JP2004033115A - Food material reformed in mineral composition of rice and method for producing the same - Google Patents

Food material reformed in mineral composition of rice and method for producing the same Download PDF

Info

Publication number
JP2004033115A
JP2004033115A JP2002195392A JP2002195392A JP2004033115A JP 2004033115 A JP2004033115 A JP 2004033115A JP 2002195392 A JP2002195392 A JP 2002195392A JP 2002195392 A JP2002195392 A JP 2002195392A JP 2004033115 A JP2004033115 A JP 2004033115A
Authority
JP
Japan
Prior art keywords
rice
magnesium
food material
raw
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195392A
Other languages
Japanese (ja)
Other versions
JP3621991B2 (en
Inventor
Toshiro Horino
堀野 俊郎
Yoichi Nogata
野方 洋一
Takeshi Yasui
安井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Bio Oriented Research Organization NARO
Original Assignee
National Agriculture and Bio Oriented Research Organization NARO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Bio Oriented Research Organization NARO filed Critical National Agriculture and Bio Oriented Research Organization NARO
Priority to JP2002195392A priority Critical patent/JP3621991B2/en
Publication of JP2004033115A publication Critical patent/JP2004033115A/en
Application granted granted Critical
Publication of JP3621991B2 publication Critical patent/JP3621991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cereal-Derived Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a food material having rice as the raw material, more favorably reforming its mineral composition in nutrition and improved in taste and to provide a method for producing the food material. <P>SOLUTION: This food material reformed in the mineral composition has the ratio of chemical equivalence of magnesium to that of potassium of raw material rice of 2.0-3.5 through enriching the raw material rice by magnesium or magnesium and sodium. The method for producing the food material comprises soaking the raw material rice in an aqueous solution containing magnesium chloride at concentration of 0.02%-2.0%(weight/capacity) or an aqueous solution containing magnesium chloride at concentration of 0.02%-2.0%(weight/capacity) and sodium chloride at concentration of 0.1%-10.0%(weight/capacity). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原料米のミネラル組成を改質した食品素材及びその製造法に関し、詳しくは籾米、玄米、早刈り緑色米、分づき米、胚芽米もしくは精白米から選ばれる原料米中のマグネシウム含量を減少させることなく、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を高めてミネラル組成を改質し、食味を改善した食品素材およびその製造法に関する。
【0002】
【従来の技術】
従来から、玄米、分づき米、胚芽米もしくは精白米等を炊飯する際に、あらかじめ水に浸積しておくと、炊飯米がより軟らかくなり、呈味性も増して食味がより好ましい状態になるとされ、伝統的な調理技術として広く行なわれている。
また最近、胚芽保有率が十分に高い原料米に関しては、適切な液温及びpHの水溶液に一定時間浸積しておくことで生理的な発芽状態に到り、内在する酵素が作用して、内在グルタミン酸が抑制性の神経伝達物質であるγ−アミノ酪酸へ急速大量に変換され、栄養特性が改善されることも明らかにされている(特許第2590423号)。
【0003】
ところで、コメには栄養機能性を有する成分が多数含まれており、ミネラルもその一つである。例えばマグネシウムは玄米100g中に約110mg(マグネシウム元素量で表記。以下同様とする)、胚芽米中には約50mg、精白米には約30mgが含まれ、日本人の栄養摂取において重要なマグネシウム源となっている。
これに関連することであるが、成人男子の体内には平均してカルシウム約1,160g、カリウム約150g、ナトリウム約63g、マグネシウム約25gが存在している。
このうちマグネシウムは、人体内に存在する酵素のうち少なくとも325種以上の活性化にあたり、アデノシン三リン酸(ATP)と共役することで補酵素(賦活成分)として機能していることが知られている。
【0004】
この他、DNA及びRNAの合成にも寄与し、細胞内外のカリウム・ナトリウム・カルシウム濃度差の調節に関与し、骨や歯の形成にも貢献するなど、極めて広範囲に分布し作用している。
さらに重要視されるのは、マグネシウムは脳神経系や筋肉の伸縮における情報伝達に不可欠なものであり、この意味で特別、かつ別格の栄養機能成分であることである。
このため、マグネシウムの摂取不足による欠乏症状は、高血圧・動脈硬化・糖尿病、心臓病・心筋梗塞・脳梗塞、あるいは筋肉痛・ホルモン性疾患・不整脈・突然死、さらには骨粗鬆症・尿路結石等として、実に様々な形で表面化することが知られている。
【0005】
とりわけ、頭脳労働が急増した現代人にとっては、脳神経系疲労・慢性的頭痛・肩腰痛・四肢運動障害等の知的疲労形態の症状も深刻な問題となっている。
こうした症状の多くは日々緩慢に進行するところから、「生活習慣病(成人病)」とも総称されている(糸川嘉則・斉藤昇編著、マグネシウム−成人病との関係、光生館、1995)。
厚生労働省が勧告する「日本人の栄養所要量」では、マグネシウムの成人1日当たり目標摂取量は300mgとされているが、この数字から、成人体内には80余日分のマグネシウムしか貯蔵されていない計算になる。
実態として、日本人成人男子平均のマグネシウム摂取量は約200mgで、約100mgの不足とみられているが、カルシウムやカリウムに比べて、はるかに短期間で欠乏状態に陥りやすいので、日常の食生活の中で十分に摂取できるよう、よく配慮された食品素材の開発とその利用が望まれている。
【0006】
ここで、日本人の主食であるコメのミネラルにつき、さらに詳しく検討する。
日本産の玄米には、人の栄養に不可欠の数種以上のミネラルが含まれており、その主要なものは、玄米100g当たり(玄米水分14.5%換算。以下同様)で、カリウムが約220mg、マグネシウムが約110mg、カルシウムが約10mg、ナトリウムは通常は0mg内外となっている。
これらのうちでは、とりわけ高含量であるカリウムとマグネシウムにつき、その化学的な相互関係を表すため「化学当量」を用いて説明する。
まず、カリウム含量を、その1化学当量である39.1で除して、カリウムの化学当量(単位:mEq/100g)を求める。マグネシウム含量も、その1化学当量である12.16で除して、マグネシウムの化学当量(単位:同前)を求める。
次に、Mg・mEq/100gをK・mEq/100gで除して、Mg/K・mEq比を得る(以下、この比を「Mg/K化学当量比」と表記する)。
【0007】
Mg/K化学当量比は、米・小麦・大麦等の穀物種ごとに一定の範囲に収束する傾向にあり、玄米の場合、いくつかの品種群の平均値でみると1.39〜1.73にあることが報告されている(堀野ら、日本作物学会紀事61巻1号、P28−33、1992)。
これをさらに詳しく見ると、例えば食味が極めて優れるとされるコシヒカリ系の品種群は、食味が標準的とされる日本晴等の品種群に比べて、カリウムが約20mg少ないが、マグネシウムは約10mg多いという特徴があり、これをMg/K化学当量比でみると、食味の標準的な品種群が1.49(標準偏差0.13)であるのに対し、コシヒカリ群は1.73(標準偏差0.08)と高まっている。
【0008】
なお、コメのカルシウム含量は食味への影響が小さいことも知られている(堀野俊郎・岡本正弘、農水省中国農業試験場研究報告、第10号、P1−15、1992)。
後出の第1表に示すが、玄米を水に浸積した場合にも、これらのミネラル含量には溶出の影響が表れ、24時間後にはカリウム(K元素量)で約30mg、マグネシウム(同)は約5mgが水相へ移行して、Mg/K化学当量比が変動する。
同様の現象は早刈り緑色米、分づき米、胚芽米、精白米でもみられる。ここで、早刈り緑色米とは、通常の収穫適期よりもおよそ10日以上早い時期に刈り取られるもので、米粒の多くが緑色を呈するコメのことである。
【0009】
即ち、一般に行われているコメの水洗、研ぎ、浸積は、ご飯をより軟らかく炊きあげる目的のほか、食味の点で好ましくないとされるカリウムの溶出を促す効果もある。
しかし、この際にマグネシウムの溶出も随伴していることは、上述のとおり、人の栄養上、特に考慮されるべき重要事項と考えられる。
【0010】
発芽玄米等の製造においては、糠や胚芽等を多く保有する籾米、玄米、早刈り緑色米、分づき米、胚芽米等を原料に用いるので、そのミネラル含量は精白米よりは豊富であるものの、発芽処理のため、これら原料米を水浸積する際に一定量のマグネシウムが失われている。
このマグネシウムの溶出・流亡は、上述の「栄養所要量」に照らして、決して好ましいことではなく、この観点からするマグネシウムの溶出防止対策の必要性は知られておらず、当然ながら産業的対策もなされていなかった。
【0011】
【発明が解決しようとする課題】
本発明の目的は、コメを原料とし、そのミネラル組成を栄養的により好ましく改質し、併せて食味を向上させた食品素材とその製造法を提供することである。
本発明者らは、上述の問題点を考慮し、水溶液に浸積する際の工夫によって、原料米のミネラル組成をより好ましく改質できることを知るとともに、この操作により、玄米や分づき米から炊きあげたご飯に特有の「玄米臭」も同時に除去できるため、食味をも向上させた食品素材を得ることに成功し、併せてその製造法を完成した。
【0012】
【課題を解決するための手段】
本発明の要旨を説明する。
請求項1は、原料米にマグネシウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材である。
請求項2は、原料米にマグネシウム及びナトリウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材である。
請求項3は、原料米が、籾米、玄米、早刈り緑色米、分づき米、胚芽米又は精白米である請求項1又は2記載の食品素材である。
請求項4は、濃度が0.02%(重量/容量)以上かつ2.0%(重量/容量)以下である塩化マグネシウムを含む水溶液に原料米を浸漬することを特徴とする請求項1記載の食品素材の製造法である。
請求項5は、濃度が0.02%(重量/容量)以上かつ2.0%(重量/容量)以下である塩化マグネシウム及び濃度が0.1%(重量/容量)以上かつ10.0%(重量/容量)以下である塩化ナトリウムを含む水溶液に原料米を浸積することを特徴とする請求項2記載の食品素材の製造法である。
請求項6は、原料米が、籾米、玄米、早刈り緑色米、分づき米、胚芽米又は精白米である請求項4又は5記載の食品素材の製造法である。
【0013】
【発明の実施の形態】
本発明に用いるコメは、品種を限定しないが、食用に提供することを目的にするので、品種の特性や栽培上の理由等で不快な食味を呈することとなった原料米、あるいはインデイカ種のごとく品種の特性として苦渋味を呈する原料は避けることが望ましい。
【0014】
以下に、コメを原料とする本発明の食品素材及びその製造法について詳しく説明する。
請求項1記載の食品素材は、原料米にマグネシウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比(Mg/K化学当量比)を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材である。
請求項2記載の食品素材は、原料米にマグネシウム及びナトリウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材である。
【0015】
このようにミネラル組成を改質した食品素材は、請求項4以下に記載したように、所定濃度の塩化マグネシウムを含む溶液もしくは所定濃度の塩化マグネシウムと塩化ナトリウムを含む溶液に原料米を浸漬することにより得られる。
まず、原料米として籾米、玄米、早刈り緑色米、分づき米、胚芽米及び精白米から選ばれる少なくとも1種のコメを選択し、食用に適するように精選したものを用意する。
籾米の場合は、そのまま浸積工程へ回してもよいが、浸積作業やその後の乾燥・調製作業等に手間どるので、好ましくは籾すりしてから用いるとよい。
【0016】
次に、塩化マグネシウムを含む水溶液を用いて上記食品素材を製造する方法について説明する。
所定濃度の塩化マグネシウムを含む水溶液の調製法は、特に制限されることはないが、例えば食品添加用の塩化マグネシウム含有物、塩化マグネシウム含有水などの他、好ましくは粉末ニガリ又は水ニガリ、より好ましくは塩田製法により硫酸カルシウム及び塩化カリウムの含有比率を原海水における含有比率よりも少なくした精製ニガリを用いる。なお、深海水を脱NaClした、いわゆる海洋深層水も濃度的にみると、本発明に利用することができる。
上記材料を用いて塩化マグネシウム濃度が0.02%(重量/容量、以下同様)〜2.0%、好ましくは0.15%〜0.45%の水溶液を調製する。
【0017】
この水溶液100リットルにつき原料米100kg以下、好ましくは90〜60kgを浸積し、一般生菌数の増加を抑制するため液温を29℃以下、好ましくは17℃以下に保ち、静置して1〜48時間、好ましくは3〜8時間の浸積を行う。なお、水溶液には、殺菌のため適量のエタノールや次亜塩素酸ナトリウム等を加えたり、pH調整のためリン酸や有機酸を加えることができる。
この操作により、通常、原料米中のカリウムは水相へ溶出され、水相のマグネシウムは原料米へ富化される。
例えば24時間浸積後には、カリウムは約40mg減となる一方で、マグネシウムは約10mg増となり、Mg/K化学当量比は原料米で1.81であったものが2.43へ上昇する。
【0018】
このようにして、本発明が課題とする、原料米に比べて高いマグネシウム含量、かつ高いMg/K化学当量比の状態にミネラル組成を改質した食品素材が得られる。
また、3時間以上、好ましくは5時間以上、水溶液に浸積すると、玄米や分づき米を炊飯した際に感じられる特有の玄米臭も併せて低減させることができ、本発明の課題を解決した食品素材が得られる。
【0019】
なお、原料米の浸積用水溶液として塩化ナトリウムのみを溶解させたものを用いる場合には、原料米のカリウム溶出が一層促進されて24時間後に約60mg減となり、その影響でMg/K化学当量比は2.27に上昇するものの、マグネシウムの溶出も促進されて同24時間後には13mg減となる。
このため、この形態の食品素材は、本発明の課題を解決することができない。
さらに従来、近畿地方等の一部には、コメを精選する際に得られる青米や屑米を、適当濃度の食塩水に浸積してから雑炊等に炊きあげる「いるご飯」あるいは「ゆるご飯」と呼び慣わされる伝統食品があるが、これも、この形態に属し、本発明の課題を解決することができない事例の一つである。
【0020】
次に、本発明の課題を解決するもう一つの形態を例示する。
まず、上記濃度の塩化マグネシウム水溶液に、さらに食品添加用の塩化ナトリウム含有物、塩化ナトリウム含有水もしくは海塩又は岩塩等の食塩を用いて塩化ナトリウムを添加し、その濃度を0.1%〜10.0%、好ましくは0.5%〜3.0%とした混合水溶液を作成する。この場合、所要量のニガリをあらかじめ含有させた食塩を用いることもできる。なお、海水を約2倍に希釈して上記濃度範囲内としたものも、本発明に利用することが可能である。この場合も、水溶液には、殺菌のため適量のエタノールや次亜塩素酸ナトリウム等を加えたり、pH調整のためリン酸や有機酸を加えることができる。
【0021】
このようにして調製した所定濃度のマグネシウムとナトリウムを含む混合水溶液に、上述の如くして原料米を浸積すると、原料米のカリウムは前例に比べて一層溶出が促進され、24時間浸積後に約58mg減となる。
一方、原料米へのマグネシウム富化量は5時間浸積後に、最も好ましくて約10mgとなる。しかし、浸漬時間がこれより短時間あるいは長時間では、やや好ましくなくなり、例えば24時間浸積後には約1mg増にすぎず、原料米とほぼ同水準に止どまる。
【0022】
塩化マグネシウムと塩化ナトリウムを併用して、原料米を浸漬するための水溶液を調製した場合は、浸積時間は1〜24時間、好ましくは3〜8時間の範囲内においてマグネシウムがより増加し、Mg/K化学当量比は原料米の1.81より上昇して2.20〜2.52に高まり、本発明の課題を解決できる。
また、前例同様、3時間以上、好ましくは5時間以上浸積する場合には、玄米等を炊飯した際に感じられる、特有の玄米臭をも同時に低減させた食品素材が得られる。
【0023】
なお、この例において、原料米へ富化されるナトリウム量は浸積時間と共に増加し、24時間浸積後には約200mgにまで達する。
7名の試食者による試食試験によれば、食品素材中のナトリウム含量が約75mg以下では、試食者全員が塩化ナトリウムに由来する何らの呈味性も感知できないが、約75〜125mgの範囲では、試食者のうち5名が弱い甘味を感知し、約125mg以上になると、試食者全員が明瞭な塩味を覚える。
すなわち、ここで得られる食品素材は、富化される塩化ナトリウム量の増加に伴って甘味もしくは塩味が強められるので、この作用を利用してマグネシウムを富化し、併せて塩化ナトリウムに由来する弱甘味や塩味を付与した食品素材を得ることができる。
【0024】
このようにして得られる食品素材は、必要に応じて水もしくは上述の0.02〜2.0%の濃度範囲の塩化マグネシウム溶液による洗浄処理を付加することもできる。
さらに、公知のように、コメは含水率を15%以下にすることで、一般生菌数や耐熱性芽胞細菌数の増加を抑制することが可能であり、乾燥処理によって食品素材の保存性を高めることに役立つので、ステンレス製ざる等の適当な器具、容器を用いる水切り処理、温風や冷風等を用いる乾燥処理を付加することがより好ましい。
また、乾燥処理を行った場合、粉砕処理や膨化処理の付加が容易になり、形態の異なった食品素材の提供が可能となる。
【0025】
【実施例】
以下に、実施例を示して本発明を詳しく説明するが、本発明はこれらによって限定されるものではない。
なお、対照玄米は、広島県産のコシヒカリ玄米(水分含量14.5%に調整)とし、その一部を比較米各群及び試験米各群の原料米としても用いた。
【0026】
比較例1
本例の比較米第1群7種は、各々脱イオン水1リットルに上記の原料玄米の各々1kgを投入し、第1表に示した設定時間の通りに浸積した。その後、ステンレス製ざるに揚げて水切りし、4℃の低温室内で通風乾燥して含水率を約14.5%に調製した。
このようにして対照玄米及び比較米第1群を調製後、各々30gを粉砕して、米粉1.000gを秤り取った。
【0027】
これを1%塩酸溶液100mlに投入し、よく振とうしてミネラルを抽出し、適宜希釈して原子吸光光度計(HITACHI Z8200 型)により、カリウム(K)、マグネシウム(Mg)、ナトリウム(Na)の各含量を測定し、その結果は原料米100g中のmgとして第1表に示した。以下において、原子吸光法で測定した食品素材中のミネラルは、元素記号でK、Mg、Naと表記し、各々の含量は元素量mg/100gで記載した。
なお、カルシウム(Ca)含量も測定したが、その結果は本発明の課題との関連が希薄であったので、以下の各表には記載しなかった。
【0028】
表から明らかなように、比較米第1群のK及びMg含量は、対照玄米に比べ、水浸積によって明らかに減少し、浸積時間が長くなるほど減少度を増した。Mg/K化学当量比は1.81〜2.01で、多くは2.0未満であった。
この結果、本群においては、一部にMg/K化学当量比が2.01に達した例が見られたものの、すべてにおいてMgが減少したため、本発明の課題を解決する食品素材は得られなかった。
【0029】
【表1】
第1表 比較米第1群のミネラル含量及び化学当量とMg/K化学当量比

Figure 2004033115
【0030】
比較例2
本例の比較米第2群7種は、各々脱イオン水1リットルに塩化ナトリウム20gを溶解させて用いた他は、比較米第1群と同様にして調製し、化学分析も同様にして実施した。結果を第2表に示す。
本群のK及びMg含量も、水浸積によって明らかに減じ、比較米第1群より一層減少した。また、浸積時間が長くなるほど、その度合いを増し、特にKの減少が顕著であった。
Mg/K化学当量比は1.92〜2.27で、2.0を越すものも見られたが、本群においてもMgが減少したことから、本発明の課題を解決する食品素材は得られなかった。
【0031】
【表2】
第2表 比較米第2群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0032】
実施例1
本例の試験米第1群7種は、各々脱イオン水1リットルにつき塩化マグネシウム1.5gを溶解させて用いた他は、比較米第1群と同様にして調製し、化学分析も同様にして実施した。結果を第3表に示す。
なお、塩化マグネシウム源としては、塩田製法で得られた精製ニガリ(トーフ用粉末ニガリ、株式会社天塩製、塩化マグネシウム含量51%。他に硫酸マグネシウム3.4%、塩化ナトリウム2.6%、塩化カリウム0.5%、及び結晶水約42.5%を含有)を使用した。
【0033】
表から明らかなように、本群では、対照玄米及び比較米第1群に比べてK含量が明らかに減じ、さらに浸積時間が長くなるにしたがって一層減少した。これに対し、Mg含量は、浸積時間の長短にかかわらず約10mg増となった。
すなわち本群では、Kを減じる一方で、浸積時間1時間以上においてMgを明確に増加させ、Mg/K化学当量比は、原料米の1.81より上昇して2.00〜2.43に高められ、本発明の課題を解決した食品素材が得られた。
【0034】
【表3】
第3表 試験米第1群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0035】
実施例2
本例の試験米第2群7種は、各々脱イオン水1リットルにつき塩化ナトリウム20g及び塩化マグネシウム1.5gを溶解させて用いた他は、比較米第1群と同様にして調製し、化学分析も同様にして実施した。結果を第4表に示す。
【0036】
表から明らかなように、本群のK含量も、塩化マグネシウム及び塩化ナトリウム混合水溶液への浸積によって明らかに減じ、浸積時間が長くなるにしたがって一層減少し、その減少度合いは試験米第1群よりもさらに大きかった。
すなわち本群では、浸積時間1時間以上においてKを減じ、浸積時間が1〜24時間、好ましくは3〜8時間の範囲内においてMgがより増加し、よってMg/K化学当量比は、原料米の1.81より上昇して2.20〜2.52に高められ、本発明の課題を解決した食品素材が得られた。
【0037】
【表4】
第4表 試験米第2群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0038】
比較例3
本例の試験米第3群7種は、比較米第2群に準じ、塩化ナトリウム濃度を0.1〜5.0%間の7段階とした水溶液に原料玄米を5時間浸積した。
この本群7種を化学分析して得られたK、Mg、Na含量を第5表に、炊飯して試食した結果を第6表に示す。
なお、試食試験の結果は、玄米臭、甘味及び塩味について「無、微、弱、中、有、強」の6段階で評価し、試食者7名の平均値で示した。
【0039】
【表5】
第5表 試験米第3群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0040】
【表6】
第6表 試験米第3群の炊飯米の試食結果
Figure 2004033115
【0041】
本群では、塩化ナトリウム水溶液に5時間浸積した結果、K含量が約10〜30mg余が減少し、液中塩化ナトリウム濃度とは反比例の傾向を示した。
また、Mg含量も各濃度において約5mg減となり、比較米第2群でも見られた通り、Mg富化という観点からは塩化ナトリウム水溶液への浸積は好ましくなく、Mg/K化学当量比も、原料米の1.81に対し、1.90〜2.04に止まって、本発明の課題を解決した食品素材は得られなかった。
【0042】
また、本群の炊飯米の試食結果は第6表の通りであるが、対照玄米において特有の玄米臭を明瞭に感じたのに対し、本群7種では、7名の試食者のうち5名が玄米臭を感知せず、この浸積条件は、前例同様、玄米臭の除去の面で好ましい効果をもたらした。
次に、甘味評価は、対照玄米で「微」、本群中の塩化ナトリウム0.1%区及び同0.2%区でも「微」であった。
しかし、同0.5%区では「弱」、さらに同1.0%区では「中」、同2.0%区〜5.0%区では明瞭に「有」と判定された。
さらに、塩味については、対照玄米で「無」であり、本群においても、塩化ナトリウム水溶液に浸積したにもかかわらず、塩化ナトリウム0.1%区〜1.0%区で「無」であった。
しかし、同2.0%区では「弱」、同3.0%区では「有」、同5.0%区では明瞭に「強」と判定された。
すなわち、塩化ナトリウムに関しては、濃度約1.5%を境界として、それ以下では塩味を感じることはまれであり、それ以上では塩味を明瞭に感じるという傾向が特徴的であった。
これを食品素材中のNa含量でみると、約75mg以下ではほとんど甘味を認めず、約75〜125mgでは甘味を感じ、約125mg以上では甘味及び塩味を明瞭に感じたことを意味する。
これらの効果を利用して「甘味単独」もしくは「甘味及び塩味」を付与した食品素材を得ることができる。
【0043】
実施例3
本例の試験米第4群7種は、試験米第1群に準じ、塩化マグネシウム濃度を0.075〜0.60%間の7段階とした水溶液に玄米を5時間浸積して得たもので、原子吸光法により化学分析して得たK、Mg、Na含量を第7表に、炊飯して試食した結果を第8表に示す。
なお、試食試験の結果は、玄米臭、甘味及び塩味について「無、微、弱、中、有、強」の6段階で評価し、試食者7名の平均値で示した。
【0044】
【表7】
第7表 試験米第4群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0045】
【表8】
第8表 試験米第4群の炊飯米の試食結果
Figure 2004033115
【0046】
本群のK含量は、塩化マグネシウム水溶液への浸積で平均約20mg減少したが、液中塩化マグネシウム濃度には影響されていなかった。
一方、Mg含量は液中塩化マグネシウム濃度に比例して増加し、Mg富化という観点から見れば、塩化マグネシウム濃度は高いほど好ましく、液中濃度0.150%〜0.600%に5時間浸積した場合、Mg/K化学当量比は、原料米の1.81より上昇し、2.17〜2.50に高められ、本発明の課題を解決した食品素材が得られた。
【0047】
また、本群の炊飯米の試食結果は第8表に示した通りである。この表から明らかなように、対照玄米において、広く一般に問題とされる玄米や分づき米を炊飯した際に特有の「玄米臭」、すなわち嚥下直後に感じられる弱い「胸やけ感」と鼻腔に抜ける「戻り臭」を明瞭に感じたのに対し、本群7種では7名の試食者うち6名が玄米臭を感知せず、本浸積条件は、食味の面でも従来に例を見ない明らかに好ましい効果をもたらした。
次に、甘味評価は、対照玄米で「微」、本群中の塩化マグネシウム0.075%区においても「微」と判断された。
しかし、同0.15%区〜0.225%区で甘味が「弱」、さらに同0.30%区〜0.60%区では明瞭に甘味が「有」と判定され、本来は苦渋味を有するはずの塩化マグネシウムであるが、適切な濃度の稀薄溶液に浸積した場合には、甘味を呈することが認められた。
ただし0.60%区では、塩化マグネシウムに由来する特有の苦渋味も共存して「有」となり、従ってその添加量には味覚的上限があって0.15%〜0.45%の範囲で製造された食品素材が好ましかった。
【0048】
比較例4
本例の比較米第3群5種、すなわち籾米、玄米、早刈り緑色米、分づき米、胚芽米及び精白米につき、原子吸光法により化学分析して得たK、Mg、Na含量及びその化学当量を第9表に示した。
表から明らかなように、そのMg/K化学当量比は、最も低い精白米で1.15、最も高い玄米で1.81であり、いずれも本発明の課題を解決したものではなかった。
【0049】
【表9】
第9表 比較米第3群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0050】
実施例4
本例の試験米第5群5種、すなわち籾米、玄米、早刈り緑色米、分づき米、胚芽米及び精白米を原料米とし、当該原料米を塩化マグネシウム及び塩化ナトリウムを溶解させた水溶液に浸積してMg及びNaを富化し、当該原料米に含まれるカリウムの化学当量に対するマグネシウムの化学当量の比を、比較米第3群の1.15〜1.81から2.0〜3.5の範囲へ高めてミネラル組成を改質し、及び食味を改善した食品素材の製造法を示す。
なお、籾米については、そのままで浸積することもできるが、通常は籾すり工程を経て、玄米のかたちで用いるとよい。
【0051】
まず、塩田製法で得られた精製ニガリ(トーフ用粉末ニガリ、株式会社天塩製、塩化マグネシウム含量51%、硫酸マグネシウム3.4%、塩化ナトリウム2.6%、塩化カリウム0.5%及び結晶水約42.5%を含有)、及び食品添加物である塩化ナトリウムの所要量を水に溶解して、塩化マグネシウム濃度が0.375%、及び塩化ナトリウム濃度が2.0%の浸積用水溶液を調製した。
次に、玄米、早刈り緑色米、分づき米、胚芽米及び精白米の各々1kgを、上記の水溶液各々1リットルに投入して5時間浸積した。
水溶液の温度は、異臭の原因となり易い一般生菌数及び食中毒の原因となる耐熱性芽胞細菌のバチルス属バクテリア等の増加を抑える目的で17℃以下に保った。
この操作により、原料米カリウムの水相への溶出と、水相マグネシウムの原料米への富化を図った。
【0052】
浸積終了後は、原料米をステンレス製ざるへ移して水切りし、次いで8℃の低温室内で送風しながら乾燥させ、水分含量を約14.5%に調整した。
かくして得られた食品素材のK、Mg、Na含量を前記と同様の方法で測定した。結果を第10表に示した。
表から明らかなように、試験米第5群の玄米、早刈り緑色米、分づき米、胚芽米及び精白米は、いずれも浸積前に比べて浸積後のK含量が減、Mg含量及びNa含量は増加し、Mg/K化学当量比は比較米第3群の1.15〜1.81に比べ、本群では2.0〜3.06へ、各々、高められていることが確かめられた。この方法により、Mg含量を増加させ、Mg/K化学当量比を高め、乾燥により取り扱い性が良好となり、しかも一般生菌数及び耐熱性バクテリア類の増加が抑えられて安全性が向上し、併せて食味も良好に改善された、コメのミネラル組成を改質した食品素材が製造された。
【0053】
【表10】
第10表 比較米第5群のミネラル含量及び化学当量とMg/K化学当量比
Figure 2004033115
【0054】
【発明の効果】
本発明によれば、籾米、玄米、早刈り緑色米、分づき米、胚芽米及び精白米の中から選ばれる1種以上を原料米とし、当該原料米のマグネシウム含量、もしくはマグネシウム含量とナトリウム含量を富化することによって、当該原料米のMg/K化学当量比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材が提供される。
【0055】
さらに、本発明によれば、上記原料米を適当な濃度の塩化マグネシウム水溶液、もしくは塩化マグネシウムと塩化ナトリウムの水溶液に浸積することにより、マグネシウム含量を高め、当該原料米のMg/K化学当量比を2.0〜3.5に高めた、ミネラル組成を改質した食品素材の製造法が提供される。
【0056】
本発明に係る食品素材は、比較対照の原料米より高マグネシウム含量であり、また対照玄米に比べて玄米臭が低減されて食味が良好であり、栄養上も好ましく改善された食品素材として、広く一般に提供できる。
また、本発明の食品素材は、生体内においてきわめて多数の酵素を賦活するなど、生理機能面で、近年、特に重要視されている栄養成分のマグネシウムが富化されていることが大きな特徴の一つであり、これを日常食に用いることで、頭脳や神経系の疲労回復、及び生活習慣病等の予防あるいは治療等に貢献できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a food material in which the mineral composition of a raw rice is modified and a method for producing the same, and more particularly, a magnesium content in a raw rice selected from paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice or milled rice. The present invention relates to a food material in which the mineral composition is improved by increasing the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium in the raw material rice to improve the taste without decreasing the amount of the raw material rice, and a method for producing the same.
[0002]
[Prior art]
Conventionally, when cooking brown rice, fractionated rice, germ rice or polished rice, etc., if immersed in water in advance, the cooked rice will be softer, the taste will increase and the taste will be more favorable It is widely used as a traditional cooking technique.
In addition, recently, with respect to raw rice having a sufficiently high embryo retention rate, immersion in an aqueous solution having an appropriate liquid temperature and pH for a certain period of time leads to a physiological germination state, and an intrinsic enzyme acts, It has also been shown that endogenous glutamate is rapidly and massively converted to inhibitory neurotransmitter γ-aminobutyric acid, improving nutritional properties (Patent No. 2590423).
[0003]
By the way, rice contains many components having nutritional functions, and minerals are one of them. For example, magnesium contains about 110 mg in 100 g of brown rice (expressed in elemental magnesium amount; the same applies hereinafter), about 50 mg in germ rice, and about 30 mg in polished rice, and is an important source of magnesium in the nutritional intake of Japanese people. It has become.
Related to this, on average, about 1,160 g of calcium, about 150 g of potassium, about 63 g of sodium, and about 25 g of magnesium are present in the body of an adult male.
Of these, magnesium is known to function as a coenzyme (activator) by coupling to adenosine triphosphate (ATP) upon activation of at least 325 or more types of enzymes present in the human body. I have.
[0004]
In addition, it is extremely widely distributed and acts, such as contributing to the synthesis of DNA and RNA, regulating the difference in potassium, sodium, and calcium concentrations inside and outside cells and contributing to bone and tooth formation.
More importantly, magnesium is indispensable for signaling in the expansion and contraction of the cerebral nervous system and muscles, and in this sense it is a special and exceptional nutritional component.
For this reason, deficiency symptoms due to insufficient magnesium intake include hypertension, arteriosclerosis, diabetes, heart disease, myocardial infarction, cerebral infarction, or muscle pain, hormonal diseases, arrhythmias, sudden death, osteoporosis, urinary calculus, etc. It is known to surface in various forms.
[0005]
In particular, for modern humans with a sharp increase in brain labor, symptoms of forms of intellectual fatigue such as cerebral nervous system fatigue, chronic headache, shoulder and lower back pain, and limb movement disorders have become serious problems.
Since many of these symptoms progress slowly every day, they are also collectively referred to as "lifestyle-related diseases (adult diseases)" (edited by Yoshinori Itokawa and Noboru Saito, Magnesium-Relationship with Adult Diseases, Koseikan, 1995).
According to the "Japanese Nutrition Requirements" recommended by the Ministry of Health, Labor and Welfare, the target daily intake of magnesium for adults is 300 mg, but from this figure only 80 days of magnesium is stored in the adult body. It becomes a calculation.
As a matter of fact, the average magnesium intake for Japanese adult males is about 200 mg, and it is thought that it is short of about 100 mg. However, compared to calcium and potassium, it is easy to fall into a deficiency state in a much shorter time, so daily eating habits There is a demand for the development and utilization of well-considered food materials so that they can be fully consumed.
[0006]
Here, the minerals of rice, which is the staple food of the Japanese, will be examined in more detail.
Japanese brown rice contains several minerals that are indispensable for human nutrition, and the major one is potassium per 100g of brown rice (converted to brown rice moisture of 14.5%; the same applies hereinafter). 220 mg, magnesium is about 110 mg, calcium is about 10 mg, and sodium is usually around 0 mg.
Of these, potassium and magnesium, which are particularly high in content, are described using "chemical equivalents" to express their chemical correlation.
First, the potassium content is divided by 39.1, which is one chemical equivalent, to determine the chemical equivalent of potassium (unit: mEq / 100 g). The magnesium content is also divided by 12.16, which is one chemical equivalent, to determine the chemical equivalent of magnesium (unit: the same as above).
Next, Mg / mEq / 100 g is divided by K / mEq / 100 g to obtain a Mg / K · mEq ratio (hereinafter, this ratio is referred to as “Mg / K chemical equivalent ratio”).
[0007]
The Mg / K chemical equivalent ratio tends to converge within a certain range for each grain type such as rice, wheat, barley, etc., and in the case of brown rice, the average value of some varieties is 1.39 to 1.30. 73 (Horino et al., Proceedings of the Crop Society of Japan, Vol. 61, No. 1, p. 28-33, 1992).
Looking at this in more detail, for example, the Koshihikari varieties, which are considered to have extremely good taste, have about 20 mg less potassium but about 10 mg more magnesium than varieties such as Nipponbare, which have a standard taste. Looking at this in terms of Mg / K chemical equivalent ratio, the standard varieties of taste are 1.49 (standard deviation 0.13), whereas the Koshihikari group is 1.73 (standard deviation). 0.08).
[0008]
It is also known that the calcium content of rice has a small effect on taste (Toshiro Horino and Masahiro Okamoto, Ministry of Agriculture and Fisheries Research Report of the Chinese Agricultural Experiment Station, No. 10, P1-15, 1992).
As shown in Table 1 below, when brown rice is immersed in water, the effect of dissolution on the mineral content is also apparent. After 24 hours, about 30 mg of potassium (elemental K content) and magnesium (same as magnesium) are added. In (5), about 5 mg moves to the aqueous phase, and the Mg / K chemical equivalent ratio fluctuates.
A similar phenomenon is seen in early-cut green rice, fractionated rice, germ rice, and polished rice. Here, the early-harvested green rice is a rice that is harvested about 10 days or more earlier than a normal suitable harvest time, and is rice in which many of the rice grains are green.
[0009]
That is, generally, washing, sharpening, and immersion of rice are performed not only for the purpose of cooking rice softer, but also for promoting the elution of potassium which is not preferable in terms of taste.
However, the fact that magnesium is also eluted at this time is considered to be an important matter to be particularly considered in human nutrition, as described above.
[0010]
In the production of germinated brown rice, etc., since rice, brown rice, early cut green rice, fractionated rice, germ rice, etc., which have a large amount of bran and germ, are used as raw materials, the mineral content is abundant than polished rice. During the germination process, a certain amount of magnesium is lost when the raw rice is immersed in water.
This dissolution / runoff of magnesium is not desirable in light of the above-mentioned "nutrition requirement", and the necessity of measures for preventing dissolution of magnesium from this viewpoint is not known, and of course, industrial measures are also required. Had not been done.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a food material using rice as a raw material, the mineral composition of which is more preferably nutritionally modified, and the taste improved, and a method for producing the same.
The present inventors have considered that the mineral composition of the raw rice can be more preferably modified by devising when immersing in an aqueous solution in consideration of the above-described problems, and by this operation, cook rice from brown rice or fractionated rice. Since the "brown rice smell" peculiar to the raised rice can be removed at the same time, we succeeded in obtaining a food material with improved taste and completed the manufacturing method.
[0012]
[Means for Solving the Problems]
The gist of the present invention will be described.
Claim 1 has modified the mineral composition by enriching the raw rice with magnesium so that the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium in the raw rice is in the range of 2.0 to 3.5. It is a food material.
Claim 2 improves the mineral composition such that the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium in the raw rice is in the range of 2.0 to 3.5 by enriching the raw rice with magnesium and sodium. It is a quality food material.
Claim 3 is the food material according to claim 1 or 2, wherein the raw rice is paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice or milled rice.
According to a fourth aspect of the present invention, the raw rice is immersed in an aqueous solution containing magnesium chloride having a concentration of not less than 0.02% (weight / volume) and not more than 2.0% (weight / volume). Is a method for producing food materials.
Claim 5 is a magnesium chloride having a concentration of not less than 0.02% (weight / volume) and not more than 2.0% (weight / volume), and a concentration of not less than 0.1% (weight / volume) and 10.0%. 3. The method according to claim 2, wherein the raw rice is immersed in an aqueous solution containing sodium chloride of not more than (weight / volume).
Claim 6 is the method for producing a food material according to claim 4 or 5, wherein the raw rice is paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice or milled rice.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Rice used in the present invention is not limited to varieties, but since it is intended to be provided for edible purposes, raw rice or indica varieties that exhibited unpleasant taste due to varieties characteristics and cultivation reasons. It is desirable to avoid raw materials that exhibit bitter taste as varietal characteristics.
[0014]
Hereinafter, the food material of the present invention using rice as a raw material and a method for producing the same will be described in detail.
In the food material according to the first aspect, the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium (Mg / K chemical equivalent ratio) of the raw rice is 2.0 to 3.0 by enriching the raw rice with magnesium. 5 is a food material having a modified mineral composition, which falls within the range of 5.
The food material according to claim 2, wherein the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium of the raw rice is adjusted to a range of 2.0 to 3.5 by enriching the raw rice with magnesium and sodium. It is a food material with a modified mineral composition.
[0015]
As described in claim 4, the food material having the modified mineral composition is prepared by immersing raw rice in a solution containing a predetermined concentration of magnesium chloride or a solution containing a predetermined concentration of magnesium chloride and sodium chloride. Is obtained by
First, at least one kind of rice selected from paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice, and polished rice is selected as raw rice, and the rice is carefully selected to be edible.
In the case of paddy rice, the rice may be directly transferred to the immersion step, but it is troublesome for the immersion operation and the subsequent drying / preparation operation and the like.
[0016]
Next, a method for producing the food material using an aqueous solution containing magnesium chloride will be described.
The method for preparing the aqueous solution containing magnesium chloride at a predetermined concentration is not particularly limited, but for example, magnesium chloride-containing substances for food addition, magnesium chloride-containing water, etc., preferably powdered bittern or water bittern, more preferably Uses purified bittern whose content ratio of calcium sulfate and potassium chloride is lower than that in raw seawater by a salt field manufacturing method. Note that so-called deep sea water obtained by removing NaCl from deep sea water can also be used in the present invention in terms of concentration.
An aqueous solution having a magnesium chloride concentration of 0.02% (weight / volume, the same applies hereinafter) to 2.0%, preferably 0.15% to 0.45% is prepared using the above materials.
[0017]
100 kg or less, preferably 90 to 60 kg, of raw rice is immersed per 100 liters of this aqueous solution, and the liquid temperature is kept at 29 ° C. or less, preferably 17 ° C. or less to suppress the increase in the number of general viable bacteria. The immersion is carried out for up to 48 hours, preferably for 3 to 8 hours. In addition, an appropriate amount of ethanol, sodium hypochlorite, or the like can be added to the aqueous solution for sterilization, or phosphoric acid or an organic acid can be added for pH adjustment.
By this operation, potassium in the raw rice is usually eluted into the aqueous phase, and magnesium in the aqueous phase is enriched in the raw rice.
For example, after immersion for 24 hours, potassium is reduced by about 40 mg, while magnesium is increased by about 10 mg, and the Mg / K chemical equivalent ratio is increased from 1.81 in raw rice to 2.43.
[0018]
In this way, a food material in which the mineral composition is modified to have a high magnesium content and a high Mg / K chemical equivalent ratio compared to the raw rice, which is the object of the present invention, can be obtained.
Further, when immersed in the aqueous solution for 3 hours or more, preferably 5 hours or more, the unique brown rice odor that can be felt when brown rice or fractionated rice is cooked can also be reduced, thereby solving the problem of the present invention. A food material is obtained.
[0019]
When an aqueous solution of only sodium chloride is used as the aqueous solution for immersion of the raw rice, the elution of potassium from the raw rice is further promoted, and the amount is reduced by about 60 mg after 24 hours. Although the ratio increases to 2.27, the elution of magnesium is also promoted, and the amount decreases by 13 mg after 24 hours.
For this reason, the food material of this form cannot solve the problem of the present invention.
Conventionally, in some areas such as the Kinki region, blue rice or scrap rice obtained when carefully selecting rice is immersed in an appropriate concentration of saline and then cooked in a porridge or the like. There is a traditional food called "rice", which also belongs to this form and is one of the cases where the problem of the present invention cannot be solved.
[0020]
Next, another embodiment for solving the problem of the present invention will be described.
First, sodium chloride is added to the magnesium chloride aqueous solution having the above concentration using sodium chloride-containing material for food addition, sodium chloride-containing water or salt such as sea salt or rock salt, and the concentration is adjusted to 0.1% to 10%. A mixed aqueous solution of 0.0%, preferably 0.5% to 3.0% is prepared. In this case, it is also possible to use salt containing a required amount of bittern in advance. It should be noted that a solution obtained by diluting seawater about twice to make the concentration within the above-mentioned concentration range can also be used in the present invention. Also in this case, an appropriate amount of ethanol, sodium hypochlorite, or the like can be added to the aqueous solution for sterilization, or phosphoric acid or an organic acid can be added for pH adjustment.
[0021]
When the raw rice is immersed in the mixed aqueous solution containing magnesium and sodium at a predetermined concentration prepared as described above, the potassium of the raw rice is further promoted to elute as compared with the previous example, and after immersion for 24 hours, Approximately 58 mg reduction.
On the other hand, the amount of magnesium enriched in the raw rice is most preferably about 10 mg after immersion for 5 hours. However, if the immersion time is shorter or longer than this, it becomes slightly unfavorable. For example, after immersion for 24 hours, the amount is increased by only about 1 mg and remains almost at the same level as the raw rice.
[0022]
When an aqueous solution for immersing the raw rice is prepared by using magnesium chloride and sodium chloride in combination, the immersion time is increased from 1 to 24 hours, preferably from 3 to 8 hours. The / K chemical equivalent ratio rises from 1.81 of the raw rice to 2.20 to 2.52, and can solve the problem of the present invention.
Further, as in the case of the previous example, when immersion is performed for 3 hours or more, preferably 5 hours or more, a food material can be obtained in which the characteristic brown rice smell, which is felt when brown rice or the like is cooked, is also reduced.
[0023]
In this example, the amount of sodium enriched in the raw rice increases with immersion time and reaches about 200 mg after immersion for 24 hours.
According to a tasting test by seven tasters, when the sodium content in the food material is about 75 mg or less, all tasters cannot sense any taste derived from sodium chloride, but in the range of about 75 to 125 mg. Five of the tasters perceive a weak sweetness, and when the dose is about 125 mg or more, all the tasters have a clear salty taste.
That is, the food material obtained here has a sweet or salty taste which is enhanced with an increase in the amount of sodium chloride to be enriched. And salty food materials.
[0024]
The food material thus obtained can be subjected to a washing treatment with water or a magnesium chloride solution having a concentration range of 0.02 to 2.0% as required.
Furthermore, as is well known, rice can suppress an increase in the number of general viable bacteria and the number of heat-resistant spore bacteria by setting the water content to 15% or less. It is more preferable to add a suitable device such as a stainless steel zircon, a draining process using a container, and a drying process using warm air, cold air, etc.
Further, when the drying treatment is performed, the addition of the pulverization treatment and the puffing treatment becomes easy, and it becomes possible to provide food materials having different forms.
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
The control brown rice was Koshihikari brown rice from Hiroshima (adjusted to a water content of 14.5%), and a part thereof was also used as a raw rice for each group of comparative rice and each group of test rice.
[0026]
Comparative Example 1
Seven kinds of the first group of comparative rice of this example were each charged with 1 kg of the above raw brown rice in 1 liter of deionized water and immersed for the set time shown in Table 1. Thereafter, the plate was fried in a stainless steel bar, drained, and dried by ventilation in a low-temperature room at 4 ° C. to adjust the water content to about 14.5%.
After preparing the control brown rice and the first group of comparative rice in this way, 30 g of each was pulverized, and 1.000 g of rice flour was weighed.
[0027]
This was poured into 100 ml of a 1% hydrochloric acid solution, shaken well to extract minerals, diluted appropriately, and measured with an atomic absorption spectrophotometer (HITACHI Z8200 type) for potassium (K), magnesium (Mg), sodium (Na). Was measured, and the results are shown in Table 1 as mg per 100 g of raw rice. In the following, the minerals in food materials measured by the atomic absorption method are represented by K, Mg, and Na as element symbols, and their contents are described in terms of elemental mg / 100 g.
The calcium (Ca) content was also measured, but the results were not described in the following tables because the relationship with the subject of the present invention was weak.
[0028]
As is clear from the table, the K and Mg contents of the first group of comparative rice were clearly reduced by water immersion, and increased with the immersion time, as compared with the control brown rice. The Mg / K stoichiometric ratio was 1.81 to 2.01, often less than 2.0.
As a result, in this group, although the example in which the Mg / K chemical equivalent ratio reached 2.01 was partially observed, Mg was reduced in all cases, so that a food material that can solve the problem of the present invention was obtained. Did not.
[0029]
[Table 1]
Table 1 Mineral content and chemical equivalents of the first group of comparative rice and Mg / K chemical equivalent ratio
Figure 2004033115
[0030]
Comparative Example 2
Seven kinds of comparative rice of the second group of this example were prepared in the same manner as the first group of comparative rice except that 20 g of sodium chloride was dissolved in 1 liter of deionized water, and the chemical analysis was performed in the same manner. did. The results are shown in Table 2.
The K and Mg contents of this group were also clearly reduced by water immersion, and were further reduced as compared with the comparative rice first group. Further, as the immersion time became longer, the degree of the immersion increased, and in particular, the decrease in K was remarkable.
The Mg / K chemical equivalent ratio was 1.92 to 2.27, and some exceeded 2.0. However, since Mg was reduced in this group, a food material that could solve the problems of the present invention was obtained. I couldn't.
[0031]
[Table 2]
Table 2 Mineral content and chemical equivalent of the second group of comparative rice and Mg / K chemical equivalent ratio
Figure 2004033115
[0032]
Example 1
Seven kinds of test rice of the first group of this example were prepared in the same manner as the first group of comparative rice except that 1.5 g of magnesium chloride was dissolved per liter of deionized water, and the chemical analysis was performed in the same manner. It was carried out. The results are shown in Table 3.
As a source of magnesium chloride, purified bittern (Nigari powder for tofu, manufactured by Teshio Co., Ltd., content of magnesium chloride: 51%; magnesium sulfate: 3.4%; sodium chloride: 2.6%; chloride; 0.5% potassium and about 42.5% water of crystallization).
[0033]
As is clear from the table, in this group, the K content was clearly decreased as compared with the control brown rice and the comparative rice 1st group, and further decreased as the immersion time was increased. On the other hand, the Mg content increased by about 10 mg regardless of the length of the immersion time.
That is, in this group, while decreasing K, Mg was clearly increased in the immersion time of 1 hour or more, and the Mg / K chemical equivalent ratio rose from 1.81 of the raw rice to 2.00 to 2.43. And a food material which solved the problem of the present invention was obtained.
[0034]
[Table 3]
Table 3 Mineral content and chemical equivalent of the first group of test rice and Mg / K chemical equivalent ratio
Figure 2004033115
[0035]
Example 2
Seven kinds of the test rice of the second group of this example were prepared in the same manner as the comparative rice first group except that 20 g of sodium chloride and 1.5 g of magnesium chloride were dissolved per liter of deionized water, respectively. The analysis was performed in the same manner. The results are shown in Table 4.
[0036]
As is clear from the table, the K content of this group was also clearly reduced by immersion in the mixed aqueous solution of magnesium chloride and sodium chloride, and further decreased as the immersion time became longer. It was even larger than the group.
That is, in this group, K is reduced in the immersion time of 1 hour or more, and Mg is further increased in the range of the immersion time in the range of 1 to 24 hours, preferably 3 to 8 hours. The food material was raised from 1.81 of the raw rice to 2.20 to 2.52, and the food material which solved the problem of the present invention was obtained.
[0037]
[Table 4]
Table 4 Mineral content and chemical equivalent of the second group of test rice and Mg / K chemical equivalent ratio
Figure 2004033115
[0038]
Comparative Example 3
Seven kinds of test rice in the third group of the present example were immersed in the brown rice for 5 hours in an aqueous solution having a sodium chloride concentration of 0.1 to 5.0% according to the second group of the comparative rice.
Table 5 shows the K, Mg, and Na contents obtained by chemical analysis of the seven species in this group, and Table 6 shows the results of rice cooking and tasting.
The results of the tasting test were evaluated for brown rice odor, sweetness, and salty taste on a six-point scale of "none, fine, weak, medium, present, and strong", and indicated as an average value of seven tasters.
[0039]
[Table 5]
Table 5 Mineral content and chemical equivalent of the third group of test rice and Mg / K chemical equivalent ratio
Figure 2004033115
[0040]
[Table 6]
Table 6 Tasting results of cooked rice of the third group of test rice
Figure 2004033115
[0041]
In this group, as a result of immersion in an aqueous sodium chloride solution for 5 hours, the K content was reduced by about 10 to 30 mg or more, and showed a tendency inversely proportional to the sodium chloride concentration in the liquid.
In addition, the Mg content was also reduced by about 5 mg at each concentration, and as seen in the second group of comparative rice, immersion in an aqueous sodium chloride solution was not preferable from the viewpoint of Mg enrichment, and the Mg / K chemical equivalent ratio was also low. With respect to 1.81 of the raw rice, the ratio was 1.90 to 2.04, and a food material that solved the problem of the present invention could not be obtained.
[0042]
The tasting results of the cooked rice of this group are as shown in Table 6, and the characteristic brown rice smell was clearly felt in the control brown rice, whereas in the 7 kinds of this group, 5 out of 7 samplers. The name did not sense brown rice odor, and this immersion condition had a favorable effect in removing brown rice odor, as in the previous example.
Next, the sweetness evaluation was “fine” for the control brown rice and “fine” for the 0.1% and 0.2% sodium chloride groups in this group.
However, in the 0.5% section, "weak" was determined, in the 1.0% section, "medium", and in the 2.0% to 5.0% section, "presence" was clearly determined.
Furthermore, the salty taste was “none” in the control brown rice, and in this group, despite the immersion in the aqueous sodium chloride solution, “none” in the 0.1% -1.0% sodium chloride group. there were.
However, it was determined as "weak" in the 2.0% section, "presence" in the 3.0% section, and "strong" in the 5.0% section.
That is, sodium chloride was characterized by a tendency that saltiness was rarely felt below the boundary of the concentration of about 1.5%, and below that, the saltiness was clearly felt above that.
Looking at the Na content in the food material, it means that little sweetness was recognized at about 75 mg or less, sweetness was felt at about 75 to 125 mg, and sweetness and salty taste were clearly felt at about 125 mg or more.
By utilizing these effects, a food material having “sweetness alone” or “sweetness and saltiness” can be obtained.
[0043]
Example 3
Seven kinds of the fourth group of test rice of this example were obtained by immersing brown rice for 5 hours in an aqueous solution having seven steps of magnesium chloride concentration of 0.075 to 0.60% according to the first group of test rice. Table 7 shows the K, Mg, and Na contents obtained by chemical analysis by the atomic absorption method, and Table 8 shows the results of cooking and tasting.
The results of the tasting test were evaluated for brown rice odor, sweetness, and salty taste on a six-point scale of "none, fine, weak, medium, present, and strong", and indicated as an average value of seven tasters.
[0044]
[Table 7]
Table 7 Mineral content and chemical equivalent of test group 4 and Mg / K chemical equivalent ratio
Figure 2004033115
[0045]
[Table 8]
Table 8 Tasting results of cooked rice of the fourth group of test rice
Figure 2004033115
[0046]
The K content of this group decreased about 20 mg on average by immersion in an aqueous solution of magnesium chloride, but was not affected by the concentration of magnesium chloride in the liquid.
On the other hand, the Mg content increases in proportion to the concentration of magnesium chloride in the liquid, and from the viewpoint of Mg enrichment, the higher the concentration of magnesium chloride, the more preferable, and the immersion for 5 hours in the concentration of 0.150% to 0.600% in the liquid. In the case of stacking, the Mg / K chemical equivalent ratio increased from 1.81 of the raw rice and increased to 2.17 to 2.50, and a food material that solved the problem of the present invention was obtained.
[0047]
The tasting results of the cooked rice of this group are as shown in Table 8. As is clear from this table, in the control brown rice, the `` brown rice odor '' peculiar to cooking brown rice and fractionated rice, which are widely recognized as a problem, that is, the weak `` heartburn feeling '' felt immediately after swallowing and the nasal cavity While the “return odor” was clearly felt, 6 out of 7 tasters did not sense brown rice smell in the 7 species in this group, and the conditions of this immersion were similar to those in the past in terms of taste. Had no apparently favorable effect.
Next, the sweetness was evaluated as “fine” for the control brown rice and “fine” for the 0.075% magnesium chloride group in this group.
However, the sweetness was determined to be "weak" in the 0.15% section to 0.225% section, and the presence of the sweetness was clearly determined to be "present" in the 0.30% to 0.60% section. Although it should have magnesium chloride, it was found that when immersed in a dilute solution of an appropriate concentration, it exhibited a sweet taste.
However, in the 0.60% section, the bitter taste peculiar to magnesium chloride coexists and becomes “Yes”. Therefore, the addition amount has a taste upper limit, and is in the range of 0.15% to 0.45%. The manufactured food ingredients were preferred.
[0048]
Comparative Example 4
The K, Mg, Na contents obtained by chemical analysis of the comparative rice of the third group of this example, that is, unpolished rice, brown rice, early-cut green rice, fractionated rice, germ rice and milled rice, were determined by atomic absorption spectrometry. The chemical equivalents are shown in Table 9.
As is clear from the table, the Mg / K chemical equivalent ratio was 1.15 for the lowest polished rice and 1.81 for the highest brown rice, and none of them solved the problems of the present invention.
[0049]
[Table 9]
Table 9 Mineral Content and Chemical Equivalents and Mg / K Chemical Equivalence Ratio of Comparative Rice Group 3
Figure 2004033115
[0050]
Example 4
Five kinds of test rice of the fifth group of this example, that is, unpolished rice, brown rice, early cut green rice, fractionated rice, germ rice and milled rice are used as raw rice, and the raw rice is dissolved in an aqueous solution in which magnesium chloride and sodium chloride are dissolved. After immersion to enrich Mg and Na, the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium contained in the raw rice was 2.0 to 3.10 from 1.15 to 1.81 of the third group of comparative rice. 5 shows a method for producing a food material in which the mineral composition is improved by increasing the range to 5 and the taste is improved.
In addition, although rice can be immersed as it is, it is usually good to use it in the form of brown rice after a rice mashing step.
[0051]
First, refined bittern obtained by the salt production method (powder bittern for tofu, manufactured by Teshio Co., Ltd., magnesium chloride content 51%, magnesium sulfate 3.4%, sodium chloride 2.6%, potassium chloride 0.5% and crystallization water About 42.5%), and a required amount of sodium chloride as a food additive is dissolved in water to give an immersion aqueous solution having a magnesium chloride concentration of 0.375% and a sodium chloride concentration of 2.0%. Was prepared.
Next, 1 kg of each of brown rice, early-cut green rice, fractionated rice, germ rice and milled rice was placed in each liter of the above aqueous solution and immersed for 5 hours.
The temperature of the aqueous solution was kept at 17 ° C. or lower for the purpose of suppressing an increase in the number of general viable bacteria that easily cause an unpleasant odor and the bacterium belonging to the genus Bacillus that causes food poisoning.
By this operation, the raw material potassium was eluted in the aqueous phase, and the aqueous phase magnesium was enriched in the raw rice.
[0052]
After the completion of the immersion, the raw rice was transferred to a stainless steel plate and drained, and then dried while blowing in a low-temperature room at 8 ° C. to adjust the water content to about 14.5%.
The K, Mg, and Na contents of the thus obtained food material were measured in the same manner as described above. The results are shown in Table 10.
As is clear from the table, the brown rice, the early cut green rice, the fractionated rice, the germ rice, and the polished rice of the fifth group of the test rice all have lower K content after immersion than before immersion, and Mg content. And the Na content increased, and the Mg / K chemical equivalent ratio was increased to 2.0 to 3.06 in this group compared to 1.15 to 1.81 in the third group of comparative rice, respectively. I was assured. According to this method, the Mg content is increased, the Mg / K chemical equivalent ratio is increased, the handleability is improved by drying, and the increase in the number of general viable bacteria and heat-resistant bacteria is suppressed, and the safety is improved. Thus, a food material in which the mineral composition of rice was improved and the taste was improved satisfactorily was produced.
[0053]
[Table 10]
Table 10 Mineral Content and Chemical Equivalents of Comparative Rice Group 5 and Mg / K Chemical Equivalent Ratio
Figure 2004033115
[0054]
【The invention's effect】
According to the present invention, one or more selected from among rice, brown rice, early-cut green rice, fractionated rice, germ rice and milled rice are used as raw rice, and the magnesium content of the raw rice, or the magnesium content and the sodium content By enriching, a food material having a modified mineral composition, in which the raw material rice has an Mg / K chemical equivalent ratio in the range of 2.0 to 3.5, is provided.
[0055]
Furthermore, according to the present invention, the raw rice is immersed in an aqueous solution of magnesium chloride of an appropriate concentration or an aqueous solution of magnesium chloride and sodium chloride to increase the magnesium content, and the Mg / K chemical equivalent ratio of the raw rice is increased. And a method for producing a food material having a modified mineral composition, wherein the food material has an increased mineral content of 2.0 to 3.5.
[0056]
The food material according to the present invention has a higher magnesium content than the raw material rice of the comparative control, has a reduced brown rice odor compared with the control brown rice, has a good taste, and is a nutritionally preferable and improved food material. Generally available.
Another feature of the food material of the present invention is that it is enriched with magnesium, a nutritional component that has been particularly emphasized in recent years in terms of physiological functions, such as activating a large number of enzymes in vivo. By using this in a daily diet, it can contribute to recovery from fatigue of the brain and nervous system, and prevention or treatment of lifestyle-related diseases and the like.

Claims (6)

原料米にマグネシウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材。A food material having a modified mineral composition, wherein the ratio of the chemical equivalent of magnesium to that of potassium in the raw rice is in the range of 2.0 to 3.5 by enriching the raw rice with magnesium. 原料米にマグネシウム及びナトリウムを富化することによって、当該原料米のカリウムの化学当量に対するマグネシウムの化学当量の比を2.0〜3.5の範囲としてなる、ミネラル組成を改質した食品素材。A food material having a modified mineral composition, wherein the ratio of the chemical equivalent of magnesium to the chemical equivalent of potassium in the raw rice is in the range of 2.0 to 3.5 by enriching the raw rice with magnesium and sodium. 原料米が、籾米、玄米、早刈り緑色米、分づき米、胚芽米又は精白米である請求項1又は2記載の食品素材。The food material according to claim 1 or 2, wherein the raw rice is paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice or milled rice. 濃度が0.02%(重量/容量)以上かつ2.0%(重量/容量)以下である塩化マグネシウムを含む水溶液に原料米を浸漬することを特徴とする請求項1記載の食品素材の製造法。2. The method according to claim 1, wherein the raw rice is immersed in an aqueous solution containing magnesium chloride having a concentration of 0.02% (weight / volume) or more and 2.0% (weight / volume) or less. Law. 濃度が0.02%(重量/容量)以上かつ2.0%(重量/容量)以下である塩化マグネシウム及び濃度が0.1%(重量/容量)以上かつ10.0%(重量/容量)以下である塩化ナトリウムを含む水溶液に原料米を浸積することを特徴とする請求項2記載の食品素材の製造法。Magnesium chloride having a concentration of 0.02% (weight / volume) or more and 2.0% (weight / volume) or less and a concentration of 0.1% (weight / volume) or more and 10.0% (weight / volume) 3. The method for producing a food material according to claim 2, wherein the raw rice is immersed in an aqueous solution containing sodium chloride as follows. 原料米が、籾米、玄米、早刈り緑色米、分づき米、胚芽米又は精白米である請求項4又は5記載の食品素材の製造法。The method for producing a food material according to claim 4 or 5, wherein the raw rice is paddy rice, brown rice, early-cut green rice, fractionated rice, germ rice or milled rice.
JP2002195392A 2002-07-04 2002-07-04 Food material with modified mineral composition of rice and its production method Expired - Lifetime JP3621991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195392A JP3621991B2 (en) 2002-07-04 2002-07-04 Food material with modified mineral composition of rice and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195392A JP3621991B2 (en) 2002-07-04 2002-07-04 Food material with modified mineral composition of rice and its production method

Publications (2)

Publication Number Publication Date
JP2004033115A true JP2004033115A (en) 2004-02-05
JP3621991B2 JP3621991B2 (en) 2005-02-23

Family

ID=31703783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195392A Expired - Lifetime JP3621991B2 (en) 2002-07-04 2002-07-04 Food material with modified mineral composition of rice and its production method

Country Status (1)

Country Link
JP (1) JP3621991B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042629A (en) * 2004-08-02 2006-02-16 Ryukyu Shokuryo Kk Method for producing nutrition-added colored rice, and apparatus for producing the same
JP2006288331A (en) * 2005-04-14 2006-10-26 Nittetsu Fine Prod:Kk Method for producing nutritious functional food by using unpolished rice, and nutritious functional food obtained by the same
WO2016132485A1 (en) * 2015-02-18 2016-08-25 株式会社クレアテラ Low potassium food, and method and kit for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042629A (en) * 2004-08-02 2006-02-16 Ryukyu Shokuryo Kk Method for producing nutrition-added colored rice, and apparatus for producing the same
JP2006288331A (en) * 2005-04-14 2006-10-26 Nittetsu Fine Prod:Kk Method for producing nutritious functional food by using unpolished rice, and nutritious functional food obtained by the same
WO2016132485A1 (en) * 2015-02-18 2016-08-25 株式会社クレアテラ Low potassium food, and method and kit for producing same
WO2016133164A1 (en) * 2015-02-18 2016-08-25 株式会社クレアテラ Low potassium food product, manufacturing method therefor and manufacturing kit
JP6086417B2 (en) * 2015-02-18 2017-03-01 株式会社クレアテラ Low potassium food, method for producing the same, and kit for producing the same
JPWO2016133164A1 (en) * 2015-02-18 2017-04-27 株式会社クレアテラ Low potassium food, method for producing the same, and kit for producing the same

Also Published As

Publication number Publication date
JP3621991B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
CN103533846B (en) Germinated ceral, it manufacture method and produce promoter containing its food and BDNF
TWI364259B (en) Brewing soy sauce with few smell of soy sauce and the preparation method thereof
JPWO2005077206A1 (en) Noodles, method of manufacturing noodles, and ingredients
JP2003159017A (en) Food material or food and method for producing the same
JPH1084891A (en) Health food containing kangra buckwheat or oats or both thereof as effective components
WO2004105513A1 (en) Food material or food using germinant grain, process for producing germinant grain and method of reducing germinant grain odor
JP2004033115A (en) Food material reformed in mineral composition of rice and method for producing the same
JP3579407B2 (en) Food material with modified mineral composition of beans or wheat and method for producing the same
KR101256489B1 (en) Paste composition for small walnut-flavored cake and method for preparing the small walnut-flavored cake the same
JP2006166804A (en) Food material and method for producing the same
US6048568A (en) Method for preparing a bean curd containing pine leaves
CN113841782A (en) Plant-based sucrose-free ice cream with fat burning function and preparation method thereof
JP2005013242A (en) Food material or food, and method for producing the same
JP2005168365A (en) Food material improved in eating quality and method for producing the same
JP5412699B2 (en) Process for producing udon with whole wheat flour
KR20170124998A (en) Acacia Fermentation Salt
CN101120754A (en) Compound tartary buckwheat nutritive powder
LU501056B1 (en) Quinoa cereal beverage with high resistant starch content and its preparation method
JPH0838080A (en) Processed food containing germinated unpolished rice
EA027827B1 (en) Raw material for functional foods and process for the preparation thereof
JP4571512B2 (en) Method for producing germinated cereals containing alanine
JP2005204518A (en) Food material obtained by modifying mineral compositions of defatted rice bran and defatted rice embryo
JP2007209335A (en) Method for producing barley for boiled rice and barley
JP3925714B2 (en) Miso with soba
JPH0398564A (en) Production of natural beverage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Ref document number: 3621991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term