WO2016129113A1 - Method for producing light-emitting device - Google Patents

Method for producing light-emitting device Download PDF

Info

Publication number
WO2016129113A1
WO2016129113A1 PCT/JP2015/054008 JP2015054008W WO2016129113A1 WO 2016129113 A1 WO2016129113 A1 WO 2016129113A1 JP 2015054008 W JP2015054008 W JP 2015054008W WO 2016129113 A1 WO2016129113 A1 WO 2016129113A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
insulating layer
light emitting
emitting device
Prior art date
Application number
PCT/JP2015/054008
Other languages
French (fr)
Japanese (ja)
Inventor
修一 関
真滋 中嶋
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/054008 priority Critical patent/WO2016129113A1/en
Publication of WO2016129113A1 publication Critical patent/WO2016129113A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to a method for manufacturing a light emitting device.
  • This light emitting device has an insulating film for defining a light emitting portion.
  • This insulating film is often formed using an organic insulating film, as described in Patent Document 1, for example.
  • Patent Document 1 describes protecting an organic EL element with an inorganic film.
  • One of the organic insulating films is a photosensitive insulating film.
  • a photosensitive insulating film As a result of examination by the present inventors, it was found that when a light emitting portion is defined using a photosensitive insulating film, gas is generated from the insulating film, and the organic layer is deteriorated due to the gas.
  • the invention according to claim 1 is a step of forming a film on a substrate using a positive photosensitive insulating material containing a main agent and a photosensitive material; Forming an insulating layer for partitioning a region where a light emitting portion is to be formed by exposing and developing the film; and Irradiating the insulating layer with light that reacts with the photosensitive material; Heat treating the insulating layer; Forming an organic layer in a region where the light emitting part is to be formed;
  • a method for manufacturing a light emitting device comprising:
  • FIG. 1 is a plan view of a light emitting device according to Example 1.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3.
  • FIG. 4 is a sectional view taken along the line CC of FIG. 3.
  • 6 is a plan view illustrating a configuration of a light emitting device according to Example 2.
  • FIG. 9 is a sectional view taken along the line DD of FIG.
  • FIG. 1 and 2 are cross-sectional views illustrating a method for manufacturing the light emitting device 10 according to the embodiment.
  • the method for manufacturing the light emitting device 10 according to the present embodiment includes the following steps. First, a film 200 is formed on a substrate 100 using a positive photosensitive insulating material including a main agent and a photosensitive material. Next, the insulating layer 150 is formed by exposing and developing the film 200. The insulating layer 150 defines a region where the light emitting unit 140 is to be formed. Next, the insulating layer 150 is irradiated with light that reacts with the photosensitive material described above. Next, the insulating layer 150 is heat-treated. Thereafter, the organic layer 120 is formed in a region where the light emitting unit 140 is to be formed.
  • the structure of the light emitting device 10 and the method for manufacturing the light emitting device 10 will be described in detail.
  • the light emitting device 10 is formed using a substrate 100.
  • the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin.
  • the substrate 100 may be formed of a material that does not have translucency.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the substrate 100 is a resin
  • the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from permeating the substrate 100. .
  • a light emitting section 140 is formed on the substrate 100.
  • the light emitting unit 140 has an organic EL element.
  • This organic EL element has a configuration in which a first electrode 110, an organic layer 120, and a second electrode 130 are laminated in this order.
  • the first electrode 110 is a transparent electrode having optical transparency.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there.
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the organic layer 120 has a light emitting layer.
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one layer of the organic layer 120 for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition.
  • all the layers of the organic layer 120 may be formed using the apply
  • the second electrode 130 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the second electrode 130 has a light shielding property.
  • the thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. However, the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method.
  • the materials of the first electrode 110 and the second electrode 130 described above are for the case where the light emitting device 10 is a bottom emission type.
  • the material of the first electrode 110 and the material of the second electrode 130 are reversed. That is, the material of the second electrode 130 is used as the material of the first electrode 110, and the material of the first electrode 110 is used as the material of the second electrode 130.
  • the light emitting device 10 further has a sealing layer 160.
  • the sealing layer 160 is provided to seal the light emitting unit 140.
  • the sealing layer 160 is formed on the surface of the substrate 100 where the light emitting unit 140 is formed, and covers the light emitting unit 140.
  • the sealing layer 160 is made of, for example, an insulating material, more specifically, an inorganic material.
  • the thickness of the sealing layer 160 is preferably 300 nm or less.
  • the thickness of the sealing layer 160 is, for example, 50 nm or more.
  • the sealing layer 160 is formed using an ALD (Atomic Layer Deposition) method. By using the ALD method, the step coverage of the sealing layer 160 is increased.
  • ALD Atomic Layer Deposition
  • the sealing layer 160 may be formed using other film forming methods such as a CVD method or a sputtering method.
  • the sealing layer 160 is formed of an insulating film such as SiO 2 or SiN, and the film thickness is, for example, not less than 10 nm and not more than 1000 nm.
  • the first electrode 110 is formed on the substrate 100.
  • a photosensitive insulating material to be the insulating layer 150 is formed on the substrate 100 and the first electrode 110 by using, for example, a coating method.
  • the film 200 is formed.
  • the material of the film 200 is, for example, a material that becomes polyimide, but may be another resin material.
  • the film 200 is a positive photosensitive film and includes a main agent (base polymer) and a photosensitive material.
  • the film 200 is a thermosetting resin film.
  • the film 200 is exposed and developed. Thereby, the insulating layer 150 is formed.
  • the insulating layer 150 defines a region that becomes the light emitting unit 140 in the first electrode 110. Further, the insulating layer 150 covers the edge of the first electrode 110. Note that the portion of the film 200 that becomes the insulating layer 150 is not irradiated with light. For this reason, the photosensitive material remains in the insulating layer 150.
  • the insulating layer 150 is irradiated with light (for example, ultraviolet rays) that reacts with the above-described photosensitive material.
  • light for example, ultraviolet rays
  • the photosensitive material is in a state after exposure and the reactivity is lowered.
  • the insulating layer 150 is heat-treated. As a result, the insulating layer 150 is sufficiently cured. In this state, the insulating layer 150 is made of polyimide, for example.
  • the organic layer 120 is formed in a region partitioned by the insulating layer 150 in the first electrode 110.
  • the second electrode 130 is formed on the organic layer 120.
  • the light emitting unit 140 is formed.
  • a sealing layer 160 is formed on the substrate 100, and the light emitting unit 140 is sealed with the sealing layer 160.
  • the insulating layer 150 is also sealed by the sealing layer 160 together with the light emitting portion 140.
  • the insulating layer 150 is irradiated with light before the insulating layer 150 is thermally cured. For this reason, the amount of unreacted photosensitive material remaining on the insulating layer 150 is reduced as compared with the case where light is not irradiated before the insulating layer 150 is thermally cured. Accordingly, it is possible to suppress the generation of gas that deteriorates the organic layer 120 from the insulating layer 150.
  • the light emitting unit 140 is sealed together with the insulating layer 150 by the sealing layer 160.
  • the sealing layer 160 For this reason, when gas is generated from the insulating layer 150, the gas immediately touches the organic layer 120, and the organic layer 120 is particularly susceptible to deterioration.
  • the deterioration of the organic layer 120 can be sufficiently suppressed.
  • FIG. 3 is a plan view of the light emitting device 10 according to the first embodiment. 4 is a view in which the partition 170, the second electrode 130, the organic layer 120, and the insulating layer 150 are removed from FIG. 5 is a cross-sectional view taken along line AA in FIG. 3, FIG. 6 is a cross-sectional view taken along line BB in FIG. 3, and FIG. 7 is a cross-sectional view taken along line CC in FIG. 3 and 4, the sealing layer 160 is indicated by a dotted line for the sake of explanation.
  • the light emitting device 10 is a display device, and includes a substrate 100, a first electrode 110, a plurality of first terminals 112, a plurality of second terminals 132, a light emitting unit 140, an insulating layer 150, a plurality of openings 152, and a plurality of openings.
  • the opening 154, the plurality of lead wires 114, the organic layer 120, the second electrode 130, the plurality of lead wires 134, and the plurality of partition walls 170 are provided.
  • the first electrode 110 extends in a line shape in the first direction (Y direction in FIG. 3).
  • the end portion of the first electrode 110 is connected to the lead wiring 114.
  • the lead wiring 114 is formed using the same material as that of the first electrode 110.
  • the lead wiring 114 is integrated with the first electrode 110.
  • a conductor layer 180 may be formed on the lead wiring 114.
  • the conductor layer 180 is made of a material having a lower resistance than that of the lead wiring 114, for example, a metal.
  • the conductor layer 180 may have a multilayer structure.
  • the conductor layer 180 includes, for example, a first conductive layer that is a metal layer such as Mo or Mo alloy, a second conductive layer that is a metal layer such as Al or Al alloy, and a metal layer such as Mo or Mo alloy.
  • the third conductive layer is stacked in this order.
  • the thickness of the second conductive layer is, for example, not less than 50 nm and not more than 1000 nm. Preferably it is 100 nm or less.
  • the first conductive layer and the third conductive layer are thinner than the second conductive layer, for example, 30 nm or less, preferably 25 nm or less. Note that the conductor layer 180 may or may not cover the first terminal 112.
  • the insulating layer 150 is formed on the plurality of first electrodes 110 and in a region therebetween.
  • a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
  • the plurality of second electrodes 130 extend in parallel to each other in a direction intersecting the first electrode 110 (for example, a direction orthogonal to the X direction in FIG. 3).
  • a partition wall 170 which will be described in detail later, extends between the plurality of second electrodes 130.
  • the opening 152 is located at the intersection of the first electrode 110 and the second electrode 130 in plan view. Specifically, the plurality of openings 152 are arranged in the direction in which the first electrode 110 extends (Y direction in FIG. 3). The plurality of openings 152 are also arranged in the extending direction of the second electrode 130 (X direction in FIG. 3). For this reason, the plurality of openings 152 are arranged to form a matrix.
  • the opening 154 is located in a region overlapping with one end side of each of the plurality of second electrodes 130 in plan view.
  • the openings 154 are arranged along one side of the matrix formed by the openings 152. When viewed in a direction along this one side (for example, the Y direction in FIG. 3, that is, the direction along the first electrode 110), the openings 154 are arranged at a predetermined interval. A part of the lead wiring 134 is exposed from the opening 154.
  • the lead wiring 134 is connected to the second electrode 130 through the opening 154.
  • the lead wiring 134 is a wiring that connects the second electrode 130 to the second terminal 132, and has a layer made of the same material as the first electrode 110. One end side of the lead wiring 134 is located below the opening 154, and the other end side of the lead wiring 134 is led out of the insulating layer 150. In the example shown in the drawing, the other end side of the lead-out wiring 134 is a second terminal 132.
  • a conductor layer 180 may be formed on the lead wiring 134. The conductor layer 180 may or may not cover the second terminal 132.
  • the organic layer 120 is formed.
  • the hole injection layer of the organic layer 120 is in contact with the first electrode 110, and the electron injection layer of the organic layer 120 is in contact with the second electrode 130. For this reason, the light emitting part 140 is located in each of the regions overlapping with the opening 152.
  • each layer constituting the organic layer 120 is shown to protrude to the outside of the opening 152.
  • the organic layer 120 may be continuously formed between adjacent openings 152 in the direction in which the partition 170 extends, or may not be formed continuously. Good. However, as shown in FIG. 7, the organic layer 120 is not formed in the opening 154.
  • the second electrode 130 extends in a second direction (X direction in FIG. 3) intersecting the first direction.
  • a partition wall 170 is formed between the adjacent second electrodes 130.
  • the partition wall 170 extends in parallel to the second electrode 130, that is, in the second direction.
  • the base of the partition 170 is, for example, the insulating layer 150.
  • the partition 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed.
  • the partition wall 170 may be made of a resin other than a polyimide resin, for example, an inorganic material such as an epoxy resin, an acrylic resin, or silicon dioxide.
  • the partition wall 170 has a trapezoidal cross-sectional shape (reverse trapezoid). That is, the width of the upper surface of the partition wall 170 is larger than the width of the lower surface of the partition wall 170. Therefore, if the partition wall 170 is formed before the second electrode 130, the second electrode 130 is formed on one surface side of the substrate 100 by using an evaporation method or a sputtering method. Can be formed collectively.
  • the partition wall 170 also has a function of dividing the organic layer 120. Note that the partition wall 170 may also be formed in the same process as the insulating layer 150.
  • a conductive member such as FPC (Flexible Printed Circuit) is connected to the first terminal 112 and the second terminal 132.
  • FPC Flexible Printed Circuit
  • the first terminal 112 and the second terminal 132 are arranged along the same side of the substrate 100. For this reason, when FPC is used as the conductive member, the first terminal 112 and the second terminal 132 can be connected to one FPC.
  • the first electrode 110, the first terminal 112, the second terminal 132, and the lead wires 114 and 134 are formed on the substrate 100. These forming methods are the same as the method of forming the first electrode 110 in the embodiment.
  • a conductive film to be the conductor layer 180 is formed in a region including the lead wiring 114 and the lead wiring 134.
  • the conductive film is formed into a predetermined pattern using, for example, a photolithography method. Thereby, the conductor layer 180 is formed.
  • the insulating layer 150 is formed on the first electrode 110.
  • the manufacturing method of the insulating layer 150 is the same as that of the embodiment. In this step, openings 152 and 154 are also formed.
  • the partition wall 170 is formed.
  • the method for forming the partition 170 is similar to the method for forming the insulating layer 150. However, it is not necessary to irradiate the partition wall 170 with light after performing exposure and development and before performing heat treatment.
  • the organic layer 120, the second electrode 130, and the sealing layer 160 are formed. These forming methods are the same as those in the embodiment.
  • the insulating layer 150 is irradiated with light before the insulating layer 150 is thermally cured. For this reason, generation
  • FIG. 8 is a plan view illustrating the configuration of the light emitting device 10 according to the second embodiment.
  • FIG. 9 is a diagram in which the second electrode 130 is removed from FIG.
  • FIG. 10 is a diagram in which the organic layer 120 and the insulating layer 150 are removed from FIG. 11 is a cross-sectional view taken along the line DD of FIG.
  • the light emitting device 10 shown in this figure is a lighting device. For this reason, the light emitting unit 140 is formed in a region excluding the edge of the substrate 100.
  • the first electrode 110 is formed on almost the entire surface of the substrate 100.
  • the insulating layer 150 covers the edge of the first electrode 110.
  • the insulating layer 150 prevents the first electrode 110 and the second electrode 130 from being short-circuited at the edge of the first electrode 110.
  • the organic layer 120 is formed in a region surrounded by the insulating layer 150 in the first electrode 110. In other words, the insulating layer 150 defines the light emitting portion 140.
  • An auxiliary electrode may be formed on the first electrode 110.
  • This auxiliary electrode has, for example, the same layer structure as the conductor layer 180 in the first embodiment.
  • the conductor layer 180 may be formed on the first terminal 112 and the second terminal 132.
  • the conductor layer 180 positioned on the first terminal 112 is formed integrally with the auxiliary electrode.
  • the manufacturing process of the insulating layer 150 is as described in the embodiment. Accordingly, it is possible to suppress the generation of gas that deteriorates the organic layer 120 from the insulating layer 150.

Abstract

Provided is a method for producing a light-emitting device in which a film (200) is formed on a substrate (100) using a positive photosensitive insulating material containing a main agent and a photosensitive material. An insulating layer (150) is then formed by exposing and developing the film (200). The insulating layer (150) demarcates an area in which a light-emitting section (140) is to be formed. The insulating layer (150) is then irradiated with light that causes the photosensitive material to react. The insulating layer (150) is then subjected to heat treatment. An organic layer (120) is subsequently formed in the area in which the light-emitting section (140) is to be formed.

Description

発光装置の製造方法Method for manufacturing light emitting device
 本発明は、発光装置の製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device.
 近年は、発光素子として有機EL(Organic Electroluminescence)素子を有する発光装置の開発が進んでいる。この発光装置は、発光部を画定するための絶縁膜を有している。この絶縁膜は、例えば特許文献1に記載されているように、有機絶縁膜を用いて形成される場合が多い。 In recent years, development of a light emitting device having an organic EL (Organic Electroluminescence) element as a light emitting element is in progress. This light emitting device has an insulating film for defining a light emitting portion. This insulating film is often formed using an organic insulating film, as described in Patent Document 1, for example.
 一方、有機EL素子は有機層を有しているため、水分等によって劣化する。この劣化を抑制するために、例えば特許文献1には、有機EL素子を無機膜で保護することが記載されている。 On the other hand, since the organic EL element has an organic layer, it deteriorates due to moisture or the like. In order to suppress this deterioration, for example, Patent Document 1 describes protecting an organic EL element with an inorganic film.
特開2014-75358号公報JP 2014-75358 A
 有機絶縁膜の一つに、感光性の絶縁膜がある。本発明者が検討した結果、感光性の絶縁膜を用いて発光部を画定した場合、この絶縁膜からガスが発生し、このガスに起因して有機層が劣化することが判明した。 One of the organic insulating films is a photosensitive insulating film. As a result of examination by the present inventors, it was found that when a light emitting portion is defined using a photosensitive insulating film, gas is generated from the insulating film, and the organic layer is deteriorated due to the gas.
 本発明が解決しようとする課題としては、感光性の絶縁膜を用いて発光部を画定した場合において、この絶縁膜から有機層を劣化させるガスが発生しないようにすることが一例として挙げられる。 As an example of the problem to be solved by the present invention, when a light emitting portion is defined using a photosensitive insulating film, it is possible to prevent generation of a gas that deteriorates the organic layer from the insulating film.
 請求項1に記載の発明は、基板上に、主剤及び感光材を含むポジ型の感光性の絶縁材料を用いて膜を形成する工程と、
 前記膜を露光及び現像することにより、発光部を形成すべき領域を区画する絶縁層を形成する工程と、
 前記絶縁層に、前記感光材が反応する光を照射する工程と、
 前記絶縁層を熱処理する工程と、
 前記発光部を形成すべき領域に有機層を形成する工程と、
を備える発光装置の製造方法である。
The invention according to claim 1 is a step of forming a film on a substrate using a positive photosensitive insulating material containing a main agent and a photosensitive material;
Forming an insulating layer for partitioning a region where a light emitting portion is to be formed by exposing and developing the film; and
Irradiating the insulating layer with light that reacts with the photosensitive material;
Heat treating the insulating layer;
Forming an organic layer in a region where the light emitting part is to be formed;
A method for manufacturing a light emitting device comprising:
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the light-emitting device which concerns on embodiment. 実施形態に係る発光装置の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the light-emitting device which concerns on embodiment. 実施例1に係る発光装置の平面図である。1 is a plan view of a light emitting device according to Example 1. FIG. 図3から隔壁、第2電極、有機層、及び絶縁層を取り除いた図である。It is the figure which removed the partition, the 2nd electrode, the organic layer, and the insulating layer from FIG. 図3のA-A断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図3のB-B断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図3のC-C断面図である。FIG. 4 is a sectional view taken along the line CC of FIG. 3. 実施例2に係る発光装置の構成を示す平面図である。6 is a plan view illustrating a configuration of a light emitting device according to Example 2. FIG. 図8から第2電極を取り除いた図である。It is the figure which removed the 2nd electrode from FIG. 図9から有機層及び絶縁層を取り除いた図である。It is the figure which removed the organic layer and the insulating layer from FIG. 図8のD-D断面図である。FIG. 9 is a sectional view taken along the line DD of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1及び図2は、実施形態に係る発光装置10の製造方法を示す断面図である。本実施形態に係る発光装置10の製造方法は、以下の工程を有している。まず、基板100上に、主剤及び感光材を含むポジ型の感光性の絶縁材料を用いて膜200を形成する。次いで、膜200を露光及び現像することにより、絶縁層150を形成する。絶縁層150は、発光部140を形成すべき領域を区画する。次いで、絶縁層150に、上記した感光材が反応する光を照射する。次いで、絶縁層150を熱処理する。その後、発光部140を形成すべき領域に、有機層120を形成する。以下、発光装置10の構造及び発光装置10の製造方法について、詳細に説明する。 1 and 2 are cross-sectional views illustrating a method for manufacturing the light emitting device 10 according to the embodiment. The method for manufacturing the light emitting device 10 according to the present embodiment includes the following steps. First, a film 200 is formed on a substrate 100 using a positive photosensitive insulating material including a main agent and a photosensitive material. Next, the insulating layer 150 is formed by exposing and developing the film 200. The insulating layer 150 defines a region where the light emitting unit 140 is to be formed. Next, the insulating layer 150 is irradiated with light that reacts with the photosensitive material described above. Next, the insulating layer 150 is heat-treated. Thereafter, the organic layer 120 is formed in a region where the light emitting unit 140 is to be formed. Hereinafter, the structure of the light emitting device 10 and the method for manufacturing the light emitting device 10 will be described in detail.
 まず、図2(b)を用いて、発光装置10の構成について説明する。 First, the configuration of the light emitting device 10 will be described with reference to FIG.
 発光装置10は、基板100を用いて形成されている。発光装置10がボトムエミッション型である場合、基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。ただし、発光装置10がトップエミッション型である場合、基板100は透光性を有さない材料で形成されていてもよい。基板100は、例えば矩形などの多角形である。基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100がガラスである場合、基板100の厚さは、例えば200μm以下である。基板100が樹脂である場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを用いて形成されている。また、基板100が樹脂である場合、水分が基板100を透過することを抑制するために、基板100の少なくとも一面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されている。 The light emitting device 10 is formed using a substrate 100. When the light emitting device 10 is a bottom emission type, the substrate 100 is formed of a light transmissive material such as glass or a light transmissive resin. However, when the light emitting device 10 is a top emission type, the substrate 100 may be formed of a material that does not have translucency. The substrate 100 is, for example, a polygon such as a rectangle. The substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is glass, the thickness of the substrate 100 is, for example, 200 μm or less. When the substrate 100 is a resin, the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. When the substrate 100 is a resin, an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from permeating the substrate 100. .
 基板100には、発光部140が形成されている。発光部140は有機EL素子を有している。この有機EL素子は、第1電極110、有機層120、及び第2電極130をこの順に積層させた構成を有している。 A light emitting section 140 is formed on the substrate 100. The light emitting unit 140 has an organic EL element. This organic EL element has a configuration in which a first electrode 110, an organic layer 120, and a second electrode 130 are laminated in this order.
 第1電極110は、光透過性を有する透明電極である。透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。 The first electrode 110 is a transparent electrode having optical transparency. The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide), and the like. is there. The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
 有機層120は発光層を有している。有機層120は、例えば、正孔注入層、発光層、及び電子注入層を積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されている。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。 The organic layer 120 has a light emitting layer. The organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked. A hole transport layer may be formed between the hole injection layer and the light emitting layer. In addition, an electron transport layer may be formed between the light emitting layer and the electron injection layer. The organic layer 120 may be formed by a vapor deposition method. In addition, at least one layer of the organic layer 120, for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition. Moreover, all the layers of the organic layer 120 may be formed using the apply | coating method.
 第2電極130は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第2電極130は遮光性を有している。第2電極130の厚さは、例えば10nm以上500nm以下である。ただし、第2電極130は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。 The second electrode 130 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the second electrode 130 has a light shielding property. The thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. However, the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110. The second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method.
 なお、上記した第1電極110及び第2電極130の材料は、発光装置10がボトムエミッション型の場合である。発光装置10がトップエミッション型である場合、第1電極110の材料と第2電極130の材料は逆になる。すなわち第1電極110の材料には上記した第2電極130の材料が用いられ、第2電極130の材料には上記した第1電極110の材料が用いられる。 Note that the materials of the first electrode 110 and the second electrode 130 described above are for the case where the light emitting device 10 is a bottom emission type. When the light emitting device 10 is a top emission type, the material of the first electrode 110 and the material of the second electrode 130 are reversed. That is, the material of the second electrode 130 is used as the material of the first electrode 110, and the material of the first electrode 110 is used as the material of the second electrode 130.
 発光装置10は、さらに封止層160を有している。封止層160は発光部140を封止するために設けられている。封止層160は、基板100のうち発光部140が形成されている面に形成されており、発光部140を覆っている。封止層160は、例えば絶縁材料、さらに具体的には無機材料によって形成されている。また、封止層160の厚さは、好ましくは300nm以下である。また封止層160の厚さは、例えば50nm以上である。封止層160は、ALD(Atomic Layer Deposition)法を用いて形成されている。ALD法を用いることにより、封止層160の段差被覆性は高くなる。ただし封止層160は、他の成膜法、例えばCVD法やスパッタリング法を用いて形成されていてもよい。この場合、封止層160は、SiO又はSiNなど絶縁膜によって形成されており、その膜厚は、例えば10nm以上1000nm以下である。 The light emitting device 10 further has a sealing layer 160. The sealing layer 160 is provided to seal the light emitting unit 140. The sealing layer 160 is formed on the surface of the substrate 100 where the light emitting unit 140 is formed, and covers the light emitting unit 140. The sealing layer 160 is made of, for example, an insulating material, more specifically, an inorganic material. Moreover, the thickness of the sealing layer 160 is preferably 300 nm or less. The thickness of the sealing layer 160 is, for example, 50 nm or more. The sealing layer 160 is formed using an ALD (Atomic Layer Deposition) method. By using the ALD method, the step coverage of the sealing layer 160 is increased. However, the sealing layer 160 may be formed using other film forming methods such as a CVD method or a sputtering method. In this case, the sealing layer 160 is formed of an insulating film such as SiO 2 or SiN, and the film thickness is, for example, not less than 10 nm and not more than 1000 nm.
 次に、発光装置10の製造方法を説明する。まず、図1(a)に示すように、基板100に、第1電極110を形成する。次いで、基板100及び第1電極110の上に、絶縁層150となる感光性の絶縁材料を、例えば塗布法を用いて形成する。これにより、膜200が形成される。膜200の材料は、例えばポリイミドとなる材料であるが、他の樹脂材料であってもよい。膜200は、ポジ型の感光性の膜であり、主剤(ベースポリマー)及び感光材を含んでいる。また、膜200は、熱硬化型の樹脂膜である。 Next, a method for manufacturing the light emitting device 10 will be described. First, as shown in FIG. 1A, the first electrode 110 is formed on the substrate 100. Next, a photosensitive insulating material to be the insulating layer 150 is formed on the substrate 100 and the first electrode 110 by using, for example, a coating method. Thereby, the film 200 is formed. The material of the film 200 is, for example, a material that becomes polyimide, but may be another resin material. The film 200 is a positive photosensitive film and includes a main agent (base polymer) and a photosensitive material. The film 200 is a thermosetting resin film.
 次いで、図1(b)に示すように、膜200を露光及び現像する。これにより、絶縁層150が形成される。絶縁層150は、第1電極110のうち発光部140となる領域を区画している。さらに絶縁層150は、第1電極110の縁を覆っている。なお、膜200のうち絶縁層150となる部分には光が照射されていない。このため、絶縁層150には感光材が残っている。 Next, as shown in FIG. 1B, the film 200 is exposed and developed. Thereby, the insulating layer 150 is formed. The insulating layer 150 defines a region that becomes the light emitting unit 140 in the first electrode 110. Further, the insulating layer 150 covers the edge of the first electrode 110. Note that the portion of the film 200 that becomes the insulating layer 150 is not irradiated with light. For this reason, the photosensitive material remains in the insulating layer 150.
 次いで、図2(a)に示すように、絶縁層150に、上記した感光材が反応する光(例えば紫外線)を照射する。これにより、感光材は感光後の状態になり、反応性は低下する。 Next, as shown in FIG. 2A, the insulating layer 150 is irradiated with light (for example, ultraviolet rays) that reacts with the above-described photosensitive material. As a result, the photosensitive material is in a state after exposure and the reactivity is lowered.
 次いで、絶縁層150を熱処理する。これにより、絶縁層150は十分に硬化する。この状態において、絶縁層150は、例えばポリイミドにより形成されている。 Next, the insulating layer 150 is heat-treated. As a result, the insulating layer 150 is sufficiently cured. In this state, the insulating layer 150 is made of polyimide, for example.
 次いで、図2(b)に示すように、第1電極110のうち絶縁層150によって区画された領域に、有機層120を形成する。次いで、有機層120の上に、第2電極130を形成する。このようにして、発光部140が形成される。さらに、基板100の上に封止層160を形成し、発光部140を封止層160で封止する。この際、絶縁層150も発光部140とともに封止層160によって封止される。 Next, as shown in FIG. 2B, the organic layer 120 is formed in a region partitioned by the insulating layer 150 in the first electrode 110. Next, the second electrode 130 is formed on the organic layer 120. In this way, the light emitting unit 140 is formed. Further, a sealing layer 160 is formed on the substrate 100, and the light emitting unit 140 is sealed with the sealing layer 160. At this time, the insulating layer 150 is also sealed by the sealing layer 160 together with the light emitting portion 140.
 以上、本実施形態によれば、膜200を露光及び現像して絶縁層150を形成した後、絶縁層150を熱硬化させる前に、絶縁層150に光を照射している。このため、絶縁層150を熱硬化させる前に光を照射しない場合と比較して、絶縁層150に残留する未反応の感光材は少なくなる。従って、絶縁層150から有機層120を劣化させるガスが発生することを抑制できる。 As described above, according to the present embodiment, after the film 200 is exposed and developed to form the insulating layer 150, the insulating layer 150 is irradiated with light before the insulating layer 150 is thermally cured. For this reason, the amount of unreacted photosensitive material remaining on the insulating layer 150 is reduced as compared with the case where light is not irradiated before the insulating layer 150 is thermally cured. Accordingly, it is possible to suppress the generation of gas that deteriorates the organic layer 120 from the insulating layer 150.
 特に本実施形態では、発光部140は、絶縁層150とともに封止層160によって封止されている。このため、絶縁層150からガスが発生すると、このガスは直ぐに有機層120に触れるため、有機層120は特に劣化しやすい。本実施形態では絶縁層150に残留する未反応の感光材は少ないため、発光部140を封止層160で封止しても、有機層120の劣化を十分に抑制できる。 Particularly in the present embodiment, the light emitting unit 140 is sealed together with the insulating layer 150 by the sealing layer 160. For this reason, when gas is generated from the insulating layer 150, the gas immediately touches the organic layer 120, and the organic layer 120 is particularly susceptible to deterioration. In this embodiment, since there is little unreacted photosensitive material remaining in the insulating layer 150, even if the light emitting portion 140 is sealed with the sealing layer 160, the deterioration of the organic layer 120 can be sufficiently suppressed.
(実施例1)
 図3は、実施例1に係る発光装置10の平面図である。図4は、図3から隔壁170、第2電極130、有機層120、及び絶縁層150を取り除いた図である。図5は図3のA-A断面図であり、図6は図3のB-B断面図であり、図7は図3のC-C断面図である。図3及び図4において、説明のため封止層160は点線で示されている。
(Example 1)
FIG. 3 is a plan view of the light emitting device 10 according to the first embodiment. 4 is a view in which the partition 170, the second electrode 130, the organic layer 120, and the insulating layer 150 are removed from FIG. 5 is a cross-sectional view taken along line AA in FIG. 3, FIG. 6 is a cross-sectional view taken along line BB in FIG. 3, and FIG. 7 is a cross-sectional view taken along line CC in FIG. 3 and 4, the sealing layer 160 is indicated by a dotted line for the sake of explanation.
 本実施例に係る発光装置10は表示装置であり、基板100、第1電極110、複数の第1端子112、複数の第2端子132、発光部140、絶縁層150、複数の開口152、複数の開口154、複数の引出配線114、有機層120、第2電極130、複数の引出配線134、及び複数の隔壁170を有している。 The light emitting device 10 according to this embodiment is a display device, and includes a substrate 100, a first electrode 110, a plurality of first terminals 112, a plurality of second terminals 132, a light emitting unit 140, an insulating layer 150, a plurality of openings 152, and a plurality of openings. The opening 154, the plurality of lead wires 114, the organic layer 120, the second electrode 130, the plurality of lead wires 134, and the plurality of partition walls 170 are provided.
 本実施例において、第1電極110は、第1方向(図3におけるY方向)にライン状に延在している。そして第1電極110の端部は、引出配線114に接続している。引出配線114は、第1電極110と同様の材料を用いて形成されている。本実施例では、引出配線114は第1電極110と一体になっている。 In the present embodiment, the first electrode 110 extends in a line shape in the first direction (Y direction in FIG. 3). The end portion of the first electrode 110 is connected to the lead wiring 114. The lead wiring 114 is formed using the same material as that of the first electrode 110. In the present embodiment, the lead wiring 114 is integrated with the first electrode 110.
 引出配線114の上には、導体層180が形成されてもよい。導体層180は、引出配線114よりも低抵抗な材料、例えば金属によって形成されている。導体層180は多層構造を有していてもよい。この場合、導体層180は、例えば、Mo又はMo合金などの金属層である第1導電層、Al又はAl合金などの金属層である第2導電層、及び、Mo又はMo合金などの金属層である第3導電層をこの順に積層した構成を有している。第2導電層の厚さは、例えば50nm以上1000nm以下である。好ましくは100nm以下である。また第1導電層及び第3導電層は、第2導電層よりも薄く、例えば30nm以下、好ましくは25nm以下である。なお、導体層180は第1端子112を覆っていてもよいし、覆っていなくてもよい。 A conductor layer 180 may be formed on the lead wiring 114. The conductor layer 180 is made of a material having a lower resistance than that of the lead wiring 114, for example, a metal. The conductor layer 180 may have a multilayer structure. In this case, the conductor layer 180 includes, for example, a first conductive layer that is a metal layer such as Mo or Mo alloy, a second conductive layer that is a metal layer such as Al or Al alloy, and a metal layer such as Mo or Mo alloy. The third conductive layer is stacked in this order. The thickness of the second conductive layer is, for example, not less than 50 nm and not more than 1000 nm. Preferably it is 100 nm or less. The first conductive layer and the third conductive layer are thinner than the second conductive layer, for example, 30 nm or less, preferably 25 nm or less. Note that the conductor layer 180 may or may not cover the first terminal 112.
 絶縁層150は、図3、及び図5~図7に示すように、複数の第1電極110上及びその間の領域に形成されている。絶縁層150には、複数の開口152及び複数の開口154が形成されている。複数の第2電極130は、第1電極110と交差する方向(例えば直交する方向:図3におけるX方向)に互いに平行に延在している。そして、複数の第2電極130の間には、詳細を後述する隔壁170が延在している。開口152は、平面視で第1電極110と第2電極130の交点に位置している。具体的には、複数の開口152は、第1電極110が延在する方向(図3におけるY方向)に並んでいる。また、複数の開口152は、第2電極130の延在方向(図3におけるX方向)にも並んでいる。このため、複数の開口152はマトリクスを構成するように配置されていることになる。 As shown in FIGS. 3 and 5 to 7, the insulating layer 150 is formed on the plurality of first electrodes 110 and in a region therebetween. A plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150. The plurality of second electrodes 130 extend in parallel to each other in a direction intersecting the first electrode 110 (for example, a direction orthogonal to the X direction in FIG. 3). A partition wall 170, which will be described in detail later, extends between the plurality of second electrodes 130. The opening 152 is located at the intersection of the first electrode 110 and the second electrode 130 in plan view. Specifically, the plurality of openings 152 are arranged in the direction in which the first electrode 110 extends (Y direction in FIG. 3). The plurality of openings 152 are also arranged in the extending direction of the second electrode 130 (X direction in FIG. 3). For this reason, the plurality of openings 152 are arranged to form a matrix.
 開口154は、平面視で複数の第2電極130のそれぞれの一端側と重なる領域に位置している。また開口154は、開口152が構成するマトリクスの一辺に沿って配置されている。そしてこの一辺に沿う方向(例えば図3におけるY方向、すなわち第1電極110に沿う方向)で見た場合、開口154は、所定の間隔で配置されている。開口154からは、引出配線134の一部分が露出している。そして、引出配線134は、開口154を介して第2電極130に接続している。 The opening 154 is located in a region overlapping with one end side of each of the plurality of second electrodes 130 in plan view. The openings 154 are arranged along one side of the matrix formed by the openings 152. When viewed in a direction along this one side (for example, the Y direction in FIG. 3, that is, the direction along the first electrode 110), the openings 154 are arranged at a predetermined interval. A part of the lead wiring 134 is exposed from the opening 154. The lead wiring 134 is connected to the second electrode 130 through the opening 154.
 引出配線134は、第2電極130を第2端子132に接続する配線であり、第1電極110と同一の材料からなる層を有している。引出配線134の一端側は開口154の下に位置しており、引出配線134の他端側は、絶縁層150の外部に引き出されている。そして本図に示す例では、引出配線134の他端側は第2端子132となっている。そして引出配線134の上には、導体層180が形成されてもよい。導体層180は第2端子132を覆っていてもよいし、覆っていなくてもよい。 The lead wiring 134 is a wiring that connects the second electrode 130 to the second terminal 132, and has a layer made of the same material as the first electrode 110. One end side of the lead wiring 134 is located below the opening 154, and the other end side of the lead wiring 134 is led out of the insulating layer 150. In the example shown in the drawing, the other end side of the lead-out wiring 134 is a second terminal 132. A conductor layer 180 may be formed on the lead wiring 134. The conductor layer 180 may or may not cover the second terminal 132.
 開口152と重なる領域には、有機層120が形成されている。有機層120の正孔注入層は第1電極110に接しており、有機層120の電子注入層は第2電極130に接している。このため、発光部140は、開口152と重なる領域それぞれに位置していることになる。 In the region overlapping with the opening 152, the organic layer 120 is formed. The hole injection layer of the organic layer 120 is in contact with the first electrode 110, and the electron injection layer of the organic layer 120 is in contact with the second electrode 130. For this reason, the light emitting part 140 is located in each of the regions overlapping with the opening 152.
 なお、図5及び図6に示す例では、有機層120を構成する各層は、いずれも開口152の外側まではみ出している場合を示している。そして図3に示すように、有機層120は、隔壁170が延在する方向において、隣り合う開口152の間にも連続して形成されていてもよいし、連続して形成していなくてもよい。ただし、図7に示すように、有機層120は、開口154には形成されていない。 In the example shown in FIG. 5 and FIG. 6, each layer constituting the organic layer 120 is shown to protrude to the outside of the opening 152. As shown in FIG. 3, the organic layer 120 may be continuously formed between adjacent openings 152 in the direction in which the partition 170 extends, or may not be formed continuously. Good. However, as shown in FIG. 7, the organic layer 120 is not formed in the opening 154.
 第2電極130は、図3、図5~図7に示すように、第1方向と交わる第2方向(図3におけるX方向)に延在している。そして隣り合う第2電極130の間には、隔壁170が形成されている。隔壁170は、第2電極130と平行すなわち第2方向に延在している。隔壁170の下地は、例えば絶縁層150である。隔壁170は、例えばポリイミド系樹脂などの感光性の樹脂であり、露光及び現像されることによって、所望のパターンに形成されている。なお、隔壁170はポリイミド系樹脂以外の樹脂、例えばエポキシ系樹脂やアクリル系樹脂、二酸化珪素等の無機材料で構成されていても良い。 As shown in FIGS. 3 and 5 to 7, the second electrode 130 extends in a second direction (X direction in FIG. 3) intersecting the first direction. A partition wall 170 is formed between the adjacent second electrodes 130. The partition wall 170 extends in parallel to the second electrode 130, that is, in the second direction. The base of the partition 170 is, for example, the insulating layer 150. The partition 170 is, for example, a photosensitive resin such as a polyimide resin, and is formed in a desired pattern by being exposed and developed. The partition wall 170 may be made of a resin other than a polyimide resin, for example, an inorganic material such as an epoxy resin, an acrylic resin, or silicon dioxide.
 隔壁170は、断面が台形の上下を逆にした形状(逆台形)になっている。すなわち隔壁170の上面の幅は、隔壁170の下面の幅よりも大きい。このため、隔壁170を第2電極130より前に形成しておくと、蒸着法やスパッタリング法を用いて、第2電極130を基板100の一面側に形成することで、複数の第2電極130を一括で形成することができる。また、隔壁170は、有機層120を分断する機能も有している。なお、隔壁170も、絶縁層150と同様の工程で形成されてもよい。 The partition wall 170 has a trapezoidal cross-sectional shape (reverse trapezoid). That is, the width of the upper surface of the partition wall 170 is larger than the width of the lower surface of the partition wall 170. Therefore, if the partition wall 170 is formed before the second electrode 130, the second electrode 130 is formed on one surface side of the substrate 100 by using an evaporation method or a sputtering method. Can be formed collectively. The partition wall 170 also has a function of dividing the organic layer 120. Note that the partition wall 170 may also be formed in the same process as the insulating layer 150.
 また、第1端子112及び第2端子132には、FPC(Flexible Printed Circuit)などの導通部材が接続される。本図に示す例では、第1端子112及び第2端子132は基板100の同一の辺に沿って配置されている。このため、導通部材としてFPCを用いた場合、第1端子112及び第2端子132を、一つのFPCに接続することができる。 Also, a conductive member such as FPC (Flexible Printed Circuit) is connected to the first terminal 112 and the second terminal 132. In the example shown in this drawing, the first terminal 112 and the second terminal 132 are arranged along the same side of the substrate 100. For this reason, when FPC is used as the conductive member, the first terminal 112 and the second terminal 132 can be connected to one FPC.
 次に、本実施例における発光装置10の製造方法を説明する。まず、基板100上に第1電極110、第1端子112、第2端子132、及び引出配線114,134を形成する。これらの形成方法は、実施形態において第1電極110を形成する方法と同様である。 Next, a method for manufacturing the light emitting device 10 in this embodiment will be described. First, the first electrode 110, the first terminal 112, the second terminal 132, and the lead wires 114 and 134 are formed on the substrate 100. These forming methods are the same as the method of forming the first electrode 110 in the embodiment.
 次いで、引出配線114上及び引出配線134上を含む領域に、導体層180となる導電膜を形成する。次いで、この導電膜を、例えばフォトリソグラフィー法を利用して所定のパターンにする。これにより、導体層180が形成される。 Next, a conductive film to be the conductor layer 180 is formed in a region including the lead wiring 114 and the lead wiring 134. Next, the conductive film is formed into a predetermined pattern using, for example, a photolithography method. Thereby, the conductor layer 180 is formed.
 次いで、第1電極110上に、絶縁層150を形成する。絶縁層150の製造方法は、実施形態と同様である。この工程において、開口152,154も形成される。 Next, the insulating layer 150 is formed on the first electrode 110. The manufacturing method of the insulating layer 150 is the same as that of the embodiment. In this step, openings 152 and 154 are also formed.
 次いで、隔壁170を形成する。隔壁170の形成方法も、絶縁層150の形成方法と同様である。ただし、露光及び現像を行った後、熱処理を行う前に、隔壁170に光を照射しなくてもよい。次いで、有機層120、第2電極130、及び封止層160を形成する。これらの形成方法は、実施形態と同様である。 Next, the partition wall 170 is formed. The method for forming the partition 170 is similar to the method for forming the insulating layer 150. However, it is not necessary to irradiate the partition wall 170 with light after performing exposure and development and before performing heat treatment. Next, the organic layer 120, the second electrode 130, and the sealing layer 160 are formed. These forming methods are the same as those in the embodiment.
 本実施例においても、絶縁層150を形成した後、絶縁層150を熱硬化させる前に、絶縁層150に光を照射する。このため、絶縁層150から有機層120を劣化させるガスが発生することを抑制できる。 Also in this embodiment, after the insulating layer 150 is formed, the insulating layer 150 is irradiated with light before the insulating layer 150 is thermally cured. For this reason, generation | occurrence | production of the gas which degrades the organic layer 120 from the insulating layer 150 can be suppressed.
(実施例2)
 図8は、実施例2に係る発光装置10の構成を示す平面図である。図9は、図8から第2電極130を取り除いた図である。図10は、図9から有機層120及び絶縁層150を取り除いた図である。図11は、図8のD-D断面図である。本図に示す発光装置10は照明装置である。このため、発光部140は基板100の縁を除いた領域に形成されている。
(Example 2)
FIG. 8 is a plan view illustrating the configuration of the light emitting device 10 according to the second embodiment. FIG. 9 is a diagram in which the second electrode 130 is removed from FIG. FIG. 10 is a diagram in which the organic layer 120 and the insulating layer 150 are removed from FIG. 11 is a cross-sectional view taken along the line DD of FIG. The light emitting device 10 shown in this figure is a lighting device. For this reason, the light emitting unit 140 is formed in a region excluding the edge of the substrate 100.
 詳細には、第1電極110は基板100のほぼ全面に形成されている。絶縁層150は第1電極110の縁を覆っている。絶縁層150は、第1電極110の縁において第1電極110と第2電極130が短絡することを防止している。また、有機層120は、第1電極110のうち絶縁層150で囲まれた領域の中に形成されている。言い換えると、絶縁層150は発光部140を画定している。 Specifically, the first electrode 110 is formed on almost the entire surface of the substrate 100. The insulating layer 150 covers the edge of the first electrode 110. The insulating layer 150 prevents the first electrode 110 and the second electrode 130 from being short-circuited at the edge of the first electrode 110. The organic layer 120 is formed in a region surrounded by the insulating layer 150 in the first electrode 110. In other words, the insulating layer 150 defines the light emitting portion 140.
 なお、第1電極110の上には補助電極が形成されていてもよい。この補助電極は、例えば、実施例1における導体層180と同様の層構造を有している。この場合、第1端子112の上及び第2端子132の上に、導体層180が形成されていてもよい。そして、第1端子112の上に位置する導体層180は、補助電極と一体に形成される。 An auxiliary electrode may be formed on the first electrode 110. This auxiliary electrode has, for example, the same layer structure as the conductor layer 180 in the first embodiment. In this case, the conductor layer 180 may be formed on the first terminal 112 and the second terminal 132. The conductor layer 180 positioned on the first terminal 112 is formed integrally with the auxiliary electrode.
 本実施例において、絶縁層150の製造工程は、実施形態に示したとおりである。従って、絶縁層150から有機層120を劣化させるガスが発生することを抑制できる。 In this example, the manufacturing process of the insulating layer 150 is as described in the embodiment. Accordingly, it is possible to suppress the generation of gas that deteriorates the organic layer 120 from the insulating layer 150.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (3)

  1.  基板上に、主剤及び感光材を含むポジ型の感光性の絶縁材料を用いて膜を形成する工程と、
     前記膜を露光及び現像することにより、発光部を形成すべき領域を区画する絶縁層を形成する工程と、
     前記絶縁層に、前記感光材が反応する光を照射する工程と、
     前記絶縁層を熱処理する工程と、
     前記発光部を形成すべき領域に有機層を形成する工程と、
    を備える発光装置の製造方法。
    Forming a film on a substrate using a positive photosensitive insulating material containing a main agent and a photosensitive material;
    Forming an insulating layer for partitioning a region where a light emitting portion is to be formed by exposing and developing the film; and
    Irradiating the insulating layer with light that reacts with the photosensitive material;
    Heat treating the insulating layer;
    Forming an organic layer in a region where the light emitting part is to be formed;
    A method for manufacturing a light emitting device.
  2.  請求項1に記載の発光装置の製造方法において、
     前記絶縁層はポリイミドにより形成される発光装置の製造方法。
    In the manufacturing method of the light-emitting device according to claim 1,
    The method for manufacturing a light emitting device, wherein the insulating layer is formed of polyimide.
  3.  請求項1又は2に記載の発光装置の製造方法において、
     前記有機層を形成する工程より後に、前記発光部を封止する封止層を形成する工程を有する発光装置の製造方法。
    In the manufacturing method of the light-emitting device of Claim 1 or 2,
    The manufacturing method of the light-emitting device which has the process of forming the sealing layer which seals the said light emission part after the process of forming the said organic layer.
PCT/JP2015/054008 2015-02-13 2015-02-13 Method for producing light-emitting device WO2016129113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054008 WO2016129113A1 (en) 2015-02-13 2015-02-13 Method for producing light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054008 WO2016129113A1 (en) 2015-02-13 2015-02-13 Method for producing light-emitting device

Publications (1)

Publication Number Publication Date
WO2016129113A1 true WO2016129113A1 (en) 2016-08-18

Family

ID=56614463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054008 WO2016129113A1 (en) 2015-02-13 2015-02-13 Method for producing light-emitting device

Country Status (1)

Country Link
WO (1) WO2016129113A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065150A (en) * 2006-09-08 2008-03-21 Fujifilm Corp Color filter, member for display device and its manufacturing method
JP2012234748A (en) * 2011-05-06 2012-11-29 Jsr Corp Organic el display element and manufacturing method for the same
JP2013243121A (en) * 2012-04-27 2013-12-05 Fujifilm Corp Method of manufacturing permanent film for optical material, cured film produced by the method, and organic el display device and liquid crystal display device using the cured film
JP5613851B1 (en) * 2014-02-28 2014-10-29 Jsr株式会社 Display or lighting device
WO2014207963A1 (en) * 2013-06-26 2014-12-31 東レ株式会社 Polyimide precursor, polyimide, flexible substrate using same, color filter and manufacturing method therefor, and flexible display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065150A (en) * 2006-09-08 2008-03-21 Fujifilm Corp Color filter, member for display device and its manufacturing method
JP2012234748A (en) * 2011-05-06 2012-11-29 Jsr Corp Organic el display element and manufacturing method for the same
JP2013243121A (en) * 2012-04-27 2013-12-05 Fujifilm Corp Method of manufacturing permanent film for optical material, cured film produced by the method, and organic el display device and liquid crystal display device using the cured film
WO2014207963A1 (en) * 2013-06-26 2014-12-31 東レ株式会社 Polyimide precursor, polyimide, flexible substrate using same, color filter and manufacturing method therefor, and flexible display device
JP5613851B1 (en) * 2014-02-28 2014-10-29 Jsr株式会社 Display or lighting device

Similar Documents

Publication Publication Date Title
US20210328170A1 (en) Light-emitting device
US10608205B2 (en) Sealing structure and light emitting device
JP6595066B2 (en) Light emitting device manufacturing method and light emitting device
WO2016129113A1 (en) Method for producing light-emitting device
WO2016157321A1 (en) Light emitting device
JP6661373B2 (en) Light emitting device
JP2016119201A (en) Light-emitting device
JP2016181373A (en) Light-emitting device
JP6700309B2 (en) Light emitting device
JP6785354B2 (en) Light emitting device
WO2016129114A1 (en) Light-emitting device and method for producing light-emitting device
JP2016186911A (en) Light emission device
JP6499876B2 (en) Light emitting device
JP6580336B2 (en) Light emitting device
JP2016095990A (en) Light emission device
JP2023153346A (en) Light-emitting device
JP2022164806A (en) Light-emitting device
JP2016157645A (en) Light emission device
JP2018156752A (en) Light-emitting device
JP2021007113A (en) Light-emitting device
JP2019192662A (en) Light-emitting device
WO2017094087A1 (en) Light emitting device
JP2016143529A (en) Light emission device
JP2017123239A (en) Light-emitting device
WO2016132461A1 (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP