WO2016129671A1 - Control system for autonomously traveling work vehicle - Google Patents

Control system for autonomously traveling work vehicle Download PDF

Info

Publication number
WO2016129671A1
WO2016129671A1 PCT/JP2016/054125 JP2016054125W WO2016129671A1 WO 2016129671 A1 WO2016129671 A1 WO 2016129671A1 JP 2016054125 W JP2016054125 W JP 2016054125W WO 2016129671 A1 WO2016129671 A1 WO 2016129671A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
tractor
vehicle
autonomous traveling
unmanned
Prior art date
Application number
PCT/JP2016/054125
Other languages
French (fr)
Japanese (ja)
Inventor
横山 和寿
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to JP2016533729A priority Critical patent/JP6384545B2/en
Publication of WO2016129671A1 publication Critical patent/WO2016129671A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control

Definitions

  • the present invention relates to a control system for an autonomous traveling work vehicle.
  • the master vehicle is operated by an operator, and the slave vehicle is an unmanned vehicle.
  • Each of the master vehicle and the slave vehicle includes a control device, and communication between the vehicles can be performed wirelessly.
  • the slave vehicle is provided with a program capable of parallel operation with respect to the master vehicle.
  • at least one of the master vehicle and the slave vehicle includes a navigation device such as a GPS, and a technique that can identify the position of at least one of the master vehicle and the slave vehicle is known. For example, as described in Patent Document 1.
  • the present invention has been made in view of the above circumstances, and can perform work more accurately, faster, and more efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
  • An object is to provide a control system for an autonomous traveling work vehicle.
  • the control system for an autonomous traveling work vehicle is a control system for an autonomous traveling work vehicle that causes the working vehicle to autonomously travel and perform work while positioning the position of the working vehicle using a satellite positioning system.
  • the work area of the autonomous traveling work vehicle, the work area of the autonomous traveling work vehicle, and the work content of the autonomous traveling work vehicle are set for each field, and the work area and work content of the farm field responsible for the autonomous traveling work vehicle are set. Is transmitted, and a predetermined work is performed in a predetermined work area of the field in charge of the autonomous traveling work vehicle, and the operating state of the autonomous traveling work vehicle is monitored.
  • the work area is set based on a distance from an arbitrarily set boundary or a distance from a boundary determined by the shape of the field.
  • the autonomous traveling work vehicle control system it is preferable to adjust the setting of the autonomous traveling work vehicle accompanying the work based on the distribution of soil quality in the work area.
  • an autonomous traveling work vehicle that performs a predetermined work in a predetermined field of the field, work area, work content, and field where the autonomous traveling work vehicle performs work is added. Preferably it can be done.
  • a work area in which the superiority of an autonomous traveling work vehicle that can perform simple work accurately and quickly and efficiently is utilized, and a manned work that can perform complex work flexibly.
  • the work efficiency is improved by sharing the field coverage of the field with the work area where the superiority of the vehicle can be fully utilized. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
  • a region where problems may occur in autonomous traveling and work by the autonomous traveling work vehicle is easily set. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
  • the farmer's technology is converted into data, and the technology is passed down to new farmers.
  • the technology is passed down to new farmers.
  • an arbitrary number of autonomous traveling work vehicles are operated simultaneously and independently as a group of autonomous traveling work vehicles according to a work area and a ratio of a work process, and work by manned work vehicles is performed in parallel.
  • the work efficiency is improved by the cooperative action.
  • the schematic side view which shows an autonomous traveling work vehicle, a GPS satellite, and a reference station.
  • the control block diagram of the control system of the autonomous traveling work vehicle which concerns on 1st embodiment.
  • the control block diagram of the control system of the autonomous traveling work vehicle which concerns on 2nd embodiment.
  • the figure which shows the conveyance management of the unmanned tractor which works in arbitrary work areas.
  • An autonomous traveling work vehicle control system 1 includes an unmanned tractor 2 which is an autonomous traveling work vehicle capable of traveling and working autonomously and unmanned, a manned tractor 16 which is a manned work vehicle operated by a worker, and remote control.
  • a device 17 is provided.
  • the manned tractor 16 and the unmanned tractor 2 an embodiment in which a rotary tiller 24 is mounted as a working machine will be described.
  • the work vehicle and the autonomous traveling work vehicle are not limited to tractors, but may be a combine or the like.
  • the working machine is not limited to the rotary tiller 24, and may be a tiller, a mower, a rake, a seeder, a fertilizer, a wagon, or the like.
  • the unmanned tractor 2 includes an engine 4 in a hood 3, a dashboard provided in a cabin 15 at the rear of the hood 3, and steering operation means on the dashboard.
  • a steering handle 5, a tachometer of the engine 4, a fuel gauge, and a meter panel 49 which is a display means for indicating an oil pressure and an abnormality are provided.
  • a driver seat 6 is disposed behind the steering handle 5, and a mission case 7 is disposed below the driver seat 6.
  • Rear axle cases 9, 9 are connected to the left and right sides of the transmission case 7, and rear wheels 11, 11 are supported on the rear axle cases 9, 9 via axles.
  • the rear axle cases 9, 9 are provided with a braking device 46.
  • a front axle case 8 is supported on a front frame 12 that supports the engine 4, and front wheels 10 and 10 are supported on both sides of the front axle case 8.
  • a fuel tank 14 is disposed below the step.
  • the fuel tank 14 is provided with a level sensor 29 that detects the fuel level.
  • the direction of the front wheels 10 and 10 is rotated by the rotation of the steering handle 5 via the steering device. Further, the front wheels 10 and 10 can be steered left and right by a steering actuator 40 including a power steering cylinder serving as a driving unit of the steering device.
  • the unmanned tractor 2 is steered by the steering controller 20 controlling the steering actuator 40 based on the steering direction detected by a steering sensor (not shown).
  • the steering sensor is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor is not limited as long as the steering direction is recognized, and may be a configuration that detects the rotation of the steering handle 5 or the amount of operation of the power steering. .
  • the power from the engine 4 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 7 so that the front wheels 10 and 10 and the rear wheels 11 and 11 can be driven.
  • the transmission is configured by, for example, a hydraulic mechanical continuously variable transmission (HMT), and a movable swash plate of a variable displacement hydraulic pump is controlled by an HMT controller 44.
  • the continuously variable transmission is suitable for robotization from the viewpoint of dramatically improving productivity.
  • the transmission case 7 houses a PTO clutch and a PTO transmission, and the PTO transmission can be turned on and off by a PTO clutch 45.
  • the rotation speed of the rear wheel 11 is detected by the vehicle speed sensor 27 and displayed on the meter panel 49 as the traveling speed.
  • the traveling speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
  • a rotary tiller 24 is installed as a work implement behind the unmanned tractor 2 via a work implement mounting device 23 so as to be able to move up and down to perform the tilling work.
  • the mission case 7 is provided with an inclination control cylinder 26.
  • the tilt control cylinder 26 is expanded and contracted by the tilt control controller 25 so that the tilt of the rotary tiller 24 can be adjusted.
  • An angle sensor 21 is provided as means for detecting the inclination of the inclination of the rotary tiller 24.
  • GPS global positioning system
  • GPS was originally developed as a navigation support system for aircraft and ships. Twenty-four GPS satellites (four each on six orbital planes) orbiting about 20,000 kilometers above the ground, GPS satellites It consists of a control station that performs tracking and control, and a user communication device that performs positioning. In addition to GPS (United States), high-precision positioning can be performed by using satellite positioning systems (GNSS) such as quasi-zenith satellite (Japan) and Glonus satellite (Russia). In this embodiment, GPS is used. Yes. Furthermore, further improvement in accuracy can be expected by using an IMU (Inertial Measurement Device).
  • GNSS satellite positioning systems
  • IMU Inertial Measurement Device
  • GPS global positioning system
  • DGPS differential GPS
  • RTK-GPS real-time kinematics-GPS
  • the satellite positioning system is not limited as long as it is a positioning system with higher accuracy than the RTK-GPS positioning system.
  • RTK-GPS real-time kinematics-GPS positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
  • a mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data reception antenna 38 are disposed on the cabin 15 of the unmanned tractor 2, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna 39 are provided on the field H. It is disposed at a predetermined position that does not interfere with the work.
  • the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
  • the mobile GPS antenna 34 disposed on the unmanned tractor 2 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 and the position information of the unmanned tractor 2 is measured.
  • the obstacle sensor 41 detects whether there is an obstacle in front, side or rear of the aircraft.
  • the obstacle sensor 41 is provided at a position where an obstacle on the front, rear and left and right sides of the unmanned tractor 2 can be detected.
  • the obstacle sensor 41 is constituted by a laser sensor or an ultrasonic sensor. Thereby, the response
  • the camera 42 photographs the front, side, and rear of the aircraft.
  • the camera 42 is provided at a position where the front, rear and left and right sides of the unmanned tractor 2 in the field H can be photographed. Even if the camera 42 has one camera 42 arranged at the center of the body and rotated around the vertical axis to photograph the surroundings, a plurality of cameras 42 are arranged at the front and rear or four corners of the body to surround the body.
  • the present invention is not limited to this.
  • the engine controller 60 controls the engine 4.
  • An engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like are connected to the engine controller 60 so that the state of the engine 4 can be detected.
  • the engine controller 60 detects a load from the set rotational speed and the actual rotational speed, and controls the fuel injection amount and the like so as not to be overloaded.
  • the control device 30 causes the unmanned tractor 2 to autonomously travel.
  • the storage device 30m of the control device 30 stores various programs for causing the unmanned tractor 2 to autonomously travel.
  • the control device 30 may actually be configured such that a CPU, ROM, RAM, HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the control device 30 is connected to the steering controller 20 and can acquire the steering direction of the front wheels 10 and 10 from the steering controller 20. Further, the control device 30 can output a control signal for the steering actuator 40 to the steering controller 20 based on the steering direction of the front wheels 10 and 10 acquired from the steering controller 20 and the control signal from the remote control device 17. .
  • the control device 30 is connected to the angle sensor 21 and the inclination control controller 25, and can acquire the inclination of the rotary tiller 24 detected by the angle sensor 21. Further, the control device 30 can output a control signal from the tilt controller 25 based on the tilt of the rotary tiller 24 acquired from the angle sensor 21.
  • the mobile communication device 33 is connected to the control device 30, and the position information of the unmanned tractor 2 measured by the mobile communication device 33 can be acquired.
  • position information (map information) on the outer periphery of the field H, which is the work range, is also set in advance by a known method and stored in the storage device 30m.
  • the obstacle sensor 41 is connected to the control device 30, and the position and size of the obstacle detected by the obstacle sensor 41 can be acquired. Further, the control device 30 controls the braking device 46 and the engine controller 60 so as to stop traveling when the obstacle detected by the obstacle sensor 41 approaches within a set distance.
  • the control device 30 is connected to a camera 42 and can acquire an image captured by the camera 42.
  • the control device 30 causes the video captured by the camera 42 to be displayed on the display 17 a of the remote operation device 17.
  • the display screen of the display 17a is small, it can be displayed on another large display 17a, or the video of the camera 42 can be displayed constantly or selectively on another dedicated display 17a.
  • the controller 30 is connected to the HMT controller 44, and the angle of the movable swash plate of the variable displacement hydraulic pump can be acquired from the HMT controller 44. Further, the control device 30 sends a hydraulic mechanical continuously variable transmission (HMT) to the HMT controller 44 based on the angle of the movable swash plate of the variable displacement hydraulic pump obtained from the HMT controller 44 and the control signal from the remote operation device 17. ) Control signal can be output.
  • HMT hydraulic mechanical continuously variable transmission
  • the controller 30 is connected to a PTO clutch 45, and the PTO clutch 45 can be controlled to control the connection / disconnection of power to the PTO shaft.
  • the braking device 46 is connected to the control device 30, and the number of revolutions of the rear wheel 11 (the traveling speed of the unmanned tractor 2) can be controlled by controlling the braking device 46.
  • a meter panel 49 is connected to the control device 30, the number of revolutions of the rear wheel 11 (traveling speed of the unmanned tractor 2) detected by the vehicle speed sensor 27 via the meter panel 49, and the remaining fuel amount detected by the level sensor 29. Is possible to get. Further, the control device 30 outputs the travel speed of the unmanned tractor 2 and the information on the fuel remaining amount acquired from the meter panel 49 to the remote operation device 17, and displays the travel speed of the unmanned tractor 2 on the display 17 a of the remote operation device 17. It is possible to display the remaining amount of fuel.
  • the controller 30 is connected to an engine controller 60 that is a control means of the engine 4 so that the state of the engine 4 can be detected from the engine controller 60. Further, the control device 30 can output a control signal for the engine 4 to the engine controller 60 based on the state of the engine 4 acquired from the engine controller 60 and the control signal from the remote control device 17. Further, the control device 30 can output information about the state of the engine 4 acquired from the engine controller 60 to the remote operation device 17 and display the state of the engine 4 on the display 17 a of the remote operation device 17.
  • the control device 30 obtains the position information of the unmanned tractor 2 measured by the mobile communication device 33, the displacement information and the direction information of the body from the gyro sensor 31 and the direction sensor 32. Then, based on the position information, the displacement information, and the direction information, the control device 30 controls the steering controller 20, the tilt control controller 25, the HMT controller 44, the PTO in the work area S of the farm field H that is acquired from the remote operation device 17.
  • the unmanned tractor 2 is automatically driven to work automatically by controlling the clutch 45, the engine controller 60, and the like.
  • the manned tractor 16 serving as a manned traveling vehicle will be described. Since the basic configuration of the manned tractor 16 is substantially the same as that of the unmanned tractor 2, a detailed description thereof will be omitted.
  • the manned tractor 16 is configured so that an operator can get on and operate.
  • the manned tractor 16 is equipped with a remote control device 17 so that the unmanned tractor 2 can be operated by the remote control device 17.
  • the remote control device 17 transmits information related to running and work to the unmanned tractor 2, makes the unmanned tractor 2 autonomously run and work, and monitors the operation (autonomous running and work) state of the unmanned tractor 2.
  • the remote operation of the remote operation device 17 includes transmission of predetermined information to the plurality of unmanned tractors 2, and operation and monitoring of the plurality of unmanned tractors 2.
  • the remote control device 17 selectively operates emergency stop, temporary stop, restart, change of vehicle speed, change of engine speed, lifting / lowering of work equipment, turning on / off of the PTO clutch 45, etc. It is configured to be able to.
  • the accelerator actuator, the HMT controller 44, the PTO clutch 45, the braking device 46, and the like are controlled from the remote operation device 17 via the communication device 17b, the communication device 47, and the control device 30, so that an operator can easily perform a plurality of operations. It is possible to remotely control the unmanned tractor 2, add the unmanned tractor 2, and monitor the working state of the unmanned tractor 2.
  • the remote control device 17 is configured to be able to set the work area S and work contents in the field H of the unmanned tractor 2.
  • the remote operation device 17 can transmit an arbitrary work area S set in the field H based on the map data or the work area S set from the shape of the field H to the unmanned tractor 2. For example, when the offset distance L from the ridge which is the boundary of the field H is arbitrarily set, the remote operation device 17 uses the closed space surrounded by the set of points separated by the set offset distance L as the work area S. This is transmitted to the unmanned tractor 2.
  • the remote control device 17 can be attached to and detached from an operation unit such as a dashboard of the manned tractor 16 and the unmanned tractor 2.
  • the remote control device 17 can be operated while attached to the dashboard of the manned tractor 16, taken out of the manned tractor 16, carried and operated, or attached to the dashboard of the unmanned tractor 2. It is said. Further, the remote control device 17 may be in a place (for example, a management center) separated from the farm field H where the unmanned tractor 2 or the manned tractor 16 is working.
  • the remote control device 17 can be composed of, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
  • the remote operation device 17 and the unmanned tractor 2 are configured to be able to communicate with each other wirelessly (or by wire), and the unmanned tractor 2 and the remote operation device 17 are provided with communication devices 47 and 17b for communication, respectively.
  • the communication device 17b is configured integrally with the remote operation device 17.
  • the communication devices 47 and 17b are configured to be able to communicate with each other by communication means such as a wireless LAN.
  • the remote operation device 17 is provided with a display 17a, which is a touch panel type operation screen that can be operated by touching the screen, on the surface of the housing, and a communication device 17b, a CPU as the control device 17c, a storage device, a battery, etc. Is housed.
  • the display 17a can display surrounding images taken by the camera 42, the state of the unmanned tractor 2, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor them.
  • the remote control device 17 is in a place (for example, a management center) separated from the farm field H where the unmanned tractor 2 or the manned tractor 16 is working, in addition to the communication between the remote control device 17 and the unmanned tractor 2
  • the remote control device 17 is configured to be able to communicate with the manned tractor 16 wirelessly.
  • the control system 1 for the autonomous traveling work vehicle displays the position of the unmanned tractor 2 and the manned tractor 16 (or the remote control device 17) on the display 17b and the meter panel 49, and calculates the distance between them. Displayed on the display 17b and the meter panel 49.
  • the remote control device 17 or the manned tractor 16 is provided with an alarm device such as a buzzer or a speaker 151 and connected to the control devices 17c and 18. And when the separation distance of the unmanned tractor 2 and the manned tractor 16 becomes longer than the set distance, when the unmanned tractor 2 deviates from the set work area S, or when the vehicle does not travel along the set travel route R In addition, a warning or an alarm is issued to the remote control device 17.
  • Such a configuration facilitates handling and monitoring of the unmanned tractor 2 as the unmanned tractor 2 autonomously travels and works in the work area S while being accompanied by the manned tractor 16. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
  • control system 1 for the autonomous traveling work vehicle according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
  • the control system 1 for an autonomous traveling work vehicle controls an unmanned tractor 2 and a manned tractor 16 that travel together in the same field H.
  • the unmanned tractor 2 and the manned tractor 16 work in parallel with each other in the front-back, left-right, and diagonal directions (may be sideways).
  • the control system 1 of the autonomous traveling work vehicle calculates the separation distance between the unmanned tractor 2 and the manned tractor 16 from the measurement result of the satellite positioning system by the remote operation device 17.
  • the remote control device 17 transmits the separation distance to the control device 30 of the unmanned tractor 2 and monitors the separation distance between the unmanned tractor 2 and the manned tractor 16.
  • the remote operation device 17 controls the HMT controller 44 of the unmanned tractor 2 so that the separation distance between the unmanned tractor 2 and the manned tractor 16 is within the set range.
  • the control device 30 of the unmanned tractor 2 controls the HMT controller 44 so as to increase the speed of the unmanned tractor 2 when the separation distance from the manned tractor 16 exceeds the set range, and when the separation distance becomes shorter than the set range, The HMT controller 44 is controlled so as to reduce the speed 2 (see FIG. 2).
  • control system 1 of the autonomous traveling work vehicle can acquire information from the control device 30 of the unmanned tractor 2 by the remote operation device 17 and monitor the operating state of the unmanned tractor 2.
  • the remote control device 17 deviates from the set work area S, or the separation distance from the manned tractor 16 exceeds the set range, or When it becomes shorter than the set range, a warning or warning is issued when the unmanned tractor 2 is in an abnormal operating state.
  • the unmanned tractor 2 and the manned tractor 16 perform the same work and work twice the width at a time.
  • the manned tractor 16 is configured to travel along the rear of the unmanned tractor 2.
  • the present invention is not limited thereto, and the unmanned tractor 2 travels along the rear of the manned tractor 16.
  • a configuration in which another unmanned tractor 2 travels behind the unmanned tractor 2 may be employed.
  • the control system 50 for an autonomous traveling work vehicle includes a first unmanned tractor 2 a, a second unmanned tractor 2 b, and a third unmanned tractor 2 c that constitute the unmanned tractor 2. It is controlled by a remote control device 17 mounted on the device.
  • a remote control device 17 mounted on the device.
  • the structure about the 1st unmanned tractor 2a, the 2nd unmanned tractor 2b, and the 3rd unmanned tractor 2c is the same, it demonstrates centering around the structure in the 1st unmanned tractor 2a.
  • the control system 50 for the autonomous traveling work vehicle is a remote control mounted on the manned tractor 16 and the control device 30 that controls the steering controller 20, the tilt control controller 25, the HMT controller 44, the meter panel 49, the engine controller 60, and the like. Signals can be transmitted to and from the device 17 via a wireless LAN or digital simple radio. Moreover, the control system 50 of the autonomous traveling work vehicle is configured so that the remote operation device 17 can acquire an image from the monitoring camera 48 installed in the farm field H via the wireless LAN. In addition, the autonomous traveling work vehicle control system 50 is configured so that the current information of the first unmanned tractor 2a can be measured by the mobile communication device 33 based on the radio wave from the GPS satellite.
  • the control system 50 for the autonomous traveling work vehicle has the position and shape of the first farm field H1 that the first unmanned tractor 2a is in charge of based on the map data from the remote operation device 17. Entered. Furthermore, when the offset distance L is input from the remote operation device 17, the control system 50 for the autonomous traveling work vehicle has an offset distance input from an arbitrary region set in the first field H1 or the shape of the first field H1. A closed space surrounded by a set of points separated by L inside or outside the boundary of the region is transmitted from the remote control device 17 to the first unmanned tractor 2a as the first work region S1.
  • the first work area S1 is an area surrounded by a set of points that enter the inside of the first field H1 by a predetermined offset distance L from the outer edge of the first field H1 (for example, rice paddies in paddy fields). It shall be said.
  • An area within a predetermined offset distance L from the outer edge of the first field H1 is referred to as a first outer edge area G1.
  • the autonomous traveling work vehicle control system 50 controls the first unmanned tractor 2a to perform autonomous traveling and work only in the first work area S1 thus set. Accordingly, the first unmanned tractor 2a performs autonomous traveling and work only up to a position separated by a predetermined offset distance L from the outer edge of the first farm field H1.
  • the first outer edge region G1 of the first farm field H1 is sometimes operated by the manned tractor 16 because a complicated operation process may be required depending on the state of the irrigation channel and the passage. That is, the autonomous traveling work vehicle control system 50 divides the first farm field H1 into a first work area S1 where the first unmanned tractor 2a shares the work and a first outer edge area G1 where the manned tractor 16 shares the work.
  • the work area of the first farm field H1 is set based on the distance from the outer edge of the first farm field H1, but is not limited thereto, and is based on the distance from the public road or the like. It may be set.
  • the work area may be set by teaching using traveling control according to the first embodiment, or the work area may be set directly on the map data. Thereby, guidance of control of the 1st unmanned tractor 2a can be performed also for education of a new farmer.
  • the control system 50 for an autonomous traveling work vehicle has a first work area S1 that makes the most of the superiority of the unmanned tractor 2 that can perform simple work accurately and quickly, and
  • the work efficiency is improved by sharing the range of the first field H1 with the first outer edge region G1 that makes the most of the superiority of the manned tractor 16 capable of performing complicated work flexibly according to the situation. Accordingly, it is possible to perform the work more accurately, faster and more efficiently than when only the manned tractor 16 performs while considering the experience of the worker.
  • control system 50 of the autonomous traveling work vehicle is configured to perform the first work in the first farm field H1 based on the monitoring camera 48 installed in the first farm field H1, position information by GPS, and various information from the control device 30.
  • the operation state of the first unmanned tractor 2a in the region S1 is configured to be monitored. Therefore, the control system 50 of the autonomous traveling work vehicle is a worker (administrator) based on the image of the first unmanned tractor 2a photographed by the monitoring camera 48 through the remote operation device 17, regardless of the location of the worker (administrator).
  • An abnormality can be detected at an early stage from the confirmation based on the position information of the first unmanned tractor 2a and the confirmation of the state of the first unmanned tractor 2a based on various information from the control device 30.
  • control system 50 of the autonomous traveling work vehicle can perform the work more accurately, faster and more efficiently than the case where only the manned tractor 16 performs while considering the experience of the worker.
  • the control system 50 for the autonomous traveling work vehicle determines the traveling speed of the first unmanned tractor 2a, the tilling depth of the rotary tiller 24, and the like based on the soil distribution in the first work area S1. It is configured to be changeable to a setting suitable for In other words, the control system 50 for the autonomous traveling work vehicle has the first information based on the position information of the first unmanned tractor 2a and the information on the soil distribution when the information on the soil distribution is input in advance in the first work area S1.
  • the travel speed and tilling depth setting suitable for the soil quality at the work position of the unmanned tractor 2a can be transmitted to the first unmanned tractor 2a through the remote control device 17.
  • the 1st agricultural field H1 is formed from the part of soil A, soil B, and soil C.
  • the control system 50 for the autonomous traveling work vehicle transmits soil information corresponding to each coordinate information in the first field H1.
  • the first unmanned tractor 2a changes the setting of the traveling speed and the tilling depth based on the transmitted information.
  • the control system 50 for the autonomous traveling work vehicle may be configured to change the setting of the traveling speed and tilling depth based on the load of the engine 4 and the load of the rotary tiller 24 in the first work area S1.
  • the autonomous traveling work vehicle control system 50 accumulates the position information of the first unmanned tractor 2a and the setting of the traveling speed and tilling depth at the position, thereby information on the soil distribution in the first work area S1. Can be configured. In this way, it is possible to input the farmer's experience knowledge as data, and it can also be used in fields with different conditions.
  • the first unmanned tractor 2a and the second unmanned tractor 2 constituting the plurality of unmanned tractors 2 are used.
  • Control modes for controlling the unmanned tractor 2b and the third unmanned tractor 2c will be described.
  • the first field H1, the second field H2, and the third field H3 do not have to be adjacent to each other.
  • the autonomous traveling work vehicle control system 50 includes position information and work contents of the first farm field H1 handled by the first unmanned tractor 2a, position information and work contents of the second farm field H2 handled by the second unmanned tractor 2b, and third.
  • the position information and work contents of the third field H3 handled by the unmanned tractor 2c and the offset distance L are set, the work area in each field is set, and the work mode and work contents such as the work start position and work direction are set. It transmits to the 1st unmanned tractor 2a, the 2nd unmanned tractor 2b, and the 3rd unmanned tractor 2c through remote control device 17, and starts operation simultaneously and independently by group control.
  • the autonomous traveling work vehicle control system 50 can add a fourth unmanned tractor 2d, which is a new unmanned tractor 2.
  • the control system 50 for the autonomous traveling work vehicle can manage the state of the fourth unmanned tractor 2d in the remote operation device 17.
  • the autonomous traveling work vehicle control system 50 is based on position information of the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c, various information from the control device 30, and an image acquired from the monitoring camera 48. Monitor operating conditions.
  • the manned tractor 16 includes a first outer edge region G1 of the first field H1 and a second outer edge region G2 of the second field H2 where the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c do not work. And the third outer edge region G3 of the third field H3 are sequentially operated. At this time, the size and work of the first work area S1, the second work area S2, and the third work area S3 of the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c on which group control is performed.
  • the number of unmanned tractors 2 with respect to the manned tractor 16 can be appropriately set based on the contents, the sizes of the first outer edge region G1, the second outer edge region G2, and the third outer edge region G3 of the manned tractor 16 and the work contents. .
  • the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c each handle one field, but the present invention is not limited to this. May be in charge of a plurality of fields, and when the work in the work area of one field is completed, the work in the work area of another field may be performed.
  • the unmanned tractors 2a, 2b, 2c,... May work together as a group of unmanned tractors 2 for each work area in a plurality of fields.
  • the control for preventing the unmanned tractor 2c from traveling outside an arbitrary work area S3 in the control system 50 for an autonomous traveling work vehicle according to the second embodiment of the present invention will be described with reference to FIGS. .
  • the arbitrary work area S3 is assumed to be an agricultural field H3 in which an autonomous travel prohibition area P3, which is a public road such as a general road, is adjacent to a fence.
  • the remote control device 17 uses the information from the camera 42 and GPS to correct the position information of the unmanned tractor 2c displayed on the map data.
  • the position information of the unmanned tractor 2c displayed on the map data is corrected by detecting the terrain shape and the distance from the object based on the parallax in the plurality of images photographed by the camera 42 and referring to the map information. Can do.
  • terrain information may be acquired from a plurality of images that are simultaneously captured by providing a plurality of cameras 42.
  • the remote control device 17 corrects the direction information of the unmanned tractor 2c displayed on the map data based on the direction information of the aircraft acquired from the gyro sensor 31 and the direction sensor 32.
  • the remote control device 17 is configured so that the unmanned tractor 2c does not leave the arbitrary work area S3 by using the camera 42 and the GPS. As described above, the unmanned tractor 2c can autonomously travel in any work area S3 after grasping accurate position information and direction information.
  • the unmanned tractor 2c is provided with a tilt sensor for detecting the tilt of the aircraft.
  • the remote control device 17 determines whether the aircraft is in an arbitrary work area S3 in light of position information measured by the GPS.
  • the unmanned tractor 2c is controlled to return to the work route in the arbitrary work area S3.
  • the remote control device 17 determines that the speed and output of the airframe detected by the vehicle speed sensor 27 and the torque sensor are abnormal, the airframe is in an arbitrary work area in light of the position information measured by the GPS. It is determined whether it is within S3.
  • the airframe is about to leave the arbitrary work area S3 (for example, when the airframe is riding on a kite)
  • the unmanned tractor 2c is controlled to return to the work route in the arbitrary work area S3.
  • the remote control device 17 determines whether the aircraft is in an arbitrary work area S3, and if the aircraft is about to leave the arbitrary work area S3, the unmanned tractor 2c is placed in the arbitrary work area S3.
  • the remote control device 17 determines whether the aircraft is in an arbitrary work area S3, and if the aircraft is about to leave the arbitrary work area S3, the unmanned tractor 2c is placed in the arbitrary work area S3.
  • work routes of unmanned tractors 2a, 2b, and 2c are created from the shapes of the work areas.
  • the remote control device 17 calculates work times and work end positions in various work areas based on detection results of the vehicle speed sensors 27 of the unmanned tractors 2a, 2b, and 2c traveling along the work route.
  • the remote control device 17 is configured to calculate the work end times T of the unmanned tractors 2a, 2b, and 2c in the respective work areas, and notify the user of the work end times T and work end positions in various work areas. Is done.
  • the work end time T in the first work area S1 is T1
  • the work end time T in the second work area S2 is T2
  • the work end time in the third work area S3 is , T3.
  • the remote control device 17 notifies the user of the work end time T and the work end position in various work areas, so that the user can, for example, each unmanned tractor 2a based on the work end time T and the work end position.
  • a plan for transporting 2b and 2c by the transport vehicle 51 can be made. Therefore, unmanned tractors 2a, 2b, and 2c can be efficiently transported, and work efficiency can be improved.
  • the unmanned tractors 2a, 2b, and 2c are prohibited from traveling in the autonomous traveling prohibited area P3 that is a public road such as a general road. For this reason, the driver or user loads the unmanned tractors 2a, 2b, and 2c on the transport vehicle 51 outside the autonomous travel prohibition area P3, and the driver operates the transport vehicle 51 (manned travel), whereby the unmanned tractor 2a. ⁇ 2b ⁇ 2c can be transported.
  • the remote control device 17 is provided in the management center S which is a place away from the plurality of farm fields H where the plurality of unmanned tractors 2a, 2b, and 2c are working.
  • the remote control device 17 is a tablet personal computer, but may be configured by a server of the management center S.
  • the transport vehicle 51 is provided with a GPS and a mobile communication device, and the mobile communication device can transmit information from the GPS to the management center S (the remote control device 17 in this embodiment).
  • the management center S (in this embodiment, the remote control device 17) sets the required dispatch order of the unmanned tractors 2a, 2b, and 2c that are working in the field H. For example, the order which requires dispatch from the work end time of the unmanned tractors 2a, 2b, and 2c in the work area in each field H is set. Based on the required dispatch order, dispatch to the unmanned tractor 2 having a higher dispatch order is preferentially performed. Specifically, the vehicle 51 closest to the field H where the unmanned tractor 2 having a high dispatching order is working is determined using information from the GPS, and the collection destination and the work end are determined to the driver of the vehicle 51. Notify the time. Based on the notified information, the driver of the transport vehicle 51 goes to collect unmanned tractors, thereby enabling efficient transport. The unmanned tractor 2 to be collected may be delivered to another farm field H and work may be performed again in the farm field H.
  • the present invention can be used for an autonomous traveling work vehicle control system.

Abstract

The purpose of the present invention is to provide a control system for an autonomously traveling work vehicle capable of performing work more accurately, quickly and efficiently in comparison to using only a manned tractor which is a manned work vehicle, while taking operator experience into account. An autonomously traveling work vehicle control system 1 for causing a tractor functioning as a work vehicle to autonomously travel and perform work, while also measuring the position of the work vehicle by using a satellite positioning system, the control system 1 being one which: sets unmanned tractors 2 (2a, 2b, 2c) which are autonomously traveling work vehicles responsible for a field H, work regions S for the unmanned tractors 2a, 2b, 2c, and work content for the unmanned tractors 2a, 2b, 2c; transmits the work content and work region S of the field H for which the unmanned tractors 2a, 2b, 2c are responsible; causes prescribed work in a prescribed work region S of the field H for which the unmanned tractors 2a, 2b, 2c are responsible to be performed; and monitors the state of operation of the unmanned tractors 2a, 2b, 2c.

Description

自律走行作業車両の制御システムControl system for autonomous work vehicle
 本発明は、自律走行作業車両の制御システムに関する。 The present invention relates to a control system for an autonomous traveling work vehicle.
 農業界の現状は、就農者の高齢化、就農者数の減少、担い手不足などの状況が続いており、農作業を支援するロボット化技術が急務である。そのため、効率化を図るロボット化技術として、すでに随伴型ロボットトラクタが提案されていて実証試験に入っている。具体的には、マスター車両は、作業者により運転操作され、スレーブ車両は、無人車両となっている。マスター車両及びスレーブ車両はそれぞれ制御装置を備え、無線により車両間の連絡が可能となっている。スレーブ車両には、マスター車両に対して平行運転が可能なプログラムが備えられている。また、マスター車両及びスレーブ車両の少なくとも一方は、GPS等のナビゲーション装置を備え、マスター車両及びスレーブ車両の少なくとも一方の位置を特定できる技術が公知となっている。例えば、特許文献1に記載の如くである。 The current situation in the agricultural industry continues to include the aging of farmers, the decrease in the number of farmers, and the shortage of workers. Robotization technology that supports agricultural work is urgently needed. For this reason, an adjunct robot tractor has already been proposed as a robotization technology for improving efficiency and has been put into a verification test. Specifically, the master vehicle is operated by an operator, and the slave vehicle is an unmanned vehicle. Each of the master vehicle and the slave vehicle includes a control device, and communication between the vehicles can be performed wirelessly. The slave vehicle is provided with a program capable of parallel operation with respect to the master vehicle. In addition, at least one of the master vehicle and the slave vehicle includes a navigation device such as a GPS, and a technique that can identify the position of at least one of the master vehicle and the slave vehicle is known. For example, as described in Patent Document 1.
 特許文献1に記載の随伴型トラクタでは作業者が必ず同一圃場でトラクタを運転する必要があるといった点で、更なる作業効率改善には限界がある。また、小中規模圃場が多く、土壌および気象の条件も多様であるなど、日本独特の制約条件があるため、ロボット化技術の更なる実用展開には、センサ、知能・制御系、駆動系において、更なる革新的な研究開発が必要である。さらに、農作業には作業者の経験による技術が多く織り込まれている。つまり、農業者の匠の技術(暗黙知)を形式知化する必要があるがそこまでの開発は進んでいない。このため、経験の浅い作業者は、随伴型トラクタ等のロボット化技術を利用しても適切に随伴型トラクタを運用することが困難である。 In the accompanying tractor described in Patent Document 1, there is a limit to further work efficiency improvement in that an operator must always operate the tractor in the same field. In addition, because there are many small and medium-sized farms and there are various conditions of soil and weather, there are restrictions that are unique to Japan. For further practical development of robotization technology, sensors, intelligence / control systems, and drive systems Further innovative research and development is necessary. In addition, many techniques based on the experience of workers are incorporated into farm work. In other words, it is necessary to formalize the techniques (tacit knowledge) of farmers' craftsmanship, but the development so far has not progressed. For this reason, it is difficult for an inexperienced operator to properly operate an accompanying tractor even if robotic technology such as an accompanying tractor is used.
特表2001-507843号公報JP-T-2001-507843
 本発明は、以上の如き状況に鑑みてなされたものであり、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる自律走行作業車両の制御システムの提供を目的とする。 The present invention has been made in view of the above circumstances, and can perform work more accurately, faster, and more efficiently than when only a manned work vehicle is performed while considering the experience of the worker. An object is to provide a control system for an autonomous traveling work vehicle.
 本発明に係る自律走行作業車両の制御システムは、衛星測位システムを利用して作業車両の位置を測位しながら、前記作業車両に自律して走行および作業を行わせる、自律走行作業車両の制御システムであって、圃場毎に担当する自律走行作業車両と自律走行作業車両の作業領域と自律走行作業車両の作業内容とが設定されるとともに、自律走行作業車両に担当する圃場の作業領域と作業内容とを伝達し、自律走行作業車両に担当する圃場の所定の作業領域で所定の作業を行わせ、自律走行作業車両の作動状態を監視するものである。 The control system for an autonomous traveling work vehicle according to the present invention is a control system for an autonomous traveling work vehicle that causes the working vehicle to autonomously travel and perform work while positioning the position of the working vehicle using a satellite positioning system. The work area of the autonomous traveling work vehicle, the work area of the autonomous traveling work vehicle, and the work content of the autonomous traveling work vehicle are set for each field, and the work area and work content of the farm field responsible for the autonomous traveling work vehicle are set. Is transmitted, and a predetermined work is performed in a predetermined work area of the field in charge of the autonomous traveling work vehicle, and the operating state of the autonomous traveling work vehicle is monitored.
 本発明に係る自律走行作業車両の制御システムにおいては、前記作業領域を任意に設定された境界からの距離または圃場の形状によって定まる境界からの距離に基づいて設定することが好ましい。 In the control system for an autonomous traveling work vehicle according to the present invention, it is preferable that the work area is set based on a distance from an arbitrarily set boundary or a distance from a boundary determined by the shape of the field.
 本発明に係る自律走行作業車両の制御システムにおいては、前記作業領域における土質の分布に基づいて前記作業に伴う前記自律走行作業車両の設定を調整することが好ましい。 In the autonomous traveling work vehicle control system according to the present invention, it is preferable to adjust the setting of the autonomous traveling work vehicle accompanying the work based on the distribution of soil quality in the work area.
 本発明に係る自律走行作業車両の制御システムにおいては、前記自律走行作業車両が作業を行う圃場、作業領域、作業内容および圃場の所定の作業領域で所定の作業を行わせる自律走行作業車両を追加することができることが好ましい。 In the control system for an autonomous traveling work vehicle according to the present invention, an autonomous traveling work vehicle that performs a predetermined work in a predetermined field of the field, work area, work content, and field where the autonomous traveling work vehicle performs work is added. Preferably it can be done.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 本発明によれば、単純な作業を正確に早く効率的に行うことができる自律走行作業車両の優位性を最大限に生かせる作業領域と、複雑な作業を臨機応変に行うことができる有人の作業車両の優位性を最大限に生かせる作業領域とに圃場の受け持ち範囲を分担することで作業効率が向上する。これにより、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 According to the present invention, a work area in which the superiority of an autonomous traveling work vehicle that can perform simple work accurately and quickly and efficiently is utilized, and a manned work that can perform complex work flexibly. The work efficiency is improved by sharing the field coverage of the field with the work area where the superiority of the vehicle can be fully utilized. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
 本発明によれば、自律走行作業車両による自律走行および作業に問題が生じる可能性のある領域が簡単に設定される。これにより、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 According to the present invention, a region where problems may occur in autonomous traveling and work by the autonomous traveling work vehicle is easily set. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
 本発明によれば、農業者の技術がデータ化され、新規就農者などに技術伝承が的確になされる。これにより、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 According to the present invention, the farmer's technology is converted into data, and the technology is passed down to new farmers. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
 本発明によれば、作業領域や作業行程の割合に応じて任意の数の自律走行作業車両を一群の自律走行作業車両として同時にかつ独立して作動させつつ、有人の作業車両による作業を平行して行う協働動作によって作業効率が向上する。これにより、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 According to the present invention, an arbitrary number of autonomous traveling work vehicles are operated simultaneously and independently as a group of autonomous traveling work vehicles according to a work area and a ratio of a work process, and work by manned work vehicles is performed in parallel. The work efficiency is improved by the cooperative action. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
自律走行作業車両とGPS衛星と基準局を示す概略側面図。The schematic side view which shows an autonomous traveling work vehicle, a GPS satellite, and a reference station. 第一実施形態に係る自律走行作業車両の制御システムの制御ブロック図。The control block diagram of the control system of the autonomous traveling work vehicle which concerns on 1st embodiment. 斜め前方と斜め後方を走行する併走作業を行う自律走行作業車両および作業車両を示す図。The figure which shows the autonomous traveling work vehicle and work vehicle which perform the parallel running which drive | works diagonally forward and diagonally backward. 第二実施形態に係る自律走行作業車両の制御システムの制御ブロック図。The control block diagram of the control system of the autonomous traveling work vehicle which concerns on 2nd embodiment. 自律走行作業車両と作業車両とが分担作業を行う様子を示す図。The figure which shows a mode that an autonomous running work vehicle and a work vehicle perform shared work. 圃場の作業領域における土質分布を示す図。The figure which shows the soil distribution in the work area | region of an agricultural field. 任意の作業領域から機体が外れようとしている場合の補正を示す図。The figure which shows correction | amendment when the body is going to remove | deviate from arbitrary work areas. 任意の作業領域において作業を行う無人トラクタの運搬管理を示す図。The figure which shows the conveyance management of the unmanned tractor which works in arbitrary work areas. 任意の作業領域において作業を終了した無人トラクタの運搬車両への積み込みを示す図。The figure which shows loading to the conveyance vehicle of the unmanned tractor which complete | finished work in arbitrary work areas. 第三実施形態に係る自律走行作業車両の制御システムにおける運搬車両の運搬管理を示す図。The figure which shows the conveyance management of the conveyance vehicle in the control system of the autonomous traveling work vehicle which concerns on 3rd embodiment.
 [第一実施形態]
 以下に、図1と図2とを用いて、本発明に係る自律走行作業車両の制御システム1について説明する。自律走行作業車両の制御システム1は、無人で自律して走行および作業可能な自律走行作業車両である無人トラクタ2、作業者が操向操作する有人の作業車両である有人トラクタ16、および遠隔操作装置17を具備する。有人トラクタ16と無人トラクタ2とについては、作業機としてロータリ耕耘装置24がそれぞれ装着されている実施形態を説明する。なお、作業車両と自律走行作業車両とは、トラクタに限定するものではなく、コンバイン等でもよい。また、作業機はロータリ耕耘装置24に限定するものではなく、畝立て機、草刈機、レーキ、播種機、施肥機またはワゴン等であってもよい。
[First embodiment]
Below, the control system 1 of the autonomous traveling work vehicle which concerns on this invention is demonstrated using FIG. 1 and FIG. An autonomous traveling work vehicle control system 1 includes an unmanned tractor 2 which is an autonomous traveling work vehicle capable of traveling and working autonomously and unmanned, a manned tractor 16 which is a manned work vehicle operated by a worker, and remote control. A device 17 is provided. As for the manned tractor 16 and the unmanned tractor 2, an embodiment in which a rotary tiller 24 is mounted as a working machine will be described. The work vehicle and the autonomous traveling work vehicle are not limited to tractors, but may be a combine or the like. Further, the working machine is not limited to the rotary tiller 24, and may be a tiller, a mower, a rake, a seeder, a fertilizer, a wagon, or the like.
 まず、無人トラクタ2の全体構成について説明する。 First, the overall configuration of the unmanned tractor 2 will be described.
 図1と図2とに示すように、無人トラクタ2は、ボンネット3内にエンジン4が内設され、ボンネット3の後部のキャビン15内にダッシュボードが設けられ、ダッシュボード上に操向操作手段となるステアリングハンドル5、エンジン4の回転計、燃料計、ならびに油圧等および異常を示す表示手段であるメーターパネル49が設けられている。ステアリングハンドル5の後方に運転席6が配設され、運転席6の下方にミッションケース7が配置される。ミッションケース7の左右両側にリアアクスルケース9・9が連設され、リアアクスルケース9・9には車軸を介して後輪11・11が支承される。リアアクスルケース9・9には制動装置46が設けられている。エンジン4を支持するフロントフレーム12にはフロントアクスルケース8が支持され、フロントアクスルケース8の両側に前輪10・10が支承されている。また、ステップ下方には、燃料タンク14は配置されている。燃料タンク14には、燃料の液面を検知するレベルセンサ29が配置されている。 As shown in FIGS. 1 and 2, the unmanned tractor 2 includes an engine 4 in a hood 3, a dashboard provided in a cabin 15 at the rear of the hood 3, and steering operation means on the dashboard. A steering handle 5, a tachometer of the engine 4, a fuel gauge, and a meter panel 49 which is a display means for indicating an oil pressure and an abnormality are provided. A driver seat 6 is disposed behind the steering handle 5, and a mission case 7 is disposed below the driver seat 6. Rear axle cases 9, 9 are connected to the left and right sides of the transmission case 7, and rear wheels 11, 11 are supported on the rear axle cases 9, 9 via axles. The rear axle cases 9, 9 are provided with a braking device 46. A front axle case 8 is supported on a front frame 12 that supports the engine 4, and front wheels 10 and 10 are supported on both sides of the front axle case 8. A fuel tank 14 is disposed below the step. The fuel tank 14 is provided with a level sensor 29 that detects the fuel level.
 無人トラクタ2は、ステアリングハンドル5の回動により操舵装置を介して前輪10・10の向きが回動される。また、操舵装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪10・10が左右操舵回動可能となっている。無人トラクタ2の操舵は、図示しない操向センサに検知された操舵方向に基づいて、ステアリングコントローラ20が操舵アクチュエータ40を制御することにより行われる。操向センサは、ロータリエンコーダ等の角度センサから構成され、前輪9の回動基部に配置される。但し、操向センサの検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル5の回動を検知したり、パワーステアリングの作動量を検知したりする構成でもよい。 In the unmanned tractor 2, the direction of the front wheels 10 and 10 is rotated by the rotation of the steering handle 5 via the steering device. Further, the front wheels 10 and 10 can be steered left and right by a steering actuator 40 including a power steering cylinder serving as a driving unit of the steering device. The unmanned tractor 2 is steered by the steering controller 20 controlling the steering actuator 40 based on the steering direction detected by a steering sensor (not shown). The steering sensor is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9. However, the detection configuration of the steering sensor is not limited as long as the steering direction is recognized, and may be a configuration that detects the rotation of the steering handle 5 or the amount of operation of the power steering. .
 エンジン4からの動力はミッションケース7内の変速装置(主変速装置や副変速装置)により変速されて、前輪10・10および後輪11・11を駆動可能としている。変速装置は例えば油圧機械式無段変速装置(HMT)で構成され、可変容量型の油圧ポンプの可動斜板等がHMTコントローラ44により制御される。無段変速機は、飛躍的な生産性の向上を図る観点から、ロボット化に適している。ミッションケース7内にはPTOクラッチやPTO変速装置が収納され、PTO変速装置はPTOクラッチ45により入り切り可能に構成されている。 The power from the engine 4 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 7 so that the front wheels 10 and 10 and the rear wheels 11 and 11 can be driven. The transmission is configured by, for example, a hydraulic mechanical continuously variable transmission (HMT), and a movable swash plate of a variable displacement hydraulic pump is controlled by an HMT controller 44. The continuously variable transmission is suitable for robotization from the viewpoint of dramatically improving productivity. The transmission case 7 houses a PTO clutch and a PTO transmission, and the PTO transmission can be turned on and off by a PTO clutch 45.
 後輪11の回転数は、車速センサ27により検知され、メーターパネル49に走行速度として表示される。但し、走行速度の検知方法や車速センサ27の配置位置は限定するものではない。 The rotation speed of the rear wheel 11 is detected by the vehicle speed sensor 27 and displayed on the meter panel 49 as the traveling speed. However, the traveling speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
 また、無人トラクタ2の後方に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降自在に装設させて耕耘作業を行うように構成している。ミッションケース7には、傾き制御シリンダ26が設けられる。傾き制御シリンダ26は、傾き制御コントローラ25により伸縮されてロータリ耕耘装置24の傾きを調整できるようにしている。ロータリ耕耘装置24の傾きの傾きを検知する手段として角度センサ21が設けられている。 Also, a rotary tiller 24 is installed as a work implement behind the unmanned tractor 2 via a work implement mounting device 23 so as to be able to move up and down to perform the tilling work. The mission case 7 is provided with an inclination control cylinder 26. The tilt control cylinder 26 is expanded and contracted by the tilt control controller 25 so that the tilt of the rotary tiller 24 can be adjusted. An angle sensor 21 is provided as means for detecting the inclination of the inclination of the rotary tiller 24.
 無人トラクタ2の位置および有人トラクタ16(または遠隔操作装置17)の位置は、GPS(グローバル・ポジショニング・システム)を用いて取得する。
 GPSは、元来航空機および船舶等の航法支援用として開発されたシステムであって、上空約二万キロメートルを周回する二十四個のGPS衛星(六軌道面に四個ずつ配置)、GPS衛星の追跡と管制を行う管制局、および測位を行うための利用者の通信機で構成される。なお、GPS(米国)に加えて準天頂衛星(日本)およびグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いている。また、IMU(慣性計測装置)を用いることで更なる精度向上が期待できる。
The position of the unmanned tractor 2 and the position of the manned tractor 16 (or the remote control device 17) are acquired using GPS (global positioning system).
GPS was originally developed as a navigation support system for aircraft and ships. Twenty-four GPS satellites (four each on six orbital planes) orbiting about 20,000 kilometers above the ground, GPS satellites It consists of a control station that performs tracking and control, and a user communication device that performs positioning. In addition to GPS (United States), high-precision positioning can be performed by using satellite positioning systems (GNSS) such as quasi-zenith satellite (Japan) and Glonus satellite (Russia). In this embodiment, GPS is used. Yes. Furthermore, further improvement in accuracy can be expected by using an IMU (Inertial Measurement Device).
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能である。なお、衛星測位システムはRTK-GPS測位方式よりも精度の高い測位システムであればよく限定するものではない。 Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used. It is. The satellite positioning system is not limited as long as it is a positioning system with higher accuracy than the RTK-GPS positioning system.
 RTK-GPS(リアルタイムキネマティック-GPS)測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。 RTK-GPS (real-time kinematics-GPS) positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
 無人トラクタ2のキャビン15上に移動局となる移動通信機33と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が圃場Hの作業の邪魔にならない所定位置に配設される。本実施形態のRTK-GPS(リアルタイムキネマティック-GPS)測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。無人トラクタ2に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は移動通信機33に送信され無人トラクタ2の位置情報が測位される。 A mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data reception antenna 38 are disposed on the cabin 15 of the unmanned tractor 2, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna 39 are provided on the field H. It is disposed at a predetermined position that does not interfere with the work. In the RTK-GPS (real-time kinematic-GPS) positioning of the present embodiment, the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38. The mobile GPS antenna 34 disposed on the unmanned tractor 2 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 and the position information of the unmanned tractor 2 is measured.
 障害物センサ41は、機体の前方や側方や後方に障害物があるかどうかを検出するものである。障害物センサ41は、無人トラクタ2の前方、後方および左右側方の障害物を検出可能な位置に設けられている。障害物センサ41はレーザセンサや超音波センサで構成されている。これにより、無人トラクタ2に、人の接近への対応などを確保することができる。 The obstacle sensor 41 detects whether there is an obstacle in front, side or rear of the aircraft. The obstacle sensor 41 is provided at a position where an obstacle on the front, rear and left and right sides of the unmanned tractor 2 can be detected. The obstacle sensor 41 is constituted by a laser sensor or an ultrasonic sensor. Thereby, the response | compatibility to a human approach etc. can be ensured to the unmanned tractor 2.
 カメラ42は、機体の前方、側方および後方を撮影するものである。カメラ42は、圃場Hにおける無人トラクタ2の前方、後方および左右側方を撮影可能な位置に設けられている。前記カメラ42は一つのカメラ42を機体中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を機体の前部および後部、または四隅に配置して機体周囲を撮影する構成であってもよく限定するものではない。 The camera 42 photographs the front, side, and rear of the aircraft. The camera 42 is provided at a position where the front, rear and left and right sides of the unmanned tractor 2 in the field H can be photographed. Even if the camera 42 has one camera 42 arranged at the center of the body and rotated around the vertical axis to photograph the surroundings, a plurality of cameras 42 are arranged at the front and rear or four corners of the body to surround the body. However, the present invention is not limited to this.
 エンジンコントローラ60は、エンジン4の制御を行うものである。エンジンコントローラ60には、エンジン回転数センサ61、水温センサおよび油圧センサ等が接続され、エンジン4の状態を検知できるように構成されている。エンジンコントローラ60は、設定回転数と実回転数から負荷を検出し、過負荷とならないように燃料噴射量などを制御する。 The engine controller 60 controls the engine 4. An engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like are connected to the engine controller 60 so that the state of the engine 4 can be detected. The engine controller 60 detects a load from the set rotational speed and the actual rotational speed, and controls the fuel injection amount and the like so as not to be overloaded.
 制御装置30は、無人トラクタ2を自律走行させるものである。制御装置30の記憶装置30mには、無人トラクタ2を自律走行させるための種々のプログラム等が記憶されている。制御装置30は、実体的には、CPU、ROM、RAM、およびHDD等がバスで接続される構成であってもよいし、ワンチップのLSI等からなる構成であってもよい。 The control device 30 causes the unmanned tractor 2 to autonomously travel. The storage device 30m of the control device 30 stores various programs for causing the unmanned tractor 2 to autonomously travel. The control device 30 may actually be configured such that a CPU, ROM, RAM, HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
 制御装置30には、ステアリングコントローラ20が接続され、ステアリングコントローラ20から前輪10・10の操舵方向を取得することが可能である。また、制御装置30は、ステアリングコントローラ20から取得した前輪10・10の操舵方向および遠隔操作装置17からの制御信号に基づいてステアリングコントローラ20に操舵アクチュエータ40の制御信号を出力することが可能である。 The control device 30 is connected to the steering controller 20 and can acquire the steering direction of the front wheels 10 and 10 from the steering controller 20. Further, the control device 30 can output a control signal for the steering actuator 40 to the steering controller 20 based on the steering direction of the front wheels 10 and 10 acquired from the steering controller 20 and the control signal from the remote control device 17. .
 制御装置30には、角度センサ21および傾き制御コントローラ25が接続され、角度センサ21が検知するロータリ耕耘装置24の傾きを取得することが可能である。また、制御装置30は、角度センサ21から取得したロータリ耕耘装置24の傾きに基づいて傾き制御コントローラ25の制御信号を出力することが可能である。 The control device 30 is connected to the angle sensor 21 and the inclination control controller 25, and can acquire the inclination of the rotary tiller 24 detected by the angle sensor 21. Further, the control device 30 can output a control signal from the tilt controller 25 based on the tilt of the rotary tiller 24 acquired from the angle sensor 21.
 制御装置30には、移動通信機33が接続され、移動通信機33が測位した無人トラクタ2の位置情報を取得することが可能である。なお、作業範囲となる圃場Hの外周の位置情報(地図情報)も周知の方法によって予め設定され、記憶装置30mに記憶されている。 The mobile communication device 33 is connected to the control device 30, and the position information of the unmanned tractor 2 measured by the mobile communication device 33 can be acquired. Note that position information (map information) on the outer periphery of the field H, which is the work range, is also set in advance by a known method and stored in the storage device 30m.
 制御装置30には、障害物センサ41が接続され、障害物センサ41が検知する障害物の位置や大きさを取得することが可能である。また、制御装置30は、障害物センサ41が検出した障害物が設定距離以内に近づくと走行を停止させるように制動装置46およびエンジンコントローラ60を制御する。 The obstacle sensor 41 is connected to the control device 30, and the position and size of the obstacle detected by the obstacle sensor 41 can be acquired. Further, the control device 30 controls the braking device 46 and the engine controller 60 so as to stop traveling when the obstacle detected by the obstacle sensor 41 approaches within a set distance.
 制御装置30には、カメラ42が接続され、カメラ42が撮影した映像を取得することが可能である。また、制御装置30は、カメラ42で撮影された映像を遠隔操作装置17のディスプレイ17aに表示させる。ただし、ディスプレイ17aの表示画面が小さい場合は大きい別のディスプレイ17aで表示したり、カメラ42の映像は別の専用のディスプレイ17aで常時または選択的に表示したりすることも可能である。 The control device 30 is connected to a camera 42 and can acquire an image captured by the camera 42. In addition, the control device 30 causes the video captured by the camera 42 to be displayed on the display 17 a of the remote operation device 17. However, when the display screen of the display 17a is small, it can be displayed on another large display 17a, or the video of the camera 42 can be displayed constantly or selectively on another dedicated display 17a.
 制御装置30には、HMTコントローラ44が接続され、HMTコントローラ44から可変容量型の油圧ポンプの可動斜板の角度等を取得することが可能である。また、制御装置30は、HMTコントローラ44から取得した可変容量型の油圧ポンプの可動斜板の角度および遠隔操作装置17からの制御信号に基づいてHMTコントローラ44に油圧機械式無段変速装置(HMT)の制御信号を出力することが可能である。 The controller 30 is connected to the HMT controller 44, and the angle of the movable swash plate of the variable displacement hydraulic pump can be acquired from the HMT controller 44. Further, the control device 30 sends a hydraulic mechanical continuously variable transmission (HMT) to the HMT controller 44 based on the angle of the movable swash plate of the variable displacement hydraulic pump obtained from the HMT controller 44 and the control signal from the remote operation device 17. ) Control signal can be output.
 制御装置30には、PTOクラッチ45が接続され、PTOクラッチ45を制御してPTO軸への動力の断接を制御することができる。 The controller 30 is connected to a PTO clutch 45, and the PTO clutch 45 can be controlled to control the connection / disconnection of power to the PTO shaft.
 制御装置30には、制動装置46が接続され、制動装置46を制御して後輪11の回転数(無人トラクタ2の走行速度)を制御することができる。 The braking device 46 is connected to the control device 30, and the number of revolutions of the rear wheel 11 (the traveling speed of the unmanned tractor 2) can be controlled by controlling the braking device 46.
 制御装置30には、メーターパネル49が接続され、メーターパネル49を介して車速センサ27が検知した後輪11の回転数(無人トラクタ2の走行速度)、およびレベルセンサ29が検出した燃料残量を取得することが可能である。また、制御装置30は、メーターパネル49から取得した無人トラクタ2の走行速度、および燃料残量に関する情報を遠隔操作装置17に出力し、遠隔操作装置17のディスプレイ17aに無人トラクタ2の走行速度および燃料残量を表示することが可能である。 A meter panel 49 is connected to the control device 30, the number of revolutions of the rear wheel 11 (traveling speed of the unmanned tractor 2) detected by the vehicle speed sensor 27 via the meter panel 49, and the remaining fuel amount detected by the level sensor 29. Is possible to get. Further, the control device 30 outputs the travel speed of the unmanned tractor 2 and the information on the fuel remaining amount acquired from the meter panel 49 to the remote operation device 17, and displays the travel speed of the unmanned tractor 2 on the display 17 a of the remote operation device 17. It is possible to display the remaining amount of fuel.
 制御装置30には、エンジン4の制御手段であるエンジンコントローラ60が接続され、エンジンコントローラ60からエンジン4の状態を検知できるようにしている。また、制御装置30は、エンジンコントローラ60から取得したエンジン4の状態および遠隔操作装置17からの制御信号に基づいてエンジンコントローラ60にエンジン4の制御信号を出力することが可能である。さらに、制御装置30は、エンジンコントローラ60から取得したエンジン4の状態に関する情報を遠隔操作装置17に出力し、遠隔操作装置17のディスプレイ17aにエンジン4の状態を表示することが可能である。 The controller 30 is connected to an engine controller 60 that is a control means of the engine 4 so that the state of the engine 4 can be detected from the engine controller 60. Further, the control device 30 can output a control signal for the engine 4 to the engine controller 60 based on the state of the engine 4 acquired from the engine controller 60 and the control signal from the remote control device 17. Further, the control device 30 can output information about the state of the engine 4 acquired from the engine controller 60 to the remote operation device 17 and display the state of the engine 4 on the display 17 a of the remote operation device 17.
 このようにして制御装置30は、移動通信機33が測位した無人トラクタ2の位置情報、ならびにジャイロセンサ31および方位センサ32から機体の変位情報および方位情報を求める。そして、制御装置30は、これら位置情報と変位情報と方位情報に基づいて、遠隔操作装置17から取得した担当する圃場Hの作業領域Sにおいてステアリングコントローラ20、傾き制御コントローラ25、HMTコントローラ44、PTOクラッチ45、およびエンジンコントローラ60等を制御して、無人トラクタ2が自動走行し自動で作業できるようにしている。 Thus, the control device 30 obtains the position information of the unmanned tractor 2 measured by the mobile communication device 33, the displacement information and the direction information of the body from the gyro sensor 31 and the direction sensor 32. Then, based on the position information, the displacement information, and the direction information, the control device 30 controls the steering controller 20, the tilt control controller 25, the HMT controller 44, the PTO in the work area S of the farm field H that is acquired from the remote operation device 17. The unmanned tractor 2 is automatically driven to work automatically by controlling the clutch 45, the engine controller 60, and the like.
 次に、有人走行車両となる有人トラクタ16について説明する。有人トラクタ16の基本構成は無人トラクタ2と略同じ構成であるので詳細な説明は省略する。 Next, the manned tractor 16 serving as a manned traveling vehicle will be described. Since the basic configuration of the manned tractor 16 is substantially the same as that of the unmanned tractor 2, a detailed description thereof will be omitted.
 有人トラクタ16は、作業者が乗車して運転操作できるように構成されている。有人トラクタ16には、遠隔操作装置17が搭載され、遠隔操作装置17によって無人トラクタ2を操作可能としている。 The manned tractor 16 is configured so that an operator can get on and operate. The manned tractor 16 is equipped with a remote control device 17 so that the unmanned tractor 2 can be operated by the remote control device 17.
 遠隔操作装置17は、無人トラクタ2に走行および作業に関する情報を伝達し、無人トラクタ2を自律走行および作業させ、無人トラクタ2の動作(自律走行および作業)状態を監視するものである。遠隔操作装置17の遠隔操作は、複数の無人トラクタ2への所定の情報の伝達、ならびに複数の無人トラクタ2の操作および監視が含まれる。例えば、遠隔操作装置17は、複数の無人トラクタ2の緊急停止、一時停止、再発進、車速の変更、エンジン回転数の変更、作業機の昇降、およびPTOクラッチ45の入り切り等を選択的に操作できるように構成されている。つまり、遠隔操作装置17から通信装置17b、通信装置47、および制御装置30を介して、アクセルアクチュエータ、HMTコントローラ44、PTOクラッチ45、および制動装置46等を制御し、作業者が容易に複数の無人トラクタ2を遠隔操作したり、無人トラクタ2を追加したり、無人トラクタ2の作業状態を監視したりすることが可能である。 The remote control device 17 transmits information related to running and work to the unmanned tractor 2, makes the unmanned tractor 2 autonomously run and work, and monitors the operation (autonomous running and work) state of the unmanned tractor 2. The remote operation of the remote operation device 17 includes transmission of predetermined information to the plurality of unmanned tractors 2, and operation and monitoring of the plurality of unmanned tractors 2. For example, the remote control device 17 selectively operates emergency stop, temporary stop, restart, change of vehicle speed, change of engine speed, lifting / lowering of work equipment, turning on / off of the PTO clutch 45, etc. It is configured to be able to. In other words, the accelerator actuator, the HMT controller 44, the PTO clutch 45, the braking device 46, and the like are controlled from the remote operation device 17 via the communication device 17b, the communication device 47, and the control device 30, so that an operator can easily perform a plurality of operations. It is possible to remotely control the unmanned tractor 2, add the unmanned tractor 2, and monitor the working state of the unmanned tractor 2.
 また、遠隔操作装置17は、無人トラクタ2の圃場Hにおける作業領域Sおよび作業内容を設定できるように構成されている。遠隔操作装置17は、地図データに基づいて圃場H内において設定された任意の作業領域Sまたは圃場Hの形状から設定された作業領域Sを無人トラクタ2に伝達できる。例えば、遠隔操作装置17は、圃場Hの境界である畦からのオフセット距離Lが任意に設定されると、設定されたオフセット距離Lだけ離れた点の集合によって囲まれる閉空間を作業領域Sとして無人トラクタ2に伝達する。 Further, the remote control device 17 is configured to be able to set the work area S and work contents in the field H of the unmanned tractor 2. The remote operation device 17 can transmit an arbitrary work area S set in the field H based on the map data or the work area S set from the shape of the field H to the unmanned tractor 2. For example, when the offset distance L from the ridge which is the boundary of the field H is arbitrarily set, the remote operation device 17 uses the closed space surrounded by the set of points separated by the set offset distance L as the work area S. This is transmitted to the unmanned tractor 2.
 遠隔操作装置17は、有人トラクタ16および無人トラクタ2のダッシュボード等の操作部に着脱可能としている。遠隔操作装置17は有人トラクタ16のダッシュボードに取り付けたまま操作することも、有人トラクタ16の外に持ち出して携帯して操作することも、無人トラクタ2のダッシュボードに取り付けて操作することも可能としている。また、遠隔操作装置17は、無人トラクタ2または有人トラクタ16が作業を行っている圃場Hから離間した場所(例えば、管理センター等)にあってもよい。遠隔操作装置17は例えばノート型またはタブレット型のパーソナルコンピュータで構成することができる。本実施形態ではタブレット型のコンピュータで構成している。 The remote control device 17 can be attached to and detached from an operation unit such as a dashboard of the manned tractor 16 and the unmanned tractor 2. The remote control device 17 can be operated while attached to the dashboard of the manned tractor 16, taken out of the manned tractor 16, carried and operated, or attached to the dashboard of the unmanned tractor 2. It is said. Further, the remote control device 17 may be in a place (for example, a management center) separated from the farm field H where the unmanned tractor 2 or the manned tractor 16 is working. The remote control device 17 can be composed of, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
 さらに、遠隔操作装置17と無人トラクタ2は無線(または有線)で相互に通信可能に構成しており、無人トラクタ2と遠隔操作装置17には通信するための通信装置47・17bがそれぞれ設けられている。通信装置17bは、遠隔操作装置17に一体的に構成されている。通信装置47・17bは、無線LAN等の通信手段で相互に通信可能に構成されている。遠隔操作装置17は、画面に触れることで操作可能なタッチパネル式の操作画面としたディスプレイ17aを筐体表面に設け、筐体内に通信装置17b、制御装置17cとしてのCPU、記憶装置、およびバッテリ等を収納している。ディスプレイ17aには、前記カメラ42で撮影した周囲の画像や無人トラクタ2の状態、作業の状態、GPSに関する情報、および操作画面等を表示できるようにし、作業者が監視できるようにしている。また、遠隔操作装置17が無人トラクタ2または有人トラクタ16が作業を行っている圃場Hから離間した場所(例えば、管理センター等)にある場合、遠隔操作装置17と無人トラクタ2との通信に加えて、遠隔操作装置17は、有人トラクタ16と無線で相互に通信可能に構成されている。 Further, the remote operation device 17 and the unmanned tractor 2 are configured to be able to communicate with each other wirelessly (or by wire), and the unmanned tractor 2 and the remote operation device 17 are provided with communication devices 47 and 17b for communication, respectively. ing. The communication device 17b is configured integrally with the remote operation device 17. The communication devices 47 and 17b are configured to be able to communicate with each other by communication means such as a wireless LAN. The remote operation device 17 is provided with a display 17a, which is a touch panel type operation screen that can be operated by touching the screen, on the surface of the housing, and a communication device 17b, a CPU as the control device 17c, a storage device, a battery, etc. Is housed. The display 17a can display surrounding images taken by the camera 42, the state of the unmanned tractor 2, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor them. In addition, when the remote control device 17 is in a place (for example, a management center) separated from the farm field H where the unmanned tractor 2 or the manned tractor 16 is working, in addition to the communication between the remote control device 17 and the unmanned tractor 2 The remote control device 17 is configured to be able to communicate with the manned tractor 16 wirelessly.
 このようにして、自律走行作業車両の制御システム1は、無人トラクタ2の位置と有人トラクタ16(または遠隔操作装置17)とをディスプレイ17bおよびメーターパネル49で表示し、相互の離間距離を演算し、ディスプレイ17bおよびメーターパネル49で表示するようにしている。また、遠隔操作装置17または有人トラクタ16にはブザーまたはスピーカ151等の警報装置が設けられ制御装置17c・18と接続されている。そして、無人トラクタ2と有人トラクタ16の離間距離が設定距離よりも長くなった場合、無人トラクタ2が設定された作業領域Sを逸脱した場合、または設定走行経路Rに沿って走行していない場合に遠隔操作装置17に警告や警報を発するようにしている。 In this way, the control system 1 for the autonomous traveling work vehicle displays the position of the unmanned tractor 2 and the manned tractor 16 (or the remote control device 17) on the display 17b and the meter panel 49, and calculates the distance between them. Displayed on the display 17b and the meter panel 49. The remote control device 17 or the manned tractor 16 is provided with an alarm device such as a buzzer or a speaker 151 and connected to the control devices 17c and 18. And when the separation distance of the unmanned tractor 2 and the manned tractor 16 becomes longer than the set distance, when the unmanned tractor 2 deviates from the set work area S, or when the vehicle does not travel along the set travel route R In addition, a warning or an alarm is issued to the remote control device 17.
 このように構成することで、有人トラクタ16に随伴されながら無人トラクタ2が作業領域Sにおいて自律走行および作業を行うことにより、無人トラクタ2の取り扱いや監視が容易になる。これにより、作業者の経験を考慮しつつ有人の作業車両のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 Such a configuration facilitates handling and monitoring of the unmanned tractor 2 as the unmanned tractor 2 autonomously travels and works in the work area S while being accompanied by the manned tractor 16. Thereby, it is possible to perform the work more accurately, quickly and efficiently than when only a manned work vehicle is performed while considering the experience of the worker.
 以下では、図2と図3とを用いて、本発明の第一実施形態に係る自律走行作業車両の制御システム1について説明する。 Hereinafter, the control system 1 for the autonomous traveling work vehicle according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3.
 図3に示すように、第一実施形態に係る自律走行作業車両の制御システム1は、同一圃場H内において随伴して走行する無人トラクタ2と有人トラクタ16とを制御するものである。本実施形態において、無人トラクタ2と有人トラクタ16とは、互いに前後左右斜め方向(側方であってもよい)に併走して作業を行うものとする。自律走行作業車両の制御システム1は、遠隔操作装置17によって衛星測位システムの測定結果から無人トラクタ2と有人トラクタ16との離間距離を演算する。遠隔操作装置17は、無人トラクタ2の制御装置30に離間距離を伝達し、無人トラクタ2と有人トラクタ16との離間距離を監視する。そして、遠隔操作装置17は、無人トラクタ2と有人トラクタ16との離間距離が設定範囲内となるように無人トラクタ2のHMTコントローラ44を制御する。無人トラクタ2の制御装置30は、有人トラクタ16との離間距離が設定範囲を越えると無人トラクタ2の速度を上げるようにHMTコントローラ44を制御し、離間距離が設定範囲よりも短くなると、無人トラクタ2の速度を下げるようにHMTコントローラ44を制御する(図2参照)。 As shown in FIG. 3, the control system 1 for an autonomous traveling work vehicle according to the first embodiment controls an unmanned tractor 2 and a manned tractor 16 that travel together in the same field H. In the present embodiment, the unmanned tractor 2 and the manned tractor 16 work in parallel with each other in the front-back, left-right, and diagonal directions (may be sideways). The control system 1 of the autonomous traveling work vehicle calculates the separation distance between the unmanned tractor 2 and the manned tractor 16 from the measurement result of the satellite positioning system by the remote operation device 17. The remote control device 17 transmits the separation distance to the control device 30 of the unmanned tractor 2 and monitors the separation distance between the unmanned tractor 2 and the manned tractor 16. Then, the remote operation device 17 controls the HMT controller 44 of the unmanned tractor 2 so that the separation distance between the unmanned tractor 2 and the manned tractor 16 is within the set range. The control device 30 of the unmanned tractor 2 controls the HMT controller 44 so as to increase the speed of the unmanned tractor 2 when the separation distance from the manned tractor 16 exceeds the set range, and when the separation distance becomes shorter than the set range, The HMT controller 44 is controlled so as to reduce the speed 2 (see FIG. 2).
 また、自律走行作業車両の制御システム1は、遠隔操作装置17によって無人トラクタ2の制御装置30から情報を取得し、無人トラクタ2の作動状態を監視することができる。遠隔操作装置17は、無人トラクタ2が設定走行経路Rに沿って走行していない場合、設定された作業領域Sを逸脱した場合、または有人トラクタ16との離間距離が設定範囲を越えた、もしくは設定範囲よりも短くなった場合、無人トラクタ2の動作状態が異常である場合等において警告や警報を発する。 Moreover, the control system 1 of the autonomous traveling work vehicle can acquire information from the control device 30 of the unmanned tractor 2 by the remote operation device 17 and monitor the operating state of the unmanned tractor 2. When the unmanned tractor 2 does not travel along the set travel route R, the remote control device 17 deviates from the set work area S, or the separation distance from the manned tractor 16 exceeds the set range, or When it becomes shorter than the set range, a warning or warning is issued when the unmanned tractor 2 is in an abnormal operating state.
 図3の作業の場合、無人トラクタ2と有人トラクタ16とは、同じ作業を行い一度に二倍の幅を作業する。なお、本実施形態において、有人トラクタ16は、無人トラクタ2の後方を随伴して走行する構成としたがこれに限定されるものではなく、無人トラクタ2が有人トラクタ16の後方を随伴して走行する構成や、無人トラクタ2の後方を別の無人トラクタ2が随伴して走行する構成でもよい。 In the case of the work of FIG. 3, the unmanned tractor 2 and the manned tractor 16 perform the same work and work twice the width at a time. In the present embodiment, the manned tractor 16 is configured to travel along the rear of the unmanned tractor 2. However, the present invention is not limited thereto, and the unmanned tractor 2 travels along the rear of the manned tractor 16. A configuration in which another unmanned tractor 2 travels behind the unmanned tractor 2 may be employed.
 [第二実施形態]
 以下に、図4から図6を用いて、本発明の第二実施形態に係る自律走行作業車両の制御システム50において、複数の圃場Hで無人トラクタ2を自律走行および作業させる制御態様について説明する。
[Second Embodiment]
Hereinafter, a control mode in which the unmanned tractor 2 autonomously travels and works in a plurality of farm fields H in the autonomous traveling work vehicle control system 50 according to the second embodiment of the present invention will be described with reference to FIGS. 4 to 6. .
 図4に示すように、第二実施形態に係る自律走行作業車両の制御システム50は、無人トラクタ2を構成する第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cを有人トラクタ16に搭載されている遠隔操作装置17によって制御するものである。なお、本実施形態において、第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cについての構成は同一であるため、第1無人トラクタ2aにおける構成を中心に説明する。 As shown in FIG. 4, the control system 50 for an autonomous traveling work vehicle according to the second embodiment includes a first unmanned tractor 2 a, a second unmanned tractor 2 b, and a third unmanned tractor 2 c that constitute the unmanned tractor 2. It is controlled by a remote control device 17 mounted on the device. In addition, in this embodiment, since the structure about the 1st unmanned tractor 2a, the 2nd unmanned tractor 2b, and the 3rd unmanned tractor 2c is the same, it demonstrates centering around the structure in the 1st unmanned tractor 2a.
 自律走行作業車両の制御システム50は、ステアリングコントローラ20、傾き制御コントローラ25、HMTコントローラ44、メーターパネル49およびエンジンコントローラ60等を統括して制御する制御装置30と有人トラクタ16に搭載された遠隔操作装置17との間において無線LANやデジタル簡易無線を介して相互に信号を伝達することができるように構成されている。また、自律走行作業車両の制御システム50は、圃場Hに設置された監視カメラ48からの画像を遠隔操作装置17が無線LANを介して取得することができるように構成されている。また、自律走行作業車両の制御システム50は、第1無人トラクタ2aの現在情報をGPS衛星からの電波に基づいて移動通信機33で測位することができるように構成されている。 The control system 50 for the autonomous traveling work vehicle is a remote control mounted on the manned tractor 16 and the control device 30 that controls the steering controller 20, the tilt control controller 25, the HMT controller 44, the meter panel 49, the engine controller 60, and the like. Signals can be transmitted to and from the device 17 via a wireless LAN or digital simple radio. Moreover, the control system 50 of the autonomous traveling work vehicle is configured so that the remote operation device 17 can acquire an image from the monitoring camera 48 installed in the farm field H via the wireless LAN. In addition, the autonomous traveling work vehicle control system 50 is configured so that the current information of the first unmanned tractor 2a can be measured by the mobile communication device 33 based on the radio wave from the GPS satellite.
 図5に示すように、本実施形態において、自律走行作業車両の制御システム50は、遠隔操作装置17から地図データに基づいて第1無人トラクタ2aが担当する第1圃場H1の位置およびその形状が入力される。さらに、自律走行作業車両の制御システム50は、遠隔操作装置17からオフセット距離Lが入力されると第1圃場H1内において設定された任意の領域または第1圃場H1の形状から入力されたオフセット距離Lだけ領域の境界の内側または外側に離れた点の集合によって囲まれる閉空間を第1作業領域S1として遠隔操作装置17から第1無人トラクタ2aに伝達する。本実施形態において、第1作業領域S1は、第1圃場H1の外縁(例えば、水田においては畦)から所定のオフセット距離Lだけ第1圃場H1の内側に入った点の集合によって囲まれる領域をいうものとする。また、第1圃場H1の外縁から所定のオフセット距離Lの範囲内の領域を第1外縁領域G1というものとする。 As shown in FIG. 5, in the present embodiment, the control system 50 for the autonomous traveling work vehicle has the position and shape of the first farm field H1 that the first unmanned tractor 2a is in charge of based on the map data from the remote operation device 17. Entered. Furthermore, when the offset distance L is input from the remote operation device 17, the control system 50 for the autonomous traveling work vehicle has an offset distance input from an arbitrary region set in the first field H1 or the shape of the first field H1. A closed space surrounded by a set of points separated by L inside or outside the boundary of the region is transmitted from the remote control device 17 to the first unmanned tractor 2a as the first work region S1. In the present embodiment, the first work area S1 is an area surrounded by a set of points that enter the inside of the first field H1 by a predetermined offset distance L from the outer edge of the first field H1 (for example, rice paddies in paddy fields). It shall be said. An area within a predetermined offset distance L from the outer edge of the first field H1 is referred to as a first outer edge area G1.
 自律走行作業車両の制御システム50は、このようにして設定された第1作業領域S1でのみ第1無人トラクタ2aが自律走行および作業を行うように制御する。従って、第1無人トラクタ2aは、第1圃場H1の外縁から所定のオフセット距離Lだけ離れた位置までしか自律走行および作業を行わない。一方、第1圃場H1の第1外縁領域G1は、用水路や通路等の状態によって複雑な作業工程が必要になることがあるため、有人トラクタ16によって作業が行われる。すなわち、自律走行作業車両の制御システム50は、第1圃場H1を、第1無人トラクタ2aが作業を分担する第1作業領域S1と有人トラクタ16が作業を分担する第1外縁領域G1とに分割して第1無人トラクタ2aの制御を行う。なお、本実施形態において、第1圃場H1の作業領域は、第1圃場H1の外縁からの距離に基づいて設定されているがこれに限定されるものではなく、公道からの距離等に基づいて設定されてもよい。また、第一実施形態の随伴による走行制御を利用したティーチングによって作業領域を設定してもよいし、地図データ上において直接的に作業領域を設定してもよい。これにより、新規就農者の教育をかねて第1無人トラクタ2aの制御の指導を行うことができる。 The autonomous traveling work vehicle control system 50 controls the first unmanned tractor 2a to perform autonomous traveling and work only in the first work area S1 thus set. Accordingly, the first unmanned tractor 2a performs autonomous traveling and work only up to a position separated by a predetermined offset distance L from the outer edge of the first farm field H1. On the other hand, the first outer edge region G1 of the first farm field H1 is sometimes operated by the manned tractor 16 because a complicated operation process may be required depending on the state of the irrigation channel and the passage. That is, the autonomous traveling work vehicle control system 50 divides the first farm field H1 into a first work area S1 where the first unmanned tractor 2a shares the work and a first outer edge area G1 where the manned tractor 16 shares the work. Then, the first unmanned tractor 2a is controlled. In the present embodiment, the work area of the first farm field H1 is set based on the distance from the outer edge of the first farm field H1, but is not limited thereto, and is based on the distance from the public road or the like. It may be set. In addition, the work area may be set by teaching using traveling control according to the first embodiment, or the work area may be set directly on the map data. Thereby, guidance of control of the 1st unmanned tractor 2a can be performed also for education of a new farmer.
 このように構成することで、自律走行作業車両の制御システム50は、単純な作業を正確に早く効率的に行うことができる無人トラクタ2の優位性を最大限に生かせる第1作業領域S1と、複雑な作業を状況に臨機応変に行うことができる有人トラクタ16の優位性を最大限に生かせる第1外縁領域G1とに第1圃場H1の受け持ち範囲を分担することで作業効率が向上する。これにより、作業者の経験を考慮しつつ有人トラクタ16のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 By configuring in this way, the control system 50 for an autonomous traveling work vehicle has a first work area S1 that makes the most of the superiority of the unmanned tractor 2 that can perform simple work accurately and quickly, and The work efficiency is improved by sharing the range of the first field H1 with the first outer edge region G1 that makes the most of the superiority of the manned tractor 16 capable of performing complicated work flexibly according to the situation. Accordingly, it is possible to perform the work more accurately, faster and more efficiently than when only the manned tractor 16 performs while considering the experience of the worker.
 また、自律走行作業車両の制御システム50は、第1圃場H1に設置されている監視カメラ48、GPSによる位置情報、および制御装置30からの各種情報に基づいて、第1圃場H1における第1作業領域S1での第1無人トラクタ2aの動作状態を監視可能に構成されている。従って、自律走行作業車両の制御システム50は、作業者(管理者)の所在に関わらず、遠隔操作装置17を通じて監視カメラ48が撮影した第1無人トラクタ2aの画像に基づく作業者(管理者)による確認、第1無人トラクタ2aの位置情報に基づく確認および制御装置30からの各種情報による第1無人トラクタ2aの状態確認から異常を早期に発見することができる。つまり、別の圃場や管理センターで作業中の作業者が第1無人トラクタ2aの作動状態を認知することができる。これにより、自律走行作業車両の制御システム50は、作業者の経験を考慮しつつ有人トラクタ16のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。 Moreover, the control system 50 of the autonomous traveling work vehicle is configured to perform the first work in the first farm field H1 based on the monitoring camera 48 installed in the first farm field H1, position information by GPS, and various information from the control device 30. The operation state of the first unmanned tractor 2a in the region S1 is configured to be monitored. Therefore, the control system 50 of the autonomous traveling work vehicle is a worker (administrator) based on the image of the first unmanned tractor 2a photographed by the monitoring camera 48 through the remote operation device 17, regardless of the location of the worker (administrator). An abnormality can be detected at an early stage from the confirmation based on the position information of the first unmanned tractor 2a and the confirmation of the state of the first unmanned tractor 2a based on various information from the control device 30. That is, an operator who is working in another field or management center can recognize the operating state of the first unmanned tractor 2a. Thereby, the control system 50 of the autonomous traveling work vehicle can perform the work more accurately, faster and more efficiently than the case where only the manned tractor 16 performs while considering the experience of the worker.
 さらに、図6にしめすように、自律走行作業車両の制御システム50は、第1作業領域S1における土質分布に基づいて第1無人トラクタ2aの走行速度およびロータリ耕耘装置24の耕耘深さ等を土質に適した設定に変更可能に構成されている。すなわち、自律走行作業車両の制御システム50は、第1作業領域S1において予め土質分布に関する情報が入力されている場合、第1無人トラクタ2aの位置情報と土質分布に関する情報とに基づいて、第1無人トラクタ2aの作業位置における土質に適した走行速度や耕耘深さの設定を第1無人トラクタ2aに遠隔操作装置17を通じて伝達可能に構成されている。本実施形態において、第1圃場H1は、土質A、土質Bおよび土質Cの部分から形成されている。自律走行作業車両の制御システム50は、第1圃場H1における座標情報毎に該当する土質の情報を伝達する。第1無人トラクタ2aは、伝達された情報に基づいて走行速度や耕耘深さの設定を変更する。また、自律走行作業車両の制御システム50は、第1作業領域S1におけるエンジン4の負荷およびロータリ耕耘装置24の負荷等に基づいて走行速度や耕耘深さの設定を変更する構成でもよい。この場合、自律走行作業車両の制御システム50は、第1無人トラクタ2aの位置情報とその位置での走行速度や耕耘深さの設定とを蓄積することで第1作業領域S1における土質分布に関する情報を構成することができる。このようにして、農業者の経験知をデータとして入力可能とし条件の異なる圃場でも活用することができる。 Furthermore, as shown in FIG. 6, the control system 50 for the autonomous traveling work vehicle determines the traveling speed of the first unmanned tractor 2a, the tilling depth of the rotary tiller 24, and the like based on the soil distribution in the first work area S1. It is configured to be changeable to a setting suitable for In other words, the control system 50 for the autonomous traveling work vehicle has the first information based on the position information of the first unmanned tractor 2a and the information on the soil distribution when the information on the soil distribution is input in advance in the first work area S1. The travel speed and tilling depth setting suitable for the soil quality at the work position of the unmanned tractor 2a can be transmitted to the first unmanned tractor 2a through the remote control device 17. In this embodiment, the 1st agricultural field H1 is formed from the part of soil A, soil B, and soil C. The control system 50 for the autonomous traveling work vehicle transmits soil information corresponding to each coordinate information in the first field H1. The first unmanned tractor 2a changes the setting of the traveling speed and the tilling depth based on the transmitted information. Further, the control system 50 for the autonomous traveling work vehicle may be configured to change the setting of the traveling speed and tilling depth based on the load of the engine 4 and the load of the rotary tiller 24 in the first work area S1. In this case, the autonomous traveling work vehicle control system 50 accumulates the position information of the first unmanned tractor 2a and the setting of the traveling speed and tilling depth at the position, thereby information on the soil distribution in the first work area S1. Can be configured. In this way, it is possible to input the farmer's experience knowledge as data, and it can also be used in fields with different conditions.
 次に、図4と図5とを用いて、本発明の第二実施形態に係る自律走行作業車両の制御システム50において、複数の無人トラクタ2を構成している第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cをそれぞれ制御する制御態様について説明する。なお、第1圃場H1、第2圃場H2および第3圃場H3は、互いに隣接している必要はない。 Next, in FIG. 4 and FIG. 5, in the control system 50 for an autonomous traveling work vehicle according to the second embodiment of the present invention, the first unmanned tractor 2a and the second unmanned tractor 2 constituting the plurality of unmanned tractors 2 are used. Control modes for controlling the unmanned tractor 2b and the third unmanned tractor 2c will be described. Note that the first field H1, the second field H2, and the third field H3 do not have to be adjacent to each other.
 自律走行作業車両の制御システム50は、第1無人トラクタ2aが担当する第1圃場H1の位置情報と作業内容、第2無人トラクタ2bが担当する第2圃場H2の位置情報と作業内容、第3無人トラクタ2cが担当する第3圃場H3の位置情報と作業内容、およびオフセット距離Lが設定されると、各圃場における作業領域を設定し、作業開始位置や作業方向といった作業態様と作業内容とを第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cに遠隔操作装置17を通じて伝達し、群制御により同時にかつ独立して作動を開始させる。また、自律走行作業車両の制御システム50は、新たな無人トラクタ2である第4無人トラクタ2dを追加することが可能である。自律走行作業車両の制御システム50は、第4無人トラクタ2dが追加されると、遠隔操作装置17において第4無人トラクタ2dの状態を管理することができる。自律走行作業車両の制御システム50は、第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cの位置情報、制御装置30からの各種情報、および監視カメラ48から取得した画像に基づいて作動状態を監視する。 The autonomous traveling work vehicle control system 50 includes position information and work contents of the first farm field H1 handled by the first unmanned tractor 2a, position information and work contents of the second farm field H2 handled by the second unmanned tractor 2b, and third. When the position information and work contents of the third field H3 handled by the unmanned tractor 2c and the offset distance L are set, the work area in each field is set, and the work mode and work contents such as the work start position and work direction are set. It transmits to the 1st unmanned tractor 2a, the 2nd unmanned tractor 2b, and the 3rd unmanned tractor 2c through remote control device 17, and starts operation simultaneously and independently by group control. In addition, the autonomous traveling work vehicle control system 50 can add a fourth unmanned tractor 2d, which is a new unmanned tractor 2. When the fourth unmanned tractor 2d is added, the control system 50 for the autonomous traveling work vehicle can manage the state of the fourth unmanned tractor 2d in the remote operation device 17. The autonomous traveling work vehicle control system 50 is based on position information of the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c, various information from the control device 30, and an image acquired from the monitoring camera 48. Monitor operating conditions.
 一方、有人トラクタ16は、第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cが作業を行わない第1圃場H1の第1外縁領域G1と第2圃場H2の第2外縁領域G2と第3圃場H3の第3外縁領域G3とで作業を順次行う。この際、群制御が行われている第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cの第1作業領域S1、第2作業領域S2および第3作業領域S3の広さおよび作業内容と有人トラクタ16の第1外縁領域G1、第2外縁領域G2および第3外縁領域G3の広さおよび作業内容とに基づいて有人トラクタ16に対する無人トラクタ2の数を適切に設定することができる。このように、作業領域や作業の割合に応じて任意の数の無人トラクタ2を一群の無人トラクタ2として同時にかつ独立して作動させつつ、有人トラクタ16による作業を平行して行う協働動作によって作業効率が向上する。これにより、作業者の経験を考慮しつつ有人トラクタ16のみが行う場合よりも正確に、速く、かつ効率的に作業を行うことができる。なお、本実施形態において、第1無人トラクタ2a、第2無人トラクタ2bおよび第3無人トラクタ2cがそれぞれ担当する圃場は一つであるがこれに限定されるものではなく、一台の無人トラクタ2が複数の圃場を担当し、一の圃場の作業領域での作業が終了すると他の圃場の作業領域での作業を行うようにしてもよい。複数の圃場における作業領域ごとにそれぞれの無人トラクタ2a・2b・2c・・・を一群の無人トラクタ2として協働して作業を行うようにしてもよい。 On the other hand, the manned tractor 16 includes a first outer edge region G1 of the first field H1 and a second outer edge region G2 of the second field H2 where the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c do not work. And the third outer edge region G3 of the third field H3 are sequentially operated. At this time, the size and work of the first work area S1, the second work area S2, and the third work area S3 of the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c on which group control is performed. The number of unmanned tractors 2 with respect to the manned tractor 16 can be appropriately set based on the contents, the sizes of the first outer edge region G1, the second outer edge region G2, and the third outer edge region G3 of the manned tractor 16 and the work contents. . In this way, by the cooperative operation in which work by the manned tractor 16 is performed in parallel while operating any number of unmanned tractors 2 simultaneously and independently as a group of unmanned tractors 2 in accordance with the work area and work ratio. Work efficiency is improved. Accordingly, it is possible to perform the work more accurately, faster and more efficiently than when only the manned tractor 16 performs while considering the experience of the worker. In the present embodiment, the first unmanned tractor 2a, the second unmanned tractor 2b, and the third unmanned tractor 2c each handle one field, but the present invention is not limited to this. May be in charge of a plurality of fields, and when the work in the work area of one field is completed, the work in the work area of another field may be performed. The unmanned tractors 2a, 2b, 2c,... May work together as a group of unmanned tractors 2 for each work area in a plurality of fields.
 以上の如く、DGPS(ディファレンシャルGPS)測位、RTK-GPS等を活用することで高精度測位が可能になる。これにより、大型の特定圃場だけでなく中・小規模圃場、または畑もしくは水田などの場所を選ばず作業が可能になる。さらに、土質分布のデータ化によって農業者の匠の技術(暗黙知)を形式知化が可能となる。これにより、新規就農者などに技術伝承が的確になされ早期な人材育成が可能となる。また無人トラクタ2がデータを蓄積することで農業者の最適なパートナーになることが可能になる。また、安全性を確保することで複数の無人トラクタ2の群制御を実現することができる。なお、第二実施形態において、複数の圃場のうち一つ以上の圃場において、複数の無人トラクタ2または有人トラクタ16と一台以上の無人トラクタ2による随伴して走行する制御態様を実施してもよい。 As described above, high-precision positioning is possible by utilizing DGPS (differential GPS) positioning, RTK-GPS, and the like. As a result, it is possible to work not only on large specific farms but also on medium and small farms, or fields or paddy fields. Furthermore, formalization of farmer's craftsmanship (implicit knowledge) becomes possible by converting the soil distribution into data. As a result, technology transfer is made accurate to new farmers and early human resource development becomes possible. In addition, the unmanned tractor 2 accumulates data, so that it becomes possible to become an optimal partner for farmers. Moreover, group control of a plurality of unmanned tractors 2 can be realized by ensuring safety. In addition, in 2nd embodiment, even if it implements the control aspect which travels accompanying by the several unmanned tractor 2 or the manned tractor 16, and the 1 or more unmanned tractor 2 in one or more fields among several fields. Good.
 図4と図7とを用いて、本発明の第二実施形態に係る自律走行作業車両の制御システム50において、無人トラクタ2cが任意の作業領域S3外を走行することを防止する制御について説明する。図7では、任意の作業領域S3は、一般道路などの公道である自律走行禁止領域P3が畦を挟んで隣接している圃場H3を想定している。 The control for preventing the unmanned tractor 2c from traveling outside an arbitrary work area S3 in the control system 50 for an autonomous traveling work vehicle according to the second embodiment of the present invention will be described with reference to FIGS. . In FIG. 7, the arbitrary work area S3 is assumed to be an agricultural field H3 in which an autonomous travel prohibition area P3, which is a public road such as a general road, is adjacent to a fence.
 遠隔操縦装置17は、カメラ42およびGPSからの情報を用いて、地図データ上に表示される無人トラクタ2cの位置情報を補正するようにしている。カメラ42によって撮影された複数の画像における視差により、地形形状や対象物との距離を検出し、地図情報を参照することで、地図データ上に表示される無人トラクタ2cの位置情報を補正することができる。この場合、カメラ42を複数台設けて同時に撮影される複数の画像より、地形の情報を取得してもよい。 The remote control device 17 uses the information from the camera 42 and GPS to correct the position information of the unmanned tractor 2c displayed on the map data. The position information of the unmanned tractor 2c displayed on the map data is corrected by detecting the terrain shape and the distance from the object based on the parallax in the plurality of images photographed by the camera 42 and referring to the map information. Can do. In this case, terrain information may be acquired from a plurality of images that are simultaneously captured by providing a plurality of cameras 42.
 また、遠隔操縦装置17は、ジャイロセンサ31および方位センサ32から取得さられる機体の方位情報基づいて、地図データ上に表示される無人トラクタ2cの方位情報を補正するようにしている。 Further, the remote control device 17 corrects the direction information of the unmanned tractor 2c displayed on the map data based on the direction information of the aircraft acquired from the gyro sensor 31 and the direction sensor 32.
 以上の構成において、遠隔操縦装置17は、カメラ42およびGPSを用いて、無人トラクタ2cが任意の作業領域S3を出ないように構成される。以上のように、無人トラクタ2cは、正確な位置情報および方位情報を把握したうえで、任意の作業領域S3内において自律走行することができる。 In the above configuration, the remote control device 17 is configured so that the unmanned tractor 2c does not leave the arbitrary work area S3 by using the camera 42 and the GPS. As described above, the unmanned tractor 2c can autonomously travel in any work area S3 after grasping accurate position information and direction information.
 また、遠隔操縦装置17は、無人トラクタ2cには、機体の傾きを検知する傾きセンサが設けられる。遠隔操縦装置17は、傾きセンサによって検知される機体の傾きが異常であると判断した場合、GPSによって測位される位置情報に照らし合わせて、機体が任意の作業領域S3内にいるかを判断する。機体が任意の作業領域S3を外れようとしている場合(例えば、機体が畦に乗り上げている場合)は、無人トラクタ2cを任意の作業領域S3における作業順路に戻るように制御する。 In the remote control device 17, the unmanned tractor 2c is provided with a tilt sensor for detecting the tilt of the aircraft. When the remote control device 17 determines that the inclination of the aircraft detected by the inclination sensor is abnormal, the remote control device 17 determines whether the aircraft is in an arbitrary work area S3 in light of position information measured by the GPS. When the airframe is about to leave the arbitrary work area S3 (for example, when the airframe is riding on a kite), the unmanned tractor 2c is controlled to return to the work route in the arbitrary work area S3.
 さらに、遠隔操縦装置17は、車速センサ27およびトルクセンサによって検知される機体の速度および出力が異常であると判断した場合、GPSによって測位される位置情報に照らし合わせて、機体が任意の作業領域S3内にいるかを判断する。機体が任意の作業領域S3を外れようとしている場合(例えば、機体が畦に乗り上げている場合)は、無人トラクタ2cを任意の作業領域S3における作業順路に戻るように制御する。 Further, when the remote control device 17 determines that the speed and output of the airframe detected by the vehicle speed sensor 27 and the torque sensor are abnormal, the airframe is in an arbitrary work area in light of the position information measured by the GPS. It is determined whether it is within S3. When the airframe is about to leave the arbitrary work area S3 (for example, when the airframe is riding on a kite), the unmanned tractor 2c is controlled to return to the work route in the arbitrary work area S3.
 以上のように、遠隔操縦装置17は、機体が任意の作業領域S3内にいるかを判断し、機体が任意の作業領域S3を外れようとしている場合は、無人トラクタ2cを任意の作業領域S3における作業順路に戻るように制御することで、任意の作業領域S3外、例えば、無人トラクタ2cの走行が禁止される、一般道路などの公道での走行を防止することができ、自律走行の安全性および正確性を十分に確保することができる。 As described above, the remote control device 17 determines whether the aircraft is in an arbitrary work area S3, and if the aircraft is about to leave the arbitrary work area S3, the unmanned tractor 2c is placed in the arbitrary work area S3. By controlling to return to the work route, it is possible to prevent traveling on public roads such as general roads where traveling of the unmanned tractor 2c is prohibited outside the arbitrary work area S3, for example, and safety of autonomous traveling In addition, sufficient accuracy can be ensured.
 図8と図9とを用いて、本発明の第二実施形態に係る自律走行作業車両の制御システム50において、無人トラクタ2a・2b・2cの運搬について説明する。 8 and 9, the transportation of the unmanned tractors 2a, 2b, and 2c in the autonomous traveling work vehicle control system 50 according to the second embodiment of the present invention will be described.
 各種の作業領域では、該作業領域の形状から無人トラクタ2a・2b・2cの作業順路が作成される。遠隔操縦装置17は、作業順路を走行する無人トラクタ2a・2b・2cの車速センサ27等の検知結果に基づいて各種の作業領域での作業時間および作業終了位置を算出する。遠隔操縦装置17は、それぞれの作業領域での無人トラクタ2a・2b・2cの作業終了時刻Tを算出し、各種の作業領域での作業終了時刻Tおよび作業終了位置をユーザに報知するように構成される。 In various work areas, work routes of unmanned tractors 2a, 2b, and 2c are created from the shapes of the work areas. The remote control device 17 calculates work times and work end positions in various work areas based on detection results of the vehicle speed sensors 27 of the unmanned tractors 2a, 2b, and 2c traveling along the work route. The remote control device 17 is configured to calculate the work end times T of the unmanned tractors 2a, 2b, and 2c in the respective work areas, and notify the user of the work end times T and work end positions in various work areas. Is done.
 本実施形態では、第1作業領域S1での作業終了時刻Tは、T1であり、第2作業領域S2での作業終了時刻Tは、T2であり、第3作業領域S3での作業終了時刻は、T3である。そして、遠隔操縦装置17は、各種の作業領域での作業終了時刻Tおよび作業終了位置をユーザに報知することで、ユーザは作業終了時刻Tおよび作業終了位置に基づいて、例えば、各無人トラクタ2a・2b・2cを運搬車両51によって運搬する計画をたてることができる。そのため、無人トラクタ2a・2b・2cの運搬を効率的に行うことができ、作業能率を向上させることができる。 In the present embodiment, the work end time T in the first work area S1 is T1, the work end time T in the second work area S2 is T2, and the work end time in the third work area S3 is , T3. Then, the remote control device 17 notifies the user of the work end time T and the work end position in various work areas, so that the user can, for example, each unmanned tractor 2a based on the work end time T and the work end position. A plan for transporting 2b and 2c by the transport vehicle 51 can be made. Therefore, unmanned tractors 2a, 2b, and 2c can be efficiently transported, and work efficiency can be improved.
 各無人トラクタ2a・2b・2cは、一般道路などの公道である自律走行禁止領域P3を走行することを禁止されている。そのため、自律走行禁止領域P3外において、ドライバーまたはユーザが運搬車両51に無人トラクタ2a・2b・2cを積み込んだ上で、運搬車両51をドライバーが運転操作(有人走行)することで、無人トラクタ2a・2b・2cを運搬可能としている。 The unmanned tractors 2a, 2b, and 2c are prohibited from traveling in the autonomous traveling prohibited area P3 that is a public road such as a general road. For this reason, the driver or user loads the unmanned tractors 2a, 2b, and 2c on the transport vehicle 51 outside the autonomous travel prohibition area P3, and the driver operates the transport vehicle 51 (manned travel), whereby the unmanned tractor 2a.・ 2b ・ 2c can be transported.
 [第三実施形態]
 図10を用いて、本発明の第三実施形態に係る自律走行作業車両の制御システム60において、無人トラクタ2a・2b・2cを運搬する運搬車両51の運搬管理について説明する。
[Third embodiment]
The transport management of the transport vehicle 51 that transports the unmanned tractors 2a, 2b, and 2c in the autonomous traveling work vehicle control system 60 according to the third embodiment of the present invention will be described with reference to FIG.
 遠隔操縦装置17は、複数の無人トラクタ2a・2b・2cが作業を行っている複数の圃場Hから離間した場所である管理センターSに設けられる。遠隔操縦装置17はタブレット型のパーソナルコンピュータであるが、管理センターSのサーバによって構成してもよい。運搬車両51には、GPSおよび移動通信機が設けられ、該移動通信機によって管理センターS(本実施形態では、遠隔操縦装置17)にGPSからの情報を送信可能としている。 The remote control device 17 is provided in the management center S which is a place away from the plurality of farm fields H where the plurality of unmanned tractors 2a, 2b, and 2c are working. The remote control device 17 is a tablet personal computer, but may be configured by a server of the management center S. The transport vehicle 51 is provided with a GPS and a mobile communication device, and the mobile communication device can transmit information from the GPS to the management center S (the remote control device 17 in this embodiment).
 管理センターS(本実施形態では、遠隔操縦装置17)は、圃場Hで作業中の無人トラクタ2a・2b・2cの配車必要順位を設定する。例えば、各圃場H内の作業領域における無人トラクタ2a・2b・2cの作業終了時刻から配車を必要とする順位を設定する。該配車必要順位に基づいて、配車必要順位の高い無人トラクタ2への配車を優先的に行う。具体的には、配車必要順位の高い無人トラクタ2が作業をしている圃場Hへ最も近い運搬車両51をGPSからの情報を用いて決定し、該運搬車両51のドライバーへ回収先および作業終了時刻を報知する。報知される情報に基づいて、運搬車両51のドライバーが無人トラクタを回収しにいくことで、効率的な運搬を可能にしている。回収される無人トラクタ2は、他の圃場Hに配送され、該圃場H内において再度作業を行うようにしてもよい。 The management center S (in this embodiment, the remote control device 17) sets the required dispatch order of the unmanned tractors 2a, 2b, and 2c that are working in the field H. For example, the order which requires dispatch from the work end time of the unmanned tractors 2a, 2b, and 2c in the work area in each field H is set. Based on the required dispatch order, dispatch to the unmanned tractor 2 having a higher dispatch order is preferentially performed. Specifically, the vehicle 51 closest to the field H where the unmanned tractor 2 having a high dispatching order is working is determined using information from the GPS, and the collection destination and the work end are determined to the driver of the vehicle 51. Notify the time. Based on the notified information, the driver of the transport vehicle 51 goes to collect unmanned tractors, thereby enabling efficient transport. The unmanned tractor 2 to be collected may be delivered to another farm field H and work may be performed again in the farm field H.
 本発明は、自律走行作業車両の制御システムに利用可能である。 The present invention can be used for an autonomous traveling work vehicle control system.
   1  自律走行作業車両の制御システム
   2  無人トラクタ
   H  圃場
   S  作業領域
 GPS  衛星測位システム
DESCRIPTION OF SYMBOLS 1 Control system of autonomous traveling work vehicle 2 Unmanned tractor H Farm S Work area GPS Satellite positioning system

Claims (4)

  1.  衛星測位システムを利用して作業車両の位置を測位しながら、前記作業車両に自律して走行および作業を行わせる、自律走行作業車両の制御システムであって、
     圃場毎に担当する自律走行作業車両と自律走行作業車両の作業領域と自律走行作業車両の作業内容とが設定されるとともに、自律走行作業車両に担当する圃場の作業領域と作業内容とを伝達し、自律走行作業車両に担当する圃場の所定の作業領域で所定の作業を行わせ、自律走行作業車両の作動状態を監視する自律走行作業車両の制御システム。
    An autonomous traveling work vehicle control system that allows the working vehicle to autonomously travel and work while positioning the position of the working vehicle using a satellite positioning system,
    The autonomous traveling work vehicle in charge for each field, the work area of the autonomous traveling work vehicle, and the work content of the autonomous traveling work vehicle are set, and the work area and work content of the field in charge of the autonomous traveling work vehicle are transmitted. A control system for an autonomous traveling work vehicle that causes the autonomous traveling working vehicle to perform a predetermined work in a predetermined work area of a farm field, and monitors the operating state of the autonomous traveling work vehicle.
  2.  前記作業領域を任意に設定された境界からの距離または圃場の形状によって定まる境界からの距離に基づいて設定する請求項1に記載の自律走行作業車両の制御システム。 The control system for an autonomous traveling work vehicle according to claim 1, wherein the work area is set based on a distance from an arbitrarily set boundary or a distance from a boundary determined by a shape of a field.
  3.  前記作業領域における土質の分布に基づいて前記作業に伴う前記自律走行作業車両の設定を調整する請求項1または請求項2に記載の自律走行作業車両の制御システム。 3. The autonomous traveling work vehicle control system according to claim 1 or 2, wherein a setting of the autonomous traveling work vehicle accompanying the work is adjusted based on a soil distribution in the work area.
  4.  前記自律走行作業車両が作業を行う圃場、作業領域、作業内容および圃場の所定の作業領域で所定の作業を行わせる自律走行作業車両を追加することができる請求項1から請求項3のいずれか一項に記載の自律走行作業車両の制御システム。 4. The autonomous traveling work vehicle capable of performing a predetermined work in a farm field, a work area, work contents, and a predetermined work area of the farm field on which the autonomous running work vehicle performs work can be added. The control system for an autonomous traveling work vehicle according to one item.
PCT/JP2016/054125 2015-02-13 2016-02-12 Control system for autonomously traveling work vehicle WO2016129671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016533729A JP6384545B2 (en) 2015-02-13 2016-02-12 Control system for autonomous work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015027026 2015-02-13
JP2015-027026 2015-02-13

Publications (1)

Publication Number Publication Date
WO2016129671A1 true WO2016129671A1 (en) 2016-08-18

Family

ID=56614342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054125 WO2016129671A1 (en) 2015-02-13 2016-02-12 Control system for autonomously traveling work vehicle

Country Status (2)

Country Link
JP (1) JP6384545B2 (en)
WO (1) WO2016129671A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041358A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Autonomous travelling system
JP2018041356A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Route creation system
CN107831771A (en) * 2017-11-10 2018-03-23 安徽省现代农业装备产业技术研究院有限公司 A kind of dilatory machine automatic drive system, control method and caterpillar tractor
JP6329662B1 (en) * 2017-03-29 2018-05-23 三菱ロジスネクスト株式会社 Handling work assignment system
JP2018108034A (en) * 2016-12-28 2018-07-12 ヤンマー株式会社 Route generation system of working vehicle
JP2018167992A (en) * 2018-03-14 2018-11-01 三菱ロジスネクスト株式会社 Cargo work allocation system
WO2018201351A1 (en) * 2017-05-03 2018-11-08 深圳市元征科技股份有限公司 Method and device for controlling operation of automatic agricultural machine, and storage medium
CN108933999A (en) * 2017-05-29 2018-12-04 株式会社久保田 The main Operation Van of operation is collaboratively carried out with subjob vehicle
JP2018200611A (en) * 2017-05-29 2018-12-20 ヤンマー株式会社 Autonomous travel system
KR20190061610A (en) * 2017-11-28 2019-06-05 엘에스엠트론 주식회사 Remote control system for tractor
JP2019175312A (en) * 2018-03-29 2019-10-10 井関農機株式会社 Management system for working vehicle
JP2019185279A (en) * 2018-04-06 2019-10-24 株式会社デンソー Control apparatus
JP2020000158A (en) * 2018-06-29 2020-01-09 株式会社クボタ Grass mower
JP2020047286A (en) * 2019-11-20 2020-03-26 ヤンマー株式会社 Path generation system
JP2020054317A (en) * 2018-10-04 2020-04-09 株式会社クボタ Work vehicle
JP2020103094A (en) * 2018-12-26 2020-07-09 株式会社クボタ Automated travelling support device, work vehicle, and automated travelling method of work vehicle
WO2020153368A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program
JPWO2020153369A1 (en) * 2019-01-21 2020-07-30
WO2020153370A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone system control method, and operation determination device
JP2020144916A (en) * 2017-03-03 2020-09-10 ヤンマーパワーテクノロジー株式会社 Work screen display system
JP2020178714A (en) * 2020-07-16 2020-11-05 ヤンマーパワーテクノロジー株式会社 Route generation system for work vehicle
KR102191691B1 (en) * 2019-11-19 2020-12-16 서영재 Unmanned weeding apparatus
FR3108466A1 (en) * 2020-03-27 2021-10-01 Honda Motor Co., Ltd. AUTONOMOUS WORK SYSTEM, PROCESS FOR DEFINING AUTONOMOUS WORK, AND PROGRAM
CN113705115A (en) * 2021-11-01 2021-11-26 北京理工大学 Ground unmanned vehicle chassis motion and target striking cooperative control method and system
JP2022010872A (en) * 2020-06-29 2022-01-17 井関農機株式会社 Control system for work vehicle
CN115649186A (en) * 2022-12-26 2023-01-31 北京易控智驾科技有限公司 Unmanned operation method and device based on manned driving, electronic equipment and storage medium
JP7375679B2 (en) 2020-06-08 2023-11-08 井関農機株式会社 Work vehicle control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344832B1 (en) * 2017-06-13 2018-06-20 三菱ロジスネクスト株式会社 Dispatch system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034308A (en) * 2000-07-24 2002-02-05 Iseki & Co Ltd Work vehicle control system
JP3656332B2 (en) * 1996-08-28 2005-06-08 独立行政法人農業・生物系特定産業技術研究機構 Unmanned work method by unmanned working vehicle
JP4999965B2 (en) * 2010-06-04 2012-08-15 中国電力株式会社 Automatic cultivation method and automatic cultivation system
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016010A (en) * 2002-06-12 2004-01-22 Yanmar Agricult Equip Co Ltd Agricultural working vehicle
JP4085754B2 (en) * 2002-09-05 2008-05-14 株式会社豊田自動織機 Industrial vehicle operating time leveling examination apparatus and operating time leveling examination method
JP4012457B2 (en) * 2002-11-19 2007-11-21 日立建機株式会社 Snow removal management method and system
JP2004326169A (en) * 2003-04-21 2004-11-18 Iseki & Co Ltd Work support system
US8738238B2 (en) * 2009-11-12 2014-05-27 Deere & Company Coordination of vehicle movement in a field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656332B2 (en) * 1996-08-28 2005-06-08 独立行政法人農業・生物系特定産業技術研究機構 Unmanned work method by unmanned working vehicle
JP2002034308A (en) * 2000-07-24 2002-02-05 Iseki & Co Ltd Work vehicle control system
JP4999965B2 (en) * 2010-06-04 2012-08-15 中国電力株式会社 Automatic cultivation method and automatic cultivation system
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041358A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Autonomous travelling system
JP2018041356A (en) * 2016-09-09 2018-03-15 ヤンマー株式会社 Route creation system
JP2018108034A (en) * 2016-12-28 2018-07-12 ヤンマー株式会社 Route generation system of working vehicle
JP7034589B2 (en) 2016-12-28 2022-03-14 ヤンマーパワーテクノロジー株式会社 Work vehicle route generation system
JP2020144916A (en) * 2017-03-03 2020-09-10 ヤンマーパワーテクノロジー株式会社 Work screen display system
JP2018167926A (en) * 2017-03-29 2018-11-01 三菱ロジスネクスト株式会社 Cargo work allocation system
JP6329662B1 (en) * 2017-03-29 2018-05-23 三菱ロジスネクスト株式会社 Handling work assignment system
WO2018201351A1 (en) * 2017-05-03 2018-11-08 深圳市元征科技股份有限公司 Method and device for controlling operation of automatic agricultural machine, and storage medium
CN108933999B (en) * 2017-05-29 2023-05-16 株式会社久保田 Main work vehicle for performing work in cooperation with sub-work vehicle
JP7019310B2 (en) 2017-05-29 2022-02-15 ヤンマーパワーテクノロジー株式会社 Autonomous driving system
CN108933999A (en) * 2017-05-29 2018-12-04 株式会社久保田 The main Operation Van of operation is collaboratively carried out with subjob vehicle
JP2018200611A (en) * 2017-05-29 2018-12-20 ヤンマー株式会社 Autonomous travel system
JP2018198583A (en) * 2017-05-29 2018-12-20 株式会社クボタ Master work vehicle cooperatively working with slave work vehicle
CN107831771A (en) * 2017-11-10 2018-03-23 安徽省现代农业装备产业技术研究院有限公司 A kind of dilatory machine automatic drive system, control method and caterpillar tractor
KR20190061610A (en) * 2017-11-28 2019-06-05 엘에스엠트론 주식회사 Remote control system for tractor
KR102272510B1 (en) * 2017-11-28 2021-07-05 엘에스엠트론 주식회사 Remote control system for tractor
JP2018167992A (en) * 2018-03-14 2018-11-01 三菱ロジスネクスト株式会社 Cargo work allocation system
JP2019175312A (en) * 2018-03-29 2019-10-10 井関農機株式会社 Management system for working vehicle
JP7003798B2 (en) 2018-03-29 2022-01-21 井関農機株式会社 Field work vehicle management system
JP7014018B2 (en) 2018-04-06 2022-02-01 株式会社デンソー Control system
JP2019185279A (en) * 2018-04-06 2019-10-24 株式会社デンソー Control apparatus
JP7076705B2 (en) 2018-06-29 2022-05-30 株式会社クボタ Mower
JP2020000158A (en) * 2018-06-29 2020-01-09 株式会社クボタ Grass mower
JP2020054317A (en) * 2018-10-04 2020-04-09 株式会社クボタ Work vehicle
JP7179565B2 (en) 2018-10-04 2022-11-29 株式会社クボタ work vehicle
JP7387809B2 (en) 2018-12-26 2023-11-28 株式会社クボタ Automatic driving support device, work vehicle, and automatic driving method for work vehicle
JP7084863B2 (en) 2018-12-26 2022-06-15 株式会社クボタ Automatic driving support device, work vehicle and automatic driving method of work vehicle
JP2020103094A (en) * 2018-12-26 2020-07-09 株式会社クボタ Automated travelling support device, work vehicle, and automated travelling method of work vehicle
WO2020153368A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program
JPWO2020153370A1 (en) * 2019-01-21 2020-07-30
JP7199648B2 (en) 2019-01-21 2023-01-06 株式会社ナイルワークス Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program
JPWO2020153368A1 (en) * 2019-01-21 2021-10-28 株式会社ナイルワークス Drone system, drone, moving object, motion determination device, drone system control method, and drone system control program
JP7198446B2 (en) 2019-01-21 2023-01-04 株式会社ナイルワークス Drone system, control method for drone system, and motion decision device
JPWO2020153369A1 (en) * 2019-01-21 2020-07-30
JP7195652B2 (en) 2019-01-21 2022-12-26 株式会社ナイルワークス DRONE SYSTEM, DRONE SYSTEM CONTROL METHOD, AND OPERATION DETERMINATION DEVICE
WO2020153370A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone system control method, and operation determination device
WO2020153369A1 (en) * 2019-01-21 2020-07-30 株式会社ナイルワークス Drone system, drone system control method, and operation determination device
KR102191691B1 (en) * 2019-11-19 2020-12-16 서영재 Unmanned weeding apparatus
JP2021096881A (en) * 2019-11-20 2021-06-24 ヤンマーパワーテクノロジー株式会社 Cooperative work system
JP7138210B2 (en) 2019-11-20 2022-09-15 ヤンマーパワーテクノロジー株式会社 Collaborative work system
JP2020047286A (en) * 2019-11-20 2020-03-26 ヤンマー株式会社 Path generation system
FR3108466A1 (en) * 2020-03-27 2021-10-01 Honda Motor Co., Ltd. AUTONOMOUS WORK SYSTEM, PROCESS FOR DEFINING AUTONOMOUS WORK, AND PROGRAM
JP7375679B2 (en) 2020-06-08 2023-11-08 井関農機株式会社 Work vehicle control system
JP2022010872A (en) * 2020-06-29 2022-01-17 井関農機株式会社 Control system for work vehicle
JP7375690B2 (en) 2020-06-29 2023-11-08 井関農機株式会社 Work vehicle control system
JP7104106B2 (en) 2020-07-16 2022-07-20 ヤンマーパワーテクノロジー株式会社 Work vehicle route generation system
JP2020178714A (en) * 2020-07-16 2020-11-05 ヤンマーパワーテクノロジー株式会社 Route generation system for work vehicle
CN113705115B (en) * 2021-11-01 2022-02-08 北京理工大学 Ground unmanned vehicle chassis motion and target striking cooperative control method and system
CN113705115A (en) * 2021-11-01 2021-11-26 北京理工大学 Ground unmanned vehicle chassis motion and target striking cooperative control method and system
CN115649186A (en) * 2022-12-26 2023-01-31 北京易控智驾科技有限公司 Unmanned operation method and device based on manned driving, electronic equipment and storage medium
CN115649186B (en) * 2022-12-26 2023-11-07 北京易控智驾科技有限公司 Unmanned operation method and device based on manned operation, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP6384545B2 (en) 2018-09-05
JPWO2016129671A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6384545B2 (en) Control system for autonomous work vehicle
US10198010B2 (en) Control device for work vehicle
CN111580529B (en) Operating system
JP6267626B2 (en) Travel route setting device
KR102144244B1 (en) Route generating device
EP4248726A2 (en) Work vehicle
JP6339427B2 (en) Parallel work system
JP6557622B2 (en) Route generator
WO2015118731A1 (en) Control device for parallel travel work system
JP6296926B2 (en) Parallel work system
JP2017161987A (en) Travel area form registration system of work vehicle
JP6557621B2 (en) Route generator
JP2017174229A (en) Route generation device
JP6163460B2 (en) Accompanying work system
JP2016095659A (en) Plurality-of-vehicles accompanying travel work system
JP2015222499A (en) Emergency stop system
JP6297436B2 (en) Parallel work system
JP6605375B2 (en) Autonomous traveling work vehicle
JP2015222502A (en) Emergency stop system
JP6618056B2 (en) Work system
JP2019135670A (en) Travel area registration system for work vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016533729

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16749314

Country of ref document: EP

Kind code of ref document: A1