WO2016127838A1 - 一种数控机床及其调试方法 - Google Patents

一种数控机床及其调试方法 Download PDF

Info

Publication number
WO2016127838A1
WO2016127838A1 PCT/CN2016/072793 CN2016072793W WO2016127838A1 WO 2016127838 A1 WO2016127838 A1 WO 2016127838A1 CN 2016072793 W CN2016072793 W CN 2016072793W WO 2016127838 A1 WO2016127838 A1 WO 2016127838A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine tool
motor
actual
numerical control
rotational position
Prior art date
Application number
PCT/CN2016/072793
Other languages
English (en)
French (fr)
Inventor
龚丽辉
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Publication of WO2016127838A1 publication Critical patent/WO2016127838A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33001Director is the nc controller, computer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37138Encoder and gear and absolute coder, give together absolute position of rotation

Definitions

  • the invention relates to the field of numerical control system, in particular to a numerical control machine tool and a debugging method thereof.
  • CNC numerical control machine Tools is an automated machine tool with a CNC system.
  • the numerical control system is capable of processing a program having a control code or other symbol, and decoding it and then using a coded digital representation to input the numerical control device through the information carrier.
  • the numerical control system calculates and processes various control signals from the numerical control device, controls the operation of the machine tool, and automatically processes the parts according to the shape and size required by the drawings.
  • the debugging process mainly involves the setting of various parameters (including numerical control system parameters, drive parameters, etc.), fine adjustment of mechanical structure, correction of error parameters, etc.
  • the final goal is the machining accuracy and performance of CNC machine tools.
  • the CNC machine tool debugging method is mainly a manual attempt, that is, the parameters are manually input, and then the processing result is looked at. If the requirements are not met, try to adjust the parameters again until the processing result meets the requirements.
  • the manual attempted debugging method requires manual input of parameters to try to adjust the parameters, which takes a lot of time and is less efficient in debugging.
  • the manual debugging method is based on the empirical value to make a preliminary judgment. It can only be qualitatively judged whether the requirements are met, and the specific parameters cannot be quantitatively analyzed. As a result, the performance of the CNC machine tool for debugging is not guaranteed, and different CNC machine tools may appear. The performance is inconsistent.
  • the technical problem mainly solved by the invention is to provide a numerical control machine tool and a debugging method thereof, which can effectively improve the debugging efficiency of the numerical control machine tool, and can ensure the consistency of performance of multiple numerical control machine tools by quantitatively analyzing and judging errors. Improve the processing performance of CNC machine tools.
  • a technical solution adopted by the present invention is to provide a numerical control machine tool including a numerical control system, a motor drive system, a motor, a motor measurement system, a machine tool, a machine tool measurement system, and a correction system, which are in debugging.
  • the numerical control system is configured to output a command position value to the motor drive system to control the rotation of the motor, thereby driving the machine tool axis of the machine tool to a target position;
  • the motor measurement system is to the motor
  • the actual rotational position is detected, the machine tool measuring system detects an actual moving position of the machine tool axis;
  • the correction system performs an error calculation according to the command position value, the actual rotational position, and the actual moving position, and A correction parameter is obtained to enable the numerical control system to correct the command position value based on the correction parameter.
  • the correction system calculates the correction parameter in an iterative manner through multiple debugging processes.
  • the numerical control system is respectively connected to the motor drive system, the motor measurement system and the machine tool measurement system, and receives the actual rotational position and the actual motion position, and the numerical control system further performs the correction
  • the system is coupled and forwards the actual rotational position and the actual motion position to the correction system.
  • the motor measuring system comprises an encoder, the encoder generating a first pulse signal with the rotation of the motor, and obtaining the actual rotational position by counting the first pulse signal.
  • the machine tool measuring system comprises a grating ruler
  • the grating ruler generates a second pulse signal according to the movement of the machine tool axis, and obtains the actual motion position by counting the second pulse signal.
  • the correction system further outputs a three-dimensional graphic according to the data of the command position value, the actual rotational position, and the actual motion position.
  • the command position value corresponds to a preset rotational position of the motor and a preset motion position of the machine tool axis of the machine tool;
  • the correction system is configured according to the command position value, the actual rotational position, and the actual motion Performing an error calculation on the position and obtaining the correction parameter specifically includes: the correction system is based on a preset rotational position of the motor and an actual rotational position of the motor, a preset motion position of the machine tool axis of the machine tool, and an actual machine axis
  • the motion position is subjected to error calculation, and it is judged whether there is an error in the numerical control machine tool. When it is judged that there is an error in the numerical control machine tool, the correction parameter is obtained.
  • obtaining the correction parameter comprises: there is an error between a preset rotational position of the motor and an actual rotational position of the motor, and/or a machine tool axis of the machine tool
  • the correction parameter is obtained according to the error.
  • the correction parameter is used to adjust at least one of a PID of the motor drive system, a maximum acceleration of the motor and the machine axis, and a maximum acceleration.
  • another technical solution adopted by the present invention is to provide a debugging method for a numerically controlled machine tool, the debugging method comprising: outputting a command position value to a motor drive system to control motor rotation, thereby driving machine shaft motion Go to the target position; detect the actual rotational position of the motor and the actual moving position of the machine tool axis; perform an error calculation according to the command position value, the actual rotational position, and the actual motion position, and obtain a modified parameter And correcting the command position value according to the correction parameter.
  • the method further outputs the command position value to the motor drive system to calculate the correction parameter in an iterative manner.
  • the step of detecting the actual rotational position of the motor and the actual moving position of the machine tool shaft includes: generating a first pulse signal with the rotation of the motor, and counting the first pulse signal And obtaining the actual rotation position, generating a second pulse signal according to the movement of the machine tool axis, and obtaining the actual motion position by counting the second pulse signal.
  • the debugging method further includes: drawing a three-dimensional graphic according to the instruction position value, the actual rotation position, and the actual motion position, respectively, and presenting to the debugging personnel by the rendering device, to be The numerical control system, the motor measurement system, and the condition of the machine tool measurement system are diagnosed.
  • the command position value corresponds to a preset rotational position of the motor and a preset motion position of the machine tool axis of the machine tool; the performing according to the command position value, the actual rotational position, and the actual motion position
  • the error calculation and obtaining the correction parameter specifically include: performing an error calculation according to the preset rotation position of the motor and the actual rotation position of the motor, the preset movement position of the machine tool axis of the machine tool, and the actual movement position of the machine tool axis, And judge whether there is error in the CNC machine tool, when it is judged that there is error in the CNC machine tool, the correction parameters are obtained.
  • obtaining the correction parameter comprises: there is an error between a preset rotational position of the motor and an actual rotational position of the motor, and/or a machine tool axis of the machine tool
  • the correction parameter is obtained according to the error.
  • the correction parameter is used to adjust at least one of a PID of the motor drive system, a maximum acceleration of the motor and the machine axis, and a maximum acceleration.
  • the numerical control machine tool of the present application performs error calculation based on the command position value output by the numerical control system, the actual rotational position of the motor, and the actual moving position of the machine tool axis by the correction system. Is there any error in the CNC machine? When it is judged that there is an error, the correction parameter is calculated according to the command position value, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, so that the numerical control system can correct the command position value according to the correction parameter. Since the CNC machine tool can automatically perform error calculation, it can realize automatic debugging of CNC machine tools and improve debugging efficiency. By quantitatively analyzing and judging errors, it can ensure the consistency of performance of multiple CNC machine tools and improve the machining performance of CNC machine tools. .
  • FIG. 1 is a schematic structural view of an embodiment of a numerical control machine tool of the present application.
  • FIG. 2 is a schematic structural view of another embodiment of the numerical control machine tool of the present application.
  • FIG. 3 is a flow chart of an embodiment of a method for debugging a numerically controlled machine tool of the present application
  • FIG. 4 is a flow chart of another embodiment of a method for debugging a numerically controlled machine tool of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a numerical control machine tool according to the present application.
  • the numerically controlled machine tool of the present application includes a numerical control system 110, a motor drive system 120, a motor 130, a motor measurement system 140, a machine tool 150, a machine tool measurement system 160, and a correction system 170.
  • the numerical control system 110 and the correction system 170 may be integrated into one body or may exist independently, and are not limited herein.
  • the numerical control system is connected to the motor drive system 120 and the correction system 160.
  • the motor drive system 120 is also connected to the motor 130.
  • the motor 130 is also connected to the motor measurement system 140 and the machine tool 150.
  • the motor measurement system 140 and the machine tool measurement system 160 are further connected to the correction system 160.
  • the numerical control system 110 is configured to output a command position value to the motor drive system 120 to control the rotation of the motor 130, thereby driving the machine tool shaft of the machine tool 150 to the target position.
  • Motor measurement system 140 detects the actual rotational position of motor 130.
  • the machine tool measurement system 160 detects the actual movement position of the machine tool shaft of the machine tool 150.
  • the correction system 170 performs an error calculation based on the command position value, the actual rotational position, and the actual motion position, and obtains a correction parameter to enable the numerical control system 110 to correct the command position value according to the correction parameter.
  • the CNC machine tool when it receives the debugging instruction, it enters the debugging phase to debug the CNC machine tool.
  • the numerical control system 110 outputs the command position value to the motor drive system 120 to control the rotation of the motor 130, thereby driving the machine tool shaft of the machine tool 150 to the target position.
  • the CNC system 110 transmits the commanded position value to the correction system 160.
  • Motor measurement system 140 detects the actual rotational position of motor 130. Motor measurement system 140 transmits the measured actual rotational position of motor 130 to correction system 160.
  • the machine tool measurement system 160 detects the actual movement position of the machine tool shaft of the machine tool 150. Machine tool measurement system 160 transmits the measured actual motion position of the machine tool axis of machine tool 150 to correction system 160.
  • the correction system 170 receives the command position value sent by the numerical control system 110, the actual rotational position of the motor 130 sent by the motor measurement system 140, and the actual movement position of the machine tool shaft of the machine tool 150 transmitted by the machine tool measurement system 160, according to the command position value and the actual rotation. The position and the actual movement position are subjected to error calculation and it is judged whether there is an error in the numerically controlled machine tool.
  • the correction parameter is obtained to enable the numerical control system 110 to correct the command position value according to the correction parameter.
  • the command position value corresponds to the preset rotational position of the motor 130 and the preset motion position of the machine tool axis of the machine tool 150.
  • the correction system 170 performs an error calculation according to the preset rotational position of the motor 130 and the actual rotational position of the motor 130, the preset movement position of the machine tool axis of the machine tool 150, and the actual movement position of the machine tool axis, and determines whether there is an error in the numerical control machine tool.
  • the error calculation may be: comparing the preset rotational position of the motor 130 and the actual rotational position of the motor 130, and the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis, and determining whether the comparison result is allowed.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is no error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the error is obtained according to the error. Correcting the parameter and sending the correction parameter to the numerical control system 110, so that the numerical control system 110 can correct the command position value according to the correction parameter, so that the motor 130 rotates to the preset rotational position of the motor 130 corresponding to the corrected command position value.
  • the machine tool shaft of the machine tool 150 is rotated to the preset movement position of the machine axis corresponding to the corrected command position value, so that the CNC machine tool after the debugging meets the predetermined performance requirements.
  • the correction parameters mainly adjust the PID of the motor drive system, the maximum acceleration of the motor and the machine axis, and the maximum jerk.
  • the PID of the motor drive system the maximum acceleration of the motor and the machine axis, and the maximum jerk.
  • it is not limited to this, and may be other parameters.
  • the numerical control machine tool determines whether the numerical control machine tool has an error by performing an error calculation according to the command position value output by the numerical control system, the actual rotational position of the motor, and the actual movement position of the machine tool axis by the correction system.
  • the correction parameter is calculated according to the command position value, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, so that the numerical control system can correct the command position value according to the correction parameter. Since the CNC machine tool can automatically perform error calculation, it can realize automatic debugging of CNC machine tools and improve debugging efficiency. By quantitatively analyzing and judging errors, it can ensure the consistency of performance of multiple CNC machine tools and improve the machining performance of CNC machine tools. .
  • FIG. 2 is a schematic structural diagram of an embodiment of a numerical control machine tool according to the present application.
  • the numerically controlled machine tool of the present application includes a numerical control system 110, a motor drive system 120, a motor 130, a motor measurement system 140, a machine tool 150, a machine tool measurement system 160, a correction system 170, and a presentation device 180.
  • the numerical control system 110 and the correction system 170 may be integrated into one body or may exist independently, and are not limited herein.
  • the numerical control system 110 is respectively connected to the motor drive system 120, the motor measurement system 140, the machine tool measurement system 160, and the correction system 170.
  • the motor drive system 120 is further connected to the motor 130.
  • the motor 130 is further connected to the motor measurement system 140 and the machine tool 150, and the correction system 170
  • the rendering device 180 is also connected.
  • Motor measurement system 140 includes an encoder 141 that includes a scale 161.
  • the numerical control system 110 is configured to output a command position value to the motor drive system 120 to control the rotation of the motor 130, thereby driving the machine tool shaft of the machine tool 150 to the target position.
  • Motor measurement system 140 detects the actual rotational position of motor 130.
  • the machine tool measurement system 160 detects the actual movement position of the machine tool shaft of the machine tool 150.
  • the correction system 170 performs an error calculation based on the command position value, the actual rotational position, and the actual motion position, and obtains a correction parameter to enable the numerical control system 110 to correct the command position value according to the correction parameter.
  • correction system 170 calculates the correction parameters in an iterative manner through multiple commissioning procedures.
  • the numerical control system 110 receives the actual rotational position and the actual rotational position and forwards the actual rotational position and the actual motion position to the correction system 170.
  • the encoder 141 of the motor measurement system 140 generates a first pulse signal as the motor 130 rotates, and obtains an actual rotational position by counting the first pulse signal.
  • the grating ruler 161 of the machine tool measuring system 160 moves the random bed axis to generate a second pulse signal, and obtains the actual motion position by counting the second pulse signal.
  • correction system 170 further outputs a three-dimensional graphic according to the data of the command position value, the actual rotation position and the actual movement position, respectively, and presents it to the debugging personnel through the presentation device 180, so as to be debugged by the debugging personnel to the numerical control system 110, the motor measurement system 140, and The condition of the machine tool measurement system 160 is diagnosed.
  • the CNC machine tool when it receives the debugging instruction, it enters the debugging phase to debug the CNC machine tool.
  • the numerical control system 110 outputs the command position value to the motor drive system 120 to control the rotation of the motor 130, thereby driving the machine tool shaft of the machine tool 150 to the target position.
  • the CNC system 110 transmits the commanded position value to the correction system 160.
  • Motor measurement system 140 detects the actual rotational position of motor 130. Wherein, the encoder 141 of the motor measuring system 140 generates a first pulse signal as the motor 130 rotates, and the motor measuring system 140 obtains the actual rotational position by counting the first pulse signal.
  • the motor measurement system 140 transmits the measured actual rotational position of the motor 130 to the numerical control system 110.
  • the machine tool measurement system 160 detects the actual movement position of the machine tool shaft of the machine tool 150.
  • the grating ruler 161 of the machine tool measuring system 160 generates a second pulse signal by the movement of the machine axis of the random bed 150, and the machine tool measuring system 160 obtains the actual moving position by counting the second pulse signal.
  • the machine tool measurement system 160 transmits the measured actual motion position of the machine tool axis of the machine tool 150 to the numerical control system 110.
  • the numerical control system 110 receives the actual rotational position transmitted by the motor measurement system 140 and the actual rotational position transmitted by the machine tool measurement system 160, and forwards the actual rotational position and the actual motion position to the correction system 170.
  • the correction system 170 receives the command position value, the actual rotation position, and the actual movement position sent by the numerical control system 110, performs error calculation according to the command position value, the actual rotation position, and the actual movement position, and determines whether the numerical control machine tool has an error.
  • the correction parameter is obtained to enable the numerical control system 110 to correct the command position value according to the correction parameter.
  • the correction system 170 calculates the correction parameters in an iterative manner through multiple commissioning procedures.
  • the command position value corresponds to the preset rotational position of the motor 130 and the preset motion position of the machine tool axis of the machine tool 150.
  • the correction system 170 performs an error calculation according to the preset rotational position of the motor 130 and the actual rotational position of the motor 130, the preset movement position of the machine tool axis of the machine tool 150, and the actual movement position of the machine tool axis, and determines whether there is an error in the numerical control machine tool. Specifically, the correction system 170 compares the preset rotational position of the motor 130 with the actual rotational position of the motor 130, and compares the preset motion position of the machine tool axis of the machine tool 150 with the actual motion position of the machine tool shaft to determine the preset rotation of the motor 130. There is an error between the position and the actual rotational position of the motor 130, and/or whether there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the error calculation may be: comparing the preset rotational position of the motor 130 and the actual rotational position of the motor 130, and the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis, and determining whether the comparison result is allowed.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is no error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the correction parameters mainly adjust the PID of the motor drive system, the maximum acceleration of the motor and the machine axis, and the maximum jerk. However, it is not limited to this, and may be other parameters.
  • the correction system 170 further draws data according to the preset rotational position of the motor 130 corresponding to the command position value, the preset movement position of the machine tool axis of the machine tool 150, the actual rotational position of the motor 130, and the actual movement position of the machine tool axis of the machine tool 150, respectively.
  • the three-dimensional graphics are output and presented to the debugger via presentation device 180.
  • the three-dimensional graphics present the preset rotational position of the motor 130 corresponding to the current debugging time, the actual rotational position of the motor 130, the preset motion position of the machine tool axis of the machine tool 150 corresponding to the current debugging time, and the actual motion position of the machine tool axis.
  • the three-dimensional graphic can directly directly display an error between a preset rotational position of the motor 130 corresponding to the current debugging time and an actual rotational position of the motor 130, and a preset motion position of the machine tool axis of the machine tool 150 corresponding to the current debugging time.
  • the data in the 3D graphics can be displayed in real time.
  • the data presented in the three-dimensional graphics is used to enable the debugger to analyze the data presented in the three-dimensional graphics and to diagnose the condition of the numerical control system 110, the motor measurement system 140, and the machine tool measurement system 160 based on the data. For example, when the debugger analyzes the data in the three-dimensional figure and learns that the error between the preset rotational position and the actual rotational position of the motor 130 is large, it is diagnosed that there is a problem with the electrode driving system 120. When it is known that the error between the preset movement position and the actual movement position of the machine tool shaft of the machine tool 150 is large, the diagnosis is that there is a problem in the mechanical structure of the numerically controlled machine tool.
  • the diagnosis is that the position planning of the numerical control system 110 is problem.
  • the correction system 170 determines that the numerical control system 110 controls the numerically controlled lathe operation according to the corrected command position value, and obtains the actual rotational position of the motor 130 and the actual movement position of the machine tool shaft of the machine tool 150, the corrected command transmitted according to the numerical control system 110
  • the position value, the actual rotational position, and the actual moving position are again subjected to error calculation, and it is again determined whether there is an error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130, and/or the preset of the machine axis of the machine tool 150 There is an error between the movement position and the actual movement position of the machine axis.
  • the correction parameters are obtained to enable the numerical control system 110 to correct the command position values based on the correction parameters.
  • the correction system 170 calculates the correction parameters in an iterative manner through a plurality of debugging processes, so that the numerical control system 110 corrects the command position value according to the correction parameter, thereby causing the motor 130 to rotate to the motor corresponding to the corrected command position value.
  • the machine tool shaft of the machine tool 150 is rotated to the preset motion position of the machine axis corresponding to the corrected command position value, so that the CNC machine tool after the debugging meets the predetermined performance requirements.
  • the numerical control machine tool draws a three-dimensional figure according to the command position value outputted by the numerical control system, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, and performs an error calculation to determine whether the numerical control machine tool has an error.
  • the correction system judges that there is an error, the correction parameter is calculated according to the command position value, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, so that the numerical control system can correct the command position value according to the correction parameter.
  • the debugging personnel can understand the running situation in time and quickly diagnose the CNC machine tool. It can automatically perform the error calculation to realize the automatic debugging of the CNC machine tool, improve the debugging efficiency, and analyze and judge the error by quantitative. It can ensure the consistency of the performance of multiple CNC machine tools, and also improve the processing performance of CNC machine tools.
  • FIG. 3 is a flow chart of an embodiment of a method for debugging a numerically controlled machine tool of the present application.
  • the execution body of this embodiment is a numerically controlled machine tool.
  • the debugging method of the numerical control machine tool of this embodiment includes the following steps:
  • S101 Output a command position value to the motor drive system to control the rotation of the motor, thereby driving the machine shaft to move to the target position.
  • the CNC machine tool When the CNC machine tool receives the debugging command, it enters the debugging phase to debug the CNC machine tool.
  • the CNC machine outputs the command position value to the motor drive system to control the motor to rotate, thereby driving the machine shaft to the target position.
  • the CNC machine detects the actual rotational position of the motor and the actual moving position of the machine axis.
  • the CNC machine tool performs error calculation according to the command position value, the actual rotation position and the actual movement position and judges whether the CNC machine tool has an error.
  • the command position value corresponds to the preset rotational position of the motor and the preset motion position of the machine axis.
  • the CNC machine tool performs error calculation according to the preset rotation position of the motor and the actual rotation position of the motor, the preset movement position of the machine axis and the actual movement position of the machine axis, and judges whether the numerical control machine tool has an error.
  • the error calculation may be: comparing the preset rotational position of the motor 130 and the actual rotational position of the motor 130, and the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis, and determining whether the comparison result is allowed.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is no error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the error of the numerical control machine tool includes: an error between the preset rotational position of the motor and the actual rotational position of the motor, and/or an error between the preset movement position of the machine tool axis and the actual movement position of the machine tool shaft.
  • the CNC machine tool corrects the command position value according to the correction parameter, so that the motor rotates to the preset rotation position of the motor corresponding to the corrected command position value, so that the machine axis rotates to the corrected machine position of the corrected command position value.
  • Set the position of the movement so that the CNC machine after commissioning meets the predetermined performance requirements.
  • the correction parameters mainly adjust the PID of the motor drive system, the maximum acceleration of the motor and the machine axis, and the maximum jerk.
  • the PID of the motor drive system the maximum acceleration of the motor and the machine axis, and the maximum jerk.
  • it is not limited to this, and may be other parameters.
  • the numerical control machine tool determines whether the numerical control machine tool has an error by performing an error calculation according to the command position value output by the numerical control system, the actual rotational position of the motor, and the actual movement position of the machine tool axis by the correction system.
  • the correction parameters are calculated according to the command position value, the actual rotational position of the motor, and the actual movement position of the machine tool shaft, so that the numerical control machine tool can correct the command position value according to the correction parameter. Since the CNC machine tool can automatically perform error calculation, it can realize automatic debugging of CNC machine tools and improve debugging efficiency. By quantitatively analyzing and judging errors, it can ensure the consistency of performance of multiple CNC machine tools and improve the machining performance of CNC machine tools. .
  • FIG. 4 is a flow chart of another embodiment of a method for debugging a numerically controlled machine tool of the present application.
  • the execution body of this embodiment is a numerically controlled machine tool.
  • the debugging method of the numerical control machine tool of this embodiment includes the following steps:
  • S201 Output a command position value to the motor drive system to control the rotation of the motor, thereby driving the machine shaft to move to the target position.
  • the CNC machine tool When the CNC machine tool receives the debugging command, it enters the debugging phase to debug the CNC machine tool.
  • the CNC machine outputs the command position value to the motor drive system to control the motor to rotate, thereby driving the machine shaft to the target position.
  • the CNC machine detects the actual rotational position of the motor and the actual moving position of the machine axis.
  • the step of detecting the actual rotational position of the motor and the actual moving position of the machine tool specifically includes: generating a first pulse signal as the motor rotates, and obtaining an actual rotational position by counting the first pulse signal, the random bed axis The motion generates a second pulse signal and obtains the actual motion position by counting the second pulse signal.
  • the encoder of the numerical control machine tool generates a first pulse signal as the motor rotates, and the numerical control machine tool obtains the actual rotational position by counting the first pulse signal.
  • the movement of the grating machine of the numerical control machine tool generates a second pulse signal by the movement of the random bed axis, and the numerical control machine tool obtains the actual movement position by counting the second pulse signal.
  • S203 Perform an error calculation according to the command position value, the actual rotation position, and the actual movement position, and obtain a correction parameter.
  • the CNC machine tool performs error calculation according to the command position value, the actual rotation position and the actual movement position and judges whether the CNC machine tool has an error.
  • the correction parameter is obtained according to the error, so that the numerical control machine tool can correct the command position value according to the correction parameter.
  • the command position value corresponds to the preset rotational position of the motor and the preset motion position of the machine axis.
  • the CNC machine tool performs error calculation according to the preset rotation position of the motor and the actual rotation position of the motor, the preset movement position of the machine axis and the actual movement position of the machine axis, and judges whether the numerical control machine tool has an error.
  • the numerical control machine tool compares the preset rotational position of the motor with the actual rotational position of the motor, and compares the preset motion position of the machine axis with the actual movement position of the machine shaft to determine the preset rotational position of the motor and the actual rotational position of the motor. Is there an error between and/or whether there is an error between the preset movement position of the machine axis and the actual movement position of the machine axis.
  • the error calculation may be: comparing the preset rotational position of the motor 130 and the actual rotational position of the motor 130, and the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis, and determining whether the comparison result is allowed.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is no error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result belongs to the allowable error range, or the actual rotational position is equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset rotational position of the motor 130 and the actual rotational position of the motor 130.
  • the comparison result does not belong to the allowable error range, or the actual rotational position is not equal to the preset rotational position, it is determined that there is an error between the preset motion position of the machine tool axis of the machine tool 150 and the actual motion position of the machine tool axis.
  • the correction parameter is obtained according to the error.
  • the correction parameters mainly adjust the PID of the motor drive system, the maximum acceleration of the motor and the machine axis, and the maximum jerk. However, it is not limited to this, and may be other parameters.
  • S204 Output a three-dimensional graphic according to the data of the command position value, the actual rotational position, and the actual motion position.
  • the CNC machine tool after acquiring the command position value, the actual rotation position and the actual movement position, according to the preset position of the motor corresponding to the position value of the command and the preset movement position of the machine axis, the actual rotation position of the motor and the actual operation of the machine axis
  • the data of the motion position draws or outputs a three-dimensional graphic and is presented to the debugger through the rendering device.
  • the three-dimensional graphic presents the preset rotation position of the motor corresponding to the current debugging time and the actual rotation position of the motor, the preset movement position of the machine axis corresponding to the current debugging time, and the actual movement position of the machine axis.
  • the three-dimensional graphic can directly display the error between the preset rotational position of the motor corresponding to the current debugging time and the actual rotational position of the motor, the preset motion position of the machine axis corresponding to the current debugging time, and the actual motion of the machine axis. The error between the positions.
  • the data in the 3D graphics can be displayed in real time.
  • the data presented in the 3D graphics is used to enable the debugger to analyze the data presented in the 3D graphics and to diagnose the condition of the CNC system, the motor measurement system, and the machine measurement system based on the data.
  • the diagnosis is that the electrode driving system has a problem.
  • the diagnosis is that there is a problem in the mechanical structure of the numerical control machine tool.
  • the diagnosis is a problem in the position planning of the numerical control system.
  • the CNC machine tool corrects the command position value according to the correction parameter, so that the numerical control machine tool outputs the command position value to the motor drive system to control the motor to rotate, thereby moving the machine axis to the target position.
  • the numerical control machine returns to step S201 to detect the actual rotational position of the motor and the actual movement position of the machine shaft, and obtain the actual rotational position of the motor and the actual movement position of the machine shaft, thereby calculating the correction parameters by using an iterative method.
  • the iterative method is used to calculate the correction parameters.
  • the numerical control machine performs the error calculation again according to the corrected command position value, the obtained actual rotational position and the actual movement position, and again determines the preset rotational position of the motor and the actual rotational position of the motor. Is there an error, and/or whether there is an error between the preset movement position of the machine axis and the actual movement position of the machine axis.
  • the correction parameter is reacquired according to the error, Enables the CNC machine to correct the command position value based on the correction parameters.
  • steps S201 to S206 are cyclically executed, and the correction parameters are calculated by using the iterative method through multiple debugging processes, so that the numerical control machine tool corrects the command position value according to the correction parameter, thereby causing the motor to rotate to the corrected command position value.
  • the preset rotation position of the corresponding motor causes the machine tool shaft to rotate to the preset movement position of the machine axis corresponding to the corrected command position value, thereby making the CNC machine tool after the debugging meet the predetermined performance requirements.
  • the numerical control machine tool draws a three-dimensional figure according to the command position value outputted by the numerical control system, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, and performs an error calculation to determine whether the numerical control machine tool has an error.
  • the correction parameter is calculated according to the command position value, the actual rotational position of the motor, and the actual movement position of the machine tool axis of the machine tool, so that the numerical control machine tool can correct the command position value according to the correction parameter.
  • the debugging personnel can understand the running situation in time and quickly diagnose the CNC machine tool. It can automatically perform the error calculation to realize the automatic debugging of the CNC machine tool, improve the debugging efficiency, and analyze and judge the error by quantitative. It can ensure the consistency of the performance of multiple CNC machine tools, and also improve the processing performance of CNC machine tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

一种数控机床及其调试方法,数控机床包括数控系统(110)、电机驱动系统(120)、电机(130)、电机测量系统(140)、机床(150)、机床测量系统(160)和修正系统(170),在调试过程中,数控系统(110)用于向电机驱动系统(120)输出指令位置值,以控制电机(130)转动,进而带动机床(150)的机床轴运动到目标位置;电机测量系统(140)对电机(130)的实际转动位置进行检测,机床测量系统(160)对机床轴的实际运动位置进行检测;修正系统(170)根据指令位置值、实际转动位置以及实际运动位置进行误差运算,并获得修正参数,以使数控系统(110)能够根据修正参数对指令位置值进行修正。其能够实现数控机床的自动化调试,提高调试效率,能够保证多台数控机床的性能的一致性,提高数控机床的加工性能。

Description

一种数控机床及其调试方法
【技术领域】
本发明涉及领域数控系统领域,尤其是涉及一种数控机床及其调试方法。
【背景技术】
数控机床(Computer numerical control machine tools)是一种装有数控系统的自动化机床。数控系统能够处理具有控制编码或其他符号指令程序,并将其译码后用代码化的数字表示,通过信息载体输入数控装置。数控系统运算处理数控装置发出的各种控制信号,控制机床运作,按图纸要求的形状和尺寸,自动地将零件加工出来。
由于数控机床结构复杂,包括机械结构、数控系统、驱动器、电机、传感器、测量设备等,要想给用户交付一台性能良好的数控机床,必须进行完整的系统调试。其中,调试过程主要涉及各种参数的设定(包括数控系统参数、驱动器参数等)、机械结构的微调、误差参数的修正等,最后的目标就是数控机床的加工精度和性能。
目前数控机床调试方法主要是人工尝试的方式,即由人工输入参数,然后看加工结果,如果没有满足要求,再次尝试调整参数,直到加工结果满足要求为止。
然而,人工尝试的调试方式需要人工不断输入参数,以尝试调整参数,需要耗费大量时间,调试效率较低。并且,人工尝试的调试方式是根据经验值来初步判断,只能定性判断是否满足要求,不能定量分析具体参数,导致调试出厂的数控机床的性能得不到保证,还可能会出现不同的数控机床的性能不一致的情况。
【发明内容】
本发明主要解决的技术问题是提供一种数控机床及其调试方法,能够有效提高数控机床的调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种数控机床,所述数控机床包括数控系统、电机驱动系统、电机、电机测量系统、机床、机床测量系统以及修正系统,在调试过程中,所述数控系统用于向所述电机驱动系统输出指令位置值,以控制所述电机转动,进而带动所述机床的机床轴运动到目标位置;所述电机测量系统对所述电机的实际转动位置进行检测,所述机床测量系统对所述机床轴的实际运动位置进行检测;所述修正系统根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数,以使所述数控系统能够根据所述修正参数对所述指令位置值进行修正。
其中,所述修正系统通过多次调试过程利用迭代方式计算所述修正参数。
其中,所述数控系统分别与所述电机驱动系统、所述电机测量系统以及所述机床测量系统连接,并接收所述实际转动位置和所述实际运动位置,所述数控系统进一步与所述修正系统连接,并向所述修正系统转发所述实际转动位置和所述实际运动位置。
其中,所述电机测量系统包括编码器,所述编码器随所述电机的转动产生第一脉冲信号,并通过对所述第一脉冲信号进行计数而获得所述实际转动位置。
其中,所述机床测量系统包括光栅尺,所述光栅尺随所述机床轴的运动而产生第二脉冲信号,并通过对所述第二脉冲信号进行计数而获得所述实际运动位置。
其中,所述修正系统进一步根据所述指令位置值、所述实际转动位置以及所述实际运动位置的数据输出三维图形。
其中,所述指令位置值对应所述电机的预设转动位置以及所述机床的机床轴的预设运动位置;所述修正系统根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数具体包括:所述修正系统根据所述电机的预设转动位置和所述电机的实际转动位置、所述机床的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差,当判断数控机床存在误差时,获得修正参数。
其中,所述当判断数控机床存在误差时,获得修正参数包括:当所述电机的预设转动位置和所述电机的实际转动位置之间存在误差,和/或,所述机床的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数。
其中,所述修正参数用于对所述电机驱动系统的PID,所述电机以及机床轴的最大加速度,最大加速度中的至少一种参数进行调整。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种数控机床的调试方法,所述调试方法包括:向电机驱动系统输出指令位置值,以控制电机转动,进而带动机床轴运动到目标位置;对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测;根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数;根据所述修正参数对所述指令位置值进行修正。
其中,所述根据所述修正参数对所述指令位置值进行修正的步骤之后,进一步返回所述向电机驱动系统输出指令位置值,以利用迭代方式计算所述修正参数。
其中,所述对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测的步骤包括:随所述电机的转动产生第一脉冲信号,并通过对所述第一脉冲信号进行计数而获得所述实际转动位,随所述机床轴的运动而产生第二脉冲信号,并通过对所述第二脉冲信号进行计数而获得所述实际运动位置。
其中,所述调试方法进一步包括:分别根据所述指令位置值、所述实际转动位置以及所述实际运动位置绘制三维图形,并通过呈现设备呈现给调试人员,以由所述调试人员对所述数控系统、所述电机测量系统以及所述机床测量系统的状况进行诊断。
其中,所述指令位置值对应所述电机的预设转动位置以及所述机床的机床轴的预设运动位置;所述根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数具体包括:根据所述电机的预设转动位置和所述电机的实际转动位置、所述机床的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差,当判断数控机床存在误差时,获得修正参数。
其中,所述当判断数控机床存在误差时,获得修正参数包括:当所述电机的预设转动位置和所述电机的实际转动位置之间存在误差,和/或,所述机床的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数。
其中,所述修正参数用于对所述电机驱动系统的PID,所述电机以及机床轴的最大加速度,最大加速度中的至少一种参数进行调整。
本发明的有益效果是:区别于现有技术的情况,本申请的数控机床通过修正系统根据数控系统输出的指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置进行误差运算判断数控机床是否存在误差。当判断存在误差时,根据指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置计算修正参数,以使数控系统能够根据修正参数对指令位置值进行修正。由于数控机床能够自动进行误差运算,能够实现自动化调试数控机床,提高调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
【附图说明】
图1是本申请数控机床一实施例的结构示意图;
图2是本申请数控机床另一实施例的结构示意图;
图3是本申请数控机床的调试方法一实施例的流程图;
图4是本申请数控机床的调试方法另一实施例的流程图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
请参阅图1,图1是本申请数控机床一实施例的结构示意图。本申请的数控机床包括数控系统110、电机驱动系统120、电机130、电机测量系统140、机床150、机床测量系统160以及修正系统170。数控系统110和修正系统170可以集成为一体,也可以独立存在,此处不做限制。
其中,数控系统连接电机驱动系统120以及修正系统160,电机驱动系统120还连接电机130,电机130还连接电机测量系统140以及机床150,电机测量系统140以及机床测量系统160进一步连接修正系统160。
在调试过程中,数控系统110用于向电机驱动系统120输出指令位置值,以控制电机130转动,进而带动机床150的机床轴运动到目标位置。电机测量系统140对电机130的实际转动位置进行检测。机床测量系统160对机床150的机床轴的实际运动位置进行检测。修正系统170根据指令位置值、实际转动位置以及实际运动位置进行误差运算,并获得修正参数,以使数控系统110能够根据修正参数对指令位置值进行修正。
具体地,数控机床接收到调试指令时,进入调试阶段,以对数控机床进行调试。在调试过程中,数控系统110向电机驱动系统120输出指令位置值,以控制电机130进行转动,进而带动机床150的机床轴运动到目标位置。数控系统110将指令位置值发送给修正系统160。
电机测量系统140对电机130的实际转动位置进行检测。电机测量系统140将测量到的电机130的实际转动位置向修正系统160发送。
机床测量系统160对机床150的机床轴的实际运动位置进行检测。机床测量系统160将测量到的机床150的机床轴的实际运动位置向修正系统160发送。
修正系统170接收数控系统110发送的指令位置值、电机测量系统140发送的电机130的实际转动位置、接收机床测量系统160发送的机床150的机床轴的实际运动位置,根据指令位置值、实际转动位置以及实际运动位置进行误差运算并判断数控机床是否存在误差。当修正系统170判断数控机床存在误差时,获得修正参数,以使数控系统110能够根据修正参数对指令位置值进行修正。
其中,指令位置值对应电机130的预设转动位置以及机床150的机床轴的预设运动位置。修正系统170根据电机130的预设转动位置和电机130的实际转动位置、机床150的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差。
其中,误差运算可以为:分别比较电机130的预设转动位置和电机130的实际转动位置,以及机床150的机床轴的预设运动位置和机床轴的实际运动位置,判断比较结果是否属于允许的误差范围,或判断实际转动位置是否等于预设转动位置,以及判断预设运动位置是否等于实际运动位置。
当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间没有误差。当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间存在误差。当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当电机130的预设转动位置和电机130的实际转动位置之间存在误差,和/或,机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数,并把修正参数发送给数控系统110,以使数控系统110能够根据修正参数对指令位置值进行修正,以使电机130转动到修正后的指令位置值对应的电机130的预设转动位置上,使机床150的机床轴转动到修正后的指令位置值对应的机床轴的预设运动位置,进而使得调试后的数控机床满足预定的性能要求。
其中,修正参数主要对电机驱动系统的PID,电机以及机床轴的最大加速度,最大加加速度等参数进行调整。但并不限于此,还可以是其他的参数。
上述方案,数控机床通过修正系统根据数控系统输出的指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置进行误差运算判断数控机床是否存在误差。当判断存在误差时,根据指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置计算修正参数,以使数控系统能够根据修正参数对指令位置值进行修正。由于数控机床能够自动进行误差运算,能够实现自动化调试数控机床,提高调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
请参阅图2,图2是本申请数控机床一实施例的结构示意图。本申请的数控机床包括数控系统110、电机驱动系统120、电机130、电机测量系统140、机床150、机床测量系统160、修正系统170以及呈现设备180。数控系统110和修正系统170可以集成为一体,也可以独立存在,此处不做限制。
其中,数控系统110分别连接电机驱动系统120、电机测量系统140机床测量系统160以及修正系统170,电机驱动系统120还连接电机130,电机130还进一步连接电机测量系统140以及机床150,修正系统170还连接呈现设备180。电机测量系统140包括编码器141,机床测量系统160包括光栅尺161。
在调试过程中,数控系统110用于向电机驱动系统120输出指令位置值,以控制电机130转动,进而带动机床150的机床轴运动到目标位置。电机测量系统140对电机130的实际转动位置进行检测。机床测量系统160对机床150的机床轴的实际运动位置进行检测。修正系统170根据指令位置值、实际转动位置以及实际运动位置进行误差运算,并获得修正参数,以使数控系统110能够根据修正参数对指令位置值进行修正。
进一步地,修正系统170通过多次调试过程利用迭代方式计算修正参数。
进一步地,数控系统110接收实际转动位置和实际运动位置,并向修正系统170转发实际转动位置和实际运动位置。
进一步地,电机测量系统140的编码器141随电机130的转动产生第一脉冲信号,并通过对第一脉冲信号进行计数而获得实际转动位置。
进一步地,机床测量系统160的光栅尺161随机床轴的运动而产生第二脉冲信号,并通过对第二脉冲信号进行计数而获得实际运动位置。
进一步地,修正系统170进一步分别根据指令位置值、实际转动位置以及实际运动位置的数据输出三维图形,并通过呈现设备180呈现给调试人员,以由调试人员对数控系统110、电机测量系统140以及机床测量系统160的状况进行诊断。
具体地,数控机床接收到调试指令时,进入调试阶段,以对数控机床进行调试。在调试过程中,数控系统110向电机驱动系统120输出指令位置值,以控制电机130进行转动,进而带动机床150的机床轴运动到目标位置。数控系统110将指令位置值发送给修正系统160。
电机测量系统140对电机130的实际转动位置进行检测。其中,电机测量系统140的编码器141随电机130的转动产生第一脉冲信号,电机测量系统140通过对第一脉冲信号进行计数而获得实际转动位置。
电机测量系统140将测量到的电机130的实际转动位置向数控系统110发送。
机床测量系统160对机床150的机床轴的实际运动位置进行检测。其中,机床测量系统160的光栅尺161随机床150的机床轴的运动而产生第二脉冲信号,机床测量系统160通过对第二脉冲信号进行计数而获得实际运动位置。
机床测量系统160将测量到的机床150的机床轴的实际运动位置向数控系统110发送。
数控系统110接收电机测量系统140发送的实际转动位置和机床测量系统160发送的实际运动位置,并向修正系统170转发实际转动位置和实际运动位置。
修正系统170接收数控系统110发送的指令位置值、实际转动位置、实际运动位置,根据指令位置值、实际转动位置以及实际运动位置进行误差运算并判断数控机床是否存在误差。当修正系统170判断数控机床存在误差时,获得修正参数,以使数控系统110能够根据修正参数对指令位置值进行修正。修正系统170通过多次调试过程利用迭代方式计算修正参数。其中,指令位置值对应电机130的预设转动位置以及机床150的机床轴的预设运动位置。
修正系统170根据电机130的预设转动位置和电机130的实际转动位置、机床150的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差。具体为:修正系统170比较电机130的预设转动位置和电机130的实际转动位置,以及比较机床150的机床轴的预设运动位置和机床轴的实际运动位置,以判断电机130的预设转动位置和电机130的实际转动位置之间是否存在误差,和/或,机床150的机床轴的预设运动位置和机床轴的实际运动位置之间是否存在误差。
其中,误差运算可以为:分别比较电机130的预设转动位置和电机130的实际转动位置,以及机床150的机床轴的预设运动位置和机床轴的实际运动位置,判断比较结果是否属于允许的误差范围,或判断实际转动位置是否等于预设转动位置,以及判断预设运动位置是否等于实际运动位置。
当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间没有误差。当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间存在误差。当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当电机130的预设转动位置和电机130的实际转动位置之间存在误差,和/或,机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数,并把修正参数发送给数控系统110,以使数控系统110能够根据修正参数对指令位置值进行修正。其中,修正参数主要对电机驱动系统的PID,电机以及机床轴的最大加速度,最大加加速度等参数进行调整。但并不限于此,还可以是其他的参数。
修正系统170进一步分别根据指令位置值对应的电机130的预设转动位置以及机床150的机床轴的预设运动位置、电机130的实际转动位置以及机床150的机床轴的实际运动位置的数据绘制或输出三维图形,并通过呈现设备180呈现给调试人员。
其中,三维图形中呈现当前调试时间对应的电机130的预设转动位置和电机130的实际转动位置、当前调试时间对应的机床150的机床轴的预设运动位置和机床轴的实际运动位置。可选地,三维图形还可以直接呈现当前调试时间对应的电机130的预设转动位置和电机130的实际转动位置之间的误差、当前调试时间对应的机床150的机床轴的预设运动位置和机床轴的实际运动位置之间的误差。三维图形中的数据可以是实时显示的。
三维图形中呈现的数据用于使调试人员能够分析三维图形中呈现的数据,并根据数据对数控系统110、电机测量系统140以及机床测量系统160的状况进行诊断。例如,当调试人员分析三维图形中的数据,获知电机130的预设转动位置和实际转动位置之间的误差较大时,诊断为电极驱动系统120存在问题。当获知机床150的机床轴的预设运动位置和实际运动位置之间的误差较大时,诊断为数控机床的机械结构存在问题。当获知电机130的预设转动位置和实际转动位置之间的误差、机床150的机床轴的预设运动位置和实际运动位置之间的误差均较大时,诊断为数控系统110的位置规划有问题。
当修正系统170判断数控系统110根据修正后的指令位置值控制数控车床运转,并获得电机130的实际转动位置以及机床150的机床轴的实际运动位置后,根据数控系统110发送的修正后的指令位置值、实际转动位置以及实际运动位置再次进行误差运算,并再次判断电机130的预设转动位置和电机130的实际转动位置之间是否存在误差,和/或,机床150的机床轴的预设运动位置和机床轴的实际运动位置之间是否存在误差。
当电机130的预设转动位置和电机130的实际转动位置之间存在误差,和/或,机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差重新获取修正参数,以使数控系统110能够根据修正参数对指令位置值进行修正。
按照同样的方法,修正系统170通过多次调试过程利用迭代方式计算修正参数,以使数控系统110根据修正参数对指令位置值进行修正,进而使得电机130转动到修正后的指令位置值对应的电机130的预设转动位置上,使机床150的机床轴转动到修正后的指令位置值对应的机床轴的预设运动位置,进而使得调试后的数控机床满足预定的性能要求。上述方案,数控机床通过修正系统根据数控系统输出的指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置绘制三维图形以及进行误差运算判断数控机床是否存在误差。当修正系统判断存在误差时,根据指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置计算修正参数,以使数控系统能够根据修正参数对指令位置值进行修正。
由于数控机床能够实时更新三维图形中的数据,以便调试人员及时了解运行情况并对数控机床进行快速诊断;能够自动进行误差运算实现自动化调试数控机床,提高调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
请参阅图3,图3是本申请数控机床的调试方法一实施例的流程图。本实施例的执行主体为数控机床。本实施例的数控机床的调试方法包括以下步骤:
S101:向电机驱动系统输出指令位置值,以控制电机转动,进而带动机床轴运动到目标位置。
数控机床接收到调试指令时,进入调试阶段,以对数控机床进行调试。在调试过程中,数控机床向电机驱动系统输出指令位置值,以控制电机进行转动,进而带动机床轴运动到目标位置。
S102:对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测。
数控机床对电机的实际转动位置和机床轴的实际运动位置进行检测。
S103:根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数。
数控机床根据指令位置值、实际转动位置以及实际运动位置进行误差运算并判断数控机床是否存在误差。
其中,指令位置值对应电机的预设转动位置以及机床轴的预设运动位置。数控机床根据电机的预设转动位置和电机的实际转动位置、机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差。
其中,误差运算可以为:分别比较电机130的预设转动位置和电机130的实际转动位置,以及机床150的机床轴的预设运动位置和机床轴的实际运动位置,判断比较结果是否属于允许的误差范围,或判断实际转动位置是否等于预设转动位置,以及判断预设运动位置是否等于实际运动位置。
当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间没有误差。当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间存在误差。当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当数控机床判断存在误差时,根据误差获得修正参数,以使数控机床能够根据修正参数对指令位置值进行修正。其中,数控机床的误差包括:电机的预设转动位置和电机的实际转动位置之间的误差,和/或,机床轴的预设运动位置和机床轴的实际运动位置之间的误差。
当数控机床判断不存在误差时,则不进行任何处理。
S104:根据所述修正参数对所述指令位置值进行修正。
数控机床根据修正参数对指令位置值进行修正,以使电机转动到修正后的指令位置值对应的电机的预设转动位置上,使机床轴转动到修正后的指令位置值对应的机床轴的预设运动位置,进而使得调试后的数控机床满足预定的性能要求。
其中,修正参数主要对电机驱动系统的PID,电机以及机床轴的最大加速度,最大加加速度等参数进行调整。但并不限于此,还可以是其他的参数。
上述方案,数控机床通过修正系统根据数控系统输出的指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置进行误差运算判断数控机床是否存在误差。当存在误差时,根据指令位置值、电机的实际转动位置以及机床轴的实际运动位置计算修正参数,以使数控机床能够根据修正参数对指令位置值进行修正。由于数控机床能够自动进行误差运算,能够实现自动化调试数控机床,提高调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
请参阅图4,图4是本申请数控机床的调试方法另一实施例的流程图。本实施例的执行主体为数控机床。本实施例的数控机床的调试方法包括以下步骤:
S201:向电机驱动系统输出指令位置值,以控制电机转动,进而带动机床轴运动到目标位置。
数控机床接收到调试指令时,进入调试阶段,以对数控机床进行调试。在调试过程中,数控机床向电机驱动系统输出指令位置值,以控制电机进行转动,进而带动机床轴运动到目标位置。
S202:对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测。
数控机床对电机的实际转动位置和机床轴的实际运动位置进行检测。
其中,对电机的实际转动位置和机床轴的实际运动位置进行检测的步骤具体包括:随电机的转动产生第一脉冲信号,并通过对第一脉冲信号进行计数而获得实际转动位,随机床轴的运动而产生第二脉冲信号,并通过对第二脉冲信号进行计数而获得所述实际运动位置。
例如,数控机床的编码器随电机的转动产生第一脉冲信号,数控机床通过对第一脉冲信号进行计数而获得实际转动位置。
数控机床的光栅尺随机床轴的运动而产生第二脉冲信号,数控机床通过对第二脉冲信号进行计数而获得实际运动位置。
S203:根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数。
数控机床根据指令位置值、实际转动位置以及实际运动位置进行误差运算并判断数控机床是否存在误差。当数控机床判断存在误差时,根据误差获得修正参数,以使数控机床能够根据修正参数对指令位置值进行修正。
其中,指令位置值对应电机的预设转动位置以及机床轴的预设运动位置。数控机床根据电机的预设转动位置和电机的实际转动位置、机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差。
具体为:数控机床比较电机的预设转动位置和电机的实际转动位置,以及比较机床轴的预设运动位置和机床轴的实际运动位置,以判断电机的预设转动位置和电机的实际转动位置之间是否存在误差,和/或,机床轴的预设运动位置和机床轴的实际运动位置之间是否存在误差。
其中,误差运算可以为:分别比较电机130的预设转动位置和电机130的实际转动位置,以及机床150的机床轴的预设运动位置和机床轴的实际运动位置,判断比较结果是否属于允许的误差范围,或判断实际转动位置是否等于预设转动位置,以及判断预设运动位置是否等于实际运动位置。
当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间没有误差。当比较结果属于允许的误差范围,或实际转动位置等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置时,判断为电机130的预设转动位置和电机130的实际转动位置之间存在误差。当比较结果不属于允许的误差范围,或实际转动位置不等于预设转动位置判断为机床150的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差。
当数控机床判断电机的预设转动位置和电机的实际转动位置之间存在误差,和/或,机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数。其中,修正参数主要对电机驱动系统的PID,电机以及机床轴的最大加速度,最大加加速度等参数进行调整。但并不限于此,还可以是其他的参数。
当数控机床判断不存在误差时,则不进行任何处理。
S204:根据所述指令位置值、所述实际转动位置以及所述实际运动位置的数据输出三维图形。
数控机床,在获取到指令位置值、实际转动位置以及实际运动位置之后,根据指令位置值对应的电机的预设转动位置以及机床轴的预设运动位置、电机的实际转动位置以及机床轴的实际运动位置的数据绘制或输出三维图形,并通过呈现设备呈现给调试人员。
其中,三维图形中呈现当前调试时间对应的电机的预设转动位置和电机的实际转动位置、当前调试时间对应的机床轴的预设运动位置和机床轴的实际运动位置。可选地,三维图形还可以直接呈现当前调试时间对应的电机的预设转动位置和电机的实际转动位置之间的误差、当前调试时间对应的机床轴的预设运动位置和机床轴的实际运动位置之间的误差。三维图形中的数据可以是实时显示的。
三维图形中呈现的数据用于使调试人员能够分析三维图形中呈现的数据,并根据数据对数控系统、电机测量系统以及机床测量系统的状况进行诊断。例如,当调试人员分析三维图形中的数据,获知当前调试时间对应的电机130的预设转动位置和实际转动位置之间的误差较大时,诊断为电极驱动系统存在问题。当获知机床轴的预设运动位置和实际运动位置之间的误差较大时,诊断为数控机床的机械结构存在问题。当获知电机的预设转动位置和实际转动位置之间的误差、机床轴的预设运动位置和实际运动位置之间的误差均较大时,诊断为数控系统的位置规划有问题。
S205:根据所述修正参数对所述指令位置值进行修正。
数控机床根据修正参数对指令位置值进行修正,以使数控机床向电机驱动系统输出指令位置值,以控制电机进行转动,进而将机床轴运动到目标位置。
S206:进一步返回所述向电机驱动系统输出指令位置值,以利用迭代方式计算所述修正参数。
数控机床返回执行步骤S201,对电机的实际转动位置和机床轴的实际运动位置进行检测,获取电机的实际转动位置以及机床轴的实际运动位置,从而利用迭代方式计算修正参数。
利用迭代方式计算修正参数具体为:数控机床根据修正后的指令位置值、获取到的实际转动位置以及实际运动位置再次进行误差运算,并再次判断电机的预设转动位置和电机的实际转动位置之间是否存在误差,和/或,机床轴的预设运动位置和机床轴的实际运动位置之间是否存在误差。
当电机的预设转动位置和电机的实际转动位置之间存在误差,和/或,机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差重新获取修正参数,以使数控机床能够根据修正参数对指令位置值进行修正。
按照同样的方法依此循环执行步骤S201~S206,通过多次调试过程利用迭代方式计算修正参数,以使数控机床根据修正参数对指令位置值进行修正,进而使得电机转动到修正后的指令位置值对应的电机的预设转动位置上,使机床轴转动到修正后的指令位置值对应的机床轴的预设运动位置,进而使得调试后的数控机床满足预定的性能要求。
上述方案,数控机床通过修正系统根据数控系统输出的指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置绘制三维图形以及进行误差运算判断数控机床是否存在误差。当存在误差时,根据指令位置值、电机的实际转动位置以及机床的机床轴的实际运动位置计算修正参数,以使数控机床能够根据修正参数对指令位置值进行修正。
由于数控机床能够实时更新三维图形中的数据,以便调试人员及时了解运行情况并对数控机床进行快速诊断;能够自动进行误差运算实现自动化调试数控机床,提高调试效率,通过定量对误差进行分析和评判,能够保证多台数控机床的性能的一致性,同时也提高了数控机床的加工性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种数控机床,其特征在于,包括数控系统、电机驱动系统、电机、电机测量系统、机床、机床测量系统以及修正系统,
    在调试过程中,所述数控系统用于向所述电机驱动系统输出指令位置值,以控制所述电机转动,进而带动所述机床的机床轴运动到目标位置;
    所述电机测量系统对所述电机的实际转动位置进行检测,所述机床测量系统对所述机床轴的实际运动位置进行检测;
    所述修正系统根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数,以使所述数控系统能够根据所述修正参数对所述指令位置值进行修正。
  2. 根据权利要求1所述的数控机床,其特征在于,所述修正系统通过多次调试过程利用迭代方式计算所述修正参数。
  3. 根据权利要求1所述的数控机床,其特征在于,所述数控系统分别与所述电机驱动系统、所述电机测量系统以及所述机床测量系统连接,并接收所述实际转动位置和所述实际运动位置,所述数控系统进一步与所述修正系统连接,并向所述修正系统转发所述实际转动位置和所述实际运动位置。
  4. 根据权利要求1所述的数控机床,其特征在于,所述电机测量系统包括编码器,所述编码器随所述电机的转动产生第一脉冲信号,并通过对所述第一脉冲信号进行计数而获得所述实际转动位置。
  5. 根据权利要求1所述的数控机床,其特征在于,所述机床测量系统包括光栅尺,所述光栅尺随所述机床轴的运动而产生第二脉冲信号,并通过对所述第二脉冲信号进行计数而获得所述实际运动位置。
  6. 根据权利要求1所述的数控机床,其特征在于,所述修正系统进一步根据所述指令位置值、所述实际转动位置以及所述实际运动位置的数据输出三维图形。
  7. 根据权利要求1所述的数控机床,其特征在于,所述指令位置值对应所述电机的预设转动位置以及所述机床的机床轴的预设运动位置;
    所述修正系统根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数具体包括:
    所述修正系统根据所述电机的预设转动位置和所述电机的实际转动位置、所述机床的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差,当判断数控机床存在误差时,获得修正参数。
  8. 根据权利要求7所述的数控机床,其特征在于,所述当判断数控机床存在误差时,获得修正参数包括:
    当所述电机的预设转动位置和所述电机的实际转动位置之间存在误差,和/或,所述机床的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数。
  9. 根据权利要求1所述的数控机床,其特征在于,所述修正参数用于对所述电机驱动系统的PID,所述电机以及机床轴的最大加速度,最大加速度中的至少一种参数进行调整。
  10. 一种数控机床的调试方法,其特征在于,所述调试方法包括:
    向电机驱动系统输出指令位置值,以控制电机转动,进而带动机床轴运动到目标位置;
    对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测;
    根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数;
    根据所述修正参数对所述指令位置值进行修正。
  11. 根据权利要求10所述的调试方法,其特征在于,所述根据所述修正参数对所述指令位置值进行修正的步骤之后,进一步返回所述向电机驱动系统输出指令位置值,以利用迭代方式计算所述修正参数。
  12. 根据权利要求10所述的调试方法,其特征在于,所述对所述电机的实际转动位置和所述机床轴的实际运动位置进行检测的步骤包括:
    随所述电机的转动产生第一脉冲信号,并通过对所述第一脉冲信号进行计数而获得所述实际转动位,随所述机床轴的运动而产生第二脉冲信号,并通过对所述第二脉冲信号进行计数而获得所述实际运动位置。
  13. 根据权利要求10所述的调试方法,其特征在于,所述调试方法进一步包括:
    根据所述指令位置值、所述实际转动位置以及所述实际运动位置的数据输出三维图形。
  14. 根据权利要求10所述的调试方法,其特征在于,所述指令位置值对应所述电机的预设转动位置以及所述机床的机床轴的预设运动位置;
    所述根据所述指令位置值、所述实际转动位置以及所述实际运动位置进行误差运算,并获得修正参数具体包括:
    根据所述电机的预设转动位置和所述电机的实际转动位置、所述机床的机床轴的预设运动位置和机床轴的实际运动位置进行误差运算,并判断数控机床是否存在误差,当判断数控机床存在误差时,获得修正参数。
  15. 根据权利要求14所述的数控机床,其特征在于,所述当判断数控机床存在误差时,获得修正参数包括:
    当所述电机的预设转动位置和所述电机的实际转动位置之间存在误差,和/或,所述机床的机床轴的预设运动位置和机床轴的实际运动位置之间存在误差时,根据误差获得修正参数。
  16. 根据权利要求10所述的数控机床,其特征在于,所述修正参数用于对所述电机驱动系统的PID,所述电机以及机床轴的最大加速度,最大加速度中的至少一种参数进行调整。
PCT/CN2016/072793 2015-02-11 2016-01-29 一种数控机床及其调试方法 WO2016127838A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510072749.1 2015-02-11
CN201510072749.1A CN104698974B (zh) 2015-02-11 2015-02-11 一种数控机床及其调试方法

Publications (1)

Publication Number Publication Date
WO2016127838A1 true WO2016127838A1 (zh) 2016-08-18

Family

ID=53346209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072793 WO2016127838A1 (zh) 2015-02-11 2016-01-29 一种数控机床及其调试方法

Country Status (2)

Country Link
CN (1) CN104698974B (zh)
WO (1) WO2016127838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407620A (zh) * 2018-11-21 2019-03-01 陕西海力特精密机械有限公司 自动化数控机床外接接口调试仪

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698974B (zh) * 2015-02-11 2017-12-15 北京配天技术有限公司 一种数控机床及其调试方法
CN105415089B (zh) * 2015-12-23 2018-03-30 江苏瑞尔隆鼎实业有限公司 多穴位加工中心产品快速换线方法
WO2017113055A1 (zh) * 2015-12-28 2017-07-06 深圳配天智能技术研究院有限公司 一种攻螺纹孔的方法、数控机床及数控加工装置
WO2018119844A1 (zh) * 2016-12-29 2018-07-05 深圳配天智能技术研究院有限公司 一种数控机床及主轴电机的转速调整方法
CN108121292B (zh) * 2017-12-26 2019-09-03 深圳市雷赛智能控制股份有限公司 伺服系统的性能评估方法、装置和系统
CN108673239A (zh) * 2018-04-23 2018-10-19 中国航发哈尔滨东安发动机有限公司 五轴加工中心的零点定位精度修正方法
JP7091984B2 (ja) * 2018-10-01 2022-06-28 日本電産株式会社 補正システム、工作機械及び補正方法
CN110286643A (zh) * 2019-07-11 2019-09-27 珠海格力智能装备有限公司 机床运动轨迹的控制方法及装置、存储介质、处理器
CN110530573A (zh) * 2019-08-30 2019-12-03 新代科技(苏州)有限公司 双回授旋转编码器偏心校正装置
CN110949023B (zh) * 2019-11-27 2021-11-09 深圳市汉森软件有限公司 光栅抖动误差校正方法、装置、打印设备及存储介质
CN110850809B (zh) * 2019-12-16 2024-02-09 新代科技(苏州)有限公司 机台检测系统及检测方法
CN111151801A (zh) * 2020-01-06 2020-05-15 襄阳科威电气有限公司 一种普通铣床数控化改造后的调试方法
CN115421443A (zh) * 2022-10-31 2022-12-02 陕西诺贝特自动化科技股份有限公司 一种机床工作台定位方法、系统以及磨床
CN115607193B (zh) * 2022-11-09 2023-07-28 深圳英美达医疗技术有限公司 血管内超声波光学成像探头的驱动控制方法、装置及设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312634A1 (en) * 1987-10-22 1989-04-26 Mitsubishi Denki Kabushiki Kaisha Numerical control equipment
JP2001166805A (ja) * 1999-12-13 2001-06-22 Toshiba Mach Co Ltd ハイブリッド制御方式の工作機械のロストモーション補正値設定方法およびその方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体および数値制御工作機械
CN102245349A (zh) * 2008-12-09 2011-11-16 三菱电机株式会社 机械运动轨迹测定装置、数控机床及机械运动轨迹测定方法
CN102596496A (zh) * 2010-01-08 2012-07-18 三菱重工业株式会社 机床的机械位移修正系统
CN103071826A (zh) * 2013-01-07 2013-05-01 深圳大学 一种高速高精多轴pcb数控钻床及其控制方法
CN203606665U (zh) * 2013-11-18 2014-05-21 西安捷诚精密设备有限公司 排刀型数控车床双闭环伺服控制系统
CN104698974A (zh) * 2015-02-11 2015-06-10 北京配天技术有限公司 一种数控机床及其调试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116654A (ja) * 2004-10-21 2006-05-11 Osaka Kiko Co Ltd Nc工作機械の熱変形補正方法及び熱変形補正装置
CN101387879B (zh) * 2007-09-14 2013-03-27 广州数控设备有限公司 数控设备运动精度测试装置及测试方法
CN101169641B (zh) * 2007-12-05 2010-08-18 中国科学院电工研究所 一种超导带材绝缘绕包装置的数控系统
JP2010099753A (ja) * 2008-10-21 2010-05-06 Brother Ind Ltd 工作機械のピッチ誤差補正方法及びピッチ誤差補正装置
CN101844317B (zh) * 2010-03-25 2011-12-14 合肥工业大学 精密数控机床闭环伺服系统传动误差校正装置及方法
CN103454998B (zh) * 2013-08-23 2015-12-09 广州数控设备有限公司 基于工业以太网总线的伺服刚性调试装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0312634A1 (en) * 1987-10-22 1989-04-26 Mitsubishi Denki Kabushiki Kaisha Numerical control equipment
JP2001166805A (ja) * 1999-12-13 2001-06-22 Toshiba Mach Co Ltd ハイブリッド制御方式の工作機械のロストモーション補正値設定方法およびその方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体および数値制御工作機械
CN102245349A (zh) * 2008-12-09 2011-11-16 三菱电机株式会社 机械运动轨迹测定装置、数控机床及机械运动轨迹测定方法
CN102596496A (zh) * 2010-01-08 2012-07-18 三菱重工业株式会社 机床的机械位移修正系统
CN103071826A (zh) * 2013-01-07 2013-05-01 深圳大学 一种高速高精多轴pcb数控钻床及其控制方法
CN203606665U (zh) * 2013-11-18 2014-05-21 西安捷诚精密设备有限公司 排刀型数控车床双闭环伺服控制系统
CN104698974A (zh) * 2015-02-11 2015-06-10 北京配天技术有限公司 一种数控机床及其调试方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407620A (zh) * 2018-11-21 2019-03-01 陕西海力特精密机械有限公司 自动化数控机床外接接口调试仪

Also Published As

Publication number Publication date
CN104698974B (zh) 2017-12-15
CN104698974A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2016127838A1 (zh) 一种数控机床及其调试方法
EP2843556B1 (en) Simulator, simulation method, and simulation program
US20050222714A1 (en) Robot teaching apparatus
CN110879583B (zh) 基于数字孪生的智能装配车间质量预测与控制系统及方法
JP2017021723A (ja) ワーク原点を取得可能な工作機械制御システムおよびワーク原点設定方法
EP3888855A1 (en) Failure prediction method and failure prediction apparatus
JP2019146421A (ja) 故障予測装置及び機械学習装置
JP7143643B2 (ja) 位置決めシステム、監視装置、監視方法およびプログラム
CN1309760A (zh) 位置检测装置
US20190322467A1 (en) Work robot system and work robot
US9434075B2 (en) Method for operating a multi-limb manipulator
CN109895082A (zh) 一种应用于航天装配设备的控制系统
JP2012020348A (ja) ロボットによるバリ除去方法
CN106198072A (zh) 一种用于注塑机的五轴机械手控制系统的测试方法
CN110647120B (zh) 一种适用于极端应用条件的运动控制方法
WO2017222099A1 (ko) 인공치아 가공장치의 가공소재 위치 검출 및 보정 방법과 위치 검출 및 보정 장치
CN107848055A (zh) 基于机械手和测量臂的焊接系统及其焊接方法
JPH06242830A (ja) 位置制御システムの位置情報判別装置及びその判別方法
CN114753072A (zh) 一种刺绣机绣框断电保护控制方法、系统及装置
JP3007440B2 (ja) ロボットのオフライン教示装置
CN110580005B (zh) 一种适用于极端应用条件的运动控制系统
US11267129B2 (en) Automatic positioning method and automatic control device
KR100224862B1 (ko) 로봇 암의 캘리브레이션 장치 및 방법
WO2021086103A1 (ko) 협동 로봇의 충돌 민감도 자동 설정 방법
JP6949272B1 (ja) 移動システム、及び、位置推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748639

Country of ref document: EP

Kind code of ref document: A1