WO2016132569A1 - 太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法 - Google Patents
太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法 Download PDFInfo
- Publication number
- WO2016132569A1 WO2016132569A1 PCT/JP2015/068300 JP2015068300W WO2016132569A1 WO 2016132569 A1 WO2016132569 A1 WO 2016132569A1 JP 2015068300 W JP2015068300 W JP 2015068300W WO 2016132569 A1 WO2016132569 A1 WO 2016132569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- power generation
- future
- relevance
- time
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000007423 decrease Effects 0.000 title abstract description 26
- 238000004891 communication Methods 0.000 claims description 6
- 238000012423 maintenance Methods 0.000 abstract description 20
- 230000000052 comparative effect Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 230000005856 abnormality Effects 0.000 description 21
- 238000001514 detection method Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention is a future time when the current value or power generation amount of a solar cell module, a solar cell string, or a power conditioner (simply referred to as a module, a string, or a power conditioner, respectively) of a photovoltaic power generation system is reduced beyond a specific level. It is related with the method of predicting. With this method, it is possible to know an appropriate time for maintenance of the photovoltaic power generation system, and to perform planned maintenance.
- a solar power generation system in which a large number of solar cell panels are arranged in order to effectively use solar energy is already quite popular.
- solar power generation systems There are various types of solar power generation systems, ranging from small-scale systems installed on household roofs to large-scale systems having a power generation amount of 1 megawatt or more capable of supplying local power.
- a plurality of solar cell modules are connected in series to form a solar cell string, and further, a plurality of solar cell strings are connected in parallel to be sent to the power controller of the control device of the solar power generation system. It is done.
- the power conditioner the power is converted and the final output is generated.
- Each power conditioner is connected to a network for data monitoring, for example, and connected to a remote data collection and monitoring server via the Internet.
- Each data related to power generation such as current value and power generation amount is sent to the server in real time, and the power generation status of the power conditioner is monitored by the server, and if an abnormality occurs, it is immediately notified to the photovoltaic power generation system administrator.
- Abnormality detection of a conventional solar power generation system is performed in units of solar cell modules constituting a solar cell panel after it has become clear that a failure has already occurred, or a solar cell comprising a plurality of solar cell modules Generally, it is performed in units of strings or power converters.
- Patent Document 1 the current values of a plurality of modules or strings are measured, the respective measured current values are compared with the average value of the plurality of measured current values, and the average of the measured current values even after a certain period of time has elapsed. If there is a module or string having a measured current value that continues to decrease from the value by a certain percentage or more, it is detected as a failure.
- the method of Patent Document 1 is effective to some extent for detecting an existing failure, but there is a possibility of failure of a module or the like that is not abnormal at the present time but may become abnormal in the future, and a possibility of reduction in power generation amount or the like. Cannot be detected or reported in advance.
- the abnormality determination means estimates the power generation information that will be obtained based on the solar radiation amount information and the temperature information, and the actually measured power generation information measured by the power generation detection means for the estimated power generation information. When it is lower than a predetermined abnormality determination threshold, it is determined that an abnormality has occurred in the solar power generation panel.
- the solar cell comprised by connecting a photovoltaic cell in series, the voltage detection part which detects the output voltage value of the solar cell in power generation, and the output current value of the solar cell in power generation are detected.
- the external environment measurement unit that acquires external environment data indicating the external environment, and the output voltage value, output current value, and external environment data, the characteristics and abnormal state of the solar cell in the abnormal state are detected.
- a solar power generation system having a characteristic calculation unit that calculates a threshold value for performing the detection and an abnormality detection unit that detects the abnormal state of the solar cell using the characteristic and threshold value of the solar cell in the abnormal state is proposed.
- patent document 4 it is a solar power generation system provided with the solar cell string formed by connecting a plurality of solar cell modules in series and a power conditioner, and the weather state for determining whether the weather state is cloudy or sunny The output power of the solar cell string when it is determined that the weather condition is cloudy and the operating point of the solar cell string is changed while having a determination unit and a unit for changing the output operating point of the solar cell string Or when the discontinuous point has arisen in the differential characteristic of output current, what is provided with the detection means which detects that the solar cell module has failed is proposed.
- Patent Documents 2 to 4 described above are intended to detect a failure that has already occurred in the same manner as Patent Document 1, and detect the possibility of a failure of a future module or the like, or the possibility of a decrease in the amount of power generation, etc. I haven't proposed anything to predict the time. As described above, the conventional photovoltaic power generation system cannot predict the future occurrence of an unacceptable failure or abnormality, and therefore cannot accurately propose an appropriate future maintenance time. .
- the present invention was devised in view of the current state of the prior art, and the object of the present invention is to create a future in which a current level or a power generation amount lowers than a specific level in a module / string / power converter of a photovoltaic power generation system. It is to provide a simple way to predict the time.
- the present invention detects an abnormality in a photovoltaic power generation system from a post-detection type that detects an abnormality that has already occurred to a prior prediction type that detects the possibility of an abnormality in the future before an actual failure occurs. In other words, it is possible to accurately advise the appropriate maintenance timing of the photovoltaic power generation system in accordance with the prior prediction.
- a module / string / power controller to be predicted and a data value such as a physical position adjacent relationship, a physical position interval relationship, a past power generation amount or a current value. Focusing on the relationship of mutual data with other comparative modules / strings / power conditioners having a specific relationship with respect to similarity and / or structural similarity, Specifically, using gray system prediction theory for the acquired data, the gray absolute relevance (Absolute Degree Grey Incidence) is calculated from the acquired data, and digital gray is calculated from the calculated gray absolute relevance.
- gray absolute relevance Absolute Degree Grey Incidence
- Predictive model Digital Gray Predictive Model
- the present invention has the following configurations (1) to (4).
- (1) In a solar power generation system having a plurality of power conditioners in which a plurality of solar cell strings in which a plurality of solar cell modules are connected in series are connected in parallel, the sun that causes a decrease of a specific level or more from the current value or power generation amount
- the gray absolute relevance is calculated from the obtained data, and the relevance of the current data of the prediction target and the comparison target and the relevance of the future data are calculated from the calculated gray absolute relevance using the digital gray prediction model.
- a method for indicating a future time when a relevance level of the future data that is lower than a specific level from a relevance level of the current data with the comparison target in the prediction target is generated.
- a prediction target having a degree of relevance of future data that has fallen more than a specific level from the present to the future in a certain period of time is indicated, and if necessary, the prediction target is notified by screen display, e-mail communication, or warning sound.
- a module / string / powercon to be predicted and a module / string / powercon that is highly related with respect to a physical position or a past data value indicating a tendency of similar data values from the present By looking at the transition of the degree of relevance of future power generation or current value data, it is possible to predict the future occurrence of unacceptable abnormalities, which enables solar power before a major failure or significant decrease in power generation occurs. It is possible to accurately advise in advance the appropriate maintenance time of the modules / strings / power conditioners of the power generation system.
- the method of the present invention is predicted using the gray system prediction theory, the prediction accuracy of the unacceptable abnormality occurrence time in the future of the photovoltaic power generation system is extremely high and the prediction is very simple.
- FIG. 1 is an explanatory diagram of an example of a photovoltaic power generation system.
- FIG. 2 shows the temporal transition of the current value of the module to be predicted and the module having a specific relationship therewith.
- FIG. 3 shows a temporal transition of the degree of association between the prediction target and the comparison target module calculated using the data of FIG.
- FIG. 4 shows a time-dependent transition of the power generation amount of a string to be predicted and a string having a specific relationship therewith.
- FIG. 5 shows a temporal transition of the degree of association between the prediction target and the comparison target string calculated using the data of FIG.
- FIG. 6 shows the temporal transition of the power generation amount of the power conditioner to be predicted and the power conditioner having a specific relationship therewith.
- FIG. 7 shows the change over time in the degree of association between the prediction target and the power control target to be compared, calculated using the data in FIG.
- the photovoltaic power generation system that is the object of the method of the present invention has a plurality of solar cell strings 102 in which a plurality of solar cell modules 101 are connected in series, and the plurality of solar cell strings 102 are in parallel.
- a plurality of power conditioners 104 constitute one power generation site, and these power conditioners are connected by a network 105 and collected in the data logger 108.
- Data on the current value or power generation amount measured by the module / string / power conditioner is collected in the data monitoring system server 107 via the data logger 108 and the Internet 106.
- the method of the present invention is intended to predict with high accuracy the future occurrence time (abnormality rise time) of an unacceptable abnormality of modules / strings / power converters of a photovoltaic power generation system.
- the method of the present invention can be used from a small system installed on the roof of a residential house to a large system with a power generation of 1 megawatt or more, but a very large number of modules / strings / power conditioners are installed, It is extremely useful in a mega solar system with a power generation amount of 1 megawatt or more, which requires a lot of labor for the inspection work. Particularly, in the mega solar system, it is necessary to receive maintenance at an appropriate time before the occurrence of a serious future abnormality, and the method of the present invention is a means for appropriately advising the future time of this maintenance. As extremely useful.
- the number of modules per string is not particularly limited as long as it is plural, and as long as the number of strings per power conditioner is also plural, in particular It is not limited, and there is no particular limitation as long as the number of power conditioners in the system is also plural.
- the number of modules per string is 3 to 100
- the number of strings per power controller is 3 to 10,000
- the number of power controllers in one system is 3 to 1000. Is preferred.
- the individual modules / strings / power converters used in the system are of the same structure type in order to accurately extract the relevance of the current value and the measurement data of the power generation amount. Is preferred.
- the cause of the decrease in the power generation amount (current value) of the module / string / power conditioner is temporary that can be ignored and permanent that requires repair or replacement.
- Temporary causes include sunshine hours and the presence of clouds, rainy weather, building shadows, periodic maintenance, etc.
- permanent causes include failure of solar cell modules, failure of measuring devices and communication means
- solder / screw connection such as bird droppings, power conditioner, inverter failure, salt fog, contact failure due to moisture corrosion, etc.
- the present inventor has determined that the power generation amount (current value) of these modules / strings / power converters includes the physical position adjacency relationship, the physical position interval relationship, the past Similarity of measured data such as the amount of power generation (current value), or similar values not only in the past, present value, but also in the future value between modules / strings / power conditioners having a particular high relationship with the type of structure It has been found that this tendency is diminished when a serious failure or many anomalies occur, and the relevance of data values decreases.
- the present invention is based on these findings, and it is necessary to set the appropriate level of the photovoltaic power generation system before a reduction in power generation amount due to the occurrence of a large number of abnormalities or the occurrence of a serious accident just by setting a level of decrease in the degree of relevance to be extracted. It is possible to accurately advise the maintenance plan.
- a module / string / power controller to be predicted from which current value or power generation data is acquired and another module / string / power controller to be compared are selected.
- the module / string / powercon to be predicted and the comparison target have a specific relationship with respect to physical position adjacency relationship, physical position interval relationship, similarity of past data values, and / or structural similarity. It is necessary.
- the comparison target may be singular or plural.
- “Physical position adjacency relationship” means an adjacency relationship of physical positions between modules, strings, and power conditioners, and various definitions can be set. For example, in terms of modules, the relationship is set based on whether the physical position of the installed module is adjacent in the long side, short side, or diagonal direction of the module. The relationship is the highest when the side part is adjacent in the longitudinal direction, then the connection is highest when the side part is adjacent in the short side, and then the diagonal direction is adjacent. Is highly relevant to If it does not correspond to these, it is assumed that there is no relevance regarding the physical position adjacency relationship. The physical position adjacency relationship between strings is determined in the same manner as between modules, and power converters are determined based on whether or not they are adjacent to each other.
- Physics position interval relationship determines the level of relevance (large and small) depending on the size (distance) between modules, strings, and power converters.
- the distance (distance) can be set with various definitions, for example, it can be determined by the distance between the center positions of the module, string, and power conditioner, or it can be determined by the minimum distance between the edges of the module, string, and power conditioner. May be.
- Similarity of past data values means the similarity of numerical values in the past fixed time between modules, strings, and power conditioners with respect to power generation amount (current value), and various definitions can be set. For example, data on the amount of power generation (current value) for a certain period in the past is acquired, and the approximateness of the numerical value between these data (for example, how close one data value is to 100% of the other data value) ) To determine the level of relevance (large or small). When acquiring a plurality of data, the data may be averaged.
- Structural similarity means structural similarity between modules, strings, and power conditioners, and various definitions can be set. For example, the degree of relevance (large or small) is determined based on whether or not the structures are identical.
- the module / string / powercon to be compared and the module / string / powercon to be compared and the module / string / powercon to be compared are extracted after extracting the module / string / powercon to be compared having a specific relationship with the object to be predicted as described above.
- Current value or power generation amount data and by calculating the gray absolute relevance based on the gray system prediction theory, and then applying the digital gray prediction model to these acquired data
- the relevance of the current data and the relevance of the future data are calculated. If there are multiple comparison targets for one prediction target, calculate the relevance for each data of the multiple comparison targets, or calculate the average of the data for each of the multiple comparison targets. The relevance can be calculated.
- it indicates a prediction target in which the rate of decrease has decreased more than a specific level from the present to the future in a certain period of time, and the prediction target is notified by a screen display such as a monitor, e-mail communication, or a warning sound if necessary.
- the absolute degree of gray relevance (Absolute Degree Gray Incidence) is calculated using the definition of the gray absolute degree of relevance ⁇ 1i of the following two sets s 1 and s i :
- s 1 is data to be predicted
- s i is data to be compared.
- FIG. 2 shows the current value of one prediction target and the average current value of two comparison targets over time, the vertical axis is the current value, and the horizontal axis is time.
- 201 indicates current value data of the prediction target module
- 202 indicates average current value data of the comparison target module.
- the time course of the data 201 and 202 is very similar.
- the above gray absolute relevance is calculated using these data. For example, assuming that the current value of the prediction target at time k is s 1 (k) and the current value of the comparison target is s i (k), the relevance ⁇ 1i (k) at time k can be obtained from the following equation:
- FIG. 3 shows the past, present, and future relevance of the data between the prediction target and the comparison target calculated using the data of the module in FIG. Yes, 1 when the relevance is a perfect match, the horizontal axis is time, 301 is the relevance of the current data, 302 is the relevance of the previous past data, and 304 is the future The relevance of the data.
- Reference numeral 303 denotes a future time when future data having a relevance level that is 15% lower than the relevance level of the current data is generated.
- the relevance of data has a tendency to decrease as it progresses from the present to the future, and if the relevance of the future data falls below a certain level from the relevance of the current data, an unacceptable significant
- the possibility of causing a problem of a decrease in the current value of the module due to a failure or occurrence of many abnormalities increases. Therefore, by setting the reduction level of the relevance level of the future data from the relevance level of the current data in advance to a level where there is no problem or less problem and indicating the future time when the reduction level occurs, the module It is possible to accurately indicate the appropriate maintenance time in the future.
- the level of decrease in the relevance level of the future data from the relevance level of the current data is 1% or higher, 2% or higher, 3% or higher, 4% or higher, Furthermore, 5% or more, further 6% or more, further 7% or more, further 8% or more, further 9% or more, further 10% or more, further 12% or more, further 15% or more, It can be set to 20% or more. For example, if the lowering level is set to 15% or more, it can be advised that the future time indicated by 303 is the appropriate future maintenance time of the module.
- FIG. 4 shows the power generation amount of one prediction target string and the power generation amount of one comparison target string over time, the vertical axis is the power generation amount, and the horizontal axis is the time.
- 401 indicates the power generation amount data of the prediction target string
- 402 indicates the power generation amount data of the comparison target string.
- FIG. 5 shows the past, present, and future relevance of the data between the prediction target and the comparison target calculated using the string data of FIG. 4.
- the vertical axis represents the relevance. Yes, 1 for a perfectly matched relevance, the horizontal axis is time, 501 is the relevance of the current data, 502 is the relevance of the previous past data, and 504 is the future The relevance of the data.
- Reference numeral 503 denotes a time when future data having a relevance level that is 8% lower than the relevance level of the current data is generated.
- the relevance of data has a tendency to decrease as it progresses from the present to the future, and if the relevance of the future data decreases by more than a certain level from the relevance of the current data, it is unacceptably significant.
- the possibility of causing a problem of a decrease in the power generation amount of the string due to a failure or occurrence of many abnormalities increases. Therefore, by setting the level of decrease in the relevance of the future data from the relevance of the current data in advance to a level that does not cause a problem, and indicating the future time when the decrease occurs, an appropriate value for the future of the string is obtained.
- the maintenance time can be accurately indicated at the present time. For example, if the lowering level is set to 8% or more, it can be advised that the future time indicated by 503 is an appropriate maintenance time in the future of the string.
- the power generation amount of one prediction target power conditioner and the comparison target power conditioner that has the same structure and the closest power generation amount data for the past month are the same.
- the data from the past to the present is acquired, and the degree of relevance of the current data and the degree of relevance of the future data between the prediction target and the comparison target using the gray absolute relevance and the digital gray prediction model DGM (1, 1)
- FIG. 6 shows the power generation amount of one prediction target power conditioner and the power generation amount of one comparison target power control over time, the vertical axis is the power generation amount, and the horizontal axis is the time.
- 601 indicates the power generation amount data of the prediction target power conditioner
- 602 indicates the power generation amount data of the comparison target power conditioner
- FIG. 7 shows the past, present, and future relevance of the data between the prediction target and the comparison target calculated using the power conditioner data of FIG. 6.
- the vertical axis represents the relevance. Yes, 1 when the relevance is a perfect match, the horizontal axis is time, 701 is the relevance of the current data, 702 is the relevance of the previous past data, and 704 is the future The relevance of the data.
- Reference numeral 703 denotes a time when future data having a relevance level that is 6% lower than the relevance level of the current data is generated. As can be seen from FIG.
- the relevance of the data has a tendency to decrease as it progresses from the present to the future, and if the relevance of the future data decreases by more than a certain level from the relevance of the current data, it is unacceptably significant.
- the possibility of causing a problem of a decrease in power generation amount of the power conditioner due to a failure or occurrence of a large number of abnormalities increases. Therefore, by setting the lowering level of the relevance level of the future data from the relevance level of the current data in advance to a level that does not cause a problem and indicating the future time when the lowering level occurs, The maintenance time can be accurately indicated at the present time. For example, if the decrease level is set to 6% or more, it can be advised that the future time indicated by 703 is an appropriate maintenance time in the future of the power conditioner.
- the power generation amount (current value) data acquired for the module / string / power conditioner is A process of averaging can be performed for a certain time after the start (for example, 10 minutes to 1 hour) and for a certain time before the end of power generation (for example, 10 minutes to 1 hour). Or in order to eliminate the influence of the fluctuation
- the power generation amount (current value) acquired for the module / string / power conditioner is reduced in order to reduce the influence of fluctuations in the data of the power generation amount (current value) that is not significant after the start or end of power generation. ) It is possible to perform processing for averaging data over a specific period of time. Alternatively, the use of the power generation amount (current value) data during these times can be excluded in order to eliminate the influence of these significant data fluctuations.
- a measuring device for measuring a current value or a voltage value for each module / string / power conditioner.
- the amount of power generation can be calculated by current value ⁇ voltage value.
- Conventionally known means may be employed as these measuring devices.
- a current value measuring device is a method of measuring current by a method of inserting a measuring resistor in series at a measurement location and converting it to a voltage across the resistor. Can be adopted. Data such as a current value measured by the measuring device is collected by communication means such as wired or wireless, and the calculation of the degree of association and the future time to be obtained can be presented using a conventionally known computer means. Such presentation (display or notification) can be performed by screen display on a liquid crystal or LED display device, e-mail communication using the Internet, or generation of a warning sound by an acoustic device such as a speaker.
- the method of the present invention can accurately advise an appropriate maintenance time before a future serious failure or a significant decrease in power generation, a long and efficient use and operation of a photovoltaic power generation system is possible. .
- the method of the present invention is extremely meaningful because it brings about an eco effect due to an increase in the amount of power generation, an increase in the service life of the equipment, and an improvement in the utilization efficiency of sunlight.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
太陽光発電システムの未来の適切なメンテナンス時期を正確にアドバイスする。太陽光発電システムにおいて現在の電流値または発電量から特定レベル以上の低下を生じるモジュール、ストリング、またはパワコンの未来の時期を予測する方法であって、予測対象のモジュール、ストリング、またはパワコンの電流値または発電量のデータ、及び予測対象と物理的位置隣接関係、物理的位置間隔関係、過去のデータ値の類似性、及び/または構造の類似性に関して関連性を有する他の比較対象のモジュール、ストリング、またはパワコンの電流値または発電量のデータを取得し、これらの取得したデータからグレー絶対関連度を算出し、算出したグレー絶対関連度からデジタルグレー予測モデルを用いて予測対象と比較対象の現在のデータの関連度及び未来のデータの関連度を算出し、予測対象において比較対象との間で現在のデータの関連度から特定レベル以上低下した未来のデータの関連度が生じる未来の時期を示す。
Description
本発明は、太陽光発電システムの太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナー(単にそれぞれモジュール、ストリング、またはパワコンともいう)の電流値または発電量が特定レベル以上低下する事態が生じる未来の時期を予測する方法に関する。この方法により、太陽光発電システムのメンテナンスの適切な時期を知ることができ、計画的なメンテナンスを実行することができる。
太陽エネルギーを有効利用するために太陽電池パネルを多数並べた太陽光発電システムが既にかなり普及している。この太陽光発電システムは、家庭の屋根に設置する小規模なものから、地域電力をまかなうことができる1メガワット以上の発電量を持つ大規模なものまで様々なものが存在する。
大規模な太陽光発電システムでは、複数の太陽電池モジュールが直列に接続されて太陽電池ストリングを構成し、さらに複数の太陽電池ストリングが並列に接続されて太陽光発電システムの制御装置のパワコンに送られる。パワコンでは電力変換等を行い最終的な発電の出力となる。各パワコンは、例えばデータ監視の為、ネットワークに接続され、インターネットを経由して、遠隔データ収集監視サーバーに接続される。電流値や発電量などの発電に関する各データはリアルタイムにサーバーへ送られ、サーバーでパワコンの発電状況を監視し、異常が発生する場合に即時に太陽光発電システム管理者へ通知する。
太陽光発電システムにおいては、設置工事のミス、部品の欠陥、長年の使用による経年変化、雷などによる故障、または天候、メンテナンス、影などによる外的要因を理由として、モジュール/ストリング/パワコンにおける電流値または発電量が低下する場合がある。一時的な外的要因による電流値または発電量の低下の場合は無視してもよいが、故障の場合は、できるだけ早く該当するモジュール/ストリング/パワコンを修理または交換することが望ましい。
しかしながら、多数のモジュール/ストリング/パワコンからなる発電システムにおいて、外的要因を除いて純粋な故障だけを原因とするモジュール/ストリング/パワコンを見出すのに時間がかかり、場合によって数週間、数ヶ月を経過しないと、明らかな故障と判断できない。この間、状況は次第に悪化しつつ、発電のロスは時間経過とともに大きくなり、1MW当りに数十万円~数百万円のロスが出るケースが存在する。また、完全な故障になるのを防ぐ機会を見逃したため、最初は簡単なメンテナンスで回復出来る軽い故障から回復不能の重大な故障(火災等)に陥り、設備が完全に損害し、発電不能の為、設備交換の発電ロス、設備交換費用及び人件費用も膨らむ場合がある。
従来の太陽光発電システムの異常検出は、故障が既に発生していることが明らかになってから、太陽電池パネルを構成する太陽電池モジュール単位で行うか、又は複数の太陽電池モジュールからなる太陽電池ストリング単位もしくはパワコン単位で行うのが一般的である。
例えば、特許文献1では、複数のモジュールまたはストリングの電流値を測定し、それらの各々の測定電流値と複数の測定電流値の平均値を比較し、一定期間経過しても測定電流値の平均値より一定割合以上低下し続ける測定電流値を持つモジュールまたはストリングが存在する場合にそれを故障として検出する。特許文献1の方法は、既存の故障の検出にはある程度有効であるが、現時点異常ではないが将来に異常になる可能性のあるモジュール等の故障の可能性や発電量等の低下の可能性を検出したり、それを事前に報告することはできない。
また、特許文献2では、異常判定手段が、日射量情報及び温度情報に基づいて、得られるであろう発電情報を推定し、推定発電情報に対し、発電検出手段で実測された実測発電情報が所定の異常判定閾値以上、低下している場合に、太陽発電パネルに異常が発生したと判別する。特許文献3では、太陽電池セルを直列に接続して構成される太陽電池と、発電中の太陽電池の出力電圧値を検出する電圧検出部と、発電中の太陽電池の出力電流値を検出する電流検出部と、外部の環境を示す外部環境データを取得する外部環境計測部と、出力電圧値、出力電流値、及び外部環境データを用いて、異常状態における太陽電池の特性と異常状態を検出するための閾値を算出する特性演算部と、異常状態における太陽電池の特性と閾値とを用いて、太陽電池の異常状態を検出する異常検出部とを有する太陽光発電システムを提案する。特許文献4では、複数の太陽電池モジュールを直列接続して成る太陽電池ストリングと、パワコンとを備えた太陽光発電システムであって、天候状態が曇天であるか晴天であるかを判定する天候状態判定手段と、太陽電池ストリングの出力動作点を変化させる手段とを有すると共に、天候状態が曇天であると判定し、かつ、太陽電池ストリングの動作点を変化させたときの太陽電池ストリングの出力電力または出力電流の微分特性に不連続点が生じている場合、太陽電池モジュールが故障していることを検出する検出手段を備えたものを提案する。
上記の特許文献2~4は、特許文献1と同様に既に発生した故障を検出しようとするものであり、未来のモジュール等の故障の可能性や発電量等の低下の可能性を検出したり、その時期を予測したりするものまでは提案していない。このように従来の太陽光発電システムは、未来の許容できない故障や異常の発生時期を予測することができないため、未来の適切なメンテナンス時期を正確に提案することができていないのが現状である。
本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、太陽光発電システムのモジュール/ストリング/パワコンにおいて現在の電流値または発電量から特定レベル以上の低下を生じる未来の時期を予測するための簡単な方法を提供することにある。特に、本発明は、太陽光発電システムの異常検出を、既に発生している異常を検出する事後検出型から、実際に故障が発生する前の未来の異常の可能性を検出する事前予測型に変え、この事前予測に従って太陽光発電システムの適切なメンテナンス時期を正確にアドバイスすることを可能にするものである。
本発明者は、かかる目的を達成するために鋭意検討した結果、予測対象のモジュール/ストリング/パワコンと、物理的位置隣接関係、物理的位置間隔関係、過去の発電量もしくは電流値などのデータ値の類似性、及び/または構造の類似性に関して特定の関連性を有する他の比較対象のモジュール/ストリング/パワコンとの相互のデータの関連性に着目し、これらの電流値または発電量のデータを取得し、取得したデータに対してグレーシステム予測理論を利用して、具体的には取得したデータからグレー絶対関連度(Absolute Degree Grey Incidence)を算出し、さらに算出したグレー絶対関連度からデジタルグレー予測モデル(Digital Grey Predictive Model)を用いて、予測対象と比較対象の現在のデータの関連度及び未来のデータの関連度を算出し、現在のデータの関連度から特定レベル以上低下した未来のデータの関連度を生じる未来の時期を示すことによって、重度の故障や発電量の著しい低下に至る前に予測対象の適切なメンテナンスの時期を正確にアドバイスできることを見出し、本発明の完成に至った。
即ち、本発明は、以下の(1)~(4)の構成を有するものである。
(1)複数の太陽電池モジュールを直列に接続した複数の太陽電池ストリングを並列に接続した複数のパワーコンディショナーを持つ太陽光発電システムにおいて現在の電流値または発電量から特定レベル以上の低下を生じる太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの未来の時期を予測する方法であって、予測対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータ、及び予測対象と物理的位置隣接関係、物理的位置間隔関係、過去のデータ値の類似性、及び/または構造の類似性に関して特定の関連性を有する他の比較対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータを取得し、これらの取得したデータからグレー絶対関連度を算出し、算出したグレー絶対関連度からデジタルグレー予測モデルを用いて予測対象と比較対象の現在のデータの関連度及び未来のデータの関連度を算出し、予測対象において比較対象との間で現在のデータの関連度から特定レベル以上低下した未来のデータの関連度が生じる未来の時期を示すことを特徴とする方法。
(2)取得したデータを発電の開始後の一定時間及び発電の終了前の一定時間で平均化する処理を行なうことを特徴とする(1)に記載の方法。
(3)取得したデータに対して特定の一定時間で平均化する処理を行なうことを特徴とする(1)または(2)に記載の方法。
(4)現在から一定期間先の未来までにおいて特定レベル以上低下した未来のデータの関連度を持つ予測対象を示し、必要により前記予測対象を画面表示、電子メール通信、または警告音で知らせることを特徴とする(1)~(3)のいずれかに記載の方法。
(1)複数の太陽電池モジュールを直列に接続した複数の太陽電池ストリングを並列に接続した複数のパワーコンディショナーを持つ太陽光発電システムにおいて現在の電流値または発電量から特定レベル以上の低下を生じる太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの未来の時期を予測する方法であって、予測対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータ、及び予測対象と物理的位置隣接関係、物理的位置間隔関係、過去のデータ値の類似性、及び/または構造の類似性に関して特定の関連性を有する他の比較対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータを取得し、これらの取得したデータからグレー絶対関連度を算出し、算出したグレー絶対関連度からデジタルグレー予測モデルを用いて予測対象と比較対象の現在のデータの関連度及び未来のデータの関連度を算出し、予測対象において比較対象との間で現在のデータの関連度から特定レベル以上低下した未来のデータの関連度が生じる未来の時期を示すことを特徴とする方法。
(2)取得したデータを発電の開始後の一定時間及び発電の終了前の一定時間で平均化する処理を行なうことを特徴とする(1)に記載の方法。
(3)取得したデータに対して特定の一定時間で平均化する処理を行なうことを特徴とする(1)または(2)に記載の方法。
(4)現在から一定期間先の未来までにおいて特定レベル以上低下した未来のデータの関連度を持つ予測対象を示し、必要により前記予測対象を画面表示、電子メール通信、または警告音で知らせることを特徴とする(1)~(3)のいずれかに記載の方法。
本発明の方法によれば、予測対象のモジュール/ストリング/パワコンと、同様のデータ値の傾向を示す物理的位置や過去データ値などに関して関連性が高いモジュール/ストリング/パワコンとの間で現在から未来の発電量または電流値のデータの関連度の低下推移を見ることによって未来の許容できない異常発生時期の予測を行なうことができ、これにより重大故障や発電量の著しい低下の発生前に太陽光発電システムのモジュール/ストリング/パワコンの適切なメンテナンス時期を事前に正確にアドバイスすることが可能である。また、本発明の方法は、グレーシステム予測理論を使用して予測しているので、太陽光発電システムの未来の許容できない異常発生時期の予測の精度が極めて高く、しかも予測が極めて簡単である。
以下、本発明の太陽光発電システムの方法について図面を参照して説明するが、本発明はこれらに限定されない。また、ここで挙げたグレー絶対関連度の算出及びデジタルグレー予測モデルの適用は、一例にすぎず、これらに限定されない。
本発明の方法の対象となる太陽光発電システムは、図1に示すように複数の太陽電池モジュール101を直列に接続した太陽電池ストリング102を複数持つものであり、複数の太陽電池ストリング102は並列に接続されて集電力端末装置103を経てパワコン104に集約される。複数のパワコン104が一つの発電サイトを構成し、これらのパワコンがネットワーク105で連結され、データロガー108に集約される。モジュール/ストリング/パワコンで測定した電流値または発電量のデータはデータロガー108及びインターネット106経由でデータ監視システムサーバー107に収集するようになっている。本発明の方法は、太陽光発電システムのモジュール/ストリング/パワコンの未来の許容できない異常の発生時期(異常が高まる時期)を高精度に予測しようとするものである。
本発明の方法は、家庭用住宅の屋根に設置される小規模なシステムから1メガワット以上の発電量の大規模なシステムまで使用可能であるが、極めて多数のモジュール/ストリング/パワコンが設置され、それらの点検作業に多大な労力を要する1メガワット以上の発電量のメガソーラーシステムにおいて極めて有用である。特に、メガソーラーシステムにおいては、未来の重大な異常の発生前の適切な時期にメンテナンスを受けておくことが必要であり、本発明の方法は、このメンテナンスの未来の時期を適切にアドバイスする手段として極めて有用である。
本発明の方法の対象となる太陽光発電システムでは、一つのストリングあたりのモジュールの数は複数である限り、特に限定されず、また、一つのパワコンあたりのストリングの数も複数である限り、特に限定されず、また、システム中のパワコンの数も複数である限り、特に限定されない。本発明の方法では、一つのストリングあたりのモジュールの数が3~100個、一つのパワコンあたりのストリングの数が3~10000個、一つのシステム中のパワコンの数が3~1000台であることが好ましい。本発明の方法では、システム中で使用される個々のモジュール/ストリング/パワコンは、電流値や発電量の測定データの関連度の抽出を精度良く行なうために同じ構造の種類のものを使用することが好ましい。
モジュール/ストリング/パワコンの発電量(電流値)の低下の原因は、無視してもよい一時的なものと、修理又は交換を必要とする永続的なものとが存在する。一時的な原因としては、日照時間や雲の存在、雨天などの天候、建物の影、定期的メンテナンス等があり、永続的な原因としては、太陽電池モジュールの故障、測定装置や通信手段の故障、鳥の糞、パワコン等の半田不良/ねじ接続不良、インバータ不具合、塩霧、湿気腐蝕による接触不良等がある。
本発明者は、これらのモジュール/ストリング/パワコンの発電量(電流値)は、上述の一時的な原因及び永続的な原因による低下を含め、物理的位置隣接関係、物理的位置間隔関係、過去の発電量(電流値)などの測定データの類似性、または構造の種類に関して特定の高い関連性を有するモジュール/ストリング/パワコン同士で過去、現在の値だけでなく未来の値においても同様の数値傾向を持つこと、そして重大な故障や多くの異常が発生しているときにこの傾向が薄まり、データ値の相互の関連度が低下することを見出した。そして、これらのモジュール/ストリング/パワコン同士の発電量(電流値)のデータに対してグレー絶対関連度の算出、次いでデジタルグレー予測モデルの適用を行なうことにより現在のデータの関連度と未来のデータの関連度を算出し、現在のデータの関連度から特定レベル以上低下した未来のデータの関連度が生じる未来の時期を抽出することにより、未来の重大な異常が発生する可能性が高い時期やかかる重大な異常にまで至らない未来の最長時期を正確に精度良く示すことができることを見出した。本発明は、これらの知見に基づいており、抽出する関連度の低下レベルを設定するだけで多数の異常の発生による発電量の低下や重大事故の発生に至る前に太陽光発電システムの適切なメンテナンス時期の計画を正確にアドバイスすることが可能である。
本発明の方法では、まず電流値または発電量のデータが取得される予測対象のモジュール/ストリング/パワコンと他の比較対象のモジュール/ストリング/パワコンが選択される。このとき、予測対象と比較対象のモジュール/ストリング/パワコンは、物理的位置隣接関係、物理的位置間隔関係、過去のデータ値の類似性、及び/または構造の類似性に関して特定の関連性を持つことが必要である。比較対象は単数であっても複数であってもよい。
物理的位置隣接関係は、モジュール間、ストリング間、パワコン間の物理的位置の隣接関係を意味し、様々な定義を設定できる。例えば、モジュールで言うと、設置されているモジュールの物理的位置がモジュールの長手方向の辺、短手方向の辺、または斜め方向で隣接しているかどうかで関連性を設定し、モジュールの隣接している辺の部分が長手方向の辺で隣接している場合に関連性が最も高く、次いで短手方向の辺で隣接している場合に関連性が高く、次いで斜め方向で隣接している場合に関連性が高い。これらに該当しない場合は、物理的位置隣接関係に関して関連性がないとされる。ストリング間の物理的位置隣接関係はモジュール間と同様に判断され、パワコン間は単に隣接しているかどうかで判断される。
物理的位置間隔関係は、モジュール間、ストリング間、パワコン間の間隔(距離)の大小で関連性の高さ(大小)を決定する。間隔(距離)は、様々な定義で設定することができ、例えばモジュール、ストリング、パワコンの中心位置間の距離で決定することができ、あるいはモジュール、ストリング、パワコンの縁部間の最小距離で決定してもよい。
過去のデータ値の類似性は、発電量(電流値)に関してモジュール間、ストリング間、パワコン間の過去の一定時期における数値の類似性を意味し、様々な定義を設定できる。例えば、過去の一定時期の発電量(電流値)のデータを取得し、これらのデータ間の数値の大きさの近似性(例えば、一方のデータ値が他方のデータ値の100%にどれくらい近いか)で関連性の高さ(大小)を決定する。複数のデータを取得する場合はデータを平均化してもよい。
構造の類似性は、モジュール間、ストリング間、パワコン間の構造の類似性を意味し、様々な定義を設定できる。例えば、構造の同一性を有するかどうかで関連性の高さ(大小)を判断する。
本発明の方法では、上述のように予測対象と特定の関連性を有する比較対象のモジュール/ストリング/パワコンを抽出した後、予測対象のモジュール/ストリング/パワコン、及び比較対象のモジュール/ストリング/パワコンの電流値または発電量のデータを取得し、これらの取得したデータに対してグレーシステム予測理論に基づいてグレー絶対関連度の算出、次いでデジタルグレー予測モデルの適用を行なうことにより予測対象と比較対象の間の現在のデータの関連度と未来のデータの関連度を算出する。一つの予測対象に対して複数の比較対象が存在する場合は、複数の比較対象の各々のデータに対してそれぞれ関連度を算出するか、または複数の比較対象の各々のデータの平均値に対して関連度を算出することができる。
グレー絶対関連度の算出及びデジタルグレー予測モデルの適用の方法は、従来公知であり、基本的には以下のような数式でグレー絶対関連度ε1iを求め、次いでε=Xとしてデジタルグレー予測モデルDGM(1,1)の数式を用いて予測対象と比較対象の間のデータの現在の関連度と未来の関連度を算出し、次いで現在の関連度からの未来の関連度の低下割合を算出する。そして、この低下割合が特定レベル以上になる未来の時期を示す。あるいは、さらに現在から一定期間先の未来までにおいて、この低下割合が特定レベル以上低下した予測対象を示し、必要により、前記予測対象をモニター等の画面表示、電子メール通信、または警告音で知らせる。
グレー絶対関連度(Absolute Degree Grey Incidence)は、以下の2集合s1,siのグレー絶対関連度ε1iの定義を用いて算出する:
ここでs1は予測対象のデータ、siは比較対象のデータである。
ここでs1は予測対象のデータ、siは比較対象のデータである。
次に、上記のグレー絶対関連度及びデジタルグレー予測モデルを用いて現在の関連度及び未来の関連度を算出した具体例を示す。まずモジュールが碁盤目状に並べられた太陽光発電システムにおいて、1個の予測対象のモジュール(長方形)と、その長辺に隣接する同一構造の2個のモジュールの電流値の過去から現在までのデータを取得する。図2は、1個の予測対象の電流値と2個の比較対象の平均電流値を経時的に示したものであり、縦軸は電流値であり、横軸は時間である。図中、201は予測対象のモジュールの電流値データを示し、202は比較対象のモジュールの平均電流値データを示す。図2からわかるように、201と202のデータの経時的推移は極めて類似している。
図3は、図2のモジュールのデータを用いて算出された予測対象と比較対象の間のデータの過去、現在、未来の関連度を示したものであり、図中、縦軸は関連度であり、完全に一致した関連度の場合に1を示し、横軸は時間であり、301が現在のデータの関連度であり、302がそれ以前の過去のデータの関連度であり、304が未来のデータの関連度である。303は、現在のデータの関連度から15%低下した関連度を持つ未来のデータが生じる未来の時期を示す。図3からわかるように、データの関連度は、現在から未来に進むに従って低下する傾向を有し、未来のデータの関連度が現在のデータの関連度から特定レベル以上低下すると、許容できない重大な故障や多数の異常発生によるモジュールの電流値の低下の問題を生じる可能性が高まる。従って、この現在のデータの関連度からの未来のデータの関連度の低下レベルを問題が生じないか又は問題が少ないレベルに予め設定し、この低下レベルを生じる未来の時期を示すことによって、モジュールの未来の適切なメンテナンス時期を現時点で正確に示すことができる。このように未来の時期を示す場合の現在のデータの関連度からの未来のデータの関連度の低下レベルは1%以上、さらには2%以上、さらには3%以上、さらには4%以上、さらには5%以上、さらには6%以上、さらには7%以上、さらには8%以上、さらには9%以上、さらには10%以上、さらには12%以上、さらには15%以上、さらには20%以上に設定することができる。例えば、低下レベルを15%以上に設定すると、303が示す未来の時期がモジュールの未来の適切なメンテナンス時期であるとアドバイスすることができる。
次に、ストリングが碁盤目状に並べられた太陽光発電システムにおいて、1個の予測対象のストリングと、それと同一構造でありかつ距離が最も近い1個の比較対象のストリングの発電量の過去から現在までのデータを取得し、グレー絶対関連度とデジタルグレー予測モデルDGM(1,1)を利用して予測対象と比較対象の間の現在のデータの関連度と未来のデータの関連度を算出した具体例を示す。図4は、1個の予測対象のストリングの発電量と1個の比較対象のストリングの発電量を経時的に示したものであり、縦軸は発電量であり、横軸は時間である。図中、401は予測対象のストリングの発電量データを示し、402は比較対象のストリングの発電量データを示す。図5は、図4のストリングのデータを用いて算出された予測対象と比較対象の間のデータの過去、現在、未来の関連度を示したものであり、図中、縦軸は関連度であり、完全に一致した関連度の場合に1を示し、横軸は時間であり、501が現在のデータの関連度であり、502がそれ以前の過去のデータの関連度であり、504が未来のデータの関連度である。503は現在のデータの関連度から8%低下した関連度を持つ未来のデータが生じる時期を示す。図5からわかるように、データの関連度は、現在から未来に進むに従って低下する傾向を有し、未来のデータの関連度が現在のデータの関連度から特定レベル以上低下すると、許容できない重大な故障や多数の異常発生によるストリングの発電量の低下の問題を生じる可能性が高まる。従って、この現在のデータの関連度からの未来のデータの関連度の低下レベルを問題が生じないレベルに予め設定し、この低下レベルを生じる未来の時期を示すことによって、ストリングの未来の適切なメンテナンス時期を現時点で正確に示すことができる。例えば、低下レベルを8%以上に設定すると、503が示す未来の時期がストリングの未来の適切なメンテナンス時期であるとアドバイスすることができる。
次に、同じ太陽光発電システムにおいて、1台の予測対象のパワコンと、それと同一構造でありかつ過去1ヶ月間の発電量のデータの推移が最も近い1台の比較対象のパワコンの発電量の過去から現在までのデータを取得し、グレー絶対関連度とデジタルグレー予測モデルDGM(1,1)を利用して予測対象と比較対象の間の現在のデータの関連度と未来のデータの関連度を算出した具体例を示す。図6は、1台の予測対象のパワコンの発電量と1台の比較対象のパワコンの発電量を経時的に示したものであり、縦軸は発電量であり、横軸は時間である。図中、601は予測対象のパワコンの発電量データを示し、602は比較対象のパワコンの発電量データを示す。図7は、図6のパワコンのデータを用いて算出された予測対象と比較対象の間のデータの過去、現在、未来の関連度を示したものであり、図中、縦軸は関連度であり、完全に一致した関連度の場合に1を示し、横軸は時間であり、701が現在のデータの関連度であり、702がそれ以前の過去のデータの関連度であり、704が未来のデータの関連度である。703は現在のデータの関連度から6%低下した関連度を持つ未来のデータが生じる時期を示す。図7からわかるように、データの関連度は、現在から未来に進むに従って低下する傾向を有し、未来のデータの関連度が現在のデータの関連度から特定レベル以上低下すると、許容できない重大な故障や多数の異常発生によるパワコンの発電量の低下の問題を生じる可能性が高まる。従って、この現在のデータの関連度からの未来のデータの関連度の低下レベルを問題が生じないレベルに予め設定し、この低下レベルを生じる未来の時期を示すことによって、パワコンの未来の適切なメンテナンス時期を現時点で正確に示すことができる。例えば、低下レベルを6%以上に設定すると、703が示す未来の時期がパワコンの未来の適切なメンテナンス時期であるとアドバイスすることができる。
本発明の方法では、発電の開始後及び終了前の発電量(電流値)のデータの変動による影響を少なくするために、モジュール/ストリング/パワコンに関して取得した発電量(電流値)データを発電の開始後の一定時間(例えば10分から1時間)及び発電の終了前の一定時間(例えば10分から1時間)で平均化する処理を行なうことができる。あるいは、これらの時間のデータの変動の影響をなくすために発電の開始後の一定時間及び発電の終了前の一定時間の発電量(電流値)のデータの使用を除外することができる。
また、本発明の方法では、発電の開始後や終了前以外においても著しい発電量(電流値)のデータの変動による影響を少なくするために、モジュール/ストリング/パワコンに関して取得した発電量(電流値)データを特定の一定時間で平均化する処理を行なうことができる。あるいは、これらの著しいデータの変動の影響をなくすためにこれらの時間の発電量(電流値)のデータの使用を除外することができる。
本発明の方法では、個々のモジュール/ストリング/パワコンごとに電流値または電圧値を測定するための測定装置を設けることが好ましい。発電量は電流値×電圧値によって算出することできる。これらの測定装置としては、従来公知の手段を採用すればよく、例えば電流値の測定装置は、測定箇所に直列に計測用抵抗を入れて抵抗両端の電圧に変換する方法で電流を計測する方法を採用することができる。測定装置によって測定された電流値等のデータは有線又は無線等の通信手段によって集められ、従来公知の計算機手段を使用して関連度の算出や求める未来時期等の提示を行なうことができる。これらの提示(表示又は通知)は、液晶又はLEDの表示装置における画面表示、インターネットを利用した電子メール通信、またはスピーカ等の音響装置による警告音の発生で行なうことができる。
本発明の方法は、未来の重度の故障や発電量の著しい低下の前に適切なメンテナンス時期を正確にアドバイスすることができるので、太陽光発電システムの長い効率的な使用及び運用が可能である。結果として、本発明の方法は、発電量の増加や設備の使用寿命の増加、さらには太陽光利用効率の向上によるエコ効果をもたらすため、極めて有意義である。
101 太陽電池モジュール
102 太陽電池ストリング
103 集電力端末装置
104 パワーコンディショナー
105 ネットワーク
106 インターネット
107 データ監視システムサーバー
108 データロガー
201 予測対象の電流値データ
202 比較対象の平均電流値データ
301 現在のデータの関連度
302 過去のデータの関連度
303 現在のデータの関連度から15%低下した関連度を持つ未来の時期
304 未来のデータの関連度
401 予測対象の発電量データ
402 比較対象の発電量データ
501 現在のデータの関連度
502 過去のデータの関連度
503 現在のデータの関連度から8%低下した関連度を持つ未来の時期
504 未来のデータの関連度
601 予測対象の発電量データ
602 比較対象の発電量データ
701 現在のデータの関連度
702 過去のデータの関連度
703 現在のデータの関連度から6%低下した関連度を持つ未来の時期
704 未来のデータの関連度
102 太陽電池ストリング
103 集電力端末装置
104 パワーコンディショナー
105 ネットワーク
106 インターネット
107 データ監視システムサーバー
108 データロガー
201 予測対象の電流値データ
202 比較対象の平均電流値データ
301 現在のデータの関連度
302 過去のデータの関連度
303 現在のデータの関連度から15%低下した関連度を持つ未来の時期
304 未来のデータの関連度
401 予測対象の発電量データ
402 比較対象の発電量データ
501 現在のデータの関連度
502 過去のデータの関連度
503 現在のデータの関連度から8%低下した関連度を持つ未来の時期
504 未来のデータの関連度
601 予測対象の発電量データ
602 比較対象の発電量データ
701 現在のデータの関連度
702 過去のデータの関連度
703 現在のデータの関連度から6%低下した関連度を持つ未来の時期
704 未来のデータの関連度
Claims (4)
- 複数の太陽電池モジュールを直列に接続した複数の太陽電池ストリングを並列に接続した複数のパワーコンディショナーを持つ太陽光発電システムにおいて現在の電流値または発電量から特定レベル以上の低下を生じる太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの未来の時期を予測する方法であって、予測対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータ、及び予測対象と物理的位置隣接関係、物理的位置間隔関係、過去のデータ値の類似性、及び/または構造の類似性に関して特定の関連性を有する他の比較対象の太陽電池モジュール、太陽電池ストリング、またはパワーコンディショナーの電流値または発電量のデータを取得し、これらの取得したデータからグレー絶対関連度を算出し、算出したグレー絶対関連度からデジタルグレー予測モデルを用いて予測対象と比較対象の現在のデータの関連度及び未来のデータの関連度を算出し、予測対象において比較対象との間で現在のデータの関連度から特定レベル以上低下した未来のデータの関連度が生じる未来の時期を示すことを特徴とする方法。
- 取得したデータを発電の開始後の一定時間及び発電の終了前の一定時間で平均化する処理を行なうことを特徴とする請求項1に記載の方法。
- 取得したデータに対して特定の一定時間で平均化する処理を行なうことを特徴とする請求項1または2に記載の方法。
- 現在から一定期間先の未来までにおいて特定レベル以上低下した未来のデータの関連度を持つ予測対象を示し、必要により前記予測対象を画面表示、電子メール通信、または警告音で知らせることを特徴とする請求項1~3のいずれかに記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/907,433 US20160378890A1 (en) | 2015-02-17 | 2015-06-25 | Method for predicting a future timing of lowering of current value or power generation quantity of solar power generation system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-028265 | 2015-02-17 | ||
JP2015028265A JP5736530B1 (ja) | 2015-02-17 | 2015-02-17 | 太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132569A1 true WO2016132569A1 (ja) | 2016-08-25 |
Family
ID=53487114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068300 WO2016132569A1 (ja) | 2015-02-17 | 2015-06-25 | 太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160378890A1 (ja) |
EP (1) | EP3059856A1 (ja) |
JP (1) | JP5736530B1 (ja) |
WO (1) | WO2016132569A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6185206B1 (ja) * | 2017-05-31 | 2017-08-23 | オーナンバ株式会社 | 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置 |
CN108537357A (zh) * | 2018-02-09 | 2018-09-14 | 上海电气分布式能源科技有限公司 | 基于降额因子的光伏发电量损失预测方法 |
WO2019130718A1 (ja) * | 2017-12-28 | 2019-07-04 | 住友電気工業株式会社 | 判定装置、太陽光発電システム、判定方法および判定プログラム |
CN110492528A (zh) * | 2019-09-30 | 2019-11-22 | 南京江宁区上峰国银标准件厂 | 一种自控形太阳能发电网控制系统 |
CN111553467A (zh) * | 2020-04-30 | 2020-08-18 | 陈永聪 | 一种实现通用人工智能的方法 |
CN111832818A (zh) * | 2020-07-07 | 2020-10-27 | 杭州电子科技大学 | 一种基于相关性分析的lstm网络发电多步预测方法 |
CN114048896A (zh) * | 2021-10-27 | 2022-02-15 | 国核自仪系统工程有限公司 | 光伏发电数据的预测方法、系统、设备及介质 |
US11715291B2 (en) | 2020-04-30 | 2023-08-01 | Yongcong Chen | Establishment of general-purpose artificial intelligence system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017156811A (ja) * | 2016-02-29 | 2017-09-07 | オーナンバ株式会社 | 原動機によって動作される装置又は機械システムの性能低下の時期を予測する方法 |
JP2018007311A (ja) * | 2016-06-27 | 2018-01-11 | 藤崎電機株式会社 | 太陽光発電保守装置、太陽光発電保守システム、太陽光発電保守方法及びコンピュータプログラム |
CN107453396B (zh) * | 2017-08-02 | 2020-06-09 | 安徽理工大学 | 一种分布式光伏电源出力的多目标优化调度方法 |
FR3071319B1 (fr) * | 2017-09-18 | 2020-06-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de mesure de la performance d'une centrale a energie renouvelable, procede de detection d'une anomalie de fonctionnement d'une centrale a energie renouvelable et dispositif mettant en œuvre lesdits procedes |
CN113778762B (zh) * | 2021-08-23 | 2024-03-19 | 珠海格力电器股份有限公司 | 设备冗余备份方法、装置、计算机设备和存储介质 |
CN116050644A (zh) * | 2023-02-14 | 2023-05-02 | 西安热工研究院有限公司 | 一种基于灰色模型预测大坝变形极值的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003090887A (ja) * | 2001-09-20 | 2003-03-28 | Ffc:Kk | 落雷による瞬時電圧低下予測システムおよび予測方法 |
JP2011196968A (ja) * | 2010-03-24 | 2011-10-06 | Osaka Gas Co Ltd | 太陽光発電量予測装置 |
CN103500365A (zh) * | 2013-09-18 | 2014-01-08 | 广州供电局有限公司 | 光伏发电功率预测方法和系统 |
JP2014082309A (ja) * | 2012-10-16 | 2014-05-08 | Mitsubishi Electric Corp | 太陽光発電システムの管理装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011101916A1 (ja) | 2010-02-19 | 2011-08-25 | オーナンバ株式会社 | 太陽光発電システムの故障検出方法 |
WO2012081116A1 (ja) | 2010-12-16 | 2012-06-21 | 三菱電機株式会社 | 太陽光発電システム |
JP5723611B2 (ja) | 2011-01-27 | 2015-05-27 | 株式会社日立製作所 | 太陽光発電システム、異常検出方法、及び異常検出システム |
JP2013093430A (ja) | 2011-10-25 | 2013-05-16 | Gaia Power Co Ltd | 太陽光発電システム及びその管理方法 |
-
2015
- 2015-02-17 JP JP2015028265A patent/JP5736530B1/ja active Active
- 2015-06-25 US US14/907,433 patent/US20160378890A1/en not_active Abandoned
- 2015-06-25 WO PCT/JP2015/068300 patent/WO2016132569A1/ja active Application Filing
-
2016
- 2016-02-12 EP EP16155517.2A patent/EP3059856A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003090887A (ja) * | 2001-09-20 | 2003-03-28 | Ffc:Kk | 落雷による瞬時電圧低下予測システムおよび予測方法 |
JP2011196968A (ja) * | 2010-03-24 | 2011-10-06 | Osaka Gas Co Ltd | 太陽光発電量予測装置 |
JP2014082309A (ja) * | 2012-10-16 | 2014-05-08 | Mitsubishi Electric Corp | 太陽光発電システムの管理装置 |
CN103500365A (zh) * | 2013-09-18 | 2014-01-08 | 广州供电局有限公司 | 光伏发电功率预测方法和系统 |
Non-Patent Citations (1)
Title |
---|
FUJIHIRO YAMADA ET AL.: "Prediction of Next Day Solar Power Generation by Gray Theory and Neural Networks", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN B, vol. 134, no. 6, 1 June 2014 (2014-06-01), pages 494 - 500 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018207595A (ja) * | 2017-05-31 | 2018-12-27 | オーナンバ株式会社 | 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置 |
JP6185206B1 (ja) * | 2017-05-31 | 2017-08-23 | オーナンバ株式会社 | 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置 |
JPWO2019130718A1 (ja) * | 2017-12-28 | 2020-12-24 | 住友電気工業株式会社 | 判定装置、太陽光発電システム、判定方法および判定プログラム |
JP7188399B2 (ja) | 2017-12-28 | 2022-12-13 | 住友電気工業株式会社 | 判定装置、太陽光発電システム、判定方法および判定プログラム |
WO2019130718A1 (ja) * | 2017-12-28 | 2019-07-04 | 住友電気工業株式会社 | 判定装置、太陽光発電システム、判定方法および判定プログラム |
CN108537357B (zh) * | 2018-02-09 | 2021-10-01 | 上海电气分布式能源科技有限公司 | 基于降额因子的光伏发电量损失预测方法 |
CN108537357A (zh) * | 2018-02-09 | 2018-09-14 | 上海电气分布式能源科技有限公司 | 基于降额因子的光伏发电量损失预测方法 |
CN110492528A (zh) * | 2019-09-30 | 2019-11-22 | 南京江宁区上峰国银标准件厂 | 一种自控形太阳能发电网控制系统 |
CN111553467A (zh) * | 2020-04-30 | 2020-08-18 | 陈永聪 | 一种实现通用人工智能的方法 |
CN111553467B (zh) * | 2020-04-30 | 2021-06-08 | 陈永聪 | 一种实现通用人工智能的方法 |
US11715291B2 (en) | 2020-04-30 | 2023-08-01 | Yongcong Chen | Establishment of general-purpose artificial intelligence system |
CN111832818A (zh) * | 2020-07-07 | 2020-10-27 | 杭州电子科技大学 | 一种基于相关性分析的lstm网络发电多步预测方法 |
CN111832818B (zh) * | 2020-07-07 | 2023-07-21 | 杭州电子科技大学 | 一种基于相关性分析的lstm网络发电多步预测方法 |
CN114048896A (zh) * | 2021-10-27 | 2022-02-15 | 国核自仪系统工程有限公司 | 光伏发电数据的预测方法、系统、设备及介质 |
CN114048896B (zh) * | 2021-10-27 | 2023-02-03 | 国核自仪系统工程有限公司 | 光伏发电数据的预测方法、系统、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2016152675A (ja) | 2016-08-22 |
EP3059856A1 (en) | 2016-08-24 |
JP5736530B1 (ja) | 2015-06-17 |
US20160378890A1 (en) | 2016-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5736530B1 (ja) | 太陽光発電システムの未来の電流値または発電量の低下の時期を予測する方法 | |
JP5584622B2 (ja) | 太陽光発電システムの故障検出方法 | |
JP7289995B2 (ja) | 太陽光発電ストリングの動作状態を認識する方法および装置ならびに記憶媒体 | |
JP6185206B1 (ja) | 太陽光発電システムの異常または異常の予兆を検出するための方法及び装置 | |
JP2011216811A (ja) | 太陽電池異常診断システム、太陽電池異常診断装置および太陽電池異常診断方法 | |
WO2016166991A1 (ja) | 太陽光発電設備の診断システムおよびプログラム | |
KR20140112146A (ko) | 태양광 발전 시스템의 발전진단 장치 | |
JP2013258796A (ja) | 自然エネルギーを利用した発電システムの劣化診断装置 | |
CN108599724A (zh) | 一种光伏组件在线监测系统及监测方法 | |
WO2015152205A1 (ja) | 発電システム分析装置および方法 | |
JP2018037078A (ja) | 障害検出機能付き発電モニタリングシステム | |
TWI671996B (zh) | 判斷太陽能發電模組朝向的方法 | |
JP2016201921A (ja) | 太陽光発電設備の発電量の低下を検出する方法、装置、およびプログラム | |
WO2014142388A1 (ko) | 태양광 발전 시스템의 발전분석 장치 및 방법 | |
Leloux et al. | Automatic fault detection on BIPV systems without solar irradiation data | |
KR101544713B1 (ko) | 태양광 발전기 출력 저하 판단 방법 및 장치 | |
Wong et al. | Operational performance and economic analysis of three PV tracking technologies in an Australian PV plant | |
TWI645663B (zh) | Abnormal judgment method and system for power generation performance of solar energy equipment | |
Deli et al. | On-Field Operation and Maintenance of Photovoltaic Systems in Cameroon | |
TW201727559A (zh) | 再生能源電廠的管理方法與系統 | |
EP4170618A1 (en) | Abnormality determination system and power generation system | |
Hunt et al. | Availability of utility-scale photovoltaic power plants | |
JP6339449B2 (ja) | 発電設備の診断システム | |
WO2021167530A1 (en) | Method and apparatus for determining snowfall date of photovoltaic station, and device and storage medium thereof | |
JP2018108025A (ja) | 発電設備の診断システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14907433 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882670 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882670 Country of ref document: EP Kind code of ref document: A1 |