same
CA2983601A1 (en) * 2015-04-23 2017-01-19 William Marsh Rice University Vertically aligned carbon nanotube arrays as electrodes
KR102394696B1 (en) * 2015-08-20 2022-05-06 삼성에스디아이 주식회사 Secondary Battery And Fabricating Method Thereof
US20170110255A1 (en) * 2015-10-14 2017-04-20 Pacesetter, Inc. Cathode subassembly with integrated separator
CN105810452A (en) * 2016-03-18 2016-07-27 四川梅格新能源科技有限公司 Method for lithium pre-embedment of negative electrode of lithium ion capacitor
KR102467809B1 (en) * 2016-03-29 2022-11-17 비나텍주식회사 Lithium ion capacitor
US20170354828A1 (en) * 2016-06-14 2017-12-14 Pacesetter, Inc. Aromatic polyamide fiber material separators for use in electrolytic capacitors
DE102016215666A1 (en) * 2016-08-22 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Electrode arrangement for lithium-based galvanic cells and method for their production
CN106169375B (en) * 2016-08-30 2018-08-28 中船重工黄冈水中装备动力有限公司 The lithium-ion capacitor of lithium titanate system
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106710883B (en) * 2016-12-12 2018-12-07 绍兴明煌科技有限公司 A kind of wireless charging supercapacitor and preparation method thereof
US11710815B2 (en) * 2017-07-12 2023-07-25 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the negative electrode
CN107680819B (en) * 2017-09-13 2019-02-01 中国科学院电工研究所 A kind of lithium-ion capacitor
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US20190181431A1 (en) * 2017-12-07 2019-06-13 Enevate Corporation Solid film as binder for battery electrodes
US11017955B2 (en) 2018-01-17 2021-05-25 Pacesetter, Inc. Cathode subassembly with integrated separator for electrolytic capacitor, and method of manufacture thereof
US11195666B2 (en) 2018-06-28 2021-12-07 Pacesetter, Inc. Electrically insulating continuous film for an aluminum electrolytic capacitor
CN109004234A (en) * 2018-07-24 2018-12-14 安普瑞斯(无锡)有限公司 A kind of lithium ion secondary battery
FR3091626B1 (en) * 2019-01-08 2021-01-29 Commissariat Energie Atomique NEGATIVE ELECTRODES FOR USE IN ACCUMULATORS OPERATING ACCORDING TO THE PRINCIPLE OF IONIC INSERTION AND DISINSERTION OR OF ALLOY AND ACCUMULATOR FORMATION CONTAINING SUCH AN ELECTRODE
FR3091625B1 (en) * 2019-01-08 2021-02-12 Commissariat Energie Atomique NEGATIVE ELECTRODES FOR USE IN ACCUMULATORS OPERATING ACCORDING TO THE PRINCIPLE OF IONIC INSERTION AND DISINSERTION OR ALLOY FORMATION AND SPIRAL CONFIGURATION
CN109768333A (en) * 2019-02-15 2019-05-17 珠海光宇电池有限公司 It is a kind of improve lithium battery security performance method and lithium battery preparation method
US20220166109A1 (en) * 2019-05-22 2022-05-26 Lg Energy Solution, Ltd. Separator laminate for lithium secondary battery, electrode assembly including the same, and lithium secondary battery including the same
CN111223676B (en) * 2020-01-14 2021-06-25 益阳市万京源电子有限公司 Supercapacitor material based on hollow nanotube and preparation method thereof
JP7469086B2 (en) * 2020-03-17 2024-04-16 本田技研工業株式会社 Electricity storage device and manufacturing method thereof
CN112349953A (en) * 2020-10-27 2021-02-09 珠海冠宇动力电池有限公司 Lithium ion battery
CN112909219A (en) * 2021-01-20 2021-06-04 珠海冠宇电池股份有限公司 Electrode assembly and lithium ion battery
US20240063440A1 (en) * 2022-08-17 2024-02-22 Cuberg, Inc. Lithium-metal unit cells and methods of fabricating thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294899A (en) * 1980-05-01 1981-10-13 General Motors Corporation PTFE-Bound talc separators for secondary zinc alkaline batteries
US5705292A (en) * 1995-06-19 1998-01-06 Sony Corporation Lithium ion secondary battery
JP4161400B2 (en) 1998-03-31 2008-10-08 宇部興産株式会社 Non-aqueous electrolyte lithium secondary battery and manufacturing method thereof
JP2001015172A (en) 1999-04-26 2001-01-19 Fuji Photo Film Co Ltd Nonaqueous secondary battery and its manufacture
JP2001291647A (en) * 2000-04-10 2001-10-19 Japan Gore Tex Inc Laminated electric double-layer capacitor
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
CN1860568B (en) * 2003-09-30 2010-10-13 富士重工业株式会社 Organic electrolytic capacitor
JP4483618B2 (en) * 2005-02-17 2010-06-16 ソニー株式会社 Secondary battery
US8048570B2 (en) * 2005-08-09 2011-11-01 Polyplus Battery Company Compliant seal structures for protected active metal anodes
JP4842633B2 (en) * 2005-12-22 2011-12-21 富士重工業株式会社 Method for producing lithium metal foil for battery or capacitor
JP5372318B2 (en) 2006-07-14 2013-12-18 パナソニック株式会社 Method for manufacturing electrochemical capacitor
JP2008123826A (en) 2006-11-10 2008-05-29 Fuji Heavy Ind Ltd Power storage device
JP2008130734A (en) * 2006-11-20 2008-06-05 Hitachi Aic Inc Electric double layer capacitor
US20080221629A1 (en) * 2007-03-09 2008-09-11 Cardiac Pacemakers, Inc. Lamination of Lithium Battery Elements for Implantable Medical Devices
JP5171113B2 (en) * 2007-05-30 2013-03-27 富士重工業株式会社 Method for manufacturing power storage device
US20090136834A1 (en) * 2007-11-27 2009-05-28 Qinetiq Limited Method of Constructing an Electrode Assembly

Also Published As

Publication number Publication date
CN101814372A (en) 2010-08-25
EP2224514B1 (en) 2014-10-01
EP2224514A1 (en) 2010-09-01
CN101814372B (en) 2013-03-20
JP2010199282A (en) 2010-09-09
US20100216027A1 (en) 2010-08-26
KR20100097027A (en) 2010-09-02
KR101578562B1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5235715B2 (en) Electric storage device and manufacturing method thereof
JP5259453B2 (en) Electric storage device and manufacturing method thereof
JP4934607B2 (en) Power storage device
JP4927064B2 (en) Secondary battery
US8920960B2 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
JP4177612B2 (en) Lithium ion secondary battery
JP5717461B2 (en) Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
JP5371979B2 (en) Lithium ion secondary battery
JP2010232574A (en) Accumulator device and method of manufacturing the same
JP2009123385A (en) Power storage device
JP5145279B2 (en) Electric storage device and manufacturing method thereof
JP2009188037A (en) Electric storage device
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
KR20090029624A (en) Charging device
JP2011029079A (en) Nonaqueous electrolyte secondary battery
WO2016152991A1 (en) High-safety/high-energy-density cell
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP2009187858A (en) Power storage device
JP2014082192A (en) Power storage element
JP2009188141A (en) Electric power storage device
JP2007087801A (en) Lithium ion secondary battery
JP2009076249A (en) Power storage device
JP2010272341A (en) Power storage device
JP2017182917A (en) Lithium ion secondary battery and method for manufacturing the same, and battery pack
KR101307772B1 (en) Method for Manufacturing Secondary Battery and Secondary Battery Manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250