WO2016132825A1 - スパッタリングターゲット、及び、積層膜 - Google Patents
スパッタリングターゲット、及び、積層膜 Download PDFInfo
- Publication number
- WO2016132825A1 WO2016132825A1 PCT/JP2016/052110 JP2016052110W WO2016132825A1 WO 2016132825 A1 WO2016132825 A1 WO 2016132825A1 JP 2016052110 W JP2016052110 W JP 2016052110W WO 2016132825 A1 WO2016132825 A1 WO 2016132825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- atomic
- oxide
- oxide film
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
Definitions
- the present invention relates to a sputtering target used for forming an oxide film, and a laminated film including an oxide film and a metal film.
- patterned wiring films are widely used in electronic devices such as touch panels, solar cells, and organic EL devices.
- Ag and Ag alloys have excellent conductivity and reflectance, or excellent transmittance can be obtained when they are thinly formed. Therefore, application to wiring films of these electronic devices is expected.
- the transparent conductive oxide film a transparent conductive material mainly composed of indium oxide such as ITO and IZO and a transparent conductive material mainly composed of zinc oxide such as AZO and GZO are used.
- a transparent conductive oxide film is formed by a sputtering method using a sputtering target.
- Patent Documents 2 and 3 propose sputtering targets made of a transparent conductive film material whose characteristics are improved by adding various elements to zinc oxide.
- Japanese Unexamined Patent Publication No. 2012-246511 Japanese Unexamined Patent Publication No. 2009-097088 (A) Japanese Unexamined Patent Publication No. 2009-097089 (A)
- the wiring film has been made finer (width narrowing), and it is necessary to form a wiring pattern by etching in the above-described laminated film as well. There is. When performing such an etching process, it is desirable to process the above-mentioned laminated film by one etching process from a viewpoint of productivity.
- an etchant for a transparent conductive oxide film mainly composed of indium oxide such as ITO or IZO for example, an etchant mainly composed of oxalic acid and carboxylic acid is provided.
- an etchant for a metal film made of Ag or an Ag alloy an etchant mainly composed of phosphoric acid, nitric acid, and acetic acid is provided.
- an etchant for Ag and Ag alloy it has been difficult to etch a transparent conductive oxide film mainly composed of indium oxide such as ITO and IZO.
- the etching rate was slow and could not be used industrially.
- the wiring pattern is formed by etching the metal film and the transparent conductive oxide film by one etching process. I could't.
- the transparent conductive oxide film mainly composed of zinc oxide such as GZO and AZO can be etched with the above-described etching solution for Ag and Ag alloy, zinc oxide such as GZO and AZO is used.
- the metal film and the transparent conductive oxide film can be etched by one etching process, and a wiring pattern can be formed efficiently.
- transparent conductive oxide films mainly composed of zinc oxide such as GZO and AZO are inferior to ITO in heat resistance and environment resistance (resistance to moisture environment), and have a function of protecting metal films. There was a problem of shortage.
- the masking portion may be peeled off with an alkali treatment liquid, but the transparent conductive oxide film mainly composed of zinc oxide such as GZO and AZO has insufficient alkali resistance.
- the transparent conductive oxide film may be discolored when the masking portion is peeled off.
- the present invention has been made in view of the above-described circumstances, and is a transparent conductive oxide film capable of DC (direct current) sputtering and excellent in etching property, alkali resistance, and environment resistance (resistance to moisture environment). It is an object of the present invention to provide a sputtering target capable of forming a film and a laminated film having the above-described transparent conductive oxide film and capable of etching the metal film and the transparent conductive oxide film collectively.
- the sputtering target of one embodiment of the present invention has a metal component element content ratio of Al, Ga to the total metal component element amount. At least one or two of them are 0.1 to 15.0 at% in total, and at least one or two of Y, La, Nd and Bi are 1.0 at% in total It is characterized in that it is made up of 20.0 atomic% or less and the balance is made of Zn and an inevitable impurity oxide.
- the sputtering target of the present invention since at least one or two of Al and Ga are contained in a total of 0.1 atomic% or more, conductivity is ensured and oxide is obtained by DC (direct current) sputtering. A film can be formed. In addition, the conductivity of the formed oxide film can be ensured. In addition, since the total content of at least one or two of Al and Ga is 15.0 atomic% or less, it is possible to suppress an increase in the crystallinity of the formed oxide film, and it is uniform. A simple oxide film can be formed.
- Y, La, Nd, and Bi are contained in a total of 1.0 atomic% or more, an oxide film excellent in alkali resistance can be formed.
- the total content of at least one or more of Y, La, Nd, and Bi is 20.0 atomic% or less, conductivity is ensured and oxide is formed by DC (direct current) sputtering. A film can be formed. In addition, the conductivity of the formed oxide film can be ensured.
- the total amount of at least one or two of Al and Ga is 0.1 atomic% or more and 5.0 atomic% or less with respect to the total amount of metal component elements. Preferably it is.
- the crystallinity of the deposited oxide film is reliably suppressed from increasing.
- a more uniform oxide film can be formed.
- the sputtering target of this invention it is preferable to contain Sn in the range of 1.0 atomic% or more and 10.0 atomic% or less further with respect to the total metal component element amount.
- Sn is contained at 1.0 atom% or more, an oxide film excellent in resistance to a hot and humid environment can be formed, and synergistic with Y, La, Nd, and Bi atom groups. With the effect, an oxide film having excellent alkali resistance can be formed.
- the Sn content is 10.0 atomic% or less, it is possible to perform batch etching in the laminated film with the metal film.
- the average grain size of the crystal grains is 20 ⁇ m or less.
- the average grain size of the crystal grains is 20 ⁇ m or less, the occurrence of abnormal discharge during DC (direct current) sputtering can be suppressed, and the oxide film can be formed stably.
- a laminated film of another embodiment of the present invention includes a metal film made of Ag or an Ag alloy, and an oxide film formed on one or both surfaces of the metal film.
- the oxide film has a metal component element content ratio of 0.1 atom in total of at least one or two of Al and Ga with respect to the total amount of metal component elements.
- % To 15.0 atomic%, at least one or more of Y, La, Nd, and Bi is 1.0 atomic% to 20.0 atomic% in total, and the balance is Zn and inevitable impurities It is characterized by comprising an oxide.
- the oxide film includes at least one or two of Al and Ga in total of 0.1 atomic% or more and 15.0 atomic% or less, Y, La, Nd, Bi. Since at least one or more of them are composed of 1.0 to 20.0 atomic% in total, and the balance is composed of Zn and inevitable impurities, alkali resistance and environmental resistance
- the metal film which consists of Ag or Ag alloy is excellent.
- the oxide film and the metal film can be collectively etched, and a wiring pattern can be easily formed.
- the total amount of at least one or two of Al and Ga is 0.1 atomic% or more and 5.0 atomic% or less with respect to the total amount of metal component elements. Preferably it is. In this case, an increase in crystallinity of the oxide film can be reliably suppressed, and a uniform oxide film can be obtained.
- Sn is further included in the range of 1.0 atomic% or more and 10.0 atomic% or less with respect to the total amount of metal component elements.
- Sn content is 1.0 atomic% or more, an oxide film having excellent resistance to hot and humid environments and excellent alkali resistance can be obtained.
- the Sn content is 10.0 atomic% or less, the metal film and the oxide film can be etched together.
- the Ag content in the metal film is 80 atomic% or more.
- the electrical resistance of the metal film is reduced, the conductivity of the entire laminated film can be ensured, and it can be used as a fine pattern wiring film. can do.
- the oxide film preferably has a thickness in the range of 5 nm to 100 nm.
- the film thickness of the oxide film is in the range of 5 nm or more and 100 nm or less, the metal film can be sufficiently protected, and the etching rate of the entire laminated film can be secured, and the wiring The pattern can be formed efficiently.
- the thickness of the metal film is in the range of 5 nm to 500 nm. In this case, since the thickness of the metal film is in the range of 5 nm or more and 500 nm or less, the conductivity as the laminated film can be secured and the adhesion between the metal film and the oxide film can be secured. .
- a sputtering target capable of forming a transparent conductive oxide film capable of DC (direct current) sputtering and excellent in etching property, alkali resistance, and environmental resistance (resistance to moisture-resistant environment), and the above-mentioned It is possible to provide a laminated film having a transparent conductive oxide film and capable of etching the metal film and the transparent conductive oxide film collectively.
- the laminated film 10 according to the present embodiment is used as a wiring film of a flat panel display such as a liquid crystal or an organic EL panel, or an electronic device such as a touch panel.
- the sputtering target according to the present embodiment is used when forming the above-described laminated film 10 by forming the oxide film 12 on the metal film 11 made of Ag or an Ag alloy.
- the sputtering target according to this embodiment is made of a metal oxide, and the content ratio of the metal component elements in the metal oxide is a total of at least one or two of Al and Ga with respect to the total metal component element amount.
- 0.1 atomic% or more and 15.0 atomic% or less, and at least one or more of Y, La, Nd, and Bi are 1.0 atomic% or more and 20.0 atomic% or less in total, and the balance is Zn And inevitable impurities.
- it is preferable that at least 1 type or 2 types of Al and Ga is 0.1 to 5.0 atomic% in total.
- the average grain size of the crystal grains is set to 20 ⁇ m or less.
- the laminated film 10 includes a metal film 11 formed on the substrate 21, an oxide film 12 formed on the metal film 11, It has.
- substrate 21 is not specifically limited, In the flat panel display, a touch panel, etc., what consists of glass, a resin film, etc. which can permeate
- the metal film 11 is made of Ag or an Ag alloy.
- the metal film 11 is made of Ag or an Ag alloy having an Ag content of 80 atomic% or more.
- the thickness A of the metal film 11 is set in the range of 5 nm ⁇ A ⁇ 500 nm.
- the oxide film 12 is formed by the sputtering target according to the present embodiment described above, and is composed of an oxide having the same composition as the sputtering target.
- the thickness B of the oxide film 12 is set in the range of 5 nm ⁇ B ⁇ 100 nm.
- the content ratio of the metal component elements in the oxide constituting the sputtering target and the oxide film 12 according to the present embodiment the average grain size of the crystal grains of the sputtering target, the Ag content and thickness of the metal film 11, oxidation
- the reason why the thickness of the material film 12 is defined as described above will be described.
- Al and Ga act as dopants for zinc oxide (ZnO) and are elements having an effect of lowering electric resistance. Therefore, by adding these elements, the conductivity of the sputtering target and the oxide film 12 is ensured. It becomes possible to do.
- the conductivity of the sputtering target cannot be ensured, and DC (direct current) sputtering can be performed. There is a risk that it will not be possible.
- the conductivity of the formed oxide film 12 may not be ensured.
- the total content of at least one or two of Al and Ga exceeds 15.0 atomic%, the crystallinity of the deposited oxide film 12 increases, There is a possibility that the uniformity of the interface is lowered and the environmental resistance of the laminated film 10 is lowered.
- the total content of at least one or two of Al and Ga is set within a range of 0.1 atomic% to 15.0 atomic%.
- the lower limit of the total content of at least one or two of Al and Ga is set to 1.0 atomic% or more. It is preferable to set it as 1.5 atomic% or more.
- the upper limit of the total content of at least one or two of Al and Ga is preferably 5.0 atomic percent or less. It is more preferably 0 atomic% or less, and further preferably 2.5 atomic% or less.
- At least one or more of Y, La, Nd, Bi Since elements such as Y, La, Nd, and Bi have the effect of improving the alkali resistance of the oxide film 12, the masking portion used in the etching process is subjected to an alkali treatment by adding these elements. It is possible to prevent the oxide film 12 from deteriorating when it is peeled off with a liquid.
- the total content of at least one or more of Y, La, Nd, and Bi is less than 1.0 atomic%, the alkali resistance of the formed oxide film 12 is sufficiently high. There is a possibility that it cannot be improved.
- the total content of at least one or more of Y, La, Nd, and Bi exceeds 20.0 atomic%, the electrical resistance of the sputtering target increases, and DC (direct current) sputtering is performed. You may not be able to do it. Further, the electrical resistance of the formed oxide film 12 increases, and there is a possibility that the conductivity cannot be secured.
- the total content of at least one or more of Y, La, Nd, and Bi is within the range of 1.0 atomic% to 20.0 atomic%. It is set.
- the lower limit of the total content of at least one or more of Y, La, Nd and Bi is set to 2.0. It is preferably at least atomic%, more preferably at least 4.0 atomic%.
- the upper limit of the total content of at least one or more of Y, La, Nd, and Bi is set to 16 It is preferably 0.0 atomic percent or less, and more preferably 12.0 atomic percent or less.
- Sn is an element that contributes to the barrier properties of the oxide film 12 and has an effect on suppressing the deterioration of the characteristics of the laminated film in a hot and humid environment by improving the protection performance against the metal film. It also has an effect of further improving the alkali resistance of the oxide film 12 by a synergistic effect with the groups Y, La, Nd, and Bi. For this reason, you may add suitably according to a required characteristic.
- the addition amount of Sn is less than 1.0 atomic%, there is a possibility that the deterioration of the characteristics of the laminated film 10 under the hot and humid environment may not be sufficiently suppressed, and the oxide film 12 formed is not suitable.
- the addition amount of Sn exceeds 10.0 atomic%, etching cannot be performed with an etching solution for Ag / Ag alloy such as mixed acid of phosphoric acid, nitric acid, and acetic acid, and the laminated film may not be etched at once. There is. For this reason, in the present embodiment, when Sn is added, the Sn content is set within a range of 1.0 atomic% to 10.0 atomic%. In order to sufficiently suppress the deterioration of the characteristics of the multilayer film and the alkali resistance under the heat and humidity environment of the multilayer film 10, it is preferable that the lower limit of the addition amount of Sn is 2.0 atomic% or more. More preferably, it is made 4,0 atomic% or more. In order to surely etch the laminated film all at once, the upper limit of the Sn addition amount is preferably 9.0 atomic% or less, and more preferably 8.0 atomic% or less.
- the oxide film 12 is formed by DC (direct current) sputtering, abnormal discharge may occur and the film formation may not be stable.
- the average particle diameter of the sputtering target is 15 ⁇ m or less.
- the Ag content in the metal film 11 is specified to be 80 atomic% or more.
- the Ag content in the metal film 11 is preferably 90 atomic% or more, and more preferably 95 atomic% or more.
- the thickness A of the metal film 11 is defined within the range of 5 nm to 500 nm.
- the lower limit of the thickness A of the metal film 11 is preferably 8 nm or more, and more preferably 20 nm or more.
- the upper limit of the thickness A of the metal film 11 is preferably 200 nm or less, and is preferably 100 nm or less. More preferably.
- the thickness B of the oxide film 12 is defined within a range of 5 nm to 100 nm.
- the lower limit of the thickness B of the oxide film 12 is preferably 10 nm or more, and more preferably 20 nm or more.
- the upper limit of the thickness B of the oxide film 12 is preferably 80 nm or less, and more preferably 50 nm or less.
- a powder of bismuth oxide (Bi 2 O 3 ) is prepared, and these oxide elements are selected and weighed so that the content ratio of the metal element is in the above range.
- the weighed oxide powder is mixed by a mixing device to obtain a mixed powder.
- the obtained mixed powder is granulated and sintered using a hot press or the like to obtain a sintered body.
- the sputtering target which is this embodiment is manufactured by machining this sintered body.
- the manufacturing method of the laminated film 10 which is this embodiment is demonstrated.
- the metal film 11 is formed on the substrate 21 by DC (direct current) sputtering using a sputtering target made of Ag or an Ag alloy.
- the oxide film 12 is formed on the metal film 11 by DC (direct current) sputtering using the sputtering target according to the present embodiment. As described above, the laminated film 10 is formed.
- the total content of at least one or two of Al and Ga is 0.1 atomic% or more, and Y, La, Since the total content of at least one or more of Nd and Bi is 20.0 atomic% or less, conductivity in the sputtering target is ensured, and the oxide film 12 is formed by DC (direct current) sputtering. A film can be formed. Therefore, the deposition rate of the oxide film 12 is increased, and the production efficiency of the laminated film 10 can be improved.
- the total content of at least one or two of Al and Ga is 15.0 atomic% or less, preferably 5.0 atomic% or less.
- the oxide film 12 having excellent alkali resistance can be formed.
- the oxidation is excellent in resistance to a hot and humid environment and excellent in alkali resistance.
- the physical film 12 can be formed. Further, since the Sn content is 10.0 atomic% or less, the oxide film 12 that can be etched together with the metal film 11 can be formed.
- the oxide film 12 can be formed. It can be performed stably.
- the total content of at least one or two of Al and Ga is 0.1 atomic% or more, and at least of Y, La, Nd, and Bi. Since the total content of one kind or two or more kinds is 20.0 atomic% or less, the conductivity in the oxide film 12 can be ensured. Further, since the total content of at least one or two of Al and Ga is 15.0 atomic% or less, preferably 5.0 atomic% or less, the crystal of the oxide film 12 formed It is possible to suppress the increase in the properties, to ensure the uniformity of the interface with the metal film 11, and to improve the environmental resistance of the laminated film 10.
- the alkali resistance of the laminated film 10 can be improved. Therefore, when the masking part is peeled off with the alkali treatment liquid after the etching process, it is possible to prevent the laminated film 10 from being discolored. Further, since the oxide film 12 is excellent in etching property, the oxide film 12 and the metal film 11 can be etched at once, and a wiring pattern can be easily formed.
- the oxide film 12 contains Sn in the range of 1.0 atomic% or more and 10.0 atomic% or less, it has excellent resistance to a hot and humid environment, and In addition to being excellent in alkali resistance, the metal film 11 and the oxide film 12 can be etched together.
- the Ag content in the metal film 11 is 80 atomic% or more, so the electrical resistance of the metal film 11 is reduced, and the conductivity of the entire laminated film 10 is reduced. And can be used as a wiring film having a fine pattern.
- the film thickness A of the metal film 11 is 5 nm or more, the conductivity as the laminated film 10 can be ensured.
- the film thickness A of the metal film 11 is 500 nm or less, the surface of the metal film 11 becomes relatively smooth, and the metal film 11 can be sufficiently protected by the oxide film 12.
- the film thickness B of the oxide film 12 is 5 nm or more, the metal film can be sufficiently protected and the environmental resistance can be improved. Furthermore, since the film thickness B of the oxide film 12 is 100 nm or less, the etching rate of the entire laminated film 10 can be ensured, and the wiring pattern can be formed efficiently.
- the present invention is not limited to this, and the oxide film is formed on both sides of the metal film. It may be.
- a laminated film 110 in which oxide films 112A and 112B are formed on one side and the other side of the metal film 111, respectively, may be used.
- the environmental resistance can be further improved.
- the oxide film 112A and the oxide film 112B may be formed using oxides having different compositions. Further, an arbitrary number of four or more metal films and oxide films may be stacked.
- the average grain size of the crystal grains of the sputtering target is described as being 20 ⁇ m or less.
- the average grain diameter of the sputtering target is not limited to this, and depending on sputtering conditions and the like.
- the particle size may exceed 20 ⁇ m.
- the Ag content in the metal film is described as being defined as 80 atomic% or more.
- the present invention is not limited to this, and the Ag content in the metal film is not limited to this. May be less than 80 atomic%.
- the weighed raw material powder was charged into a plastic container together with zirconia balls three times as much as the raw material powder by mass ratio, and wet-mixed for 16 hours with a ball mill device to obtain a mixed powder.
- alcohol was used as a solvent.
- the obtained mixed powder is granulated after drying, and subjected to hot press (HP) in a vacuum atmosphere (5 Pa or less) under conditions of a holding temperature of 800 to 1300 ° C., a holding time of 2 to 9 hours, and a pressure of 350 kgf / cm 2 to oxidize A sintered product was obtained.
- HP hot press
- the obtained oxide sintered body was machined to produce sputtering targets of the present invention example and comparative example having a diameter of 152.4 mm and a thickness of 6 mm.
- the composition of the sputtering target shown in Table 1 and Table 2 was measured by the ICP method using a measurement sample collected from the sputtering target.
- the crystal grain sizes of the sputtering targets of the present invention and the comparative example were measured by SEM crystal analysis (EBSD).
- the measurement sample was extract
- the evaluation results are shown in Tables 1 and 2.
- the film-forming test was done using the sputtering target of this invention example and a comparative example.
- the above-described soldered sputtering target is attached to a magnetron sputtering apparatus, and after exhausting to 1 ⁇ 10 ⁇ 4 Pa, conditions of Ar gas pressure 0.5 Pa, DC power density 2.0 W / cm 2 , and target substrate distance 60 mm Then, DC (direct current) sputtering was performed, and whether or not DC (direct current) sputtering was possible was confirmed. Further, the number of abnormal discharges during sputtering was measured by the arc count function of a DC power supply (model number: RPDG-50A) manufactured by MKS Instruments, for 30 minutes from the start of discharge. The results are shown in Tables 1 and 2.
- Comparative Examples 1, 3, 17, and 19 in which the total content of at least one or two of Al and Ga is less than 0.1 atomic%, the film can be formed by DC (direct current) sputtering. There wasn't. Further, in Comparative Examples 6, 8, 10, 12, 22, 24, 26, and 28 in which the total content of at least one or more of Y, La, Nd, and Bi exceeds 20.0 atomic% The film could not be formed by DC (direct current) sputtering.
- composition of oxide film An oxide film having a thickness of 1000 mm was formed on a Si substrate using the sputtering targets of the present invention and the comparative examples.
- the sputtering target that could not be DC (direct current) sputtered was formed with an oxide film by RF (high frequency) sputtering.
- the obtained oxide film was peeled off from the Si substrate, and the composition of the oxide film was measured by ICP analysis. The evaluation results are shown in Tables 3 and 4.
- composition of metal film (Composition of metal film) Moreover, the sputtering target which consists of Ag and an Ag alloy was prepared, and the metal film was formed with a thickness of 1000 mm on the Si substrate. The obtained metal film was peeled off from the Si substrate, and the composition of the metal film was measured by ICP analysis. The evaluation results are shown in Table 5.
- a laminated film having a structure shown in Tables 6 and 9 was formed on a glass substrate (non-alkali glass: EagleXG manufactured by Corning). The thicknesses of the oxide film and the metal film were confirmed by cross-sectional TEM observation.
- an ITO film formed with an ITO (In 2 O 3 +10 mass% SnO 2 ) sputtering target was formed, and as Conventional Example 2, an AZO (ZnO + 1 mass% Al 2 O 3 ) sputtering target was used. A formed AZO film was prepared.
- the oxide film is formed under the conditions that the Ar gas pressure is 0.6 Pa, the DC power density is 2.0 W / cm 2 , and the distance between the target substrates is 60 mm.
- the sputtering gas contains 1 to 6% by volume of oxygen. It was.
- an oxide film was formed by RF (high frequency) sputtering.
- the metal film was formed under the following conditions: Ar gas pressure 0.6 Pa, DC power density 1.0 W / cm 2 , and target substrate distance 60 mm.
- the obtained laminated film was evaluated for specific resistance, environmental resistance, alkali resistance, and etching property as follows.
- the laminated film was immersed in a 5% by mass NaOH aqueous solution at 40 ° C. for 10 minutes, and changes in the appearance of the laminated film were confirmed.
- the evaluation results are shown in Tables 7 and 10.
- an example of the external appearance observation result of the laminated film after NaOH aqueous solution immersion is shown in FIG.3 and FIG.4.
- the laminated film was immersed in a resist stripping solution (KP-401AG manufactured by Kanto Chemical Co., Ltd.) at 40 ° C. for 10 minutes, and changes in the appearance of the laminated film were confirmed.
- the evaluation results are shown in Tables 7 and 10.
- the substrate on which the laminated film was formed was etched by being immersed in an etching solution SEA-2: phosphoric acid / nitric acid / acetic acid heated to 40 ° C.
- the presence or absence of dissolution of the laminated film was confirmed by visual observation. Furthermore, the presence or absence of dissolution of the laminated film was confirmed by measuring the resistance value and optical characteristics of the laminated film after immersion. Those dissolved within 3 minutes after immersion were evaluated as A, those dissolved within 10 minutes were evaluated as B, and those not dissolved within 10 minutes were evaluated as C. The evaluation results are shown in Tables 7 and 10.
- a constant temperature and humidity test is performed in which the laminated film is left in an atmosphere of 60 ° C. and 90% humidity for 250 hours, and the specific resistance of the laminated film after the constant temperature and humidity test (60 ° C.-90%) is as described above. Measured. The rate of change in specific resistance before and after the constant temperature and humidity test (60 ° C.-90%) was calculated. The evaluation results are shown in Tables 10 and 11. Further, the appearance of the laminated film after the constant temperature and humidity test (60 ° C.-90%) was visually observed to confirm the presence of discoloration and spots. The evaluation results are shown in Tables 10 and 11. An example of the appearance observation result of the laminated film after the constant temperature and humidity test (60 ° C.-90%) is shown in FIGS.
- Comparative Examples 115, 116, 118, and 120 in which the total content of at least one or two of Al and Ga exceeds 15.0 atomic% the constant temperature and humidity test (85 ° C.-85%) and the constant temperature and constant temperature The rate of change in specific resistance after the humidity test (60 ° C.-90%) was large and discoloration was observed, and the environmental resistance was insufficient.
- Comparative Examples 106, 108, 110, 112, 122, 124, 126, and 128 in which the total content of at least one or more of Y, La, Nd, and Bi exceeds 20.0 atomic%, the resistance The value was too high to be measured.
- Example 1 In Conventional Example 1 in which the ITO film was formed, the laminated film could not be etched.
- Conventional Example 2 in which an AZO film was formed slight discoloration was observed in the constant temperature and humidity test, discoloration was observed after immersion in an aqueous NaOH solution, and environmental resistance and alkali resistance were insufficient.
- the laminated film of the example of the present invention has a low specific resistance and is excellent in environmental resistance, alkali resistance, and etching property.
- inventive examples 101-131 in which the Ag content in the metal film is 80 atomic% or more are compared with the inventive examples 132 and 133 in which the Ag content in the metal film is less than 80 atomic%. It was confirmed that the resistance value was reduced.
- the reason why the etching property of Inventive Example 129 is ⁇ is that the oxide film is thick, and the etching takes time correspondingly.
- a sputtering target capable of forming a higher quality transparent conductive oxide film more efficiently.
- a laminated film including this high quality transparent conductive oxide film can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
金属成分元素の含有割合が、全金属成分元素量に対してAl,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物からなることを特徴とする。
Description
本願発明は、酸化物膜を形成する際に用いられるスパッタリングターゲット、及び、酸化物膜と金属膜とを備えた積層膜に関するものである。
本願は、2015年2月18日に日本に出願された特願2015-029801号、および2015年12月21日に日本に出願された特願2015-248971号に基づき優先権を主張し、その内容をここに援用する。
本願は、2015年2月18日に日本に出願された特願2015-029801号、および2015年12月21日に日本に出願された特願2015-248971号に基づき優先権を主張し、その内容をここに援用する。
一般に、タッチパネルや太陽電池、有機ELデバイス等の電子デバイスには、パターニングされた配線膜が広く使用されている。
Ag及びAg合金は、優れた導電性と反射率を有し、または薄く成膜した場合には優れた透過率が得られるため、これら電子デバイスの配線膜への応用が期待されている。
Ag及びAg合金は、優れた導電性と反射率を有し、または薄く成膜した場合には優れた透過率が得られるため、これら電子デバイスの配線膜への応用が期待されている。
しかしながら、Ag及びAg合金は、ガラス基板や樹脂フィルム基板への密着性が低く、製造プロセス及び使用中の環境の湿気、硫黄等による腐食に起因する特性の劣化、また膜外観の変化(斑点等)が発生しやすいという問題があった。
そこで、Ag及びAg合金等からなる金属膜を保護し、かつ、配線膜として導電性を確保するために、この金属膜の上に透明導電酸化物膜を積層した積層膜が提案されている(特許文献1及び非特許文献1参照)。
そこで、Ag及びAg合金等からなる金属膜を保護し、かつ、配線膜として導電性を確保するために、この金属膜の上に透明導電酸化物膜を積層した積層膜が提案されている(特許文献1及び非特許文献1参照)。
ここで、透明導電酸化物膜としては、ITO、IZOといった酸化インジウムを主体とした透明導電材料や、AZO、GZOといった酸化亜鉛を主体とした透明導電材料が用いられている。
このような透明導電酸化物膜は、スパッタリングターゲットを用いたスパッタ法によって成膜される。例えば、特許文献2,3には、酸化亜鉛に各種元素を添加して特性を向上された透明導電膜材料からなるスパッタリングターゲットが提案されている。
このような透明導電酸化物膜は、スパッタリングターゲットを用いたスパッタ法によって成膜される。例えば、特許文献2,3には、酸化亜鉛に各種元素を添加して特性を向上された透明導電膜材料からなるスパッタリングターゲットが提案されている。
透明導電膜の技術、改訂2版、日本学術振興会透明酸化物光・電子材料第166委員会編、P.171-172
ところで、上述のような透明導電酸化物膜をスパッタリングターゲットによって成膜する場合、DC(直流)スパッタが困難であることから、通常、RF(高周波)スパッタを行っている。このRF(高周波)スパッタにおいては、成膜速度が遅いため、積層膜の生産性が悪くなるといった問題があった。
また、最近では、タッチパネルや太陽電池、有機ELデバイス等の電子デバイスにおいては、配線膜の微細化(幅狭化)が図られており、上述の積層膜においてもエッチングによって配線パターンを形成する必要がある。
このようなエッチング処理を行う場合には、生産性の観点から、上述の積層膜を1回のエッチング処理で加工することが望まれる。
このようなエッチング処理を行う場合には、生産性の観点から、上述の積層膜を1回のエッチング処理で加工することが望まれる。
ここで、ITOやIZOといった酸化インジウムを主体とした透明導電酸化物膜のエッチング液としては、例えばシュウ酸及びカルボン酸を主体とするものが提供されている。
しかし、これらのITO及びIZO用のエッチング液では、Ag又はAg合金からなる金属膜のエッチングは困難である。一方、Ag又はAg合金からなる金属膜のエッチング液としては、リン酸、硝酸、酢酸を主体とするものが提供されている。しかし、これらのAg及びAg合金用のエッチング液では、ITOやIZOといった酸化インジウムを主体とした透明導電酸化物膜をエッチングすることは困難であった。あるいは、エッチング速度が遅く工業的には使用できなかった。
このように、ITOやIZOといった酸化インジウムを主体とした透明導電酸化物膜を用いた積層膜では、金属膜と透明導電酸化物膜とを1回のエッチング処理によってエッチングして配線パターンを形成することはできなかった。
しかし、これらのITO及びIZO用のエッチング液では、Ag又はAg合金からなる金属膜のエッチングは困難である。一方、Ag又はAg合金からなる金属膜のエッチング液としては、リン酸、硝酸、酢酸を主体とするものが提供されている。しかし、これらのAg及びAg合金用のエッチング液では、ITOやIZOといった酸化インジウムを主体とした透明導電酸化物膜をエッチングすることは困難であった。あるいは、エッチング速度が遅く工業的には使用できなかった。
このように、ITOやIZOといった酸化インジウムを主体とした透明導電酸化物膜を用いた積層膜では、金属膜と透明導電酸化物膜とを1回のエッチング処理によってエッチングして配線パターンを形成することはできなかった。
これに対して、GZO、AZO等の酸化亜鉛を主体とした透明導電酸化物膜は、上述したAg及びAg合金用のエッチング液によってエッチングを行うことができることから、GZO、AZO等の酸化亜鉛を主体とした透明導電酸化物膜を用いた積層膜では、金属膜と透明導電酸化物膜とを1回のエッチング処理によってエッチングすることができ、配線パターンを効率良く形成することが可能となる。
しかしながら、GZO、AZO等の酸化亜鉛を主体とした透明導電酸化物膜は、耐熱性、耐環境性(耐湿環境への耐性)が、ITOに比べて劣っており、金属膜を保護する機能が不足するといった問題があった。
また、エッチング処理を行う場合、マスキング部をアルカリ処理液で剥離することがあるが、GZO、AZO等の酸化亜鉛を主体とした透明導電酸化物膜は、耐アルカリ性が不十分であることから、マスキング部の剥離時に透明導電酸化物膜が変色してしまうおそれがあった。
また、エッチング処理を行う場合、マスキング部をアルカリ処理液で剥離することがあるが、GZO、AZO等の酸化亜鉛を主体とした透明導電酸化物膜は、耐アルカリ性が不十分であることから、マスキング部の剥離時に透明導電酸化物膜が変色してしまうおそれがあった。
この発明は、前述した事情に鑑みてなされたものであって、DC(直流)スパッタが可能で、エッチング性、耐アルカリ性、耐環境性(耐湿環境への耐性)に優れた透明導電酸化物膜を成膜可能なスパッタリングターゲット、及び、上述の透明導電酸化物膜を有し、金属膜と透明導電酸化物膜とを一括でエッチング処理可能な積層膜を提供することを目的とする。
上記課題を解決するために、本願発明の一態様のスパッタリングターゲット(以下、「本願発明のスパッタリングターゲット」と称する)は、金属成分元素の含有割合が、全金属成分元素量に対してAl,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物からなることを特徴としている。
本願発明のスパッタリングターゲットによれば、Al,Gaのうちの少なくとも1種または2種を合計で0.1原子%以上含有しているので、導電性が確保され、DC(直流)スパッタによって酸化物膜を成膜することができる。また、成膜された酸化物膜の導電性を確保することができる。
また、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%以下とされているので、成膜された酸化物膜の結晶性が増加することを抑制でき、均一な酸化物膜を成膜することができる。
また、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%以下とされているので、成膜された酸化物膜の結晶性が増加することを抑制でき、均一な酸化物膜を成膜することができる。
さらに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上を合計で1.0原子%以上含有しているので、耐アルカリ性に優れた酸化物膜を成膜することができる。
また、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%以下とされているので、導電性が確保され、DC(直流)スパッタによって酸化物膜を成膜することができる。また、成膜された酸化物膜の導電性を確保することができる。
また、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%以下とされているので、導電性が確保され、DC(直流)スパッタによって酸化物膜を成膜することができる。また、成膜された酸化物膜の導電性を確保することができる。
ここで、本願発明のスパッタリングターゲットにおいては、全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下とされていることが好ましい。
この場合、Al,Gaのうちの少なくとも1種または2種の合計含有量が5.0原子%以下とされているので、成膜された酸化物膜の結晶性が増加することを確実に抑制でき、さらに均一な酸化物膜を成膜することができる。
この場合、Al,Gaのうちの少なくとも1種または2種の合計含有量が5.0原子%以下とされているので、成膜された酸化物膜の結晶性が増加することを確実に抑制でき、さらに均一な酸化物膜を成膜することができる。
また、本願発明のスパッタリングターゲットにおいては、全金属成分元素量に対して、更にSnを1.0原子%以上10.0原子%以下の範囲内で含むことが好ましい。
この場合、Snを1.0原子%以上含有しているので、熱湿環境に対する耐性に優れた酸化物膜を成膜することができ、また、Y、La、Nd、Bi原子群との相乗効果で耐アルカリ性に優れた酸化物膜を成膜することができる。
また、Snの含有量は10.0原子%以下とされているので、金属膜との積層膜において一括にエッチングすることが可能となる。
この場合、Snを1.0原子%以上含有しているので、熱湿環境に対する耐性に優れた酸化物膜を成膜することができ、また、Y、La、Nd、Bi原子群との相乗効果で耐アルカリ性に優れた酸化物膜を成膜することができる。
また、Snの含有量は10.0原子%以下とされているので、金属膜との積層膜において一括にエッチングすることが可能となる。
さらに、本願発明のスパッタリングターゲットにおいては、結晶粒の平均粒径が20μm以下とされていることが好ましい。
この場合、結晶粒の平均粒径が20μm以下とされているので、DC(直流)スパッタ時における異常放電の発生を抑制でき、酸化物膜の成膜を安定して行うことができる。
この場合、結晶粒の平均粒径が20μm以下とされているので、DC(直流)スパッタ時における異常放電の発生を抑制でき、酸化物膜の成膜を安定して行うことができる。
本願発明の他態様の積層膜(以下、「本願発明の積層膜)と称する)は、Ag又はAg合金からなる金属膜と、この金属膜の片面又は両面に形成された酸化物膜と、を備えた積層膜であって、前記酸化物膜は、金属成分元素の含有割合が、全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物からなることを特徴としている。
上述の構成の積層膜によれば、酸化物膜が、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物で構成されていることから、耐アルカリ性、耐環境性に優れており、Ag又はAg合金からなる金属膜を保護することができる。
また、酸化物膜がエッチング性に優れているので、酸化物膜と金属膜とを一括してエッチング処理することができ、配線パターンを簡単に形成することが可能となる。
また、酸化物膜がエッチング性に優れているので、酸化物膜と金属膜とを一括してエッチング処理することができ、配線パターンを簡単に形成することが可能となる。
ここで、本願発明の積層膜においては、全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下とされていることが好ましい。
この場合、酸化物膜の結晶性が増加することを確実に抑制でき、均一な酸化物膜とすることができる。
この場合、酸化物膜の結晶性が増加することを確実に抑制でき、均一な酸化物膜とすることができる。
また、本願発明の積層膜においては、全金属成分元素量に対して、更にSnを1.0原子%以上10.0原子%以下の範囲内で含むことが好ましい。
この場合、Snの含有量は1.0原子%以上とされているので、熱湿環境に対する耐性に優れ、かつ、耐アルカリ性に優れた酸化物膜とすることができる。また、Snの含有量は10.0原子%以下とされているので、金属膜と酸化物膜とを一括にエッチングすることが可能となる。
この場合、Snの含有量は1.0原子%以上とされているので、熱湿環境に対する耐性に優れ、かつ、耐アルカリ性に優れた酸化物膜とすることができる。また、Snの含有量は10.0原子%以下とされているので、金属膜と酸化物膜とを一括にエッチングすることが可能となる。
さらに、本願発明の積層膜においては、前記金属膜におけるAgの含有量が80原子%以上とされていることが好ましい。
この場合、金属膜におけるAgの含有量が80原子%以上とされているので、金属膜の電気抵抗が小さくなり、積層膜全体の導電性を確保することができ、微細パターンの配線膜として使用することができる。
この場合、金属膜におけるAgの含有量が80原子%以上とされているので、金属膜の電気抵抗が小さくなり、積層膜全体の導電性を確保することができ、微細パターンの配線膜として使用することができる。
また、本願発明の積層膜においては、前記酸化物膜の膜厚が5nm以上100nm以下の範囲内とされていることが好ましい。
この場合、前記酸化物膜の膜厚が5nm以上100nm以下の範囲内とされているので、金属膜を十分に保護することができるとともに、積層膜全体のエッチング速度を確保することができ、配線パターンの形成を効率良く行うことができる。
この場合、前記酸化物膜の膜厚が5nm以上100nm以下の範囲内とされているので、金属膜を十分に保護することができるとともに、積層膜全体のエッチング速度を確保することができ、配線パターンの形成を効率良く行うことができる。
さらに、本願発明の積層膜においては、前記金属膜の膜厚が5nm以上500nm以下の範囲内とされていることが好ましい。
この場合、前記金属膜の膜厚が5nm以上500nm以下の範囲内とされているので、積層膜としての導電性を確保できるとともに、金属膜と酸化物膜との密着性を確保することができる。
この場合、前記金属膜の膜厚が5nm以上500nm以下の範囲内とされているので、積層膜としての導電性を確保できるとともに、金属膜と酸化物膜との密着性を確保することができる。
本願発明によれば、DC(直流)スパッタが可能で、エッチング性、耐アルカリ性、耐環境性(耐湿環境への耐性)に優れた透明導電酸化物膜を成膜可能なスパッタリングターゲット、及び、上述の透明導電酸化物膜を有し、金属膜と透明導電酸化物膜とを一括でエッチング処理可能な積層膜を提供することができる。
以下に、本願発明の一実施形態であるスパッタリングターゲット、および、積層膜10について説明する。
本実施形態である積層膜10は、例えば液晶や有機ELパネルなどのフラットパネルディスプレイや、タッチパネル等の電子デバイスの配線膜として用いられるものである。また、本実施形態であるスパッタリングターゲットは、AgまたはAg合金からなる金属膜11の上に酸化物膜12を成膜して、上述の積層膜10を形成する際に使用されるものである。
本実施形態であるスパッタリングターゲットは、金属酸化物からなり、この金属酸化物における金属成分元素の含有割合が、全金属成分元素量に対してAl,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされている。
なお、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下であることが好ましい。さらに、Snを1.0原子%以上10.0原子%以下の範囲内で含んでいることが好ましい。
また、このスパッタリングターゲットにおいては、結晶粒の平均粒径が20μm以下とされている。
なお、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下であることが好ましい。さらに、Snを1.0原子%以上10.0原子%以下の範囲内で含んでいることが好ましい。
また、このスパッタリングターゲットにおいては、結晶粒の平均粒径が20μm以下とされている。
また、本実施形態である積層膜10は、図1に示すように、基板21の上に成膜された金属膜11と、この金属膜11の上に成膜された酸化物膜12と、を備えている。
ここで、基板21は、特に限定されるものではないが、フラットパネルディスプレイやタッチパネル等においては、光を透過可能なガラス、樹脂フィルム等からなるものが用いられている。
ここで、基板21は、特に限定されるものではないが、フラットパネルディスプレイやタッチパネル等においては、光を透過可能なガラス、樹脂フィルム等からなるものが用いられている。
金属膜11は、AgまたはAg合金で構成されており、本実施形態では、Agの含有量が80原子%以上のAgまたはAg合金で構成されている。
また、金属膜11の厚さAは、5nm≦A≦500nmの範囲内に設定されている。
また、金属膜11の厚さAは、5nm≦A≦500nmの範囲内に設定されている。
酸化物膜12は、上述した本実施形態であるスパッタリングターゲットによって成膜されており、スパッタリングターゲットと同様の組成の酸化物で構成されている。
この酸化物膜12の厚さBは、5nm≦B≦100nmの範囲内に設定されている。
この酸化物膜12の厚さBは、5nm≦B≦100nmの範囲内に設定されている。
以下に、本実施形態であるスパッタリングターゲット及び酸化物膜12を構成する酸化物における金属成分元素の含有割合、スパッタリングターゲットの結晶粒の平均粒径、金属膜11のAg含有量及び厚さ、酸化物膜12の厚さを上述のように規定した理由について説明する。
(Al,Gaのうちの少なくとも1種または2種)
Al及びGaは、酸化亜鉛(ZnO)のドーパントとして作用し、電気抵抗を下げる効果を有する元素であることから、これらの元素を添加することにより、スパッタリングターゲット及び酸化物膜12の導電性を確保することが可能となる。
ここで、Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%未満の場合には、スパッタリングターゲットの導電性を確保できず、DC(直流)スパッタを行うことができなくなるおそれがある。また、成膜された酸化物膜12の導電性が確保できなくなるおそれがある。一方、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%を超える場合には、成膜された酸化物膜12の結晶性が増加し、金属膜11との界面の均一性が低下し、積層膜10の耐環境性が低下してしまうおそれがある。
このような理由から、本実施形態では、Al,Gaのうちの少なくとも1種または2種の合計含有量を、0.1原子%以上15.0原子%以下の範囲内に設定している。なお、スパッタリングターゲット及び成膜された酸化物膜12の導電性を確実に向上させるためには、Al,Gaのうちの少なくとも1種または2種の合計含有量の下限を1.0原子%以上とすることが好ましく、1.5原子%以上とすることがさらに好ましい。また、積層膜10の耐環境性をさらに向上させるためには、Al,Gaのうちの少なくとも1種または2種の合計含有量の上限を5.0原子%以下とすることが好ましく、3.0原子%以下とすることがさらに好ましく、2.5原子%以下とすることがさらに好ましい。
Al及びGaは、酸化亜鉛(ZnO)のドーパントとして作用し、電気抵抗を下げる効果を有する元素であることから、これらの元素を添加することにより、スパッタリングターゲット及び酸化物膜12の導電性を確保することが可能となる。
ここで、Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%未満の場合には、スパッタリングターゲットの導電性を確保できず、DC(直流)スパッタを行うことができなくなるおそれがある。また、成膜された酸化物膜12の導電性が確保できなくなるおそれがある。一方、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%を超える場合には、成膜された酸化物膜12の結晶性が増加し、金属膜11との界面の均一性が低下し、積層膜10の耐環境性が低下してしまうおそれがある。
このような理由から、本実施形態では、Al,Gaのうちの少なくとも1種または2種の合計含有量を、0.1原子%以上15.0原子%以下の範囲内に設定している。なお、スパッタリングターゲット及び成膜された酸化物膜12の導電性を確実に向上させるためには、Al,Gaのうちの少なくとも1種または2種の合計含有量の下限を1.0原子%以上とすることが好ましく、1.5原子%以上とすることがさらに好ましい。また、積層膜10の耐環境性をさらに向上させるためには、Al,Gaのうちの少なくとも1種または2種の合計含有量の上限を5.0原子%以下とすることが好ましく、3.0原子%以下とすることがさらに好ましく、2.5原子%以下とすることがさらに好ましい。
(Y,La,Nd,Biのうちの少なくとも1種又は2種以上)
Y,La,Nd,Biといった元素は、酸化物膜12の耐アルカリ性を向上させる作用効果を有する元素であることから、これらの元素を添加することにより、エッチング工程で使用したマスキング部をアルカリ処理液で剥離する際に、酸化物膜12が劣化することを抑制できる。
ここで、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が1.0原子%未満の場合には、成膜された酸化物膜12の耐アルカリ性を十分に向上させることができないおそれがある。一方、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える場合には、スパッタリングターゲットの電気抵抗が上昇し、DC(直流)スパッタを行うことができなくなるおそれがある。また、成膜された酸化物膜12の電気抵抗が上昇し、導電性を確保できなくなるおそれがある。
このような理由から、本実施形態では、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量を、1.0原子%以上20.0原子%以下の範囲内に設定している。なお、積層膜10(酸化物膜12)の耐アルカリ性を十分に確保するためには、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量の下限を2.0原子%以上とすることが好ましく、4.0原子%以上とすることがさらに好ましい。また、スパッタリングターゲット及び成膜された酸化物膜12の導電性を確実に向上させるためには、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量の上限を16.0原子%以下とすることが好ましく、12.0原子%以下とすることがさらに好ましい。
Y,La,Nd,Biといった元素は、酸化物膜12の耐アルカリ性を向上させる作用効果を有する元素であることから、これらの元素を添加することにより、エッチング工程で使用したマスキング部をアルカリ処理液で剥離する際に、酸化物膜12が劣化することを抑制できる。
ここで、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が1.0原子%未満の場合には、成膜された酸化物膜12の耐アルカリ性を十分に向上させることができないおそれがある。一方、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える場合には、スパッタリングターゲットの電気抵抗が上昇し、DC(直流)スパッタを行うことができなくなるおそれがある。また、成膜された酸化物膜12の電気抵抗が上昇し、導電性を確保できなくなるおそれがある。
このような理由から、本実施形態では、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量を、1.0原子%以上20.0原子%以下の範囲内に設定している。なお、積層膜10(酸化物膜12)の耐アルカリ性を十分に確保するためには、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量の下限を2.0原子%以上とすることが好ましく、4.0原子%以上とすることがさらに好ましい。また、スパッタリングターゲット及び成膜された酸化物膜12の導電性を確実に向上させるためには、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量の上限を16.0原子%以下とすることが好ましく、12.0原子%以下とすることがさらに好ましい。
(Sn)
Snは、酸化物膜12のバリア性に寄与し、金属膜に対する保護性能を向上させることで熱湿環境下での積層膜の特性劣化の抑制に対し効果を及ぼす元素であり、また、上記元素群Y,La,Nd,Biとの相乗効果により酸化物膜12の耐アルカリ性を更に向上させる効果も有する。このため、要求特性に応じて適宜添加してもよい。
ここで、Snの添加量が1.0原子%未満の場合には、積層膜10の熱湿環境下における特性劣化の抑制が十分にできなくなるおそれがあり、また成膜された酸化物膜12の耐アルカリ性を十分に向上させることができなくなるおそれがある。一方、Snの添加量が10.0原子%を超える場合には、リン酸、硝酸、酢酸の混酸といったAg・Ag合金用のエッチング液によってエッチングができなくなり、積層膜が一括でエッチングできなくなるおそれがある。
このような理由から、本実施形態では、Snを添加する場合には、Snの含有量を、1.0原子%以上10.0原子%以下の範囲内に設定している。なお、積層膜10の熱湿環境下での積層膜の特性劣化の抑制及び耐アルカリ性を十分に確保するためには、Snの添加量の下限を2.0原子%以上とすることが好ましく、4,0原子%以上とすることがさらに好ましい。また、積層膜を確実に一括でエッチングするためには、Snの添加量の上限を9.0原子%以下とすることが好ましく、8.0原子%以下とすることがさらに好ましい。
Snは、酸化物膜12のバリア性に寄与し、金属膜に対する保護性能を向上させることで熱湿環境下での積層膜の特性劣化の抑制に対し効果を及ぼす元素であり、また、上記元素群Y,La,Nd,Biとの相乗効果により酸化物膜12の耐アルカリ性を更に向上させる効果も有する。このため、要求特性に応じて適宜添加してもよい。
ここで、Snの添加量が1.0原子%未満の場合には、積層膜10の熱湿環境下における特性劣化の抑制が十分にできなくなるおそれがあり、また成膜された酸化物膜12の耐アルカリ性を十分に向上させることができなくなるおそれがある。一方、Snの添加量が10.0原子%を超える場合には、リン酸、硝酸、酢酸の混酸といったAg・Ag合金用のエッチング液によってエッチングができなくなり、積層膜が一括でエッチングできなくなるおそれがある。
このような理由から、本実施形態では、Snを添加する場合には、Snの含有量を、1.0原子%以上10.0原子%以下の範囲内に設定している。なお、積層膜10の熱湿環境下での積層膜の特性劣化の抑制及び耐アルカリ性を十分に確保するためには、Snの添加量の下限を2.0原子%以上とすることが好ましく、4,0原子%以上とすることがさらに好ましい。また、積層膜を確実に一括でエッチングするためには、Snの添加量の上限を9.0原子%以下とすることが好ましく、8.0原子%以下とすることがさらに好ましい。
(スパッタリングターゲットの平均粒径)
DC(直流)スパッタによって酸化物膜12を成膜する場合、異常放電が発生して、安定して成膜をできなくなることがある。ここで、スパッタリングターゲットの平均粒径を20μm以下と比較的微細とすることにより、異常放電の発生を抑制することが可能となる。
なお、スパッタ時の異常放電を確実に抑制するためには、スパッタリングターゲットの平均粒径を15μm以下とすることが好ましい。
DC(直流)スパッタによって酸化物膜12を成膜する場合、異常放電が発生して、安定して成膜をできなくなることがある。ここで、スパッタリングターゲットの平均粒径を20μm以下と比較的微細とすることにより、異常放電の発生を抑制することが可能となる。
なお、スパッタ時の異常放電を確実に抑制するためには、スパッタリングターゲットの平均粒径を15μm以下とすることが好ましい。
(金属膜11のAg含有量)
積層膜10全体の導電性を確保するためには、金属膜11の電気抵抗を低くする必要がある。ここで、金属膜11におけるAg含有量が80原子%未満となると、金属膜11における電気抵抗が上昇して導電性を確保できなくなるおそれがある。
このような理由から、本実施形態では、金属膜11におけるAg含有量を80原子%以上に規定している。なお、積層膜10の導電性をさらに確保するためには、金属膜11におけるAg含有量を90原子%以上とすることが好ましく、95原子%以上とすることがさらに好ましい。
積層膜10全体の導電性を確保するためには、金属膜11の電気抵抗を低くする必要がある。ここで、金属膜11におけるAg含有量が80原子%未満となると、金属膜11における電気抵抗が上昇して導電性を確保できなくなるおそれがある。
このような理由から、本実施形態では、金属膜11におけるAg含有量を80原子%以上に規定している。なお、積層膜10の導電性をさらに確保するためには、金属膜11におけるAg含有量を90原子%以上とすることが好ましく、95原子%以上とすることがさらに好ましい。
(金属膜11の厚さ)
金属膜11の厚さAが5nm未満の場合には、積層膜10としての導電性を確保できなくなるおそれがある。一方、金属膜11の厚さAが500nmを超える場合には、金属膜11の表面粗さが粗くなり、酸化物膜12によって金属膜11を保護することが困難となり、耐環境性が低下するおそれがある。
このような理由から、本実施形態では、金属膜11の厚さAを、5nm以上500nm以下の範囲内に規定している。なお、積層膜10における導電性を確実に確保するためには、金属膜11の厚さAの下限を8nm以上とすることが好ましく、20nm以上とすることがさらに好ましい。また、金属膜11の表面粗さを平滑として積層膜10の耐環境性を確実に向上させるためには、金属膜11の厚さAの上限を200nm以下とすることが好ましく、100nm以下とすることがさらに好ましい。
金属膜11の厚さAが5nm未満の場合には、積層膜10としての導電性を確保できなくなるおそれがある。一方、金属膜11の厚さAが500nmを超える場合には、金属膜11の表面粗さが粗くなり、酸化物膜12によって金属膜11を保護することが困難となり、耐環境性が低下するおそれがある。
このような理由から、本実施形態では、金属膜11の厚さAを、5nm以上500nm以下の範囲内に規定している。なお、積層膜10における導電性を確実に確保するためには、金属膜11の厚さAの下限を8nm以上とすることが好ましく、20nm以上とすることがさらに好ましい。また、金属膜11の表面粗さを平滑として積層膜10の耐環境性を確実に向上させるためには、金属膜11の厚さAの上限を200nm以下とすることが好ましく、100nm以下とすることがさらに好ましい。
(酸化物膜12の厚さ)
酸化物膜12の厚さBが5nm未満の場合には、金属膜11を十分に保護することができず、耐環境性を確保できなくなるおそれがある。一方、酸化物膜12の厚さBが100nmを超える場合には、酸化物膜12のエッチング速度が遅いため、積層膜10を一括してエッチング処理して配線パターンを形成する際に、生産効率が低下してしまうおそれがある。
このような理由から、本実施形態では、酸化物膜12の厚さBを、5nm以上100nm以下の範囲内に規定している。なお、積層膜10における耐環境性を確実に確保するためには、酸化物膜12の厚さBの下限を10nm以上とすることが好ましく、20nm以上とすることがさらに好ましい。また、積層膜10全体のエッチング速度を確保するためには、酸化物膜12の厚さBの上限を80nm以下とすることが好ましく、50nm以下とすることがさらに好ましい。
酸化物膜12の厚さBが5nm未満の場合には、金属膜11を十分に保護することができず、耐環境性を確保できなくなるおそれがある。一方、酸化物膜12の厚さBが100nmを超える場合には、酸化物膜12のエッチング速度が遅いため、積層膜10を一括してエッチング処理して配線パターンを形成する際に、生産効率が低下してしまうおそれがある。
このような理由から、本実施形態では、酸化物膜12の厚さBを、5nm以上100nm以下の範囲内に規定している。なお、積層膜10における耐環境性を確実に確保するためには、酸化物膜12の厚さBの下限を10nm以上とすることが好ましく、20nm以上とすることがさらに好ましい。また、積層膜10全体のエッチング速度を確保するためには、酸化物膜12の厚さBの上限を80nm以下とすることが好ましく、50nm以下とすることがさらに好ましい。
(スパッタリングターゲットの製造方法)
次に、本実施形態であるスパッタリングターゲットの製造方法について説明する。
酸化亜鉛(ZnO)、酸化アルミニウム(Al2O3)、酸化ガリウム(Ga2O3)、酸化イットリウム(Y2O3)、酸化ランタン(La2O3)、酸化ネオジウム(Nd2O3)、酸化ビスマス(Bi2O3)の粉末を準備し、金属元素の含有割合が上述の範囲内となるように、これらの酸化物元素を選択して秤量する。この秤量した酸化物粉末を混合装置によって混合し、混合粉末を得る。
得られた混合粉末を造粒し、ホットプレス等を用いて焼結して焼結体を得る。この焼結体を機械加工することで、本実施形態であるスパッタリングターゲットが製造される。
次に、本実施形態であるスパッタリングターゲットの製造方法について説明する。
酸化亜鉛(ZnO)、酸化アルミニウム(Al2O3)、酸化ガリウム(Ga2O3)、酸化イットリウム(Y2O3)、酸化ランタン(La2O3)、酸化ネオジウム(Nd2O3)、酸化ビスマス(Bi2O3)の粉末を準備し、金属元素の含有割合が上述の範囲内となるように、これらの酸化物元素を選択して秤量する。この秤量した酸化物粉末を混合装置によって混合し、混合粉末を得る。
得られた混合粉末を造粒し、ホットプレス等を用いて焼結して焼結体を得る。この焼結体を機械加工することで、本実施形態であるスパッタリングターゲットが製造される。
(積層膜10の製造方法)
次に、本実施形態である積層膜10の製造方法について説明する。
まず、Ag又はAg合金からなるスパッタリングターゲットを用いて、DC(直流)スパッタにより、基板21の上に金属膜11を成膜する。
金属膜11を成膜後、本実施形態であるスパッタリングターゲットを用いて、DC(直流)スパッタにより、金属膜11の上に酸化物膜12を成膜する。
以上のようにして、積層膜10が形成される。
次に、本実施形態である積層膜10の製造方法について説明する。
まず、Ag又はAg合金からなるスパッタリングターゲットを用いて、DC(直流)スパッタにより、基板21の上に金属膜11を成膜する。
金属膜11を成膜後、本実施形態であるスパッタリングターゲットを用いて、DC(直流)スパッタにより、金属膜11の上に酸化物膜12を成膜する。
以上のようにして、積層膜10が形成される。
以上のような構成とされた本実施形態であるスパッタリングターゲットにおいては、Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%以上とされるとともに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%以下とされているので、スパッタリングターゲットにおける導電性が確保され、DC(直流)スパッタによって酸化物膜12を成膜することが可能となる。よって、酸化物膜12の成膜速度が速くなり、積層膜10の生産効率を向上させることができる。
また、本実施形態であるスパッタリングターゲットによれば、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%以下、好ましくは5.0原子%以下とされているので、成膜された酸化物膜12の結晶性が増加することを抑制し、均一な酸化物膜12を成膜することができる。
さらに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上を合計で1.0原子%以上含有しているので、耐アルカリ性に優れた酸化物膜12を成膜することができる。
さらに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上を合計で1.0原子%以上含有しているので、耐アルカリ性に優れた酸化物膜12を成膜することができる。
また、本実施形態であるスパッタリングターゲットにおいて、Snを1.0原子%以上10.0原子%以下の範囲内で含む場合には、熱湿環境に対する耐性に優れ、かつ、耐アルカリ性に優れた酸化物膜12を成膜することができる。また、Snの含有量は10.0原子%以下とされているので、金属膜11と一括にエッチングすることが可能な酸化物膜12を成膜することができる。
また、本実施形態であるスパッタリングターゲットにおいては、結晶粒の平均粒径が20μm以下とされているので、DC(直流)スパッタ時における異常放電の発生を抑制でき、酸化物膜12の成膜を安定して行うことができる。
本実施形態である積層膜10においては、Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%以上とされるとともに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%以下とされているので、酸化物膜12における導電性を確保することができる。
また、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%以下、好ましくは5.0原子%以下とされているので、成膜された酸化物膜12の結晶性が増加することを抑制し、金属膜11との界面の均一性を確保でき、積層膜10の耐環境性を向上させることができる。
また、Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%以下、好ましくは5.0原子%以下とされているので、成膜された酸化物膜12の結晶性が増加することを抑制し、金属膜11との界面の均一性を確保でき、積層膜10の耐環境性を向上させることができる。
さらに、Y,La,Nd,Biのうちの少なくとも1種又は2種以上を合計で1.0原子%以上含有しているので、積層膜10の耐アルカリ性を向上させることができる。よって、エッチング処理後にマスキング部をアルカリ処理液で剥離する際に、積層膜10が変色等することを抑制できる。
また、酸化物膜12がエッチング性に優れているので、酸化物膜12と金属膜11とを一括してエッチング処理することができ、配線パターンを簡単に形成することが可能となる。
また、酸化物膜12がエッチング性に優れているので、酸化物膜12と金属膜11とを一括してエッチング処理することができ、配線パターンを簡単に形成することが可能となる。
さらに、本実施形態である積層膜10において、酸化物膜12が、Snを1.0原子%以上10.0原子%以下の範囲内で含む場合には、熱湿環境に対する耐性に優れ、かつ、耐アルカリ性に優れているとともに、金属膜11と酸化物膜12とを一括にエッチングすることが可能となる。
さらに、本実施形態である積層膜10においては、金属膜11におけるAgの含有量が80原子%以上とされているので、金属膜11の電気抵抗が小さくなり、積層膜10全体の導電性を確保することができ、微細パターンの配線膜として使用することができる。
また、金属膜11の膜厚Aが5nm以上とされているので、積層膜10としての導電性を確保できる。さらに、金属膜11の膜厚Aが500nm以下とされているので、金属膜11の表面が比較的平滑となり、酸化物膜12によって金属膜11を十分に保護することができる。
また、金属膜11の膜厚Aが5nm以上とされているので、積層膜10としての導電性を確保できる。さらに、金属膜11の膜厚Aが500nm以下とされているので、金属膜11の表面が比較的平滑となり、酸化物膜12によって金属膜11を十分に保護することができる。
また、本実施形態である積層膜10においては、酸化物膜12の膜厚Bが5nm以上とされているので、金属膜を十分に保護することができ、耐環境性を向上させることができる。さらに、酸化物膜12の膜厚Bが100nm以下とされているので、積層膜10全体のエッチング速度を確保することができ、配線パターンの形成を効率良く行うことができる。
以上、本願発明の実施形態について説明したが、本願発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、金属膜の片面に酸化物膜を成膜した構造を例に挙げて説明したが、これに限定されることはなく、金属膜の両面に酸化物を成膜したものであってもよい。具体的には、図2に示すように、金属膜111の一面側および他面側に、それぞれ酸化物膜112A,112Bを形成した積層膜110であってもよい。この場合、耐環境性をさらに向上させることができる。なお、酸化物膜112Aと酸化物膜112Bとは、互いに異なる組成の酸化物で構成してもよい。
さらに、金属膜と酸化物膜とを4層以上、任意の数だけ積層してもよい。
例えば、本実施形態では、金属膜の片面に酸化物膜を成膜した構造を例に挙げて説明したが、これに限定されることはなく、金属膜の両面に酸化物を成膜したものであってもよい。具体的には、図2に示すように、金属膜111の一面側および他面側に、それぞれ酸化物膜112A,112Bを形成した積層膜110であってもよい。この場合、耐環境性をさらに向上させることができる。なお、酸化物膜112Aと酸化物膜112Bとは、互いに異なる組成の酸化物で構成してもよい。
さらに、金属膜と酸化物膜とを4層以上、任意の数だけ積層してもよい。
また、本実施形態では、スパッタリングターゲットの結晶粒の平均粒径を20μm以下に規定したもので説明したが、これに限定されることはなく、スパッタ条件等によっては、スパッタリングターゲットの結晶粒の平均粒径が20μmを超えるものであってもよい。
さらに、本実施形態では、金属膜におけるAg含有量を80原子%以上に規定したもので説明したが、これに限定されることはなく、積層膜に対する要求特性によっては、金属膜におけるAg含有量は80原子%未満であってもよい。
さらに、本実施形態では、金属膜におけるAg含有量を80原子%以上に規定したもので説明したが、これに限定されることはなく、積層膜に対する要求特性によっては、金属膜におけるAg含有量は80原子%未満であってもよい。
また、本実施形態では、金属膜の厚さを5nm以上500nm以下、酸化物膜の厚さを5nm以上100nm以下に規定したものとして説明したが、これに限定されることはなく、積層膜に対する要求特性によっては、金属膜の厚さ及び酸化物膜の厚さが上述の範囲内から外れていてもよい。
以下に、本願発明の有効性を確認するために行った確認実験の結果について説明する。
(スパッタリングターゲット)
原料粉末として、酸化亜鉛(ZnO:純度99.9mass%)、酸化アルミニウム(Al2O3:純度99.9mass%)、酸化ガリウム(Ga2O3:純度99.9mass%)、酸化イットリウム(Y2O3純度:99.9mass%)、酸化ランタン(La2O3:純度99.99mass%)、酸化ネオジウム(Nd2O3:99.9mass%)、酸化ビスマス(Bi2O3:99.9mass%)、酸化スズ(SnO:99.9mass%)の粉末を準備し、金属元素の含有割合が表1、表2の範囲内となるように、これらの酸化物を選択して秤量した。
原料粉末として、酸化亜鉛(ZnO:純度99.9mass%)、酸化アルミニウム(Al2O3:純度99.9mass%)、酸化ガリウム(Ga2O3:純度99.9mass%)、酸化イットリウム(Y2O3純度:99.9mass%)、酸化ランタン(La2O3:純度99.99mass%)、酸化ネオジウム(Nd2O3:99.9mass%)、酸化ビスマス(Bi2O3:99.9mass%)、酸化スズ(SnO:99.9mass%)の粉末を準備し、金属元素の含有割合が表1、表2の範囲内となるように、これらの酸化物を選択して秤量した。
秤量した原料粉末を、質量比で原料粉末の3倍のジルコニアボールとともにポリ容器に装入し、ボールミル装置によって16時間湿式混合し、混合粉末を得た。このとき、溶媒としてアルコールを用いた。
得られた混合粉末を乾燥後に造粒し、保持温度800~1300℃、保持時間2~9時間、圧力350kgf/cm2の条件で真空雰囲気(5Pa以下)においてホットプレス(HP)を行い、酸化物焼結体を得た。
得られた酸化物焼結体を機械加工することにより、直径152.4mm×厚さ6mmとされた本発明例及び比較例のスパッタリングターゲットを製造した。なお、表1、表2に示すスパッタリングターゲットの組成は、スパッタリングターゲットから採取した測定試料を用いてICP法によって測定した。
得られた混合粉末を乾燥後に造粒し、保持温度800~1300℃、保持時間2~9時間、圧力350kgf/cm2の条件で真空雰囲気(5Pa以下)においてホットプレス(HP)を行い、酸化物焼結体を得た。
得られた酸化物焼結体を機械加工することにより、直径152.4mm×厚さ6mmとされた本発明例及び比較例のスパッタリングターゲットを製造した。なお、表1、表2に示すスパッタリングターゲットの組成は、スパッタリングターゲットから採取した測定試料を用いてICP法によって測定した。
本発明例及び比較例のスパッタリングターゲットの結晶粒径をSEMによる結晶解析(EBSD)によって測定した。なお、測定試料は、上記と同様の条件で焼結した直径50mmのサンプル片から採取し、測定領域は80μm×80μmとした。評価結果を表1、表2に示す。
また、本発明例及び比較例のスパッタリングターゲットを用いて、成膜試験を行った。
マグネトロンスパッタ装置に、はんだ付けした上述のスパッタリングターゲットを取り付け、1×10-4Paまで排気した後、Arガス圧0.5Pa、直流電力密度2.0W/cm2、ターゲット基板間距離60mmの条件で、DC(直流)スパッタを行い、DC(直流)スパッタの可否を確認した。また、スパッタ時の異常放回数を、MKSインスツルメンツ社製DC電源(型番:RPDG-50A)のアークカウント機能により、放電開始から30分間の発生回数を計測した。結果を表1、表2に示す。
マグネトロンスパッタ装置に、はんだ付けした上述のスパッタリングターゲットを取り付け、1×10-4Paまで排気した後、Arガス圧0.5Pa、直流電力密度2.0W/cm2、ターゲット基板間距離60mmの条件で、DC(直流)スパッタを行い、DC(直流)スパッタの可否を確認した。また、スパッタ時の異常放回数を、MKSインスツルメンツ社製DC電源(型番:RPDG-50A)のアークカウント機能により、放電開始から30分間の発生回数を計測した。結果を表1、表2に示す。
Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%未満とされた比較例1、3、17、19においては、DC(直流)スパッタによって成膜することができなかった。
また、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える比較例6、8、10、12、22、24、26、28においては、DC(直流)スパッタによって成膜することができなかった。
また、Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える比較例6、8、10、12、22、24、26、28においては、DC(直流)スパッタによって成膜することができなかった。
さらに、スパッタリングターゲットの結晶粒の平均粒径が20μm以下とされた本発明例1-11、13、15-33、35、37-39においては、結晶粒の平均粒径が20μmを超える本発明例12、14、34、36に比べて異常放電発生回数が低減されていることが確認された。
(酸化物膜の組成)
本発明例及び比較例のスパッタリングターゲットを用いて、Si基板上に1000mmの厚さで酸化物膜を形成した。なお、DC(直流)スパッタができなかったスパッタリングターゲットは、RF(高周波)スパッタによって酸化物膜を成膜した。
得られた酸化物膜をSi基板から剥がし、これをICP分析することで、酸化物膜の組成を測定した。評価結果を表3、表4に示す。
本発明例及び比較例のスパッタリングターゲットを用いて、Si基板上に1000mmの厚さで酸化物膜を形成した。なお、DC(直流)スパッタができなかったスパッタリングターゲットは、RF(高周波)スパッタによって酸化物膜を成膜した。
得られた酸化物膜をSi基板から剥がし、これをICP分析することで、酸化物膜の組成を測定した。評価結果を表3、表4に示す。
(金属膜の組成)
また、Ag及びAg合金からなるスパッタリングターゲットを準備し、Si基板上に1000mmの厚さで金属膜を形成した。得られた金属膜をSi基板から剥がし、これをICP分析することで、金属膜の組成を測定した。評価結果を表5に示す。
また、Ag及びAg合金からなるスパッタリングターゲットを準備し、Si基板上に1000mmの厚さで金属膜を形成した。得られた金属膜をSi基板から剥がし、これをICP分析することで、金属膜の組成を測定した。評価結果を表5に示す。
(積層膜)
ガラス基板(無アルカリガラス:コーニング社製EagleXG)の上に、表6、表9に示す構造の積層膜を形成した。なお、酸化物膜及び金属膜の厚みは、断面TEM観察によって確認した。なお、従来例1として、ITO(In2O3+10質量%SnO2)スパッタリングターゲットで成膜したITO膜を形成したもの、従来例2として、AZO(ZnO+1質量%Al2O3)スパッタリングターゲットで成膜したAZO膜を形成したものを準備した。
ガラス基板(無アルカリガラス:コーニング社製EagleXG)の上に、表6、表9に示す構造の積層膜を形成した。なお、酸化物膜及び金属膜の厚みは、断面TEM観察によって確認した。なお、従来例1として、ITO(In2O3+10質量%SnO2)スパッタリングターゲットで成膜したITO膜を形成したもの、従来例2として、AZO(ZnO+1質量%Al2O3)スパッタリングターゲットで成膜したAZO膜を形成したものを準備した。
ここで、酸化物膜の成膜条件は、Arガス圧0.6Pa、直流電力密度2.0W/cm2、ターゲット基板間距離60mmの条件として、スパッタガスに酸素を1~6体積%含有させた。なお、DC(直流)スパッタができない酸化物膜形成用スパッタリングターゲットを用いる場合には、RF(高周波)スパッタによって酸化物膜を成膜した。
金属膜の成膜条件は、Arガス圧0.6Pa、直流電力密度1.0W/cm2、ターゲット基板間距離60mmの条件とした。
金属膜の成膜条件は、Arガス圧0.6Pa、直流電力密度1.0W/cm2、ターゲット基板間距離60mmの条件とした。
得られた積層膜について、比抵抗、耐環境性、耐アルカリ性、エッチング性について以下のようにして評価した。
(比抵抗)
三菱化学製抵抗測定器ロレスタGPを用いて、四探針法を用いて積層膜の膜抵抗を測定した。そして、下記の式により比抵抗値を算出した。評価結果を表7、表10に示す。
(積層膜の比抵抗値)=(積層膜のシート抵抗)×(金属膜の膜厚)
三菱化学製抵抗測定器ロレスタGPを用いて、四探針法を用いて積層膜の膜抵抗を測定した。そして、下記の式により比抵抗値を算出した。評価結果を表7、表10に示す。
(積層膜の比抵抗値)=(積層膜のシート抵抗)×(金属膜の膜厚)
(耐アルカリ性)
積層膜を、40℃の5質量%NaOH水溶液中に10分間浸漬し、積層膜の外観の変化を確認した。評価結果を表7、表10に示す。また、NaOH水溶液浸漬後の積層膜の外観観察結果の一例を図3及び図4に示す。
また、積層膜を、40℃のレジスト剥離液(関東化学製KP-401AG)中に10分間浸漬し、積層膜の外観の変化を確認した。評価結果を表7、表10に示す。
積層膜を、40℃の5質量%NaOH水溶液中に10分間浸漬し、積層膜の外観の変化を確認した。評価結果を表7、表10に示す。また、NaOH水溶液浸漬後の積層膜の外観観察結果の一例を図3及び図4に示す。
また、積層膜を、40℃のレジスト剥離液(関東化学製KP-401AG)中に10分間浸漬し、積層膜の外観の変化を確認した。評価結果を表7、表10に示す。
(エッチング性)
積層膜を成膜した基板を40℃に加熱した関東化学製エッチング液SEA-2:リン酸・硝酸・酢酸に浸漬し、エッチングを行った。目視観察によって積層膜の溶解の有無を確認した。さらに、浸漬後の積層膜の抵抗値及び光学特性を測定することで、積層膜の溶解の有無を確認した。
浸漬後3分以内に溶解したものをA、10分以内に溶解したものをB、10分で溶解しなかったものをCと評価した。評価結果を表7、表10に示す。
積層膜を成膜した基板を40℃に加熱した関東化学製エッチング液SEA-2:リン酸・硝酸・酢酸に浸漬し、エッチングを行った。目視観察によって積層膜の溶解の有無を確認した。さらに、浸漬後の積層膜の抵抗値及び光学特性を測定することで、積層膜の溶解の有無を確認した。
浸漬後3分以内に溶解したものをA、10分以内に溶解したものをB、10分で溶解しなかったものをCと評価した。評価結果を表7、表10に示す。
(耐環境性)
積層膜を、温度85℃、湿度85%の雰囲気中に250時間放置する恒温恒湿試験を行い、恒温恒湿試験(85℃-85%)後の積層膜の比抵抗を上述のように測定した。そして、恒温恒湿試験(85℃-85%)前後における比抵抗の変化率を算出した。評価結果を表8、11に示す。
また、恒温恒湿試験(85℃-85%)後の積層膜の外観観察を目視で行い、変色や斑点の有無を確認した。評価結果を表8、11に示す。また、恒温恒湿試験(85℃-85%)後の積層膜の外観観察結果の一例を図5及び図6に示す。
積層膜を、温度85℃、湿度85%の雰囲気中に250時間放置する恒温恒湿試験を行い、恒温恒湿試験(85℃-85%)後の積層膜の比抵抗を上述のように測定した。そして、恒温恒湿試験(85℃-85%)前後における比抵抗の変化率を算出した。評価結果を表8、11に示す。
また、恒温恒湿試験(85℃-85%)後の積層膜の外観観察を目視で行い、変色や斑点の有無を確認した。評価結果を表8、11に示す。また、恒温恒湿試験(85℃-85%)後の積層膜の外観観察結果の一例を図5及び図6に示す。
さらに、積層膜を、温度60℃、湿度90%の雰囲気中に250時間放置する恒温恒湿試験を行い、恒温恒湿試験(60℃-90%)後の積層膜の比抵抗を上述のように測定した。そして、恒温恒湿試験(60℃-90%)前後における比抵抗の変化率を算出した。
評価結果を表10、11に示す。
また、恒温恒湿試験(60℃-90%)後の積層膜の外観観察を目視で行い、変色や斑点の有無を確認した。評価結果を表10、11に示す。また、恒温恒湿試験(60℃-90%)後の積層膜の外観観察結果の一例を図7及び図8に示す。
評価結果を表10、11に示す。
また、恒温恒湿試験(60℃-90%)後の積層膜の外観観察を目視で行い、変色や斑点の有無を確認した。評価結果を表10、11に示す。また、恒温恒湿試験(60℃-90%)後の積層膜の外観観察結果の一例を図7及び図8に示す。
Al,Gaのうちの少なくとも1種または2種の合計含有量が0.1原子%未満とされた比較例101、103、117、119においては、抵抗値が高すぎて測定できなかった。
Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%を超える比較例115、116、118、120においては、恒温恒湿試験(85℃-85%)および恒温恒湿試験(60℃-90%)後の比抵抗の変化率が大きく変色も認められており、耐環境性が不十分であった。
Al,Gaのうちの少なくとも1種または2種の合計含有量が15.0原子%を超える比較例115、116、118、120においては、恒温恒湿試験(85℃-85%)および恒温恒湿試験(60℃-90%)後の比抵抗の変化率が大きく変色も認められており、耐環境性が不十分であった。
Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が1.0原子%未満とされた比較例105、107、109、111、121、123、125、127においては、NaOH水溶液浸漬後およびレジスト剥離液浸漬後に変色が認められており、耐アルカリ性が不十分であった。
Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える比較例106、108、110、112、122、124、126、128においては、抵抗値が高すぎて測定できなかった。
Y,La,Nd,Biのうちの少なくとも1種又は2種以上の合計含有量が20.0原子%を超える比較例106、108、110、112、122、124、126、128においては、抵抗値が高すぎて測定できなかった。
Snの含有量が10.0原子%を超える比較例114においては、積層膜をエッチングすることができなかった。
ITO膜を成膜した従来例1では、積層膜をエッチングすることができなかった。
AZO膜を成膜した従来例2では、恒温恒湿試験でわずかに変色が認められ、NaOH水溶液に浸漬後に変色が認められており、耐環境性及び耐アルカリ性が不十分であった。
AZO膜を成膜した従来例2では、恒温恒湿試験でわずかに変色が認められ、NaOH水溶液に浸漬後に変色が認められており、耐環境性及び耐アルカリ性が不十分であった。
これに対して、本発明例の積層膜においては、比抵抗が低く、耐環境性、耐アルカリ性、エッチング性に優れていることが確認された。
特に、金属膜におけるAgの含有量が80原子%以上とされた本発明例101-131は、金属膜におけるAgの含有量が80原子%未満とされた本発明例132,133に比べて比抵抗値が小さくなっていることが確認された。
本発明例129のエッチング性が△であるのは、酸化物膜が厚く、その分エッチングに時間を要しているためである。
特に、金属膜におけるAgの含有量が80原子%以上とされた本発明例101-131は、金属膜におけるAgの含有量が80原子%未満とされた本発明例132,133に比べて比抵抗値が小さくなっていることが確認された。
本発明例129のエッチング性が△であるのは、酸化物膜が厚く、その分エッチングに時間を要しているためである。
また、Al,Gaのうちの少なくとも1種または2種の合計含有量が5.0原子%を超える本発明例134-137、143、145においては、60℃-90%の恒温恒湿試験後には変色が認められなかったが、85℃-85%の恒温恒湿試験後には変色が認められた。このため、耐環境性をさらに向上させるためには、Al,Gaのうちの少なくとも1種または2種の合計含有量を5.0原子%以下に制限することが好ましい。
さらに、Snを含有しない本発明例138-153及びSnの含有量が0.05原子%と少ない本発明例154においては、弱アルカリであるレジスト剥離液浸漬後には変色は認められなかったが、強アルカリであるNaOH水溶液浸漬後に変色が認められた。また、60℃-90%の恒温恒湿試験後には変色が認められなかったが、85℃-85%の恒温恒湿試験後には変色が認められた。このため、耐アルカリ性および耐環境性をさらに向上させるためには、Snを1.0原子%以上10.0原子%以下の範囲で含むことが好ましい。
より高品質な透明導電酸化物膜を、より効率良く成膜することができるスパッタリングターゲットを提供できる。また、この高品質な透明導電酸化物膜を含む積層膜を提供できる。これらによって、タッチパネルや太陽電池、有機ELデバイス等の電子デバイスの性能は向上し、また、その生産性も向上する。
10、110 積層膜
11、111 金属膜
12、112A、112B 酸化物膜
11、111 金属膜
12、112A、112B 酸化物膜
Claims (10)
- 金属成分元素の含有割合が、全金属成分元素量に対してAl,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物からなることを特徴とするスパッタリングターゲット。
- 全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下とされていることを特徴とする請求項1に記載のスパッタリングターゲット。
- 全金属成分元素量に対して、更にSnを1.0原子%以上10.0原子%以下の範囲内で含むことを特徴とする請求項1または請求項2に記載のスパッタリングターゲット。
- 結晶粒の平均粒径が20μm以下とされたことを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット。
- Ag又はAg合金からなる金属膜と、この金属膜の片面又は両面に形成された酸化物膜と、を備えた積層膜であって、
前記酸化物膜は、金属成分元素の含有割合が、全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上15.0原子%以下、Y,La,Nd,Biのうちの少なくとも1種又は2種以上が合計で1.0原子%以上20.0原子%以下、残部がZn及び不可避不純物とされた酸化物からなることを特徴とする積層膜。 - 全金属成分元素量に対して、Al,Gaのうちの少なくとも1種または2種が合計で0.1原子%以上5.0原子%以下とされていることを特徴とする請求項5に記載の積層膜。
- 全金属成分元素量に対して、更にSnを1.0原子%以上10.0原子%以下の範囲内で含むことを特徴とする請求項5または請求項6に記載の積層膜。
- 前記金属膜におけるAgの含有量が80原子%以上とされていることを特徴とする請求項5から請求項7のいずれか一項に記載の積層膜。
- 前記酸化物膜の膜厚が5nm以上100nm未満の範囲内とされていることを特徴とする請求項5から請求項8のいずれか一項に記載の積層膜。
- 前記金属膜の膜厚が5nm以上500nm以下の範囲内とされていることを特徴とする請求項5から請求項9のいずれか一項に記載の積層膜。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029801 | 2015-02-18 | ||
JP2015-029801 | 2015-02-18 | ||
JP2015248971A JP6677885B2 (ja) | 2015-02-18 | 2015-12-21 | スパッタリングターゲット、及び、積層膜 |
JP2015-248971 | 2015-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132825A1 true WO2016132825A1 (ja) | 2016-08-25 |
Family
ID=56688793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/052110 WO2016132825A1 (ja) | 2015-02-18 | 2016-01-26 | スパッタリングターゲット、及び、積層膜 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016132825A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099215A1 (ja) * | 2015-12-11 | 2017-06-15 | 旭硝子株式会社 | スパッタリングターゲット、積層体、複層体、および積層体の製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1088332A (ja) * | 1996-09-11 | 1998-04-07 | Asahi Glass Co Ltd | スパッタリングターゲットおよび透明導電膜とその製造方法 |
WO1999045163A1 (fr) * | 1998-03-05 | 1999-09-10 | Asahi Glass Company Ltd. | Cible de pulverisation cathodique, film conducteur transparent et son procede de production |
JPH11322332A (ja) * | 1998-05-21 | 1999-11-24 | Sumitomo Metal Mining Co Ltd | ZnO系焼結体およびその製造方法 |
JP2007250430A (ja) * | 2006-03-17 | 2007-09-27 | Sumitomo Metal Mining Co Ltd | 透明導電膜、およびこれを用いた透明導電性フィルム |
JP2008255477A (ja) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO蒸着材及びそれにより形成されたZnO膜 |
JP2009097089A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2009097088A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2009097090A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2014058415A (ja) * | 2012-09-14 | 2014-04-03 | Kobelco Kaken:Kk | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 |
-
2016
- 2016-01-26 WO PCT/JP2016/052110 patent/WO2016132825A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1088332A (ja) * | 1996-09-11 | 1998-04-07 | Asahi Glass Co Ltd | スパッタリングターゲットおよび透明導電膜とその製造方法 |
WO1999045163A1 (fr) * | 1998-03-05 | 1999-09-10 | Asahi Glass Company Ltd. | Cible de pulverisation cathodique, film conducteur transparent et son procede de production |
JPH11322332A (ja) * | 1998-05-21 | 1999-11-24 | Sumitomo Metal Mining Co Ltd | ZnO系焼結体およびその製造方法 |
JP2007250430A (ja) * | 2006-03-17 | 2007-09-27 | Sumitomo Metal Mining Co Ltd | 透明導電膜、およびこれを用いた透明導電性フィルム |
JP2008255477A (ja) * | 2007-03-09 | 2008-10-23 | Mitsubishi Materials Corp | ZnO蒸着材及びそれにより形成されたZnO膜 |
JP2009097089A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2009097088A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2009097090A (ja) * | 2007-09-27 | 2009-05-07 | Mitsubishi Materials Corp | ZnO蒸着材とその製造方法、およびそのZnO膜等 |
JP2014058415A (ja) * | 2012-09-14 | 2014-04-03 | Kobelco Kaken:Kk | 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099215A1 (ja) * | 2015-12-11 | 2017-06-15 | 旭硝子株式会社 | スパッタリングターゲット、積層体、複層体、および積層体の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101313327B1 (ko) | 산화물 소결체, 타겟, 이를 사용하여 제조된 투명 도전막 및 투명 도전성 기재 | |
JP4098345B2 (ja) | 酸化ガリウム−酸化亜鉛系スパッタリングターゲット、透明導電膜の形成方法及び透明導電膜 | |
JP6016083B2 (ja) | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 | |
WO2016024615A1 (ja) | 積層膜、積層配線膜及び積層配線膜の製造方法 | |
JP2017031503A (ja) | Ag合金膜とその製造方法、Ag合金スパッタリングターゲットおよび積層膜 | |
JP6278136B2 (ja) | Ag合金スパッタリングターゲット、Ag合金スパッタリングターゲットの製造方法およびAg合金膜の製造方法 | |
KR101777549B1 (ko) | 투명 도전 배선 및 투명 도전 배선의 제조 방법 | |
JP4779798B2 (ja) | 酸化物焼結体、ターゲット、およびそれを用いて得られる透明導電膜 | |
KR20210010451A (ko) | 적층막 및 Ag 합금 스퍼터링 타깃 | |
KR102189087B1 (ko) | 보호막 형성용 스퍼터링 타깃 및 적층 배선막 | |
WO2016111202A1 (ja) | 積層膜 | |
WO2016132825A1 (ja) | スパッタリングターゲット、及び、積層膜 | |
WO2016043183A1 (ja) | Ag合金スパッタリングターゲット、Ag合金スパッタリングターゲットの製造方法、Ag合金膜およびAg合金膜の製造方法 | |
JP6361957B2 (ja) | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 | |
JP6677885B2 (ja) | スパッタリングターゲット、及び、積層膜 | |
KR101350648B1 (ko) | 전자부품용 적층 배선막 및 피복층 형성용 스퍼터링 타겟재 | |
JP6850981B2 (ja) | 酸化物スパッタリングターゲット | |
JP2016130010A (ja) | 積層膜 | |
JP6686730B2 (ja) | 導電酸化物膜および導電積層膜 | |
WO2016132847A1 (ja) | Cu合金膜およびCu積層膜 | |
JP2012106880A (ja) | 酸化亜鉛系透明導電膜形成材料、その製造方法、それを用いたターゲット、および酸化亜鉛系透明導電膜の形成方法 | |
KR20210122791A (ko) | Ag 합금 스퍼터링 타깃, 및 Ag 합금막 | |
WO2015052927A1 (ja) | スパッタリングターゲット及びその製造方法 | |
WO2017018310A1 (ja) | Ag合金膜とその製造方法、Ag合金スパッタリングターゲットおよび積層膜 | |
WO2020162206A1 (ja) | Ag合金スパッタリングターゲット、及び、Ag合金膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16752214 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16752214 Country of ref document: EP Kind code of ref document: A1 |