WO2016127762A1 - 一种降低干扰的方法和设备 - Google Patents

一种降低干扰的方法和设备 Download PDF

Info

Publication number
WO2016127762A1
WO2016127762A1 PCT/CN2016/071356 CN2016071356W WO2016127762A1 WO 2016127762 A1 WO2016127762 A1 WO 2016127762A1 CN 2016071356 W CN2016071356 W CN 2016071356W WO 2016127762 A1 WO2016127762 A1 WO 2016127762A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
bandwidth
interference
prb
strong interference
Prior art date
Application number
PCT/CN2016/071356
Other languages
English (en)
French (fr)
Inventor
任斌
李向宁
李琼
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2016127762A1 publication Critical patent/WO2016127762A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and device for reducing interference.
  • the modulation technology of the Long Term Evolution (LTE) system adopts Orthogonal Frequency Division Multiplexing (OFDM) and downlink OFDMA (Multiple Access Technology adopts orthogonal frequency division multiple access).
  • the downlink control channel includes a Physical Control Format Indication Channel (PCFICH)/Physical Downlink Control Channel (PDCCH)/Physical HARQ Indication Channel (PHICH), respectively
  • PCFICH Physical Control Format Indication Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical HARQ Indication Channel
  • the control information carrying the data channel is the basis for the normal reception processing of the subsequent data channel.
  • the typical interference modes are broadband noise interference, partial noise interference, single tone interference and multi-tone interference. The characteristics of the interference signal are shown in Figure 1.
  • the LTE system is a broadband mobile communication system and is currently being used more and more in the world.
  • public safety communication applications such as 700 MHz and other industrial applications (such as military communication)
  • a significant disadvantage is that it is relatively susceptible to interference and artificial malicious interference from other communication systems in the same frequency band.
  • a downlink control channel such as a PCFICH/PDCCH/PHICH is a basic function for a terminal to access a network and provides various services for a user, a Physical Downlink Shared Channel (PDSCH) and a Physical Uplink Shared Channel (Physical).
  • the Uplink Shared Channel (PUSCH) carries user services.
  • the PDSCH and the PUSCH can use the flexible uplink and downlink scheduling technology to effectively avoid interference; the frequency domain resource mapping position of the downlink control channel such as the PCFICH/PDCCH/PHICH is fixed, and the interference cannot be avoided by scheduling or frequency hopping; Interference will result in the data channel not receiving properly and failing to work properly.
  • the present invention provides a method and apparatus for reducing interference, which is used to reduce interference caused by a channel whose frequency mapping position in a frequency domain is fixed at a fixed position of a full bandwidth.
  • the network side device determines whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range
  • the network side device updates the total number of valid PRBs in the current downlink according to the total number of PRBs included in the subbands that do not have strong interference;
  • the network side device notifies the terminal of the updated current total effective PRB number of the downlink and the location of the sub-bandwidth without strong interference.
  • the network side device before the network side device determines whether there is strong interference on the sub-band in the carrier in the access frequency range, the network side device further includes:
  • the network side device establishes M1 carriers in an access frequency range
  • the network side device divides each carrier into N1 sub-bandwidths
  • M1 and N1 are positive integers.
  • the network side device divides each carrier into N1 sub-bandwidths, including:
  • the network side device divides each carrier into N1 sub-bandwidths according to available system bandwidth, wherein the size of each sub-bandwidth is determined according to all available system bandwidths, and is not greater than the system bandwidth used by the current carrier; or
  • the network side device divides each carrier into N1 sub-bandwidths, wherein the number of PRBs included in each sub-bandwidth is the same.
  • the network side device determines whether there is strong interference on the sub-band in the carrier in the access frequency range, including:
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, the proportion or number of PRBs in which the sub-bandwidth is interfered;
  • the ratio of the PRB in which the sub-bandwidth is interfered is greater than the first threshold value corresponding to the strong interference judging parameter or the number of PRBs in which the sub-bandwidth is interfered is greater than the second threshold value corresponding to the strong interference judging parameter, determining the There is strong interference on the sub-bandwidth; otherwise it is determined that there is no strong interference on the sub-bandwidth.
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, the proportion of the PRB in which the sub-bandwidth is interfered, including:
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the network side device determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and divides the determined number by the determined number.
  • the strong interference determination parameter is a dry noise ratio
  • the network side device determines that the dry noise ratio value on the PRB in the subband is not less than the number of the dry noise ratio threshold, and divides the determined number by the sub The number of PRBs included in the bandwidth, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio
  • the network side device determines that the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and divides the determined number by the sub The number of PRBs included in the bandwidth, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is interference power
  • the network side device determines interference power on the PRB in the sub-bandwidth
  • the value is not less than the number of interference power thresholds, and the determined number is divided by the number of PRBs included in the sub-bandwidth to obtain a PRB ratio in which the sub-bandwidth is interfered.
  • the network side device after the network side device determines whether there is strong interference on the sub-band in the carrier in the access frequency range, the network side device further includes:
  • the network-side device alerts the upper layer
  • the user equipment receives the current downlink total effective PRB number notified from the network side device and the location notification terminal that does not have the strong interference sub-bandwidth, where the current downlink total effective PRB number is in the carrier within the access frequency range.
  • the user equipment performs receiving processing according to the received current total effective PRB number of downlinks and the location of the sub-bandwidth without strong interference.
  • the first determining module is configured to determine whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range;
  • a number determining module configured to determine a total number of PRBs included in all subbands that do not have strong interference
  • An update module configured to update the total number of valid PRBs in the current downlink according to the total number of PRBs included in the sub-bandwidth where there is no strong interference
  • the notification module is configured to notify the terminal of the updated current total effective PRB number of the downlink and the location of the sub-bandwidth without strong interference.
  • the first determining module is further configured to:
  • M1 and N1 are positive integers.
  • the first determining module is specifically configured to:
  • Each carrier is divided into N1 sub-bandwidths, wherein the number of PRBs included in each sub-bandwidth is the same.
  • the first determining module is specifically configured to:
  • the ratio of the PRB in which the sub-bandwidth is interfered is greater than the first threshold value corresponding to the strong interference judging parameter or the number of PRBs in which the sub-bandwidth is interfered is greater than the second threshold value corresponding to the strong interference judging parameter, determining the Subbandwidth storage Strong interference; otherwise it is determined that there is no strong interference on the sub-bandwidth.
  • the first determining module is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the first determining module is further configured to:
  • the alarm is sent to the upper layer
  • a receiving module configured to receive a current downlink total effective PRB number notified by the network side device, and a location notification terminal that does not have a strong interference sub-bandwidth, wherein the current downlink total effective PRB number is within the access frequency range The total number of PRBs included in the sub-bandwidth where there is no strong interference on the sub-bandwidth in the carrier;
  • the first processing module is configured to perform receiving processing according to the received total downlink effective PRB number and the location of the sub-bandwidth without strong interference.
  • the user equipment determines whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range
  • the user equipment After determining the sub-bandwidth that is subject to strong interference, the user equipment performs channel estimation processing on the sub-bandwidth that is subjected to strong interference or processes the signal received in the sub-bandwidth that is subjected to strong interference.
  • the user equipment determines whether there is strong interference on the sub-band in the carrier in the access frequency range, including:
  • the user equipment compares an average value of strong interference determination parameters of all subcarriers in at least one sub-band with a threshold value corresponding to the strong interference determination parameter, and determines, on the sub-bandwidth of the carrier in the access frequency range, according to the comparison result. Is there a strong interference?
  • the strong interference determination parameter includes one of the following:
  • the user equipment determines whether there is strong interference on the sub-band in the carrier in the access frequency range, including:
  • the PRB ratio or the number is greater than a threshold corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-band; otherwise determining that there is no strong interference on the at least one sub-band.
  • the user equipment determines, according to the strong interference determination parameter of the sub-bandwidth, the PRB ratio at which the at least one sub-bandwidth is interfered, including:
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the user equipment determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and divides the determined number by the number. Deriving the number of PRBs included in the subband bandwidth, and obtaining a PRB ratio in which the subband bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio
  • the user equipment determines that the dry noise ratio value on the PRB in the subband is not less than the number of the dry noise ratio threshold, and divides the determined number by the subband.
  • the strong interference determination parameter is a signal to interference ratio
  • the user equipment determines that the signal to interference ratio on the PRB in the subband is not greater than the number of signal to interference ratio thresholds, and divides the determined number by the subband bandwidth.
  • the user equipment determines that the interference power value on the PRB is not less than the interference power threshold value, and divides the determined number by the sub-bandwidth.
  • the number of PRBs gives the proportion of PRBs in which the sub-bandwidth is interfered.
  • the user equipment performs channel estimation processing on the sub-bandwidth that is subjected to strong interference, including:
  • the channel estimation result of the PRB that is strongly interfered is set to a set value to reduce the influence of the interference on the useful transmission signal to be detected;
  • the user equipment processes the signal received by the sub-bandwidth that is strongly interfered, including:
  • the received signal of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmission signal to be detected.
  • a second determining module configured to determine whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range
  • a second processing module configured to perform channel estimation processing on the subband that is subjected to strong interference or to process the signal received through the subband that is subjected to strong interference after determining the subband having strong interference.
  • the second determining module is specifically configured to:
  • the strong interference determination parameter includes one of the following:
  • the second determining module is specifically configured to:
  • the PRB ratio or the number is greater than a threshold corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-band; otherwise determining that there is no strong interference on the at least one sub-band.
  • the second determining module is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the second processing module is specifically configured to:
  • the channel estimation result of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected;
  • the received signal of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected.
  • the embodiment of the present invention can update the current total number of effective PRBs according to the sub-bandwidth without strong interference, and notify the terminal; or the terminal in the embodiment of the present invention can be strongly interfered after determining the sub-bandwidth with strong interference.
  • the sub-bandwidth performs channel estimation processing or processes signals received through the sub-bandwidth subjected to strong interference, thereby solving interference problems and artificial malicious interference problems of other communication systems in the same frequency band, and effectively improving resource mapping for the frequency domain.
  • the ability of a channel fixed in a fixed position of a full bandwidth to resist partial bandwidth interference reduces interference received by a channel whose frequency mapping position is fixed at a fixed position of a full bandwidth.
  • 1 is a schematic diagram showing characteristics of interference signals in the background art
  • FIG. 2 is a schematic flowchart of a method for reducing interference according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for reducing interference according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram 1 of a working carrier according to Embodiment 3 of the present invention.
  • FIG. 5 is a second schematic diagram of a working carrier according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a working carrier according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of a working carrier according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic structural diagram of a system for reducing interference according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic structural diagram of a network side device according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic structural diagram of a terminal according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic structural diagram of a network side device according to Embodiment 9 of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a method for reducing interference according to Embodiment 11 of the present invention.
  • FIG. 14 is a schematic structural diagram of a terminal according to Embodiment 12 of the present invention.
  • FIG. 15 is a schematic structural diagram of a terminal according to Embodiment 13 of the present invention.
  • the embodiment of the present invention can update the current total downlink effective PRB number according to the sub-bandwidth without strong interference, and notify the terminal; or the terminal in the embodiment of the present invention can be strongly interfered after determining the sub-bandwidth with strong interference.
  • the sub-bandwidth performs channel estimation processing or processes signals received through the sub-bandwidth subjected to strong interference, thereby solving interference problems and artificial malicious interference problems of other communication systems in the same frequency band, and effectively improving the resource mapping position for the frequency domain.
  • the ability of a channel fixed at a fixed position of a full bandwidth to resist partial bandwidth interference reduces interference received by a channel whose frequency mapping position is fixed at a fixed position of a full bandwidth.
  • the embodiment of the present invention provides two solutions for reducing interference, the first one is based on the anti-interference scheme adaptive to the transmitting end, and specifically refers to FIG. 2 to FIG. 12; the second is based on the adaptive anti-interference scheme of the receiving end, specifically See Figures 13 to 15.
  • Solution 1 The basic idea of the solution is: the network side device establishes at least one carrier in the access frequency range according to the processing capability of the device, divides each carrier into at least one sub-bandwidth, and selects an effective sub-bandwidth that is not interfered. Mapping the downlink control channel to the effective sub-bandwidth and indicating the effective sub-bandwidth to the UE; if the current carrier cannot find the un-interferenced effective sub-bandwidth set, continuing to find the effective sub-bandwidth on the next carrier until the effective sub-bandwidth is found Collect or traverse all carriers.
  • a method for reducing interference according to Embodiment 1 of the present invention includes:
  • Step 201 The network side device determines whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range.
  • Step 202 The network side device determines the total number of physical resource blocks (PRBs) included in the sub-bandwidth where there is no strong interference;
  • PRBs physical resource blocks
  • Step 203 The network side device updates the total number of valid PRBs in the current downlink according to the total number of PRBs included in the subbands that do not have strong interference.
  • Step 204 The network side device notifies the terminal of the updated current total effective PRB number and the location of the sub-bandwidth without strong interference, so that the terminal according to the received number of PRBs and no strong interference The location of the sub-bandwidth is processed for reception.
  • step 201 the method further includes:
  • the network side device establishes M1 carriers in an access frequency range
  • the network side device divides each carrier into N1 sub-bandwidths
  • M1 and N1 are positive integers.
  • the value of each sub-bandwidth is from all available system bandwidths of the LTE system, and is not greater than the system bandwidth used by the current carrier.
  • the different sub-bandwidths in the sub-bandwidth set may be the same or different. That is, the network side device divides each carrier into N1 sub-bandwidths according to the available system bandwidth, wherein the size of each sub-bandwidth is determined according to all available system bandwidths, and is not greater than the system bandwidth used by the current carrier. Table 1 gives an example of the division method one.
  • the system bandwidth is 1.4 MHz, one sub-bandwidth can be divided; if the system bandwidth is 3 MHz, two sub-bandwidths can be divided, and so on. If there are multiple choices of the number of PRBs in the sub-bandwidth, for example, if the system bandwidth is 10 MHz, you can select 6, 15, and 25, you can determine the number of sub-groups according to the high-level notification or manual configuration or according to your needs. Bandwidth and how many PRBs are included in each subband.
  • Dividing mode 2 dividing all PRBs included in the current carrier into N according to the number of available indication bits of the PBCH
  • the number of PRBs included in each sub-bandwidth is the same. That is to say, the network side device divides each carrier into N1 sub-bandwidths, wherein each sub-band includes the same number of PRBs. Table 2 gives an example of the division method two.
  • the minimum value of M1 to M6 is 1, the maximum value is a positive integer of floor (PRB_NUM/SPARE_BIT_NUM), floor(.) represents rounding down, and SPARE_BIT_NUM represents the number of free bits in PBCH.
  • the network side device may determine the PRB ratio or the number of the interfered PRB according to the sub-bandwidth.
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, a PRB ratio in which the sub-bandwidth is interfered;
  • the proportion of the PRB in which the sub-bandwidth is interfered is greater than the first threshold value corresponding to the strong interference judging parameter, it is determined that there is strong interference on the sub-bandwidth; otherwise, it is determined that there is no strong interference on the sub-bandwidth.
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, the number of PRBs whose sub-bandwidth is interfered with;
  • the number of PRBs in which the sub-bandwidth is interfered is greater than the second threshold value corresponding to the strong interference judging parameter, it is determined that there is strong interference on the sub-bandwidth; otherwise, it is determined that there is no strong interference on the sub-bandwidth.
  • the criteria for strong interference include, but are not limited to, Signal to Interference and Noise Ratio (SINR) criteria, Dry Noise Ratio (IoT) criteria, Signal to Interference Ratio (SIR) criteria, and Interference Power (IP) criteria. That is to say, if the criterion for strong interference is the signal to interference and noise ratio (SINR) criterion, the strong interference determination parameter is the signal to interference and noise ratio; if the criterion for the strong interference is the dry to noise ratio (IoT) criterion, the above strong The interference judgment parameter is a dry noise ratio; if the strong interference judgment criterion is a signal to interference and noise ratio (SINR) criterion, the strong interference determination parameter is a signal to interference and noise ratio; if the strong interference judgment criterion is an interference power (IP) criterion, Then, the above strong interference determination parameter is interference power.
  • SINR Signal to Interference and Noise Ratio
  • IoT Dry Noise Ratio
  • the following describes the effective sub-bandwidth determination method based on the PRB ratio and the number of PRBs.
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the network side device determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is determined. Divided by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • one SINR threshold SINR_TH (signal to interference and noise ratio threshold) and the interfered PRB proportional threshold PRB_ratio_TH (ie, the first threshold) are set in advance or by simulation.
  • the number of the SINR values on the PRB in the k Sub_BW sub-bands is not greater than the SINR threshold SINR_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio rB_ratio(k Sub_BW ) in the k- sub_BW sub-bands:
  • the strong interference determination parameter is a dry noise ratio
  • the network side device determines that the dry noise ratio value on the PRB in the subband is not less than the number of the dry noise ratio threshold, and divides the determined number by the number.
  • the number of PRBs included in the sub-bandwidth is obtained, and the PRB ratio in which the sub-bandwidth is interfered is obtained.
  • an IoT threshold IoT_TH ie, a dry noise ratio threshold
  • a disturbed PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the number of IoT values on the PRB in the k Sub_BW sub-bands is greater than the IoT threshold IoT_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio rB_ratio(k Sub_BW ) in the k- sub_BW sub-bands:
  • the strong interference determination parameter is a signal to interference ratio
  • the network side device determines that the signal to interference ratio of the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and divides the determined number by the number.
  • the number of PRBs included in the sub-bandwidth is obtained, and the PRB ratio in which the sub-bandwidth is interfered is obtained.
  • a SIR threshold SIR_TH ie, a signal-to-interference ratio threshold
  • a disturbed PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the number of SIR values on the PRB in the k Sub_BW sub-bands is greater than the number of SIR thresholds SIR_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio rB_ratio(k Sub_BW ) in the k- sub_BW sub-bands:
  • the strong interference determination parameter is interference power
  • the network side device determines, by the number of interference power thresholds, the number of interference power values on the PRB in the sub-bandwidth, and divides the determined number by the sub-band.
  • the number of PRBs included in the bandwidth is the proportion of PRBs in which the sub-bandwidth is interfered.
  • an IP threshold IP_TH ie, an interference power threshold
  • an interfered PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the above threshold value can be manually configured through experience or simulation, or can be configured through a high layer, or can be determined by the network side device.
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the network side device determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, if not greater than the signal to interference noise If the number of the threshold is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the strong interference judgment parameter is a dry noise ratio
  • the network side device determines that the dry noise ratio value on the PRB in the subband is not less than the dry noise ratio threshold, if not less than the dry noise ratio threshold If the number is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the strong interference determination parameter is a signal to interference ratio
  • the network side device determines that the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, if not greater than the signal to interference ratio threshold If the number is greater than the second threshold, then determine The sub-bandwidth is strongly interfered, otherwise it is determined that the sub-bandwidth is not subject to strong interference.
  • the strong interference judgment parameter is the interference power
  • the network side device determines the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, if not less than the number of the interference power threshold If the threshold is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the number of specific Xs can be manually configured through experience or simulation, or can be configured through high-level, or can be determined by the network-side device.
  • the network-side device alerts the OAM device to Enable the OAM device to modify the above threshold (for example, increase the above threshold).
  • the network side device may periodically determine whether the cell center user in the cell has a throughput decrease ratio exceeding a certain fixed ratio threshold, or the average throughput decrease rate of the entire cell exceeds a certain fixed ratio gate. Open for a limited time.
  • the vacant bit of the PBCH channel may be used to indicate the effective sub-bandwidth to the UE.
  • a bit can indicate several PRBs.
  • each bit corresponds to 5 consecutive PRBs.
  • the embodiment of the present invention is not limited to improving the physical broadcast channel (PBCH) channel vacancy bit indication, as long as the current downlink total effective PRB number and the location of the strong interference sub-bandwidth can be
  • PBCH physical broadcast channel
  • the network side device in the embodiment of the present invention may be a base station (such as a macro base station, a home base station, etc.), an RN (relay) device, or other network side devices.
  • a base station such as a macro base station, a home base station, etc.
  • RN relay
  • the method for reducing interference in Embodiment 2 of the present invention includes:
  • Step 301 The user equipment receives the current downlink total effective PRB number notified by the network side device, and the location notification terminal that does not have the strong interference sub-bandwidth, where the current downlink total effective PRB number is within the access frequency range.
  • Step 302 The user equipment performs receiving processing according to the received current total effective PRB number of downlinks and the location of the sub-bandwidth without strong interference.
  • the following describes the eNB (Evolved Base Station) as a network side device.
  • Step 1 On the mth carrier, the network side device divides the system bandwidth BW into a plurality of identical sub-bandwidths or different sub-bandwidths according to the sub-bandwidth set dividing method.
  • Step 2 The network side device uses interference judgment criteria to determine whether there is strong interference on each sub-bandwidth. If not, the sub-band is merged into the effective sub-bandwidth set and enters the next sub-bandwidth for interference judgment. If it exists, jump directly to the next step. A sub-bandwidth is used for interference judgment. When all sub-bandwidths are traversed, Step 3 is entered.
  • Step 3 The network side device determines whether the effective sub-bandwidth set is empty. If yes (indicating that there is strong interference on all sub-bandwidths on the current carrier), enter Step 4; otherwise (indicating that there is no strong interference on part of the sub-bandwidth of the current carrier), Enter Step5;
  • Step 5 The network side device maps the downlink control channel to the effective sub-bandwidth set, and corrects the current downlink total effective PRB number PRB_NUM as the number of PRBs included in the effective sub-bandwidth set, and indicates the current to the UE by using the spare bit of the PBCH channel.
  • the total number of effective PRBs PRB_NUM and the position of each valid sub-bandwidth are entered in Step 7.
  • Step 6 The network side device determines whether it has reached N_Time times (indicating that the uninterrupted effective sub-bandwidth position cannot be found on all M carriers for consecutive N_Time times), and if so, alarms to the OAM device or the alarm module to improve SINR_TH, IoT_TH , PRB_ratio_TH and other thresholds, and return to Step1; otherwise, go directly to Step7.
  • N_Time times indicating that the uninterrupted effective sub-bandwidth position cannot be found on all M carriers for consecutive N_Time times
  • Step7 The network side device operation ends.
  • Step 8 The UE reads the PBCH channel by using the period T, and obtains the effective sub-bandwidth indication by using the spare bits of the PBCH channel, and proceeds to Step 9;
  • Step 9 The UE corrects the current total effective PRB number PRB_NUM according to the Step 8 effective sub-bandwidth indication, and performs receiving processing according to the current total downlink effective PRB number and the location of the sub-bandwidth without strong interference, including performing the downlink control channel. Processing operations such as demapping, channel equalization, demodulation, and decoding.
  • Step10 The UE operation ends.
  • Step0 As shown in FIG. 4, a maximum of 2 carriers are established in the LTE access frequency range.
  • the bandwidth of each carrier system is 20MHz
  • the IoT threshold is preset by using the dry-to-noise ratio (IoT) criterion.
  • IoT_TH 6dB
  • the interfered PRB proportional threshold in the sub-bandwidth PRB_ratio_TH 30%
  • the effective sub-bandwidth set is empty, enter Step1;
  • Step 2 Determine whether there is strong interference on each sub-bandwidth by using the dry-to-noise ratio (IoT) criterion. If not, the sub-bandwidth is merged into the effective sub-bandwidth set and the next sub-bandwidth is interfered; if it exists, directly Skip to the next sub-bandwidth for interference judgment, and enter Step3 after traversing all sub-bandwidths;
  • IoT dry-to-noise ratio
  • the interfered PRB proportional threshold PRB_ratio(k Sub_BW ) in the kth Sub_BW sub-bandwidth is calculated, and the PRB_ratio(1), PRB_ratio(2), PRB_ratio(3), and PRB_ratio(4) and the preset threshold are respectively compared.
  • PRB_ratio(4) ⁇ PRB_ratio_TH there is strong interference on the first to third sub-bandwidths, and there is no strong interference on the fourth sub-bandwidth.
  • the sub-frames with the crosses in the figure indicate that a certain 5MHz sub-bandwidth is strongly interfered, and the un-sub-sub-box indicates that there is no strong interference, and the top-to-bottom indicates One to the fourth sub-bandwidth.
  • the comparison results are shown in Table 3.
  • the 4 bits indicate whether there is strong interference on each 5M sub-bandwidth, 0 means strong interference, and 1 means no strong interference.
  • Step3 Determine whether the effective sub-bandwidth set is empty:
  • the effective sub-bandwidth set is empty (a1, a2, a3, and a4 are all 0s), and enters Step4;
  • the effective sub-bandwidth set is not empty and goes to Step 5.
  • Step 5 The eNB maps the downlink control channel to the effective sub-bandwidth set, and corrects the current total number of PRBs PRB_NUM as the number of PRBs included in the effective sub-bandwidth set, and uses the main information block (Master Information Block) carried by the PBCH channel.
  • the MIB) vacant bit indicates a valid sub-bandwidth to the UE.
  • Step 6 The eNB determines whether the uninterrupted effective sub-bandwidth location is not found on the M carriers for two consecutive times. If yes, the O&M (OAM) device or the alarm module is alerted to the OAM device. Or the alarm module adjusts the thresholds such as IoT_TH and PRB_ratio_TH by 10%, and enters Step1; otherwise, go directly to Step1.
  • OAM O&M
  • Step 7 The eNB operation ends.
  • the UE (terminal) reads the last four bits of the MIB vacant bit to obtain a valid sub-bandwidth indication [a1a2a3a4].
  • Step 9 The UE corrects the current total number of PRBs PRB_NUM as the number of PRBs included in the effective sub-bandwidth set according to the valid sub-bandwidth indication obtained by Step 8, and determines the effective sub-bandwidth position, performs demapping of the downlink control channel, and performs subsequent reception processing. .
  • Scenario 2 The system bandwidth is 15 MHz, which is divided into three 5M combinations or five 3M combinations.
  • the system bandwidth is 15 MHz, which is divided into three 5M combinations.
  • the 3 bit of the MIB hollow residual bit indicates whether there is strong interference on each 5M sub-bandwidth, 0 means strong interference, and 1 means no strong interference.
  • the eNB separately measures whether there is strong interference in the 5M sub-bandwidth, and forms the sub-bandwidth without strong interference into a valid sub-bandwidth set, and maps the PCFICH/PHICH/PDCCH only on the effective sub-bandwidth set.
  • 15 MHz is divided into three 5M combinations.
  • the sub-frame with the cross in the figure indicates that a certain 5MHz sub-bandwidth is strongly interfered, and the sub-frame without the cross indicates that a certain 5M is not strongly interfered, and the first to third sub-bandwidths are respectively represented from top to bottom.
  • the system bandwidth is 15 MHz, which is divided into five 3M combinations.
  • the 5 bit of the MIB hollow residual bit indicates whether there is strong interference on each 3M sub-bandwidth, 0 means strong interference, and 1 means no strong interference.
  • the eNB separately measures whether there is strong interference in the 3M sub-bandwidth, and forms a sub-bandwidth without strong interference to form an effective sub-bandwidth set.
  • the PCFICH/PHICH/PDCCH is mapped only to the effective sub-bandwidth set.
  • Scene 3 the system bandwidth is 10MHz, and is divided into 5M+5M or 3 3M combinations.
  • the basic operation of scene 3 is exactly the same as that of scene 1. The following highlights the judgment result of the effective sub-bandwidth set in Step 2.
  • the system bandwidth is 10 MHz, which is divided into two 5M combinations.
  • the 2bit indication using the MIB hollow residual bit indicates whether there is strong interference on each 5M sub-bandwidth, 0 means strong interference, and 1 means no strong interference.
  • the eNB separately measures whether there is strong interference in the 5M sub-bandwidth, and forms the sub-bandwidth without strong interference into a valid sub-bandwidth set, and maps the PCFICH/PHICH/PDCCH only on the effective sub-bandwidth set.
  • 10 MHz is divided into two 5M combinations.
  • the sub-frame with a cross in Figure 6 indicates that a certain 5MHz sub-bandwidth is strongly interfered, and the un-sub-sub-frame indicates that a certain 5M is not strongly interfered, and the first to second sub-bandwidths are respectively represented from top to bottom.
  • the system bandwidth is 10 MHz, which is divided into three 3M combinations.
  • the 3bit indication using the MIB hollow residual bit indicates whether there is strong interference on each 3M sub-bandwidth, 0 means strong interference, and 1 means no strong interference.
  • the eNB separately measures whether there is strong interference in the 3M sub-bandwidth, and forms the sub-bandwidth without strong interference into a valid sub-bandwidth set, and maps the PCFICH/PHICH/PDCCH only on the effective sub-bandwidth set.
  • the embodiment of the present invention further provides a base station side device, a terminal, and a system for reducing interference in a system for reducing interference.
  • the principle of solving the problem by these devices and the embodiment of the present invention are shown in FIG. 2 and FIG. 3 .
  • the method of reducing interference is similar, so the implementation of these devices can be referred to the implementation of the method, and the repetition will not be repeated.
  • the system for reducing interference in the sixth embodiment of the present invention includes: a network side device 800 and a user equipment 801.
  • the network side device 800 is configured to determine whether there is strong interference on the sub-band in the carrier in the access frequency range, and determine the total number of PRBs included in the sub-bands that do not have strong interference; according to all the strong interferences
  • the total number of PRBs included in the sub-bandwidth is updated, and the total number of valid PRBs in the current downlink is updated; the updated total downlink effective PRB number and the location of the sub-bandwidth without strong interference are notified to the terminal;
  • the user equipment 801 is configured to receive the current downlink total effective PRB number notified from the network side device, and The location of the sub-bandwidth with strong interference is notified to the terminal, and the receiving process is performed according to the received current total number of effective PRBs and the position of the sub-bandwidth where there is no strong interference.
  • the network side device includes: a first determining module 900, a number determining module 901, an updating module 902, and a notification module 903.
  • the first determining module 900 is configured to determine whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range;
  • a number determining module 901 configured to determine a total number of PRBs included in all subbands that do not have strong interference
  • the update module 902 is configured to update the total number of valid PRBs of the current downlink according to the total number of PRBs included in the subbands where there is no strong interference;
  • the notification module 903 is configured to notify the terminal of the updated current total effective PRB number of the downlink and the location of the sub-bandwidth without strong interference.
  • the first determining module 900 is further configured to:
  • M1 and N1 are positive integers.
  • the first determining module 900 is specifically configured to:
  • Each carrier is divided into N1 sub-bandwidths, wherein the number of PRBs included in each sub-bandwidth is the same.
  • the first determining module 900 is specifically configured to:
  • the ratio of the PRB in which the sub-bandwidth is interfered is greater than the first threshold value corresponding to the strong interference judging parameter or the number of PRBs in which the sub-bandwidth is interfered is greater than the second threshold value corresponding to the strong interference judging parameter, determining the There is strong interference on the sub-bandwidth; otherwise it is determined that there is no strong interference on the sub-bandwidth.
  • the first determining module 900 is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the subband bandwidth is disturbed PRB ratio.
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the first determining module 900 is further configured to:
  • the alarm is sent to the upper layer
  • the terminal according to Embodiment 8 of the present invention includes: a receiving module 1000 and a first processing module 1001.
  • the receiving module 1000 is configured to receive the current downlink total effective PRB number notified by the network side device and the location notification terminal that does not have the strong interference sub-bandwidth, where the current downlink total effective PRB number is within the access frequency range.
  • the first processing module 1001 is configured to perform receiving processing according to the received total downlink effective PRB number and the location of the sub-bandwidth without strong interference.
  • the network side device according to Embodiment 9 of the present invention includes:
  • the processor 1101 is configured to read a program in the memory 1104 and perform the following process:
  • the transceiver 1102 is configured to receive and transmit data under the control of the processor 1101.
  • the processor 1101 is further configured to:
  • M1 and N1 are positive integers.
  • the processor 1101 is specifically configured to:
  • Each carrier is divided into N1 sub-bandwidths, wherein the number of PRBs included in each sub-bandwidth is the same.
  • the processor 1101 is specifically configured to:
  • the ratio of the PRB in which the sub-bandwidth is interfered is greater than the first threshold value corresponding to the strong interference judging parameter or the sub-limit If the number of PRBs whose bandwidth is interfered is greater than the second threshold corresponding to the strong interference determination parameter, it is determined that there is strong interference on the sub-bandwidth; otherwise, it is determined that there is no strong interference on the sub-bandwidth.
  • the processor 1101 is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the ratio of PRBs in which the sub-bandwidth is interfered is obtained.
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the processor 1101 is further configured to:
  • the alarm is sent to the upper layer
  • bus 1100 can include any number of interconnected buses and bridges, and bus 1100 will include one or more processors represented by processor 1101 and memory represented by memory 1104. The various circuits are linked together. The bus 1100 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 1103 provides an interface between bus 1100 and transceiver 1102.
  • the transceiver 1102 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • the data processed by the processor 1101 is transmitted over the wireless medium via the antenna 1105. Further, the antenna 1105 also receives the data and transmits the data to the processor 1101.
  • the processor 1101 is responsible for managing the bus 1100 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1104 can be used to store data used by the processor 1101 when performing operations.
  • the processor 1101 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the terminal in Embodiment 10 of the present invention includes:
  • the processor 1201 is configured to read a program in the memory 1204 and perform the following process:
  • the receiving process is performed according to the received total downlink effective PRB number and the position of the sub-bandwidth where there is no strong interference.
  • the transceiver 1202 is configured to receive and transmit data under the control of the processor 1201.
  • bus 1200 can include any number of interconnected buses and bridges, and bus 1200 will include one or more processors represented by general purpose processor 1201 and memory 1204. The various circuits of the memory are linked together. The bus 1200 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1203 provides an interface between bus 1200 and transceiver 1202.
  • Transceiver 1202 may be an element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, transceiver 1202 receives external data from other devices. The transceiver 1202 is configured to send the processed data of the processor 1201 to other devices.
  • a user interface 1205, such as a keypad, display, speaker, microphone, joystick, may also be provided.
  • the processor 1201 is responsible for managing the bus 1200 and the usual processing, running a general purpose operating system as described above.
  • the memory 1204 can be used to store data used by the processor 1201 in performing operations.
  • the processor 1201 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • Solution 2 The basic idea of this solution is that the base station does not process at the transmitting end, and the UE processes it separately at the receiving end.
  • the base station transmits the downlink control channel PCFICH/PDCCH/PHICH according to the full bandwidth; the terminal performs interference measurement by itself, determines the interfered position according to the measured value, and performs interference processing on the frequency domain channel estimation value or the frequency domain received signal of the interfered position (for example: Set to 0 or minimum) in order to minimize the effects of interference on the useful received signal.
  • the granularity of the interference measurement may be a PRB or a subcarrier;
  • the criterion for the interference location includes, but is not limited to, a signal to interference and noise ratio (SINR) criterion, an interference to noise ratio (IoT) criterion, and a signal to interference ratio ( SIR) criteria and interference power (IP) criteria.
  • SINR signal to interference and noise ratio
  • IoT interference to noise ratio
  • IP interference power
  • the method for reducing interference in Embodiment 11 of the present invention includes:
  • Step 1301 The user equipment determines whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range.
  • Step 1302 After determining the sub-bandwidth that is subject to strong interference, the user equipment performs channel estimation processing on the sub-bandwidth that is subjected to strong interference or processes the signal received through the sub-bandwidth that is subjected to strong interference.
  • the channel estimation result of the strongly interfered PRB may be set when the signal received by the strongly interfered PRB is processed. Values to reduce the effect of interference on the wanted transmit signal to be detected.
  • the signal received by the PRB that is subjected to strong interference may be set to a set value when the signal received by the PRB that is subjected to strong interference is processed. The effect of small interference on the useful transmitted signal to be detected.
  • one sub-bandwidth of the embodiment of the present invention includes N2 PRBs, or N3 sub-carriers.
  • N2 and N3 are integers, and the minimum value is 1.
  • the maximum value is the total number of PRBs and the total number of subcarriers included in the system bandwidth. For a 20 MHz system bandwidth, 1 ⁇ N2 ⁇ 100, 1 ⁇ N3 ⁇ 1200.
  • the user equipment may determine the sub-carrier in the sub-bandwidth or may be determined according to the PRB in the sub-bandwidth.
  • the strong interference determination parameter includes one of the following:
  • the criteria for strong interference include, but are not limited to, Signal to Interference and Noise Ratio (SINR) criteria, Dry Noise Ratio (IoT) criteria, Signal to Interference Ratio (SIR) criteria, and Interference Power (IP) criteria. That is to say, if the criterion for strong interference is the signal to interference and noise ratio (SINR) criterion, the strong interference determination parameter is the signal to interference and noise ratio; if the criterion for the strong interference is the dry to noise ratio (IoT) criterion, the above strong The interference judgment parameter is a dry noise ratio; if the strong interference judgment criterion is a signal to interference and noise ratio (SINR) criterion, the strong interference determination parameter is a signal to interference and noise ratio; if the strong interference judgment criterion is an interference power (IP) criterion, Then, the above strong interference determination parameter is interference power.
  • SINR Signal to Interference and Noise Ratio
  • IoT Dry Noise Ratio
  • the user equipment compares an average value of strong interference determination parameters of all subcarriers in at least one sub-band with a threshold value corresponding to the strong interference determination parameter, and determines, on the sub-bandwidth of the carrier in the access frequency range, according to the comparison result. Is there a strong interference?
  • the strong interference judgment parameter is the signal dry noise ratio:
  • SINR_TH signal to interference and noise ratio threshold
  • the strong interference judgment parameter is a dry noise ratio
  • IoT_TH dry noise ratio threshold
  • the strong interference judgment parameter is a signal to interference ratio:
  • SIR_TH signal-to-interference ratio threshold
  • the strong interference judgment parameter is interference power:
  • IP_TH ie, signal-to-interference ratio threshold
  • the network side device may determine the PRB ratio or the number of the interfered PRB according to the sub-bandwidth.
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, the PRB ratio at which the at least one sub-bandwidth is interfered;
  • the PRB ratio is greater than a third threshold corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-bandwidth; otherwise determining that there is no strong interference on the at least one sub-bandwidth.
  • the network side device determines, according to the strong interference determination parameter of the sub-bandwidth, the number of PRBs that the at least one sub-bandwidth is interfered with;
  • the number of the PRBs is greater than a fourth threshold value corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-bandwidth; otherwise determining that there is no strong interference on the at least one sub-bandwidth.
  • the following describes the effective sub-bandwidth determination method based on the PRB ratio and the number of PRBs.
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the network side device determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is determined. Dividing the number of PRBs included in the sub-bandwidth results in a PRB ratio in which the sub-bandwidth is interfered.
  • SINR threshold SINR_TH signal to interference and noise ratio threshold
  • PRB_ratio_TH a disturbed PRB proportional threshold
  • the number of the SINR values on the PRB in the k Sub_BW sub-bands is not greater than the SINR threshold SINR_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio rB_ratio(k Sub_BW ) in the k- sub_BW sub-bands:
  • the strong interference determination parameter is a dry noise ratio
  • the network side device determines that the dry noise ratio value on the PRB in the subband is not less than the number of the dry noise ratio threshold, and divides the determined number by the number.
  • the number of PRBs included in the sub-bandwidth is obtained, and the PRB ratio in which the sub-bandwidth is interfered is obtained.
  • an IoT threshold IoT_TH ie, a dry noise ratio threshold
  • a disturbed PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the number of IoT values on the PRB in the k Sub_BW sub-bands is not less than the IoT threshold IoT_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio (k Sub_BW ) of the interfered PRBs in the k- sub_BW sub-bands:
  • the strong interference determination parameter is a signal to interference ratio
  • the network side device determines that the signal to interference ratio of the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and divides the determined number by the number.
  • the number of PRBs included in the sub-bandwidth is obtained, and the PRB ratio in which the sub-bandwidth is interfered is obtained.
  • a SIR threshold SIR_TH ie, a signal-to-interference ratio threshold
  • a disturbed PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the number of the SIR values on the PRB in the k Sub_BW sub-bands is not greater than the SIR threshold SIR_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio rB_ratio(k Sub_BW ) in the k- sub_BW sub-bands:
  • the strong interference determination parameter is interference power
  • the network side device determines, by the number of interference power thresholds, the number of interference power values on the PRB in the sub-bandwidth, and divides the determined number by the sub-band.
  • the number of PRBs included in the bandwidth is the proportion of PRBs in which the sub-bandwidth is interfered.
  • an IP threshold IP_TH ie, an interference power threshold
  • an interfered PRB proportional threshold PRB_ratio_TH ie, a first threshold
  • the number of the SIRs in the sub-bands of the k Sub_BW sub-bands is not less than the IP threshold IP_TH, and the number of PRBs in the sub-bands is obtained by dividing the number of PRBs SUB_PRB_NUM in the sub-bands to obtain the PRB ratio (k Sub_BW ) of the interfered PRBs in the k- sub_BW sub-bands:
  • the strong interference determination parameter is a signal to interference and noise ratio
  • the network side device determines that the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, if not greater than the signal to interference noise If the number of the threshold is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the strong interference judgment parameter is a dry noise ratio
  • the network side device determines that the dry noise ratio value on the PRB in the subband is not less than the dry noise ratio threshold, if not less than the dry noise ratio threshold If the number is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the strong interference determination parameter is a signal to interference ratio
  • the network side device determines a signal to interference ratio on the PRB in the subband bandwidth.
  • the value is not greater than the number of the signal-to-interference ratio threshold. If the number of the signal-to-interference ratio threshold is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • the strong interference judgment parameter is the interference power
  • the network side device determines the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, if not less than the number of the interference power threshold If the threshold is greater than the second threshold, it is determined that the sub-bandwidth is strongly interfered, otherwise the sub-bandwidth is determined to be not strongly interfered.
  • IP interference power
  • the power is judged: when the ratio is not less than the threshold, the sub-bandwidth is considered to be strongly interfered, otherwise it is considered that there is no strong interference.
  • the channel estimation result or the received signal is processed, and the channel estimation result of the determined strong interference sub-bandwidth or the frequency domain received signal result is set to a minimum value.
  • Table 8 shows the interference judgment and processing mechanism of this embodiment.
  • IP interference criterion
  • the received signal or channel estimation result is processed.
  • the channel estimation result of the determined sub-bandwidth with strong interference or the frequency domain received signal result is set to a minimum value.
  • a terminal is provided in the embodiment of the present invention.
  • the principle of solving the problem is similar to the method for reducing interference in the embodiment of the present invention. Therefore, the implementation of the device can be implemented by referring to the method. It will not be repeated here.
  • the terminal in the twelfth embodiment of the present invention includes: a second judging module 1400 and a second processing module 1401.
  • the second determining module 1400 is configured to determine whether there is strong interference on the sub-bandwidth in the carrier within the access frequency range;
  • the second processing module 1401 is configured to perform channel estimation processing on the subband that is subjected to strong interference or process the signal received through the subband that is subjected to strong interference after determining the subband having strong interference.
  • the second determining module 1400 is specifically configured to:
  • the strong interference determination parameter comprises one of the following:
  • the second determining module 1400 is specifically configured to:
  • the PRB ratio or the number is greater than a threshold corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-band; otherwise determining that there is no strong interference on the at least one sub-band.
  • the second determining module 1400 is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the PRB ratio at which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the ratio of PRBs in which the sub-bandwidth is interfered is obtained.
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the second processing module 1401 is specifically configured to:
  • the channel estimation result of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected;
  • the received signal of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected.
  • the terminal according to Embodiment 13 of the present invention includes:
  • the processor 1501 is configured to read a program in the memory 1504 and perform the following process:
  • the sub-bandwidth received signal is processed.
  • the transceiver 1502 is configured to receive and transmit data under the control of the processor 1501.
  • the processor 1501 is specifically configured to:
  • the strong interference determination parameter comprises one of the following:
  • the processor 1501 is specifically configured to:
  • the PRB ratio or the number is greater than a threshold corresponding to the strong interference determination parameter, determining that there is strong interference on the at least one sub-band; otherwise determining that there is no strong interference on the at least one sub-band.
  • the processor 1501 is specifically configured to:
  • the strong interference determination parameter is a signal to interference and noise ratio, and the number of the signal to interference and noise ratio of the PRB in the subband is not greater than the number of the signal to interference and noise ratio threshold, and the determined number is divided by the subband. Number of PRBs, resulting in a PRB ratio in which the sub-bandwidth is interfered; or
  • the strong interference determination parameter is a dry noise ratio, and the number of the dry noise ratio on the PRB in the subband is not less than the number of the dry noise ratio threshold, and the determined number is divided by the PRB included in the subband. Number, the subband bandwidth is disturbed PRB ratio; or
  • the strong interference determination parameter is a signal to interference ratio, and the number of the signal to interference ratio on the PRB in the subband is not greater than the number of the signal to interference ratio threshold, and the determined number is divided by the PRBs included in the subband. Number, the ratio of PRBs in which the sub-bandwidth is interfered is obtained.
  • the strong interference determination parameter is the interference power, determining the number of the interference power value on the PRB in the sub-band is not less than the interference power threshold, and dividing the determined number by the number of PRBs included in the sub-bandwidth, A PRB ratio in which the sub-bandwidth is interfered is obtained.
  • the processor 1501 is specifically configured to:
  • the channel estimation result of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected;
  • the received signal of the strongly interfered PRB is set to a set value to reduce the influence of the interference on the useful transmitted signal to be detected.
  • bus 1500 can include any number of interconnected buses and bridges, and bus 1500 will include one or more processors represented by general purpose processor 1501 and memory 1504. The various circuits of the memory are linked together. The bus 1500 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 1503 provides an interface between bus 1500 and transceiver 1502.
  • Transceiver 1502 can be an element or a plurality of elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. For example, transceiver 1502 receives external data from other devices. The transceiver 1502 is configured to send the processed data of the processor 1501 to other devices.
  • a user interface 1505 can also be provided, such as a keypad, display, speaker, microphone, joystick.
  • the processor 1501 is responsible for managing the bus 1500 and the usual processing, running a general purpose operating system as described above.
  • the memory 1504 can be used to store data used by the processor 1501 when performing operations.
  • the processor 1501 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • the embodiment of the present invention can update the current total number of effective PRBs according to the sub-bandwidth without strong interference, and notify the terminal; or the terminal in the embodiment of the present invention can determine the sub-bandwidth that is subject to strong interference.
  • the channel estimation process is performed on the sub-bandwidth subjected to strong interference or the signal received through the sub-bandwidth subjected to strong interference, thereby solving the interference problem of other communication systems in the same frequency band and the problem of human malicious interference, thereby effectively improving the problem.
  • the ability of the channel mapping location in the frequency domain to be fixed at a fixed position of the full bandwidth to resist partial bandwidth interference reduces the interference of the channel to which the resource mapping position of the frequency domain is fixed at a fixed position of the full bandwidth.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention may employ one or more computers having computer usable program code embodied therein. The form of a computer program product embodied on a storage medium, including but not limited to disk storage, CD-ROM, optical storage, and the like.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

本申请实施例涉及无线通信技术领域,特别涉及一种降低干扰的方法和设备,用以降低针对频域的资源映射位置固定在全带宽的固定位置的信道受到的干扰。本申请实施例能够根据不存在强干扰的子带宽更新当前下行总的有效PRB个数,并通知终端;或者本申请实施例终端能够在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理,从而解决了相同频带上其它通信系统的干扰问题和人为恶意干扰问题,有效地提高了针对频域的资源映射位置固定在全带宽的固定位置的信道抵抗部分带宽干扰的能力,降低针对频域的资源映射位置固定在全带宽的固定位置的信道的受到的干扰。

Description

一种降低干扰的方法和设备
本申请要求在2015年02月11日提交中国专利局、申请号为201510072800.9、发明名称为“一种降低干扰的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种降低干扰的方法和设备。
背景技术
长期演进(Long Term Evolution,LTE)系统的调制技术采用了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM),下行OFDMA(多址技术采用正交频分多址接入)。下行控制信道包括物理控制格式指示信道(Physical Control Format Indication Channel,PCFICH)/物理下行控制信道(Physical Downlink Control Channel,PDCCH)/物理混合自动请求重传指示信道(Physical HARQ Indication Channel,PHICH),分别承载了数据信道的控制信息,是进行后续数据信道正常接收处理的基础。在700MHz的公共安全通信应用、其它行业应用和军用通信领域应用中,典型的干扰方式为宽带噪声干扰、部分带噪声干扰、单音干扰和多音干扰,干扰信号特征见图1。
LTE系统是宽带移动通信系统,当前在全球得到越来越多的应用。但是在诸如700MHz的公共安全通信应用和其它行业应用(例如军用通信领域)中,一个显著缺点是比较容易受到相同频带上其它通信系统的干扰和人为的恶意干扰。根据LTE系统的定义,PCFICH/PDCCH/PHICH等下行控制信道是终端接入网络并且为用户提供各种业务的基础功能,物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)承载用户业务。PDSCH和PUSCH能够采用灵活的上下行调度技术有效地躲避干扰;PCFICH/PDCCH/PHICH等下行控制信道的频域资源映射位置是固定的,无法通过调度或者跳频的方式避开干扰;一旦其受到干扰,将导致数据信道无法正常接收,无法进行正常工作。
综上所述,对于PCFICH/PDCCH/PHICH等信道,由于频域的资源映射位置固定在全带宽的固定位置,针对其它通信系统的干扰和人为恶意干扰,目前没有有效的解决方案。
发明内容
本发明提供一种降低干扰的方法和设备,用以降低针对频域的资源映射位置固定在全带宽的固定位置的信道受到的干扰。
本发明实施例提供的一种降低干扰的方法,包括:
网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
所述网络侧设备确定所有不存在强干扰的子带宽包含的总的物理资源块PRB的个数;
所述网络侧设备根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
所述网络侧设备将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
可能的实施方式中,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,还包括:
所述网络侧设备在接入频率范围内建立M1个载波;
所述网络侧设备把每个载波分成N1个子带宽;
其中,M1和N1为正整数。
可能的实施方式中,所述网络侧设备把每个载波分成N1个子带宽,包括:
所述网络侧设备根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
所述网络侧设备将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
可能的实施方式中,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
针对一个子带宽,所述网络侧设备根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
可能的实施方式中,所述网络侧设备根据子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例,包括:
所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率 值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
可能的实施方式中,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰之后,还包括:
若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则所述网络侧设备向高层告警;
其中,X为正整数。
本发明实施例提供的另一种降低干扰的方法,包括:
用户设备接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
所述用户设备根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
本发明实施例提供的一种降低干扰的网络侧设备,该网络侧设备包括:
第一判断模块,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
个数确定模块,用于确定所有不存在强干扰的子带宽包含的总的PRB的个数;
更新模块,用于根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
通知模块,用于将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
可能的实施方式中,所述第一判断模块还用于:
判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,在接入频率范围内建立M1个载波;把每个载波分成N1个子带宽;
其中,M1和N1为正整数。
可能的实施方式中,所述第一判断模块具体用于:
根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
可能的实施方式中,所述第一判断模块具体用于:
针对一个子带宽,根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存 在强干扰;否则确定所述子带宽上未存在强干扰。
可能的实施方式中,所述第一判断模块具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
可能的实施方式中,所述第一判断模块还用于:
若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则向高层告警;
其中,X为正整数。
本发明实施例提供的一种降低干扰的用户设备,该用户设备包括:
接收模块,用于接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
第一处理模块,用于根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
本发明实施例提供的另一种降低干扰的方法,包括:
用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
所述用户设备在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对受到强干扰的子带宽接收的信号进行处理。
可能的实施方式中,所述用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
所述用户设备将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
可能的实施方式中,所述强干扰判断参数包括下列中的一种:
信干噪比、干噪比、信干比和干扰功率。
可能的实施方式中,所述用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
所述用户设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
可能的实施方式中,所述用户设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例,包括:
所述强干扰判断参数为信干噪比,所述用户设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,所述用户设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,所述用户设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干扰功率,所述用户设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
可能的实施方式中,所述用户设备对受到强干扰的子带宽进行信道估计处理,包括:
所述用户设备对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;
所述用户设备对受到强干扰的子带宽接收的信号进行处理,包括:
所述用户设备对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
本发明实施例提供的一种降低干扰的用户设备,该方法包括:
第二判断模块,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
第二处理模块,用于在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理。
可能的实施方式中,所述第二判断模块具体用于:
将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
可能的实施方式中,所述强干扰判断参数包括下列中的一种:
信干噪比、干噪比、信干比和干扰功率。
可能的实施方式中,所述第二判断模块具体用于:
根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
可能的实施方式中,所述第二判断模块具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
可能的实施方式中,所述第二处理模块具体用于:
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;或者
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
由于本发明实施例能够根据不存在强干扰的子带宽更新当前下行总的有效PRB个数,并通知终端;或者本发明实施例终端能够在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理,从而解决了相同频带上其它通信系统的干扰问题和人为恶意干扰问题,有效地提高了针对频域的资源映射位置固定在全带宽的固定位置的信道抵抗部分带宽干扰的能力,降低针对频域的资源映射位置固定在全带宽的固定位置的信道受到的干扰。
附图说明
图1为背景技术中干扰信号特征示意图;
图2为本发明实施例一降低干扰的方法流程示意图;
图3为本发明实施例二降低干扰的方法流程示意图;
图4为本发明实施例三工作载波示意图一;
图5为本发明实施例三工作载波示意图二;
图6为本发明实施例四工作载波示意图;
图7为本发明实施例五工作载波示意图;
图8为本发明实施例六降低干扰的系统结构示意图;
图9为本发明实施例七网络侧设备的结构示意图;
图10为本发明实施例八终端的结构示意图;
图11为本发明实施例九网络侧设备的结构示意图;
图12为本发明实施例十终端的结构示意图;
图13为本发明实施例十一降低干扰的方法流程示意图;
图14为本发明实施例十二终端的结构示意图;
图15为本发明实施例十三终端的结构示意图。
具体实施方式
本发明实施例能够根据不存在强干扰的子带宽更新当前下行总的有效PRB个数,并通知终端;或者本发明实施例终端能够在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理,从而解决了相同频带上其它通信系统的干扰问题和人为恶意干扰问题,有效地提高了针对频域的资源映射位置固定在全带宽的固定位置的信道抵抗部分带宽干扰的能力,降低针对频域的资源映射位置固定在全带宽的固定位置的信道受到的干扰。
本发明实施例提供了两种降低干扰的方案,第一种是基于发送端自适应的抗干扰方案,具体参见图2~图12;第二种是基于接收端自适应的抗干扰方案,具体参见图13~图15。
下面结合说明书附图对本发明实施例作进一步详细描述。
方案一、本方案的基本思想是:网络侧设备根据设备处理能力在接入频率范围内建立至少一个载波,把每个载波划分成至少一个子带宽,并挑选出未受干扰的有效子带宽,把下行控制信道映射到有效子带宽上,并向UE指示有效子带宽;如果当前载波找不到未受干扰的有效子带宽集合,则继续在下一个载波上寻找有效子带宽,直到找到有效子带宽集合或者遍历完所有载波为止。
如图2所示,本发明实施例一降低干扰的方法包括:
步骤201、网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
步骤202、所述网络侧设备确定所有不存在强干扰的子带宽包含的总的物理资源块(Physical Resource Block,PRB)的个数;
步骤203、所述网络侧设备根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
步骤204、所述网络侧设备将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,以使所述终端根据收到的PRB个数和不存在强干扰的子带宽的位置进行接收处理。
其中,步骤201之前,还包括:
所述网络侧设备在接入频率范围内建立M1个载波;
所述网络侧设备把每个载波分成N1个子带宽;
其中,M1和N1为正整数。
在实施中,把每个载波分成N1个子带宽的方式有多种,下面列举几种:
划分方式一,每个子带宽大小的取值来自LTE系统的所有可用系统带宽,并且不大于当前载波使用的系统带宽,子带宽集合中的不同子带宽大小可能相同也可能不相同。也就是说,所述网络侧设备根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽。表1给出划分方式一的一个例子。
表1——子带宽划分方法一
Figure PCTCN2016071356-appb-000001
从表1可以看出,如果系统带宽是1.4MHz,则可以划分一个子带宽;如果系统带宽是3MHz,则可以划分两个子带宽,以此类推。其中,如果子带宽包含的PRB个数有多种选择,比如系统带宽是10MHz的情况下可以选择6、15和25三种,则可以根据高层通知或人工配置或自行根据需要,确定划分几个子带宽以及每个子带宽包含多少个PRB。
划分方式二,根据PBCH可用指示比特数把当前载波包含的所有PRB平均划分成N 份,保证每个子带宽包含的PRB个数相同。也就是说,网络侧设备将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。表2给出划分方式二的一个例子。
表2——子带宽集合划分方法2
Figure PCTCN2016071356-appb-000002
其中,M1到M6最小值为1,最大值为floor(PRB_NUM/SPARE_BIT_NUM)的正整数,floor(.)表示向下取整,SPARE_BIT_NUM表示PBCH中的空余比特个数。
其中,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰时,可以根据所述子带宽受到干扰的PRB比例或个数判断。
较佳地,针对一个子带宽,所述网络侧设备根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例;
若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
对一个子带宽,所述网络侧设备根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB个数;
若所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
针对强干扰的判断准则包括但不限于:信干噪比(SINR)准则、干噪比(IoT)准则、信干比(SIR)准则和干扰功率(IP)准则。也就是说,如果强干扰的判断准则为信干噪比(SINR)准则,则上述强干扰判断参数为信干噪比;如果强干扰的判断准则为干噪比(IoT)准则,则上述强干扰判断参数为干噪比;如果强干扰的判断准则为信干噪比(SINR)准则,则上述强干扰判断参数为信干噪比;如果强干扰的判断准则为干扰功率(IP)准则,则上述强干扰判断参数为干扰功率。
下面根据PRB比例和PRB个数分别对有效子带宽判断方法进行说明。
一、PRB比例。
1、所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数, 得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个SINR门限值SINR_TH(信干噪比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值)。
计算kSub_BW个子带宽内PRB上SINR值不大于SINR门限值SINR_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000003
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰,如下式所示:
Figure PCTCN2016071356-appb-000004
2、所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个IoT门限值IoT_TH(即干噪比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上IoT值大于IoT门限值IoT_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000005
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000006
3、所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个SIR门限值SIR_TH(即信干比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上SIR值大于SIR门限值SIR_TH的个数,除以子带宽包 含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000007
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000008
4、所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个IP门限值IP_TH(即干扰功率门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上SIR值大于IP门限值IP_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000009
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000010
上述门限值可以通过经验或仿真由人工配置,也可以通过高层配置,还可以由网络侧设备自行确定。
二、PRB个数。
1、所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,如果不大于信干噪比门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
2、所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,如果不小于干噪比门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
3、所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,如果不大于信干比门限值的个数大于第二门限值,则确定 子带宽受到强干扰,否则确定子带宽未受到强干扰。
4、所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,如果不小于干扰功率门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
由于不是每次判断都能找到存在强干扰的子带宽,所以判断接入频率范围内的载波中的子带宽上是否存在强干扰之后,若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则所述网络侧设备向高层告警。其中,X为正整数。
具体X的次数可以通过经验或仿真由人工配置,也可以通过高层配置,还可以由网络侧设备自行确定。
比如X为3,则连续3次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则所述网络侧设备向OAM设备告警,以使OAM设备修改上述门限值(例如提高上述门限值)。
在实施中,网络侧设备可以周期判断;也可以在小区内小区中心用户出现吞吐量下降比例超过某一个固定比例门限时开启,或者在整个小区的平均吞吐量的下降比例超过某一个固定比例门限时开启。
较佳地,所述网络侧设备将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端时,可以利用PBCH信道的空余比特向UE指示有效子带宽,每比特可以指示若干个PRB。
例如:对于5MHz系统带宽的25个PRB,假设PBCH有5个空余比特,则每个比特对应于连续的5个PRB。
需要说明的是,本发明实施例并不局限于提高物理广播信道(Physical Broadcast Channel,PBCH)信道空余比特指示,只要能够将当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端的方式都适用本发明实施例。
本发明实施例的网络侧设备可以是基站(比如宏基站、家庭基站等),也可以是RN(中继)设备,还可以是其它网络侧设备。
如图3所示,本发明实施例二降低干扰的方法包括:
步骤301、用户设备接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
步骤302、所述用户设备根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
下面以网络侧设备为eNB(演进基站)进行说明。
eNB侧处理步骤:
Step0:网络侧设备在LTE接入频率范围内建立M个载波,初始化SINR_TH、IoT_TH、SIR_TH、IP_TH、PRB_ratio_TH、N_Time等参数值,令m=1。
由于不是所有准侧都使用,所以可以只初始化使用的准侧涉及的门限。
Step1:在第m个载波上,网络侧设备根据子带宽集合划分方法把系统带宽BW划分成若干个相同的子带宽或者不同子带宽。
Step2:网络侧设备采用干扰判断准则分别判断每个子带宽上是否存在强干扰,如果不存在则该子带宽归并到有效子带宽集合并进入下一个子带宽进行干扰判断,如果存在则直接跳到下一个子带宽进行干扰判断,当遍历完所有子带宽后进入Step3。
Step3:网络侧设备判断有效子带宽集合是否为空,如果是(表示当前载波上所有子带宽上都存在强干扰),进入Step4;否则(表示当前载波的部分子带宽上不存在强干扰),进入Step5;
Step4:网络侧设备判断m是否大于M,如果是,进入Step6;否则,令m=m+1,进入下一个载波判断,并返回Step1;
Step5:网络侧设备把下行控制信道映射到有效子带宽集合上,并且修正当前下行总的有效PRB个数PRB_NUM为有效子带宽集合包含的PRB个数,并且利用PBCH信道的空余比特向UE指示当前下行总的有效PRB个数PRB_NUM和每个有效子带宽的位置,进入Step7。
Step6:网络侧设备判断是否达到N_Time次(表示连续N_Time次在全部M个载波上都找不到未受干扰的有效子带宽位置),如果是,向OAM设备或者告警模块告警,提高SINR_TH、IoT_TH、PRB_ratio_TH等门限值,并返回Step1;否则,直接进入Step7。
Step7:网络侧设备操作结束。
UE侧处理步骤:
Step8:UE以周期T读取PBCH信道,利用PBCH信道的空余比特获取有效子带宽指示,进入Step9;
Step9:UE根据Step8有效子带宽指示,修正当前下行总的有效PRB个数PRB_NUM,根据当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理,包括进行下行控制信道的解映射、信道均衡、解调和译码等处理操作。
Step10:UE操作结束。
下面列举几个场景,对本发明的方案进行详细说明。
场景一、系统带宽20MHz,M=2,被分成了四个5M子带宽的组合,T=500ms。
Step0:如图4所示,在LTE接入频率范围内建立最多2个载波。
其中,每个载波系统带宽20MHz,采用干噪比(IoT)准则,预先设定IoT门限值 IoT_TH=6dB,子带宽内受干扰的PRB比例门限PRB_ratio_TH=30%,N_Time=1,初始化m=0,有效子带宽集合为空,进入Step1;
Step1:在第m个载波对应的中心频点上,把整个系统带宽BW划分成四个5M子带宽的组合(kSub_BW=1,2,3,4),进入Step2;
Step2:采用干噪比(IoT)准则分别判断每个子带宽上是否存在强干扰,如果不存在,则该子带宽归并到有效子带宽集合并对下一个子带宽进行干扰判断;如果存在,则直接跳到下一个子带宽进行干扰判断,当遍历完所有子带宽后进入Step3;
具体的,计算得到第kSub_BW个子带宽内受干扰的PRB比例门限PRB_ratio(kSub_BW),并且分别比较PRB_ratio(1)、PRB_ratio(2)、PRB_ratio(3)和PRB_ratio(4)与预设门限值PRB_ratio_TH的大小:
下面列举五种情况。
CASE1:
Figure PCTCN2016071356-appb-000011
Figure PCTCN2016071356-appb-000012
Figure PCTCN2016071356-appb-000013
Figure PCTCN2016071356-appb-000014
由于PRB_ratio(kSub_BW)≥PRB_ratio_TH,(kSub_BW=1,2,3,4),四个子带宽存在强干扰。
CASE2:
PRB_ratio(1)=52%,PRB_ratio(2)=64%,PRB_ratio(3)=60%,PRB_ratio(4)=28%,由于PRB_ratio(kSub_BW)>PRB_ratio_TH,(kSub_BW=1,2,3)
PRB_ratio(4)≤PRB_ratio_TH,第一个到第三个子带宽上存在有强干扰,第四个子带宽上没有强干扰。
CASE3:
PRB_ratio(1)=52%,PRB_ratio(2)=60%,PRB_ratio(3)=20%,PRB_ratio(4)=28%,由于PRB_ratio(kSub_BW)>PRB_ratio_TH,(kSub_BW=1,2),PRB_ratio(kSub_BW)≤PRB_ratio_TH,(kSub_BW=3,4),第一个和第二个子带宽上存在有强干扰,第三个和第四个子带宽上没有强干扰。
CASE4:
PRB_ratio(1)=52%,PRB_ratio(2)=24%,PRB_ratio(3)=20%,PRB_ratio(4)=28%,由于PRB_ratio(1)>PRB_ratio_TH,PRB_ratio(kSub_BW)≤PRB_ratio_TH,(kSub_BW=2,3,4),第一个子带宽上存在有强干扰,第二个到第四个子带宽上没有强干扰。
CASE5:
PRB_ratio(1)=20%,PRB_ratio(2)=24%,PRB_ratio(3)=28%,PRB_ratio(4)=20%,由于PRB_ratio(kSub_BW)≤PRB_ratio_TH,(kSub_BW=1,2,3,4),四个子带宽都没有强干扰。
如图5所示,分别对应于上述五种CASE,图中带叉的子框表示某个5MHz子带宽受到强干扰,不带叉的子框表示没有受到强干扰,从上到下分别表示第一个到第四个子带宽。
比较结果采用表3所示,用4bit指示干扰在每个5M子带宽上是否有强干扰,0表示有强干扰,1表示无强干扰。
表3——场景一中MIB指示的可用子带宽
Figure PCTCN2016071356-appb-000015
Step3:判断有效子带宽集合是否为空:
针对case1,有效子带宽集合为空(a1、a2、a3和a4是全0),进入Step4;
针对case2到case5,有效子带宽集合不为空,进入Step5。
Step4:判断m是否大于2,如果是,进入Step6;否则,令m=m+1,进入下一个载波,进入Step1;
针对case1,当前m=1<2,进入工作载波2,进入Step1。
Step5:eNB把下行控制信道映射到有效子带宽集合上,并且修正当前下行总的PRB个数PRB_NUM为有效子带宽集合包含的PRB个数,并且利用PBCH信道承载的主信息块(Master Information Block,MIB)空余比特向UE指示有效子带宽。
针对case2到case5,MIB中采用空余比特的最后四个比特来表示[a1a2a3a4]。
Step6:eNB判断是否连续2次在M个载波上都找不到未受干扰的有效子带宽位置,如果是,向操作和维护(Operations and Maintenance,OAM)设备或告警模块告警,以使OAM设备或告警模块按照10%的比例调整IoT_TH和PRB_ratio_TH等门限值,并进入 Step1;否则,直接进入Step1。
Step7:eNB操作结束。
UE侧处理步骤:
Step8:UE以周期T=500ms读取PBCH信道,利用PBCH信道的空余比特获取有效子带宽指示,进入Step9;
UE(终端)读取MIB空余比特的最后四个比特获得有效子带宽指示[a1a2a3a4]。
Step9:UE根据Step8获取的有效子带宽指示,修正当前下行总的PRB个数PRB_NUM为有效子带宽集合包含的PRB个数,并确定有效子带宽位置,进行下行控制信道的解映射和后续接收处理。
UE根据Step8获取的[a1 a2 a3 a4];
针对case2,有效子带宽集合大小为5MHz,修正N_DL_RB=25;
针对case3,有效子带宽集合大小为10MHz,修正N_DL_RB=50;
针对case4,有效子带宽集合大小为15MHz,修正N_DL_RB=75。
场景二、系统带宽15MHz,被划分成3个5M的组合或者5个3M的组合。
基本操作与场景一完全相同,下面重点给出Step2中的有效子带宽集合判断结果。
1)如表4所示,系统带宽15MHz,被划分成3个5M的组合。采用MIB中空余比特的3bit指示干扰在每个5M子带宽上是否有强干扰,0表示有强干扰,1表示无强干扰。eNB分别测量5M子带宽内是否存在强干扰,把不存在强干扰的子带宽组成有效子带宽集合,把PCFICH/PHICH/PDCCH仅映射在有效子带宽集合。
表4——场景二中MIB指示的可用子带宽
Figure PCTCN2016071356-appb-000016
如图6所示,15MHz划分成3个5M的组合。图中带叉的子框表示某个5MHz子带宽被强干扰,不带叉的子框表示某个5M没有被强干扰,从上到下分别表示第一到第三个子带宽。
2)如表5所示,系统带宽15MHz,被划分成5个3M的组合。采用MIB中空余比特的5bit指示干扰在每个3M子带宽上是否有强干扰,0表示有强干扰,1表示无强干扰。eNB分别测量3M子带宽内是否存在强干扰,把不存在强干扰的子带宽组成有效子带宽集合, 把PCFICH/PHICH/PDCCH仅映射在有效子带宽集合。
表5——场景二中MIB指示的可用子带宽
Figure PCTCN2016071356-appb-000017
场景三、系统带宽10MHz,被划分成5M+5M或者3个3M的组合。场景三的基本操作与场景一完全相同,下面重点给出Step2中的有效子带宽集合判断结果。
1)如表6所示,系统带宽10MHz,被划分成2个5M的组合。采用MIB中空余比特的2bit指示干扰在每个5M子带宽上是否有强干扰,0表示有强干扰,1表示无强干扰。eNB分别测量5M子带宽内是否存在强干扰,把不存在强干扰的子带宽组成有效子带宽集合,把PCFICH/PHICH/PDCCH仅映射在有效子带宽集合。
表6——场景三中MIB指示的可用子带宽
Figure PCTCN2016071356-appb-000018
如图7所示,10MHz划分成2个5M的组合。图6中带叉的子框表示某个5MHz子带宽被强干扰,不带叉的子框表示某个5M没有被强干扰,从上到下分别表示第一个到第二个子带宽。
2)如表7所示,系统带宽10MHz,被划分成3个3M的组合。采用MIB中空余比特的3bit指示干扰在每个3M子带宽上是否有强干扰,0表示有强干扰,1表示无强干扰。eNB分别测量3M子带宽内是否存在强干扰,把不存在强干扰的子带宽组成有效子带宽集合,把PCFICH/PHICH/PDCCH仅映射在有效子带宽集合。
表7——场景三中MIB指示的可用子带宽
Figure PCTCN2016071356-appb-000019
基于同一发明构思,本发明实施例中还提供了一种降低干扰的系统中的基站侧设备、终端、及降低干扰的系统,由于这些设备解决问题的原理与本发明实施例图2和图3的降低干扰的方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
如图8所示,本发明实施例六降低干扰的系统包括:网络侧设备800和用户设备801。
网络侧设备800,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;确定所有不存在强干扰的子带宽包含的总的PRB的个数;根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端;
用户设备801,用于接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不 存在强干扰的子带宽的位置通知终端,根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
如图9所示,本发明实施例七的网络侧设备包括:第一判断模块900、个数确定模块901、更新模块902和通知模块903。
第一判断模块900,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
个数确定模块901,用于确定所有不存在强干扰的子带宽包含的总的PRB的个数;
更新模块902,用于根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
通知模块903,用于将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
较佳地,所述第一判断模块900还用于:
判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,在接入频率范围内建立M1个载波;把每个载波分成N1个子带宽;
其中,M1和N1为正整数。
较佳地,所述第一判断模块900具体用于:
根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
较佳地,所述第一判断模块900具体用于:
针对一个子带宽,根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
较佳地,所述第一判断模块900具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的 PRB比例。
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,所述第一判断模块900还用于:
若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则向高层告警;
其中,X为正整数。
如图10所示,本发明实施例八的终端包括:接收模块1000和第一处理模块1001。
接收模块1000,用于接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
第一处理模块1001,用于根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
如图11所示,本发明实施例九的网络侧设备包括:
处理器1101,用于读取存储器1104中的程序,执行下列过程:
判断接入频率范围内的载波中的子带宽上是否存在强干扰;确定所有不存在强干扰的子带宽包含的总的PRB的个数;根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;通过收发机1102更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
收发机1102,用于在处理器1101的控制下接收和发送数据。
较佳地,所述处理器1101还用于:
判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,在接入频率范围内建立M1个载波;把每个载波分成N1个子带宽;
其中,M1和N1为正整数。
较佳地,所述处理器1101具体用于:
根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
较佳地,所述处理器1101具体用于:
针对一个子带宽,根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子 带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
较佳地,所述处理器1101具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,所述处理器1101还用于:
若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则向高层告警;
其中,X为正整数。
在图11中,总线架构(用总线1100来代表),总线1100可以包括任意数量的互联的总线和桥,总线1100将包括由处理器1101代表的一个或多个处理器和存储器1104代表的存储器的各种电路链接在一起。总线1100还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1103在总线1100和收发机1102之间提供接口。收发机1102可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1101处理的数据通过天线1105在无线介质上进行传输,进一步,天线1105还接收数据并将数据传送给处理器1101。
处理器1101负责管理总线1100和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1104可以被用于存储处理器1101在执行操作时所使用的数据。
可选的,处理器1101可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
如图12所示,本发明实施例十的终端包括:
处理器1201,用于读取存储器1204中的程序,执行下列过程:
通过收发机1202接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
收发机1202,用于在处理器1201的控制下接收和发送数据。
在图12中,总线架构(用总线1200来代表),总线1200可以包括任意数量的互联的总线和桥,总线1200将包括由通用处理器1201代表的一个或多个处理器和存储器1204代表的存储器的各种电路链接在一起。总线1200还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1203在总线1200和收发机1202之间提供接口。收发机1202可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机1202从其他设备接收外部数据。收发机1202用于将处理器1201处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口1205,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器1201负责管理总线1200和通常的处理,如前述所述运行通用操作系统。而存储器1204可以被用于存储处理器1201在执行操作时所使用的数据。
可选的,处理器1201可以是CPU、ASIC、FPGA或CPLD。
方案二、本方案的基本思想是:基站在发送端不做处理,UE在接收端单独处理。基站按照全带宽发送下行控制信道PCFICH/PDCCH/PHICH;终端自行进行干扰测量,根据测量值判断出受干扰位置,对受干扰位置的频域信道估计值或者频域接收信号进行干扰处理(例如:置为0或者极小值),目的是尽量消除干扰对于有用接收信号的影响。其中,干扰测量的颗粒度可以是PRB,也可以是子载波;针对受干扰位置的判断准则包括但不限于:信干噪比(SINR)准则、干噪比(IoT)准则、信干比(SIR)准则和干扰功率(IP)准则。
如图13所示,本发明实施例十一降低干扰的方法包括:
步骤1301、用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
步骤1302、所述用户设备在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理。
较佳地,所述用户设备对受到强干扰的子带宽进行信道估计处理时,可以对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
所述用户设备对受到强干扰的子带宽接收的信号进行处理时,可以对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
需要说明的是,上述处理方式只是举例说明,只要能够以减小干扰对于有用接收信号的影响的方式都适用本发明实施例。
较佳地,本发明实施例的1个子带宽包括N2个PRB,或者N3个子载波。其中,N2和N3为整数,最小值为1,最大值分别为系统带宽包含的总PRB个数和总子载波个数。对于20MHz系统带宽,1≤N2≤100,1≤N3≤1200。
具体划分方式与图2中的划分方式类似,在此不再赘述。
所述用户设备在判断接入频率范围内的载波中的子带宽上是否存在强干扰时,可以通过子带宽内的子载波判断,也可以根据子带宽内的PRB判断。
所述强干扰判断参数包括下列中的一种:
信干噪比、干噪比、信干比和干扰功率。
针对强干扰的判断准则包括但不限于:信干噪比(SINR)准则、干噪比(IoT)准则、信干比(SIR)准则和干扰功率(IP)准则。也就是说,如果强干扰的判断准则为信干噪比(SINR)准则,则上述强干扰判断参数为信干噪比;如果强干扰的判断准则为干噪比(IoT)准则,则上述强干扰判断参数为干噪比;如果强干扰的判断准则为信干噪比(SINR)准则,则上述强干扰判断参数为信干噪比;如果强干扰的判断准则为干扰功率(IP)准则,则上述强干扰判断参数为干扰功率。
下面分别进行说明。
一、通过子带宽内的子载波判断。
所述用户设备将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
1、所述强干扰判断参数为信干噪比:
预先设定或者通过仿真给出一个SINR门限值SINR_TH(即信干噪比门限值);
计算kSub_BW个子带宽内所有子载波的平均信干噪比,比较平均信干噪比与SINR门限值SINR_TH的大小,当平均信干噪比不大于SINR_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000020
2、所述强干扰判断参数为干噪比:
预先设定或者通过仿真给出一个IoT门限值IoT_TH(即干噪比门限值);
计算kSub_BW个子带宽内所有子载波的平均干噪比,比较平均干噪比与IoT门限值IoT_TH的大小,当平均干噪比大于IoT_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000021
3、所述强干扰判断参数为信干比:
预先设定或者通过仿真给出一个SIR门限值SIR_TH(即信干比门限值);
计算kSub_BW个子带宽内所有子载波的平均信干比,比较平均信干比与SIR门限值SIR_TH的大小,当平均信干比不大于SIR_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000022
4、所述强干扰判断参数为干扰功率:
预先设定或者通过仿真给出一个IP门限值IP_TH(即信干比门限值);
计算kSub_BW个子带宽内所有子载波的平均干扰功率,比较平均干扰功率与IP门限值IP_TH的大小,当平均干扰功率不小于IP_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000023
二、通过子带宽内的PRB判断。
其中,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰时,可以根据所述子带宽受到干扰的PRB比例或个数判断。
较佳地,所述网络侧设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例;
若所述PRB比例大于强干扰判断参数对应的第三门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。或
所述网络侧设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB个数;
若所述PRB个数大于强干扰判断参数对应的第四门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
下面根据PRB比例和PRB个数分别对有效子带宽判断方法进行说明。
(一)、PRB比例。
1、所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个SINR门限值SINR_TH(信干噪比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第三门限值)。
计算kSub_BW个子带宽内PRB上SINR值不大于SINR门限值SINR_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000024
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰,如下式所示:
Figure PCTCN2016071356-appb-000025
2、所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个IoT门限值IoT_TH(即干噪比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上IoT值不小于IoT门限值IoT_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000026
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000027
3、所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个SIR门限值SIR_TH(即信干比门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上SIR值不大于SIR门限值SIR_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000028
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000029
4、所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,预先设定或者通过仿真给出一个IP门限值IP_TH(即干扰功率门限值)和子带宽内受干扰的PRB比例门限PRB_ratio_TH(即第一门限值);
计算kSub_BW个子带宽内PRB上SIR值不小于IP门限值IP_TH的个数,除以子带宽包含的PRB个数SUB_PRB_NUM,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000030
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰。
Figure PCTCN2016071356-appb-000031
(二)、PRB个数。
1、所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,如果不大于信干噪比门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
2、所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,如果不小于干噪比门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
3、所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比 值不大于信干比门限值的个数,如果不大于信干比门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
4、所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,如果不小于干扰功率门限值的个数大于第二门限值,则确定子带宽受到强干扰,否则确定子带宽未受到强干扰。
下面列举两个例子。
例一、系统带宽为20MHz,干扰判决变量门限IP_TH=2*噪声功率,干扰测量的颗粒度是子载波,N2=6;针对受干扰位置的判断准则采用干扰功率(IP)准则。
1)干扰判断机制:
终端根据子载波信号的接收功率自行判断干扰位置,以6个子载波为一个子带宽,采用单个子带宽内6个子载波的平均接收功率作为干扰判断变量,与预先设定的门限IP_TH=2*噪声功率进行判断:当比值不小于门限时认为该子带宽受到强干扰,否则认为没有受到强干扰。
2)干扰处理机制:
对信道估计结果或者接收信号进行处理,对判断出的受强干扰的子带宽的信道估计结果或者频域接收信号结果置为极小值。
表8给出了本实施例的干扰判断和处理机制。
表8——干扰判断和干扰处理机制
Figure PCTCN2016071356-appb-000032
例二、系统带宽为20MHz,干扰判决变量门限IP_TH=2*噪声功率,干扰测量的颗粒度是PRB;针对受干扰位置的判断准则采用干扰功率(IP)准则,PRB_ratio_TH=50%。
1)干扰判断机制:
干扰测量的颗粒度是PRB,N1=4,即每个子带宽包含4个PRB,20MHz的系统带宽 包含了25个子带宽。
挑选全带宽1200个子载波中最小的10%计算平均值得到噪声功率,为0.1;然后计算得到干扰判决门限IP_TH=2*噪声功率=2*0.1=0.2。
计算kSub_BW个子带宽内PRB上干扰功率值不大于干扰功率门限值IP_TH(=0.2)的个数,除以子带宽包含的PRB个数N1,得到第kSub_BW个子带宽内受干扰的PRB比例PRB_ratio(kSub_BW):
Figure PCTCN2016071356-appb-000033
得到20MHz全带宽上的25个子带宽的PRB比例如表9所示:
表9
Figure PCTCN2016071356-appb-000034
比较第kSub_BW个子带宽内PRB比例门限PRB_ratio与预先设定门限值PRB_ratio_TH的大小,当PRB_ratio大于PRB_ratio_TH时,该子带宽上存在强干扰,否则不存在强干扰,如下式所示:
Figure PCTCN2016071356-appb-000035
得到20MHz全带宽上的25个子带宽上是否存在强干扰的指示如表10所示:
表10
kSub_BW 1 2 3 4 5 6 7 8 9
H1/H0 H1 H1 H1 H1 H1 H1 H0 H0 H0
kSub_BW 10 11 12 13 14 15 16 17 18
H1/H0 H0 H0 H0 H0 H0 H0 H0 H0 H0
kSub_BW 19 20 21 22 23 24 25    
H1/H0 H0 H0 H0 H0 H0 H0 H0    
2)干扰处理机制:
对接收信号或者信道估计结果进行处理。对判断出的受强干扰的子带宽的信道估计结果或者频域接收信号结果置为极小值。
基于同一发明构思,本发明实施例中还提供了一种终端,由于该设备解决问题的原理与本发明实施例图13的降低干扰的方法相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
如图14所示,本发明实施例十二的终端包括:第二判断模块1400和第二处理模块1401。
第二判断模块1400,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
第二处理模块1401,用于在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理。
较佳地,所述第二判断模块1400具体用于:
将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
较佳地,所述强干扰判断参数包括下列中的一种:
信干噪比、干噪比、信干比和干扰功率。
较佳地,所述第二判断模块1400具体用于:
根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
较佳地,所述第二判断模块1400具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,所述第二处理模块1401具体用于:
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;或者
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
如图15所示,本发明实施例十三的终端包括:
处理器1501,用于读取存储器1504中的程序,执行下列过程:
判断接入频率范围内的载波中的子带宽上是否存在强干扰;在确定有受到强干扰的子带宽后,通过收发机1502对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理。
收发机1502,用于在处理器1501的控制下接收和发送数据。
较佳地,所述处理器1501具体用于:
将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
较佳地,所述强干扰判断参数包括下列中的一种:
信干噪比、干噪比、信干比和干扰功率。
较佳地,所述处理器1501具体用于:
根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
较佳地,所述处理器1501具体用于:
所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的 PRB比例;或
所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
较佳地,所述处理器1501具体用于:
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;或者
对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
在图15中,总线架构(用总线1500来代表),总线1500可以包括任意数量的互联的总线和桥,总线1500将包括由通用处理器1501代表的一个或多个处理器和存储器1504代表的存储器的各种电路链接在一起。总线1500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1503在总线1500和收发机1502之间提供接口。收发机1502可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。例如:收发机1502从其他设备接收外部数据。收发机1502用于将处理器1501处理后的数据发送给其他设备。取决于计算系统的性质,还可以提供用户接口1505,例如小键盘、显示器、扬声器、麦克风、操纵杆。
处理器1501负责管理总线1500和通常的处理,如前述所述运行通用操作系统。而存储器1504可以被用于存储处理器1501在执行操作时所使用的数据。
可选的,处理器1501可以是CPU、ASIC、FPGA或CPLD。
从上述内容可以看出:本发明实施例能够根据不存在强干扰的子带宽更新当前下行总的有效PRB个数,并通知终端;或者本发明实施例终端能够在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理,从而解决了相同频带上其它通信系统的干扰问题和人为恶意干扰问题,有效地提高了针对频域的资源映射位置固定在全带宽的固定位置的信道抵抗部分带宽干扰的能力,降低针对频域的资源映射位置固定在全带宽的固定位置的信道的受到的干扰。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (26)

  1. 一种降低干扰的方法,其特征在于,该方法包括:
    网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
    所述网络侧设备确定所有不存在强干扰的子带宽包含的总的物理资源块PRB的个数;
    所述网络侧设备根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
    所述网络侧设备将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
  2. 如权利要求1所述的方法,其特征在于,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,还包括:
    所述网络侧设备在接入频率范围内建立M1个载波;
    所述网络侧设备把每个载波分成N1个子带宽;
    其中,M1和N1为正整数。
  3. 如权利要求2所述的方法,其特征在于,所述网络侧设备把每个载波分成N1个子带宽,包括:
    所述网络侧设备根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
    所述网络侧设备将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
  4. 如权利要求1所述的方法,其特征在于,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
    针对一个子带宽,所述网络侧设备根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
    若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
  5. 如权利要求4所述的方法,其特征在于,所述网络侧设备根据子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例,包括:
    所述强干扰判断参数为信干噪比,所述网络侧设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干噪比,所述网络侧设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子 带宽受到干扰的PRB比例;或
    所述强干扰判断参数为信干比,所述网络侧设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干扰功率,所述网络侧设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
  6. 如权利要求1所述的方法,其特征在于,所述网络侧设备判断接入频率范围内的载波中的子带宽上是否存在强干扰之后,还包括:
    若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则所述网络侧设备向高层告警;
    其中,X为正整数。
  7. 一种降低干扰的方法,其特征在于,该方法包括:
    用户设备接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
    所述用户设备根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
  8. 一种降低干扰的网络侧设备,其特征在于,该网络侧设备包括:
    第一判断模块,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
    个数确定模块,用于确定所有不存在强干扰的子带宽包含的总的PRB的个数;
    更新模块,用于根据所有不存在强干扰的子带宽包含的总的PRB个数,更新当前下行总的有效PRB个数;
    通知模块,用于将更新后的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置通知终端。
  9. 如权利要求8所述的网络侧设备,其特征在于,所述第一判断模块还用于:
    判断接入频率范围内的载波中的子带宽上是否存在强干扰之前,在接入频率范围内建立M1个载波;把每个载波分成N1个子带宽;
    其中,M1和N1为正整数。
  10. 如权利要求9所述的网络侧设备,其特征在于,所述第一判断模块具体用于:
    根据可用系统带宽,将每个载波分成N1个子带宽,其中每个子带宽的大小根据所有可用系统带宽确定,并且不大于当前载波使用的系统带宽;或
    将每个载波分成N1个子带宽,其中每个子带宽上包含的PRB个数相同。
  11. 如权利要求8所述的网络侧设备,其特征在于,所述第一判断模块具体用于:
    针对一个子带宽,根据所述子带宽的强干扰判断参数,确定所述子带宽受到干扰的PRB比例或个数;
    若所述子带宽受到干扰的PRB比例大于强干扰判断参数对应的第一门限值或所述子带宽受到干扰的PRB个数大于强干扰判断参数对应的第二门限值,则确定所述子带宽上存在强干扰;否则确定所述子带宽上未存在强干扰。
  12. 如权利要求11所述的网络侧设备,其特征在于,所述第一判断模块具体用于:
    所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
  13. 如权利要求8所述的网络侧设备,其特征在于,所述第一判断模块还用于:
    若连续X次判断接入频率范围内的载波中的子带宽上是否存在强干扰,都没有找到未受强干扰的子带宽,则向高层告警;
    其中,X为正整数。
  14. 一种降低干扰的用户设备,其特征在于,该用户设备包括:
    接收模块,用于接收到来自网络侧设备通知的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,其中当前下行总的有效PRB个数是接入频率范围内的载波中的子带宽上不存在强干扰的子带宽包含的总的PRB个数;
    第一处理模块,用于根据收到的当前下行总的有效PRB个数以及不存在强干扰的子带宽的位置,进行接收处理。
  15. 一种降低干扰的方法,其特征在于,该方法包括:
    用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰;
    所述用户设备在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对受到强干扰的子带宽接收的信号进行处理。
  16. 如权利要求15所述的方法,其特征在于,所述用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
    所述用户设备将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
  17. 如权利要求16所述的方法,其特征在于,所述强干扰判断参数包括下列中的一种:
    信干噪比、干噪比、信干比和干扰功率。
  18. 如权利要求15所述的方法,其特征在于,所述用户设备判断接入频率范围内的载波中的子带宽上是否存在强干扰,包括:
    所述用户设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
    若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
  19. 如权利要求18所述的方法,其特征在于,所述用户设备根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例,包括:
    所述强干扰判断参数为信干噪比,所述用户设备确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干噪比,所述用户设备确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为信干比,所述用户设备确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干扰功率,所述用户设备确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
  20. 如权利要求15~17、19任一所述的方法,其特征在于,所述用户设备对受到强干扰的子带宽进行信道估计处理,包括:
    所述用户设备对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;
    所述用户设备对受到强干扰的子带宽接收的信号进行处理,包括:
    所述用户设备对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
  21. 一种降低干扰的用户设备,其特征在于,该方法包括:
    第二判断模块,用于判断接入频率范围内的载波中的子带宽上是否存在强干扰;
    第二处理模块,用于在确定有受到强干扰的子带宽后,对受到强干扰的子带宽进行信道估计处理或者对通过受到强干扰的子带宽接收的信号进行处理。
  22. 如权利要求21所述的用户设备,其特征在于,所述第二判断模块具体用于:
    将至少一个子带宽内所有子载波的强干扰判断参数的平均值与强干扰判断参数对应的门限值进行比较,根据比较结果判断接入频率范围内的载波中的子带宽上是否存在强干扰。
  23. 如权利要求22或23所述的用户设备,其特征在于,所述强干扰判断参数包括下列中的一种:
    信干噪比、干噪比、信干比和干扰功率。
  24. 如权利要求21所述的用户设备,其特征在于,所述第二判断模块具体用于:
    根据子带宽的强干扰判断参数,确定至少一个子带宽受到干扰的PRB比例或个数;
    若所述PRB比例或个数大于强干扰判断参数对应的门限值,则确定所述至少一个子带宽上存在强干扰;否则确定所述至少一个子带宽上未存在强干扰。
  25. 如权利要求24所述的用户设备,其特征在于,所述第二判断模块具体用于:
    所述强干扰判断参数为信干噪比,确定所述子带宽内PRB上信干噪比值不大于信干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干噪比,确定所述子带宽内PRB上干噪比值不小于干噪比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为信干比,确定所述子带宽内PRB上信干比值不大于信干比门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例;或
    所述强干扰判断参数为干扰功率,确定所述子带宽内PRB上干扰功率值不小于干扰功率门限值的个数,并将确定的个数除以所述子带宽包含的PRB个数,得到所述子带宽受到干扰的PRB比例。
  26. 如权利要求21~23、25任一所述的用户设备,其特征在于,所述第二处理模块具体用于:
    对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的信道估计 结果置为设定数值,以减小干扰对于待检测的有用发送信号的影响;或者
    对通过受到强干扰的PRB接收的信号进行处理时,对受到强干扰的PRB的接收信号置为设定数值,以减小干扰对于待检测的有用发送信号的影响。
PCT/CN2016/071356 2015-02-11 2016-01-19 一种降低干扰的方法和设备 WO2016127762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510072800.9A CN105991270B (zh) 2015-02-11 2015-02-11 一种降低干扰的方法和设备
CN201510072800.9 2015-02-11

Publications (1)

Publication Number Publication Date
WO2016127762A1 true WO2016127762A1 (zh) 2016-08-18

Family

ID=56615270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071356 WO2016127762A1 (zh) 2015-02-11 2016-01-19 一种降低干扰的方法和设备

Country Status (2)

Country Link
CN (1) CN105991270B (zh)
WO (1) WO2016127762A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005016A (zh) * 2017-06-06 2018-12-14 中国移动通信有限公司研究院 一种信息传输方法、网络设备、终端及存储介质
CN113163441A (zh) * 2017-05-04 2021-07-23 华为技术有限公司 通信方法、终端设备和网络设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513356B (zh) * 2017-02-27 2020-01-07 维沃软件技术有限公司 一种资源分配指示方法、基站及终端
CN108811132B (zh) 2017-05-05 2020-12-01 华为技术有限公司 一种资源指示的方法、设备及系统
CN111034288B (zh) * 2017-06-16 2023-05-05 中兴通讯股份有限公司 用于分配系统带宽的方法和通信节点
CN112005603A (zh) * 2018-02-05 2020-11-27 日本电气株式会社 用于数据接收和数据传输的资源映射的方法和设备
CN110730144B (zh) * 2019-10-24 2021-05-14 电子科技大学 正交频分复用系统中基于联合检测的多音干扰消除方法
CN111309482B (zh) * 2020-02-20 2023-08-15 浙江亿邦通信科技有限公司 基于哈希算法的区块链任务分配系统、装置及可存储介质
CN111447020B (zh) * 2020-06-05 2021-10-29 国网信息通信产业集团有限公司 应用于电力无线专网的干扰处理方法及系统
TWI806573B (zh) * 2022-04-27 2023-06-21 台灣大哥大股份有限公司 偵測及抑制行動網路干擾的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148780A (zh) * 2011-03-24 2011-08-10 电子科技大学 一种基于ci-ofdm系统的干扰处理方法
WO2013185279A1 (en) * 2012-06-11 2013-12-19 Renesas Mobile Corporation Method and apparatus for interference coordination
CN103796323A (zh) * 2014-03-06 2014-05-14 大唐移动通信设备有限公司 用于对物理随机接入信道prach的信道频域偏移量进行调整的方法及设备
CN103856945A (zh) * 2014-02-28 2014-06-11 天津大学 LTE-Advanced中继系统的上行干扰协调方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827063B (zh) * 2010-04-07 2012-08-29 北京邮电大学 Ofdma系统的频率复用装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148780A (zh) * 2011-03-24 2011-08-10 电子科技大学 一种基于ci-ofdm系统的干扰处理方法
WO2013185279A1 (en) * 2012-06-11 2013-12-19 Renesas Mobile Corporation Method and apparatus for interference coordination
CN103856945A (zh) * 2014-02-28 2014-06-11 天津大学 LTE-Advanced中继系统的上行干扰协调方法
CN103796323A (zh) * 2014-03-06 2014-05-14 大唐移动通信设备有限公司 用于对物理随机接入信道prach的信道频域偏移量进行调整的方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163441A (zh) * 2017-05-04 2021-07-23 华为技术有限公司 通信方法、终端设备和网络设备
CN113163441B (zh) * 2017-05-04 2023-10-03 华为技术有限公司 通信方法、终端设备和网络设备
CN109005016A (zh) * 2017-06-06 2018-12-14 中国移动通信有限公司研究院 一种信息传输方法、网络设备、终端及存储介质

Also Published As

Publication number Publication date
CN105991270B (zh) 2019-09-17
CN105991270A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016127762A1 (zh) 一种降低干扰的方法和设备
JP7030686B2 (ja) 端末、基地局、無線通信方法及びシステム
JP7197656B2 (ja) 端末、無線通信方法及びシステム
EP3562113B1 (en) User terminal
JP7301196B2 (ja) 端末、無線通信方法及びシステム
CN110651525B (zh) 终端、接收方法及集成电路
JP7030687B2 (ja) 端末、基地局及び無線通信方法
JP6927976B2 (ja) 端末及び無線通信方法
JP6959338B2 (ja) 端末、無線通信方法及びシステム
CN106576008A (zh) 基站装置、终端装置以及集成电路
JP7059275B2 (ja) 端末、無線通信方法、基地局及びシステム
US11523418B2 (en) Method and apparatus for resource indication
EP3493624A1 (en) User terminal and wireless communication method
JP7088934B2 (ja) 端末、無線通信方法及びシステム
JP6938625B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018112700A1 (zh) 传输信息的方法、网络设备和终端设备
EP3716557A1 (en) User equipment and wireless communication method
JP2021170844A (ja) 端末、無線通信方法、基地局及びシステム
JP7115981B2 (ja) 端末、無線通信方法及び基地局
JPWO2020035949A1 (ja) ユーザ端末及び無線通信方法
WO2016141845A1 (zh) 一种下行公共信道的发送和接收方法及装置
EP3937573A1 (en) User terminal and radio communication method
JPWO2019168049A1 (ja) ユーザ端末及び無線通信方法
JP6256024B2 (ja) 無線基地局、及び、無線基地局の送信電力制御方法
US20190342051A1 (en) User equipment apparatus, base station, demodulation reference signal transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748563

Country of ref document: EP

Kind code of ref document: A1