WO2016133164A1 - Low potassium food product, manufacturing method therefor and manufacturing kit - Google Patents

Low potassium food product, manufacturing method therefor and manufacturing kit Download PDF

Info

Publication number
WO2016133164A1
WO2016133164A1 PCT/JP2016/054728 JP2016054728W WO2016133164A1 WO 2016133164 A1 WO2016133164 A1 WO 2016133164A1 JP 2016054728 W JP2016054728 W JP 2016054728W WO 2016133164 A1 WO2016133164 A1 WO 2016133164A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium
food
acid
sodium
calcium
Prior art date
Application number
PCT/JP2016/054728
Other languages
French (fr)
Japanese (ja)
Inventor
柳田 友隆
未来 中村
太朗 本猪木
Original Assignee
株式会社クレアテラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレアテラ filed Critical 株式会社クレアテラ
Priority to JP2016535059A priority Critical patent/JP6086417B2/en
Publication of WO2016133164A1 publication Critical patent/WO2016133164A1/en

Links

Images

Definitions

  • the present invention relates to a method for removing potassium without impairing the flavor and texture of food and a low potassium food.
  • the kidney regulates the excretion of waste, water and electrolytes, and keeps the body environment constant. When the kidney function falls and the homeostasis in the body cannot be maintained, various symptoms called uremia appear in the whole body.
  • Dialysis patients need to pay attention to various components in their diet, and in particular, the amount of potassium that causes hyperkalemia needs to be limited to a certain level. Since hyperkalemia can cause fatal arrhythmias and cardiac arrest, dietary guidance for potassium restriction needs to be continued from the beginning of dialysis treatment. The amount of potassium that can be taken per day varies depending on the stage, but it must be limited to 1500 to 2000 mg or less.
  • Vegetables and fruits contain a lot of potassium among foods, and patients who are restricted by potassium are often restricted from taking vegetables and fruits that contain a lot of potassium.
  • it is recommended to perform certain cooking because the amount of potassium can be reduced.
  • the dietary habits of patients who are subject to potassium restriction are often limited, and the restricted dietary life may be stressed, which may cause problems in terms of QOL (Quality of Life). is there.
  • Patent Documents 1 and 2 disclose methods for cultivating with a culture solution such as hydroponics.
  • Patent Document 1 discloses a technique for cultivating low potassium spinach by hydroponics.
  • Patent Document 2 discloses that a low potassium crop was obtained by a method of cultivating a crop by hydroponic or pearlite plowing. It has been shown that over 40% of potassium can be removed from melon or the like using either hydroponics or perlite cultivation.
  • Non-Patent Documents 1 and 2 a method of removing potassium from food by adding an acid such as vinegar is known (Non-Patent Documents 1 and 2).
  • Non-Patent Document 1 describes that potassium is removed by immersing food in an organic acid such as 0.5% or 1% acetic acid or malonic acid.
  • Non-Patent Document 2 describes a method of removing potassium by immersing in 1% vinegar water (acetic acid concentration: 0.042%).
  • Patent Document 3 The method of removing potassium with an acid has been applied as a method for producing low protein, low potassium, low phosphorus calcium-fortified rice (Patent Document 3).
  • Patent Document 3 rice is immersed in an acidic solution, neutralized with an alkaline calcium compound, washed with water, boiled, and the rice is boiled. A method is disclosed.
  • Example 1 potassium is reduced to 20.2 mg (weight in 100 g of dry matter, 22.9% relative to the potassium value in the 5th edition supplemented Japanese food composition table), and calcium is reduced. Increased to 148.6 mg (weight in 100 g dry matter, equivalent ratio 2970% with respect to calcium value in food composition table).
  • Patent Documents 4 and 5 describe the modification of the mineral composition of beans and wheat, and Document 5 describes the mineral composition of rice. It is described that potassium decreases with enrichment of magnesium and sodium.
  • the method of removing potassium during cooking which is generally performed at present, specifically, methods such as boiling and spilling and exposing to water are effective from the viewpoint of potassium removal.
  • methods such as boiling and spilling and exposing to water are effective from the viewpoint of potassium removal.
  • vegetables and fruits cannot be eaten raw, and it is necessary to boil them for a long time before spilling them.
  • the method of removing potassium by exposure to water requires exposure to water for a long time, and there is a problem that the taste and aroma are impaired as in the case of spilling boiled.
  • vegetables that can be cultivated as low potassium vegetables by hydroponics are limited to leafy vegetables with a short cultivation period, for example, crops such as leaf lettuce and spinach.
  • Patent Document 2 is an invention of “a method for cultivating vegetables or fruits”, and assumes melon and straw as crops.
  • Perlite is used to fill the roots of crops, and both crops grow with only nutrients from the culture solution, whether hydroponically or pearlite. Therefore, it is limited to crops that can be cultivated with a culture solution, regardless of hydroponics or pearlite cultivation. Therefore, the cultivatable crops are limited varieties.
  • Non-Patent Documents 1 and 2 the method of removing potassium by dipping in an organic acid or vinegar used for cooking during cooking can provide vegetables that can be eaten raw. .
  • a high concentration acid such as 0.5% acetic acid to remove potassium
  • the color, smell and taste are impaired. It is.
  • the acidity was strong and the original taste was impaired.
  • the short-time treatment with a low-concentration acid in Non-Patent Document 2 does not impair the taste of food, but the amount of potassium removed is small, so it cannot be said that it is a very effective potassium removal method.
  • Patent Document 3 is an invention specialized in removing potassium and the like from rice. Therefore, it is difficult to apply this method to root vegetables that are difficult to reduce potassium by hydroponics, and vegetables and fruits such as pumpkins. That is, when these agricultural products are neutralized with calcium hydroxide, they become hard and cause a problem that the texture is remarkably impaired. Moreover, in the case of vegetables cut into blocks, there is a problem that calcium for neutralization is localized on the surface and a strong bitter taste is felt.
  • Patent Documents 4 and 5 Since the inventions described in Patent Documents 4 and 5 are not intended to remove potassium, the residual ratio of potassium in food is high, and it is not suitable for patients with kidney disease. In particular, since beans are foods with a high potassium content, the amount of potassium that decreases with enrichment of magnesium or the like cannot be said to have sufficiently removed potassium for kidney disease patients.
  • Patent Documents 6 to 9 realize low potassium as processed food. Therefore, although potassium in food has been sufficiently removed, kidney disease patients could not cook to their own taste. Patients with kidney disease are stressed by long-term dietary restrictions, and the families of patients who are cooking have a desire to eat at the same menu as the patients. Potassium food was desired.
  • the present inventors have already developed a method for removing potassium from various foods in order to solve the above problems.
  • the present inventors have developed a method for removing potassium while retaining the texture of the food by electrically removing potassium from the food.
  • potassium can be sufficiently removed, there is a problem in that when removing potassium, the pH of the food is lowered and may become sour.
  • potassium can be sufficiently removed by treatment with a high-concentration acid, it has a strong acidity and is significantly different from the taste of the original food.
  • the present invention solves the problem that after removing potassium from various foods by an appropriate method, the food is more acidic by removing potassium, so that the flavor and texture are not impaired while being low in potassium. To provide food.
  • the method for producing a low potassium food for removing potassium from harvested agricultural products includes a step of removing potassium from food, a step of calculating an amount of potassium removed from the food, and an equivalent amount relative to the removed potassium. It is characterized by supplementing sodium and / or calcium in a ratio of 0.15 to 1.25.
  • the amount of potassium removed from food can be measured with a potassium ion meter or the like, and the total amount can be calculated.
  • the amount of potassium removed from food can be measured with a potassium ion meter or the like, and the total amount can be calculated.
  • the sourness generated by the potassium removal treatment can be neutralized. It is more preferable to supplement the food with sodium and / or calcium having an equivalent ratio of 0.4 to 0.9 with respect to the amount of potassium removed.
  • By supplementing food with sodium and / or calcium in an equivalence ratio of 0.4 to 0.9 not only the results of the sensory test, but also fermentation occurs equivalent to those without potassium removal. Therefore, it is thought that it has returned to the state closer to the original food.
  • Non-patent Document 3 It is known that the sour taste felt as a taste is due to the chemical structure of the acid (Non-patent Document 3). It is also known that basic four tastes such as acidity, saltiness, sweetness, and bitterness affect each other (Non-Patent Document 4). Therefore, depending on the food, there may be a sense of sourness when the food is supplemented with sodium and / or calcium having an equivalent ratio of 0.15 by other tastes such as the structure and saltiness of the acid already contained. Even in that case, the original taste of the food is restored by adding sodium and / or calcium having an equivalent ratio of 0.4 or more. Moreover, as long as sodium and / or calcium up to an equivalent ratio of 0.7 is supplemented to the food, no salty taste due to the added sodium or bitterness due to calcium will be felt in any food.
  • the present inventors after performing a treatment for removing potassium from food, add sodium and / or calcium having an equivalent ratio of 0.15 or less, which is smaller than the amount of removed potassium, to the extent that no sour taste is felt. As a result, it was clarified that a low-potassium food from which potassium was removed without changing the taste of food, flavor such as aroma, and texture was maintained. In addition, when an excessive amount of sodium and / or calcium is added, a taste of salty taste is felt, so it is not desirable to add it in excess of an equivalent ratio of 1.25.
  • the daily salt intake of patients with chronic kidney disease should be limited to 6 g or less and potassium to 1500 mg or less.
  • 50% potassium, that is, 225 mg potassium (5.75 meq) is removed from 100 g of western pumpkin (potassium content 450 mg / 100 g)
  • the equivalent amount of sodium is 132 mg. This corresponds to 0.34 g in terms of salt.
  • the taste can be restored even with calcium alone or in combination with calcium and sodium. Therefore, the pH can be recovered and the taste can be restored without increasing the amount of sodium in the food.
  • the step of removing potassium from the food is a step of removing potassium by applying an electric field or a step of removing potassium by acid immersion.
  • potassium in the food can be removed without impairing the texture.
  • potassium can also be effectively removed by immersing in an acid such as acetic acid.
  • the amount of potassium removed from food can be easily measured by measuring the amount of potassium eluted using a potassium meter. Can be requested.
  • the step of removing potassium from the food is a step of removing potassium by acid immersion
  • the acid is a mineral acid such as hydrochloric acid or sulfuric acid, acetic acid, malonic acid, citric acid, It is at least one acid selected from organic acids such as ascorbic acid, succinic acid and lactic acid.
  • any acid may be used as long as it is an acid used for food processing.
  • acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid are preferable because they are easily available and have a high potassium removal effect.
  • the low potassium food production method of the present invention is characterized in that the step of removing potassium from the food is immersed in 0.5 to 2.0% acetic acid.
  • acetic acid is preferable because it has a high potassium removal effect in various foods and is inexpensive.
  • potassium can be removed in a relatively short time by using it at a concentration of 0.5 to 2.0% depending on food.
  • the concentration of acetic acid used for the treatment is preferably 0.5 to 2.0%.
  • the low potassium food obtained by removing potassium from the harvested agricultural product of the present invention has a potassium value of 70% or less of the potassium value of the food shown in the food ingredient table, and the sodium value in the food.
  • the sum of each equivalent of the calcium value is 250% or more of the sum of the equivalents calculated from the sodium value and the calcium value described as the ingredient value of the food shown in the food ingredient table.
  • the component values of agricultural products depend on their origin, harvest time, and variety, and are not constant. However, even if the potassium value of agricultural products after harvesting is much higher than the standard value, it is easy to remove potassium up to 70% or less of the component value shown in the food composition table. can do.
  • the food composition table refers to the 5th edition supplemented Japanese food composition table or the Japan Food Standard Composition Table 2015 edition (seventh edition).
  • the food composition table summarizes the average values measured according to the dietary habits and agricultural products of each country. In any case, potassium can be removed up to 70% or less based on the values in the component table of each country which is a standard value.
  • the harvested agricultural products processed by the production method of the present invention can be distinguished by the amount of potassium value, sodium value and calcium value.
  • the low potassium food obtained by removing potassium from the harvested agricultural product of the present invention is characterized in that the potassium value is 50% or less of the potassium value of the food shown in the food composition table.
  • potassium For patients with kidney disease, it is desirable to reduce the amount of potassium taken. It is desirable to reduce the burden on the kidney to 50% or less, more preferably 40% or less, particularly preferably 30% or less of the potassium value in the food composition table. Potassium values vary depending on the type of vegetable, and the ease of potassium removal varies depending on the vegetable. However, if it is suppressed to about 50%, the burden on the patient's kidney can be suppressed. Therefore, it is desirable to provide vegetables with a potassium value reduced to 50% or less.
  • the kit for removing potassium from the harvested agricultural product of the present invention to obtain a low potassium food is at least one selected from acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid. It is characterized by comprising sodium salt and / or calcium salt for supplementing sodium and / or calcium in an equivalent ratio of 0.15 to 1.25 with respect to the acid and the removed potassium.
  • the kit may contain an acid for removing potassium and a sodium salt and / or a calcium salt.
  • the acid is 0.5 to 2.0% acetic acid
  • the alkali to be added is any one or more of sodium bicarbonate, sodium hydroxide, and calcium hydroxide. It is characterized by being.
  • acetic acid In order to remove potassium, 0.5 to 2.0% acetic acid is preferable because it can efficiently remove potassium from various foods and is easily available. Further, as the alkali for neutralizing the acid, sodium hydrogen carbonate, sodium hydroxide, and calcium hydroxide are preferable because they are easily available and relatively easily penetrate into food.
  • the kit for obtaining the low potassium food of the present invention is characterized by comprising a measuring device for measuring potassium removed from the food.
  • the figure which shows the apparatus which removes potassium with an acid The figure which shows the apparatus which removes potassium by electricity supply.
  • the agricultural product is a crop cultivated mainly as a cultivated crop, and according to the classification of the 5th edition Japanese food standard ingredient table or the Japanese food standard ingredient table 2015 edition (seventh edition), cereals , Beans, seeds, vegetables, fruits, mushrooms, algae.
  • cereals, potatoes, beans, and vegetables such as root vegetables, heading leafy vegetables, and apples that cannot be cultivated by a culture solution are difficult to grow by hydroponics. Since it can be made into a low potassium food without impairing the flavor, the method is very effective in providing various foods.
  • the method for producing a low potassium food of the present invention includes potatoes such as potatoes, sweet potatoes, root vegetables such as carrots, radishes and burdock, pumpkins, vegetables cooked by cutting into blocks, beans with high potassium, etc. It is a very useful method for providing foods that could not be provided as low potassium foods by conventional methods.
  • the “low potassium food” refers to a food obtained by removing potassium from a harvested agricultural product before seasoning. Specifically, it refers to the state of the raw material before seasoning at the stage where the food is in the state of the lower rice cake, the state in which they are frozen before or after the potassium removal process, or the taste is restored by neutralizing them. Also, liquid processed foods such as juice and soy milk, processed foods powdered after potassium removal, etc., can be made sufficiently low potassium by conventional techniques, and are excluded from the “low potassium food” of the present invention.
  • the low potassium food of the present invention refers to a food in which the amount of potassium is reduced when being provided as food after being cooked or heated.
  • the Na concentration (Nae) contained when the target vegetable is boiled at a saline concentration corresponding to Clh is measured.
  • the equivalent ratio of chlorine (Cle) and sodium (Nae) added to the vegetables was not 1: 1, but Nae / I know Cle changes.
  • the Na concentration (Nas) of the low potassium vegetable simple substance contained in the food is measured, and the Na amount (A) of the low potassium vegetable before seasoning is calculated by the following formula.
  • A Nas-Clh ⁇ Nae / Cle
  • the unseasoned vegetables contain almost no chlorine or sodium. Therefore, most of the sodium in the vegetable obtained by wiping the surface of the low potassium vegetable contained in the food is a component derived from the seasoning containing sodium chloride (salt). With respect to seasonings composed of other sodium salts such as sodium glutamate, sodium added by these materials can be calculated in the same manner. Moreover, when low potassium agricultural products from which potassium has been removed with hydrochloric acid are used, the chlorine concentration is high due to the penetration of chlorine into the agricultural products. In that case, the chlorine concentration contained in the vegetables is higher than the value calculated from the chlorine concentration contained in the seasoning, but the potassium concentration of the food before seasoning is calculated by correcting the measured value. Can do.
  • the term “low potassium food” in the present invention means that the amount of potassium contained in the food is 70% or less of the component value in the food composition table. Moreover, it is preferable to make it 50% or less, and it is more preferable to make it 30% or less so that the kidney disease patient who is restricting a meal may take in a daily meal. In addition, after removing potassium, the taste is restored by sodium and / or calcium, so sodium and / or calcium is greater than the value listed in the food composition table, and the sum of equivalents is 250% or more. .
  • the food composition table used as the standard of potassium value is data that summarizes the component values of foods that are ingested daily and are analyzed and published by government agencies in each country or similar institutions. For example, in the case of Japan, it refers to the 5th edition supplementary Japanese food standard ingredient table or the Japanese food standard ingredient table 2015 edition (seventh edition). In the case of the United States, the data compiled by “the Nutrient Data Laboratory” In this case, it means “Composition nu- tionnel des alignments TABLE Ciral 2012” or the like. Furthermore, it is data that summarizes the component values of foods that have been published in various countries that are equivalent to this.
  • the amount of potassium is 450 mg / 100 g (11.51 meq / 100 g) according to the five amended Japanese food standard ingredient table, whereas the amount of sodium is 1.0 mg / 100 g (0. 043 meq / 100 g) and calcium content 15 mg / 100 g (0.75 meq / 100 g). Therefore, it is possible to distinguish between a low potassium amount and a high sodium / calcium amount.
  • Example 1 Method of producing low potassium food by acid immersion
  • the method of removing potassium using an electrode which will be described later, is suitable for the treatment of food having a certain size because it needs to be in close contact with the electrode during the energization treatment.
  • vegetables with shapes having a large surface area and a small volume such as processing of small things such as beans and grains, and sliced and shredded vegetables, are efficiently extracted with potassium by being immersed in acid.
  • FIG. 1 shows an apparatus 1 for removing potassium by acid treatment and returning taste by neutralization with an alkaline agent.
  • Put acid such as acetic acid into the container 2 and place food on the partition plate 3.
  • a stirring blade 4 is provided at the bottom so that the acid is always stirred so that the eluted potassium does not stay around the food.
  • the amount of eluted potassium can be measured with a potassium ion meter 5.
  • any device may be used as long as the solution can be stirred and circulated, such as solution circulation using a stirrer or a pump.
  • the stirring device may be provided anywhere on the top and side as well as the bottom as long as stirring is efficiently performed depending on the shape and size of the container.
  • the partition plate 3 is provided with holes so as to communicate with each other.
  • any structure may be used as long as the eluted potassium does not stay around the food, using a net or a basket. Also good.
  • the container is a sealed container here, an open container may be used.
  • an aspirator or the like By connecting the upper tube 6 to an aspirator or the like (not shown) by using an airtight container, it is possible to infiltrate the alkaline agent more quickly into the food during neutralization by decompression.
  • the potassium concentration in the acid solution can be measured, so that the amount of potassium in the food can be adjusted to a desired amount.
  • the amount of potassium takes a certain value depending on food, even if the same food is used, it is almost the same by setting conditions such as acid concentration and immersion time in advance without using a potassium ion meter. In addition, foods with reduced potassium content can be obtained.
  • a part of the food may be made into a paste and the required alkali amount may be obtained by titration.
  • the amount of sodium and / or calcium added is in the range of 0.15 to 1.25 equivalents with respect to the amount of potassium removed.
  • soybean as an example, a method for removing potassium by acid immersion and then adjusting the taste using sodium will be described.
  • Dried soybeans (Hokkaido small soybeans, variety name: Suzumaru) were returned by leaving them at room temperature for 18 hours instead of water with 4% 0.5%, 1.0%, 5.0% acetic acid. .
  • Table 2 shows changes in the amount of potassium after the acid treatment.
  • % of the potassium value of Table 2 is the value of the remaining potassium calculated based on the 1900 mg potassium value of soybean in the 5th edition supplemented Japanese food standard ingredient table.
  • the dried bean beans purchased were ground and dried, and the measured potassium value (sample 5) was 1832 mg / 100 g, which was 96.4% of the food composition table.
  • the potassium value (sample 4) of soybeans reconstituted with water containing no acid was 1830 mg / 100 g in terms of dry weight, which was 96.3% of the value in the food composition table. It is clear that almost no potassium can be removed by just immersing in water.
  • Non-Patent Document 3 when tested using an aqueous solution of various acids, although it depends on the type of acid, the acidity is generally felt at pH 4.5 or lower.
  • Non-Patent Document 4 reports that when a substance other than a sour substance coexists, a sour taste reduction and enhancement effect is observed.
  • soybeans that have been reconstituted with acetic acid at each concentration are made into a paste using a mixer, pH is measured, and a sensory test is conducted. It was confirmed.
  • the acid-treated soybean was made into a paste, and a sample was prepared by adjusting the pH by adding sodium hydroxide in stages, and a sensory test was performed. Soybeans did not feel sour at pH 5.1.
  • two types of Japanese pumpkin and imported pumpkin that had been soaked by removing potassium by energization described below were made into a paste and subjected to a sensory test in the same manner.
  • soybeans after removal of potassium at each acetic acid concentration are made into a paste and titrated with sodium hydroxide to determine the amount of alkali necessary to adjust the pH to 5.0, 5.5, 6.1. It was.
  • pH 5.0 is pH which feels a little acidity in the sensory test using the above-mentioned soybean.
  • Samples 1C and 2C were Samples prepared with a neutralizing solution so that the pH is 5.5, and Samples 1D and 2D are samples prepared with a neutralizing solution so that the pH is 6.1. After 18 hours, it was taken out from the neutralized solution, and the neutralized green beans were used as a paste to measure the pH. Further, the pH of the steamed beans after steaming for 1 hour in a 120 ° C. pressure kettle was measured. A sensory test was performed on the steamed beans, and the steamed beans were fermented with commercially available natto bacteria.
  • sodium hydroxide is used as the alkali.
  • any alkali that can be used for food such as sodium hydrogen carbonate and calcium hydroxide, may be used.
  • the amount of K and Na in the table (mg / 100g) is corrected for the weight increased by soy absorbing water by acid treatment, etc., and converted to the amount of potassium and sodium contained in 100g of dry soybean at the start of the experiment. It is shown. Further, the remaining amount of K is based on the amount of potassium of 1900 mg / 100 g per 100 g of dried soybeans in the 5th edition supplemented Japanese food standard ingredient table.
  • the sensory test was judged according to the following criteria. Impossible: Acid odor and acidity. Good: There is no acid odor, but a slight acidity remains, or the taste of sodium is felt by the alkali used for neutralization. Excellent: No acid odor, acidity, sodium taste.
  • the fermentation test was judged according to the following criteria. Impossible: Not fermented. Good: Part of the surface is covered with a white fungus membrane. Stringing and stickiness are weak. Excellent: All surfaces are covered with white fungus membrane. There is stringing and stickiness.
  • the pH of green beans is almost the same as the pH set by titration. That is, Samples 1B and 2B were immersed in a neutralizing solution prepared to have a pH of 5.0 from the titration value for 18 hours, but both Samples 1B and 2B had a pH of 5.1. Samples 1C and 2C are prepared by preparing a neutralization solution so as to have a pH of 5.5, but sample 1C has a pH of 5.4 and sample 2C has a pH of 5.6. Samples 1D and 2D were prepared from neutralization solutions so as to have a pH of 6.1, but Sample 1D had a pH of 6.2 and Sample 2D had a pH almost as set.
  • the pH increases in all cases. This is considered not only to evaporate and escape the remaining acid by heating, but also to increase the pH by reacting with soybean components.
  • the remaining amount of potassium is about 20% lower than that in Table 2 where only the acid treatment was performed by being immersed in an alkaline solution or water.
  • Table 4 shows potassium removed from food based on the results of Table 3 based on the amount of potassium (1900 mg / 100 g) and sodium (1 mg / 100 g) of dried soybean in the 5th edition Japanese Food Standard Ingredients Table. Amount (K removed), potassium equivalent removed from food (K equivalent), added sodium (Na added), added sodium equivalent (Na equivalent), and added sodium equivalent removed The ratio to the potassium equivalent (Na equivalent / K equivalent) is calculated and summarized.
  • Tables 3 and 4 are the results of making soybeans into a paste and using sodium hydroxide, but when adjusting the pH using the whole amount of calcium hydroxide, sourness, acidity Although the odor was not felt, the texture changed such as a rough texture on the tongue and a slightly hard texture. As will be described later, in order to keep the texture better, it has been clarified that at least 1/3 or more of the required alkali amount should be sodium. As will be described later, when soybeans are eaten as beans, it is preferable to treat 70% or more with an alkali containing sodium.
  • Example 2 (Method of producing low potassium food by removing potassium by energizing) By removing potassium by energization, it is possible to remove potassium from a large vegetable piece that is difficult to remove potassium by the above acid treatment method.
  • opposing net-like electrodes 13 and 14 are arranged so as to sandwich the food 12 therebetween.
  • the electrodes 13 and 14 are planar electrodes, and the food 12 is cut into a rectangular parallelepiped shape and is sandwiched between the electrodes for energization.
  • When energized it functions as a reservoir of ions eluted with cooling, and is installed in a water tank filled with water so as to supply moisture (FIG. 2B). That is, since cations such as potassium ions and sodium ions are eluted on the cathode side by energization, moisture is supplied on the anode side as a reservoir for these cations.
  • the electrodes 13 and 14 By using a flexible material as the electrodes 13 and 14, it can be in close contact with food and can be energized over a wide area. Since the electrodes 13 and 14 of the present invention are in direct contact with food and energized, it is necessary to consider the safety. Specifically, iron, aluminum, platinum, and titanium specified in “Standards for Foods, Additives, etc.” may be used. In particular, the anode electrode needs to be a corrosion-resistant electrode such as a platinum electrode in order to prevent elution of metal ions.
  • the surface electrode 14 can be more closely attached to the food 12 and can be energized efficiently.
  • any material may be used as the buffer material 15 as long as the material is flexible and can diffuse ions eluted from food.
  • porous materials such as sponges, cotton, chemical fiber fabrics, mountain-shaped buffer materials, etc., that do not adhere to the electrode and can dissolve the eluted ions into the surrounding water You may use anything.
  • the anode is disposed above the food 12 and the cathode is disposed below, but either side may be the anode or cathode as long as the electrodes are opposed.
  • a hole 18 is provided in the mounting table 17 disposed below the cushioning material 15.
  • Water in the water tank 16 is cooled to a certain temperature.
  • the appropriate temperature depends on the ingredients and the subsequent cooking method, but the temperature may be set between 0 and 15 ° C.
  • the cooling device 19 keeps the immersed food at a low temperature by cooling the water in the aquarium. Although the cooling device 19 is provided outside the water tank in FIG. 2B, a configuration in which the cooling device is provided in the water tank may be employed.
  • FIG. 2C shows another embodiment in which a water supply tank is not provided, and a receiving / supplying portion made of a member 20 containing a hydrogel is arranged between the electrodes 13 and 14 and the food 12.
  • a receiving / supplying portion made of a member 20 containing a hydrogel is arranged between the electrodes 13 and 14 and the food 12.
  • the member 20 containing hydrogel is a part that comes into direct contact with food, it is necessary to use a material that contains a large amount of moisture and has been confirmed to be safe.
  • the hydrogel component include agar, sodium alginate, gelatin, collagen, konjac and the like.
  • pumpkin An example using pumpkin is shown below.
  • the pumpkin was cut into 2.5 cm squares and treated so that the amount of residual potassium was 30% by energization. That is, potassium is removed from 450 mg / 100 g, which is the amount of potassium in raw western pumpkin, to about 135 mg / 100 g.
  • Pumpkin after removal of potassium retains its texture and hardness, but has a sour taste.
  • the amount of potassium removed from the food can be measured with a potassium meter. It can also be estimated by obtaining food-specific values in advance. Therefore, the amount of potassium removed can be determined from the measured value or estimated value, and the amount of sodium and / or calcium added can be calculated.
  • Example 1 can be achieved by preparing a neutralization solution so as to reach a predetermined sodium or calcium equivalent when equilibrium is reached, and immersing the pumpkin and leaving it gently shaking.
  • a neutralization solution so as to reach a predetermined sodium or calcium equivalent when equilibrium is reached
  • it takes time to penetrate to the center so use a known method such as pressure-reduced pressure treatment, freeze impregnation, etc. to accelerate penetration and restore the taste.
  • a known method such as pressure-reduced pressure treatment, freeze impregnation, etc. to accelerate penetration and restore the taste. Can do.
  • Example 3 (Neutralization with calcium) A test was conducted to confirm the change in taste when calcium was used to neutralize sourness. Similarly to Example 1, potassium was removed by immersing commercial dry soybeans in 1% acetic acid for 18 hours.
  • the neutralizing agent in which the Na: Ca equivalent ratio was distributed from 10: 0 to 0:10 was adjusted based on the sodium equivalent required for sour neutralization until pH 5.5 where no sourness was felt. It was added to green bean paste (pH 4.2), and the presence or absence of a change in taste was confirmed. The neutralizing agent was adjusted using sodium hydroxide for sodium and calcium hydroxide for calcium.
  • the method of the present invention can neutralize food not only with sodium but also with calcium, the amount of sodium to be consumed can be restored without losing so much. Even when neutralizing with sodium, it is only necessary to neutralize with 0.15 equivalents of sodium that is less than the amount of potassium removed. There is no.
  • a portion of the acetic acid-treated soybean was made into a paste and the amount of alkali necessary to neutralize to pH 5.5, which is a pH at which acidity is not felt by titration, was found to be 12.8 meq / 100 g.
  • sodium hydroxide is used as sodium and calcium hydroxide is used as calcium as described above, and a neutralized solution in which the Na: Ca equivalent ratio is distributed from 10: 0 to 0:10 is prepared, and the equilibrium is reached as described above.
  • the sensory test was conducted using steamed beans. Using five monitors, tests were conducted on whether the taste of acidity such as acidity and gummy (taste), hardness, and roughness were observed.
  • “equivalent ratio” indicates the amount ratio of sodium and potassium in the neutralized solution
  • the “alkali addition amount” column indicates an estimated value of the amount of alkali added to the food after completion of the neutralization treatment.
  • the numbers in parentheses in the sour, taste and texture columns indicate the number of people who felt a difference from the control in the taste, texture, etc., and what kind of difference they felt. It is summarized.
  • the amount of potassium removed in pumpkin and soybean may be replaced with an alkali containing sodium, but by treating at least about 3/10 with sodium and the balance with an alkali containing calcium,
  • the texture can also be maintained. In general, when eating pasty foods, a uniform creamy texture is expected. Tends to be tolerated even if there is some roughness on the tongue.
  • the amount of calcium that can be added as an alkali varies depending on the final food form. However, although the result using various vegetables is shown below, it can process with the alkali which replaced about 1/10 to 9/10 with calcium. By adding about 3/10 sodium and the rest as calcium, there is no sense of taste and the texture does not change significantly from the original food. By adding calcium to restore the taste, sodium in the food is not increased more than necessary.
  • Example 4 Low potassium food manufactured from various vegetables Since the method and conditions for removing potassium differ depending on the type of agricultural product, the conditions such as the optimal alkali amount required for neutralization to restore the taste and the ratio of sodium and calcium may differ. Therefore, the neutralization conditions were examined depending on the types of vegetables and beans.
  • the Na + Ca equivalent ratio is the ratio of the sum of sodium and calcium equivalents contained in the sample to the sum of sodium and calcium equivalents in the food composition table.
  • the potassium removal rate is very high.
  • at least one panelist evaluates as ⁇ even when neutralized under any condition of 0.5 to 5.0%.
  • the Na + Ca equivalent ratio was 385% even under the condition treated with 0.5% baking soda, which is 250% or more of the sum of the equivalent ratios of sodium and calcium listed in the food composition table.
  • Neutralization is considered to be complete to the extent that Furthermore, when neutralizing at a baking soda concentration of 1.0 to 5%, half gave a total rating of ⁇ , and in particular, when neutralizing at 1.5 to 3.0%, all members gave a total rating of ⁇ . Is attached. Therefore, in the case of pumpkin, the alkali concentration in terms of baking soda is 0.5 to 5.0%, more preferably 1.0 to 5%, more preferably 1.5 to 3.0%. Processing is considered appropriate.
  • calcium hydroxide alone all the panelists evaluated the overall evaluation as x, but when 90% was neutralized with calcium hydroxide, two panelists evaluated it as ⁇ .
  • a sodium salt such as sodium bicarbonate or sodium hydroxide for at least 10%, preferably 30%.
  • neutralization is performed by adding about 30% sodium salt, the sodium concentration in the food does not increase so much and there is almost no worry about excessive intake of sodium chloride.
  • the potassium concentration of sweet potato used in the test was 65% of the food composition table, which was a very low value from the beginning.
  • the fifth amendment Japanese food composition table is an average value, and the value varies depending on the production area and season.
  • the pumpkin shown in Table 7 contained 18% more potassium than the five supplementary Japanese food ingredients table, and the potato shown below contained about 25% more potassium.
  • vegetables made into low potassium foods and untreated vegetables can be distinguished from ordinary vegetables by the equivalents of sodium and calcium contained.
  • baking soda When neutralizing only with baking soda, it is recommended to use 0.5 to 4% baking soda, with at least one panelist showing ⁇ in the overall evaluation, especially 0.5 to 3% baking soda with more than half of panelists using ⁇ . It is preferable from the point of taste that it is summed. In view of the intake of salt, it is more preferable to neutralize with about 0.5 to 1.5% baking soda. Potatoes are almost free of sodium and calcium. Therefore, the Na + Ca equivalent ratio is greatly influenced by sodium and calcium contained in individual potatoes. However, even in that case, as long as it was examined, the Na + Ca equivalent ratio did not exceed 250%, and it was possible to distinguish it from those not subjected to potassium removal treatment. Further, when the Na + Ca equivalent ratio is a large value such as potato, the upper limit is considered to be about 20,000 to 50,000%.
  • the total amount of alkali may be replaced with calcium salt, but it is better that sodium salt is contained at least 30%, more preferably about 50%.
  • neutralization can be performed without increasing the salt content in food by neutralizing the whole amount or 90% with an alkali containing calcium.
  • the dried beans were tested using 4% weight of 1% acetic acid and returned with gentle shaking overnight.
  • a in the column of the neutralization solution is the untreated dry matter
  • B is the one that has been reconstituted with water
  • C is the one that has not been neutralized only by the acid treatment
  • D is the result of the sample immersed in water after the acid treatment. Both values are displayed in terms of dry matter.
  • “-” in the taste evaluation (acidity, bitterness, etc.) column indicates that no evaluation was performed.
  • Neutralization was performed by gently shaking the water-absorbed beans after acid treatment overnight using an equivalent weight of the neutralized solution.
  • the treated beans were rinsed with deionized water, heated in a high-temperature steam kettle, allowed to cool to room temperature, and then evaluated for taste and ion concentration.
  • kidney beans The result of kidney beans is as follows. As shown in Table 15, about 70% of individual taste evaluations and about 50% of overall taste evaluations obtained by replacing with calcium salts and neutralizing them were obtained. In general, since beans are seasoned and eaten, it is considered that they may be treated with a neutralizing solution substituted with about 70% calcium salt.
  • Benibainengen The results of Benibainengen are shown below. As shown in Table 16, about 50% of individual taste evaluations and about 30% of total taste evaluations obtained by replacing with calcium salts and neutralizing them were obtained. In general, since beans are seasoned and eaten, it may be treated with a neutralizing solution substituted with about 50% of calcium salt.
  • Soybean Soybean (small soybean) results are shown below. As shown in Table 18, the taste evaluation that can be neutralized by replacing with calcium salt up to about 30% in both individual taste evaluation and comprehensive taste evaluation was obtained.

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Beans For Foods Or Fodder (AREA)

Abstract

[Problem] To provide low potassium food products without losing the tastes and textures of various food products. [Solution] After removing potassium from a food product by applying an electrical field or by immersion in acid, sodium and/or calcium is added at an equivalence ratio of 0.15-1.25 with respect to the total amount of removed potassium.

Description

低カリウム食品、その製造方法、及び製造キットLow potassium food, method for producing the same, and kit for producing the same
 食品の風味や食感を損なうことなくカリウムを除去する方法及び低カリウム食品に関する。 The present invention relates to a method for removing potassium without impairing the flavor and texture of food and a low potassium food.
 日本透析医学会の調査によれば、わが国の慢性透析患者は2011年に30万人を超え、毎年5千人程度増加しており、2013年末には31万4千人を超えている。 According to a survey by the Japanese Society for Dialysis Medicine, the number of chronic dialysis patients in Japan exceeded 300,000 in 2011, increasing by about 5,000 every year, and over 314,000 at the end of 2013.
 腎臓は、老廃物の排泄、水分、電解質の調節を行い、体内環境を一定に保っている。腎臓の機能が低下し、体内の恒常性が維持できなくなると、いわゆる尿毒症と呼ばれる多様な症状が全身に出現する。 The kidney regulates the excretion of waste, water and electrolytes, and keeps the body environment constant. When the kidney function falls and the homeostasis in the body cannot be maintained, various symptoms called uremia appear in the whole body.
 腎機能が廃絶している患者には日常的に透析を行う維持透析療法を行い、体内の老廃物や過剰な水分を除去する。透析患者は食生活において種々の成分に気を付ける必要があるが、とりわけ高カリウム血症の原因となるカリウム量を一定に制限する必要がある。高カリウム血症は、致死性の不整脈や心停止をきたすことがあるため、カリウム制限の食事指導が透析治療導入初期から、継続して行われる必要がある。一日に摂取可能なカリウム量は病期によっても異なるが、1500~2000mg以下に制限する必要がある。 ● Patients who have lost renal function are treated with maintenance dialysis on a daily basis to remove waste and excess water from the body. Dialysis patients need to pay attention to various components in their diet, and in particular, the amount of potassium that causes hyperkalemia needs to be limited to a certain level. Since hyperkalemia can cause fatal arrhythmias and cardiac arrest, dietary guidance for potassium restriction needs to be continued from the beginning of dialysis treatment. The amount of potassium that can be taken per day varies depending on the stage, but it must be limited to 1500 to 2000 mg or less.
 極度の高カリウム血症は、致死性の不整脈や心停止をきたすことがあるため、カリウム制限は透析導入早期より行われ、日常的に予防することが推奨されている。 Extreme hyperkalemia can cause fatal arrhythmias and cardiac arrest, so potassium restriction is recommended early in dialysis and daily prevention is recommended.
 野菜や果物は、食品の中でもカリウムが多く含まれており、カリウム制限を受けている患者は、カリウムが多く含まれている野菜や果物の摂取を制限されている場合が多い。また、調理方法によっては、カリウム量を低減することができることから、一定の調理を行うことが勧められている。そのため、カリウム制限を受けている患者の食生活は限られたものになることが多く、制限された食生活にストレスを感じることもあり、QOL(Quality of Life)の点で問題になることがある。 Vegetables and fruits contain a lot of potassium among foods, and patients who are restricted by potassium are often restricted from taking vegetables and fruits that contain a lot of potassium. In addition, depending on the cooking method, it is recommended to perform certain cooking because the amount of potassium can be reduced. For this reason, the dietary habits of patients who are subject to potassium restriction are often limited, and the restricted dietary life may be stressed, which may cause problems in terms of QOL (Quality of Life). is there.
 カリウム制限を行う場合には、カリウムは水に流出しやすいことから、小さく切って水にさらしたり、茹でこぼすなどの調理方法によって、カリウムを除去するのが一般的である。 When performing potassium restriction, since potassium easily flows out into water, it is common to remove the potassium by cooking it by cutting it into small pieces and exposing it to water or spilling it.
 上記の一般的な調理方法に加え、食品からカリウムを除去する方法としては、水耕栽培等、培養液により栽培する方法が知られている(特許文献1、2)。特許文献1には、水耕栽培によって低カリウムホウレンソウを栽培する技術が開示されている。特許文献2には、水耕、又はパーライト耕により作物を栽培する方法により、低カリウム作物を得たことが開示されている。水耕栽培、パーライト栽培どちらを用いても40%強のカリウムをメロン等から除去できることが示されている。 In addition to the above general cooking methods, methods for cultivating with a culture solution such as hydroponics are known as methods for removing potassium from food (Patent Documents 1 and 2). Patent Document 1 discloses a technique for cultivating low potassium spinach by hydroponics. Patent Document 2 discloses that a low potassium crop was obtained by a method of cultivating a crop by hydroponic or pearlite plowing. It has been shown that over 40% of potassium can be removed from melon or the like using either hydroponics or perlite cultivation.
 また、食酢等、酸を添加することにより食品からカリウムを除去する方法が知られている(非特許文献1、2)。非特許文献1には、食品を0.5%又は1%の酢酸、マロン酸等の有機酸に浸漬することにより、カリウムを除去することが記載されている。非特許文献2には、1%食酢水(酢酸濃度0.042%)に浸漬することにより、カリウムを除去する方法が記載されている。 In addition, a method of removing potassium from food by adding an acid such as vinegar is known (Non-Patent Documents 1 and 2). Non-Patent Document 1 describes that potassium is removed by immersing food in an organic acid such as 0.5% or 1% acetic acid or malonic acid. Non-Patent Document 2 describes a method of removing potassium by immersing in 1% vinegar water (acetic acid concentration: 0.042%).
 酸によりカリウムを除去する方法は、低タンパク質、低カリウム、低リンのカルシウム強化米飯の製造方法として応用されている(特許文献3)。特許文献3には、米を酸性液に浸漬し、アルカリ性のカルシウム化合物で中和し水洗水切り後、米を蒸煮し、得られた蒸米にカルシウムを吸収せしめた後、再度蒸煮して米飯とする方法が開示されている。 The method of removing potassium with an acid has been applied as a method for producing low protein, low potassium, low phosphorus calcium-fortified rice (Patent Document 3). In Patent Document 3, rice is immersed in an acidic solution, neutralized with an alkaline calcium compound, washed with water, boiled, and the rice is boiled. A method is disclosed.
 特許文献3の実施例によれば、実施例1では、カリウムは20.2mg(乾物100g中の重量、五訂増補日本食品成分表のカリウム値に対し、22.9%)に減少し、カルシウムは148.6mg(乾物100g中の重量、食品成分表のカルシウム値に対し、当量比2970%)に増加し、実施例2では、カリウム20.3mg(同23.1%)、カルシウム48.0mg(同960%)、実施例3では1.9mg(同2.2%)、カルシウム47.6mg(同950%)となっている。 According to the example of Patent Document 3, in Example 1, potassium is reduced to 20.2 mg (weight in 100 g of dry matter, 22.9% relative to the potassium value in the 5th edition supplemented Japanese food composition table), and calcium is reduced. Increased to 148.6 mg (weight in 100 g dry matter, equivalent ratio 2970% with respect to calcium value in food composition table). In Example 2, potassium 20.3 mg (23.1%), calcium 48.0 mg (960%), and in Example 3, it was 1.9 mg (2.2%) and calcium 47.6 mg (950%).
 また、積極的なカリウム除去を目的としているものではないが、マグネシウム、ナトリウムを富化し、ミネラル組成を改質した食品素材が開示されている(特許文献4、5)。文献4には豆類や麦類の、文献5にはコメのミネラル組成を改質したことが記載されている。マグネシウム、ナトリウムを富化するのに伴って、カリウムが減少することが記載されている。 Further, although not intended for active potassium removal, food materials enriched with magnesium and sodium and modified in mineral composition are disclosed (Patent Documents 4 and 5). Document 4 describes the modification of the mineral composition of beans and wheat, and Document 5 describes the mineral composition of rice. It is described that potassium decreases with enrichment of magnesium and sodium.
 また、大豆から製造した豆乳、膨化食品のような加工食品(特許文献6、7)、加圧処理、凍結融解処理等を行った果物の加工品(特許文献8)、低カリウムジュース(特許文献9)など加工食品とすることによって、低カリウム化し、カリウム制限を行っている腎臓病患者に食品を提供することも試みられている。 In addition, soy milk produced from soybeans, processed foods such as puffed foods (Patent Documents 6 and 7), processed fruit products subjected to pressure treatment, freeze-thawing processing, etc. (Patent Document 8), low potassium juice (Patent Documents) It has also been attempted to provide foods to kidney disease patients who have been reduced in potassium by performing processed foods such as 9) and have been potassium restricted.
特開2008-61587号公報JP 2008-61587 A 特開2014-161256号公報JP 2014-161256 A 特開平7-170923号公報JP-A-7-170923 特開2004-097075号公報JP 2004-097075 A 特開2004-033115号公報JP 2004-033115 A 特開昭63-148952号公報Japanese Patent Laid-Open No. Sho 63-148952 特開昭64-030558号公報Japanese Patent Laid-Open No. 64-030558 特開2007-105000号公報JP 2007-105000 A 特表2003-511052号公報Special table 2003-511052 gazette
 現在一般的に行われている調理の際にカリウムを除去する方法、具体的には茹でこぼす、水にさらすなどの方法は、カリウム除去の点からは有効である。しかしながら、野菜や果物を生食できない、また、長時間茹でてから茹でこぼす必要があり、カリウムとともに風味や食感が損なわれるという問題がある。また、水にさらしてカリウムを除去する方法では、長時間水にさらす必要があり、茹でこぼす場合と同様に味や香りなど、風味が損なわれるという問題があった。 The method of removing potassium during cooking, which is generally performed at present, specifically, methods such as boiling and spilling and exposing to water are effective from the viewpoint of potassium removal. However, there is a problem in that vegetables and fruits cannot be eaten raw, and it is necessary to boil them for a long time before spilling them. In addition, the method of removing potassium by exposure to water requires exposure to water for a long time, and there is a problem that the taste and aroma are impaired as in the case of spilling boiled.
 また、特許文献1に代表されるように、水耕栽培で低カリウム野菜として栽培できる野菜は栽培期間の短い葉物野菜、例えば、リーフレタスやほうれん草等の作物に限られる。 Moreover, as represented by Patent Document 1, vegetables that can be cultivated as low potassium vegetables by hydroponics are limited to leafy vegetables with a short cultivation period, for example, crops such as leaf lettuce and spinach.
 また、特許文献2は、「野菜又は果物の栽培方法」の発明であるが、作物としてメロン及び苺を想定している。パーライトは作物の根を埋めるために用いており、水耕であってもパーライト耕であっても、どちらも培養液からの養分のみによって作物が生育する。したがって、水耕栽培、パーライト栽培によらず、培養液によって栽培可能な作物に限定される。したがって、栽培可能な作物は限られた品種のものとなる。 Patent Document 2 is an invention of “a method for cultivating vegetables or fruits”, and assumes melon and straw as crops. Perlite is used to fill the roots of crops, and both crops grow with only nutrients from the culture solution, whether hydroponically or pearlite. Therefore, it is limited to crops that can be cultivated with a culture solution, regardless of hydroponics or pearlite cultivation. Therefore, the cultivatable crops are limited varieties.
 特許文献1及び2に開示されている技術は、どちらも培養液で栽培可能な作物に限り適用できる。そのため、短期間に栽培可能な作物に限られ、にんじん、ごぼうなどの根菜類や、葉物野菜でもキャベツや玉レタス(結球レタス)などの結球性葉菜類は収穫までに期間と費用を要するために栽培されていない。 Both of the techniques disclosed in Patent Documents 1 and 2 can be applied only to crops that can be cultivated with a culture solution. Therefore, it is limited to crops that can be cultivated in a short period of time, and root vegetables such as carrots and burdocks, and leafy vegetables such as cabbage and ball lettuce (heading lettuce) require time and cost to harvest. Not cultivated.
 非特許文献1、2に開示されているように、調理の際に食用に用いられている有機酸や食酢に浸漬することによりカリウムを除去する方法では、生食可能な野菜を提供することができる。しかしながら、非特許文献1に記載されているように、カリウム除去のために0.5%酢酸等、高濃度の酸で長時間処理すると、カリウムが除去されるが、色、におい、食味が損なわれる。実際に本発明者らが確認したところ、酸味が強く、本来の味が損なわれていた。また、非特許文献2の低濃度の酸による短時間処理では、食品の味は損なわれないもののカリウムの除去量がわずかにとどまることから、さほど有効なカリウム除去方法とはいえない。 As disclosed in Non-Patent Documents 1 and 2, the method of removing potassium by dipping in an organic acid or vinegar used for cooking during cooking can provide vegetables that can be eaten raw. . However, as described in Non-Patent Document 1, potassium is removed when treated for a long time with a high concentration acid such as 0.5% acetic acid to remove potassium, but the color, smell and taste are impaired. It is. As a result of confirmation by the present inventors, the acidity was strong and the original taste was impaired. In addition, the short-time treatment with a low-concentration acid in Non-Patent Document 2 does not impair the taste of food, but the amount of potassium removed is small, so it cannot be said that it is a very effective potassium removal method.
 また、特許文献3に記載の発明は、米からカリウム等を除去することに特化した発明である。そのため、水耕栽培による低カリウム化の難しい根菜類や、かぼちゃなどの野菜や果物にこの方法を応用することは難しい。すなわち、これら農産物を水酸化カルシウムにより中和を行うと固くなり、食感を著しく損ねるという問題が生じる。また、ブロック状に切った野菜の場合には、中和のためのカルシウムが表面に局在し、強い苦味を感じるという問題があった。 The invention described in Patent Document 3 is an invention specialized in removing potassium and the like from rice. Therefore, it is difficult to apply this method to root vegetables that are difficult to reduce potassium by hydroponics, and vegetables and fruits such as pumpkins. That is, when these agricultural products are neutralized with calcium hydroxide, they become hard and cause a problem that the texture is remarkably impaired. Moreover, in the case of vegetables cut into blocks, there is a problem that calcium for neutralization is localized on the surface and a strong bitter taste is felt.
 特許文献4、及び5に記載の発明は、カリウム除去を目的としていないため、食品中のカリウム残存率が高く、腎臓病の患者が食するのには適さなかった。特に、豆類はカリウム含有量が高い食品であることから、マグネシウム等の富化に伴って減少する程度のカリウム量では、腎臓病患者にとっては十分にカリウムを除去したとは言えなかった。 Since the inventions described in Patent Documents 4 and 5 are not intended to remove potassium, the residual ratio of potassium in food is high, and it is not suitable for patients with kidney disease. In particular, since beans are foods with a high potassium content, the amount of potassium that decreases with enrichment of magnesium or the like cannot be said to have sufficiently removed potassium for kidney disease patients.
 特許文献6~9に記載の発明は、加工食品として低カリウム化を実現したものである。そのため、食品中のカリウムは十分除去されているものの腎臓病患者が自分の好みに合うように調理することができなかった。腎臓病患者は長期の食事制限によるストレスが大きく、また、調理を行う患者の家族にとっても、患者と同じ献立で食事をしたいという希望があり、加工食品の形態ではなく、素材として提供される低カリウム食品が望まれていた。 The inventions described in Patent Documents 6 to 9 realize low potassium as processed food. Therefore, although potassium in food has been sufficiently removed, kidney disease patients could not cook to their own taste. Patients with kidney disease are stressed by long-term dietary restrictions, and the families of patients who are cooking have a desire to eat at the same menu as the patients. Potassium food was desired.
 本発明者らは、上記課題を解決するために、すでに様々な食品からカリウムを除去する方法を開発している。本発明者らは、食品から電気的にカリウムを除去することによって、食品の食感は保持しながらカリウムを除去する方法を開発した。しかしながら、この方法によればカリウムを十分に除去できるものの、カリウムを除去する際に食品のpHが低下し酸味を帯びる場合があるという問題があった。また、濃度の高い酸で処理することによっても十分にカリウムが除去できるものの酸味が強く元の食品の味とは大きく異なっていた。 The present inventors have already developed a method for removing potassium from various foods in order to solve the above problems. The present inventors have developed a method for removing potassium while retaining the texture of the food by electrically removing potassium from the food. However, according to this method, although potassium can be sufficiently removed, there is a problem in that when removing potassium, the pH of the food is lowered and may become sour. Further, although potassium can be sufficiently removed by treatment with a high-concentration acid, it has a strong acidity and is significantly different from the taste of the original food.
 本発明は、様々な食品から適切な方法でカリウムを除去した後、カリウム除去により食品が酸性にかたより、酸味を帯びるという問題を解決し、低カリウムでありながら、風味、食感を損なわない食品を提供することにある。 The present invention solves the problem that after removing potassium from various foods by an appropriate method, the food is more acidic by removing potassium, so that the flavor and texture are not impaired while being low in potassium. To provide food.
 本発明の収穫後の農産物からカリウムを除去する低カリウム食品の製造方法は、食品からカリウムを除去する工程と、前記食品から除去したカリウム量を算出する工程と、除去したカリウムに対して、当量比0.15~1.25のナトリウム及び/又はカルシウムを補うことを特徴とする。 The method for producing a low potassium food for removing potassium from harvested agricultural products according to the present invention includes a step of removing potassium from food, a step of calculating an amount of potassium removed from the food, and an equivalent amount relative to the removed potassium. It is characterized by supplementing sodium and / or calcium in a ratio of 0.15 to 1.25.
 食品から除去したカリウム量はカリウムイオンメーター等で測定し、その総量を算出することが可能である。除去したカリウム量に対し、当量比0.15~1.25のナトリウム及び/又はカルシウムを食品に補うことで、カリウム除去処理に伴い発生した酸味を中和することができる。また、除去したカリウム量に対し、当量比0.4~0.9のナトリウム及び/又はカルシウムを食品に補うことがより好ましい。当量比0.4~0.9のナトリウム及び/又はカルシウムを食品に補うことにより、官能試験の結果だけではなく、発酵もカリウム除去を行っていないものと同等に生じる。したがって、より元の食品に近い状態に戻っているものと考えられる。 The amount of potassium removed from food can be measured with a potassium ion meter or the like, and the total amount can be calculated. By supplementing food with sodium and / or calcium having an equivalent ratio of 0.15 to 1.25 with respect to the amount of removed potassium, the sourness generated by the potassium removal treatment can be neutralized. It is more preferable to supplement the food with sodium and / or calcium having an equivalent ratio of 0.4 to 0.9 with respect to the amount of potassium removed. By supplementing food with sodium and / or calcium in an equivalence ratio of 0.4 to 0.9, not only the results of the sensory test, but also fermentation occurs equivalent to those without potassium removal. Therefore, it is thought that it has returned to the state closer to the original food.
 味覚として感じる酸味は、酸の化学構造によることが知られている(非特許文献3)。また、酸味、塩味、甘味、苦味といった基本的四味は相互に影響を及ぼすことも知られている(非特許文献4)。そのため、食品によっては、すでに含まれている酸の構造や塩味等、他の食味により当量比0.15のナトリウム及び/又はカルシウムを食品に補っただけでは、酸味を感じることがある。その場合でも当量比0.4以上のナトリウム及び/又はカルシウムを添加することにより、食品本来の味に回復する。また、当量比0.7までのナトリウム及び/又はカルシウムを食品に補うのであれば、どのような食品であっても加えたナトリウムによる塩味、カルシウムによる苦味を感じることがない。 It is known that the sour taste felt as a taste is due to the chemical structure of the acid (Non-patent Document 3). It is also known that basic four tastes such as acidity, saltiness, sweetness, and bitterness affect each other (Non-Patent Document 4). Therefore, depending on the food, there may be a sense of sourness when the food is supplemented with sodium and / or calcium having an equivalent ratio of 0.15 by other tastes such as the structure and saltiness of the acid already contained. Even in that case, the original taste of the food is restored by adding sodium and / or calcium having an equivalent ratio of 0.4 or more. Moreover, as long as sodium and / or calcium up to an equivalent ratio of 0.7 is supplemented to the food, no salty taste due to the added sodium or bitterness due to calcium will be felt in any food.
 本発明者らは、食品からカリウム除去する処理を行った後に、除去したカリウムの量よりも少ない当量比0.15以上のナトリウム及び/又はカルシウムを添加することによって、酸味を感じない程度に味が回復し、食品の味、香り等の風味、食感等はそのままにカリウムが除去された低カリウム食品が得られることを明らかにした。また、過剰のナトリウム及び/又はカルシウムを添加すると、塩味などの異味を感じることから、当量比1.25を超えて加えることは望ましくない。また、食品によっては、ナトリウム単独で味の回復を行った場合に異味を感じない場合もあるが、下記のように過剰な食塩摂取につながることから、異味を感じない場合でも当量比1.25を超えて加えることは望ましくない。 The present inventors, after performing a treatment for removing potassium from food, add sodium and / or calcium having an equivalent ratio of 0.15 or less, which is smaller than the amount of removed potassium, to the extent that no sour taste is felt. As a result, it was clarified that a low-potassium food from which potassium was removed without changing the taste of food, flavor such as aroma, and texture was maintained. In addition, when an excessive amount of sodium and / or calcium is added, a taste of salty taste is felt, so it is not desirable to add it in excess of an equivalent ratio of 1.25. In addition, depending on the food, there is a case where the taste is not felt when the taste is restored with sodium alone, but since it leads to excessive salt intake as described below, even when the taste is not felt, the equivalent ratio is 1.25. It is not desirable to add more than.
 ナトリウムの増加は腎臓病患者にとっても避けたほうが望ましい。したがって、ナトリウムを使用してpHを回復する場合には、できるだけ少ない量のナトリウムで味を回復することが好ましい。本発明者らは、食品から50%のカリウムを除去した場合、除去量に対して当量比0.6相当のナトリウムを添加することで味を回復可能であることを明らかにした。この程度のナトリウム量の増加は、後の調味で減らすことが容易にできることから、あまり気にする必要はない。 It is desirable to avoid an increase in sodium for patients with kidney disease. Therefore, when using sodium to restore the pH, it is preferable to restore the taste with as little sodium as possible. The present inventors have clarified that when 50% of potassium is removed from a food, the taste can be recovered by adding sodium corresponding to an equivalent ratio of 0.6 with respect to the removed amount. This amount of increase in sodium does not need to be considered too much because it can be easily reduced by later seasoning.
 慢性腎臓病患者の1日の食塩摂取量は6g以下、カリウムは1500mg以下に制限する必要があると言われている。例えば、100gの西洋かぼちゃ(カリウム含有量450mg/100g)から50%のカリウム、すなわち225mgのカリウム(5.75meq)を除去した場合、相当当量のナトリウムは132mgとなる。これは、食塩換算では0.34gに相当する。実際には当量比0.6相当のナトリウム量で味の回復が可能であるから、0.2gの食塩を味付けの際に減らせばよい。この程度の減塩は調理の際の配慮で十分に減らすことが可能な量である。 It is said that the daily salt intake of patients with chronic kidney disease should be limited to 6 g or less and potassium to 1500 mg or less. For example, if 50% potassium, that is, 225 mg potassium (5.75 meq) is removed from 100 g of western pumpkin (potassium content 450 mg / 100 g), the equivalent amount of sodium is 132 mg. This corresponds to 0.34 g in terms of salt. In fact, it is possible to recover the taste with an amount of sodium equivalent to an equivalent ratio of 0.6, so 0.2 g of salt may be reduced during seasoning. This level of salt reduction is an amount that can be sufficiently reduced with consideration in cooking.
 さらに、本発明では、カルシウム単独、カルシウムとナトリウムとの併用でも味が回復することを明らかにした。したがって、食品中のナトリウムをほとんど増加させることなく、pHの回復を図り、食味を元に戻すこともできる。 Furthermore, in the present invention, it has been clarified that the taste can be restored even with calcium alone or in combination with calcium and sodium. Therefore, the pH can be recovered and the taste can be restored without increasing the amount of sodium in the food.
 本発明の低カリウム食品の製造方法は、前記食品からカリウムを除去する工程が電場をかけてカリウムを除去する工程又は酸浸漬によりカリウムを除去する工程であることを特徴とする。 In the method for producing a low potassium food of the present invention, the step of removing potassium from the food is a step of removing potassium by applying an electric field or a step of removing potassium by acid immersion.
 一定の条件下で電場をかけることによって、食感を損なわずに食品中のカリウムは除去することができる。また、酢酸等の酸に浸漬することによっても、効果的にカリウムを除去することができる。 By applying an electric field under certain conditions, potassium in the food can be removed without impairing the texture. Moreover, potassium can also be effectively removed by immersing in an acid such as acetic acid.
 電気的にカリウムを除去した場合であっても、酸処理によってカリウムを除去した場合であっても、食品から除去されたカリウム量は、カリウムメーターを用いて溶出したカリウム量を測定することによって簡単に求めることができる。 Whether potassium is removed electrically or by acid treatment, the amount of potassium removed from food can be easily measured by measuring the amount of potassium eluted using a potassium meter. Can be requested.
 本発明の低カリウム食品の製造方法は、前記食品からカリウムを除去する工程が酸浸漬によりカリウムを除去する工程であり、前記酸が塩酸、硫酸等の鉱酸、酢酸、マロン酸、クエン酸、アスコルビン酸、コハク酸、乳酸等の有機酸から選択される少なくとも1つ以上の酸であることを特徴とする。 In the method for producing a low potassium food of the present invention, the step of removing potassium from the food is a step of removing potassium by acid immersion, and the acid is a mineral acid such as hydrochloric acid or sulfuric acid, acetic acid, malonic acid, citric acid, It is at least one acid selected from organic acids such as ascorbic acid, succinic acid and lactic acid.
 酸に浸漬することによりカリウムを除去する場合には、食品加工に用いられる酸であればどのようなものを用いてもよい。具体的には酢酸、塩酸、硫酸、マロン酸、クエン酸、アスコルビン酸、コハク酸、乳酸が入手も容易であり、また、カリウム除去効果が高いことから好ましい。 When removing potassium by immersing in acid, any acid may be used as long as it is an acid used for food processing. Specifically, acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid are preferable because they are easily available and have a high potassium removal effect.
 さらに、本発明の低カリウム食品の製造方法は、前記食品からカリウムを除去する工程が0.5~2.0%酢酸に浸漬することを特徴とする。 Furthermore, the low potassium food production method of the present invention is characterized in that the step of removing potassium from the food is immersed in 0.5 to 2.0% acetic acid.
 上記で挙げた酸の中でも酢酸は、様々な食品でカリウム除去効果が高く、また、安価であることから好ましい。酢酸を用いる場合には、食品にもよるが0.5~2.0%の濃度で使用することにより、比較的短時間でカリウムを除去することができる。 Among the acids mentioned above, acetic acid is preferable because it has a high potassium removal effect in various foods and is inexpensive. When acetic acid is used, potassium can be removed in a relatively short time by using it at a concentration of 0.5 to 2.0% depending on food.
 2.0%を超える濃度の酢酸を用いてもカリウム除去率が高くなることはなく、2%の酢酸とほぼ同程度の効果しか得られなかった。さらに、2%を超える濃度の酸を用いてカリウム除去を行った場合、中和する際にナトリウムを過剰に添加しても酸味が残るとともに、添加したナトリウムにより塩味も感じられるようになる。したがって、2%以下の酸で処理することが好ましい。 Even when acetic acid with a concentration exceeding 2.0% was used, the potassium removal rate did not increase, and only an effect almost the same as that of 2% acetic acid was obtained. Further, when potassium is removed using an acid having a concentration exceeding 2%, acidity remains even if sodium is added excessively during neutralization, and saltiness is also felt by the added sodium. Therefore, it is preferable to treat with 2% or less of acid.
 また、0.5%未満の濃度の酸を用いた場合には、処理時間が長くかかるため、カリウムとともに風味や香りといった他の食味成分を多く溶出してしまい、食品の味が水っぽくなるという弊害がある。したがって、処理に用いる酢酸の濃度は0.5~2.0%が好ましい。 In addition, when an acid having a concentration of less than 0.5% is used, it takes a long time to process, so that many other taste components such as flavor and aroma are eluted together with potassium, and the taste of food becomes watery. There is. Therefore, the concentration of acetic acid used for the treatment is preferably 0.5 to 2.0%.
 本発明の収穫後の農産物からカリウムを除去することによって得られる低カリウム食品は、カリウム値が食品成分表に示される前記食品のカリウム値の70%以下であるとともに、前記食品中のナトリウム値とカルシウム値の各当量の和が、食品成分表に示される前記食品の成分値として記載されているナトリウム値とカルシウム値から算出される当量の和の250%以上であることを特徴とする。 The low potassium food obtained by removing potassium from the harvested agricultural product of the present invention has a potassium value of 70% or less of the potassium value of the food shown in the food ingredient table, and the sodium value in the food. The sum of each equivalent of the calcium value is 250% or more of the sum of the equivalents calculated from the sodium value and the calcium value described as the ingredient value of the food shown in the food ingredient table.
 農産物の成分値は、その産地、収穫時期、また、品種の違い等によって左右され、決して一定ではない。しかしながら、たとえ、収穫後の農産物のカリウム値が標準とされる値よりも非常に高い場合であっても、食品成分表に示される成分値の70%以下の値までは、容易にカリウムを除去することができる。ここで、食品成分表とは、日本の場合は、五訂増補日本食品成分表、又は日本食品標準成分表2015年版(七訂)を指す。食品成分表は、国ごとに各国の食生活、農産物等に応じ、測定された平均的な値がまとめられている。いずれの場合においても、標準的な値である各国の成分表の値を基準として、70%以下までカリウムを除去することができる。 The component values of agricultural products depend on their origin, harvest time, and variety, and are not constant. However, even if the potassium value of agricultural products after harvesting is much higher than the standard value, it is easy to remove potassium up to 70% or less of the component value shown in the food composition table. can do. Here, in the case of Japan, the food composition table refers to the 5th edition supplemented Japanese food composition table or the Japan Food Standard Composition Table 2015 edition (seventh edition). The food composition table summarizes the average values measured according to the dietary habits and agricultural products of each country. In any case, potassium can be removed up to 70% or less based on the values in the component table of each country which is a standard value.
 本発明者らが検討したところ、通常は五訂増補日本食品成分表に示される成分値の20~30%程度まで、味や食感を損なうことなくカリウム除去を行うことが可能である。食品からカリウムを除去する場合には、腎臓への負担を考えると五訂増補日本食品成分表に示される成分値の少なくとも50%程度まで除去することが好ましい。 As a result of investigations by the present inventors, it is usually possible to remove potassium up to about 20 to 30% of the component values shown in the five supplementary Japanese food composition table without impairing the taste and texture. When removing potassium from food, it is preferable to remove up to at least about 50% of the component values shown in the 5th Supplement Japanese Food Composition Table, considering the burden on the kidneys.
 また、カリウム除去後、ナトリウム及び/又はカルシウムによって、食味を元にもどすことから、ナトリウム値とカルシウム値の量は、五訂増補日本食品成分表に示される成分値よりも高い値となる。 Also, after removing potassium, the taste is restored with sodium and / or calcium, so the amount of sodium and calcium is higher than the component values shown in the 5th edition Japanese Food Composition Table.
 カリウム値、ナトリウム値とカルシウム値の量によって、本発明の製造方法によって処理された収穫後の農産物は区別することが可能である。 The harvested agricultural products processed by the production method of the present invention can be distinguished by the amount of potassium value, sodium value and calcium value.
 さらに、本発明の収穫後の農産物からカリウムを除去することによって得られる低カリウム食品は、前記カリウム値が食品成分表に示される前記食品のカリウム値の50%以下であることを特徴とする。 Furthermore, the low potassium food obtained by removing potassium from the harvested agricultural product of the present invention is characterized in that the potassium value is 50% or less of the potassium value of the food shown in the food composition table.
 腎臓病患者にとって、摂取カリウム量はできるだけ抑えることが望ましい。食品成分表のカリウム値の50%以下、より好ましくは40%以下、特に好ましくは30%以下とすることが腎臓への負担を減らすことから望ましい。野菜の種類によってもカリウム値は様々であり、さらに野菜によってカリウム除去のしやすさも異なっている。しかし、50%程度に抑制すれば、患者の腎臓への負担が抑制できることから、50%以下にカリウム値を減じた野菜を提供することが望ましい。 For patients with kidney disease, it is desirable to reduce the amount of potassium taken. It is desirable to reduce the burden on the kidney to 50% or less, more preferably 40% or less, particularly preferably 30% or less of the potassium value in the food composition table. Potassium values vary depending on the type of vegetable, and the ease of potassium removal varies depending on the vegetable. However, if it is suppressed to about 50%, the burden on the patient's kidney can be suppressed. Therefore, it is desirable to provide vegetables with a potassium value reduced to 50% or less.
 本発明の収穫後の農産物からカリウムを除去し低カリウム食品を得るためのキットは、酢酸、塩酸、硫酸、マロン酸、クエン酸、アスコルビン酸、コハク酸、乳酸から選択される少なくとも1つ以上の酸と、除去したカリウムに対して、当量比0.15~1.25のナトリウム及び/又はカルシウムを補うためのナトリウム塩及び/又はカルシウム塩を含むことを特徴とする。 The kit for removing potassium from the harvested agricultural product of the present invention to obtain a low potassium food is at least one selected from acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid. It is characterized by comprising sodium salt and / or calcium salt for supplementing sodium and / or calcium in an equivalent ratio of 0.15 to 1.25 with respect to the acid and the removed potassium.
 低カリウム食品は、酸を用いることによって簡単に製造することができる。キットにはカリウムを除去する酸と、ナトリウム塩及び/又はカルシウム塩が含まれていればよい。 Low potassium foods can be easily manufactured by using acid. The kit may contain an acid for removing potassium and a sodium salt and / or a calcium salt.
 本発明の低カリウム食品を得るためのキットは、前記酸が0.5~2.0%酢酸であり、添加するアルカリが炭酸水素ナトリウム、水酸化ナトリウム、水酸化カルシウムのいずれか1つ以上であることを特徴とする。 In the kit for obtaining a low potassium food of the present invention, the acid is 0.5 to 2.0% acetic acid, and the alkali to be added is any one or more of sodium bicarbonate, sodium hydroxide, and calcium hydroxide. It is characterized by being.
 カリウムを除去するためには、0.5~2.0%酢酸が、様々な食品からカリウムを効率的に除去することができ、また、入手しやすいことから好ましい。さらに、酸を中和するアルカリとしては、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カルシウムが、入手しやすく、また、比較的食品に浸透しやすいことから好ましい。 In order to remove potassium, 0.5 to 2.0% acetic acid is preferable because it can efficiently remove potassium from various foods and is easily available. Further, as the alkali for neutralizing the acid, sodium hydrogen carbonate, sodium hydroxide, and calcium hydroxide are preferable because they are easily available and relatively easily penetrate into food.
 本発明の低カリウム食品を得るためのキットは、食品から除去されたカリウムを測定する測定器を備えることを特徴とする。 The kit for obtaining the low potassium food of the present invention is characterized by comprising a measuring device for measuring potassium removed from the food.
 食品から除去されたカリウム量を測定する測定器を備えることによって、より正確に除去されたカリウム量を把握することができるとともに、味を元に戻すために必要なナトリウム及び/又はカルシウム量も正確に把握することができる。 By providing a measuring instrument that measures the amount of potassium removed from food, it is possible to grasp the amount of potassium removed more accurately and to accurately determine the amount of sodium and / or calcium required to restore the taste. Can grasp.
酸によりカリウムを除去する装置を示す図。The figure which shows the apparatus which removes potassium with an acid. 通電によりカリウムを除去する装置を示す図。The figure which shows the apparatus which removes potassium by electricity supply.
 本発明において、農産物とは主として栽培作物として栽培される作物であって、五訂増補日本食品標準成分表、または日本食品標準成分表2015年版(七訂)の分類によれば、穀類、いも類、豆類、種実類、野菜類、果実類、きのこ類、藻類をいう。 In the present invention, the agricultural product is a crop cultivated mainly as a cultivated crop, and according to the classification of the 5th edition Japanese food standard ingredient table or the Japanese food standard ingredient table 2015 edition (seventh edition), cereals , Beans, seeds, vegetables, fruits, mushrooms, algae.
 特に、水耕栽培によって栽培することが難しい、穀類、いも類、豆類、また野菜類のうちでも根菜類、結球性葉菜類、培養液によって栽培することのできないりんご等の果実類は、本発明の方法であれば風味を損なわずに低カリウム食品とすることができるため、様々な食品を提供するうえで非常に有効である。 In particular, cereals, potatoes, beans, and vegetables such as root vegetables, heading leafy vegetables, and apples that cannot be cultivated by a culture solution are difficult to grow by hydroponics. Since it can be made into a low potassium food without impairing the flavor, the method is very effective in providing various foods.
 特に、本発明の低カリウム食品の製造方法は、じゃがいも、さつまいもなどのいも類、ニンジン、大根、ごぼうなどの根菜類、かぼちゃなど、ブロック状に大きく切って調理する野菜や、カリウムの多い豆類など、従来の方法では低カリウム食品として提供できなかった食品を提供するうえで、非常に有用な方法である。 In particular, the method for producing a low potassium food of the present invention includes potatoes such as potatoes, sweet potatoes, root vegetables such as carrots, radishes and burdock, pumpkins, vegetables cooked by cutting into blocks, beans with high potassium, etc. It is a very useful method for providing foods that could not be provided as low potassium foods by conventional methods.
 かぼちゃ、大根など大きく切って調理することが多い食品は茹でたり、煮たりという調理の間でもカリウムが抜ける率が低く、薄く切ったうえで、調理時間を長くしてカリウムの除去を図るなど、いろいろな工夫を行っていた。これら大きくブロック状に切って使用することの多い野菜を低カリウム野菜として提供することができれば、変化にとんだ献立を組むことが可能となる。本発明では薄く切った野菜からはもちろん高率にカリウム除去を図ることができるが、大きく切った野菜であっても低カリウム食品として提供できる点で非常に有効である。 Foods often cut and cooked, such as pumpkins and radishes, have a low rate of potassium removal even during cooking such as boiled and boiled, and after thinly cutting, increasing the cooking time to remove potassium, etc. Various ideas were made. If these vegetables, which are often cut into blocks, can be provided as low-potassium vegetables, it is possible to create a menu that is suitable for change. In the present invention, potassium can be removed at a high rate from a thinly cut vegetable, but it is very effective in that a large cut vegetable can be provided as a low potassium food.
 本発明で、「低カリウム食品」とは、収穫後の農産物からカリウムを除去した食品であって、調味をする前の食品をいう。具体的には、カリウム除去工程の前後に、下茹でした状態、さらにこれらを冷凍した状態などの食品、あるいはこれらを中和によって食味を元に戻した段階の調味前の素材の段階をいう。また、ジュース、豆乳などの液状の加工食品、カリウム除去後に粉末にした加工食品などは、従来技術によって十分に低カリウムとすることができるため、本発明の「低カリウム食品」からは除かれる。 In the present invention, the “low potassium food” refers to a food obtained by removing potassium from a harvested agricultural product before seasoning. Specifically, it refers to the state of the raw material before seasoning at the stage where the food is in the state of the lower rice cake, the state in which they are frozen before or after the potassium removal process, or the taste is restored by neutralizing them. Also, liquid processed foods such as juice and soy milk, processed foods powdered after potassium removal, etc., can be made sufficiently low potassium by conventional techniques, and are excluded from the “low potassium food” of the present invention.
 また、農産物は加熱して食するものも多い。農産物によっては加熱後の方が添加したナトリウム、カルシウムが浸透しやすいため、短時間で中和処理が完了する場合もある。したがって、カリウム除去後、ナトリウム、カルシウム化合物による中和は加熱と同時に行ってもよい。本発明の低カリウム食品とは、生あるいは加熱された後に食品として提供される際にカリウム量が減少している食品をいう。 Also, many agricultural products are heated and eaten. Depending on the agricultural product, the sodium and calcium added after heating is likely to penetrate, so the neutralization may be completed in a short time. Therefore, neutralization with sodium and calcium compounds may be performed simultaneously with heating after removing potassium. The low potassium food of the present invention refers to a food in which the amount of potassium is reduced when being provided as food after being cooked or heated.
 カリウムを除去した農産物を下茹でなどにより加熱した低カリウム食品として供する場合には、下茹での際にわずかな食塩を添加する場合もある。下茹で、あるいは調理によって加えた食塩中のナトリウムと、中和のために用いられたナトリウムの区別は塩素濃度の増加を基に、例えば以下のようにして解析することができる。 When using agricultural products from which potassium has been removed as low-potassium foods heated with a lower pan, etc., a slight amount of salt may be added to the lower pan. The distinction between sodium in sodium chloride added by cooking or cooking, and sodium used for neutralization can be analyzed based on the increase in chlorine concentration, for example, as follows.
 まず、調味済みの低カリウム野菜を含む食品については、一般的にNaClを多く含む魚肉や食肉を除いた後、煮汁などを含む食品全体を混合して成分分析し、魚肉や食肉を除いた食品全体に含まれる塩素濃度(Clh)を測定する。 First, for foods containing seasoned low-potassium vegetables, generally remove fish meat and meat that contain a lot of NaCl, then mix the whole foods that contain boiled juice, etc., and analyze the ingredients to remove the fish meat and meat. The chlorine concentration (Clh) contained in the whole is measured.
 次に、Clhに相当する食塩水濃度で対象とする野菜を煮たときに含まれるNa濃度(Nae)を測定する。発明者による測定で、野菜を食塩水中で煮た場合、野菜に付加される塩素(Cle)とナトリウム(Nae)の当量比は1:1ではなく、食塩水濃度によって表1のようにNae/Cleが変わることがわかっている。 Next, the Na concentration (Nae) contained when the target vegetable is boiled at a saline concentration corresponding to Clh is measured. According to the measurement by the inventors, when vegetables were boiled in saline, the equivalent ratio of chlorine (Cle) and sodium (Nae) added to the vegetables was not 1: 1, but Nae / I know Cle changes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 当該食品に含まれる低カリウム野菜単体のNa濃度(Nas)を測定し、調味前の低カリウム野菜のNa量(A)を下記式で算出する。
A=Nas-Clh×Nae/Cle
The Na concentration (Nas) of the low potassium vegetable simple substance contained in the food is measured, and the Na amount (A) of the low potassium vegetable before seasoning is calculated by the following formula.
A = Nas-Clh × Nae / Cle
 なお、調味していない野菜中に塩素およびナトリウムはほとんど含まれていない。したがって、当該食品に含まれる低カリウム野菜の表面を拭うなどして得た野菜中のナトリウムの大部分は、塩化ナトリウム(食塩)を含む調味料由来の成分である。グルタミン酸ソーダなどの他のナトリウム塩からなる調味料についても同様な方法で、これら材料により付加されたナトリウムを算出できる。また、塩酸によってカリウムを除去した低カリウム農産物を用いた場合には、農産物中に塩素が浸透することにより塩素濃度が高くなっている。その場合には、野菜に含まれる塩素濃度は調味料に含まれる塩素濃度から算出された値より高くなっているが、測定値を補正することによって調味前の食品のカリウム濃度を該算することができる。 It should be noted that the unseasoned vegetables contain almost no chlorine or sodium. Therefore, most of the sodium in the vegetable obtained by wiping the surface of the low potassium vegetable contained in the food is a component derived from the seasoning containing sodium chloride (salt). With respect to seasonings composed of other sodium salts such as sodium glutamate, sodium added by these materials can be calculated in the same manner. Moreover, when low potassium agricultural products from which potassium has been removed with hydrochloric acid are used, the chlorine concentration is high due to the penetration of chlorine into the agricultural products. In that case, the chlorine concentration contained in the vegetables is higher than the value calculated from the chlorine concentration contained in the seasoning, but the potassium concentration of the food before seasoning is calculated by correcting the measured value. Can do.
 また、食品の産地、収穫時期によっては食品成分表に記載されているカリウム値に比べ、カリウム値が高い農産物も存在するが、本発明の方法によれば食品成分表の成分値の70%程度の値までは、容易にカリウムを除去することができる。したがって、本発明で低カリウム食品という場合には、食品に含まれるカリウムの量が食品成分表の成分値の70%以下のものをいう。また、食事制限を行っている腎臓病患者が日々の食事に取り入れるためには50%以下にすることが好ましく、30%以下にすることがより好ましい。また、カリウム除去後、ナトリウム及び/又はカルシウムによって、味を元に戻すことから、ナトリウム及び/又はカルシウムは食品成分表に記載されている値よりも多くなり、当量の和で250%以上となる。 In addition, there are agricultural products with a higher potassium value than the potassium value described in the food composition table depending on the production area and harvest time of the food, but according to the method of the present invention, about 70% of the component value in the food composition table. Up to this value, potassium can be easily removed. Therefore, the term “low potassium food” in the present invention means that the amount of potassium contained in the food is 70% or less of the component value in the food composition table. Moreover, it is preferable to make it 50% or less, and it is more preferable to make it 30% or less so that the kidney disease patient who is restricting a meal may take in a daily meal. In addition, after removing potassium, the taste is restored by sodium and / or calcium, so sodium and / or calcium is greater than the value listed in the food composition table, and the sum of equivalents is 250% or more. .
カリウム値の基準として用いる食品成分表は、各国の政府機関、あるいはそれに準ずる機関によって解析され公開されている日常摂取する食品の成分値についてまとめたデータをいう。例えば、日本の場合には、五訂増補日本食品標準成分表、または日本食品標準成分表2015年版(七訂)を指し、米国の場合には、「the Nutrient Data Laboratory」のまとめたデータ、フランスの場合には、「Composition nutritionnelle des aliments TABLE Ciqual 2012」などをいう。さらに、これに準ずるような各国で公表されている食品の成分値をまとめたデータいう。 The food composition table used as the standard of potassium value is data that summarizes the component values of foods that are ingested daily and are analyzed and published by government agencies in each country or similar institutions. For example, in the case of Japan, it refers to the 5th edition supplementary Japanese food standard ingredient table or the Japanese food standard ingredient table 2015 edition (seventh edition). In the case of the United States, the data compiled by “the Nutrient Data Laboratory” In this case, it means “Composition nu- tionnel des alignments TABLE Ciral 2012” or the like. Furthermore, it is data that summarizes the component values of foods that have been published in various countries that are equivalent to this.
 例えば、食品から50%のカリウムを除去する処理を行った場合、ナトリウム、カルシウムもカリウムと同程度食品から溶出する。したがって、食品成分表に記載されているナトリウム、カルシウム量の50%程度にまで含有量が低下する。しかしながら、続く中和の過程でナトリウム及び/又はカルシウムを添加するので、中和後の食品には食品成分表の成分値より多いナトリウム、カルシウムが含まれることになる。通常、野菜類、豆類にはカリウムが多量に含まれるものの、カルシウム含有量は非常に少ない。例えば、生の西洋かぼちゃの場合、五訂増補日本食品標準成分表によれば、カリウム量は450mg/100g(11.51meq/100g)であるのに対し、ナトリウム量1.0mg/100g(0.043meq/100g)、カルシウム量15mg/100g(0.75meq/100g)である。したがって、低いカリウム量と高いナトリウム量/カルシウム量によって、区別することが可能である。 For example, when 50% potassium is removed from food, sodium and calcium are also eluted from food to the same extent as potassium. Therefore, the content is reduced to about 50% of the sodium and calcium amounts described in the food composition table. However, since sodium and / or calcium are added during the subsequent neutralization process, the food after neutralization contains more sodium and calcium than the component values in the food ingredient table. Usually, vegetables and beans contain a large amount of potassium, but the calcium content is very low. For example, in the case of raw western pumpkin, the amount of potassium is 450 mg / 100 g (11.51 meq / 100 g) according to the five amended Japanese food standard ingredient table, whereas the amount of sodium is 1.0 mg / 100 g (0. 043 meq / 100 g) and calcium content 15 mg / 100 g (0.75 meq / 100 g). Therefore, it is possible to distinguish between a low potassium amount and a high sodium / calcium amount.
 本発明の方法について以下実施例をあげて詳細に説明する。しかしながら、実施例にとらわれず、どのような食品であっても風味を損なわずに低カリウム食品化することが可能であることは言うまでもない。食品からカリウムを除去する方法としては、酸処理、通電の2つの方法がある。 The method of the present invention will be described in detail below with reference to examples. However, it goes without saying that, regardless of the examples, any food can be made into a low potassium food without impairing the flavor. There are two methods for removing potassium from food, acid treatment and energization.
 [実施例1]
 (酸浸漬によって低カリウム食品を製造する方法)
 酸によってカリウムを除去する方法について示す。後述する電極によるカリウム除去の方法は、通電処理の際に電極と密着させることが必要であるため、ある程度の大きさを有する食品の処理に適している。これに対し、豆類、穀類等、小さいものの処理や、薄切り、千切りにした野菜等、表面積が大きく体積が小さい形状の野菜は、酸に浸漬することによってカリウムが効率よく抽出される。
[Example 1]
(Method of producing low potassium food by acid immersion)
A method for removing potassium with an acid will be described. The method of removing potassium using an electrode, which will be described later, is suitable for the treatment of food having a certain size because it needs to be in close contact with the electrode during the energization treatment. In contrast, vegetables with shapes having a large surface area and a small volume, such as processing of small things such as beans and grains, and sliced and shredded vegetables, are efficiently extracted with potassium by being immersed in acid.
 図1は酸処理によってカリウムを除去し、アルカリ剤による中和によって食味をもどすための装置1を示す。 FIG. 1 shows an apparatus 1 for removing potassium by acid treatment and returning taste by neutralization with an alkaline agent.
 容器2に酢酸等の酸を入れ、仕切り板3の上に食品を載せる。底部には攪拌羽4を設け、酸が常に攪拌されるようにし、溶出したカリウムが食品の周囲に滞留しないようにする。溶出したカリウム量はカリウムイオンメーター5によって測定することができる。 。 Put acid such as acetic acid into the container 2 and place food on the partition plate 3. A stirring blade 4 is provided at the bottom so that the acid is always stirred so that the eluted potassium does not stay around the food. The amount of eluted potassium can be measured with a potassium ion meter 5.
 ここでは、攪拌装置として攪拌羽を用いているが、スターラーやポンプによる溶液循環など、溶液が撹拌、循環できるものであればどのようなものを用いてもよい。また、攪拌装置は、容器の形状や大きさによって、攪拌が効率良く行われれば、底部に限らず、上部、側部のどこに設けてもよい。さらに、図1では仕切り板3に穴を設け、連通するようにしているが、食品の周囲に溶出したカリウムが滞留しないような構造であればどのようなものでもよく網やかご等を用いてもよい。 Here, although a stirring blade is used as the stirring device, any device may be used as long as the solution can be stirred and circulated, such as solution circulation using a stirrer or a pump. Further, the stirring device may be provided anywhere on the top and side as well as the bottom as long as stirring is efficiently performed depending on the shape and size of the container. Further, in FIG. 1, the partition plate 3 is provided with holes so as to communicate with each other. However, any structure may be used as long as the eluted potassium does not stay around the food, using a net or a basket. Also good.
 また、ここでは容器を密閉容器としているが、開放容器を用いてもよい。密閉容器とすることによって上部の管6を図示しないアスピレーター等に接続することにより、減圧によって、中和の際に食品中にアルカリ剤をより早く浸透させることが可能である。 In addition, although the container is a sealed container here, an open container may be used. By connecting the upper tube 6 to an aspirator or the like (not shown) by using an airtight container, it is possible to infiltrate the alkaline agent more quickly into the food during neutralization by decompression.
 また、カリウムイオンメーター5を常時設置するようにすれば酸溶液中のカリウム濃度を測定することができるため、食品中のカリウム量を所望の量に調整することが可能となる。なお、カリウム量は食品によって、一定の値をとることから、同一の食品であれば、カリウムイオンメーターを用いなくても、酸濃度、浸漬時間等の条件を予め設定することによって、ほぼ同程度にカリウム量を減じた食品を得ることができる。 Further, if the potassium ion meter 5 is always installed, the potassium concentration in the acid solution can be measured, so that the amount of potassium in the food can be adjusted to a desired amount. In addition, since the amount of potassium takes a certain value depending on food, even if the same food is used, it is almost the same by setting conditions such as acid concentration and immersion time in advance without using a potassium ion meter. In addition, foods with reduced potassium content can be obtained.
 カリウム除去後、除去したカリウム量に対して、ナトリウム及び/又はカルシウムの適切な添加量を求めるには、食品の一部をペースト状にし、滴定により必要なアルカリ量を求めればよい。このとき、添加するナトリウム及び/又はカルシウムの量は、除去したカリウム量に対して0.15~1.25当量の範囲である。 In order to obtain an appropriate amount of sodium and / or calcium added to the amount of potassium removed after removing potassium, a part of the food may be made into a paste and the required alkali amount may be obtained by titration. At this time, the amount of sodium and / or calcium added is in the range of 0.15 to 1.25 equivalents with respect to the amount of potassium removed.
 大豆を例に、酸浸漬によってカリウムを除去し、その後ナトリウムを用いて味を調える方法を説明する。 Using soybean as an example, a method for removing potassium by acid immersion and then adjusting the taste using sodium will be described.
 乾物大豆(北海道産小粒大豆、品種名:スズマル)は、水の代わりに、4倍量の0.5%、1.0%、5.0%酢酸によって室温で18時間放置することによって戻した。酸処理後のカリウム量の変化を表2に示す。なお、表2のカリウム値の%は五訂増補日本食品標準成分表の大豆のカリウム値1900mgを基準として残存しているカリウムの値を算出したものである。これに対し、購入した乾物豆を乾燥したまま粉砕し、測定したカリウム値(試料5)は1832mg/100gであり、食品成分表の96.4%であった。産地、収穫時期によって、この程度のばらつきがあるものと考えられるが、以下、五訂増補日本食品標準成分表(以下、単に食品成分表と記載することもある。)を基準として記載する。 Dried soybeans (Hokkaido small soybeans, variety name: Suzumaru) were returned by leaving them at room temperature for 18 hours instead of water with 4% 0.5%, 1.0%, 5.0% acetic acid. . Table 2 shows changes in the amount of potassium after the acid treatment. In addition,% of the potassium value of Table 2 is the value of the remaining potassium calculated based on the 1900 mg potassium value of soybean in the 5th edition supplemented Japanese food standard ingredient table. On the other hand, the dried bean beans purchased were ground and dried, and the measured potassium value (sample 5) was 1832 mg / 100 g, which was 96.4% of the food composition table. Although it is considered that there is this level of variation depending on the production area and harvest time, it is described below based on the 5th revised Japanese food standard ingredient table (hereinafter sometimes simply referred to as the food ingredient table).
 また、酸を含まない水で戻した大豆のカリウム値(試料4)は乾燥重量に換算して1830mg/100gであり、食品成分表の値の96.3%であった。水に浸漬しただけでは、ほとんどカリウムが除去できないことは明らかである。 Moreover, the potassium value (sample 4) of soybeans reconstituted with water containing no acid was 1830 mg / 100 g in terms of dry weight, which was 96.3% of the value in the food composition table. It is clear that almost no potassium can be removed by just immersing in water.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、0.5%の酢酸であっても、40%程度のカリウムを除去することができる。しかしながら、食味テストを行うと酸臭、酸味があり、元の大豆の味とはほど遠い。さらに5.0%の酢酸処理の場合には、酸臭、酸味が強く、後述のアルカリによる処理を行っても味の変化を元に戻すことはできなかった。他の実験結果から酢酸濃度が2.0%を超えると酸臭、酸味が強いため、酸処理によるカリウム除去には0.5~2.0%までの酸が好ましいと判断した。 As shown in Table 2, about 40% of potassium can be removed even with 0.5% acetic acid. However, when the taste test is performed, there are acid odor and acidity, which is far from the original taste of soybeans. Further, in the case of 5.0% acetic acid treatment, the acid odor and sourness were strong, and the change in taste could not be reversed even when the treatment with alkali described later was performed. From other experimental results, when the acetic acid concentration exceeds 2.0%, the acid odor and sourness are strong. Therefore, it was judged that 0.5 to 2.0% acid is preferable for removing potassium by acid treatment.
 次に、味を回復する処理について説明する。非特許文献3によれば、各種酸の水溶液を用いて試験した場合、酸の種類にもよるが概ねpH4.5以下で酸味を感じるようになるとされる。しかしながら、非特許文献4には、呈酸味物質以外が共存する場合、酸味の減少、増強効果がみられることが報告されている。 Next, a process for restoring the taste will be described. According to Non-Patent Document 3, when tested using an aqueous solution of various acids, although it depends on the type of acid, the acidity is generally felt at pH 4.5 or lower. However, Non-Patent Document 4 reports that when a substance other than a sour substance coexists, a sour taste reduction and enhancement effect is observed.
 客観的な酸味の指標を得るために、各濃度の酢酸で戻した大豆をミキサーを用いてペースト状にし、pHを測定するとともに官能試験を行い、どの程度のpHであれば酸味を感じないかを確認した。酸処理した大豆をペースト状にし、段階的に水酸化ナトリウムを加えpHを調整した試料を作製し官能試験を行った。大豆では、pH5.1で酸味を感じなくなった。また、後述の通電によりカリウム除去を行い酸味を生じた日本産かぼちゃ及び輸入かぼちゃの2種類についてペースト状にし、同様にして官能試験を行った。輸入かぼちゃの場合にはpH4.8でも酸味が感じられなかったのに対し、日本産のかぼちゃの場合には、pH5.2においても酸味が感じられ、pH5.5を超えた試料では酸味が感じられなかった。このように、pHと酸味官能試験の結果は必ずしも一致しない。 In order to obtain an objective index of sourness, soybeans that have been reconstituted with acetic acid at each concentration are made into a paste using a mixer, pH is measured, and a sensory test is conducted. It was confirmed. The acid-treated soybean was made into a paste, and a sample was prepared by adjusting the pH by adding sodium hydroxide in stages, and a sensory test was performed. Soybeans did not feel sour at pH 5.1. In addition, two types of Japanese pumpkin and imported pumpkin that had been soaked by removing potassium by energization described below were made into a paste and subjected to a sensory test in the same manner. In the case of imported pumpkin, acidity was not felt even at pH 4.8, whereas in the case of Japanese pumpkin, acidity was felt even at pH 5.2, and sourness was felt in samples exceeding pH 5.5. I couldn't. Thus, the results of pH and acidity sensory test do not always match.
 上記のように食品によって、酸味を感じるpHは異なることから、カリウム除去後、ペースト状にして個々の食品について官能試験を行うか、又は、ほとんどの食品において酸味を感じることのないpH5.5以上になるようにpHを調整して味を回復させればよい。 Since the pH at which acidity is felt differs depending on the food as described above, after removing potassium, a sensory test is performed on individual foods in the form of a paste, or pH 5.5 or higher at which most foods do not feel acidity The pH may be adjusted to restore the taste.
 表2と同様にして、乾物大豆を0.5%酢酸(表3、表4の試料1A~1D)、又は1%酢酸(表3、表4の試料2A~2D)で18時間処理し、カリウム除去を行い、アルカリ処理によって中和した後、蒸した豆の官能試験、及び納豆菌で発酵させ、発酵が可能か試験を行った。処理、及び結果を表3に示す。未処理は酸処理、アルカリ処理を行わなかった豆を示す。 In the same manner as in Table 2, dried soybeans were treated with 0.5% acetic acid (Samples 1A to 1D in Tables 3 and 4) or 1% acetic acid (Samples 2A to 2D in Tables 3 and 4) for 18 hours. After removing potassium and neutralizing by alkali treatment, it was fermented with a sensory test of steamed beans and Bacillus natto to test whether fermentation was possible. The processing and results are shown in Table 3. Untreated indicates beans that have not been subjected to acid treatment or alkali treatment.
 まず、各酢酸濃度でカリウム除去を行った大豆をペースト状にし、水酸化ナトリウムを用いて滴定し、pHを5.0、5.5、6.1にするのに必要なアルカリの量を求めた。なお、pH5.0は上述の大豆を用いた官能試験ではわずかに酸味を感じるpHである。 First, soybeans after removal of potassium at each acetic acid concentration are made into a paste and titrated with sodium hydroxide to determine the amount of alkali necessary to adjust the pH to 5.0, 5.5, 6.1. It was. In addition, pH 5.0 is pH which feels a little acidity in the sensory test using the above-mentioned soybean.
 大豆ペーストを各pHにするのに必要な量を滴定によって求めた後、酸処理によって吸水した豆100gを、アルカリ溶液100gに浸し、十分に平衡に達した後に所望のpHとなるように中和液を作製し、18時間室温で緩やかに振とうして中和を行った。具体的には酸処理した豆の体積と同等の体積の中和液に、平衡後に所望のpHになるようにアルカリを添加して中和液として用いた。試料1A、2Aは酸処理のみでアルカリ処理を行わなかったもの、試料1B、2Bは平衡に達した後、pHが5.0になるように中和液を作製したもの、試料1C、2CはpHが5.5になるように中和液を作製したもの、試料1D、2DはpH6.1になるように中和液を作製したものを示す。18時間後に中和液から取り出し、中和後の生豆をペーストにしpHの測定を行った。さらに120℃加圧釜で1時間蒸した後の蒸し豆のpHを測定した。蒸し豆については官能試験を行い、さらに蒸し豆を市販の納豆菌によって発酵させた。 After determining the amount of soybean paste necessary for each pH by titration, 100 g of beans absorbed by acid treatment are immersed in 100 g of an alkaline solution and neutralized so that the desired pH is obtained after sufficient equilibrium is reached. A liquid was prepared and neutralized by gently shaking at room temperature for 18 hours. Specifically, an alkali was added to a neutralization solution having a volume equivalent to the volume of the acid-treated beans so that a desired pH was obtained after equilibration and used as a neutralization solution. Samples 1A and 2A were acid treatments only, and alkali treatment was not performed. Samples 1B and 2B were prepared by neutralizing solution so that the pH was 5.0 after reaching equilibrium. Samples 1C and 2C were Samples prepared with a neutralizing solution so that the pH is 5.5, and Samples 1D and 2D are samples prepared with a neutralizing solution so that the pH is 6.1. After 18 hours, it was taken out from the neutralized solution, and the neutralized green beans were used as a paste to measure the pH. Further, the pH of the steamed beans after steaming for 1 hour in a 120 ° C. pressure kettle was measured. A sensory test was performed on the steamed beans, and the steamed beans were fermented with commercially available natto bacteria.
 アルカリはここでは水酸化ナトリウムを用いているが、炭酸水素ナトリウム、水酸化カルシウム等、食用として用いることのできるアルカリであればどのようなものを使用してもよい。 Here, sodium hydroxide is used as the alkali. However, any alkali that can be used for food, such as sodium hydrogen carbonate and calcium hydroxide, may be used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表中のK及びNa量(mg/100g)は、大豆が酸処理等により吸水することによって増量した重量を補正し、実験開始時である乾燥大豆100g中に含まれるカリウム量、ナトリウム量に換算して示したものである。また、K残量は五訂増補日本食品標準成分表の乾燥大豆100gあたりのカリウム量1900mg/100gを基準としている。 The amount of K and Na in the table (mg / 100g) is corrected for the weight increased by soy absorbing water by acid treatment, etc., and converted to the amount of potassium and sodium contained in 100g of dry soybean at the start of the experiment. It is shown. Further, the remaining amount of K is based on the amount of potassium of 1900 mg / 100 g per 100 g of dried soybeans in the 5th edition supplemented Japanese food standard ingredient table.
 官能試験は、以下の基準によって判断した。
不可:酸臭及び酸味がある。
可:酸臭はないが、わずかに酸味が残る、あるいは中和に使用したアルカリによってナトリウムの味が感じられる。
優:酸臭、酸味、ナトリウム味なし。
The sensory test was judged according to the following criteria.
Impossible: Acid odor and acidity.
Good: There is no acid odor, but a slight acidity remains, or the taste of sodium is felt by the alkali used for neutralization.
Excellent: No acid odor, acidity, sodium taste.
 発酵試験は、以下の基準によって判断した。
不可:発酵せず。
良:表面の一部が白い菌膜に覆われている。糸引き、粘りは弱い。
優:表面がすべて白い菌膜に覆われている。糸引き、粘りがある。
The fermentation test was judged according to the following criteria.
Impossible: Not fermented.
Good: Part of the surface is covered with a white fungus membrane. Stringing and stickiness are weak.
Excellent: All surfaces are covered with white fungus membrane. There is stringing and stickiness.
 生豆のpHは、滴定によって設定したpHとほぼ同等のpHとなっている。すなわち、試料1B、2Bは滴定値よりpH5.0になるように作製した中和液に、18時間浸漬したものであるが、試料1B、2Bともに、pH5.1になっている。また、試料1C、2Cは、pH5.5になるように中和液を作製したものであるが、試料1CはpH5.4、試料2CはpH5.6になっている。試料1D、2Dは、pH6.1になるように中和液を作製したものであるが、試料1DはpH6.2、試料2DはpH6.3とほぼ設定どおりのpHになっている。 The pH of green beans is almost the same as the pH set by titration. That is, Samples 1B and 2B were immersed in a neutralizing solution prepared to have a pH of 5.0 from the titration value for 18 hours, but both Samples 1B and 2B had a pH of 5.1. Samples 1C and 2C are prepared by preparing a neutralization solution so as to have a pH of 5.5, but sample 1C has a pH of 5.4 and sample 2C has a pH of 5.6. Samples 1D and 2D were prepared from neutralization solutions so as to have a pH of 6.1, but Sample 1D had a pH of 6.2 and Sample 2D had a pH almost as set.
 また、蒸し豆にすると、いずれの場合もpHは上昇している。これは残っている酸が加熱することにより蒸発して抜けるだけではなく、大豆の成分と反応することによりpHが上昇するものと考えられる。また、酸処理後、さらにアルカリ溶液又は水に浸漬していることにより、酸処理のみを行った表2と比較して20%程度カリウム残量が低くなっている。 Also, when steamed beans are used, the pH increases in all cases. This is considered not only to evaporate and escape the remaining acid by heating, but also to increase the pH by reacting with soybean components. In addition, after the acid treatment, the remaining amount of potassium is about 20% lower than that in Table 2 where only the acid treatment was performed by being immersed in an alkaline solution or water.
 官能試験の結果、ペースト、あるいは生豆において酸味をわずかに感じるpH5.0にアルカリ処理を行った試料1B、2Bは、試料1Bについては、蒸し豆にした状態でpHが5.9と高くなっても後味にわずかに酸味が感じられた。一方、生豆pHは同じくpH5.1にした試料2Bは官能試験の結果、酸味、酸臭ともに感じられなかった。また、pH5.5になるように中和液を作製した試料1C、2Cは、ともに酸味、酸臭を感じず、元の食品と区別がつかなかった。これら結果から、pH5.5になるように中和することにより、どのような処理であっても酸味、酸臭を感じなくなると考えられる。 As a result of the sensory test, Samples 1B and 2B, which had been subjected to alkali treatment at pH 5.0 that slightly felt sourness in paste or green beans, had a high pH of 5.9 in the state of steamed beans for Sample 1B. However, a slight acidity was felt in the aftertaste. On the other hand, as for the sample 2B having the same green bean pH of 5.1, neither acidity nor acid odor was felt as a result of the sensory test. In addition, Samples 1C and 2C, in which the neutralization solution was prepared so as to have a pH of 5.5, did not feel sour and acid odor, and were indistinguishable from the original food. From these results, it is considered that the acidity and acid odor are not felt by any treatment by neutralizing to pH 5.5.
 表4は、表3の結果をもとに、五訂増補日本食品標準成分表の乾燥大豆のカリウム量(1900mg/100g)、ナトリウム量(1mg/100g)を基準として、食品から除去されたカリウム量(K除去量)、食品から除去されたカリウム当量(K当量)、添加されたナトリウム量(Na添加量)、添加されたナトリウム当量(Na当量)、及び添加されたナトリウム当量の除去されたカリウム当量に対する割合(Na当量/K当量)計算し、まとめたものである。 Table 4 shows potassium removed from food based on the results of Table 3 based on the amount of potassium (1900 mg / 100 g) and sodium (1 mg / 100 g) of dried soybean in the 5th edition Japanese Food Standard Ingredients Table. Amount (K removed), potassium equivalent removed from food (K equivalent), added sodium (Na added), added sodium equivalent (Na equivalent), and added sodium equivalent removed The ratio to the potassium equivalent (Na equivalent / K equivalent) is calculated and summarized.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 食品から除去したカリウム量を測定して、添加するアルカリ量を決める場合には、官能試験の結果から、表4にまとめたように、除去したカリウム量に対して当量比0.15~1.25になるようにナトリウム及び/又はカルシウムを添加すればよい。また、他の食味に左右される官能試験に対し、より敏感なバイオアッセイである発酵試験の結果を考慮すれば、当量比0.4~0.9になるようにナトリウム及び/又はカルシウムを添加することが好ましい。 When determining the amount of alkali to be added by measuring the amount of potassium removed from the food, from the results of the sensory test, as summarized in Table 4, an equivalent ratio of 0.15 to 1. What is necessary is just to add sodium and / or calcium so that it may become 25. In addition, when considering the results of fermentation tests, which are more sensitive bioassays, compared to other sensory tests that depend on taste, sodium and / or calcium is added so that the equivalent ratio is 0.4 to 0.9. It is preferable to do.
 また、表3、及び表4の結果は、大豆をペースト状にし水酸化ナトリウムを用いて行った結果であるが、水酸化カルシウムを全量使用してpH調整を行った場合には、酸味、酸臭は感じられないものの舌にざらつく、食感がやや固くなるといった食感の変化が生じていた。後述するが、食感をより良く保つためには、必要とされるアルカリ量の内、少なくとも1/3以上をナトリウムとすれば良いことを明らかにした。また、後述するが、大豆を豆として食する場合には、7割以上をナトリウムを含むアルカリで処理することが好ましい。 The results in Tables 3 and 4 are the results of making soybeans into a paste and using sodium hydroxide, but when adjusting the pH using the whole amount of calcium hydroxide, sourness, acidity Although the odor was not felt, the texture changed such as a rough texture on the tongue and a slightly hard texture. As will be described later, in order to keep the texture better, it has been clarified that at least 1/3 or more of the required alkali amount should be sodium. As will be described later, when soybeans are eaten as beans, it is preferable to treat 70% or more with an alkali containing sodium.
 さらに、市販の納豆菌により発酵させた結果、蒸し豆のpHが6.0~8.0程度であれば、発酵も進むことが明らかとなった。一般に豆はカリウム値が高いものが多く、腎臓病患者は制限を受けていることが多い。このようにカリウム除去を行った後に、味を戻し、発酵させることができたことは、カリウム制限を受けている患者の食生活の幅を広げることとなる。 Furthermore, as a result of fermentation with commercially available natto bacteria, it was found that fermentation progresses when the pH of steamed beans is about 6.0 to 8.0. In general, beans often have high potassium levels, and kidney disease patients are often restricted. Thus, after performing potassium removal, it was able to return the taste and to make it ferment, and the breadth of the dietary life of the patient who has received potassium restriction will be expanded.
 [実施例2]
 (通電することによってカリウムを除去し、低カリウム食品を製造する方法)
 通電によりカリウムを除去することにより、上記の酸処理による方法ではカリウムが抜けにくい大きな野菜片からカリウムを除去することが可能である。概略を説明すると図2Aに示すように、食品12を挟むように、対向する網状の電極13、14を配置する。電極13、14は面電極を用い、食品12は直方体状にカットして電極間に挟み込み通電する。通電の際には、冷却とともに溶出したイオンのリザーバーとして機能し、同時に水分を供給するように水を張った水槽内に設置する(図2B)。すなわち、通電により陰極側では、カリウムイオン、ナトリウムイオン等の陽イオンが溶出してくることから、これら陽イオンのリザーバーとして、陽極側では、水分の供給が行われる。
[Example 2]
(Method of producing low potassium food by removing potassium by energizing)
By removing potassium by energization, it is possible to remove potassium from a large vegetable piece that is difficult to remove potassium by the above acid treatment method. To explain the outline, as shown in FIG. 2A, opposing net- like electrodes 13 and 14 are arranged so as to sandwich the food 12 therebetween. The electrodes 13 and 14 are planar electrodes, and the food 12 is cut into a rectangular parallelepiped shape and is sandwiched between the electrodes for energization. When energized, it functions as a reservoir of ions eluted with cooling, and is installed in a water tank filled with water so as to supply moisture (FIG. 2B). That is, since cations such as potassium ions and sodium ions are eluted on the cathode side by energization, moisture is supplied on the anode side as a reservoir for these cations.
 また、電極13、14として可撓性の素材を用いることにより、食品と密着させ、広い面積で通電することができる。本発明の電極13、14は、直接食品に接触し、通電を行うことから、安全性に配慮したものである必要がある。具体的には、「食品、添加物等の規格基準」に定められた鉄、アルミニウム、白金及びチタンを用いれば良い。また、特に、陽極電極は金属イオンの溶出を防ぐために、白金電極等の耐食性電極とする必要がある。 Moreover, by using a flexible material as the electrodes 13 and 14, it can be in close contact with food and can be energized over a wide area. Since the electrodes 13 and 14 of the present invention are in direct contact with food and energized, it is necessary to consider the safety. Specifically, iron, aluminum, platinum, and titanium specified in “Standards for Foods, Additives, etc.” may be used. In particular, the anode electrode needs to be a corrosion-resistant electrode such as a platinum electrode in order to prevent elution of metal ions.
 また、片側の電極の外側に緩衝材15を配置することにより、面電極14が食品12に対してより密着し効率良く通電を行うことができる。 In addition, by disposing the buffer material 15 outside the electrode on one side, the surface electrode 14 can be more closely attached to the food 12 and can be energized efficiently.
 緩衝材15は可撓性があり、食品から溶出したイオンが拡散することができるものであればどのようなものを用いても良い。例えば、スポンジ等の多孔性の素材や、綿、化学繊維からなる織物、山型形状の緩衝材等、電極に密着せず、溶出したイオンが周囲の水に拡散可能なものであればどのようなものを用いてもよい。 Any material may be used as the buffer material 15 as long as the material is flexible and can diffuse ions eluted from food. For example, porous materials such as sponges, cotton, chemical fiber fabrics, mountain-shaped buffer materials, etc., that do not adhere to the electrode and can dissolve the eluted ions into the surrounding water You may use anything.
 食品中のナトリウム、カリウムは通電を受け陽イオンとなり陰極側に移動し、最終的に陰極側から溶出する。図2に示した例では、食品12の上方に陽極、下方に陰極を配置しているが、対向する電極であれば、どちら側を陽極、陰極としてもよい。 Sodium and potassium in foods are energized to become cations, move to the cathode side, and finally elute from the cathode side. In the example shown in FIG. 2, the anode is disposed above the food 12 and the cathode is disposed below, but either side may be the anode or cathode as long as the electrodes are opposed.
 通電することにより陰極側に移動したカリウム等の陽イオンは、最終的に食品の外に溶出する。緩衝材15の下方に配置する載置台17には孔18を設けてある。水槽16内の水を載置台17の下で図示しないスターラー、撹拌羽等により撹拌することにより、溶出したイオンが載置台17付近に滞留せず、周囲の水によって希釈される。そのため溶出した陽イオンが、食品の中に再度流入する量は極微量であり、無視することができる。 Cation and other cations that have moved to the cathode side when energized will eventually elute out of the food. A hole 18 is provided in the mounting table 17 disposed below the cushioning material 15. By stirring the water in the water tank 16 with a stirrer, a stirring blade or the like (not shown) under the mounting table 17, the eluted ions do not stay near the mounting table 17 but are diluted with the surrounding water. For this reason, the amount of the eluted cation flowing again into the food is extremely small and can be ignored.
 水槽16の水は一定の温度に冷却されている。温度が高いほど通電したときのイオンの溶出速度が速くなるが、同時に食品から旨味成分も抜け出る。素材及びその後の調理方法によって、適切な温度は異なるが、温度は0~15℃の間で設定すればよい。冷却装置19は水槽の水を冷却することによって、浸漬した食品を低温に保つ。図2Bでは水槽の外部に冷却装置19を設けているが、水槽内に冷却装置を設ける構成としてもよい。 Water in the water tank 16 is cooled to a certain temperature. The higher the temperature, the faster the elution rate of ions when energized, but at the same time the umami component escapes from the food. The appropriate temperature depends on the ingredients and the subsequent cooking method, but the temperature may be set between 0 and 15 ° C. The cooling device 19 keeps the immersed food at a low temperature by cooling the water in the aquarium. Although the cooling device 19 is provided outside the water tank in FIG. 2B, a configuration in which the cooling device is provided in the water tank may be employed.
 図2Cは、水槽を設けず、電極13、14と食品12の間にヒドロゲルを含む部材20からなる受容供給部を配置する他の実施形態を示している。この構成によって、陽極側からは水を供給し、陰極側で溶出した陽イオンのリザーバーとして機能することができる。また、冷却装置19によって塩類除去装置11を設置した空間を雰囲気によって冷却することができる。また、水槽内の水を循環させる際に、循環水をイオン交換樹脂を通すことによって、野菜から抜け出たカリウムイオンを除去する構成としてもよい。循環水をイオン交換樹脂を通すことにより、より短時間でカリウム除去を行うことができる。 FIG. 2C shows another embodiment in which a water supply tank is not provided, and a receiving / supplying portion made of a member 20 containing a hydrogel is arranged between the electrodes 13 and 14 and the food 12. With this configuration, water can be supplied from the anode side and function as a reservoir of cations eluted on the cathode side. Moreover, the space in which the salt removing device 11 is installed can be cooled by the cooling device 19 according to the atmosphere. Moreover, when circulating the water in a water tank, it is good also as a structure which removes the potassium ion which escaped from vegetables by letting circulating water pass ion exchange resin. By passing the circulating water through the ion exchange resin, potassium can be removed in a shorter time.
 ヒドロゲルを含む部材20は、食品と直接接触する部分であるから、水分を多量に含み、安全性が確認されている素材を用いる必要がある。例えば、ヒドロゲルの成分として、寒天、アルギン酸ナトリウム、ゼラチン、コラーゲン、コンニャク等が挙げられる。 Since the member 20 containing hydrogel is a part that comes into direct contact with food, it is necessary to use a material that contains a large amount of moisture and has been confirmed to be safe. Examples of the hydrogel component include agar, sodium alginate, gelatin, collagen, konjac and the like.
 上記のように、通電時に冷却装置によって冷却しながら、また、通電量を野菜によってコントロールしながら、塩類、特にカリウムの除去を行うことによって、硬さ、舌触り等の食感を変えずにカリウムを除去することができる。 As described above, while cooling with a cooling device during energization and controlling the amount of energization with vegetables, removing potassium, especially potassium, without changing the texture such as hardness, texture, etc. Can be removed.
 以下にかぼちゃを用いた例を示す。かぼちゃは2.5cm角に切り、通電により残存カリウム量が30%になるように処理を行った。すなわち、生の西洋かぼちゃのカリウム量である450mg/100gから、135mg/100g程度になるようにカリウムを除去する。カリウム除去後のかぼちゃは、食感、硬さはそのままであるが、味は酸味を帯びたものになる。 An example using pumpkin is shown below. The pumpkin was cut into 2.5 cm squares and treated so that the amount of residual potassium was 30% by energization. That is, potassium is removed from 450 mg / 100 g, which is the amount of potassium in raw western pumpkin, to about 135 mg / 100 g. Pumpkin after removal of potassium retains its texture and hardness, but has a sour taste.
 通電による処理の場合、食品から除去したカリウム量はカリウムメーターによって測定できる。また、予め食品固有の値を求めておくことによっても推測可能である。したがって、測定値、あるいは推測値よりカリウム除去量を求め、添加するナトリウム及び/又はカルシウム量を算出することができる。 In the case of treatment by energization, the amount of potassium removed from the food can be measured with a potassium meter. It can also be estimated by obtaining food-specific values in advance. Therefore, the amount of potassium removed can be determined from the measured value or estimated value, and the amount of sodium and / or calcium added can be calculated.
 これを実施例1と同様に、平衡に達した際に所定のナトリウム、又はカルシウム当量になるように中和液を作製し、かぼちゃを浸漬して緩やかに振とうしながら放置すればよい。かぼちゃ等、ブロック状の野菜の場合には、中心部まで浸透するのに時間がかかるので、加圧減圧処置、凍結含浸法等、既知の方法を用いて浸透を早め、味を元に戻すことができる。 As in Example 1, this can be achieved by preparing a neutralization solution so as to reach a predetermined sodium or calcium equivalent when equilibrium is reached, and immersing the pumpkin and leaving it gently shaking. In the case of block-shaped vegetables such as pumpkins, it takes time to penetrate to the center, so use a known method such as pressure-reduced pressure treatment, freeze impregnation, etc. to accelerate penetration and restore the taste. Can do.
[実施例3]
(カルシウムによる中和)
 酸味の中和にカルシウムを用いた場合の味の変化を確認する試験を行った。実施例1と同様に市販の乾物大豆を1%酢酸に18時間浸漬することよってカリウムを除去した。
[Example 3]
(Neutralization with calcium)
A test was conducted to confirm the change in taste when calcium was used to neutralize sourness. Similarly to Example 1, potassium was removed by immersing commercial dry soybeans in 1% acetic acid for 18 hours.
 酸味が感じられないpH5.5まで、酸味の中和に要したナトリウム当量をもとに、Na:Ca当量比を10:0から0:10まで振り分けた中和剤を調整し、前述の大豆生豆ペースト(pH4.2)に添加し、味の変化の有無を確認した。なお、ナトリウムは水酸化ナトリウム、カルシウムは水酸化カルシウムを用いて中和剤を調整した。 The neutralizing agent in which the Na: Ca equivalent ratio was distributed from 10: 0 to 0:10 was adjusted based on the sodium equivalent required for sour neutralization until pH 5.5 where no sourness was felt. It was added to green bean paste (pH 4.2), and the presence or absence of a change in taste was confirmed. The neutralizing agent was adjusted using sodium hydroxide for sodium and calcium hydroxide for calcium.
 官能試験は、生大豆自体のえぐ味を除くため、蒸し煮試料を用いた。すべての試料について、酸味、えぐ味(Ca味)、塩味(Na味)が無いことが確認された。したがって、ナトリウムの代わりにカルシウムを用いて中和しても味の変質は起こらない。 In the sensory test, steamed samples were used in order to remove the bitter taste of the raw soybeans themselves. About all the samples, it was confirmed that there is no acidity, a gummy taste (Ca taste), and salty taste (Na taste). Therefore, even if it neutralizes using calcium instead of sodium, the quality of taste does not change.
 また、通電処理によってカリウムを除いた西洋かぼちゃ試料(ペーストpH4.6、強い酸味を感じる。)についても同様の官能試験を行った。酸味を感じないpH5.5まで、Na:Ca当量比10:0から0:10までのすべての試料について、酸味、えぐ味(Ca味)、塩味(Na味)が無いことが確認された。 Also, a similar sensory test was performed on a Western pumpkin sample (paste pH 4.6, which has a strong acidity) from which potassium was removed by energization treatment. It was confirmed that there was no acidity, gummy taste (Ca taste), and salty taste (Na taste) for all samples having a Na: Ca equivalent ratio of 10: 0 to 0:10 until pH 5.5 without feeling sourness.
 本発明の方法は、ナトリウムだけではなく、カルシウムによって食品を中和することができるため、摂取するナトリウム量をさほど増やさず、味を元に戻すことができる。ナトリウムを用いて中和する場合にも、除去したカリウム量よりも少ない0.15当量のナトリウムで中和すればよいことから、塩分制限を受けている場合であっても、通常問題になることはない。 Since the method of the present invention can neutralize food not only with sodium but also with calcium, the amount of sodium to be consumed can be restored without losing so much. Even when neutralizing with sodium, it is only necessary to neutralize with 0.15 equivalents of sodium that is less than the amount of potassium removed. There is no.
 ペーストを用いて官能評価を行った場合には、ナトリウム塩であってもカルシウム塩であっても、上記結果のようにまったく問題はない。しかしながら、表3で示したように固形の農産物で官能評価を行った場合に、水酸化カルシウムのようにカルシウムの含まれるアルカリのみを用いて中和を行うと、食味は良いものの、舌にざらつく等食感の点で問題が生じることがわかった。そこで、食感を改善するために用いるNa:Ca当量比の検討を行った。 When the sensory evaluation is performed using the paste, there is no problem as in the above result regardless of whether it is a sodium salt or a calcium salt. However, when sensory evaluation is performed on solid agricultural products as shown in Table 3, if the neutralization is performed using only alkali containing calcium such as calcium hydroxide, the taste is good, but the tongue is rough. It was found that there was a problem with the texture. Then, examination of the Na: Ca equivalent ratio used in order to improve food texture was performed.
 乾物大豆を0.5%酢酸で18時間処理した。この大豆のカリウム残存量は、295mg/100gであった。五訂増補日本食品標準成分表の国産ゆで大豆のカリウム量が570mg/100gであることから、食品成分表を基準とすると約48%のカリウムが除去され、52%のカリウムが残存している計算となる。 Dry dried soybeans were treated with 0.5% acetic acid for 18 hours. The amount of residual potassium in this soybean was 295 mg / 100 g. Since the amount of potassium in domestic boiled soybeans is 570mg / 100g based on the 5th Amendment Japanese Food Standard Ingredient List, about 48% potassium is removed and 52% potassium remains based on the Food Composition Table. It becomes.
 酢酸処理した大豆の一部をペースト状にし、滴定によって酸味を感じないpHであるpH5.5まで中和するのに必要なアルカリ量を求めたところ、12.8meq/100gであった。次に、上記と同様ナトリウムとして水酸化ナトリウム、カルシウムとして水酸化カルシウムを用い、Na:Ca当量比を10:0から0:10まで振り分けた中和液を調整し、上記と同様に平衡に達するまで中和液に浸漬した後、蒸し豆とし官能試験を行った。5名のモニターを用い、酸味、えぐみなどの異味を感じるか(味)、固さ、ざらつきなどの食感について試験を行った。 A portion of the acetic acid-treated soybean was made into a paste and the amount of alkali necessary to neutralize to pH 5.5, which is a pH at which acidity is not felt by titration, was found to be 12.8 meq / 100 g. Next, sodium hydroxide is used as sodium and calcium hydroxide is used as calcium as described above, and a neutralized solution in which the Na: Ca equivalent ratio is distributed from 10: 0 to 0:10 is prepared, and the equilibrium is reached as described above. After soaking in a neutralizing solution, the sensory test was conducted using steamed beans. Using five monitors, tests were conducted on whether the taste of acidity such as acidity and gummy (taste), hardness, and roughness were observed.
 また、カリウムを60%程度除去する通電条件で処理した西洋かぼちゃ(日本産)についても同様の官能試験を行った。カリウム除去後のかぼちゃを一部ペースト状にし、滴定によって酸味を感じないpHであるpH5.5まで中和するのに必要なアルカリ量を求めたところ、4.72meq/100gであった。上記と同様にNa:Ca当量比を10:0から0:10まで振り分けた中和液を調整し、中和を行い同様に官能試験を行った。結果を表5に示す。 A similar sensory test was also conducted on Western pumpkin (produced in Japan) treated under energization conditions to remove about 60% potassium. A portion of the pumpkin after removing potassium was made into a paste, and the amount of alkali necessary for neutralization to pH 5.5, which is a pH at which acidity is not felt by titration, was 4.72 meq / 100 g. In the same manner as described above, a neutralization solution in which the Na: Ca equivalent ratio was distributed from 10: 0 to 0:10 was prepared, neutralized and similarly subjected to a sensory test. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表中、「当量比」は中和液のナトリウムとカリウムの量比を示し、「アルカリ添加量」の欄は中和処理完了後、食品に添加されているアルカリ量の推測値を示している。また、酸味、味、食感の欄のかっこ内の数字は5名のモニターのうち、異味、食感等において、コントロールとの差異を感じた者の数、及びどのような違いを感じたかをまとめている。 In the table, “equivalent ratio” indicates the amount ratio of sodium and potassium in the neutralized solution, and the “alkali addition amount” column indicates an estimated value of the amount of alkali added to the food after completion of the neutralization treatment. . In addition, the numbers in parentheses in the sour, taste and texture columns indicate the number of people who felt a difference from the control in the taste, texture, etc., and what kind of difference they felt. It is summarized.
 酸味については、表3の結果同様、コントロールとの差異を感じるものはなかった。しかしながら、異味については、かぼちゃにおいてNa:Ca当量比0:10、すなわち全量水酸化カルシウムで処理したものに関しては、極弱いえぐみを感じたモニターが1名いた。食感に関しては、添加するカルシウム量が多くなると、ざらつきや舌に粒が残ると感じるモニターが出てくる。大豆ではアルカリのうち7/10以上を水酸化カルシウムとして添加することにより、ざらつきや舌に粒が残ると感じるモニターが出てくる。さらに、9/10以上をカルシウム塩で添加した場合には、5名のモニター全員が歯触りが固いと感じるようになっている。 As for the sourness, like the results in Table 3, there was no difference between the control and the control. However, as for nasty taste, there was one monitor that felt an extremely weak puffiness in the pumpkin that had a Na: Ca equivalent ratio of 0:10, that is, all treated with calcium hydroxide. As for the texture, when the amount of calcium added increases, a monitor appears that feels rough and leaves grains on the tongue. In soybean, adding 7/10 or more of the alkali as calcium hydroxide gives a monitor that feels grainy and leaves grains on the tongue. Furthermore, when 9/10 or more is added as a calcium salt, all five monitors feel that the touch is firm.
 かぼちゃについても同様に、アルカリのうち7/10以上を水酸化カルシウムとして添加することにより、やや繊維を感じたり、粒を感じるモニターが出てくる。さらに、全量をカルシウム塩で中和した場合には、5名のモニター全員が舌に固い粒が残ると感じるようになっている。 Similarly, for pumpkin, adding 7/10 or more of the alkali as calcium hydroxide gives a monitor that feels slightly fiber or feels grain. Furthermore, when the whole amount is neutralized with calcium salt, all five monitors feel that hard particles remain on the tongue.
 以上の結果から、かぼちゃ、大豆では除去したカリウム量に対し、全量をナトリウムを含むアルカリで置換してもよいが、少なくとも3/10程度をナトリウム、残部をカルシウムを含むアルカリにより処理することにより、食感も保つことができる。また、一般にペースト状の食品を食べる場合には、均一なクリーム状の食感を期待しているため、少しでも粒や繊維が残っていると違和感をいだくのに対し、固形状で食べた場合には、多少の舌へのざらつきがあった場合でも許容される傾向にある。最終的な食品の形態により、アルカリとして添加できるカルシウムの量は変わってくる。しかし、以下に種々の野菜を用いた結果を示すが、1/10程度から9/10までをカルシウムに代えたアルカリにより処理することができる。3/10程度のナトリウム、残りをカルシウムとして添加することにより、異味を感じることがなく、また、食感も元の食品と大きく変わることがない。カルシウムを添加して味を元に戻すことにより、食品中のナトリウムを必要以上に増加させることがない。 From the above results, the amount of potassium removed in pumpkin and soybean may be replaced with an alkali containing sodium, but by treating at least about 3/10 with sodium and the balance with an alkali containing calcium, The texture can also be maintained. In general, when eating pasty foods, a uniform creamy texture is expected. Tends to be tolerated even if there is some roughness on the tongue. The amount of calcium that can be added as an alkali varies depending on the final food form. However, although the result using various vegetables is shown below, it can process with the alkali which replaced about 1/10 to 9/10 with calcium. By adding about 3/10 sodium and the rest as calcium, there is no sense of taste and the texture does not change significantly from the original food. By adding calcium to restore the taste, sodium in the food is not increased more than necessary.
 [実施例4]
(種々の野菜から製造した低カリウム食品)
 農産物の種類によって、カリウム除去方法や条件が異なることから、味を戻すための中和に要する最適なアルカリ量、ナトリウムとカルシウムの比率等、その条件は異なっている可能性がある。そこで、野菜や豆の種類によって、中和の条件の検討を行った。
[Example 4]
(Low potassium food manufactured from various vegetables)
Since the method and conditions for removing potassium differ depending on the type of agricultural product, the conditions such as the optimal alkali amount required for neutralization to restore the taste and the ratio of sodium and calcium may differ. Therefore, the neutralization conditions were examined depending on the types of vegetables and beans.
1.かぼちゃ
 重曹のみで中和する条件の検討
 2.5cm角にブロック状に切ったかぼちゃを通電によりカリウムを除去し、0.5~5%までの濃度の炭酸水素ナトリウム(重曹)を用いて、15時間中和し、カリウム、ナトリウム、カルシウム量を測定するとともに、味の評価を行った。
1. Examination of conditions to neutralize with pumpkin baking soda alone Potassium cut into 2.5 cm square blocks to remove potassium by energization, and using sodium bicarbonate (sodium bicarbonate) with a concentration of 0.5-5%, 15 While neutralizing for a while, the amounts of potassium, sodium and calcium were measured, and the taste was evaluated.
 味の評価は、4名、あるいは5名のパネラーによって、酸味、苦味、かたさ、塩味、甘味、風味について優4、良3、可2、不可1の判断をしてもらった。また、総合評価を行ってもらい○、×で判断してもらった。○は違和感なく食べることができる、×は食べたときに違和感があり、おいしくないといった総合的な判断である。酸味、苦味などの個々の評価と総合評価とはほぼ一致していたことから、総合評価で半数以上が○としている範囲を適切な中和範囲と判断した。また。Na+Ca当量比は、試料に含まれるナトリウムとカルシウムの当量の和の、食品成分表のナトリウムとカルシウムの当量の和に対する比を算出したものである。 Evaluation of taste was made by 4 or 5 panelists to judge whether it was excellent, good 3, acceptable 2, or impossible 1 with respect to sourness, bitterness, hardness, saltiness, sweetness, and flavor. In addition, we had you make general evaluation and had you judge with ○, X. ○ is a comprehensive judgment that you can eat without a sense of incongruity. Since the individual evaluations such as acidity and bitterness almost coincided with the overall evaluation, the range where more than half of the overall evaluations were ○ was judged as an appropriate neutralization range. Also. The Na + Ca equivalent ratio is the ratio of the sum of sodium and calcium equivalents contained in the sample to the sum of sodium and calcium equivalents in the food composition table.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示したように、通電によりかぼちゃからカリウムを除去しているため、カリウム除去率は非常に高い。総合評価では0.5~5.0%いずれの条件で中和した場合でも少なくとも1名のパネラーは○と評価している。なお、0.5%重曹で処理した条件でもNa+Ca当量比が385%と、食品成分表に記載されているナトリウムとカルシウムの当量比の和の250%以上となっており、この条件でもあまり違和感のない程度に中和は完了しているものと考えられる。さらに、重曹濃度1.0~5%で中和した場合には半数が総合評価を○としており、特に、1.5~3.0%で中和した場合には、全員が総合評価で○を付けている。したがって、かぼちゃの場合にはアルカリ濃度が重曹に換算して0.5~5.0%、さらに、1.0~5%の濃度、より好ましくは1.5~3.0%の濃度の重曹処理が適切であると考えられる。 As shown in Table 6, since potassium is removed from the pumpkin by energization, the potassium removal rate is very high. In the overall evaluation, at least one panelist evaluates as ○ even when neutralized under any condition of 0.5 to 5.0%. The Na + Ca equivalent ratio was 385% even under the condition treated with 0.5% baking soda, which is 250% or more of the sum of the equivalent ratios of sodium and calcium listed in the food composition table. Neutralization is considered to be complete to the extent that Furthermore, when neutralizing at a baking soda concentration of 1.0 to 5%, half gave a total rating of ○, and in particular, when neutralizing at 1.5 to 3.0%, all members gave a total rating of ○. Is attached. Therefore, in the case of pumpkin, the alkali concentration in terms of baking soda is 0.5 to 5.0%, more preferably 1.0 to 5%, more preferably 1.5 to 3.0%. Processing is considered appropriate.
 カルシウム塩、ナトリウム塩混合で中和する条件の検討
 次に、炭酸水素ナトリウム単独ではなく、水酸化カルシウムと混合し、ナトリウムとカルシウムの比を変えて中和処理を行い、カリウム、ナトリウム、カルシウム量を測定するとともに、味の評価を行った。中和は炭酸水素ナトリウムに換算して1.5%濃度とし、ナトリウムとカルシウムの比を変えて15時間処理した。結果を表7に示す。
Examination of conditions for neutralization with calcium salt and sodium salt mixture Next, mix with calcium hydroxide instead of sodium hydrogencarbonate alone, change the ratio of sodium to calcium and perform neutralization treatment, the amount of potassium, sodium and calcium Was measured and the taste was evaluated. Neutralization was carried out for 15 hours by changing the ratio of sodium and calcium to 1.5% concentration in terms of sodium bicarbonate. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 カルシウムは一部の人の味覚に強く影響を及ぼし、特に、苦味、甘味に影響を及ぼすことが明らかとなった。水酸化カルシウム単独では、パネラー全員が総合評価を×としているが、9割を水酸化カルシウムで中和した場合には、2人のパネラーが○と評価していた。さらに、水酸化カルシウムの量を7割に減らした場合には、半数以上のパネラーが○との評価を行った。したがって、少なくとも1割、好ましくは3割は炭酸水素ナトリウム、水酸化ナトリウムなどのナトリウム塩を用いる方がよい。また、3割程度のナトリウム塩を加えて中和を行った場合には、食品中のナトリウム濃度もさほど高くなることはなく、塩化ナトリウムの過剰摂取に対する心配はほとんどない。 Calcium has a strong influence on the taste of some people, and in particular, it has been found that it affects bitterness and sweetness. In the case of calcium hydroxide alone, all the panelists evaluated the overall evaluation as x, but when 90% was neutralized with calcium hydroxide, two panelists evaluated it as ◯. Furthermore, when the amount of calcium hydroxide was reduced to 70%, more than half of the panelists evaluated as “good”. Therefore, it is better to use a sodium salt such as sodium bicarbonate or sodium hydroxide for at least 10%, preferably 30%. Further, when neutralization is performed by adding about 30% sodium salt, the sodium concentration in the food does not increase so much and there is almost no worry about excessive intake of sodium chloride.
2.さつまいも
 重曹のみで中和する条件の検討
 次に、さつまいもについて検討を行った。1.0cmの輪切りにしたさつまいもを通電によりカリウムを除去し、0.5~5%までの濃度の炭酸水素ナトリウムを用いて、15時間中和し、カリウム、ナトリウム、カルシウム量を測定するとともに、味の評価を行った。結果を表8に示す。
2. Examination of conditions for neutralizing sweet potatoes with baking soda alone Next, sweet potatoes were examined. Potassium potato cut into 1.0 cm round slices was energized to remove potassium, neutralized with sodium bicarbonate at a concentration of 0.5-5% for 15 hours, and measured for potassium, sodium, and calcium. The taste was evaluated. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 重曹濃度0.5%では、酸味、苦味、塩味、甘味、風味いずれも不可との評価であり、総合評価でも1名を除いて×であると評価した。Na+Ca当量比も212%と低く、官能評価の結果を加えて判断すると重曹濃度0.5%では中和が不十分だと考えられた。重曹濃度が高くなると、甘味、風味の評価は落ちるものの半数の者が総合評価は○としている。したがって、さつまいもの場合にはアルカリ濃度が重曹に換算して1.0~5%の濃度で中和することが好ましい。しかしながら、腎臓病患者の場合には、塩分の摂取にも健常人よりも考慮する必要があるため、1.0~3.0%の濃度の重曹処理による中和が適切であると考えられる。 At a baking soda concentration of 0.5%, the sourness, bitterness, saltiness, sweetness, and flavor were all evaluated as unacceptable, and the overall evaluation was evaluated as x except for one person. The Na + Ca equivalent ratio was as low as 212%. Judging from the result of sensory evaluation, it was considered that neutralization was insufficient at a baking soda concentration of 0.5%. When the baking soda concentration increases, the evaluation of sweetness and flavor declines, but half of them give a comprehensive evaluation of ○. Accordingly, in the case of sweet potato, it is preferable to neutralize the alkali concentration at a concentration of 1.0 to 5% in terms of sodium bicarbonate. However, in the case of kidney disease patients, it is necessary to consider the intake of salt more than healthy people, so neutralization with sodium bicarbonate treatment at a concentration of 1.0 to 3.0% is considered appropriate.
 カルシウム塩、ナトリウム塩混合で中和する条件の検討
 次に、炭酸水素ナトリウム単独ではなく、水酸化カルシウムと混合し、ナトリウムとカルシウムの比を変えて中和処理を行った結果を示す。中和は炭酸水素ナトリウムに換算して1.5%濃度とし、ナトリウムとカルシウムの比を変えて15時間処理した。結果を表9に示す。
Examination of conditions for neutralization by mixing calcium salt and sodium salt Next, the results of neutralization by mixing with calcium hydroxide instead of sodium bicarbonate alone and changing the ratio of sodium to calcium are shown. Neutralization was carried out for 15 hours by changing the ratio of sodium and calcium to 1.5% concentration in terms of sodium bicarbonate. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験に用いたさつまいものカリウム濃度は食品成分表の65%と最初から非常に低い数値のものであった。五訂増補日本食品成分表はあくまでも平均値であり、産地、季節によってもその成分値は上下する。例えば、表7で示したかぼちゃの場合は、五訂増補日本食品成分表よりも18%多く、また下記に示すじゃがいもの場合は25%程度多くカリウムを含有していた。しかしながら、この場合も低カリウム食品化した野菜と、無処理の野菜とは、含有しているナトリウム、カルシウムの当量で、通常の野菜と区別することができる。 The potassium concentration of sweet potato used in the test was 65% of the food composition table, which was a very low value from the beginning. The fifth amendment Japanese food composition table is an average value, and the value varies depending on the production area and season. For example, the pumpkin shown in Table 7 contained 18% more potassium than the five supplementary Japanese food ingredients table, and the potato shown below contained about 25% more potassium. However, in this case as well, vegetables made into low potassium foods and untreated vegetables can be distinguished from ordinary vegetables by the equivalents of sodium and calcium contained.
 味の評価に関しては、中和した場合もかたさ、甘味の点で良い評価を得る範囲が比較的狭かった。しかしながら、総合評価では、9割程度カルシウムを加えても半数が○の評価を行い、さらに5割程度までカルシウムを加えて中和した場合には、4人のうち3人までが総合評価で○との評価をくだしていた。したがって、少なくとも1割以上、より好ましくは5割程度のナトリウム塩を加えて中和することがよいと結論付けた。 Regarding the evaluation of taste, even when neutralized, the range for obtaining good evaluation in terms of hardness and sweetness was relatively narrow. However, in the comprehensive evaluation, even if about 90% of calcium is added, half of them are evaluated as ○, and when about 50% of calcium is added and neutralized, up to 3 out of 4 people are evaluated as ○ I was evaluating. Therefore, it was concluded that at least 10%, more preferably about 50% of sodium salt should be added for neutralization.
3.じゃがいも
 重曹のみで中和する条件の検討
 次に、じゃがいもについて検討を行った。1.0cmの厚さの輪切りしたじゃがいもを通電によりカリウムを除去し、0.5~5%までの濃度の炭酸水素ナトリウムを用いて、15時間中和し、カリウム、ナトリウム、カルシウム量を測定するとともに、味の評価を行った。結果を表10に示す。
3. Examination of conditions for neutralization with potato baking soda alone Next, potatoes were examined. Potassium with a thickness of 1.0 cm is removed by energization to remove potassium, neutralize with sodium bicarbonate at a concentration of 0.5-5% for 15 hours, and measure the amount of potassium, sodium, and calcium. At the same time, the taste was evaluated. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 重曹のみで中和する場合には、総合評価で少なくとも一人のパネラーが○としている0.5~4%、特に、半数以上のパネラーが○としている0.5~3%の重曹を用いて中和することが食味の点からは好ましい。また、塩分摂取の面を考慮すると、0.5~1.5%程度の重曹で中和することがより好ましい。じゃがいもには、ナトリウム、カルシウムがほとんど含まれていない。そのため、個別のじゃがいもに含まれるナトリウム、カルシウムによって、Na+Ca当量比は大きく左右される。しかしながら、その場合でも調べた限りではNa+Ca当量比は250%を超えることはなく、カリウム除去処理をしていないものと区別が可能であった。また、じゃがいものようにNa+Ca当量比が大きな値をとる場合も上限は20,000~50,000%程度であると考えられる。 When neutralizing only with baking soda, it is recommended to use 0.5 to 4% baking soda, with at least one panelist showing ○ in the overall evaluation, especially 0.5 to 3% baking soda with more than half of panelists using ○. It is preferable from the point of taste that it is summed. In view of the intake of salt, it is more preferable to neutralize with about 0.5 to 1.5% baking soda. Potatoes are almost free of sodium and calcium. Therefore, the Na + Ca equivalent ratio is greatly influenced by sodium and calcium contained in individual potatoes. However, even in that case, as long as it was examined, the Na + Ca equivalent ratio did not exceed 250%, and it was possible to distinguish it from those not subjected to potassium removal treatment. Further, when the Na + Ca equivalent ratio is a large value such as potato, the upper limit is considered to be about 20,000 to 50,000%.
 カルシウム塩、ナトリウム塩混合で中和する条件の検討
 次に、炭酸水素ナトリウム単独ではなく、水酸化カルシウムと混合し、ナトリウムとカルシウムの比を変えて中和処理を行った結果を示す。中和は炭酸水素ナトリウムに換算して1.5%濃度とし、ナトリウムとカルシウムの比を変えて15時間処理した。結果を表11に示す。
Examination of conditions for neutralization by mixing calcium salt and sodium salt Next, the results of neutralization by mixing with calcium hydroxide instead of sodium bicarbonate alone and changing the ratio of sodium to calcium are shown. Neutralization was carried out for 15 hours by changing the ratio of sodium and calcium to 1.5% concentration in terms of sodium bicarbonate. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 総合評価で少なくとも一人のパネラーが○としていることから、アルカリの全量をカルシウム塩に代えてもよいが、少なくとも3割、より好ましくは5割程度ナトリウム塩が含まれている方がよい。また、食味はやや劣るものの全量、あるいは9割をカルシウムを含むアルカリで中和することにより、食品中の塩分も増加することがなく、中和することが可能である。 Since at least one panelist in the overall evaluation is ○, the total amount of alkali may be replaced with calcium salt, but it is better that sodium salt is contained at least 30%, more preferably about 50%. Moreover, although the taste is somewhat inferior, neutralization can be performed without increasing the salt content in food by neutralizing the whole amount or 90% with an alkali containing calcium.
4.にんじん
 重曹のみで中和する条件の検討
 次に、にんじんについて検討を行った。2.5cmの厚さの輪切りにしたにんじんを用いた他は上記と同様にしてカリウム除去を行い、各条件で中和し評価を行った。結果を表12に示す。
4). Examination of conditions for neutralization with only carrot baking soda Next, carrots were examined. Potassium removal was carried out in the same manner as described above except that carrots having a thickness of 2.5 cm were used, and evaluation was performed after neutralization under each condition. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 食味の点では、総合評価で0.5~5.0%重曹濃度で中和した場合に少なくとも一人が○の評価をした。特に、0.5~4.0%重曹で中和した場合に、半数以上の者は味が良いと評価した。0.5%、1.0%の重曹濃度ではNa+Ca当量比が250%以下と中和は不十分であると考えられたが官能試験の評価はよかった。野菜によって、酸味が少し残っていても違和感のないものもあり、にんじんは中和が完全ではなくとも味の変化が感じられにくい食品の一例であると考えられる。中和を完全に行うことを考えれば、1.5%以上の重曹で処理することが好ましい。また、塩分摂取の面を考慮すると、0.5~1.5%程度の重曹で中和することが好ましい。 In terms of taste, at least one person gave a ○ rating when neutralized at 0.5 to 5.0% baking soda concentration in the overall evaluation. In particular, when neutralized with 0.5 to 4.0% baking soda, more than half of the people evaluated that the taste was good. When the sodium bicarbonate concentration was 0.5% or 1.0%, the Na + Ca equivalent ratio was 250% or less and neutralization was considered insufficient, but the sensory test was evaluated well. Some vegetables do not feel strange even if they have a little sourness, and carrots are considered to be an example of foods that are difficult to change in taste even if neutralization is not complete. In consideration of complete neutralization, it is preferable to treat with 1.5% or more of baking soda. In view of the intake of salt, neutralization with about 0.5 to 1.5% baking soda is preferable.
 カルシウム塩、ナトリウム塩混合で中和する条件の検討
 次に、炭酸水素ナトリウム単独ではなく、水酸化カルシウムと混合し、ナトリウムとカルシウムの比を変えて中和処理を行った結果を示す。中和は炭酸水素ナトリウムに換算して1.5%濃度とし、ナトリウム塩、カルシウム塩を単独、あるいは、夫々1割置換して15時間処理した。結果を表13に示す。
Examination of conditions for neutralization by mixing calcium salt and sodium salt Next, the results of neutralization by mixing with calcium hydroxide instead of sodium bicarbonate alone and changing the ratio of sodium to calcium are shown. Neutralization was performed at a concentration of 1.5% in terms of sodium hydrogen carbonate, and the treatment was performed for 15 hours by replacing the sodium salt and calcium salt alone or 10% each. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 食味評価の面ではすべての割合において良い評価を得ることができた。上記の重曹単独の場合と同様に、にんじんはカリウム除去、それに続く中和処理によって味の変化を感じにくい食材だと考えられる。ナトリウム塩が1割程度含まれたアルカリ溶液で中和することにより、酸味、苦味、かたさ、塩味、甘味、風味いずれの場合も可以上の評価であったことから、9割程度までカルシウム塩で置換して中和することができるものと判断した。
 上記示したいずれの野菜の場合でも、Na+Ca当量比250%以上であれば中和は完全に行われており、また、少なくとも1割のナトリウム塩を含むアルカリで中和することにより、総合評価が良い脱カリウム食品を得ることができる。
In terms of taste evaluation, good evaluations were obtained at all ratios. As in the case of baking soda alone, carrot is considered to be a food that hardly perceives changes in taste due to potassium removal and subsequent neutralization. By neutralizing with an alkaline solution containing about 10% of the sodium salt, the acidity, bitterness, hardness, saltiness, sweetness, and flavor were all evaluated. It was judged that it could be neutralized by substitution.
In any of the above-mentioned vegetables, neutralization is completely performed if the Na + Ca equivalent ratio is 250% or more, and by neutralizing with an alkali containing at least 10% sodium salt, Depotassium food with good evaluation can be obtained.
 次に種々の豆について中和条件の検討を行った。試験に用いた豆は、すべて市販の乾物豆(北海道産)を用いた。小豆、いんげん豆(金時豆)、べにばないんげん(白花豆)は、豆の中でも炭水化物を多く含む品種として選択した。大豆(黒豆)と小粒大豆(スズマル)は豆の中でもタンパク質を多く含む品種として選択した。 Next, neutralization conditions were examined for various beans. As the beans used in the test, all commercially available dried beans (from Hokkaido) were used. Azuki beans, bean beans (Kintoki beans) and Benibanai beans (white flower beans) were selected as varieties rich in carbohydrates among beans. Soybeans (black beans) and small soybeans (Suzumaru) were selected as varieties containing a lot of protein among beans.
 いずれの場合も乾燥した豆に対し、4倍重量の1%酢酸を用い、一晩穏やかに振盪しながら戻して試験を行った。中和液の欄のAは無処理乾物、Bは水戻ししたもの、Cは酸処理のみで中和を行っていないもの、Dは酸処理後、水に浸漬した試料の結果を示す。いずれも乾物に換算した値で表示している。また、食味評価(酸味、苦味等)欄の-は評価を行っていないことを示す。 In each case, the dried beans were tested using 4% weight of 1% acetic acid and returned with gentle shaking overnight. A in the column of the neutralization solution is the untreated dry matter, B is the one that has been reconstituted with water, C is the one that has not been neutralized only by the acid treatment, and D is the result of the sample immersed in water after the acid treatment. Both values are displayed in terms of dry matter. In addition, “-” in the taste evaluation (acidity, bitterness, etc.) column indicates that no evaluation was performed.
 中和は、酸処理後の吸水した豆に対し、当重量の中和液を用い一晩穏やかに振盪することによって行った。中和液は、0.2M/Lの水酸化ナトリウムを基準とし(Na:Caが10:0)、その1割から10割を水酸化カルシウムで置き換えた。 Neutralization was performed by gently shaking the water-absorbed beans after acid treatment overnight using an equivalent weight of the neutralized solution. The neutralizing solution was based on 0.2 M / L sodium hydroxide (Na: Ca = 10: 0), and 10% to 10% thereof was replaced with calcium hydroxide.
 処理後の豆は、表面を脱イオン水ですすぎ、高温蒸気釜で加熱、室温まで放冷した後、食味、各イオン濃度について評価を行った。 The treated beans were rinsed with deionized water, heated in a high-temperature steam kettle, allowed to cool to room temperature, and then evaluated for taste and ion concentration.
5.小豆
 結果を表14に示す。かたさの欄の1に続くマイナス(-)表記は-が多いほどかたさを感じたことを示す。小豆は3割程度までであれば、カルシウム塩に置換した中和液を用いても良い食味評価が得られた。小豆はカルシウム塩を用いると、かたさに大きな影響が出た。
5. The results are shown in Table 14. The minus (-) notation following 1 in the Hardness column indicates that the more the number of-, the harder it felt. As long as the red beans were up to about 30%, a taste evaluation in which a neutralized solution substituted with a calcium salt may be used was obtained. Azuki beans had a great effect on the hardness when calcium salt was used.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
6.いんげん豆
 いんげん豆の結果を次に示す。表15に示すように、個別の食味評価では7割程度、総合的な食味評価では5割程度までカルシウム塩に置き換えて中和しても良い食味評価が得られた。一般的に豆は調味して食べるものであるから、7割程度のカルシウム塩で置換した中和液で処理してもよいと考えられる。
6). The result of kidney beans is as follows. As shown in Table 15, about 70% of individual taste evaluations and about 50% of overall taste evaluations obtained by replacing with calcium salts and neutralizing them were obtained. In general, since beans are seasoned and eaten, it is considered that they may be treated with a neutralizing solution substituted with about 70% calcium salt.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
7.べにばないんげん
 べにばないんげんの結果を次に示す。表16に示すように、個別の食味評価では5割程度、総合的な食味評価では3割程度までカルシウム塩に置き換えて中和しても良い食味評価が得られた。一般的に豆は調味して食べるものであるから、5割程度のカルシウム塩で置換した中和液で処理してもよいと考えられる。
7). Benibainengen The results of Benibainengen are shown below. As shown in Table 16, about 50% of individual taste evaluations and about 30% of total taste evaluations obtained by replacing with calcium salts and neutralizing them were obtained. In general, since beans are seasoned and eaten, it may be treated with a neutralizing solution substituted with about 50% of calcium salt.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
8.黒豆
 黒豆の結果を次に示す。表17に示すように、個別の食味評価でも総合的食味評価でも5割程度までカルシウム塩に置き換えて中和しても良い食味評価が得られた。
8). Black beans The results of black beans are shown below. As shown in Table 17, the taste evaluation that can be neutralized by replacing with calcium salt up to about 50% in both individual taste evaluation and comprehensive taste evaluation was obtained.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
9.大豆
 大豆(小粒大豆)の結果を次に示す。表18に示すように、個別の食味評価でも総合的食味評価でも3割程度までカルシウム塩に置き換えて中和しても良い食味評価が得られた。
9. Soybean Soybean (small soybean) results are shown below. As shown in Table 18, the taste evaluation that can be neutralized by replacing with calcium salt up to about 30% in both individual taste evaluation and comprehensive taste evaluation was obtained.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以上、種々の豆を用いても、少なくとも3割程度までカルシウム塩に置き換えて中和することができる。豆はカリウムの多い食品である。従来から豆乳のような形ではカリウムを除去することが可能であり、カリウムを除去した豆乳は提案されていた。しかしながら、腎臓病患者は水分を多量にとると腎臓に負担がかかるため、水分摂取も制限されている。そのため、水分の多い豆乳の形態で大豆食品を摂取することは困難であった。今回、種々の豆類で脱カリウムを達成できたことは、腎臓病患者の食生活の幅を広げることが可能となった。 As described above, even if various beans are used, they can be neutralized by replacing them with calcium salts up to at least 30%. Beans are foods high in potassium. Conventionally, potassium can be removed in a form like soy milk, and soy milk from which potassium has been removed has been proposed. However, patients with kidney disease are limited in water intake because they take a burden on the kidney if they take a large amount of water. Therefore, it has been difficult to ingest soy food in the form of soy milk with a high water content. The achievement of depotassification with various beans this time has made it possible to broaden the dietary habits of kidney disease patients.
 以上、示したように、本発明において、様々な食品からカリウムを除去し、アルカリ剤を用いて中和することによって、元の食品に近い味を有する低カリウム食品を製造することができるようになった。この方法によれば、食品を選ばず低カリウム化することができるので、カリウム制限を受けている腎臓病患者にとって、非常に有用である。 As described above, in the present invention, by removing potassium from various foods and neutralizing with an alkaline agent, a low potassium food having a taste close to that of the original food can be produced. became. According to this method, since it is possible to lower the potassium level regardless of food, it is very useful for a kidney disease patient who is restricted by potassium.
1・・・酸によってカリウムを除去する装置、2・・・容器、3・・・仕切り板、4・・・攪拌羽、5・・・カリウムイオンメーター、11・・・通電によってカリウムを除去する装置、12・・・食品、13、14・・・電極、15・・・緩衝材、16・・・水槽、17・・・載置台、20・・・ヒドロゲル、 DESCRIPTION OF SYMBOLS 1 ... The apparatus which removes potassium with an acid, 2 ... Container, 3 ... Partition plate, 4 ... Stirrer blade, 5 ... Potassium ion meter, 11 ... Remove potassium by electricity supply Device: 12 ... Food, 13, 14 ... Electrode, 15 ... Buffer material, 16 ... Water tank, 17 ... Mounting table, 20 ... Hydrogel,

Claims (9)

  1.  収穫後の農産物からカリウムを除去する低カリウム食品の製造方法であって、
     食品からカリウムを除去する工程と、
     前記食品から除去したカリウム量を算出する工程と、
     除去したカリウムに対して、当量比0.15~1.25のナトリウム及び/又はカルシウムを補うことを特徴とする低カリウム食品の製造方法。
    A method for producing a low potassium food that removes potassium from harvested agricultural products,
    Removing potassium from food;
    Calculating the amount of potassium removed from the food;
    A method for producing a low potassium food, characterized by supplementing sodium and / or calcium with an equivalent ratio of 0.15 to 1.25 with respect to the removed potassium.
  2.  請求項1に記載の低カリウム食品の製造方法であって、
     前記食品からカリウムを除去する工程が電場をかけてカリウムを除去する工程又は酸浸漬によりカリウムを除去する工程であることを特徴とする低カリウム食品の製造方法。
    It is a manufacturing method of the low potassium food of Claim 1,
    A method for producing a low potassium food, wherein the step of removing potassium from the food is a step of removing potassium by applying an electric field or a step of removing potassium by acid immersion.
  3.  請求項2記載の低カリウム食品の製造方法であって、
     前記食品からカリウムを除去する工程が酸浸漬によりカリウムを除去する工程であり、
     前記酸が酢酸、塩酸、硫酸、マロン酸、クエン酸、アスコルビン酸、コハク酸、乳酸から選択される少なくとも1つ以上の酸であることを特徴とする低カリウム食品の製造方法。
    A method for producing a low potassium food according to claim 2,
    The step of removing potassium from the food is a step of removing potassium by acid immersion,
    A method for producing a low potassium food, wherein the acid is at least one acid selected from acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid.
  4.  請求項2又は3記載の低カリウム食品の製造方法であって、
     前記食品からカリウムを除去する工程が0.5~2.0%酢酸に浸漬することを特徴とする低カリウム食品の製造方法。
    A method for producing a low potassium food according to claim 2 or 3,
    A method for producing a low potassium food, characterized in that the step of removing potassium from the food is immersed in 0.5 to 2.0% acetic acid.
  5.  収穫後の農産物からカリウムを除去することによって得られる低カリウム食品であって、
     カリウム値が食品成分表に示される前記食品のカリウム値の70%以下であるとともに、
     前記食品中のナトリウム値とカルシウム値の各当量の和が、
     食品成分表に示される前記食品の成分値として記載されているナトリウム値とカルシウム値から算出される当量の和の250%以上であることを特徴とする低カリウム食品。
    A low potassium food product obtained by removing potassium from harvested agricultural products,
    The potassium value is 70% or less of the potassium value of the food shown in the food composition table,
    The sum of each equivalent of sodium and calcium in the food is
    A low-potassium food, characterized in that it is 250% or more of the sum of equivalents calculated from the sodium value and calcium value described as the component value of the food shown in the food ingredient table.
  6.  収穫後の農産物からカリウムを除去することによって得られる低カリウム食品であって、
     前記カリウム値が食品成分表に示される前記食品のカリウム値の50%以下であることを特徴とする低カリウム食品。
    A low potassium food product obtained by removing potassium from harvested agricultural products,
    The low potassium food, wherein the potassium value is 50% or less of the potassium value of the food shown in the food ingredient table.
  7.  収穫後の農産物からカリウムを除去し低カリウム食品を得るためのキットであって、
     酢酸、塩酸、硫酸、マロン酸、クエン酸、アスコルビン酸、コハク酸、乳酸から選択される少なくとも1つ以上の酸と
     除去したカリウムに対して、当量比0.15~1.25のナトリウム及び/又はカルシウムを補うためのナトリウム塩及び/又はカルシウム塩を含むことを特徴とするキット。
    A kit for removing potassium from harvested agricultural products to obtain a low potassium food,
    At least one acid selected from acetic acid, hydrochloric acid, sulfuric acid, malonic acid, citric acid, ascorbic acid, succinic acid, and lactic acid, and an equivalent ratio of 0.15 to 1.25 sodium and / or Alternatively, a kit comprising a sodium salt and / or a calcium salt for supplementing calcium.
  8.  請求項7記載の低カリウム食品を得るためのキットであって、
     前記酸が0.5~2.0%酢酸であり、
     添加するアルカリが炭酸水素ナトリウム、水酸化ナトリウム、水酸化カルシウムのいずれか1つ以上であることを特徴とするキット。
    A kit for obtaining a low potassium food according to claim 7,
    The acid is 0.5-2.0% acetic acid;
    A kit, wherein the alkali to be added is at least one of sodium hydrogen carbonate, sodium hydroxide, and calcium hydroxide.
  9.  請求項7、又は8記載の低カリウム食品を得るためのキットであって、
     食品から除去されたカリウムを測定する測定器を備えることを特徴とするキット。
     
    A kit for obtaining a low potassium food according to claim 7 or 8,
    A kit comprising a measuring device for measuring potassium removed from food.
PCT/JP2016/054728 2015-02-18 2016-02-18 Low potassium food product, manufacturing method therefor and manufacturing kit WO2016133164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016535059A JP6086417B2 (en) 2015-02-18 2016-02-18 Low potassium food, method for producing the same, and kit for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2015/054464 2015-02-18
PCT/JP2015/054464 WO2016132485A1 (en) 2015-02-18 2015-02-18 Low potassium food, and method and kit for producing same

Publications (1)

Publication Number Publication Date
WO2016133164A1 true WO2016133164A1 (en) 2016-08-25

Family

ID=56689327

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/054464 WO2016132485A1 (en) 2015-02-18 2015-02-18 Low potassium food, and method and kit for producing same
PCT/JP2016/054728 WO2016133164A1 (en) 2015-02-18 2016-02-18 Low potassium food product, manufacturing method therefor and manufacturing kit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054464 WO2016132485A1 (en) 2015-02-18 2015-02-18 Low potassium food, and method and kit for producing same

Country Status (2)

Country Link
JP (1) JP6086417B2 (en)
WO (2) WO2016132485A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229975A1 (en) * 2017-06-16 2018-12-20 株式会社クレアテラ Low-potassium food and method for producing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148952A (en) * 1986-12-12 1988-06-21 Terumo Corp Processed soybean food
JPS63296663A (en) * 1987-05-28 1988-12-02 Nisshin Oil Mills Ltd:The Food for medical cure
JPS6430558A (en) * 1987-07-24 1989-02-01 Terumo Corp Food for alimentary therapy of renopathy
JPH06303925A (en) * 1993-04-23 1994-11-01 Kameda Seika Kk Preparation of rice having low protein, potassium and phosphorus contents
JPH07170923A (en) * 1993-12-21 1995-07-11 Kameda Seika Kk Production of calcium-enriched steamed rice having low protein, low potassium and low phosphorus
JPH1014513A (en) * 1996-06-28 1998-01-20 Kameda Seika Kk Production of quickly cookable rice, cooked rice and rice gruel low in protein, phosphorus and potassium contents
JPH10165113A (en) * 1996-12-13 1998-06-23 Hoshizaki Electric Co Ltd Method and device for removing metallic component from food
JP2002045125A (en) * 2000-05-25 2002-02-12 Kawasumi Lab Inc Apparatus and method for adjusting component in liquid food
JP2003511052A (en) * 1999-10-12 2003-03-25 明治製菓株式会社 Low potassium juice, method for producing the same, and food containing the same
JP2004033115A (en) * 2002-07-04 2004-02-05 National Agriculture & Bio-Oriented Research Organization Food material reformed in mineral composition of rice and method for producing the same
JP2004097075A (en) * 2002-09-09 2004-04-02 Green:Kk Food material having modified mineral composition of beans or wheat and barley and method for producing the same
WO2006074404A2 (en) * 2005-01-06 2006-07-13 National Research Laboratories, Ltd. Methods for altering the mineral content of foods
JP2007105000A (en) * 2005-10-17 2007-04-26 National Agriculture & Food Research Organization Fruit processing method, and processed food produced by the method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792587B2 (en) * 2006-09-08 2011-10-12 公立大学法人秋田県立大学 Low potassium spinach and its cultivation method
JP2011036226A (en) * 2009-08-18 2011-02-24 Akita Prefectural Univ Low potassium-containing leaf vegetable and method for cultivating the same
JP5300993B2 (en) * 2011-02-16 2013-09-25 公立大学法人秋田県立大学 Hydroponics fertilizer for cultivating low potassium vegetables and hydroponic cultivation method of low potassium vegetables using the fertilizer
JP2014018190A (en) * 2012-07-23 2014-02-03 Tok Bearing Co Ltd Hydroponic culture method for fruit vegetables that bear plural fruits per root and fertilizer for hydroponic culture
JP6124251B2 (en) * 2013-02-22 2017-05-10 国立大学法人島根大学 Vegetable or fruit cultivation method
JP6437781B2 (en) * 2014-10-17 2018-12-12 株式会社Acs Soil cultivation method of low potassium melon
JP5828362B1 (en) * 2015-01-20 2015-12-02 会津富士加工株式会社 Low potassium content fruits and vegetables and cultivation method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148952A (en) * 1986-12-12 1988-06-21 Terumo Corp Processed soybean food
JPS63296663A (en) * 1987-05-28 1988-12-02 Nisshin Oil Mills Ltd:The Food for medical cure
JPS6430558A (en) * 1987-07-24 1989-02-01 Terumo Corp Food for alimentary therapy of renopathy
JPH06303925A (en) * 1993-04-23 1994-11-01 Kameda Seika Kk Preparation of rice having low protein, potassium and phosphorus contents
JPH07170923A (en) * 1993-12-21 1995-07-11 Kameda Seika Kk Production of calcium-enriched steamed rice having low protein, low potassium and low phosphorus
JPH1014513A (en) * 1996-06-28 1998-01-20 Kameda Seika Kk Production of quickly cookable rice, cooked rice and rice gruel low in protein, phosphorus and potassium contents
JPH10165113A (en) * 1996-12-13 1998-06-23 Hoshizaki Electric Co Ltd Method and device for removing metallic component from food
JP2003511052A (en) * 1999-10-12 2003-03-25 明治製菓株式会社 Low potassium juice, method for producing the same, and food containing the same
JP2002045125A (en) * 2000-05-25 2002-02-12 Kawasumi Lab Inc Apparatus and method for adjusting component in liquid food
JP2004033115A (en) * 2002-07-04 2004-02-05 National Agriculture & Bio-Oriented Research Organization Food material reformed in mineral composition of rice and method for producing the same
JP2004097075A (en) * 2002-09-09 2004-04-02 Green:Kk Food material having modified mineral composition of beans or wheat and barley and method for producing the same
WO2006074404A2 (en) * 2005-01-06 2006-07-13 National Research Laboratories, Ltd. Methods for altering the mineral content of foods
JP2007105000A (en) * 2005-10-17 2007-04-26 National Agriculture & Food Research Organization Fruit processing method, and processed food produced by the method

Also Published As

Publication number Publication date
WO2016132485A1 (en) 2016-08-25
JPWO2016133164A1 (en) 2017-04-27
JP6086417B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
KR20140130070A (en) pickles of mustard leaf and manufacturing method thereof
JP6086417B2 (en) Low potassium food, method for producing the same, and kit for producing the same
KR100515973B1 (en) Food preservative composition and food comprising the same
KR101915708B1 (en) Method for manufacturing functionality Kimchi
CN105053167A (en) Making method of sour and hot agrocybe cylindracea
KR100826797B1 (en) Hard boiled kelp, and cooking method of that
RU2595165C1 (en) Chopped fish products enriched with sprouted wheat grain
JP2008517620A (en) Method for producing mixed side dishes
JP2012179048A (en) Method for processing japanese apricot and processed japanese apricot product processed by the same
JP7198200B2 (en) Soft heat-cooked product of chicken or pork and method for producing the same
KR20120034354A (en) Method for producing packaged kimchi and packaged kimchi
KR101325161B1 (en) a Manufacturing Method of Instant Sea Urchin Soup
KR101923898B1 (en) Process of low salinity and spicy Kimchi
KR20110123905A (en) A composition of kimchi sauce using seaweeds
KR101667740B1 (en) Method for producing functional kimchi and kimchi produced thereby
CN103689498A (en) Processing method of sweet and sour bracken
KR102500982B1 (en) Manufacturing method of instant rice for lunch box showing blood sugar lowering effect
TW201804914A (en) Liquid seasoning agent containing solid ingredients
KR101611813B1 (en) Salted and fermented squid sauce and producing method thereof
KR20190030049A (en) Method for manufacturing of instant roasting jerky comprising mushroom extract
KR100827523B1 (en) an flavoring anchovy and the manufacture method
WO2018230708A1 (en) Low-potassium food and method for manufacturing same
KR20090043961A (en) Soy sauce of abalone using salicornia herbacea l. and soy sauce of abalone thereof
KR20110000601A (en) Dried low salty anchovy contained the ingredients of red ginseng and manufacturing method of it
JP6052701B2 (en) Apparatus and method for removing salts from food

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535059

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752550

Country of ref document: EP

Kind code of ref document: A1