WO2016132580A1 - Charging and discharging control device, mobile body, and electric power allocation amount determining method - Google Patents

Charging and discharging control device, mobile body, and electric power allocation amount determining method Download PDF

Info

Publication number
WO2016132580A1
WO2016132580A1 PCT/JP2015/076298 JP2015076298W WO2016132580A1 WO 2016132580 A1 WO2016132580 A1 WO 2016132580A1 JP 2015076298 W JP2015076298 W JP 2015076298W WO 2016132580 A1 WO2016132580 A1 WO 2016132580A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
power storage
power
rate
charging
Prior art date
Application number
PCT/JP2015/076298
Other languages
French (fr)
Japanese (ja)
Inventor
一幸 若杉
克明 森田
祐紀 古川
伸郎 吉岡
Original Assignee
三菱重工業株式会社
住友重機械搬送システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 住友重機械搬送システム株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580078063.1A priority Critical patent/CN107592953B/en
Publication of WO2016132580A1 publication Critical patent/WO2016132580A1/en
Priority to HK18103420.4A priority patent/HK1244109A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the present invention relates to a charge / discharge control device, a moving body, and a method for determining the amount of power sharing.
  • Batteries are relatively easy to increase in capacity and have excessive specifications for capacity, but output characteristics are not so high, and output performance is often a bottleneck in terms of design.
  • a lithium ion capacitor or an EDLC Electro Double-Layer Capacitor
  • it is relatively easy to increase the output and the output becomes excessive specifications, but conversely, the capacity performance often becomes a bottleneck. Therefore, if a high-capacity device such as a battery and a high-power device such as a capacitor can be used in combination, an optimal system can be configured even for the above-mentioned required specifications, reducing costs and accelerating investment recovery. Can be expected.
  • Patent Document 1 describes a power sharing method in which when a maximum output is requested from a load, the output from a high-capacity device is set to the maximum, and the shortage is compensated by the output from the high-power device. .
  • Patent Document 1 can maximize the characteristics of the device because the high-power device cannot be shared even when there is a margin in the charging rate of the high-power device that is resistant to repeated charging and discharging. Therefore, there is a problem that the system cannot be optimized.
  • the present invention provides a charge / discharge control device, a moving body, and a power sharing amount determination method capable of solving the above-described problems.
  • the charge / discharge control device is characterized in that the first power storage device that can be charged / discharged with respect to the load and the first power storage device that can be charged / discharged with the load.
  • a charge / discharge control device of a charge / discharge system comprising different second power storage devices, wherein a charge rate acquisition unit that acquires a charge rate of the second power storage device and the first charge rate based on the charge rate
  • a share rate setting unit for calculating a share rate of power based on a charge rate for the power storage device, and a command for generating a command value for power in charge / discharge of the first power storage device based on the share rate based on the charge rate A value generation unit.
  • the sharing rate setting unit is based on a difference between a predetermined target value of the charging rate of the second power storage device and the acquired charging rate of the second power storage device. A sharing rate based on the charging rate is calculated.
  • the charging rate acquisition unit acquires the charging rate of the first power storage device, and the sharing rate setting unit sets a predetermined charging rate of the first power storage device. Based on the difference between the target value of the first power storage device and the acquired charge rate of the first power storage device, and the difference between the target value of the charge rate of the second power storage device determined in advance and the charge rate of the acquired second power storage device. A sharing rate based on the charging rate is calculated.
  • the share rate setting unit calculates the difference between the previously stored target value of the charge rate of the first power storage device and the acquired charge rate of the first power storage device as the SOC. LIBDIF, and the difference between the predetermined charge rate of the second power storage device and the obtained charge rate of the second power storage device is SOC LICDIF, and a 0 and a 1 and a 2 and a 3 are When the constant is set, the sharing rate based on the charging rate is calculated by the following formula.
  • the charge / discharge control device further includes a temperature acquisition unit that acquires the temperatures of the first power storage device and the second power storage device
  • the sharing rate setting unit includes: The difference between the acquired temperature of the first power storage device and the predetermined target value of the temperature of the first power storage device and the temperature of the acquired second power storage device and the second predetermined value Based on the difference from the target value of the temperature of the power storage device, a power sharing rate based on the temperature for the first power storage device is calculated, and the command value generation unit is configured to calculate the power sharing rate based on the charging rate and the temperature.
  • the command value for the first power storage device is calculated on the basis of the weighted average of the power sharing rate based on.
  • the charge / discharge control device further includes a deterioration degree calculation unit that calculates the deterioration degree of the first power storage device and the second power storage device, and the sharing rate setting And a predetermined difference between the calculated degree of deterioration of the first power storage device and a predetermined target value of the degree of deterioration of the first power storage device, and the degree of deterioration of the acquired second power storage device.
  • the command value for the first power storage device is calculated based on a weighted average of the power sharing rate and the power sharing rate based on the degree of deterioration.
  • the charge / discharge control device includes a temperature acquisition unit that acquires temperatures of the first power storage device and the second power storage device, the first power storage device, and the first power storage device.
  • a deterioration degree calculating unit that calculates a deterioration degree of the second power storage device, wherein the sharing rate setting unit is configured to obtain the temperature of the acquired first power storage device and the predetermined temperature of the first power storage device.
  • the sharing rate setting unit is configured to obtain the temperature of the acquired first power storage device and the predetermined temperature of the first power storage device.
  • the difference between the share rate, the calculated deterioration degree of the first power storage device and the predetermined target value of the deterioration degree of the first power storage device, and the acquired deterioration degree of the second power storage device are determined in advance.
  • the first based on a difference from a target value of the degree of deterioration of the second power storage device
  • a power sharing rate based on the degree of deterioration of the power storage device is calculated, and the command value generation unit is configured to determine the power sharing rate based on the charging rate, the power sharing rate based on the temperature, and the power sharing rate based on the deterioration level.
  • the command value for the first power storage device is calculated based on the weighted average.
  • the characteristic of the first power storage device is higher than that of the first power storage device, and the characteristic of the second power storage device is The output is higher than that of the first power storage device.
  • the second power storage device has higher charge / discharge performance than the first power storage device.
  • a mobile body includes the charge / discharge control device according to any one of the above.
  • a method for determining the amount of electric power sharing includes a first power storage device that can be charged / discharged with a load, and the first power storage device that can be charged / discharged with a load.
  • a charging / discharging system comprising a second power storage device having different characteristics
  • the charge rate of the second power storage device is acquired, and based on the charge rate, power sharing based on the charge rate for the first power storage device A rate is calculated, and a command value of power in charging / discharging the first power storage device is generated based on a sharing rate based on the charging rate.
  • FIG. 1 shows an example of the charging / discharging control apparatus in 2nd embodiment of this invention. It is a figure explaining the parameter used for the process of the charging / discharging control apparatus in 2nd embodiment of this invention. It is a figure which shows the processing flow of the charging / discharging control apparatus in 2nd embodiment of this invention. It is a 1st figure explaining the conventional electric power sharing control in the charging / discharging system which used a high capacity
  • FIG. 1 is a schematic block diagram showing an example of the configuration of the charge / discharge system in the first embodiment of the present invention.
  • the charge / discharge system 1 includes a charging facility 110 and a moving body 170.
  • the moving body 170 includes a charge / discharge control device 100, a DC / DC converter 120, a lithium ion battery 130, a lithium ion capacitor 140, a load 150, and a DC bus 160.
  • Charging facility 110, DC / DC converter 120, lithium ion capacitor 140, and load 150 are each connected to DC bus 160.
  • the DC / DC converter 120 is also connected to the lithium ion battery 130.
  • the lithium ion battery 130 is referred to as a Li battery 130
  • the lithium ion capacitor 140 is referred to as a Li capacitor 140.
  • the charge / discharge system 1 includes a moving body 170 that operates using a rechargeable power storage device and a charging facility 110.
  • the moving body 170 is, for example, an RTG (Rubber Tired Gantry Crane) or a railway vehicle.
  • the load 150 is a device that consumes power.
  • As the load 150 for example, a motor and an inverter that operate an RTG crane, an auxiliary device such as a lighting device or a communication device, or a combination of these can be used as the load 150.
  • the charging facility 110 includes a terminal for supplying electric power to the outside, and supplies electric power to the Li battery 130 and the Li capacitor 140 via the DC bus 160.
  • the Li battery 130 and the Li capacitor 140 store the power supplied from the charging facility 110 and supply the power to the load 150.
  • Charging facility 110 may be one that constantly outputs power to DC bus 160 or one that outputs intermittently. For example, when the moving body 170 is a train, it is connected to the charging facility 110 and charged only when it is stopped at the station. For example, in the case of a battery-assisted RTG connected to the ground power supply facility (charging facility 110), it is possible to always charge.
  • the Li battery 130 charges and discharges with the DC bus 160.
  • the Li battery 130 is an example of a high capacity device.
  • the DC / DC converter 120 is provided between the Li battery 130 and the DC bus 160, and performs voltage conversion between the bus voltage and the battery voltage.
  • the Li capacitor 140 is directly connected to the DC bus 160 and charges and discharges with the DC bus 160.
  • the Li capacitor 140 is an example of a high output device.
  • the charge / discharge control apparatus 100 controls charge / discharge of the Li battery 130 and the Li capacitor 140.
  • the charge / discharge control device 100 controls the DC / DC converter 120 to control power sharing in charging / discharging between the Li battery 130 and the Li capacitor 140.
  • the DC bus 160 is connected to the load 150 and can receive power from the charging facility 110.
  • the Li battery 130 and the Li capacitor 140 are charged and discharged between the DC bus 160.
  • the Li capacitor 140 is superior in output characteristics to a storage battery such as the Li battery 130, for example, and can output larger power.
  • the Li battery 130 has excellent capacity characteristics compared to the Li capacitor 140.
  • an optimal system can be constructed
  • the Li battery 130 Since the peak output of the Li battery 130 may be small, the Li battery 130 having a large capacity in accordance with the peak power can be set to a smaller capacity.
  • the output of the DC / DC converter 120 can also be made small. Thereby, in the charging / discharging system 1, a manufacturing cost and an operation cost can be reduced.
  • the charge / discharge control apparatus 100 optimizes the charge / discharge system 1 by controlling power sharing so that the characteristics of the Li battery 130 and the Li capacitor 140 can be utilized.
  • the DC / DC converter is provided for the Li battery 130, but the Li capacitor 140 may also be provided with a DC / DC converter.
  • a DC / DC converter is connected to both the Li battery 130 and the Li capacitor 140. be able to.
  • FIG. 10A is a first diagram illustrating conventional power sharing control in a charge / discharge system using both a high-capacity device and a high-power device.
  • FIG. 10B is a second diagram illustrating conventional power sharing control in a charge / discharge system using both a high-capacity device and a high-power device.
  • FIG. 10A is a diagram illustrating a control method in which a threshold is provided for power required by a load, power below the threshold is shared by high capacity devices, and power exceeding the threshold is shared by high output devices.
  • the vertical axis indicates the power required by the load, and the horizontal axis indicates time.
  • a threshold 41 indicates a power threshold.
  • the output indicated by the output 42B is an output shared by the Li battery.
  • the output indicated by the output 42A is an output shared by the Li capacitor. Since the value of the second output 43 is equal to or less than the threshold value 41, the output 43 is shared by the Li battery.
  • this control method by limiting the output value of the Li battery and compensating for the deficiency with the Li capacitor, it is possible to compensate for the disadvantage of the Li battery in which output performance tends to become a bottleneck.
  • the sharing of the Li capacitor cannot be increased, so that the sharing of the device characteristics is not achieved and the system cannot be optimized. is there.
  • FIG. 10B is a diagram for explaining a control method in which the Li capacitor is used first and the Li battery is used when the charging rate decreases. Similar to FIG. 10A, the vertical axis indicates the power required by the load, and the horizontal axis indicates time. In the first output of FIG. 10B, the output indicated by the output 44A is an output shared by the Li capacitor. Here, it is assumed that the charging rate of the Li capacitor is reduced by the output of the output 44A. The output indicated by the output 44B and the second output 45 must be shared by the Li battery. In this control method, a Li capacitor that is resistant to repeated charging / discharging is preferentially used to control the characteristics of the high-power device.
  • FIG. 2 is a block diagram showing an example of the charge / discharge control apparatus 100 according to the first embodiment of the present invention.
  • the charge / discharge control device 100 includes a first power storage device (Li battery 130) that can be charged / discharged with a load, and a second power storage that can be charged / discharged with the load and has characteristics different from those of the first power storage device. It is a charging / discharging control apparatus of a charging / discharging system provided with an apparatus (Li capacitor 140). As shown in FIG.
  • the charge / discharge control device 100 includes at least a charging rate acquisition unit 11, a sharing rate setting unit 12, a command value generation unit 13, a power regeneration determination unit 14, and a storage unit 15.
  • the charge rate acquisition unit 11 acquires the charge rates of the Li battery 130 and the Li capacitor 140. Acquisition of a charging rate can be performed by, for example, measuring an open circuit voltage of the Li battery 130 and specifying a charging rate corresponding to the open circuit voltage. The same applies to the Li capacitor 140.
  • the sharing rate setting unit 12 Based on the charging rate acquired by the charging rate acquisition unit 11, the sharing rate setting unit 12 sets a “sharing rate based on the charging rate” that is a sharing rate of power in charging and discharging of the Li battery 130.
  • the command value generation unit 13 generates a power command value for charging / discharging the Li battery 130 based on the sharing rate based on the charging rate set by the sharing rate setting unit 12.
  • the power running regeneration determination unit 14 determines whether to perform a power running operation or a regenerative operation based on the required load from the load 150, the charging rate of the Li battery 130 and the Li capacitor 140, and the like.
  • the storage unit 15 stores various parameters used for setting the sharing rate based on the charging rate. In the following, the charging rate may be expressed as SOC (state of charge).
  • FIG. 3 is a diagram for explaining parameters used for processing of the charge / discharge control device according to the first embodiment of the present invention.
  • these parameters are referred to as a power running / regeneration flag.
  • SOC LIB is the SOC of the current Li battery 130.
  • SOC LIC is the SOC of the current Li capacitor 140.
  • the charging rate acquisition unit 11 acquires the SOC of the Li battery 130 and sets the value in “SOC LIB ”.
  • the charge rate acquisition unit 11 acquires the SOC of the Li capacitor 140 and sets the value in “SOC LIC ”.
  • “SOC LIB ” and “SOC LIC ” are represented by “50%”, for example. These parameters from “Powering” to “SOC LIC ” are variables acquired from the charging / discharging system 1 during operation.
  • “SOC LIBDT ” is a constant indicating the target SOC of the Li battery 130 during power running.
  • SOC LICDT is a constant indicating the target SOC of the Li capacitor 140 during power running.
  • SOC LIBCT is a constant indicating the target SOC of the Li battery 130 during regeneration.
  • SOC LICCT is a constant indicating the target SOC of the Li capacitor 140 during regeneration.
  • a 0 ” and “a 1 ” are coefficients for calculating a sharing coefficient ⁇ of the Li battery 130 described later. As the value of “a 0 ” is larger, the electric power sharing of the Li capacitor 140 can be increased.
  • SOC LIBDIF is a deviation between the SOC LIB that is the current charging rate of the Li battery 130 and the target SOC (SOC LIBDT or SOC LIBCT ).
  • SOC LICDIF is a deviation between the SOC LIC that is the current charging rate of the Li capacitor 140 and the target SOC (SOC LICDT or SOC LICCT ).
  • SOC LIBDIF SOC LIB ⁇ SOC LIBDT (1)
  • SOC LICDIF SOC LIC ⁇ SOC LICDT (2)
  • SOC LIBDIF SOC LIBCT ⁇ SOC LIB (3)
  • SOC LICDIF SOC LICCT ⁇ SOC LIC (4)
  • is a sharing coefficient of the Li battery 130 (first power storage device).
  • the sharing coefficient ⁇ is a value indicating the ratio of power shared by the Li battery 130 in charge / discharge.
  • the sharing rate setting unit 12 calculates the sharing coefficient ⁇ using the following equation using SOC LIBDIF and SOC LICDIF .
  • FIG. 4 is a diagram showing a processing flow of the charge / discharge control device in the first embodiment of the present invention.
  • the process in which the charge / discharge control apparatus 100 calculates the electric power sharing amount will be described with reference to FIG. First, it is assumed that there is an output request from the load 150.
  • the command value generation unit 13 acquires the required power from the load.
  • the charge rate acquisition unit 11 acquires the SOCs of the Li battery 130 and the Li capacitor 140 (step S11).
  • the charging rate acquisition unit 11 outputs the acquired SOC to the sharing rate setting unit 12.
  • the sharing ratio setting unit 12 sets the obtained SOC of the Li battery 130 to the SOC LIB and the obtained SOC of the Li capacitor 140 to the SOC LIC .
  • the power running regeneration determination unit 14 determines whether the power running operation or the regenerative operation, and sets the result in the power running / regeneration flag.
  • the sharing ratio setting unit 12 acquires the power running / regeneration flag set by the power running regeneration determination unit 14 (step S12).
  • the sharing ratio setting unit 12 calculates a deviation SOC LIBDIF from the target SOC for the Li battery 130 according to the above-described equation (1).
  • the sharing ratio setting unit 12 calculates a deviation SOC LICDIF from the target SOC with respect to the Li capacitor 140 according to the above equation (2).
  • the sharing ratio setting unit 12 reads the target of the Li battery 130 during regeneration from the storage unit 15. It reads the SOC LICCT a target SOC of the SOC LIBCT and Li capacitor 140 is SOC.
  • the sharing ratio setting unit 12 calculates a deviation SOC LIBDIF from the target SOC for the Li battery 130 using Equation (3).
  • the sharing ratio setting unit 12 calculates the SOC LICDIF for the Li capacitor 140 according to the equation (4).
  • the sharing ratio setting unit 12 calculates a sharing coefficient ⁇ (step S14). Specifically, the assignment ratio setting unit 12 reads the parameters a 0 and a 1 from the storage unit 15, and substitutes a 0 and a 1 and the SOC LIBDIF and SOC LICDIF calculated in step S13 into the equation (5). To determine the sharing coefficient ⁇ .
  • the sharing ratio setting unit 12 outputs the sharing coefficient ⁇ to the command value generation unit 13.
  • the command value generation unit 13 calculates a value obtained by multiplying the required power from the load 150 by ⁇ , and outputs the calculated value to the DC / DC converter 120 as a power command value (step S15).
  • the DC / DC converter 120 adjusts the voltage based on the power command value, and controls the power supplied to the DC bus 160.
  • power corresponding to the sharing coefficient ⁇ is consumed by the control of the DC / DC converter 120.
  • the Li capacitor 140 consumes power obtained by subtracting the power shared by the Li battery 130 from the required power. Thereby, the electric power sharing amount of the Li battery 130 and the Li capacitor 140 is controlled.
  • the command value generation unit 13 issues a charging command as to how many kilowatts the charging facility 110 is charged.
  • the command value generation unit 13 calculates the power charged by the Li battery 130 by multiplying the charging power commanded to the charging facility 110 and the sharing coefficient ⁇ , and outputs the power command value to the DC / DC converter 120.
  • the DC / DC converter 120 controls the voltage applied to the Li battery 130, and controls the Li battery 130 to be charged according to the sharing coefficient ⁇ and the rest to be charged to the Li capacitor 140.
  • FIG. 5 is a first diagram illustrating power sharing amount control in the first embodiment of the present invention.
  • the upper diagram of FIG. 5 shows an example of a change in the amount of sharing between the Li battery 130 and the Li capacitor 140 when the power sharing amount control according to the present embodiment is performed.
  • the vertical axis indicates the power required by the load, and the horizontal axis indicates time.
  • the region above the shared boundary 55 indicated by the power 51A indicates the power shared by the Li capacitor 140.
  • the area below the sharing boundary 55 indicated by the power 51B indicates the power shared by the Li battery 130.
  • the area indicated by the power 52A indicates the power shared by the Li capacitor 140
  • the area indicated by the power 52B indicates the power shared by the Li battery 130.
  • the upper diagram of FIG. 5 shows that at the first output of the first output, the Li capacitor 140 shares about half of the power required by the load, and the amount of the Li capacitor 140 gradually decreases with the output. It is shown that the operation is such that the Li battery 130 shares that amount.
  • FIG. 5 shows an example of changes in the SOC of the Li battery 130 and the Li capacitor 140.
  • the vertical axis indicates the SOC
  • the horizontal axis indicates the time.
  • a line 53 indicates a change in the SOC of the Li battery 130.
  • Line 54 shows the change in the SOC of the Li capacitor 140.
  • the deviation SOC LIBDIF from the target SOC for the Li battery 130 during power running is compared with the deviation SOC LICDIF from the target SOC for the Li capacitor 140. Since the Li capacitor 140 discharges more rapidly than the Li battery 130, the value of SOC LICDIF becomes smaller even during the first output. When this is applied to Equation (5) and ⁇ is obtained, it can be seen that a value larger than ⁇ at the start of output can be obtained. That is, since the share of the Li battery 130 increases according to the output, for example, a change in the share amount as shown in the upper diagram of FIG. 5 is obtained.
  • FIG. 6A is a second diagram illustrating power sharing control in the first embodiment of the present invention.
  • FIG. 6A is a diagram for explaining the influence of a 1 in Equation (5).
  • the vertical axis represents power required by the load, and the horizontal axis represents time.
  • the power 61A represents the power shared by the Li capacitor 140, and the power 61B represents the power shared by the Li battery 130.
  • Lines 62 and 63 show examples of shared boundary lines.
  • the sharing coefficient ⁇ is calculated so that the larger the value of SOC LIBDIF or SOC LICDIF , which is the deviation from the target SOC, is more shared.
  • the SOC LIC decreases, and when the difference from the SOC LICDT decreases, the value of the sharing coefficient ⁇ according to Equation (5) increases and the sharing of the Li battery 130 increases.
  • the sharing coefficient ⁇ increases more rapidly.
  • the sharing boundaries such as ⁇ becomes, for example, a line 62 as quickly to correct the deviation of the SOC LIBDIF and SOC LICDIF.
  • becomes a value that gently corrects the deviation between SOC LIBDIF and SOC LICDIF , and becomes a shared boundary line, for example, line 63. That is, by adjusting the value of a 1, if there is room in the SOC of Li capacitor 140 (when SOC LICDIF is large), then share the more power Li capacitor 140, is a margin in the SOC of Li battery 130 In some cases (when the SOC LIBDIF is large), more power can be shared by the Li battery 130.
  • FIG. 6B is a third diagram illustrating power sharing control in the first embodiment of the present invention.
  • FIG. 6B is a diagram illustrating control in a case where the shared power exceeds the threshold when the load sharing is determined by the above equation (5).
  • the vertical axis indicates the power required by the load
  • the horizontal axis indicates time.
  • the threshold 65 indicates the threshold of power shared by the Li battery 130.
  • the threshold 65 is a restriction provided to avoid a situation where the capacity of the Li battery 130 becomes insufficient when power sharing as indicated by the broken line 66 is performed as it is, for example.
  • This threshold value is recorded in the storage unit 15 in advance in association with the SOC, for example.
  • the sharing ratio setting unit 12 multiplies the calculated sharing coefficient ⁇ and the required load and compares it with a threshold value. If the multiplied value exceeds the threshold value, the sharing ratio setting unit 12 outputs a value obtained by dividing the threshold value by the required load to the command value generation unit 13 as a corrected sharing coefficient ⁇ . Thereby, the electric power shared by the Li battery 130 can be within the threshold value, and the rest can be shared by the Li capacitor 140.
  • a 0 and a 1 when there is a margin in the Li capacitor 140 having a strong characteristic against repeated charge and discharge, more power can be shared by the Li capacitor 140. Therefore, it is possible to make power sharing in consideration of device characteristics and states.
  • a 0 and a 1 it is possible to prevent the Li capacitor 140 from being completely charged, and thus it is not necessary to allow the Li battery 130 to share all of the information, and the system cost can be reduced.
  • the efficiency of charging / discharging can be optimized by adjusting a 0 and a 1 according to the characteristics of the load.
  • a high capacity device (Li battery 130) is used as an example of the first power storage device, and a high output device (Li capacitor 140) is used as an example of the second power storage device.
  • the first power storage device and the second power storage device are both Li batteries, a relatively high capacity Li battery is associated with the first power storage device, and a relatively high output Li battery is It is good also as a structure matched with an electrical storage apparatus. High-capacity, high-power storage devices that are vulnerable to repeated charging / discharging are associated with the first power storage device, and relatively low-capacity, low-power storage devices that are resistant to repeated charging / discharging are associated with the second power storage device. Also good.
  • a power storage device having a long time required for charging may be associated with the first power storage device, and a power storage device having a short time required for charging may be associated with the second power storage device.
  • an electricity storage device that is resistant to repeated charging and discharging or an electricity storage device that takes a short time to charge is referred to as having high charge / discharge performance in this specification.
  • Equation (5) the value of SOC LIBDIF is a constant, and the power sharing is set based on the value of SOC LICDIF .
  • Formula (5) can be further generalized to the following formula in which an offset value is added to SOC LICDIF and SOC LIBDIF . Note that a 2 and a 3 are constants.
  • a charge / discharge control apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
  • power sharing is set in consideration of temperature and the degree of device degradation.
  • the characteristics of the Li battery 130 and the Li capacitor 140 change depending on the temperature and the degree of deterioration. Therefore, in this embodiment, power sharing is set using these parameters in addition to the SOC of the first embodiment.
  • the power sharing amount is determined by giving weights in consideration of the time constant and the degree of influence. For example, the SOC changes every second and has a large influence. Temperature varies with time and has a moderate impact. The degree of deterioration changes on a monthly basis, and the degree of influence is the lowest.
  • FIG. 7 is a block diagram showing an example of the charge / discharge control apparatus in the second embodiment of the present invention.
  • the charge / discharge control device 100 includes a temperature acquisition unit 16 and a deterioration degree calculation unit 17.
  • the load factor setting unit 12a of the present embodiment calculates a sharing coefficient ⁇ based on the temperature and a sharing coefficient ⁇ based on the temperature based on the degree of deterioration, in addition to the sharing coefficient ⁇ based on the SOC.
  • the command value generation unit 13a of the present embodiment calculates a weighted average of the sharing coefficients ⁇ , ⁇ , and ⁇ , and generates a power command value based on the calculated weighted average.
  • Other configurations are the same as those of the first embodiment.
  • the temperature acquisition unit 16 acquires the temperatures of the Li battery 130 and the Li capacitor 140.
  • the temperature acquisition unit 16 acquires a temperature measured from a temperature sensor provided in each device.
  • the deterioration degree calculation unit 17 acquires the deterioration degrees of the Li battery 130 and the Li capacitor 140.
  • the degree of deterioration may be calculated based on the degree of decrease in capacitance by calculating the capacitance from the change in voltage and current per unit time during charging and discharging.
  • the degree of deterioration may be calculated based on the total number of times of charge / discharge and the usage time.
  • the load factor setting unit 12a calculates the sharing coefficient ⁇ based on the temperature using the following equation.
  • is a sharing coefficient based on the temperature for the Li battery 130 (first power storage device).
  • T LIBDIF is the absolute value of the deviation between the temperature of the Li battery 130 and the target temperature of the Li battery 130.
  • T LICDIF is the absolute value of the deviation between the temperature of the Li capacitor 140 and the target temperature of the Li capacitor 140.
  • the load factor setting unit 12a calculates a sharing coefficient ⁇ based on the degree of deterioration using the following equation.
  • is a sharing coefficient based on the degree of deterioration with respect to the Li battery 130 (first power storage device).
  • D LIBDIF is an absolute value of a deviation between the deterioration degree of the Li battery 130 and the target deterioration degree of the Li battery 130.
  • D LICDIF is an absolute value of a deviation between the deterioration degree of the Li capacitor 140 and the target deterioration degree of the Li capacitor 140. Note that there is no distinction between powering and regeneration in the calculation of the sharing coefficient ⁇ based on the temperature and the calculation of the sharing coefficient ⁇ based on the deterioration degree. a 0 and a 1 are the same as those in the first embodiment.
  • FIG. 8 is a diagram for explaining parameters used for processing of the charge / discharge control device according to the second embodiment of the present invention.
  • the parameter “P LS ” is the power required by the load.
  • P LS is a value obtained by subtracting the power shared by the power supply facility from the power required by the load.
  • W SOC is a weight for the sharing coefficient ⁇ based on the SOC.
  • W T is a weight for the sharing coefficient ⁇ based on temperature.
  • W D is a weight for the sharing coefficient ⁇ based on the degree of deterioration.
  • W SOC is the largest value. Since the effect of the temperature moderate, the size of the W T is moderate. Since the lowest influence of the deterioration degree, the value of W D is a smallest value.
  • is a shared coefficient based on the SOC.
  • is a sharing coefficient based on temperature.
  • is a sharing coefficient based on the degree of deterioration. The calculation method of ⁇ , ⁇ , and ⁇ is as described above. These parameters are variables.
  • T LIB is a target temperature of the Li battery 130.
  • T LIC is a target temperature of the Li capacitor 140.
  • D LIB is the target deterioration level of the Li battery 130.
  • D LIC is the target deterioration degree of the Li capacitor 140.
  • FIG. 9 is a diagram showing a processing flow of the charge / discharge control apparatus in the second embodiment of the present invention.
  • the process of calculating the power sharing amount according to the present embodiment will be described with reference to FIG.
  • the command value generation unit 13 acquires the required power (P LS ) from the load.
  • the charging rate acquisition unit 11 acquires the SOCs of the Li battery 130 and the Li capacitor 140, and the load factor setting unit 12a calculates a sharing coefficient ⁇ based on the SOC (step S21).
  • the temperature acquisition unit 16 acquires the temperatures of the Li battery 130 and the Li capacitor 140.
  • the temperature acquisition unit 16 outputs the acquired temperature to the load factor setting unit 12a.
  • the load factor setting unit 12a reads T LIB from the storage unit 15 and calculates the absolute value T LIBDIF of the deviation between the acquired temperature of the Li battery 130 and T LIB .
  • the load factor setting unit 12a reads T LIC from the storage unit 15 and calculates the absolute value T LICDIF of the deviation between the acquired temperature of the Li capacitor 140 and T LIC .
  • the load factor setting unit 12a calculates the sharing coefficient ⁇ based on the temperature according to the equation (7) (step S22).
  • the deterioration degree calculation unit 17 calculates the deterioration degrees of the Li battery 130 and the Li capacitor 140.
  • the deterioration degree calculation unit 17 outputs the calculated deterioration degree to the load factor setting unit 12a.
  • the load factor setting unit 12a reads D LIB from the storage unit 15 and calculates an absolute value D LIBDIF of the obtained deterioration degree of the Li battery 130 and the deviation of D LIB .
  • the load factor setting unit 12a reads the D LIC from the storage unit 15 and calculates the absolute value D LICDIF of the obtained deterioration degree of the Li capacitor 140 and the deviation of the D LIC .
  • the load factor setting unit 12a calculates the sharing coefficient ⁇ based on the degree of deterioration using the equation (8) (step S23).
  • the load factor setting unit 12 a outputs the calculated ⁇ , ⁇ , ⁇ to the command value generation unit 13.
  • the command value generation unit 13 controls the DC / DC converter 120 with the calculated power command value P DCDC .
  • the present embodiment in addition to the first embodiment, it is possible to share in consideration of the state of temperature / deterioration, and it is possible to extend the life of the device. It is preferable to calculate the power sharing in consideration of the effects of temperature and deterioration, but the power sharing may be controlled based only on the SOC and temperature, or the power sharing may be controlled based only on the SOC and the deterioration. You may control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

This charging and discharging control device is a charging and discharging control device of a charging and discharging system provided with a first electricity storage device capable of effecting charging and discharging with a load, and a second electricity storage device which is capable of effecting charging and discharging with a load, and which has different characteristics from the first electricity storage device, wherein the charging and discharging control device is provided with: a charging rate acquiring unit which acquires a charging rate of the second electricity storage device; an allocation ratio setting unit which calculates, on the basis of the charging rate, an electric power allocation ratio based on the charging rate with respect to the first electricity storage device; and a command value generating unit which, on the basis of the allocation ratio based on the charging rate, generates an electric power command value for charging and discharging with respect to the first electricity storage device.

Description

充放電制御装置、移動体及び電力分担量決定方法Charging / discharging control device, moving body, and method for determining power sharing amount
 本発明は、充放電制御装置、移動体及び電力分担量決定方法に関する。
 本願は、2015年2月18日に、日本に出願された特願2015-029728号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a charge / discharge control device, a moving body, and a method for determining the amount of power sharing.
This application claims priority based on Japanese Patent Application No. 2015-029728 filed in Japan on February 18, 2015, the contents of which are incorporated herein by reference.
 環境対策や燃費の向上によるライフサイクルコスト(LCC:Life Cycle Cost)向上の為、バッテリ等を利用し回生電力の再利用を可能とした機器の製品化が進んでいる。例えば、バッテリを搭載し、回生電力を当該バッテリへ蓄えて系統への負荷を低減できるケーブルリール式バッテリアシストRTG(Rubber Tired Gantry Crane)なども存在する。
 しかしながら、バッテリは、ガソリン等を燃料とする発電機に比べてコストが高く、また寿命が数年程度と短いため、初期投資を回収するのが容易でない。
 バッテリを用いたシステムの投資回収が難しい理由として、要求仕様が挙げられる。例えば、クレーンに要求される出力性能は、300kWで10秒、容量性能で10kWhといった値であり、高出力と高容量の両方が要求される。
In order to improve Life Cycle Cost (LCC) by improving environmental measures and fuel efficiency, commercialization of equipment that can recycle regenerative power using a battery or the like is progressing. For example, there is a cable reel type battery assist RTG (Rubber Tired Gantry Crane) that is equipped with a battery and can store regenerative power in the battery to reduce the load on the system.
However, since the battery is more expensive than a generator using gasoline or the like as a fuel and has a short life span of several years, it is not easy to recover the initial investment.
The reason why it is difficult to recover the investment of a system using a battery is a required specification. For example, the output performance required for a crane is a value of 10 seconds at 300 kW and 10 kWh in capacity performance, and both high output and high capacity are required.
 バッテリは、高容量化が比較的容易で、容量については過剰スペックとなるが、出力特性がそれほど高くなく、設計に関して出力性能がボトルネックとなる場合が多い。一方、リチウムイオンキャパシタやEDLC(Electric Double-Layer Capacitor)を使用する場合、高出力化は比較的容易で、出力については過剰スペックとなるが、逆に容量性能がボトルネックとなる場合が多い。
 従って、バッテリなどの高容量デバイスとキャパシタなどの高出力デバイスを併用することができれば、上記のような要求仕様に対しても最適なシステムを構成することができ、コスト削減、投資回収の早期化が期待できる。
 高容量デバイスと高出力デバイスを併用して負荷に給電をする場合、システムを最適化し、価格を低減するためには、高容量デバイスと高出力デバイスにどのように電力の分担を割り振るかが重要となる。例えば、特許文献1には、負荷から最大出力が要求されると、高容量デバイスからの出力を最大に設定し、足りない分を高出力デバイスからの出力で補う電力の分担方法について記載がある。
Batteries are relatively easy to increase in capacity and have excessive specifications for capacity, but output characteristics are not so high, and output performance is often a bottleneck in terms of design. On the other hand, when a lithium ion capacitor or an EDLC (Electric Double-Layer Capacitor) is used, it is relatively easy to increase the output and the output becomes excessive specifications, but conversely, the capacity performance often becomes a bottleneck.
Therefore, if a high-capacity device such as a battery and a high-power device such as a capacitor can be used in combination, an optimal system can be configured even for the above-mentioned required specifications, reducing costs and accelerating investment recovery. Can be expected.
When using a high-capacity device and a high-power device together to power a load, it is important to allocate power sharing between the high-capacity device and the high-power device in order to optimize the system and reduce the price. It becomes. For example, Patent Document 1 describes a power sharing method in which when a maximum output is requested from a load, the output from a high-capacity device is set to the maximum, and the shortage is compensated by the output from the high-power device. .
特開2013-059223号公報JP 2013-059223 A
 しかし、特許文献1に記載の方法は、繰り返しの充放電に強い高出力デバイスの充電率に余裕がある場合でも高出力デバイスの分担を大きくできないため、デバイスの特性を最大限利用することができず、システムを最適化できないという問題がある。 However, the method described in Patent Document 1 can maximize the characteristics of the device because the high-power device cannot be shared even when there is a margin in the charging rate of the high-power device that is resistant to repeated charging and discharging. Therefore, there is a problem that the system cannot be optimized.
 本発明は、上述の課題を解決することのできる充放電制御装置、移動体及び電力分担量決定方法を提供する。 The present invention provides a charge / discharge control device, a moving body, and a power sharing amount determination method capable of solving the above-described problems.
 本発明の第1の態様によれば、充放電制御装置は、負荷との間で充放電可能な第一の蓄電装置と、負荷との間で充放電可能で前記第一の蓄電装置と特性が異なる第二の蓄電装置とを備える充放電システムの充放電制御装置であって、前記第二の蓄電装置の充電率を取得する充電率取得部と、前記充電率に基づいて、前記第一の蓄電装置に対する充電率に基づく電力の分担率を算出する分担率設定部と、前記充電率に基づく分担率に基づいて、前記第一の蓄電装置に対する充放電における電力の指令値を生成する指令値生成部と、を備える。 According to the first aspect of the present invention, the charge / discharge control device is characterized in that the first power storage device that can be charged / discharged with respect to the load and the first power storage device that can be charged / discharged with the load. A charge / discharge control device of a charge / discharge system comprising different second power storage devices, wherein a charge rate acquisition unit that acquires a charge rate of the second power storage device and the first charge rate based on the charge rate A share rate setting unit for calculating a share rate of power based on a charge rate for the power storage device, and a command for generating a command value for power in charge / discharge of the first power storage device based on the share rate based on the charge rate A value generation unit.
 本発明の第2の態様によれば、前記分担率設定部は、予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差に基づいて前記充電率に基づく分担率を算出する。 According to the second aspect of the present invention, the sharing rate setting unit is based on a difference between a predetermined target value of the charging rate of the second power storage device and the acquired charging rate of the second power storage device. A sharing rate based on the charging rate is calculated.
 本発明の第3の態様によれば、前記充電率取得部は、前記第一の蓄電装置の充電率を取得し、前記分担率設定部は、予め定められた第一の蓄電装置の充電率の目標値と前記取得した第一の蓄電装置の充電率の差及び予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差に基づいて前記充電率に基づく分担率を算出する。 According to the third aspect of the present invention, the charging rate acquisition unit acquires the charging rate of the first power storage device, and the sharing rate setting unit sets a predetermined charging rate of the first power storage device. Based on the difference between the target value of the first power storage device and the acquired charge rate of the first power storage device, and the difference between the target value of the charge rate of the second power storage device determined in advance and the charge rate of the acquired second power storage device. A sharing rate based on the charging rate is calculated.
 本発明の第4の態様によれば、前記分担率設定部は、前記予め記憶された第一の蓄電装置の充電率の目標値と前記取得した第一の蓄電装置の充電率の差をSOCLIBDIFとし、前記予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差をSOCLICDIFとし、a及びa及びa及びaを定数としたときに以下の式により、前記充電率に基づく分担率を算出する。
Figure JPOXMLDOC01-appb-M000002
According to the fourth aspect of the present invention, the share rate setting unit calculates the difference between the previously stored target value of the charge rate of the first power storage device and the acquired charge rate of the first power storage device as the SOC. LIBDIF, and the difference between the predetermined charge rate of the second power storage device and the obtained charge rate of the second power storage device is SOC LICDIF, and a 0 and a 1 and a 2 and a 3 are When the constant is set, the sharing rate based on the charging rate is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000002
 本発明の第5の態様によれば、前記充放電制御装置は、前記第一の蓄電装置及び前記第二の蓄電装置の温度を取得する温度取得部、を更に備え、前記分担率設定部は、前記取得した第一の蓄電装置の温度と予め定められた前記第一の蓄電装置の温度の目標値との差及び前記取得した第二の蓄電装置の温度と予め定められた前記第二の蓄電装置の温度の目標値との差に基づいて前記第一の蓄電装置に対する温度に基づく電力の分担率を算出し、前記指令値生成部は、前記充電率に基づく電力の分担率と前記温度に基づく電力の分担率の重み付き平均に基づいて第一の蓄電装置に対する前記指令値を算出する。 According to a fifth aspect of the present invention, the charge / discharge control device further includes a temperature acquisition unit that acquires the temperatures of the first power storage device and the second power storage device, and the sharing rate setting unit includes: The difference between the acquired temperature of the first power storage device and the predetermined target value of the temperature of the first power storage device and the temperature of the acquired second power storage device and the second predetermined value Based on the difference from the target value of the temperature of the power storage device, a power sharing rate based on the temperature for the first power storage device is calculated, and the command value generation unit is configured to calculate the power sharing rate based on the charging rate and the temperature. The command value for the first power storage device is calculated on the basis of the weighted average of the power sharing rate based on.
 本発明の第6の態様によれば、前記充放電制御装置は、前記第一の蓄電装置及び前記第二の蓄電装置の劣化度を算出する劣化度算出部、を更に備え、前記分担率設定部は、前記算出した第一の蓄電装置の劣化度と予め定められた前記第一の蓄電装置の劣化度の目標値との差及び前記取得した第二の蓄電装置の劣化度と予め定められた前記第二の蓄電装置の劣化度の目標値との差に基づいて前記第一の蓄電装置に対する劣化度に基づく電力の分担率を算出し、前記指令値生成部は、前記充電率に基づく電力の分担率と前記劣化度に基づく電力の分担率の重み付き平均に基づいて第一の蓄電装置に対する前記指令値を算出する。 According to a sixth aspect of the present invention, the charge / discharge control device further includes a deterioration degree calculation unit that calculates the deterioration degree of the first power storage device and the second power storage device, and the sharing rate setting And a predetermined difference between the calculated degree of deterioration of the first power storage device and a predetermined target value of the degree of deterioration of the first power storage device, and the degree of deterioration of the acquired second power storage device. And calculating a power sharing rate based on the degree of deterioration of the first power storage device based on a difference from a target value of the degree of deterioration of the second power storage device, and the command value generation unit is based on the charge rate The command value for the first power storage device is calculated based on a weighted average of the power sharing rate and the power sharing rate based on the degree of deterioration.
 本発明の第7の態様によれば、前記充放電制御装置は、前記第一の蓄電装置及び前記第二の蓄電装置の温度を取得する温度取得部と、前記第一の蓄電装置及び前記第二の蓄電装置の劣化度を算出する劣化度算出部と、を更に備え、前記分担率設定部は、前記取得した第一の蓄電装置の温度と予め定められた前記第一の蓄電装置の温度の目標値との差及び前記取得した第二の蓄電装置の温度と予め定められた前記第二の蓄電装置の温度の目標値との差に基づく前記第一の蓄電装置に対する温度に基づく電力の分担率と、前記算出した第一の蓄電装置の劣化度と予め定められた前記第一の蓄電装置の劣化度の目標値との差及び前記取得した第二の蓄電装置の劣化度と予め定められた前記第二の蓄電装置の劣化度の目標値との差に基づく前記第一の蓄電装置に対する劣化度に基づく電力の分担率を算出し、前記指令値生成部は、前記充電率に基づく電力の分担率と前記温度に基づく電力の分担率と前記劣化度に基づく電力の分担率の重み付き平均に基づいて前記第一の蓄電装置に対する前記指令値を算出する。 According to a seventh aspect of the present invention, the charge / discharge control device includes a temperature acquisition unit that acquires temperatures of the first power storage device and the second power storage device, the first power storage device, and the first power storage device. A deterioration degree calculating unit that calculates a deterioration degree of the second power storage device, wherein the sharing rate setting unit is configured to obtain the temperature of the acquired first power storage device and the predetermined temperature of the first power storage device. Of the electric power based on the temperature of the first power storage device based on the difference between the target value and the difference between the acquired temperature of the second power storage device and the predetermined target value of the temperature of the second power storage device. The difference between the share rate, the calculated deterioration degree of the first power storage device and the predetermined target value of the deterioration degree of the first power storage device, and the acquired deterioration degree of the second power storage device are determined in advance. The first based on a difference from a target value of the degree of deterioration of the second power storage device A power sharing rate based on the degree of deterioration of the power storage device is calculated, and the command value generation unit is configured to determine the power sharing rate based on the charging rate, the power sharing rate based on the temperature, and the power sharing rate based on the deterioration level. The command value for the first power storage device is calculated based on the weighted average.
 本発明の第8の態様によれば、前記充放電制御装置では、前記第一の蓄電装置の特性は、前記第一の蓄電装置に比べ高容量であり、前記第二の蓄電装置の特性は、前記第一の蓄電装置に比べ高出力である。 According to an eighth aspect of the present invention, in the charge / discharge control device, the characteristic of the first power storage device is higher than that of the first power storage device, and the characteristic of the second power storage device is The output is higher than that of the first power storage device.
 本発明の第9の態様によれば、前記充放電制御装置では、前記第二の蓄電装置の特性は、前記第一の蓄電装置に比べ充放電性能が高い。 According to the ninth aspect of the present invention, in the charge / discharge control device, the second power storage device has higher charge / discharge performance than the first power storage device.
 本発明の第10の態様によれば、移動体は、上述の何れか一つに記載の充放電制御装置、を備える。 According to a tenth aspect of the present invention, a mobile body includes the charge / discharge control device according to any one of the above.
 本発明の第11の態様によれば、電力分担量決定方法は、負荷との間で充放電可能な第一の蓄電装置と、負荷との間で充放電可能で前記第一の蓄電装置と特性が異なる第二の蓄電装置とを備える充放電システムにおいて、前記第二の蓄電装置の充電率を取得し、前記充電率に基づいて、前記第一の蓄電装置に対する充電率に基づく電力の分担率を算出し、前記充電率に基づく分担率に基づいて、前記第一の蓄電装置に対する充放電における電力の指令値を生成する。 According to an eleventh aspect of the present invention, a method for determining the amount of electric power sharing includes a first power storage device that can be charged / discharged with a load, and the first power storage device that can be charged / discharged with a load. In a charging / discharging system comprising a second power storage device having different characteristics, the charge rate of the second power storage device is acquired, and based on the charge rate, power sharing based on the charge rate for the first power storage device A rate is calculated, and a command value of power in charging / discharging the first power storage device is generated based on a sharing rate based on the charging rate.
 上記した充放電制御装置、移動体及び電力分担量決定方法によれば、特性の異なる蓄電装置を備えた充放電システムにおいて、それぞれの蓄電装置の特性を生かした最適なシステムとすることができる。 According to the charge / discharge control device, the moving body, and the power sharing amount determination method described above, in a charge / discharge system including power storage devices having different characteristics, an optimum system can be obtained that takes advantage of the characteristics of each power storage device.
本発明の第一実施形態における充放電システムの構成の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of a structure of the charging / discharging system in 1st embodiment of this invention. 本発明の第一実施形態における充放電制御装置の一例を示すブロック図である。It is a block diagram which shows an example of the charging / discharging control apparatus in 1st embodiment of this invention. 本発明の第一実施形態における充放電制御装置の処理に用いるパラメータを説明する図である。It is a figure explaining the parameter used for the process of the charging / discharging control apparatus in 1st embodiment of this invention. 本発明の第一実施形態における充放電制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the charging / discharging control apparatus in 1st embodiment of this invention. 本発明の第一実施形態における電力分担制御を説明する第一の図である。It is a 1st figure explaining the electric power sharing control in 1st embodiment of this invention. 本発明の第一実施形態における電力分担制御を説明する第二の図である。It is a 2nd figure explaining the electric power sharing control in 1st embodiment of this invention. 本発明の第一実施形態における電力分担制御を説明する第三の図である。It is a 3rd figure explaining the electric power sharing control in 1st embodiment of this invention. 本発明の第二実施形態における充放電制御装置の一例を示すブロック図である。It is a block diagram which shows an example of the charging / discharging control apparatus in 2nd embodiment of this invention. 本発明の第二実施形態における充放電制御装置の処理に用いるパラメータを説明する図である。It is a figure explaining the parameter used for the process of the charging / discharging control apparatus in 2nd embodiment of this invention. 本発明の第二実施形態における充放電制御装置の処理フローを示す図である。It is a figure which shows the processing flow of the charging / discharging control apparatus in 2nd embodiment of this invention. 高容量デバイスと高出力デバイスを併用した充放電システムにおける従来の電力分担制御を説明する第一の図である。It is a 1st figure explaining the conventional electric power sharing control in the charging / discharging system which used a high capacity | capacitance device and a high output device together. 高容量デバイスと高出力デバイスを併用した充放電システムにおける従来の電力分担制御を説明する第二の図である。It is a 2nd figure explaining the conventional electric power sharing control in the charging / discharging system which used a high capacity | capacitance device and a high output device together.
<第一実施形態>
 以下、本発明の一実施形態による充放電制御装置を図1~図6Bを参照して説明する。
 図1は、本発明の第一実施形態における充放電システムの構成の一例を示す概略ブロック図である。図1が示すように、充放電システム1は、充電設備110と、移動体170とを具備する。移動体170は、充放電制御装置100と、DC/DCコンバータ120と、リチウムイオンバッテリ130と、リチウムイオンキャパシタ140と、負荷150と、直流バス160とを具備する。充電設備110と、DC/DCコンバータ120と、リチウムイオンキャパシタ140と、負荷150とは、それぞれ直流バス160に接続している。DC/DCコンバータ120はリチウムイオンバッテリ130にも接続している。以下、リチウムイオンバッテリ130をLiバッテリ130、リチウムイオンキャパシタ140をLiキャパシタ140と記載する。
<First embodiment>
Hereinafter, a charge / discharge control apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6B.
FIG. 1 is a schematic block diagram showing an example of the configuration of the charge / discharge system in the first embodiment of the present invention. As shown in FIG. 1, the charge / discharge system 1 includes a charging facility 110 and a moving body 170. The moving body 170 includes a charge / discharge control device 100, a DC / DC converter 120, a lithium ion battery 130, a lithium ion capacitor 140, a load 150, and a DC bus 160. Charging facility 110, DC / DC converter 120, lithium ion capacitor 140, and load 150 are each connected to DC bus 160. The DC / DC converter 120 is also connected to the lithium ion battery 130. Hereinafter, the lithium ion battery 130 is referred to as a Li battery 130, and the lithium ion capacitor 140 is referred to as a Li capacitor 140.
 充放電システム1は、充電式の蓄電装置を用いて動作する移動体170と充電設備110を含んで構成される。移動体170とは、例えば、RTG(Rubber Tired Gantry Crane、タイヤ式トランスファークレーン)、または、鉄道車両などである。
 負荷150は、電力を消費する装置である。負荷150は、例えば、RTGのクレーンを動作させるモータ及びインバータ、または、照明装置や通信機器などの補機、あるいはこれらの組み合わせなど、電力を消費する様々な装置を負荷150とすることができる。
 充電設備110は、電力を外部に供給するための端子を備え、直流バス160を介してLiバッテリ130、Liキャパシタ140に電力を供給する。Liバッテリ130、Liキャパシタ140は、充電設備110から供給された電力を蓄え、負荷150に電力を供給する。充電設備110は、直流バス160へ電力を常時出力するものであってもよいし、断続的に出力するものであってもよい。例えば、移動体170が列車の場合、駅に停止しているときだけ充電設備110と接続し、充電を行う。例えば、地上給電設備(充電設備110)と接続されているバッテリアシストRTGなどの場合、常に充電することが可能である。
The charge / discharge system 1 includes a moving body 170 that operates using a rechargeable power storage device and a charging facility 110. The moving body 170 is, for example, an RTG (Rubber Tired Gantry Crane) or a railway vehicle.
The load 150 is a device that consumes power. As the load 150, for example, a motor and an inverter that operate an RTG crane, an auxiliary device such as a lighting device or a communication device, or a combination of these can be used as the load 150.
The charging facility 110 includes a terminal for supplying electric power to the outside, and supplies electric power to the Li battery 130 and the Li capacitor 140 via the DC bus 160. The Li battery 130 and the Li capacitor 140 store the power supplied from the charging facility 110 and supply the power to the load 150. Charging facility 110 may be one that constantly outputs power to DC bus 160 or one that outputs intermittently. For example, when the moving body 170 is a train, it is connected to the charging facility 110 and charged only when it is stopped at the station. For example, in the case of a battery-assisted RTG connected to the ground power supply facility (charging facility 110), it is possible to always charge.
 Liバッテリ130は、直流バス160との間で充放電を行う。Liバッテリ130は、高容量デバイスの一例である。
 DC/DCコンバータ120は、Liバッテリ130と直流バス160との間に設けられ、バス電圧とバッテリ電圧との電圧変換を行う。
The Li battery 130 charges and discharges with the DC bus 160. The Li battery 130 is an example of a high capacity device.
The DC / DC converter 120 is provided between the Li battery 130 and the DC bus 160, and performs voltage conversion between the bus voltage and the battery voltage.
 Liキャパシタ140は、直流バス160と直接接続され、直流バス160との間で充放電を行う。Liキャパシタ140は、高出力デバイスの一例である。
 充放電制御装置100は、Liバッテリ130とLiキャパシタ140の充放電を制御する。充放電制御装置100は、DC/DCコンバータ120を制御することで、Liバッテリ130とLiキャパシタ140との充放電における電力分担の制御を行う。
The Li capacitor 140 is directly connected to the DC bus 160 and charges and discharges with the DC bus 160. The Li capacitor 140 is an example of a high output device.
The charge / discharge control apparatus 100 controls charge / discharge of the Li battery 130 and the Li capacitor 140. The charge / discharge control device 100 controls the DC / DC converter 120 to control power sharing in charging / discharging between the Li battery 130 and the Li capacitor 140.
 以上のように、直流バス160は、負荷150と接続され、かつ、充電設備110から電力を受給可能である。Liバッテリ130とLiキャパシタ140とは直流バス160との間で充放電を行う。ここで、Liキャパシタ140は、例えばLiバッテリ130などの蓄電池よりも出力特性に優れており、より大きい電力を出力可能である。一方、Liバッテリ130は、Liキャパシタ140に比べ、容量特性で優れた特性を有している。このように、特性の異なるLiバッテリ130とLiキャパシタ140とを併せて動力源として用いることで、最適なシステムを構築することができる。例えば、Liキャパシタ140を具備することで、出力特性に課題のあるLiバッテリ130のみを有する構成との比較において、Liバッテリ130のピーク出力を小さくすることができ得る。Liバッテリ130のピーク出力が小さくて済むことで、ピーク電力に合わせて大容量となっていたLiバッテリ130を、より小さな容量とすることができる。DC/DCコンバータ120の出力も小さなものとすることができる。これにより、充放電システム1では、製造コストや運用コストを低減させ得る。本実施形態の充放電制御装置100は、Liバッテリ130とLiキャパシタ140の特性を生かせるように電力分担を制御し、充放電システム1を最適化する。なお、図2には、DC/DCコンバータをLiバッテリ130に対して設ける構成としているが、Liキャパシタ140についてもDC/DCコンバータを設ける構成としてもよい。例えば、負荷150が汎用のインバータなどであって、直流バス160の電圧の変動幅に大きな制限がある場合には、Liバッテリ130とLiキャパシタ140の両方にDC/DCコンバータを接続した構成とすることができる。 As described above, the DC bus 160 is connected to the load 150 and can receive power from the charging facility 110. The Li battery 130 and the Li capacitor 140 are charged and discharged between the DC bus 160. Here, the Li capacitor 140 is superior in output characteristics to a storage battery such as the Li battery 130, for example, and can output larger power. On the other hand, the Li battery 130 has excellent capacity characteristics compared to the Li capacitor 140. Thus, an optimal system can be constructed | assembled by using together Li battery 130 and Li capacitor 140 from which a characteristic differs as a motive power source. For example, by providing the Li capacitor 140, it is possible to reduce the peak output of the Li battery 130 in comparison with a configuration having only the Li battery 130 having a problem in output characteristics. Since the peak output of the Li battery 130 may be small, the Li battery 130 having a large capacity in accordance with the peak power can be set to a smaller capacity. The output of the DC / DC converter 120 can also be made small. Thereby, in the charging / discharging system 1, a manufacturing cost and an operation cost can be reduced. The charge / discharge control apparatus 100 according to the present embodiment optimizes the charge / discharge system 1 by controlling power sharing so that the characteristics of the Li battery 130 and the Li capacitor 140 can be utilized. In FIG. 2, the DC / DC converter is provided for the Li battery 130, but the Li capacitor 140 may also be provided with a DC / DC converter. For example, when the load 150 is a general-purpose inverter or the like and the fluctuation range of the voltage of the DC bus 160 is greatly limited, a DC / DC converter is connected to both the Li battery 130 and the Li capacitor 140. be able to.
 ここで、図10A、図10Bを用いて、Liバッテリ130とLiキャパシタ140を併用した給電システムの従来の制御方法の問題点について説明する。
 図10Aは、高容量デバイスと高出力デバイスを併用した充放電システムにおける従来の電力分担制御を説明する第一の図である。
 図10Bは、高容量デバイスと高出力デバイスを併用した充放電システムにおける従来の電力分担制御を説明する第二の図である。
 図10Aは、負荷が要求する電力に閾値を設け、閾値以下の電力は、高容量デバイスで分担し、閾値を超える電力を高出力デバイスで分担する制御方法を説明する図である。
 図10Aにおいて、縦軸は負荷が要求する電力を、横軸は時間を示している。閾値41は、電力の閾値を示している。1つ目の出力において、出力42Bが示す出力は、Liバッテリが分担する出力である。一方、出力42Aが示す出力は、Liキャパシタが分担する出力である。2つ目の出力43は、その値が閾値41以下であるため、出力43は、Liバッテリが分担する。
 この制御方法では、Liバッテリの出力値に制限を設け、不足分をLiキャパシタで補うことにより、出力性能がボトルネックとなりやすいLiバッテリの欠点を補うことができる。しかし、繰り返し充放電に強いLiキャパシタの充電率に余裕がある場合でもLiキャパシタの分担を大きくすることができない為、デバイスの特性を発揮した分担にはならず、システムを最適化できないという問題がある。
Here, the problem of the conventional control method of the power feeding system using the Li battery 130 and the Li capacitor 140 will be described with reference to FIGS. 10A and 10B.
FIG. 10A is a first diagram illustrating conventional power sharing control in a charge / discharge system using both a high-capacity device and a high-power device.
FIG. 10B is a second diagram illustrating conventional power sharing control in a charge / discharge system using both a high-capacity device and a high-power device.
FIG. 10A is a diagram illustrating a control method in which a threshold is provided for power required by a load, power below the threshold is shared by high capacity devices, and power exceeding the threshold is shared by high output devices.
In FIG. 10A, the vertical axis indicates the power required by the load, and the horizontal axis indicates time. A threshold 41 indicates a power threshold. In the first output, the output indicated by the output 42B is an output shared by the Li battery. On the other hand, the output indicated by the output 42A is an output shared by the Li capacitor. Since the value of the second output 43 is equal to or less than the threshold value 41, the output 43 is shared by the Li battery.
In this control method, by limiting the output value of the Li battery and compensating for the deficiency with the Li capacitor, it is possible to compensate for the disadvantage of the Li battery in which output performance tends to become a bottleneck. However, even if there is a margin in the charging rate of the Li capacitor that is resistant to repeated charging and discharging, the sharing of the Li capacitor cannot be increased, so that the sharing of the device characteristics is not achieved and the system cannot be optimized. is there.
 図10Bは、Liキャパシタを先に使用し、充電率が低下したらLiバッテリを使用する制御方法を説明する図である。図10Aと同様、縦軸は負荷が要求する電力を、横軸は時間を示している。図10Bの1つ目の出力において、出力44Aが示す出力は、Liキャパシタが分担する出力である。ここで、出力44Aの出力によって、Liキャパシタの充電率が低下したとする。出力44Bが示す出力及び2つ目の出力45は、Liバッテリが分担しなければならない。
 この制御方法では、繰り返し充放電に強いLiキャパシタを優先的に使用することで、高出力デバイスの特性を生かす制御になっている。しかし、この制御方法では、Liキャパシタによる出力が不能になった後の出力は、Liバッテリで分担しなければならない。その為、Liバッテリには、高い出力性能が要求される可能性がある。Liバッテリは、出力性能がボトルネックとなり易いため、要求される出力によっては、この制御方法を適用することができなかったり、あるいは、適用できたとしてもLiバッテリの高出力化によってシステムコストの低減が困難であったりする可能性がある。
FIG. 10B is a diagram for explaining a control method in which the Li capacitor is used first and the Li battery is used when the charging rate decreases. Similar to FIG. 10A, the vertical axis indicates the power required by the load, and the horizontal axis indicates time. In the first output of FIG. 10B, the output indicated by the output 44A is an output shared by the Li capacitor. Here, it is assumed that the charging rate of the Li capacitor is reduced by the output of the output 44A. The output indicated by the output 44B and the second output 45 must be shared by the Li battery.
In this control method, a Li capacitor that is resistant to repeated charging / discharging is preferentially used to control the characteristics of the high-power device. However, in this control method, the output after the output by the Li capacitor is disabled must be shared by the Li battery. Therefore, high output performance may be required for the Li battery. Since the output performance of Li batteries tends to be a bottleneck, this control method cannot be applied depending on the required output, or even if it can be applied, the system cost can be reduced by increasing the output of the Li battery. May be difficult.
 そこで、本実施形態では、図10A、図10Bに例示したような制御方法ではなく、Liバッテリ130とLiキャパシタ140の両方の特性を生かした電力分担の決定方法を提供する。
 図2は、本発明の第一実施形態における充放電制御装置100の一例を示すブロック図である。充放電制御装置100は、負荷との間で充放電可能な第一の蓄電装置(Liバッテリ130)と、負荷との間で充放電可能で第一の蓄電装置と特性が異なる第二の蓄電装置(Liキャパシタ140)とを備える充放電システムの充放電制御装置である。
 充放電制御装置100は、図2に示すように、少なくとも充電率取得部11、分担率設定部12、指令値生成部13、力行回生判定部14、記憶部15を備えている。
 充電率取得部11は、Liバッテリ130とLiキャパシタ140の充電率を取得する。充電率の取得は、例えばLiバッテリ130の開回路電圧を測定し、当該開回路電圧に対応する充電率を特定することで行うことができる。Liキャパシタ140についても同様である。
 分担率設定部12は、充電率取得部11が取得した充電率に基づいて、Liバッテリ130の充放電における電力の分担率である「充電率に基づく分担率」を設定する。
 指令値生成部13は、分担率設定部12で設定された充電率に基づく分担率に基づいてLiバッテリ130に対する充放電における電力指令値を生成する。
 力行回生判定部14は、負荷150からの要求負荷や、Liバッテリ130及びLiキャパシタ140の充電率などに基づいて、力行運転するか回生運転するかを判定する。
 記憶部15は、充電率に基づく分担率の設定に用いる様々なパラメータ等を記憶している。なお、以下において充電率をSOC(state of charge)と表記する場合がある。
In view of this, in the present embodiment, there is provided a method for determining the power sharing that makes use of the characteristics of both the Li battery 130 and the Li capacitor 140 instead of the control method illustrated in FIGS. 10A and 10B.
FIG. 2 is a block diagram showing an example of the charge / discharge control apparatus 100 according to the first embodiment of the present invention. The charge / discharge control device 100 includes a first power storage device (Li battery 130) that can be charged / discharged with a load, and a second power storage that can be charged / discharged with the load and has characteristics different from those of the first power storage device. It is a charging / discharging control apparatus of a charging / discharging system provided with an apparatus (Li capacitor 140).
As shown in FIG. 2, the charge / discharge control device 100 includes at least a charging rate acquisition unit 11, a sharing rate setting unit 12, a command value generation unit 13, a power regeneration determination unit 14, and a storage unit 15.
The charge rate acquisition unit 11 acquires the charge rates of the Li battery 130 and the Li capacitor 140. Acquisition of a charging rate can be performed by, for example, measuring an open circuit voltage of the Li battery 130 and specifying a charging rate corresponding to the open circuit voltage. The same applies to the Li capacitor 140.
Based on the charging rate acquired by the charging rate acquisition unit 11, the sharing rate setting unit 12 sets a “sharing rate based on the charging rate” that is a sharing rate of power in charging and discharging of the Li battery 130.
The command value generation unit 13 generates a power command value for charging / discharging the Li battery 130 based on the sharing rate based on the charging rate set by the sharing rate setting unit 12.
The power running regeneration determination unit 14 determines whether to perform a power running operation or a regenerative operation based on the required load from the load 150, the charging rate of the Li battery 130 and the Li capacitor 140, and the like.
The storage unit 15 stores various parameters used for setting the sharing rate based on the charging rate. In the following, the charging rate may be expressed as SOC (state of charge).
 図3は、本発明の第一実施形態における充放電制御装置の処理に用いるパラメータを説明する図である。
 パラメータ「Powering」及び「Breaking」は、力行運転か回生運転かを区分するフラグである。例えば、力行回生判定部14は、力行運転を行うと判定すると「Powering」の値にtrueを設定し、「Breaking」の値にfalseを設定する。なお、「Breaking」=trueの場合、回生運転時、及び充電時の両方が含まれるものとする。以下、これらのパラメータを力行・回生フラグと呼ぶ。
 「SOCLIB」は、現在のLiバッテリ130のSOCである。「SOCLIC」は、現在のLiキャパシタ140のSOCである。充電率取得部11は、Liバッテリ130のSOCを取得し、「SOCLIB」にその値を設定する。充電率取得部11は、Liキャパシタ140のSOCを取得し、「SOCLIC」にその値を設定する。「SOCLIB」、「SOCLIC」は、例えば「50%」等で表される。
 これら、「Powering」~「SOCLIC」までのパラメータは、運転中の充放電システム1から取得する変数である。
FIG. 3 is a diagram for explaining parameters used for processing of the charge / discharge control device according to the first embodiment of the present invention.
The parameters “Powering” and “Breaking” are flags for distinguishing between power running operation and regenerative operation. For example, if the power running regeneration determination unit 14 determines to perform power running, it sets true to the value of “Powering” and sets false to the value of “Breaking”. In the case of “Breaking” = true, both the regenerative operation and the charging are included. Hereinafter, these parameters are referred to as a power running / regeneration flag.
“SOC LIB ” is the SOC of the current Li battery 130. “SOC LIC ” is the SOC of the current Li capacitor 140. The charging rate acquisition unit 11 acquires the SOC of the Li battery 130 and sets the value in “SOC LIB ”. The charge rate acquisition unit 11 acquires the SOC of the Li capacitor 140 and sets the value in “SOC LIC ”. “SOC LIB ” and “SOC LIC ” are represented by “50%”, for example.
These parameters from “Powering” to “SOC LIC ” are variables acquired from the charging / discharging system 1 during operation.
 「SOCLIBDT」は、力行時のLiバッテリ130の目標SOCを示す定数である。「SOCLICDT」は、力行時のLiキャパシタ140の目標SOCを示す定数である。「SOCLIBCT」は、回生時のLiバッテリ130の目標SOCを示す定数である。「SOCLICCT」は、回生時のLiキャパシタ140の目標SOCを示す定数である。
 「a」及び「a」は、後述するLiバッテリ130の分担係数αを計算するための係数である。「a」の値が大きい程、Liキャパシタ140の電力の分担を大きくすることができる。「a」の値が大きい程、Liバッテリ130又はLiキャパシタ140の現在のSOCと目標SOCとの偏差が大きいときに、偏差が小さい側の電力の分担を大きくすることができる。
 これら、「SOCLIBDT」~「a」までのパラメータは、予め定められており、記憶部15に記録されている。「SOCLIBDT」~「SOCLICCT」の値は、蓄電デバイスごとに定められた値である。「a」、「a」は、移動体170ごとに定められた値であり、例えば、鉄道とRTGとでは、「a」、「a」の値が異なっていてもよい。
 上から順に「Powering」~「a」までのパラメータは、分担率設定部12が分担係数αの算出に用いる入力パラメータである。
“SOC LIBDT ” is a constant indicating the target SOC of the Li battery 130 during power running. “SOC LICDT ” is a constant indicating the target SOC of the Li capacitor 140 during power running. “SOC LIBCT ” is a constant indicating the target SOC of the Li battery 130 during regeneration. “SOC LICCT ” is a constant indicating the target SOC of the Li capacitor 140 during regeneration.
“A 0 ” and “a 1 ” are coefficients for calculating a sharing coefficient α of the Li battery 130 described later. As the value of “a 0 ” is larger, the electric power sharing of the Li capacitor 140 can be increased. As the value of “a 1 ” is larger, when the deviation between the current SOC of the Li battery 130 or the Li capacitor 140 and the target SOC is larger, it is possible to increase the power sharing on the side where the deviation is smaller.
These parameters from “SOC LIBDT ” to “a 1 ” are determined in advance and recorded in the storage unit 15. The values of “SOC LIBDT ” to “SOC LICCT ” are values determined for each power storage device. “A 0 ” and “a 1 ” are values determined for each moving body 170. For example, the values of “a 0 ” and “a 1 ” may be different between the railway and the RTG.
Parameters from “Powering” to “a 1 ” in order from the top are input parameters used by the sharing ratio setting unit 12 to calculate the sharing coefficient α.
 「SOCLIBDIF」は、Liバッテリ130の現在の充電率であるSOCLIBと目標SOC(SOCLIBDT又はSOCLIBCT)との偏差である。「SOCLICDIF」は、Liキャパシタ140の現在の充電率であるSOCLICと目標SOC(SOCLICDT又はSOCLICCT)との偏差である。具体的には、Powering=true、Breaking=false、つまり力行時の場合、SOCLIBDIF、SOCLICDIFを以下のように定義する。
 SOCLIBDIF = SOCLIB - SOCLIBDT ・・・(1)
 SOCLICDIF = SOCLIC - SOCLICDT ・・・(2)
 上記以外の場合、以下のように定義する。
 SOCLIBDIF = SOCLIBCT - SOCLIB ・・・(3)
 SOCLICDIF = SOCLICCT - SOCLIC ・・・(4)
“SOC LIBDIF ” is a deviation between the SOC LIB that is the current charging rate of the Li battery 130 and the target SOC (SOC LIBDT or SOC LIBCT ). “SOC LICDIF ” is a deviation between the SOC LIC that is the current charging rate of the Li capacitor 140 and the target SOC (SOC LICDT or SOC LICCT ). Specifically, in the case of Powering = true and Breaking = false, that is, during powering, SOC LIBDIF and SOC LICDIF are defined as follows.
SOC LIBDIF = SOC LIB −SOC LIBDT (1)
SOC LICDIF = SOC LIC −SOC LICDT (2)
In cases other than the above, the definition is as follows.
SOC LIBDIF = SOC LIBCT −SOC LIB (3)
SOC LICDIF = SOC LICCT −SOC LIC (4)
 「α」は、Liバッテリ130(第一の蓄電装置)の分担係数である。分担係数αは、充放電におけるLiバッテリ130が分担する電力の割合を示す値である。分担率設定部12は、SOCLIBDIF、SOCLICDIFを用いて例えば、以下の式で分担係数αを算出する。 “Α” is a sharing coefficient of the Li battery 130 (first power storage device). The sharing coefficient α is a value indicating the ratio of power shared by the Li battery 130 in charge / discharge. For example, the sharing rate setting unit 12 calculates the sharing coefficient α using the following equation using SOC LIBDIF and SOC LICDIF .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図4は、本発明の第一実施形態における充放電制御装置の処理フローを示す図である。
 図4を用いて充放電制御装置100が電力分担量を算出する処理について説明する。
 まず、負荷150から出力要求があったとする。指令値生成部13が、負荷からの要求電力を取得する。充電率取得部11が、Liバッテリ130とLiキャパシタ140のSOCを取得する(ステップS11)。充電率取得部11は、取得したSOCを、分担率設定部12に出力する。分担率設定部12は、取得したLiバッテリ130のSOCをSOCLIBに、取得したLiキャパシタ140のSOCをSOCLICに設定する。
 次に、力行回生判定部14が、力行運転か回生運転かを判定し、その結果を、力行・回生フラグに設定する。分担率設定部12は、力行回生判定部14が設定した力行・回生フラグを取得する(ステップS12)。次に、分担率設定部12は、Liバッテリ130とLiキャパシタ140について、目標SOCと現在のSOCとの偏差を算出する(ステップS13)。具体的には、ステップS12にて力行・回生フラグが力行運転であることを示している場合(Powering=trueとBreaking=false)、分担率設定部12は、記憶部15から、力行時のLiバッテリ130の目標SOCであるSOCLIBDTと、Liキャパシタ140の目標SOCであるSOCLICDTとを読み出す。分担率設定部12は、Liバッテリ130について上述の式(1)によって、目標SOCとの偏差SOCLIBDIFを算出する。分担率設定部12は、Liキャパシタ140について上述の式(2)によって、目標SOCとの偏差SOCLICDIFを算出する。
 一方、力行・回生フラグが回生運転であることを示している場合(Powering=true及びBreaking=false以外の場合)、分担率設定部12は、記憶部15から、回生時のLiバッテリ130の目標SOCであるSOCLIBCTとLiキャパシタ140の目標SOCであるSOCLICCTとを読み出す。分担率設定部12は、Liバッテリ130について式(3)により、目標SOCとの偏差SOCLIBDIFを算出する。分担率設定部12は、Liキャパシタ140について式(4)により、SOCLICDIFを算出する。
 次に、分担率設定部12は、分担係数αを算出する(ステップS14)。具体的には、分担率設定部12は、記憶部15から、パラメータa、aを読み出して、a、aとステップS13で算出したSOCLIBDIF、SOCLICDIFを式(5)に代入して分担係数αを求める。分担率設定部12は、分担係数αを指令値生成部13へ出力する。次に指令値生成部13は、負荷150からの要求電力にαを乗じた値を算出し、算出した値を電力指令値として、DC/DCコンバータ120へ出力する(ステップS15)。DC/DCコンバータ120は、電力指令値に基づいて電圧を調整し、直流バス160への供給電力を制御する。Liバッテリ130では、DC/DCコンバータ120の制御により分担係数αに応じた電力が消費される。Liキャパシタ140では、要求電力からLiバッテリ130が分担する電力分を減算した電力が消費される。これにより、Liバッテリ130とLiキャパシタ140の電力分担量が制御される。
 なお、充電時においては、指令値生成部13は、充電設備110に何キロワットの充電を行うかの充電指令を行う。指令値生成部13は、充電設備110に指令した充電電力と分担係数αを乗じてLiバッテリ130が充電する電力を算出し、DC/DCコンバータ120へ電力指令値を出力する。DC/DCコンバータ120は、Liバッテリ130に加わる電圧を制御し、分担係数αに応じた分がLiバッテリ130に充電され、残りがLiキャパシタ140に充電されるように制御する。
FIG. 4 is a diagram showing a processing flow of the charge / discharge control device in the first embodiment of the present invention.
The process in which the charge / discharge control apparatus 100 calculates the electric power sharing amount will be described with reference to FIG.
First, it is assumed that there is an output request from the load 150. The command value generation unit 13 acquires the required power from the load. The charge rate acquisition unit 11 acquires the SOCs of the Li battery 130 and the Li capacitor 140 (step S11). The charging rate acquisition unit 11 outputs the acquired SOC to the sharing rate setting unit 12. The sharing ratio setting unit 12 sets the obtained SOC of the Li battery 130 to the SOC LIB and the obtained SOC of the Li capacitor 140 to the SOC LIC .
Next, the power running regeneration determination unit 14 determines whether the power running operation or the regenerative operation, and sets the result in the power running / regeneration flag. The sharing ratio setting unit 12 acquires the power running / regeneration flag set by the power running regeneration determination unit 14 (step S12). Next, the sharing rate setting unit 12 calculates the deviation between the target SOC and the current SOC for the Li battery 130 and the Li capacitor 140 (step S13). Specifically, when the powering / regenerative flag indicates that the powering operation is performed in step S12 (Powering = true and Breaking = false), the sharing rate setting unit 12 reads the Li in powering from the storage unit 15. and SOC libDt a target SOC of the battery 130, reads the SOC LICDT a target SOC of Li capacitor 140. The sharing ratio setting unit 12 calculates a deviation SOC LIBDIF from the target SOC for the Li battery 130 according to the above-described equation (1). The sharing ratio setting unit 12 calculates a deviation SOC LICDIF from the target SOC with respect to the Li capacitor 140 according to the above equation (2).
On the other hand, when the power running / regeneration flag indicates regenerative operation (other than Powering = true and Breaking = false), the sharing ratio setting unit 12 reads the target of the Li battery 130 during regeneration from the storage unit 15. It reads the SOC LICCT a target SOC of the SOC LIBCT and Li capacitor 140 is SOC. The sharing ratio setting unit 12 calculates a deviation SOC LIBDIF from the target SOC for the Li battery 130 using Equation (3). The sharing ratio setting unit 12 calculates the SOC LICDIF for the Li capacitor 140 according to the equation (4).
Next, the sharing ratio setting unit 12 calculates a sharing coefficient α (step S14). Specifically, the assignment ratio setting unit 12 reads the parameters a 0 and a 1 from the storage unit 15, and substitutes a 0 and a 1 and the SOC LIBDIF and SOC LICDIF calculated in step S13 into the equation (5). To determine the sharing coefficient α. The sharing ratio setting unit 12 outputs the sharing coefficient α to the command value generation unit 13. Next, the command value generation unit 13 calculates a value obtained by multiplying the required power from the load 150 by α, and outputs the calculated value to the DC / DC converter 120 as a power command value (step S15). The DC / DC converter 120 adjusts the voltage based on the power command value, and controls the power supplied to the DC bus 160. In the Li battery 130, power corresponding to the sharing coefficient α is consumed by the control of the DC / DC converter 120. The Li capacitor 140 consumes power obtained by subtracting the power shared by the Li battery 130 from the required power. Thereby, the electric power sharing amount of the Li battery 130 and the Li capacitor 140 is controlled.
At the time of charging, the command value generation unit 13 issues a charging command as to how many kilowatts the charging facility 110 is charged. The command value generation unit 13 calculates the power charged by the Li battery 130 by multiplying the charging power commanded to the charging facility 110 and the sharing coefficient α, and outputs the power command value to the DC / DC converter 120. The DC / DC converter 120 controls the voltage applied to the Li battery 130, and controls the Li battery 130 to be charged according to the sharing coefficient α and the rest to be charged to the Li capacitor 140.
 図5は、本発明の第一実施形態における電力分担量制御を説明する第一の図である。
 図5の上図は、本実施形態による電力分担量制御を行った場合のLiバッテリ130とLiキャパシタ140の分担量の変化の一例を示している。図5の上図において、縦軸は負荷が要求する電力を、横軸は時間を示している。電力51Aで示した分担境界線55の上側の領域は、Liキャパシタ140が分担する電力を示している。電力51Bで示した分担境界線55の下側の領域は、Liバッテリ130が分担する電力を示している。同様に、電力52Aで示した領域は、Liキャパシタ140が分担する電力を、電力52Bで示した領域は、Liバッテリ130が分担する電力を示している。図5の上図は、1つ目の出力において、出力の最初の段階では、Liキャパシタ140が負荷が要求する電力の半分ぐらいを分担し、出力と共に徐々にLiキャパシタ140の分担量が減少し、その分をLiバッテリ130が分担するような動作となっていることを示している。
FIG. 5 is a first diagram illustrating power sharing amount control in the first embodiment of the present invention.
The upper diagram of FIG. 5 shows an example of a change in the amount of sharing between the Li battery 130 and the Li capacitor 140 when the power sharing amount control according to the present embodiment is performed. In the upper diagram of FIG. 5, the vertical axis indicates the power required by the load, and the horizontal axis indicates time. The region above the shared boundary 55 indicated by the power 51A indicates the power shared by the Li capacitor 140. The area below the sharing boundary 55 indicated by the power 51B indicates the power shared by the Li battery 130. Similarly, the area indicated by the power 52A indicates the power shared by the Li capacitor 140, and the area indicated by the power 52B indicates the power shared by the Li battery 130. The upper diagram of FIG. 5 shows that at the first output of the first output, the Li capacitor 140 shares about half of the power required by the load, and the amount of the Li capacitor 140 gradually decreases with the output. It is shown that the operation is such that the Li battery 130 shares that amount.
 図5の下図は、Liバッテリ130及びLiキャパシタ140のSOCの変化の一例を示している。図5の下図において、縦軸はSOCを、横軸は時間を示している。線53は、Liバッテリ130のSOCの変化を示している。線54は、Liキャパシタ140のSOCの変化を示している。図5の下図に示すように、出力前は、Liバッテリ130とLiキャパシタ140のSOCが同じ値であったとしても、Liキャパシタ140は速やかに放電する為、SOCの低下がLiバッテリ130より速く、それに比べ、Liバッテリ130は、SOCの低下が緩やかであることを示している。 5 shows an example of changes in the SOC of the Li battery 130 and the Li capacitor 140. In the lower diagram of FIG. 5, the vertical axis indicates the SOC, and the horizontal axis indicates the time. A line 53 indicates a change in the SOC of the Li battery 130. Line 54 shows the change in the SOC of the Li capacitor 140. As shown in the lower diagram of FIG. 5, even before the output, even if the SOCs of the Li battery 130 and the Li capacitor 140 are the same value, the Li capacitor 140 is discharged quickly, so that the decrease in the SOC is faster than the Li battery 130. Compared to that, the Li battery 130 shows that the decrease in SOC is gradual.
 図5の上図に戻り、力行時のLiバッテリ130についての目標SOCとの偏差SOCLIBDIFとLiキャパシタ140についての目標SOCとの偏差SOCLICDIFを比べる。Liキャパシタ140の方がLiバッテリ130よりも放電が急激なので、1つ目の出力の最中にもSOCLICDIFの値がより小さくなっていく。これを、式(5)に適用し、αを求めると、出力開始時のαよりも大きな値が得られることがわかる。つまり、出力に応じてLiバッテリ130の分担分が増加するので例えば、図5の上図のような分担量の変化が得られる。 Returning to the upper diagram of FIG. 5, the deviation SOC LIBDIF from the target SOC for the Li battery 130 during power running is compared with the deviation SOC LICDIF from the target SOC for the Li capacitor 140. Since the Li capacitor 140 discharges more rapidly than the Li battery 130, the value of SOC LICDIF becomes smaller even during the first output. When this is applied to Equation (5) and α is obtained, it can be seen that a value larger than α at the start of output can be obtained. That is, since the share of the Li battery 130 increases according to the output, for example, a change in the share amount as shown in the upper diagram of FIG. 5 is obtained.
 なお、式(5)において、aの値により大きな値を設定すると、分担係数αの値が小さくなり、Liキャパシタ140の分担をより大きくすることができる。その場合、図5の上図において分担境界線55が矢印57の方向に移動する。逆にaの値に小さな値を設定すると、分担境界線55は矢印56の方向に移動する。つまり、aの値を調整することで、Liキャパシタ140により電力を分担させやすくすることができる。 In Formula (5), when a larger value is set for the value of a 0 , the value of the sharing coefficient α becomes smaller, and the sharing of the Li capacitor 140 can be further increased. In that case, the shared boundary line 55 moves in the direction of the arrow 57 in the upper diagram of FIG. Conversely, when a small value is set as the value of a 0 , the shared boundary line 55 moves in the direction of the arrow 56. That is, by adjusting the value of a 0 , it is possible to easily share power by the Li capacitor 140.
 図6Aは、本発明の第一実施形態における電力分担制御を説明する第二の図である。
 図6Aは、式(5)におけるaの影響について説明する図である。図6Aにおいて、縦軸は負荷が要求する電力を、横軸は時間を示している。電力61Aは、Liキャパシタ140が分担する電力を、電力61Bは、Liバッテリ130が分担する電力を示している。線62、63は、分担境界線の一例を示している。式(5)において、aの値を大きくすると、目標SOCとの偏差であるSOCLIBDIFやSOCLICDIFの値が小さい方により多くを分担させるような分担係数αが算出される。例えば、力行時においてLiキャパシタ140を優先的に使用するとSOCLICが低下し、SOCLICDTとの差が小さくなると、式(5)による分担係数αの値は大きくなり、Liバッテリ130の分担が増えることになるが、aの値が大きい程、分担係数αの増加が急激になる。図6Aの例では、aの値が大きい場合、SOCLIBDIFとSOCLICDIFの偏差を速やかに補正するようなαとなり、例えば線62のような分担境界線となる。一方、aの値が小さいと、SOCLIBDIFとSOCLICDIFの偏差を緩やかに補正するようなαとなり、例えば線63のような分担境界線となる。つまり、aの値を調整することで、Liキャパシタ140のSOCに余裕がある場合(SOCLICDIFが大きい場合)は、Liキャパシタ140により多くの電力を分担させ、Liバッテリ130のSOCに余裕がある場合(SOCLIBDIFが大きい場合)は、Liバッテリ130により多くの電力を分担させることができる。
FIG. 6A is a second diagram illustrating power sharing control in the first embodiment of the present invention.
FIG. 6A is a diagram for explaining the influence of a 1 in Equation (5). In FIG. 6A, the vertical axis represents power required by the load, and the horizontal axis represents time. The power 61A represents the power shared by the Li capacitor 140, and the power 61B represents the power shared by the Li battery 130. Lines 62 and 63 show examples of shared boundary lines. In equation (5), when the value of a 1 is increased, the sharing coefficient α is calculated so that the larger the value of SOC LIBDIF or SOC LICDIF , which is the deviation from the target SOC, is more shared. For example, when the Li capacitor 140 is preferentially used during power running, the SOC LIC decreases, and when the difference from the SOC LICDT decreases, the value of the sharing coefficient α according to Equation (5) increases and the sharing of the Li battery 130 increases. However, as the value of a 1 is larger, the sharing coefficient α increases more rapidly. In the example of FIG. 6A, when the value of a 1 is large, the sharing boundaries such as α becomes, for example, a line 62 as quickly to correct the deviation of the SOC LIBDIF and SOC LICDIF. On the other hand, when the value of a 1 is small, α becomes a value that gently corrects the deviation between SOC LIBDIF and SOC LICDIF , and becomes a shared boundary line, for example, line 63. That is, by adjusting the value of a 1, if there is room in the SOC of Li capacitor 140 (when SOC LICDIF is large), then share the more power Li capacitor 140, is a margin in the SOC of Li battery 130 In some cases (when the SOC LIBDIF is large), more power can be shared by the Li battery 130.
 図6Bは、本発明の第一実施形態における電力分担制御を説明する第三の図である。
 図6Bは、上記の式(5)で負荷分担を決定した場合に、分担する電力が閾値を超過してしまうような場合の制御について説明する図である。本実施形態において、縦軸は負荷が要求する電力を、横軸は時間を示している。閾値65は、Liバッテリ130が分担する電力の閾値を示している。閾値65は、例えば、そのまま破線66が示すような電力分担を行うと、Liバッテリ130の容量が足りなくなる等の状況を回避するため設けられる制限である。この閾値は、例えばSOCと対応付けて予め記憶部15に記録されている。分担率設定部12は、算出した分担係数αと要求負荷とを乗じて閾値と比較する。乗じた値が閾値を上回っている場合、分担率設定部12は、その閾値を要求負荷で除算した値を補正後の分担係数αとして指令値生成部13に出力する。これにより、Liバッテリ130の分担する電力を閾値以内とし、残りをLiキャパシタ140に分担させることができる。
FIG. 6B is a third diagram illustrating power sharing control in the first embodiment of the present invention.
FIG. 6B is a diagram illustrating control in a case where the shared power exceeds the threshold when the load sharing is determined by the above equation (5). In the present embodiment, the vertical axis indicates the power required by the load, and the horizontal axis indicates time. The threshold 65 indicates the threshold of power shared by the Li battery 130. The threshold 65 is a restriction provided to avoid a situation where the capacity of the Li battery 130 becomes insufficient when power sharing as indicated by the broken line 66 is performed as it is, for example. This threshold value is recorded in the storage unit 15 in advance in association with the SOC, for example. The sharing ratio setting unit 12 multiplies the calculated sharing coefficient α and the required load and compares it with a threshold value. If the multiplied value exceeds the threshold value, the sharing ratio setting unit 12 outputs a value obtained by dividing the threshold value by the required load to the command value generation unit 13 as a corrected sharing coefficient α. Thereby, the electric power shared by the Li battery 130 can be within the threshold value, and the rest can be shared by the Li capacitor 140.
 本実施形態によれば、a、aを調整することにより、繰り返し充放電に強い特性を持つLiキャパシタ140に余裕があるときは、より多くの電力をLiキャパシタ140に分担させることができ、デバイス特性・状態を考慮した電力分担にすることができる。a、aを調整することにより、Liキャパシタ140の充電切れを防止するようにできるため、Liバッテリ130が全てを分担できるようにする必要はなく、システムコストを低減できる。負荷の特性に応じて、a、aを調整することにより、充放電の効率を最適化することができる。 According to this embodiment, by adjusting a 0 and a 1 , when there is a margin in the Li capacitor 140 having a strong characteristic against repeated charge and discharge, more power can be shared by the Li capacitor 140. Therefore, it is possible to make power sharing in consideration of device characteristics and states. By adjusting a 0 and a 1 , it is possible to prevent the Li capacitor 140 from being completely charged, and thus it is not necessary to allow the Li battery 130 to share all of the information, and the system cost can be reduced. The efficiency of charging / discharging can be optimized by adjusting a 0 and a 1 according to the characteristics of the load.
 なお、上記の例では、第一の蓄電装置の一例として高容量デバイス(Liバッテリ130)、第二の蓄電装置の一例として高出力デバイス(Liキャパシタ140)を用いた場合を例に説明を行ったが、これに限定されない。例えば第一の蓄電装置と第二の蓄電装置が共にLiバッテリであって、相対的に高容量のLiバッテリを第一の蓄電装置に対応づけ、相対的に高出力のLiバッテリを第二の蓄電装置に対応づける構成としてもよい。高容量・高出力だが繰り返し充放電に弱い蓄電デバイスを第一の蓄電装置に対応づけ、相対的に低容量・低出力だが繰り返し充放電に強い蓄電デバイスを第二の蓄電装置に対応づける構成としてもよい。充電に要する時間が長い蓄電デバイスを第一の蓄電装置に対応づけ、充電に要する時間が短い蓄電デバイスを第二の蓄電装置に対応づける構成としてもよい。なお、繰り返し充放電に強い蓄電デバイスまたは充電に要する時間が短い蓄電デバイスを本明細書では、充放電性能が高いという。 In the above example, a high capacity device (Li battery 130) is used as an example of the first power storage device, and a high output device (Li capacitor 140) is used as an example of the second power storage device. However, it is not limited to this. For example, the first power storage device and the second power storage device are both Li batteries, a relatively high capacity Li battery is associated with the first power storage device, and a relatively high output Li battery is It is good also as a structure matched with an electrical storage apparatus. High-capacity, high-power storage devices that are vulnerable to repeated charging / discharging are associated with the first power storage device, and relatively low-capacity, low-power storage devices that are resistant to repeated charging / discharging are associated with the second power storage device. Also good. A power storage device having a long time required for charging may be associated with the first power storage device, and a power storage device having a short time required for charging may be associated with the second power storage device. Note that an electricity storage device that is resistant to repeated charging and discharging or an electricity storage device that takes a short time to charge is referred to as having high charge / discharge performance in this specification.
 第一実施形態の変形例として、第一の蓄電装置として高容量デバイス、第二の蓄電装置として高出力デバイスを用いた充放電システムにおいて、高出力デバイスのSOCだけを取得し、一方、高容量デバイスのSOCは一定とみなして扱い、式(5)により電力分担を設定することも可能である。この場合、式(5)において、SOCLIBDIFの値は定数となり、SOCLICDIFの値に基づいて、電力分担を設定する。
 式(5)をより一般化して、SOCLICDIFとSOCLIBDIFにオフセット値を加えた以下の式にすることも可能である。なお、a、aは、定数である。
As a modification of the first embodiment, in the charge / discharge system using a high-capacity device as the first power storage device and a high-power device as the second power storage device, only the SOC of the high-power device is obtained, It is also possible to treat the SOC of the device as being constant, and set the power sharing according to equation (5). In this case, in Equation (5), the value of SOC LIBDIF is a constant, and the power sharing is set based on the value of SOC LICDIF .
Formula (5) can be further generalized to the following formula in which an offset value is added to SOC LICDIF and SOC LIBDIF . Note that a 2 and a 3 are constants.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
<第二実施形態>
 以下、本発明の第二実施形態による充放電制御装置を、図7~図9を参照して説明する。
 第二実施形態は、温度やデバイスの劣化度も考慮して、電力分担を設定する。Liバッテリ130及びLiキャパシタ140は、温度や劣化度によって特性が変化する。そこで本実施形態では、第一実施形態のSOCに加え、これらのパラメータも用いて電力分担を設定する。さらに、SOC、温度、デバイス劣化度は、時定数が違うため、時定数や影響度を考慮した重み付けを与えて電力分担量を決定する。例えば、SOCは秒単位で変化し、影響度が大きい。温度は時間単位で変化し、影響度は中程度である。劣化度は、月単位で変化し、影響度は最も低い。
<Second embodiment>
Hereinafter, a charge / discharge control apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
In the second embodiment, power sharing is set in consideration of temperature and the degree of device degradation. The characteristics of the Li battery 130 and the Li capacitor 140 change depending on the temperature and the degree of deterioration. Therefore, in this embodiment, power sharing is set using these parameters in addition to the SOC of the first embodiment. Furthermore, since the SOC, temperature, and device degradation degree have different time constants, the power sharing amount is determined by giving weights in consideration of the time constant and the degree of influence. For example, the SOC changes every second and has a large influence. Temperature varies with time and has a moderate impact. The degree of deterioration changes on a monthly basis, and the degree of influence is the lowest.
 図7は、本発明の第二実施形態における充放電制御装置の一例を示すブロック図である。
 図7に示すように、本実施形態における充放電制御装置100は、温度取得部16と劣化度算出部17を備えている。本実施形態の負荷率設定部12aは、SOCに基づく分担係数αの他に、温度に基づく分担係数βと劣化度に基づく温度に基づく分担係数γを算出する。本実施形態の指令値生成部13aは、分担係数α、β、γの重み付き平均を算出し、算出した重み付き平均に基づいて電力指令値を生成する。他の構成は第一実施形態と同様である。
 温度取得部16は、Liバッテリ130及びLiキャパシタ140の温度を取得する。例えば、温度取得部16は、各デバイスに設けられた温度センサから測定した温度を取得する。
 劣化度算出部17は、Liバッテリ130及びLiキャパシタ140の劣化度を取得する。劣化度の算出は、例えば、充放電時の単位時間当たりの電圧の変化と電流から静電容量を算出し、静電容量の減少度合いに基づいて算出してもよい。あるいは、充放電の総回数や、使用時間に基づいて劣化度合いを算出してもよい。
 負荷率設定部12aは、温度に基づく分担係数βを以下の式で算出する。
FIG. 7 is a block diagram showing an example of the charge / discharge control apparatus in the second embodiment of the present invention.
As shown in FIG. 7, the charge / discharge control device 100 according to the present embodiment includes a temperature acquisition unit 16 and a deterioration degree calculation unit 17. The load factor setting unit 12a of the present embodiment calculates a sharing coefficient β based on the temperature and a sharing coefficient γ based on the temperature based on the degree of deterioration, in addition to the sharing coefficient α based on the SOC. The command value generation unit 13a of the present embodiment calculates a weighted average of the sharing coefficients α, β, and γ, and generates a power command value based on the calculated weighted average. Other configurations are the same as those of the first embodiment.
The temperature acquisition unit 16 acquires the temperatures of the Li battery 130 and the Li capacitor 140. For example, the temperature acquisition unit 16 acquires a temperature measured from a temperature sensor provided in each device.
The deterioration degree calculation unit 17 acquires the deterioration degrees of the Li battery 130 and the Li capacitor 140. For example, the degree of deterioration may be calculated based on the degree of decrease in capacitance by calculating the capacitance from the change in voltage and current per unit time during charging and discharging. Alternatively, the degree of deterioration may be calculated based on the total number of times of charge / discharge and the usage time.
The load factor setting unit 12a calculates the sharing coefficient β based on the temperature using the following equation.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、βは、Liバッテリ130(第一の蓄電装置)に対する温度に基づく分担係数である。TLIBDIFは、Liバッテリ130の温度とLiバッテリ130の目標温度との偏差の絶対値である。TLICDIFは、Liキャパシタ140の温度とLiキャパシタ140の目標温度との偏差の絶対値である。 Here, β is a sharing coefficient based on the temperature for the Li battery 130 (first power storage device). T LIBDIF is the absolute value of the deviation between the temperature of the Li battery 130 and the target temperature of the Li battery 130. T LICDIF is the absolute value of the deviation between the temperature of the Li capacitor 140 and the target temperature of the Li capacitor 140.
 負荷率設定部12aは、劣化度に基づく分担係数γを以下の式で算出する。 The load factor setting unit 12a calculates a sharing coefficient γ based on the degree of deterioration using the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、γは、Liバッテリ130(第一の蓄電装置)に対する劣化度に基づく分担係数である。DLIBDIFは、Liバッテリ130の劣化度とLiバッテリ130の目標劣化度との偏差の絶対値である。DLICDIFは、Liキャパシタ140の劣化度とLiキャパシタ140の目標劣化度との偏差の絶対値である。
 なお、温度に基づく分担係数βの算出及び劣化度に基づく分担係数γの算出においては、力行と回生の区別は無い。a、aについては第一実施形態と同様である。
Here, γ is a sharing coefficient based on the degree of deterioration with respect to the Li battery 130 (first power storage device). D LIBDIF is an absolute value of a deviation between the deterioration degree of the Li battery 130 and the target deterioration degree of the Li battery 130. D LICDIF is an absolute value of a deviation between the deterioration degree of the Li capacitor 140 and the target deterioration degree of the Li capacitor 140.
Note that there is no distinction between powering and regeneration in the calculation of the sharing coefficient β based on the temperature and the calculation of the sharing coefficient γ based on the deterioration degree. a 0 and a 1 are the same as those in the first embodiment.
 図8は、本発明の第二実施形態における充放電制御装置の処理に用いるパラメータを説明する図である。
 図示するように、パラメータ「PLS」は、負荷が要求する電力である。あるいは、負荷が要求する電力のうち一部を、他の給電設備が分担する場合は、PLSは、負荷が要求する電力から給電設備が分担する電力を減じた値である。
 「WSOC」は、SOCに基づく分担係数αに対する重み付けである。「W」は、温度に基づく分担係数βに対する重み付けである。「W」は、劣化度に基づく分担係数γに対する重み付けである。これら、WSOC、W、Wは、予め定められた定数であって記憶部15に記録されている。これらの中では、SOCの影響が最も大きいため、WSOCが最も大きな値となる。温度による影響は中程度なので、Wの大きさは中程度となる。劣化度の影響は最も低いため、Wの値は、最も小さな値となる。
 「α」は、SOCに基づく分担係数である。「β」は、温度に基づく分担係数である。「γ」は、劣化度に基づく分担係数である。これらα、β、γの算出方法については上述のとおりである。これらのパラメータは、変数である。
 「TLIB」は、Liバッテリ130の目標温度である。「TLIC」は、Liキャパシタ140の目標温度である。「DLIB」は、Liバッテリ130の目標劣化度である。「DLIC」は、Liキャパシタ140の目標劣化度である。これらのパラメータは、予め予め定められた定数であって記憶部15に記録されている。
FIG. 8 is a diagram for explaining parameters used for processing of the charge / discharge control device according to the second embodiment of the present invention.
As illustrated, the parameter “P LS ” is the power required by the load. Alternatively, when another power supply facility shares a part of the power required by the load, P LS is a value obtained by subtracting the power shared by the power supply facility from the power required by the load.
“W SOC ” is a weight for the sharing coefficient α based on the SOC. “W T ” is a weight for the sharing coefficient β based on temperature. “W D ” is a weight for the sharing coefficient γ based on the degree of deterioration. These, W SOC, W T, W D is recorded in the storage unit 15 a predetermined constant. Among these, since the influence of SOC is the largest, W SOC is the largest value. Since the effect of the temperature moderate, the size of the W T is moderate. Since the lowest influence of the deterioration degree, the value of W D is a smallest value.
“Α” is a shared coefficient based on the SOC. “Β” is a sharing coefficient based on temperature. “Γ” is a sharing coefficient based on the degree of deterioration. The calculation method of α, β, and γ is as described above. These parameters are variables.
“T LIB ” is a target temperature of the Li battery 130. “T LIC ” is a target temperature of the Li capacitor 140. “D LIB ” is the target deterioration level of the Li battery 130. “D LIC ” is the target deterioration degree of the Li capacitor 140. These parameters are predetermined constants and are recorded in the storage unit 15.
 図9は、本発明の第二実施形態における充放電制御装置の処理フローを示す図である。
 図9を用いて本実施形態の電力分担量を算出する処理について説明する。
 まず、第一実施形態と同様に負荷150から出力要求があったときに、指令値生成部13が、負荷からの要求電力(PLS)を取得する。充電率取得部11は、Liバッテリ130とLiキャパシタ140のSOCを取得し、負荷率設定部12aは、SOCに基づく分担係数αを算出する(ステップS21)。それと並行して、温度取得部16は、Liバッテリ130とLiキャパシタ140の温度を取得する。温度取得部16は、取得した温度を負荷率設定部12aへ出力する。負荷率設定部12aは、記憶部15からTLIBを読み出して、取得したLiバッテリ130の温度とTLIBの偏差の絶対値TLIBDIFを算出する。負荷率設定部12aは、記憶部15からTLICを読み出して、取得したLiキャパシタ140の温度とTLICの偏差の絶対値TLICDIFを算出する。負荷率設定部12aは、式(7)によって温度に基づく分担係数βを算出する(ステップS22)。また、それと並行して、劣化度算出部17は、Liバッテリ130とLiキャパシタ140の劣化度を算出する。劣化度算出部17は、算出した劣化度を負荷率設定部12aへ出力する。負荷率設定部12aは、記憶部15からDLIBを読み出して、取得したLiバッテリ130の劣化度とDLIBの偏差の絶対値DLIBDIFを算出する。負荷率設定部12aは、記憶部15からDLICを読み出して、取得したLiキャパシタ140の劣化度とDLICの偏差の絶対値DLICDIFを算出する。負荷率設定部12aは、式(8)によって劣化度に基づく分担係数γを算出する(ステップS23)。
 次に、負荷率設定部12aは、算出したα、β、γを指令値生成部13へ出力する。指令値生成部13は、記憶部15からWSOC、W、Wを読み出して、以下の式でLiバッテリ130に対する電力指令値を算出する(ステップS24)。
FIG. 9 is a diagram showing a processing flow of the charge / discharge control apparatus in the second embodiment of the present invention.
The process of calculating the power sharing amount according to the present embodiment will be described with reference to FIG.
First, as in the first embodiment, when there is an output request from the load 150, the command value generation unit 13 acquires the required power (P LS ) from the load. The charging rate acquisition unit 11 acquires the SOCs of the Li battery 130 and the Li capacitor 140, and the load factor setting unit 12a calculates a sharing coefficient α based on the SOC (step S21). In parallel, the temperature acquisition unit 16 acquires the temperatures of the Li battery 130 and the Li capacitor 140. The temperature acquisition unit 16 outputs the acquired temperature to the load factor setting unit 12a. The load factor setting unit 12a reads T LIB from the storage unit 15 and calculates the absolute value T LIBDIF of the deviation between the acquired temperature of the Li battery 130 and T LIB . The load factor setting unit 12a reads T LIC from the storage unit 15 and calculates the absolute value T LICDIF of the deviation between the acquired temperature of the Li capacitor 140 and T LIC . The load factor setting unit 12a calculates the sharing coefficient β based on the temperature according to the equation (7) (step S22). In parallel with this, the deterioration degree calculation unit 17 calculates the deterioration degrees of the Li battery 130 and the Li capacitor 140. The deterioration degree calculation unit 17 outputs the calculated deterioration degree to the load factor setting unit 12a. The load factor setting unit 12a reads D LIB from the storage unit 15 and calculates an absolute value D LIBDIF of the obtained deterioration degree of the Li battery 130 and the deviation of D LIB . The load factor setting unit 12a reads the D LIC from the storage unit 15 and calculates the absolute value D LICDIF of the obtained deterioration degree of the Li capacitor 140 and the deviation of the D LIC . The load factor setting unit 12a calculates the sharing coefficient γ based on the degree of deterioration using the equation (8) (step S23).
Next, the load factor setting unit 12 a outputs the calculated α, β, γ to the command value generation unit 13. Command value generation unit 13, W SOC from the storage unit 15, W T, reads W D, to calculate the power instruction value with respect to Li battery 130 by the following equation (step S24).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 指令値生成部13は、算出した電力指令値PDCDCでDC/DCコンバータ120を制御する。 The command value generation unit 13 controls the DC / DC converter 120 with the calculated power command value P DCDC .
 本実施形態によると、第一実施形態に加え、温度・劣化の状態も考慮した分担とでき、デバイスの寿命長期化につなげることができる。
 なお、温度及び劣化度の影響を考慮して電力分担を算出することが好ましいが、SOCと温度のみに基づいて電力分担を制御してもよいし、SOCと劣化度のみに基づいて電力分担を制御してもよい。
According to the present embodiment, in addition to the first embodiment, it is possible to share in consideration of the state of temperature / deterioration, and it is possible to extend the life of the device.
It is preferable to calculate the power sharing in consideration of the effects of temperature and deterioration, but the power sharing may be controlled based only on the SOC and temperature, or the power sharing may be controlled based only on the SOC and the deterioration. You may control.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with known constituent elements without departing from the spirit of the present invention. The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 上記した充放電制御装置、移動体及び電力分担量決定方法によれば、特性の異なる蓄電装置を備えた充放電システムにおいて、それぞれの蓄電装置の特性を生かした最適なシステムとすることができる。 According to the charge / discharge control device, the moving body, and the power sharing amount determination method described above, in a charge / discharge system including power storage devices having different characteristics, an optimum system can be obtained that takes advantage of the characteristics of each power storage device.
100   充放電制御装置
110   充電設備
120   DC/DCコンバータ
130   リチウムイオンバッテリ
140   リチウムイオンキャパシタ
150   負荷
160   バス
11   充電率取得部
12   分担率設定部
13   指令値生成部
14   力行回生判定部
15   記憶部
16   温度取得部
17   劣化度算出部
DESCRIPTION OF SYMBOLS 100 Charging / discharging control apparatus 110 Charging equipment 120 DC / DC converter 130 Lithium ion battery 140 Lithium ion capacitor 150 Load 160 Bus 11 Charging rate acquisition part 12 Sharing rate setting part 13 Command value generation part 14 Power running regeneration determination part 15 Storage part 16 Temperature Acquisition unit 17 Deterioration degree calculation unit

Claims (11)

  1.  負荷との間で充放電可能な第一の蓄電装置と、負荷との間で充放電可能で前記第一の蓄電装置と特性が異なる第二の蓄電装置とを備える充放電システムの充放電制御装置であって、
     前記第二の蓄電装置の充電率を取得する充電率取得部と、
     前記充電率に基づいて、前記第一の蓄電装置に対する充電率に基づく電力の分担率を算出する分担率設定部と、
     前記充電率に基づく分担率に基づいて、前記第一の蓄電装置に対する充放電における電力の指令値を生成する指令値生成部と、
     を備える充放電制御装置。
    Charge / discharge control of a charge / discharge system comprising: a first power storage device that can be charged / discharged to / from a load; and a second power storage device that can be charged / discharged to / from the load and has different characteristics from the first power storage device A device,
    A charge rate acquisition unit for acquiring a charge rate of the second power storage device;
    Based on the charging rate, a sharing rate setting unit that calculates a sharing rate of power based on the charging rate for the first power storage device;
    Based on a sharing rate based on the charging rate, a command value generating unit that generates a command value of power in charging / discharging the first power storage device,
    A charge / discharge control apparatus comprising:
  2.  前記分担率設定部は、予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差に基づいて前記充電率に基づく分担率を算出する
     請求項1に記載の充放電制御装置。
    The sharing rate setting unit calculates a sharing rate based on the charging rate based on a difference between a predetermined target value of the charging rate of the second power storage device and the acquired charging rate of the second power storage device. Item 2. The charge / discharge control device according to Item 1.
  3.  前記充電率取得部は、前記第一の蓄電装置の充電率を取得し、
     前記分担率設定部は、予め定められた第一の蓄電装置の充電率の目標値と前記取得した第一の蓄電装置の充電率の差及び予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差に基づいて前記充電率に基づく分担率を算出する
     請求項1または請求項2に記載の充放電制御装置。
    The charging rate acquisition unit acquires a charging rate of the first power storage device,
    The share rate setting unit is configured to determine a difference between a predetermined charge rate target of the first power storage device and the acquired charge rate of the first power storage device, and a predetermined charge rate of the second power storage device. The charge / discharge control device according to claim 1 or 2, wherein a sharing rate based on the charging rate is calculated based on a difference between a target value and the acquired charging rate of the second power storage device.
  4.  前記分担率設定部は、前記予め記憶された第一の蓄電装置の充電率の目標値と前記取得した第一の蓄電装置の充電率の差をSOCLIBDIFとし、前記予め定められた第二の蓄電装置の充電率の目標値と前記取得した第二の蓄電装置の充電率の差をSOCLICDIFとし、a及びa及びa及びaを定数としたときに以下の式により、前記充電率に基づく分担率を算出する
    Figure JPOXMLDOC01-appb-M000001
     請求項3に記載の充放電制御装置。
    The share rate setting unit sets the difference between the previously stored target value of the charging rate of the first power storage device and the acquired charging rate of the first power storage device as SOC LIBDIF, and sets the second predetermined value When the difference between the target value of the charging rate of the power storage device and the obtained charging rate of the second power storage device is SOC LICDIF, and a 0 and a 1 and a 2 and a 3 are constants, Calculate the sharing rate based on the charging rate
    Figure JPOXMLDOC01-appb-M000001
    The charge / discharge control apparatus according to claim 3.
  5.  前記第一の蓄電装置及び前記第二の蓄電装置の温度を取得する温度取得部、
     を更に備え、
     前記分担率設定部は、前記取得した第一の蓄電装置の温度と予め定められた前記第一の蓄電装置の温度の目標値との差及び前記取得した第二の蓄電装置の温度と予め定められた前記第二の蓄電装置の温度の目標値との差に基づいて前記第一の蓄電装置に対する温度に基づく電力の分担率を算出し、
     前記指令値生成部は、前記充電率に基づく電力の分担率と前記温度に基づく電力の分担率の重み付き平均に基づいて第一の蓄電装置に対する前記指令値を算出する、
     請求項1から請求項4の何れか1項に記載の充放電制御装置。
    A temperature acquisition unit for acquiring temperatures of the first power storage device and the second power storage device;
    Further comprising
    The share ratio setting unit determines in advance a difference between the acquired temperature of the first power storage device and a predetermined target value of the temperature of the first power storage device, and a temperature of the acquired second power storage device. Calculating a share of power based on the temperature for the first power storage device based on the difference from the target temperature value of the second power storage device,
    The command value generation unit calculates the command value for the first power storage device based on a weighted average of a power sharing rate based on the charging rate and a power sharing rate based on the temperature.
    The charge / discharge control apparatus of any one of Claims 1-4.
  6.  前記第一の蓄電装置及び前記第二の蓄電装置の劣化度を算出する劣化度算出部、
     を更に備え、
     前記分担率設定部は、前記算出した第一の蓄電装置の劣化度と予め定められた前記第一の蓄電装置の劣化度の目標値との差及び前記取得した第二の蓄電装置の劣化度と予め定められた前記第二の蓄電装置の劣化度の目標値との差に基づいて前記第一の蓄電装置に対する劣化度に基づく電力の分担率を算出し、
     前記指令値生成部は、前記充電率に基づく電力の分担率と前記劣化度に基づく電力の分担率の重み付き平均に基づいて第一の蓄電装置に対する前記指令値を算出する、
     請求項1から請求項4の何れか1項に記載の充放電制御装置。
    A deterioration degree calculation unit for calculating a deterioration degree of the first power storage device and the second power storage device;
    Further comprising
    The sharing ratio setting unit includes a difference between the calculated deterioration degree of the first power storage device and a predetermined target value of the deterioration degree of the first power storage device, and the acquired deterioration degree of the second power storage device. And a share of power based on the degree of deterioration for the first power storage device based on the difference between the predetermined target value of the degree of deterioration of the second power storage device and a predetermined value,
    The command value generation unit calculates the command value for the first power storage device based on a weighted average of a power sharing rate based on the charging rate and a power sharing rate based on the degree of deterioration.
    The charge / discharge control apparatus of any one of Claims 1-4.
  7.  前記第一の蓄電装置及び前記第二の蓄電装置の温度を取得する温度取得部と、
     前記第一の蓄電装置及び前記第二の蓄電装置の劣化度を算出する劣化度算出部と、
     を更に備え、
     前記分担率設定部は、前記取得した第一の蓄電装置の温度と予め定められた前記第一の蓄電装置の温度の目標値との差及び前記取得した第二の蓄電装置の温度と予め定められた前記第二の蓄電装置の温度の目標値との差に基づく前記第一の蓄電装置に対する温度に基づく電力の分担率と、前記算出した第一の蓄電装置の劣化度と予め定められた前記第一の蓄電装置の劣化度の目標値との差及び前記取得した第二の蓄電装置の劣化度と予め定められた前記第二の蓄電装置の劣化度の目標値との差に基づく前記第一の蓄電装置に対する劣化度に基づく電力の分担率を算出し、
     前記指令値生成部は、前記充電率に基づく電力の分担率と前記温度に基づく電力の分担率と前記劣化度に基づく電力の分担率の重み付き平均に基づいて前記第一の蓄電装置に対する前記指令値を算出する、
     請求項1から請求項4の何れか1項に記載の充放電制御装置。
    A temperature acquisition unit for acquiring temperatures of the first power storage device and the second power storage device;
    A deterioration degree calculation unit for calculating a deterioration degree of the first power storage device and the second power storage device;
    Further comprising
    The share ratio setting unit determines in advance a difference between the acquired temperature of the first power storage device and a predetermined target value of the temperature of the first power storage device, and a temperature of the acquired second power storage device. The power sharing ratio based on the temperature for the first power storage device based on the difference between the temperature target value of the second power storage device and the calculated deterioration degree of the first power storage device are predetermined. Based on the difference between the target value of the degradation level of the first power storage device and the difference between the acquired degradation level of the second power storage device and the predetermined target value of the degradation level of the second power storage device. Calculate the share of power based on the degree of degradation for the first power storage device,
    The command value generation unit is configured for the first power storage device based on a weighted average of a power sharing rate based on the charging rate, a power sharing rate based on the temperature, and a power sharing rate based on the deterioration degree. Calculate the command value,
    The charge / discharge control apparatus of any one of Claims 1-4.
  8.  前記第一の蓄電装置の特性は、前記第一の蓄電装置に比べ高容量であり、前記第二の蓄電装置の特性は、前記第一の蓄電装置に比べ高出力である、
     請求項1から請求項7の何れか1項に記載の充放電制御装置。
    The first power storage device has a higher capacity than the first power storage device, and the second power storage device has a higher output than the first power storage device.
    The charging / discharging control apparatus of any one of Claims 1-7.
  9.  前記第二の蓄電装置の特性は、前記第一の蓄電装置に比べ充放電性能が高い、
     請求項1から請求項7の何れか1項に記載の充放電制御装置。
    The characteristics of the second power storage device are higher in charge / discharge performance than the first power storage device,
    The charging / discharging control apparatus of any one of Claims 1-7.
  10.  請求項1から請求項9のいずれか1項に記載の充放電制御装置、を備える移動体。 A moving body comprising the charge / discharge control device according to any one of claims 1 to 9.
  11.  負荷との間で充放電可能な第一の蓄電装置と、負荷との間で充放電可能で前記第一の蓄電装置と特性が異なる第二の蓄電装置とを備える充放電システムにおいて、
     前記第二の蓄電装置の充電率を取得し、
     前記充電率に基づいて、前記第一の蓄電装置に対する充電率に基づく電力の分担率を算出し、
     前記充電率に基づく分担率に基づいて、前記第一の蓄電装置に対する充放電における電力の指令値を生成する
     電力分担量決定方法。
    In a charge / discharge system comprising a first power storage device that can be charged / discharged with a load, and a second power storage device that is chargeable / dischargeable with a load and has different characteristics from the first power storage device,
    Obtaining the charging rate of the second power storage device;
    Based on the charging rate, calculate a power sharing rate based on the charging rate for the first power storage device,
    A power sharing amount determination method for generating a command value of power in charging / discharging the first power storage device based on a sharing rate based on the charging rate.
PCT/JP2015/076298 2015-02-18 2015-09-16 Charging and discharging control device, mobile body, and electric power allocation amount determining method WO2016132580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580078063.1A CN107592953B (en) 2015-02-18 2015-09-16 Charge/discharge control device, mobile body, and power share determination method
HK18103420.4A HK1244109A1 (en) 2015-02-18 2018-03-12 Charging and discharging control device, mobile body, and electric power allocation amount determining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015029728A JP6639789B2 (en) 2015-02-18 2015-02-18 Charge / discharge control device, moving object, and power sharing amount determination method
JP2015-029728 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132580A1 true WO2016132580A1 (en) 2016-08-25

Family

ID=56688838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076298 WO2016132580A1 (en) 2015-02-18 2015-09-16 Charging and discharging control device, mobile body, and electric power allocation amount determining method

Country Status (4)

Country Link
JP (1) JP6639789B2 (en)
CN (1) CN107592953B (en)
HK (1) HK1244109A1 (en)
WO (1) WO2016132580A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780317A4 (en) * 2018-03-26 2021-10-27 Kabushiki Kaisha Toshiba Power storage control device, power storage system and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074502A1 (en) * 2016-10-18 2018-04-26 株式会社日立製作所 Battery system
KR20190093034A (en) * 2018-01-31 2019-08-08 효성중공업 주식회사 ESS Output Distribution Method and Apparatus thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109840A (en) * 2006-09-28 2008-05-08 Toyota Motor Corp Power supply system, vehicle with the same, control method of power supply system, and computer readable recording medium which records program for making computer execute the control method
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004082098A1 (en) * 2003-03-11 2006-06-15 株式会社東芝 DC power supply system and switch
CN102522796B (en) * 2011-12-26 2014-05-28 惠州市亿能电子有限公司 Method for stably giving power to power battery system
JP5768772B2 (en) * 2012-06-29 2015-08-26 株式会社豊田自動織機 Power storage system and charging rate estimation method
JP5683627B2 (en) * 2013-03-22 2015-03-11 トヨタ自動車株式会社 Power control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109840A (en) * 2006-09-28 2008-05-08 Toyota Motor Corp Power supply system, vehicle with the same, control method of power supply system, and computer readable recording medium which records program for making computer execute the control method
JP2013085390A (en) * 2011-10-11 2013-05-09 Toyota Central R&D Labs Inc Power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780317A4 (en) * 2018-03-26 2021-10-27 Kabushiki Kaisha Toshiba Power storage control device, power storage system and control method

Also Published As

Publication number Publication date
CN107592953A (en) 2018-01-16
JP2016152718A (en) 2016-08-22
JP6639789B2 (en) 2020-02-05
CN107592953B (en) 2020-07-07
HK1244109A1 (en) 2018-07-27

Similar Documents

Publication Publication Date Title
JP6236391B2 (en) Device for balancing the amount of charge for power batteries
JP4640391B2 (en) Power supply system and vehicle equipped with the same
JP5546649B2 (en) Vehicle power supply system
WO2015190094A1 (en) Electrical energy storage system and method for controlling same
US10315522B2 (en) Charge/discharge system
US9956888B2 (en) Power supply system
KR20160013651A (en) Method for controlling on-board charger of eco-friendly vehicle
JP6547764B2 (en) Fuel cell system for vehicle and control method thereof
JP7016628B2 (en) Combined power storage system
US20160297309A1 (en) Vehicle power management device
WO2014148560A1 (en) Power source controller
JP2014023231A (en) Onboard charge control unit
JP6348219B2 (en) Power control system and method for adjusting the input power limit of a DC-DC voltage converter
WO2016132580A1 (en) Charging and discharging control device, mobile body, and electric power allocation amount determining method
US10576835B2 (en) Energy storage device, transport apparatus, and control method
JP5503957B2 (en) Vehicle power supply
KR101567222B1 (en) On-board charger and method for controlling thereof
JP2017070077A (en) Power storage device, transportation equipment, and control method
JP2015082866A (en) Electric vehicle with photovoltaic battery
JP5543018B2 (en) Vehicle power supply system
JP2011229275A (en) Charging system for electric vehicle
KR20160093285A (en) A control method of DC-DC converter
JP6034734B2 (en) Power system
JP7219819B2 (en) Power supply system and its control method and device
WO2015145895A1 (en) Power supply device and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15882681

Country of ref document: EP

Kind code of ref document: A1