JP2008293793A - Solid thin film battery, and manufacturing method of solid thin film battery - Google Patents

Solid thin film battery, and manufacturing method of solid thin film battery Download PDF

Info

Publication number
JP2008293793A
JP2008293793A JP2007138090A JP2007138090A JP2008293793A JP 2008293793 A JP2008293793 A JP 2008293793A JP 2007138090 A JP2007138090 A JP 2007138090A JP 2007138090 A JP2007138090 A JP 2007138090A JP 2008293793 A JP2008293793 A JP 2008293793A
Authority
JP
Japan
Prior art keywords
electrode layer
positive electrode
thin film
film battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007138090A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Rikizo Ikuta
力三 生田
Kazuki Okuno
一樹 奥野
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007138090A priority Critical patent/JP2008293793A/en
Publication of JP2008293793A publication Critical patent/JP2008293793A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid thin film battery in which quality is stabilized and its yield is improved by preventing breakage of a membrane of a solid electrolyte layer, and deterioration of battery performance can be prevented even in the case bending or the like is applied, and which has a high flexibility. <P>SOLUTION: This is the solid thin-film battery 1 which has a positive electrode layer 4, a negative electrode layer 6, a solid electrolyte layer 7 arranged between these layers, and a support body 2 on which these respective layers are laminated and supported, and is provided with chamfer parts 7, 7 at the side edge parts of the positive electrode layer or/and the negative electrode layer. By adopting this structure, breakage of a membrane of the solid electrolyte layer is prevented, and the solid thin-film battery with stable quality and high flexibility can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、固体薄膜電池に関し、より詳しくは、安定した性能を発揮できるとともに歩留りが良く、さらに、屈曲させた場合等にも電池性能が低下することがない固体薄膜電池に関するものである。   The present invention relates to a solid-state thin-film battery, and more particularly to a solid-state thin-film battery that can exhibit stable performance, has a good yield, and does not deteriorate battery performance even when bent.

固体薄膜電池の構成は、たとえば、集電部となる金属箔、またはアルミナ等のセラミックス基材に形成した金属膜上に、正極層、固体電解質層及び負極層を順次重ね合わせた積層構造となっている。固体電解質層を用いる場合、従来の電池のように有機電解液を用いないため、液漏れや発火等を起こす危険性がなく、安全性の高い電池を提供することができる。   The configuration of the solid thin film battery is, for example, a laminated structure in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially stacked on a metal foil that is a current collector or a metal film formed on a ceramic substrate such as alumina. ing. When a solid electrolyte layer is used, an organic electrolyte solution is not used unlike a conventional battery, so that there is no risk of liquid leakage or ignition, and a highly safe battery can be provided.

近年、携帯電話等の携帯電子機器は、ますます小型軽量化されており、これらに搭載されるバッテリーにも、より小型軽量化することが求められる。また、多機能化によって、より電圧が高くまた電気容量の大きい電池が求められているとともに、安定した性能を発揮できる電池が求められている。   In recent years, portable electronic devices such as mobile phones have been increasingly reduced in size and weight, and batteries mounted thereon are also required to be reduced in size and weight. In addition, as a result of multifunctionalization, a battery having a higher voltage and a larger electric capacity is demanded, and a battery capable of exhibiting stable performance is demanded.

特公平07−50617JP 05-50617 特許第3116857Patent No. 3116857

たとえば、上記特許文献1に記載されているような積層構造を備える固体薄膜電池においては、支持体の面方向に離間させられて配置された正極層と負極層とを接続するように、これら電極層間に掛け渡し状に上記固体電解質層が積層形成される。   For example, in a solid-state thin film battery having a laminated structure as described in Patent Document 1, these electrodes are connected so as to connect a positive electrode layer and a negative electrode layer that are spaced apart in the surface direction of the support. The solid electrolyte layer is laminated and formed between the layers.

上記正極層及び上記負極層は所定の厚さで支持体上に積層形成されているため、これらの電極層と上記支持体の間に段差が形成され、上記固体電解質層も、上記段差に対応した形態でこれら電極層及び支持体上に積層形成されることになる。   Since the positive electrode layer and the negative electrode layer are laminated on the support with a predetermined thickness, a step is formed between the electrode layer and the support, and the solid electrolyte layer also corresponds to the step. In this manner, the electrode layer and the support are laminated and formed.

ところが、上記各電極層は断面略矩形状に形成されるため、上記固体電解質層の厚さが電極層の厚さに比べて小さくなると、上記段差部分に固体電解質層を連続して積層することが困難になり、固体電解質層が途切れた膜切れ状態となることが多い。固体電解質層が膜切れを起こすと、電池性能が低下して、製品の歩留りも低下するという問題が発生する。   However, since each of the electrode layers has a substantially rectangular cross section, when the thickness of the solid electrolyte layer is smaller than the thickness of the electrode layer, the solid electrolyte layer is continuously laminated on the stepped portion. In many cases, the solid electrolyte layer becomes discontinuous. If the solid electrolyte layer breaks, there arises a problem that the battery performance is lowered and the yield of the product is also lowered.

また、上記薄膜電池を屈曲させた場合、上記段付部近傍に応力や変形が集中して、上記固体電解質層に亀裂等が生じる恐れも高い。さらに、上記正極層及び上記負極層とこれらが積層された支持体との間においても、屈曲によりこれらの積層面の縁部近傍に応力や変形が集中し、これら層間に剥離現象が生じやすくなる。   Further, when the thin film battery is bent, there is a high possibility that stress or deformation concentrates in the vicinity of the stepped portion and a crack or the like occurs in the solid electrolyte layer. Further, even between the positive electrode layer and the negative electrode layer and the support on which these layers are laminated, stress and deformation are concentrated in the vicinity of the edge portions of these laminated surfaces due to bending, and a peeling phenomenon is likely to occur between these layers. .

本願発明は、固体電解質層の膜切れを防止することにより、品質を安定させて歩留りを向上させるとともに、屈曲等させ場合にも電池性能の低下を防止できるフレキシブル性の高い固体薄膜電池を提供することを課題とするものである。   The invention of the present application provides a highly flexible solid thin film battery capable of stabilizing the quality and improving the yield by preventing film breakage of the solid electrolyte layer, and preventing deterioration of the battery performance even when bent or the like. This is a problem.

本願発明は、正極層と、負極層と、これら層間に配置された固体電解質層と、これら各層が積層保持される支持体とを備える固体薄膜電池であって、上記正極層又は/及び上記負極層の側縁部に面取り部を設けたものである。   The present invention is a solid thin film battery comprising a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between these layers, and a support on which these layers are laminated and held, wherein the positive electrode layer and / or the negative electrode A chamfer is provided on the side edge of the layer.

上記面取り部を設けることにより、上記正極層及び上記負極層の縁部の厚さが小さくなり、屈曲等させた場合にこれら電極層の縁部に応力や変形が集中するのを緩和できる。このため、上記電極層と支持体とが剥離しにくくなり、接合強度が高まる。   By providing the chamfered portion, the thicknesses of the edge portions of the positive electrode layer and the negative electrode layer are reduced, and stress and deformation can be reduced from being concentrated on the edge portions of the electrode layers when bent. For this reason, it becomes difficult to peel the said electrode layer and a support body, and joining strength increases.

また、上記面取り部を設けることにより、上記正極層又は/及び上記負極層と、これら電極層が積層形成された支持体表面等との段落ち形態が緩和される。このため、請求項2に記載した発明のように、上記面取り部を介して、上記電極層と厚さ方向に段差のある他の領域間に、上記固体電解質層を掛け渡し状に形成する場合、上記固体電解質層を上記段落ち部近傍に確実に積層形成することが可能となる。したがって、上記固体電解質層の膜切れを防止できる。また、上記段落ち部近傍における応力や変形の集中を緩和できるため、電池を屈曲させ場合等において、上記電解質層に亀裂等が生じることも防止できる。   In addition, by providing the chamfered portion, the stepped form between the positive electrode layer or / and the negative electrode layer and the surface of the support on which these electrode layers are laminated is eased. For this reason, when the solid electrolyte layer is formed in a spanning manner between the electrode layer and another region having a step in the thickness direction via the chamfered portion as in the invention described in claim 2 Thus, the solid electrolyte layer can be surely laminated in the vicinity of the stepped portion. Therefore, the film breakage of the solid electrolyte layer can be prevented. Further, since stress and deformation concentration in the vicinity of the stepped portion can be relaxed, it is possible to prevent the electrolyte layer from being cracked when the battery is bent.

本願発明は、種々の材料から構成される固体薄膜電池に適用することができる。たとえば、正極層として、マンガン酸リチウム(LiMnO2 )、コバルト酸リチウム(LiCO O2 )、酸化マンガン(MnO2 )、硫化鉄(FeS2 )等の活物質を単体で又は混合物で用いた薄膜層を採用できる。また、上記材料の粉末に、導電助剤のカーボン粒子、結着剤等を含む、スクリーン印刷法等による塗布層を設けて構成することができる。   The present invention can be applied to a solid-state thin film battery made of various materials. For example, as the positive electrode layer, a thin film layer using an active material such as lithium manganate (LiMnO 2), lithium cobalt oxide (LiCO 2 O 2), manganese oxide (MnO 2), iron sulfide (FeS 2) alone or in a mixture can be employed. Moreover, it can comprise by providing the coating layer by the screen printing method etc. which contain the carbon particle of a conductive support agent, a binder, etc. in the powder of the said material.

一方、負極層として、たとえば、Li金属膜、Li−Al、Li−Mn−Al、Si、Si−N、Si−Co、Si−Fe等の合金膜を採用できる。また、カーボン、Si等の粉末と導電助剤のカーボン粒子、結着剤からなる塗布層を採用することもできる。   On the other hand, as the negative electrode layer, for example, an alloy film such as a Li metal film, Li—Al, Li—Mn—Al, Si, Si—N, Si—Co, or Si—Fe can be employed. In addition, a coating layer made of powder of carbon, Si or the like, carbon particles of a conductive additive, and a binder may be employed.

上記正極層と上記負極層の間に配置される固体電解質として、たとえば、Li−P−S−Oからなるアモルファス膜、あるいはこれらの多結晶膜を採用できる。また、Li−P−S−Nからなるアモルファス膜、あるいはこれらの多結晶膜を採用できる。特に、正極側電解質として、上記Li−P−S−Oからなるアモルファス膜を採用するとともに、負極側電解質として上記Li−P−S−Nからなるアモルファス膜を採用するのが好ましい。   As the solid electrolyte disposed between the positive electrode layer and the negative electrode layer, for example, an amorphous film made of Li—P—S—O or a polycrystalline film thereof can be used. Further, an amorphous film made of Li—P—S—N or a polycrystalline film thereof can be employed. In particular, it is preferable to employ an amorphous film made of the above Li—PS—O as the positive electrode side electrolyte and an amorphous film made of the above Li—P—S—N as the negative electrode side electrolyte.

なお、上記電極や上記固体電解質にイオン導電性物質を含浸して導電性を高めることもできる。たとえば、上記イオン導電性物質として、(1)EMI+ 、PyI3 + 、PPI3 + 、等のカチオン系物質、(2)FSI- 、TFSI- 等のアニオン系物質、(3)LiTFSI、LiBETI等の支持塩を含浸させることもできる。 The electrode or the solid electrolyte can be impregnated with an ion conductive material to increase conductivity. For example, as the ion conductive material, (1) cationic materials such as EMI + , PyI 3 + and PPI 3 + , (2) anionic materials such as FSI and TFSI , (3) support such as LiTFSI and LiBETI It can also be impregnated with salt.

上記イオン導電性物質を、正極層や固体電解質層の空隙部に含浸させて、正極層と固体電解質層とのイオン導電性を高めることにより、正極層と固体電解質層との界面における電気抵抗を低減させ、正極側の電池容量を大きくすることができる。   By impregnating the ionic conductive material in the voids of the positive electrode layer and the solid electrolyte layer and increasing the ionic conductivity between the positive electrode layer and the solid electrolyte layer, the electric resistance at the interface between the positive electrode layer and the solid electrolyte layer is reduced. The battery capacity on the positive electrode side can be increased.

本願発明における上記支持体として種々の材料を採用できる。たとえば、上記電極層を、集電体として兼用される金属薄膜の支持体上に、直接又は電気絶縁性膜を介して積層形成することができる。また、電気絶縁性のフィルム状支持体上に、直接又は集電体を介して上記電極層を形成することができる。   Various materials can be employed as the support in the present invention. For example, the electrode layer can be laminated on a metal thin film support that also serves as a current collector, directly or via an electrically insulating film. Further, the electrode layer can be formed directly or via a current collector on an electrically insulating film-like support.

上記正極側集電体を上記支持体とする場合、Al、Ni、ステンレス等の金属箔を採用することができる。一方、負極側集電体として、Cu、Ni、ステンレス等の金属箔を採用できる。   When the positive electrode side current collector is used as the support, a metal foil such as Al, Ni, and stainless steel can be employed. On the other hand, a metal foil such as Cu, Ni, and stainless steel can be adopted as the negative electrode side current collector.

また、支持体として、種々の絶縁フィルムを採用することもできる。たとえば、一般的なフレキシブルプリント配線用基板を支持体として採用できる。   Moreover, various insulating films can also be employed as the support. For example, a general flexible printed wiring board can be used as the support.

上記面取り部の形態や寸法は特に限定されることはなく、上記正極層、上記負極層及び上記電解質層の厚さや、要求される変形量等に応じて設定することができる。たとえば、請求項3に記載した発明のように、上記正極層又は/及び上記負極層が断面略台形状となる上記面取り部を設けることができる。   The form and dimensions of the chamfered portion are not particularly limited, and can be set according to the thickness of the positive electrode layer, the negative electrode layer, and the electrolyte layer, the required deformation amount, and the like. For example, as in the invention described in claim 3, the chamfered portion in which the positive electrode layer and / or the negative electrode layer have a substantially trapezoidal cross section can be provided.

また、平面で電極層の断面角部を切除した面取り形態に限定されることはなく、断面円弧状等の曲面状の面取り部を設けることもできる。   Moreover, it is not limited to the chamfering form which cut | disconnected the cross-sectional corner | angular part of the electrode layer in the plane, and can also provide a curved chamfering part, such as a circular arc cross section.

請求項4に記載した発明は、上記正極層又は/及び上記負極層が所定幅を有する線状部を備えるとともに、少なくとも上記線状部の長手方向側縁部に上記面取り部を設けたものである。   According to a fourth aspect of the present invention, the positive electrode layer and / or the negative electrode layer includes a linear portion having a predetermined width, and at least the chamfered portion is provided on a longitudinal side edge of the linear portion. is there.

たとえば、上記電極の容量等を調整するため、支持体上に一方又は双方の電極を所定幅の線状部を有する櫛歯状等に形成し、支持体表面等との間に固体電解質層を掛け渡し状に積層形成する場合がある。このような場合、各電極層と支持体の段付き部が上記長手方向の寸法に対応して非常に長くなり、この部分で膜切れが生じると電池性能に大きな影響を与える。少なくとも上記線状部の長手方向縁部に上記面取り部を設けることにより、上記膜切れを防止できる。   For example, in order to adjust the capacity or the like of the electrode, one or both electrodes are formed on the support in a comb-like shape having a linear portion with a predetermined width, and a solid electrolyte layer is formed between the support surface and the like. In some cases, the layers are stacked in a hanging manner. In such a case, the stepped part of each electrode layer and the support becomes very long corresponding to the dimension in the longitudinal direction, and if the film breaks at this part, the battery performance is greatly affected. The film breakage can be prevented by providing the chamfered portion at least at the longitudinal edge of the linear portion.

また、上記固体電解質層の段落ち形態が緩和されて、段付き部に均一な厚さの固体電解質層を形成することも可能となる。したがって、電池を屈曲させた場合等に、上記段付き部に応力や変形が集中して、固体電解質層に亀裂等が生じるのを防止することもできる。さらに、面取り部を設けた各電極層も、支持体表面から剥離しにくくなるため、屈曲等させた場合の性能低下等を防止することもできる。   In addition, the step-down form of the solid electrolyte layer is relaxed, and a solid electrolyte layer having a uniform thickness can be formed on the stepped portion. Therefore, when the battery is bent or the like, it is possible to prevent stress and deformation from being concentrated on the stepped portion and causing a crack or the like in the solid electrolyte layer. Furthermore, each electrode layer provided with a chamfered portion is also difficult to peel off from the surface of the support, so that it is possible to prevent deterioration in performance when bent or the like.

上記正極層、上記負極層及び上記固体電解質層の積層形態は特に限定されることはない。請求項5に記載した発明のように、上記正極層と上記負極層とを、積層方向に重ならないように上記支持体上に積層形成することができる。上記正極層と上記負極層とを重ならないように形成することにより、固体電解質層の厚み方向のピンホールによる短絡が生じる恐れがなくなり、性能低下の少ない品質の安定した電池を提供できる。   The lamination form of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer is not particularly limited. As in the invention described in claim 5, the positive electrode layer and the negative electrode layer can be laminated on the support so as not to overlap in the lamination direction. By forming the positive electrode layer and the negative electrode layer so as not to overlap with each other, there is no risk of a short circuit due to pinholes in the thickness direction of the solid electrolyte layer, and a stable battery with low performance deterioration can be provided.

上記の積層形態として、一方の電極層を金属の集電体上に直接形成する場合と、絶縁基板上に直接又は集電体を介して一方の電極層を形成する場合が考えられる。   As the above laminated form, there are a case where one electrode layer is directly formed on a metal current collector, and a case where one electrode layer is formed directly on an insulating substrate or via a current collector.

前者の場合、集電体を金属とし、この集電体の一部に一方の電極層を電気絶縁層を介することなく直接形成し、かつ、一方の電極層が形成されている箇所以外の集電体の表面に電気絶縁層を形成する。そして、一方の電極層及び電気絶縁層上に固体電解質層が掛け渡し状に形成される。この積層形態においては、上記一方の電極層と上記電気絶縁層間の段付き形態が、面取り部によって緩和されるため、上記段付き部近傍における上記固体電解質層の膜切れ等を防止できる。   In the former case, the current collector is made of metal, and one electrode layer is formed directly on a part of the current collector without an electric insulating layer, and the current collector other than the portion where the one electrode layer is formed is formed. An electrical insulating layer is formed on the surface of the electric body. Then, a solid electrolyte layer is formed on the one electrode layer and the electrical insulating layer in a spanning manner. In this laminated form, the stepped form between the one electrode layer and the electrically insulating layer is relaxed by the chamfered portion, so that the solid electrolyte layer can be prevented from being cut near the stepped portion.

後者の場合、絶縁基板の一部に集電体を形成し、その集電体を覆うように電極層が形成されるか、あるいは、絶縁基板の一部に直接一方の電極層が形成される。そして、一方の電極層と絶縁基板上に上記固体電解質層が掛け渡し状に形成される。この積層形態の場合も、上記一方の電極層と上記絶縁基板間の段付き形態が、上記面取り部によって緩和されるため、上記固体電解質層の膜切れを防止できる。   In the latter case, a current collector is formed on a part of the insulating substrate, and an electrode layer is formed so as to cover the current collector, or one electrode layer is formed directly on a part of the insulating substrate. . And the said solid electrolyte layer is formed in a spanning form on one electrode layer and an insulated substrate. Also in the case of this laminated form, the stepped form between the one electrode layer and the insulating substrate is relaxed by the chamfered portion, so that the film breakage of the solid electrolyte layer can be prevented.

請求項6に記載した発明は、上記面取り部を、上記支持体表面に対して20°〜70°の角度で形成したものである。特に、各電極部を略台形状の形態に形成する場合、斜辺の角度を上記範囲に設定するのが望ましい。   According to a sixth aspect of the present invention, the chamfered portion is formed at an angle of 20 ° to 70 ° with respect to the support surface. In particular, when each electrode portion is formed in a substantially trapezoidal shape, it is desirable to set the angle of the hypotenuse within the above range.

上記面取り部の角度を20°以下に設定すると、電極部の縁部の厚さが薄くなるとともに、同一の断面積を確保するには電極層の面積が大きくなる。特に、所定幅の線状部を有する電極の場合、各線状部の幅が大きくなり過ぎる。このため、電池寸法の増大や、隣接する他方の電極との短絡の危険性が増加する。   When the angle of the chamfered portion is set to 20 ° or less, the thickness of the edge portion of the electrode portion is reduced, and the area of the electrode layer is increased to ensure the same cross-sectional area. In particular, in the case of an electrode having a linear portion with a predetermined width, the width of each linear portion becomes too large. For this reason, the danger of the increase in a battery dimension and the short circuit with the other adjacent electrode increases.

一方、上記面取り部を、70°以上に設定した場合、傾斜面に固体電解質層を確実に形成するのが困難になって、固体電解質層が膜切れする危険性が大きくなる。   On the other hand, when the chamfered portion is set to 70 ° or more, it becomes difficult to reliably form the solid electrolyte layer on the inclined surface, and the risk of the solid electrolyte layer being broken is increased.

請求項7に記載した発明は、正極層と、負極層と、これら層間に配置された固体電解質層と、これら各層が積層保持される支持体とを備える固体薄膜電池の製造方法であって、上記支持体表面に、上記正極層又は/及び上記負極層を積層形成する電極層積層形成工程と、上記正極層又は/及び負極層の側縁部に面取り部を形成する面取り部形成工程と、固体電解質を上記正極層と上記負極層との間に積層形成する固体電解質層形成工程とを含んで構成される。   The invention described in claim 7 is a method of manufacturing a solid thin film battery comprising a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between these layers, and a support on which each of these layers is laminated and held. An electrode layer lamination forming step of laminating the positive electrode layer or / and the negative electrode layer on the surface of the support, and a chamfered portion forming step of forming a chamfered portion at a side edge of the positive electrode layer or / and the negative electrode layer; A solid electrolyte layer forming step of forming a solid electrolyte between the positive electrode layer and the negative electrode layer.

上記各工程は、1度のみに限定されることはなく、電池の積層形態に応じて、同一の工程を複数行うこともできる。また、電気絶縁性の支持体を用いる場合には、集電層を形成する集電層形成工程を含ませることができる。   Each of the above steps is not limited to one time, and a plurality of the same steps can be performed according to the battery stacking form. Moreover, when using an electrically insulating support body, the current collection layer formation process which forms a current collection layer can be included.

面取り部は、上記正極層と上記負極層の一方のみに設けることもできるし、双方に設けることもできる。双方に設ける場合には、一度の面取り部形成工程において、すべての電極層に面取り部を形成することもできるし、正負の電極層の形成工程に応じて2回以上の面取り部形成工程を行うこともできる。   The chamfered portion can be provided only on one of the positive electrode layer and the negative electrode layer, or can be provided on both. When both are provided, the chamfered portion can be formed in all the electrode layers in one chamfered portion forming step, or two or more chamfered portion forming steps are performed according to the positive and negative electrode layer forming steps. You can also.

上記面取り部形成工程を行う手法も特に限定されることはない。たとえば、上記電極の形態に対応した面取り部形成型部を備えるプレス金型等を用いて、上記支持体上の電極層の縁部に上記面取り部を形成することができる。   The method for performing the chamfered portion forming step is not particularly limited. For example, the chamfered portion can be formed on the edge portion of the electrode layer on the support using a press die having a chamfered portion forming mold portion corresponding to the form of the electrode.

また、請求項8に記載した発明のように、上記面取り部形成工程を、電極層が形成された支持体をロールプレスすることにより行うことができる。   Moreover, like the invention described in Claim 8, the said chamfered part formation process can be performed by roll-pressing the support body in which the electrode layer was formed.

たとえば、上下に配置したロールプレスの対向隙間を、電極とこれを積層形成した支持体の合計厚さより10μm〜200μm小さく設定してプレス加工を行うことにより、上記各電極層の縁部に所要の面取り部を形成することができる。なお、プレス加工する際、電極層と支持体との積層強度(剥離強度)を高めるため、加熱してプレス加工を行うのが好ましい。たとえば、正極層を加工する場合、これに含まれる結着剤の融点より10℃〜100℃低い温度に加熱しながらプレス加工を行うのが好ましい。   For example, the opposing gaps of the roll presses arranged on the top and bottom are set to 10 μm to 200 μm smaller than the total thickness of the electrode and the support formed by laminating the electrodes, and pressing is performed, so that the required edge portions of the electrode layers are required. A chamfered portion can be formed. In addition, when press-working, in order to increase the lamination strength (peeling strength) of an electrode layer and a support body, it is preferable to heat and perform press work. For example, when processing the positive electrode layer, it is preferable to perform the press processing while heating to a temperature lower by 10 to 100 ° C. than the melting point of the binder contained therein.

固体電解質層の膜切れ等の問題がないため、電池性能の低下が少なく、品質の安定した固体薄膜電池を成形できる。   Since there is no problem such as film breakage of the solid electrolyte layer, there is little deterioration in battery performance, and a solid thin film battery with stable quality can be formed.

以下、本願発明の実施形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

図1に、本願発明の第1の実施形態に係る固体薄膜電池の断面図を示す。   FIG. 1 shows a cross-sectional view of a solid-state thin film battery according to the first embodiment of the present invention.

第1の実施形態に係る固体薄膜電池1は、リチウム固体薄膜電池に本願発明を適用したものである。固体薄膜電池1は、電気絶縁性の支持体2上に金属薄膜で集電体3をパターン形成し、この集電体上を覆うように正極層4を形成している。そして、上記正極層4を覆うようにして固体電解質層5が積層形成されるとともに、この固体電解質層5上で上記正極層4と重ならない位置に負極層6が積層形成されている。   The solid thin film battery 1 according to the first embodiment is obtained by applying the present invention to a lithium solid thin film battery. In the solid thin film battery 1, a current collector 3 is patterned with a metal thin film on an electrically insulating support 2, and a positive electrode layer 4 is formed so as to cover the current collector. A solid electrolyte layer 5 is laminated and formed so as to cover the positive electrode layer 4, and a negative electrode layer 6 is laminated and formed on the solid electrolyte layer 5 at a position that does not overlap the positive electrode layer 4.

従来の正極層は断面略矩形状に形成されていたが、本実施形態では、断面形状が略台形状となるように、両角部に上記支持体2の表面に対して約50°の角度の傾斜面で構成される面取り部7,7が形成されている。   Although the conventional positive electrode layer has a substantially rectangular cross section, in the present embodiment, both corners have an angle of about 50 ° with respect to the surface of the support 2 so that the cross sectional shape is substantially trapezoidal. Chamfered portions 7 and 7 formed of inclined surfaces are formed.

上記図1から明らかなように、上記面取り部7,7を設けることにより、上記正極層4の上面と上記支持体2の表面とが上記面取り部7,7を介して接続される。上記面取り部7,7を設けることにより、上記正極層4と上記支持体2の間に形成される段落ち部に、他の部分とほぼ同じ厚さの固体電解質層5を積層形成することが可能とる。このため、上記正極層4と支持体間の段落ち部における固体電解質層5の膜切れを防止することが可能となり、品質の安定した歩留りの良い固体薄膜電池を形成することができる。   As is apparent from FIG. 1, by providing the chamfered portions 7 and 7, the upper surface of the positive electrode layer 4 and the surface of the support 2 are connected via the chamfered portions 7 and 7. By providing the chamfered portions 7 and 7, the solid electrolyte layer 5 having the same thickness as the other portions can be laminated on the stepped portion formed between the positive electrode layer 4 and the support 2. Take possible. For this reason, it becomes possible to prevent the film breakage of the solid electrolyte layer 5 at the stepped portion between the positive electrode layer 4 and the support, and a solid thin film battery having a stable quality and a good yield can be formed.

また、上記固体薄膜電池1を屈曲させた場合等にも、上記正極層4の側縁部に作用する応力や変形を緩和することができるため、上記正極層4と上記支持体2の表面との積層強度を実質的に高めることができる。   In addition, even when the solid thin film battery 1 is bent, the stress and deformation acting on the side edge of the positive electrode layer 4 can be relaxed, so that the positive electrode layer 4 and the surface of the support 2 The lamination strength of can be substantially increased.

さらに、上記段落ち部において、上記固体電解質層5を均一な厚さで形成することができるため、上記面取り部近傍に積層された固体電解質層に作用する応力や変形も緩和される。したがって、上記電池を屈曲等させた場合に上記固体電解質層に亀裂等が発生するのを防止する効果も期待できる。   Furthermore, since the solid electrolyte layer 5 can be formed with a uniform thickness at the stepped-down portion, stress and deformation acting on the solid electrolyte layer laminated in the vicinity of the chamfered portion are also alleviated. Therefore, when the battery is bent or the like, an effect of preventing cracks or the like from occurring in the solid electrolyte layer can be expected.

上記面取り部の傾斜角度Tは、上記支持体表面に対して20°〜70°の範囲に設定するのが好ましい。傾斜角度が、20°以下になると、プレス加工をする際に、上記固体電解質層の幅が大きくなり過ぎる。一方、70°以上の角度に設定すると、固体電解質層に膜切れが生じやすくなる。なお、上記面取り部は、上記実施形態に限定されることはなく、種々の形態のものを採用できる。   The inclination angle T of the chamfered portion is preferably set in a range of 20 ° to 70 ° with respect to the support surface. When the inclination angle is 20 ° or less, the width of the solid electrolyte layer becomes too large during press working. On the other hand, when the angle is set to 70 ° or more, the solid electrolyte layer easily breaks. In addition, the said chamfering part is not limited to the said embodiment, The thing of a various form is employable.

また、本実施形態では、上記正極層4と上記負極層6とが、各層の厚み方向に重なることなくずらして配置されているため、両電極層の間に介在させられる固体電解質層5にピンホール等が形成されたとしても、両電極層が短絡する恐れはない。また、上記負極層6の下面に、固体電解質層5が位置することになるが、この固体電解質層5の下面は電気絶縁性の支持体2であり、しかも、上記正極層側の集電体3とも重ならないように配置されているため、負極層6の下部に位置する固体電解質層5にピンホールが存在していても、上記負極層6が上記集電体3と短絡する恐れもない。したがって、より安定した品質の固体薄膜電池を提供することが可能となる。   In the present embodiment, since the positive electrode layer 4 and the negative electrode layer 6 are arranged so as not to overlap each other in the thickness direction of each layer, the pin is attached to the solid electrolyte layer 5 interposed between both electrode layers. Even if holes or the like are formed, there is no fear that both electrode layers are short-circuited. Further, the solid electrolyte layer 5 is located on the lower surface of the negative electrode layer 6. The lower surface of the solid electrolyte layer 5 is an electrically insulating support 2, and the current collector on the positive electrode layer side. 3 are arranged so as not to overlap with each other, there is no possibility that the negative electrode layer 6 is short-circuited to the current collector 3 even if there is a pinhole in the solid electrolyte layer 5 located below the negative electrode layer 6. . Therefore, it becomes possible to provide a solid thin film battery with more stable quality.

上記電気絶縁性の支持体5として、種々の基板材料を採用することができる。たとえば、フレキシブル配線板に用いられる電気絶縁性の樹脂フィルム、たとえば、ポリイミド樹脂フィルムを支持体として用いることができる。   Various substrate materials can be employed as the electrically insulating support 5. For example, an electrically insulating resin film used for a flexible wiring board, for example, a polyimide resin film can be used as the support.

上記集電体3を構成する材料や形成方法も特に限定されることはない。たとえば、Ni、Co等の金属を無電解メッキ等のウエットプロセス、スパッタリング、蒸着等のドライプロセスによって、上記支持体2の表面に所定のパターンで形成することができる。   There are no particular limitations on the material and the forming method of the current collector 3. For example, a metal such as Ni or Co can be formed in a predetermined pattern on the surface of the support 2 by a wet process such as electroless plating or a dry process such as sputtering or vapor deposition.

上記正極層4は、リチウムイオンの吸蔵及び放出を行う活物質を含む層で構成されている。たとえば、マンガン酸リチウム(LiMnO2 )、コバルト酸リチウム(LiCO O2)等の活物質を単体又は混合物で用いることができる。また、硫化物、たとえば、硫化鉄(FeS,FeS2)等を単体又は混合物で用いることができる。導電粉末として、カーボン粒子を採用するとともに、結着剤としてポリフッ化ビニリデンやテフロンを用いることができる。上記正極層4は、ゾルゲル法、コロイド等の湿式法や、蒸着法、スパッタリング法等の乾式法を用いて形成することができる。   The positive electrode layer 4 is composed of a layer containing an active material that occludes and releases lithium ions. For example, active materials such as lithium manganate (LiMnO2) and lithium cobaltate (LiCOO2) can be used alone or in a mixture. Further, sulfides such as iron sulfide (FeS, FeS2) can be used alone or as a mixture. Carbon particles can be used as the conductive powder, and polyvinylidene fluoride or Teflon can be used as the binder. The positive electrode layer 4 can be formed using a wet method such as a sol-gel method or a colloid, or a dry method such as a vapor deposition method or a sputtering method.

また、上記の正極粉末、導電粉末、結着剤等をN−メチル−2ピロリドン等の溶媒に分散させ、所定のパターンに塗布した後、150℃程度に加熱して乾燥させて形成することもできる。この手法によって形成される正極層4は多孔質体であり、空隙部分にイオン性液体を含浸させて、正極側の導電性を高めることもできる。   Alternatively, the above positive electrode powder, conductive powder, binder, etc. may be dispersed in a solvent such as N-methyl-2pyrrolidone, applied in a predetermined pattern, and then heated to about 150 ° C. and dried. it can. The positive electrode layer 4 formed by this technique is a porous body, and the conductivity on the positive electrode side can be increased by impregnating the void portion with an ionic liquid.

上記負極層6も、正極層4と同様に、リチウムイオンの吸蔵及び放出を行う活物質を含む層で構成される。負極層6は、Li金属及びLi金属と合金を形成することができる金属等を単体または混合物で形成するのが好ましい。たとえば、リチウム単体(Li)、リチウム(Li)−アルミニウム(Al)合金、リチウム(Li)−マンガン(Mn)−アルミニウム(Al)合金等を採用できる。また、シリコン単体(Si)、シリコン(Si)−ニッケル(Ni)、シリコン(Si)−コバルト(Co)、シリコン(Si)−鉄(Fe)等の合金を採用することもできる。また、上記負極層6も、上記正極層と同様の手法によって、上記固体電解質層5に積層形成することができる。   Similarly to the positive electrode layer 4, the negative electrode layer 6 is also composed of a layer containing an active material that occludes and releases lithium ions. The negative electrode layer 6 is preferably formed of Li metal or a metal capable of forming an alloy with Li metal alone or in a mixture. For example, lithium simple substance (Li), lithium (Li) -aluminum (Al) alloy, lithium (Li) -manganese (Mn) -aluminum (Al) alloy, etc. can be employed. Alternatively, an alloy such as silicon simple substance (Si), silicon (Si) -nickel (Ni), silicon (Si) -cobalt (Co), silicon (Si) -iron (Fe), or the like may be employed. The negative electrode layer 6 can also be laminated on the solid electrolyte layer 5 in the same manner as the positive electrode layer.

上記固体電解質層5として、Li−P−S−Oからなるアモルファス膜や多結晶膜を採用できる。また、Li−P−O−Nからなるアモルファス膜や多結晶膜を負極側電解質として用いることもできる。   As the solid electrolyte layer 5, an amorphous film or a polycrystalline film made of Li—PS—O can be adopted. Further, an amorphous film or a polycrystalline film made of Li—P—O—N can also be used as the negative electrode side electrolyte.

図2に、本願発明の第2の実施形態に係る固体薄膜電池の断面図を示す。   FIG. 2 shows a cross-sectional view of a solid-state thin film battery according to the second embodiment of the present invention.

第2の実施形態に係る固体薄膜電池201は、集電体と兼用される支持体202として、アルミニウム(Al)、ニッケル(Ni)、ステンレス等の金属膜を採用している。上記支持体202上に正極層204と電気絶縁層208とを設け、これら両層の間に固体電解質層205が掛け渡し状に形成され、さらに、この固体電解質層205の上記正極層204と重ならない位置に負極層206が積層形成されている。なお、上記各層の材料、構成等は、上記第1の実施形態において説明したのと同様であるため、説明は省略する。   The solid thin film battery 201 according to the second embodiment employs a metal film such as aluminum (Al), nickel (Ni), and stainless steel as the support 202 that is also used as a current collector. A positive electrode layer 204 and an electrical insulating layer 208 are provided on the support 202, and a solid electrolyte layer 205 is formed between the two layers. Further, the solid electrolyte layer 205 overlaps with the positive electrode layer 204. A negative electrode layer 206 is laminated and formed at a position where it does not become necessary. Note that the material, configuration, and the like of each layer are the same as those described in the first embodiment, and a description thereof will be omitted.

上記正極層204は、上記支持体202の表面に所定のパターンで形成されているとともに、この支持体表面の上記正極層204が形成されていない部分に上記電気絶縁層208が形成されている。上記正極層204は、上記電気絶縁層208より厚く設定されており、上記正極層204の上部が、上記電気絶縁層208から突出した形態を備えている。   The positive electrode layer 204 is formed in a predetermined pattern on the surface of the support 202, and the electrical insulating layer 208 is formed on a portion of the support surface where the positive electrode layer 204 is not formed. The positive electrode layer 204 is set to be thicker than the electric insulating layer 208, and the upper portion of the positive electrode layer 204 has a form protruding from the electric insulating layer 208.

上記各正極層204の側縁部には、断面円弧状の面取り部207が形成されている。図2から明らかなように、上記円弧状の面取り部207を設けることにより、これら段落ち部において、上記固体電解質層205をほぼ均一な厚さで積層形成することが可能となり、これら部分における固体電解質層205の膜切れを防止できる。また、この積層形態においては、上記正極層204が形成されていない支持体202の表面に上記電気絶縁層208を設けているため、上記正極層204と上記電気絶縁層208との段落ち高さを小さく設定することにより、固体電解質層205の膜切れを防止する効果も期待できる。   A chamfered portion 207 having a circular arc cross section is formed on the side edge of each positive electrode layer 204. As is apparent from FIG. 2, by providing the arc-shaped chamfered portion 207, the solid electrolyte layer 205 can be formed in a substantially uniform thickness at these stepped portions, and the solid portions in these portions can be formed. The film breakage of the electrolyte layer 205 can be prevented. Further, in this laminated form, since the electric insulating layer 208 is provided on the surface of the support 202 where the positive electrode layer 204 is not formed, the step height between the positive electrode layer 204 and the electric insulating layer 208 is reduced. By setting a small value, an effect of preventing the solid electrolyte layer 205 from being broken can be expected.

上記面取り部207の断面円弧状の形態は特に限定されることはなく、上記固体電解質層205を所定の厚さで確実に積層形成できる形態を採用すれば良い。また、上記正極層204と上記支持体202の表面との境界部に、上記面取り部207と逆の形態の円弧状面取り部を形成して、上記正極層204と上記支持体202との積層強度を高めることもできる。   The form of the cross-section arc shape of the chamfered portion 207 is not particularly limited, and a form in which the solid electrolyte layer 205 can be surely laminated and formed with a predetermined thickness may be adopted. In addition, an arc-shaped chamfered portion having a shape opposite to that of the chamfered portion 207 is formed at the boundary between the positive electrode layer 204 and the surface of the support 202, and the lamination strength of the positive electrode layer 204 and the support 202 is increased. Can also be increased.

図3に、本願発明の第3の実施形態に係る固体薄膜電池の断面図を示す。   FIG. 3 shows a cross-sectional view of a solid-state thin film battery according to the third embodiment of the present invention.

第3の実施形態に係る固体薄膜電池301は、電気絶縁性の支持体302の表面に、正極側集電体303aと負極側集電体303bとを所定距離離間させて積層形成するとともに、この集電体上303a,303b上に正極層304及び負極層306をそれぞれ積層形成し、上記両電極層303a,303b及び上記支持体302の表面に掛け渡し状に固体電解質層305が積層形成されている。なお、上記各層の材料、構成等は、上記第1の実施形態において説明したのと同様であるため、説明は省略する。   In the solid thin film battery 301 according to the third embodiment, the positive electrode side current collector 303a and the negative electrode side current collector 303b are stacked on the surface of the electrically insulating support 302 with a predetermined distance therebetween. A positive electrode layer 304 and a negative electrode layer 306 are stacked on the current collectors 303 a and 303 b, respectively, and a solid electrolyte layer 305 is stacked on the surfaces of the electrode layers 303 a and 303 b and the support 302. Yes. Note that the material, configuration, and the like of each layer are the same as those described in the first embodiment, and a description thereof will be omitted.

第3の実施形態では、正極層304及び負極層306の側縁部に面取り部307a,307bを設けることにより、上記両電極層304,306の断面形態を略台形状に形成している。これにより、上記第1の実施形態及び第2の実施形態と同様に、上記両電極層304,306と上記支持体302の表面との間の段差に起因する固体電解質層の膜切れを防止することができる。   In the third embodiment, the chamfered portions 307a and 307b are provided on the side edge portions of the positive electrode layer 304 and the negative electrode layer 306, so that the cross-sectional shapes of both the electrode layers 304 and 306 are formed in a substantially trapezoidal shape. Thereby, similar to the first embodiment and the second embodiment, the solid electrolyte layer is prevented from being cut off due to a step between the electrode layers 304 and 306 and the surface of the support 302. be able to.

また、本実施形態においても、上記正極層304と上記負極層306とが、積層方向に重ならないため、上記固体電解質層305にピンホール等が存在していても、上記両電極層が短絡する恐れはない。   Also in this embodiment, since the positive electrode layer 304 and the negative electrode layer 306 do not overlap in the stacking direction, the two electrode layers are short-circuited even if a pinhole or the like exists in the solid electrolyte layer 305. There is no fear.

図4及び図5に基づいて、第1の実施形態に係る固体薄膜電池の製造方法について説明する。   Based on FIG.4 and FIG.5, the manufacturing method of the solid thin film battery which concerns on 1st Embodiment is demonstrated.

上記固体薄膜電池1は、上記支持体2の表面に所定の櫛歯状パターンで正極側集電体3を積層形成する集電体積層工程と、上記集電体3を覆うようにして上記支持体2の表面に正極層4を積層形成する正極層形成工程と、上記正極層4が積層形成された支持体をロールプレスすることにより、上記正極層4の側縁部に面取り部7を形成する面取り部形成工程と、上記面取り部7を形成した正極層4及び支持体2の所定領域に固体電解質層5を積層形成する固体電解質層形成工程と、積層された上記固体電解質層5の上記正極層4と重ならない位置に負極層6を形成する負極層形成工程とが、この順に行われる。   The solid thin film battery 1 includes a current collector stacking step in which the positive electrode side current collector 3 is stacked on the surface of the support 2 in a predetermined comb-like pattern, and the support 3 so as to cover the current collector 3. A chamfered portion 7 is formed on the side edge of the positive electrode layer 4 by roll pressing the positive electrode layer forming step of forming the positive electrode layer 4 on the surface of the body 2 and the support on which the positive electrode layer 4 is laminated. A chamfered portion forming step, a solid electrolyte layer forming step of laminating and forming a solid electrolyte layer 5 in a predetermined region of the positive electrode layer 4 and the support 2 on which the chamfered portion 7 is formed, and the solid electrolyte layer 5 laminated above A negative electrode layer forming step of forming the negative electrode layer 6 at a position not overlapping the positive electrode layer 4 is performed in this order.

図4に示すように、上記正極側集電部3と正極層4とが形成された積層体1aを、一対のローラ10a,10bを所定の隙間を開けて対向させたローラプレス装置10を用いてプレス加工することにより、上記面取り部形成工程が行われる。   As shown in FIG. 4, a roller press device 10 is used in which a laminated body 1a on which the positive current collector 3 and the positive electrode layer 4 are formed is opposed to a pair of rollers 10a and 10b with a predetermined gap therebetween. The chamfered portion forming step is performed by pressing.

上記一対のローラは、上記支持体2と上記正極層4とが積層形成された上記積層体1aの厚さより10μm〜200μm小さく設定されている。上記積層体1aを、上記線状に形成された正極層4の側縁部と直交する方向に向けて上記一対のローラ10a,10b間に通してプレス加工すると、上記線状正極層4の長手方向角部が押圧変形させられて、図5に示す面取り部7,7が形成され、断面略台形状の正極層4を形成することができる。なお、上記正極層4と支持体2との積層強度(剥離強度)を高めるため、上記ローラ10a,10bを、正極層に含まれる結着剤の融点より10℃〜100℃低い温度に加熱しながらプレス加工を行うのが好ましい。   The pair of rollers is set to be 10 μm to 200 μm smaller than the thickness of the stacked body 1 a in which the support 2 and the positive electrode layer 4 are stacked. When the laminated body 1a is pressed through the pair of rollers 10a and 10b in a direction perpendicular to the side edge of the linearly formed positive electrode layer 4, the longitudinal direction of the linear positive electrode layer 4 is increased. The corner portions are pressed and deformed to form the chamfered portions 7 and 7 shown in FIG. 5, and the positive electrode layer 4 having a substantially trapezoidal cross section can be formed. In order to increase the lamination strength (peeling strength) between the positive electrode layer 4 and the support 2, the rollers 10 a and 10 b are heated to a temperature 10 ° C. to 100 ° C. lower than the melting point of the binder contained in the positive electrode layer. However, it is preferable to perform press working.

次に、上記支持体の正極層を形成した所定の領域に、上記固体電解質層を積層形成する固体電解質層形成工程が行われる。その後、上記正極層と重ならない位置、すなわち隣接する正極層の中間部の上記固体電解質層表面に上記負極層を積層形成する負極層形成工程が行われて固体薄膜電池が形成される。なお、集電体形成工程、上記正極層形成工程、上記固体電解質層形成工程及び上記負極層形成工程は、上述した手法と同様の手法を用いて行われるため、説明は省略する。   Next, a solid electrolyte layer forming step is performed in which the solid electrolyte layer is laminated and formed in a predetermined region where the positive electrode layer of the support is formed. Thereafter, a negative electrode layer forming step is performed in which the negative electrode layer is formed on the surface of the solid electrolyte layer at a position that does not overlap with the positive electrode layer, that is, between the adjacent positive electrode layers, thereby forming a solid thin film battery. Note that the current collector forming step, the positive electrode layer forming step, the solid electrolyte layer forming step, and the negative electrode layer forming step are performed using the same method as described above, and thus description thereof is omitted.

その後、上記固体薄膜電池の片側又は両側に封止フィルムを配置してロールプレスして、上記封止フィルムの周縁部を他方の封止フィルム又は上記支持体2に加熱圧着することにより、パッケージングされて電池が完成する。   Thereafter, a sealing film is disposed on one side or both sides of the solid thin film battery and roll-pressed, and the peripheral portion of the sealing film is thermocompression-bonded to the other sealing film or the support 2, thereby packaging. The battery is completed.

上記製造方法によって形成された第1の実施形態に係る積層構造を備える固体薄膜電池1において、上記面取り部7を設けることによる作用及び効果を以下に記載した実施列及び比較例に基づいて説明する。   In the solid-state thin film battery 1 having the laminated structure according to the first embodiment formed by the above manufacturing method, the operation and effect by providing the chamfered portion 7 will be described based on the following embodiments and comparative examples. .

〔実施例〕
1.支持体
PPS 厚さ50μm
2.正極層
MnO2 粒+カーボンブラック+PVDF 厚さ100μm
3.正極層含浸イオン液体
EMI−FSI
4.固体電解質層
Li2 S+P2 S5 厚さ 3μm
5.負極層
Li金属膜 厚さ25μm
6.構造
発電部 3cm2
電極線幅 0.5mm
正負極層間のギャップ幅 0.3mm
7.正極層断面形態
支持体表面との傾斜角度T=60°となる面取り部を備える断面台形状
8.面取り部の製造方法
正極層を塗着形成した後、上下ローラに1tonの挟圧力を作用させてロールプレス加工
9.アルミラミネート箔を電池両側部に設け、温度120°でロールプレスして
アルミラミネート箔の周縁部を熱圧着により封止した。
〔Example〕
1. Support PPS thickness 50μm
2. Positive electrode layer MnO2 grain + carbon black + PVDF thickness 100μm
3. Positive electrode layer impregnated ionic liquid EMI-FSI
4). Solid electrolyte layer Li2 S + P2 S5 thickness 3 μm
5. Negative electrode layer Li metal film thickness 25μm
6). Structure Power generation unit 3cm 2
Electrode line width 0.5mm
Gap width between positive and negative electrode layers 0.3mm
7). Cross-sectional shape of positive electrode layer Sectional trapezoidal shape including a chamfered portion with an inclination angle T = 60 ° with the support surface. 8. Manufacturing method of chamfered portion After the positive electrode layer is applied and formed, roll pressing is performed by applying a 1 ton pinching pressure to the upper and lower rollers. Aluminum laminate foil was provided on both sides of the battery and roll pressed at a temperature of 120 ° to seal the peripheral edge of the aluminum laminate foil by thermocompression bonding.

〔比較例〕
1.支持体
PPS 厚さ50μm
2.正極層
MnO2 粒+カーボンブラック+PVDF 厚さ100μm
3.正極層含浸イオン液体
EMI−FSI
4.固体電解質層
Li2 S+P2 S5 厚さ3μm
5.負極層
Li金属膜 厚さ25μm
6.構造
発電部 3cm2
電極層線幅 0.5mm
正負極層間のギャップ幅 0.3mm
7.正極断面形態
支持体表面との角度T=90°である断面矩形状形態
8. ロールプレス加工なし
9.アルミラミネート箔を電池両側部に設け、温度120°でロールプレスして
アルミラミネート箔の周縁部を熱圧着により封止した。
[Comparative example]
1. Support PPS thickness 50μm
2. Positive electrode layer MnO2 grain + carbon black + PVDF thickness 100μm
3. Positive electrode layer impregnated ionic liquid EMI-FSI
4). Solid electrolyte layer Li2 S + P2 S5 thickness 3 μm
5. Negative electrode layer Li metal film thickness 25μm
6). Structure Power generation unit 3cm 2
Electrode layer line width 0.5mm
Gap width between positive and negative electrode layers 0.3mm
7). Cross-sectional shape of positive electrode Form of rectangular cross-section with angle T = 90 ° with support surface 8. No roll press processing 9. Aluminum laminate foil was provided on both sides of the battery and roll pressed at a temperature of 120 ° to seal the peripheral edge of the aluminum laminate foil by thermocompression bonding.

〔比較結果〕
1. 実施例及び比較例に係る固体薄膜電池について、1mA放電時における電圧低下を計測した。
上記面取り部を設けた本願の実施例では、電圧低下が0.1Vであったのに対し、上記面取り部が形成されていない比較例では、0.6Vであった。
2. 顕微鏡によって、上記実施例と上記比較例に係る固体薄膜電池を観察したところ、比較例に係る固体薄膜電池の正極側の側縁部に固体電解質層の膜切れが認められた。一方、実施例に係る固体薄膜電池では、正極層の側縁部に固体電解質層が膜切れなく形成されていた。
〔Comparison result〕
1. About the solid thin film battery which concerns on an Example and a comparative example, the voltage fall at the time of 1 mA discharge was measured.
In the example of the present application provided with the chamfered portion, the voltage drop was 0.1 V, whereas in the comparative example in which the chamfered portion was not formed, it was 0.6 V.
2. When the solid thin film batteries according to the examples and the comparative example were observed with a microscope, the solid electrolyte layer was cut off at the side edge on the positive electrode side of the solid thin film battery according to the comparative example. On the other hand, in the solid thin film battery according to the example, the solid electrolyte layer was formed without film breakage on the side edge of the positive electrode layer.

上記実施例と上記比較例との比較結果から明らかなように、上記面取り部を設けることにより、正極層と支持体間の段落ち部における固体電解質層の膜切れがなくなるため、電圧低下を大幅に改善できることが判明した。したがって、性能の安定した固体薄膜電池を歩留り良く製造することができる。また、電池が曲折等された場合にも、上記段落ち部近傍における電極層の縁部や固体電解質層に応力や変形が集中しにくくなって、電極層の剥離や固体電解質層の亀裂の発生を防止して、フレキシブル性の高い電池を、安価に製造することが可能となる。   As is clear from the comparison results between the above example and the above comparative example, the provision of the chamfered portion eliminates the film breakage of the solid electrolyte layer at the stepped portion between the positive electrode layer and the support, thereby greatly reducing the voltage drop. It was found that it can be improved. Therefore, a solid thin film battery with stable performance can be manufactured with high yield. In addition, even when the battery is bent, stress and deformation are less likely to concentrate on the edge of the electrode layer and the solid electrolyte layer in the vicinity of the stepped portion, and peeling of the electrode layer and generation of cracks in the solid electrolyte layer occur. Thus, a highly flexible battery can be manufactured at low cost.

本願発明は、上述の実施形態に限定されることはない。今回開示された実施形態は、すべての点で例示であって、制限的なものではないと考えられるべきである。本願発明の範囲は、上記説明した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The present invention is not limited to the embodiment described above. It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined not by the above-described meaning but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

本願発明によって、安定した性能を発揮できるとともに歩留りの良い固体薄膜電池を安価に製造することができる。   According to the present invention, a solid thin film battery that can exhibit stable performance and has a high yield can be manufactured at low cost.

本願発明の第1の実施形態に係る固体薄膜電池の断面図である。It is sectional drawing of the solid thin film battery which concerns on the 1st Embodiment of this invention. 本願発明の第2の実施形態に係る固体薄膜電池の断面図である。It is sectional drawing of the solid thin film battery which concerns on 2nd Embodiment of this invention. 本願発明の第3の実施形態に係る固体薄膜電池の断面図である。It is sectional drawing of the solid thin film battery which concerns on 3rd Embodiment of this invention. 本願発明に係る固体薄膜電池の製造方法における面取り部形成工程の概要を示す斜視図である。It is a perspective view which shows the outline | summary of the chamfer part formation process in the manufacturing method of the solid thin film battery which concerns on this invention. 本願発明に係る固体薄膜電池の製造方法における面取り部形成工程の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the chamfer part formation process in the manufacturing method of the solid thin film battery which concerns on this invention.

符号の説明Explanation of symbols

1 固体薄膜電池
2 支持体
4 正極層
5 固体電解質層
6 負極層
7 面取り部
DESCRIPTION OF SYMBOLS 1 Solid thin film battery 2 Support body 4 Positive electrode layer 5 Solid electrolyte layer 6 Negative electrode layer 7 Chamfer

Claims (8)

正極層と、負極層と、これら層間に配置された固体電解質層と、これら各層が積層保持される支持体とを備える固体薄膜電池であって、
上記正極層又は/及び上記負極層の側縁部に面取り部を設けた、固体薄膜電池。
A solid thin film battery comprising a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between these layers, and a support on which each of these layers is laminated and held,
A solid thin film battery in which a chamfered portion is provided on a side edge of the positive electrode layer and / or the negative electrode layer.
上記面取り部を介して、上記電極層と厚さ方向に段差のある他の領域間に掛け渡し状に形成された固体電解質層を備える、請求項1に記載の固体薄膜電池。   The solid thin film battery according to claim 1, further comprising a solid electrolyte layer formed in a spanning manner between the electrode layer and another region having a step in the thickness direction via the chamfered portion. 上記正極層又は/及び上記負極層が断面略台形状となる上記面取り部を備える、請求項1又は請求項2のいずれかに記載の固体薄膜電池。   The solid film battery according to claim 1, wherein the positive electrode layer and / or the negative electrode layer includes the chamfered portion having a substantially trapezoidal cross section. 上記正極層又は/及び上記負極層が所定幅を有する線状部を備えるとともに、少なくとも上記線状部の長手方向側縁部に上記面取り部を設けた、請求項1から請求項3のいずれかに記載の固体薄膜電池。   The positive electrode layer and / or the negative electrode layer includes a linear portion having a predetermined width, and at least the chamfered portion is provided at a longitudinal side edge of the linear portion. The solid thin film battery described in 1. 上記正極層と上記負極層は、積層方向に重ならないように上記支持体上に積層形成されている、請求項1から請求項4のいずれかに記載の固体薄膜電池。   5. The solid thin film battery according to claim 1, wherein the positive electrode layer and the negative electrode layer are stacked on the support so as not to overlap in the stacking direction. 上記面取り部は、上記支持体表面に対して20°〜70°の角度で形成されている、請求項1から請求項5のいずれかに記載の固体薄膜電池。   6. The solid thin film battery according to claim 1, wherein the chamfered portion is formed at an angle of 20 ° to 70 ° with respect to the support surface. 正極層と、負極層と、これら層間に配置された固体電解質層と、これら各層が積層保持される支持体とを備える固体薄膜電池の製造方法であって、
上記支持体表面に、上記正極層又は/及び上記負極層を積層形成する電極層積層形成工程と、
上記正極層又は/及び負極層の側縁部に面取り部を形成する面取り部形成工程と、
固体電解質を上記正極層と上記負極層との間に積層形成する固体電解質層形成工程とを含む、固体薄膜電池の製造方法。
A method for producing a solid thin film battery comprising a positive electrode layer, a negative electrode layer, a solid electrolyte layer disposed between these layers, and a support on which each of these layers is laminated and held,
An electrode layer stacking step of stacking the positive electrode layer or / and the negative electrode layer on the support surface;
A chamfered portion forming step of forming a chamfered portion on a side edge of the positive electrode layer or / and the negative electrode layer;
A method for producing a solid thin film battery, comprising: a solid electrolyte layer forming step of forming a solid electrolyte between the positive electrode layer and the negative electrode layer.
上記面取り部形成工程は、上記電極層が形成された支持体をロールプレスすることにより行われる、請求項7に記載の固体薄膜電池の製造方法。   The said chamfer part formation process is a manufacturing method of the solid thin film battery of Claim 7 performed by roll-pressing the support body in which the said electrode layer was formed.
JP2007138090A 2007-05-24 2007-05-24 Solid thin film battery, and manufacturing method of solid thin film battery Withdrawn JP2008293793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138090A JP2008293793A (en) 2007-05-24 2007-05-24 Solid thin film battery, and manufacturing method of solid thin film battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138090A JP2008293793A (en) 2007-05-24 2007-05-24 Solid thin film battery, and manufacturing method of solid thin film battery

Publications (1)

Publication Number Publication Date
JP2008293793A true JP2008293793A (en) 2008-12-04

Family

ID=40168321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138090A Withdrawn JP2008293793A (en) 2007-05-24 2007-05-24 Solid thin film battery, and manufacturing method of solid thin film battery

Country Status (1)

Country Link
JP (1) JP2008293793A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120601A3 (en) * 2009-04-13 2011-01-13 Applied Materials, Inc. High power, high energy and large area energy storage devices
US20110300440A1 (en) * 2010-06-08 2011-12-08 Takeshi Matsuda Battery, vehicle, electronic device and battery manufacturing method
JP2012074201A (en) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd Lithium ion secondary battery, vehicle, electronic device and manufacturing method of lithium ion secondary battery
JP2012195061A (en) * 2011-03-15 2012-10-11 Dainippon Screen Mfg Co Ltd Device and method of forming active material layer, and method of manufacturing battery
JP2012199150A (en) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing device of electrode for battery
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same
JP2015050153A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Laminate for all-solid state battery
KR20160142654A (en) * 2015-06-03 2016-12-13 삼성전자주식회사 Secondary battery structure/system and methods of manufacturing and operating the same
CN108963320A (en) * 2017-05-18 2018-12-07 松下知识产权经营株式会社 battery
JP2020173954A (en) * 2019-04-10 2020-10-22 本田技研工業株式会社 Positive electrode for all-solid-state battery and all-solid-state battery
CN114127984A (en) * 2019-07-18 2022-03-01 株式会社村田制作所 Solid-state battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2419956A2 (en) * 2009-04-13 2012-02-22 Applied Materials, Inc. High power, high energy and large area energy storage devices
JP2012523676A (en) * 2009-04-13 2012-10-04 アプライド マテリアルズ インコーポレイテッド High power, high energy, and large area energy storage devices
EP2419956A4 (en) * 2009-04-13 2014-01-08 Applied Materials Inc High power, high energy and large area energy storage devices
WO2010120601A3 (en) * 2009-04-13 2011-01-13 Applied Materials, Inc. High power, high energy and large area energy storage devices
US9017868B2 (en) * 2010-06-08 2015-04-28 SCREEN Holdings Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
US20110300440A1 (en) * 2010-06-08 2011-12-08 Takeshi Matsuda Battery, vehicle, electronic device and battery manufacturing method
JP2011258367A (en) * 2010-06-08 2011-12-22 Dainippon Screen Mfg Co Ltd Battery, vehicle, electronic apparatus and method of manufacturing battery
JP2012074201A (en) * 2010-09-28 2012-04-12 Dainippon Screen Mfg Co Ltd Lithium ion secondary battery, vehicle, electronic device and manufacturing method of lithium ion secondary battery
JP2012195061A (en) * 2011-03-15 2012-10-11 Dainippon Screen Mfg Co Ltd Device and method of forming active material layer, and method of manufacturing battery
JP2012199150A (en) * 2011-03-22 2012-10-18 Dainippon Screen Mfg Co Ltd Manufacturing method of electrode for battery and manufacturing device of electrode for battery
JP2013182842A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp All-solid secondary battery and method for manufacturing the same
JP2015050153A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Laminate for all-solid state battery
KR20160142654A (en) * 2015-06-03 2016-12-13 삼성전자주식회사 Secondary battery structure/system and methods of manufacturing and operating the same
KR102496474B1 (en) * 2015-06-03 2023-02-06 삼성전자주식회사 Secondary battery structure/system and methods of manufacturing and operating the same
CN108963320A (en) * 2017-05-18 2018-12-07 松下知识产权经营株式会社 battery
JP2020173954A (en) * 2019-04-10 2020-10-22 本田技研工業株式会社 Positive electrode for all-solid-state battery and all-solid-state battery
CN111816837A (en) * 2019-04-10 2020-10-23 本田技研工业株式会社 Positive electrode for all-solid-state battery and all-solid-state battery
JP7096195B2 (en) 2019-04-10 2022-07-05 本田技研工業株式会社 All solid state battery
US11600826B2 (en) 2019-04-10 2023-03-07 Honda Motor Co., Ltd. All-solid-state battery positive electrode and all-solid-state battery
CN111816837B (en) * 2019-04-10 2023-08-25 本田技研工业株式会社 Positive electrode for all-solid-state battery and all-solid-state battery
CN114127984A (en) * 2019-07-18 2022-03-01 株式会社村田制作所 Solid-state battery

Similar Documents

Publication Publication Date Title
JP2008293793A (en) Solid thin film battery, and manufacturing method of solid thin film battery
US11114687B2 (en) Battery
JP5776446B2 (en) Battery electrode manufacturing method and battery electrode
JP5772397B2 (en) Battery electrode manufacturing method and battery electrode
WO2018154989A1 (en) Secondary battery and method for producing same
US10741820B2 (en) Rechargeable battery
JP6575557B2 (en) All-solid battery and method for producing all-solid battery
CN105190945B (en) Thin battery
JP7046185B2 (en) Positive electrode for solid-state battery, method for manufacturing positive electrode for solid-state battery, and solid-state battery
JP2022043327A (en) All-solid battery
JP7220617B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP2009093812A (en) Laminated cell
JP7182159B2 (en) All-solid battery
WO2018016112A1 (en) Secondary battery and production method therefor
JP7160922B2 (en) Positive electrode for solid battery, manufacturing method for positive electrode for solid battery, and solid battery
US20200112063A1 (en) Manufacturing method of solid-state battery
JP2008243761A (en) Solid thin-film battery
JP3709495B2 (en) Lithium ion polymer secondary battery
JP2008300191A (en) Solid thin film battery
TWI810408B (en) Lithium secondary battery
JP2019102196A (en) Manufacturing method of battery
EP3863098A1 (en) Solid-state battery
WO2018154987A1 (en) Secondary battery and method for producing same
CN113169375B (en) All-solid battery
JP2020098696A (en) All-solid battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100706

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110824