WO2016127549A1 - 一种选择性保护电路、方法及供电系统 - Google Patents

一种选择性保护电路、方法及供电系统 Download PDF

Info

Publication number
WO2016127549A1
WO2016127549A1 PCT/CN2015/083003 CN2015083003W WO2016127549A1 WO 2016127549 A1 WO2016127549 A1 WO 2016127549A1 CN 2015083003 W CN2015083003 W CN 2015083003W WO 2016127549 A1 WO2016127549 A1 WO 2016127549A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
load
current limiting
target path
current
Prior art date
Application number
PCT/CN2015/083003
Other languages
English (en)
French (fr)
Inventor
张振兴
徐建生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15881710.6A priority Critical patent/EP3249781B1/en
Priority to BR112017017492-8A priority patent/BR112017017492B1/pt
Publication of WO2016127549A1 publication Critical patent/WO2016127549A1/zh
Priority to US15/676,196 priority patent/US10177561B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/267Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for parallel lines and wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/205Substrate bias-voltage generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/18Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/10Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess voltage, e.g. for lightning protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • H02H3/07Details with automatic reconnection and with permanent disconnection after a predetermined number of reconnection cycles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • the present invention relates to the field of circuit protection technologies, and in particular, to a selective protection circuit, a method, and a power supply system.
  • HVDC High Voltage Direct Current
  • Embodiments of the present invention provide a selective protection circuit, method, and power supply system for solving the problem that some important communication devices may be powered off due to excessive short-circuit current.
  • a selective protection circuit for use in a scenario in which a high voltage direct current HVDC power supply is used.
  • the HVDC power supply supplies power to at least two load branches connected in parallel, and each load branch includes a pre-regulation
  • the circuit includes: a current limiting module and a control module; wherein the current limiting module includes a switching unit, the switching unit includes a first end, a second end, and a control end;
  • the first end is connected to a positive pole of a bus voltage of the HVDC power source, and the second end is connected to a positive pole of a power supply of a pre-regulator circuit in a load branch connected to the current limiting module; or, the first The end is connected to a negative pole of the bus voltage of the HVDC power source, and the second end is connected to a negative pole of a power supply of the pre-stabilization circuit in the load branch connected to the current limiting module;
  • the control end is connected to the control module
  • the control module is configured to output a control signal to the control terminal to turn off the switch unit when a value of a total current flowing through the switch unit is greater than or equal to a preset threshold; wherein the pre- The threshold is set to be greater than the maximum normal operating current flowing through the switching unit.
  • the current limiting module is located in a first load branch of the at least two load branches, and the load branch connected to the current limiting module is First load branch;
  • the at least two load branches are connected to the HVDC power supply through at least two power distribution unit PDUs, and the current limiting module is located in a first PDU of the at least two PDUs, and the current limiting module is connected
  • the load branch is a load branch connected to the first PDU.
  • the current limiting module further includes: a unidirectional conduction unit and an inductor; and the unidirectional conduction unit is turned on The direction of the current flowing through the unidirectional conduction unit is: a direction from a positive pole of the unidirectional conduction unit to a negative pole of the unidirectional conduction unit;
  • the anode of the unidirectional conduction unit is connected to the negative pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module;
  • the anode of the unidirectional conduction unit is connected to the positive pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module;
  • One end of the inductor is connected to the negative pole of the one-way conduction unit, and the other end is connected to the positive pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module.
  • the current limiting module is located in a first load branch of the at least two load branches, where the pre-stabilization
  • the inductance is integrated with the inductance in the pre-regulator circuit.
  • control module is further configured to: first after the switching unit is turned off After the preset time period, another control signal is output to the control terminal to enable the opening Turning off the cell into the doping current limiting state; wherein, when the first preset time period is less than or equal to the switching unit being turned off, the inductor uses the stored energy of itself to the load branch connected to the current limiting module The period of time during which the load is powered.
  • a power supply of the control module is provided by a bus of the HVDC power supply.
  • the switching unit is a field effect transistor or a power transistor.
  • a selective protection method is provided, which is applied to a scenario in which a high-voltage direct current HVDC power supply is used, wherein the HVDC power supply supplies power to at least two load branches connected in parallel, and each load branch includes a pre-regulation Circuit; the method includes:
  • the target path refers to a positive pole of a bus voltage of the HVDC power source and a positive pole of a pre-regulator circuit in one of the at least two load branches a path between; or, a path between a negative pole of a bus voltage of the HVDC power source and a negative pole of a power supply of a pre-regulator circuit in one of the at least two load branches;
  • the method further includes:
  • the period of time during which the target path is turned off is less than or equal to a period of time during which the load in the load branch connected through the target path is uninterrupted when the target path is turned off.
  • the method further includes:
  • the second preset time period is greater than or equal to the duration of the power-on phase of the target path.
  • controlling the target path to be shut down includes:
  • the third preset time period if the value of the total current is still greater than or equal to the preset threshold, controlling the target path to be turned off; wherein the third preset time period is greater than or equal to the The duration of the lightning current in the target path.
  • a power supply system including a high voltage direct current HVDC power supply, wherein the HVDC power supply supplies power to at least two load branches connected in parallel, each load branch includes a pre-regulation circuit; and the power supply system further includes Any of the selective protection circuits as provided by the first aspect.
  • the selective protection circuit, the method and the power supply system provided by the embodiment of the present invention, when the load branch connected to the current limiting module in the selective protection circuit is short-circuited, and the short-circuit current flowing through the switch unit in the current limiting module is greater than or equal to
  • the control module in the selective protection circuit can control the switching unit to be turned off, thereby quickly cutting off the circuit and preventing the occurrence of power failure of some important communication devices due to excessive short-circuit current flowing through the switching unit.
  • FIG. 1 is a schematic structural diagram of a power supply system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of still another power supply system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another power supply system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a current-time curve in a load branch when a short circuit occurs in a load branch according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another power supply system according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another power supply system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another power supply system according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a selective protection method according to an embodiment of the present invention.
  • the embodiment of the present invention provides a selective protection circuit A, which is applied to a scenario in which an HVDC power supply is used.
  • the HVDC power supply supplies power to at least two load branches connected in parallel, and each load branch includes a pre-regulation.
  • Circuit diagram is a schematic structural diagram of a power supply system, the power supply system includes a selective protection circuit A, and the selective protection circuit A includes: a current limiting module 10 and a control module 11
  • the current limiting module 10 includes a switch unit 101, and the switch unit 101 includes a first end 1011, a second end 1012, and a control end 1013;
  • the first end 1011 is connected to the positive pole of the bus voltage of the HVDC power source, and the second end 1012 is pre-connected to the load branch connected to the current limiting module 10.
  • the positive pole of the power supply of the voltage regulator circuit or, as shown in Figures 3 and 4
  • the first end 1011 is connected to the negative pole of the bus voltage of the HVDC power supply, and the second end 1012 is connected to the negative pole of the power supply of the pre-regulator circuit in the load branch connected to the current limiting module 10;
  • control terminal 1013 is connected to the control module 11;
  • the control module 11 is configured to output a control signal to the control terminal 1013 when the value of the total current flowing through the switch unit 101 is greater than or equal to a preset threshold, so that the switch unit 101 is turned off;
  • the preset threshold is greater than a maximum normal operating current value flowing through the switching unit 101.
  • the control module 11 may specifically be a microcontroller.
  • the selective protection circuit A provided by the embodiment of the present invention may be applied to a power supply link or a load branch carrying a large current, or may be applied to a power supply chain carrying a small current. Road or load branch.
  • the selective protection circuit provided by the embodiment of the present invention, when the load branch connected to the current limiting module in the selective protection circuit is short-circuited, and the short-circuit current flowing through the switch unit in the current limiting module is greater than or equal to a preset threshold,
  • the control module in the selective protection circuit can control the switching unit to be turned off, thereby quickly cutting off the circuit and preventing the occurrence of power failure of some important communication devices due to excessive short-circuit current flowing through the switching unit.
  • the current limiting module 10 is located in a first load branch of the at least two load branches, and the load branch connected to the current limiting module 10 is First load branch;
  • the at least two load branches are connected to the HVDC power supply through at least two PDUs (Power Distribution Units), and the current limiting module 10 is located at the at least two The first PDU of the two PDUs, the load branch connected to the current limiting module 10 is a load branch connected to the first PDU.
  • PDUs Power Distribution Units
  • the “maximum normal operating current value of the switching unit 101” refers to the maximum current value when the first load branch is in normal operation;
  • the stream module 10 is located in the middle of at least two PDUs In the case of a PDU, "the maximum normal operating current value of the switching unit 101" refers to the maximum current value when the first PDU is in normal operation.
  • FIG. 1 and FIG. 3 are described by taking the selective protection circuit A in one of the two load branches as an example, and the selective protection circuit A in FIG. 1 and FIG.
  • the load branch is the first load branch; in Figure 2 and Figure 4, two PDUs are shown, one of which is connected to two load branches and the other is connected to a load branch; Figure 2 and 4 is an example in which one of the two PDUs includes a selective protection circuit A, wherein the PDU that connects the two load branches is the first PDU.
  • the selective protection circuit A provided by the embodiment of the present invention may be applied in a load branch or a power supply link including a multi-level protection device; for example, in a power supply link including a secondary or tertiary protection device.
  • the power supply link that uses the HVDC power supply to load the load may not include the PDU, and may also include a PDU.
  • the PDU is used to allocate power to the load branch; when the power supply link includes multiple PDUs, multiple PDUs are connected in parallel.
  • a PDU can be connected to a load branch or multiple load branches in parallel.
  • the current limiting module 10 may be located in one of the at least two load branches, or all the load branches; when the power supply link includes the PDU, the current limiting module 10 may It is located in the tributary, and may also be located in the PDU. Specifically, the current limiting module 10 may be located in all load branches or PDUs, or may be located in a partial load branch or PDU. In addition, an MDF (Main Distribution Frame), a PDF (Power Distribution Frame), and the like may be included between the HVDC power supply and the PDU, and are not shown in the drawings in the embodiments of the present invention. This part.
  • FIG. 6 is a schematic structural diagram of a power supply system, and both of the embodiments of the present invention are provided by taking a PDU in a power supply link and connecting the two load branches in parallel.
  • the selective protection circuit A is exemplified.
  • the pre-regulation circuit can be a Boost circuit (a boost circuit), See Figure 10 or Figure 11.
  • control module 11 may include: a current sampling unit configured to detect a value of a total current flowing through the switch unit 101 in real time; the control module 11 may further include: a port circuit, where the port circuit is used to: A control signal is output to the control terminal 1013 of the switching unit 101 to turn the switching unit 101 on or off.
  • the x-axis in the figure represents time
  • the y-axis represents the total current value of the load branch connected to the current limiting module 10
  • I 0 represents the total current value of the load branch during normal operation.
  • I n represents a preset threshold
  • I m represents the expected short-circuit total current value of the load branch.
  • the control module 11 can detect the value of the total current flowing through the switch unit 101 in real time, and when detecting that the value of the total current is greater than or equal to the preset threshold I n , output a signal to the control terminal 1013 at time t 2 .
  • the control signal is such that the switching unit 101 is turned off.
  • the value of the total current of the load branch connected to the current limiting module 10 may be less than I n .
  • the switch unit 101 can be a field effect transistor or a power transistor.
  • the FET can be an N-channel FET or a P-channel FET;
  • the switch unit 101 is an N-channel FET
  • the first end 1011 is connected to the positive pole of the bus voltage of the HVDC power supply
  • the second end 1012 is connected to the positive pole of the pre-regulator circuit in the load branch connected to the current limiting module 10.
  • the first end 1011 is the drain of the FET
  • the second end 1012 is the source of the FET
  • the control end 1013 is the gate of the FET; if the first end 1011 is opposite to the bus voltage of the HVDC power supply Connected, the second end 1012 is connected to the negative pole of the power supply of the pre-regulator circuit in the load branch connected to the current limiting module 10.
  • the first end 1011 is the source of the FET
  • the second end 1012 is the drain of the FET.
  • the terminal 1013 is the gate of the FET.
  • the switch unit 101 is a P-channel FET, if the first end 1011 is connected to the positive pole of the bus voltage of the HVDC power supply, the second end 1012 is connected to the positive pole of the pre-regulator circuit in the load branch connected to the current limiting module 10.
  • the first end 1011 is a field effect transistor
  • the second end 1012 is the drain of the FET
  • the control end 1013 is the gate of the FET; if the first end 1011 is connected to the negative pole of the bus voltage of the HVDC power supply, the second end 1012 and the current limiting module 10
  • the negative terminal of the pre-regulation circuit in the connected load branch is connected, the first end 1011 is the drain of the FET, the second end 1012 is the source of the FET, and the control end 1013 is the gate of the FET. pole.
  • the switch unit 101 is a power transistor
  • the second end 1012 is the emitter of the power transistor
  • the first end 1011 is the emitter of the power transistor
  • the second end 1012 The collector of the power transistor
  • the control terminal 1013 is the base of the power transistor.
  • the current limiting module 10 may further include: a unidirectional conduction unit 102 and an inductor 103; when the unidirectional conduction unit 102 is turned on, the unidirectional communication flows.
  • the direction of the current of the unit 102 is: a direction from a positive pole of the unidirectional conduction unit 102 to a negative pole of the unidirectional conduction unit 102;
  • the anode of the unidirectional conduction unit 102 is connected to the negative pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module 10;
  • the negative pole of the unidirectional conduction unit 102 is connected to the positive pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module 10.
  • One end of the inductor 103 is connected to the negative pole of the one-way conduction unit 102, and the other end is connected to the positive pole of the power supply of the pre-regulation circuit in the load branch connected to the current limiting module 10.
  • the inductor 103 can supply power to the load in the load branch through the one-way conduction unit 102 after the switch unit 101 is turned off.
  • FIG. 6 exemplarily illustrates the optional solution based on FIG. 3
  • FIG. 7 exemplifies the optional solution based on FIG. 4 .
  • the unidirectional conduction unit 102 can be a diode.
  • the unidirectional conduction unit 102 can also be a FET or a power transistor.
  • the unidirectionality of the unidirectional conduction unit 102 can be controlled by the control module 11.
  • the field effect tube can Think N-channel FET or P-channel FET, specifically:
  • the unidirectional conduction unit 102 is an N-channel FET
  • the anode of the unidirectional conduction unit 102 is the source of the FET
  • the cathode of the unidirectional conduction unit 102 is the drain of the FET
  • the control module 11 can pass The gate of the FET outputs a control signal to control the unidirectional conduction unit 102 to be turned on or off.
  • the unidirectional conduction unit 102 When the unidirectional conduction unit 102 is a P-channel FET, the anode of the unidirectional conduction unit 102 is the drain of the FET, the cathode of the unidirectional conduction unit 102 is the source of the FET, and the control module 11 can pass The gate of the FET outputs a control signal to control whether the unidirectional pass unit 102 is turned on.
  • the control module 11 can control whether the unidirectional conduction unit 102 is turned on by outputting a control signal to the base of the power transistor.
  • control module 11 is further configured to output another control signal to the control terminal 1013 after the first preset time period after the switch unit 101 is turned off, so that the switch unit 101 Entering a snoring current limiting state; wherein, when the first preset time period is less than or equal to the switching unit 101 being turned off, the inductor 103 uses the stored energy of itself to the load branch connected to the current limiting module 10 The period of time during which the load is powered.
  • the snoring current limiting state refers to a state in which the switching unit 101 is in a periodic on-off state
  • the period of the snoring current limiting state refers to a time required by the control module 11 to control the switching unit 101 to perform an on-off state.
  • the period of the snoring current limiting state is related to the magnitude of the inductance 103.
  • the inductor 103 supplies power to the load through the unidirectional conduction unit 102.
  • the unidirectional conduction unit 102 is a FET or a power transistor
  • the control module 11 controls the unidirectional conduction unit 102 to be turned on.
  • control module 11 controls the switch unit 101 to enter the doze current limiting state, and after the second preset time period, when the control module 11 detects that the total current flowing through the switch unit 101 is still greater than or equal to the preset threshold. Then, the control switch unit 101 is turned off; or, after the second predetermined period of time, when it is detected that the value of the total current flowing through the switch unit 101 is less than the preset threshold, the control switch unit 101 is turned on.
  • the second preset time period is greater than the duration of the power-on phase of the load branch and the power supply link; after the second preset time period, when the control module 11 detects that the value of the total current flowing through the switch unit 101 is still greater than When the threshold value is equal to or equal to the preset threshold, the detected current is the short-circuit current when the load branch connected to the current limiting module 10 is short-circuited; after the second preset time period, when the control module 11 detects the flow through the switch unit 101 When the value of the total current is less than the preset threshold, it can be considered that the detected current is the starting surge current in the load branch to which the current limiting module 10 is connected.
  • the current limiting module 10 may not have the unidirectional conduction unit 102 and the inductor 103;
  • the control module 11 controls the switch unit 101 to be turned off and controls the switch unit 101 to enter the hiccup current limit state after the first preset time period
  • the current limiting module 10 may include the unidirectional conduction unit 102 and the inductor 103 for the switch unit.
  • the inductor 103 supplies power to the load through the one-way conduction unit 102.
  • the control module 11 After the third preset time period, if the control module 11 detects that the value of the total current flowing through the switch unit 101 is still greater than or equal to the preset threshold, it can be considered that the detected current is generated by the load branch connected to the current limiting module 10. When the short circuit current is short circuited, the control module 11 controls the switch unit 101 in the current limiting module 10 to be turned off; after the third preset time period, if the control module 11 detects that the total current flowing through the switch unit 101 is less than the pre The threshold value can be considered as the current flowing through the switching unit 101 when the current is in the power supply link where the switching unit 101 is located or when there is a lightning current in the load branch, and the control module 11 can perform no operation.
  • the power supply of the control module 11 may be provided by a bus of the HVDC power supply.
  • the power supply of the control module 11 may also be a separate power supply, which is not limited in the embodiment of the present invention.
  • FIG. 8 exemplarily illustrates the optional solution based on FIG. 6
  • FIG. 9 exemplifies the optional solution based on FIG. 7 .
  • the current limiting module 10 is located in a first load branch of the at least two load branches.
  • the pre-regulation circuit is a boost boost circuit
  • the inductor 103 and the The inductors in the pre-regulator circuit are integrated.
  • the current limiting module 10 when the current limiting module 10 is located in the load branch, the current limiting module 10 and the pre-regulating circuit in the load branch can be designed together; for example, when the pre-regulating circuit is a boost circuit, the designer can know the boost The value of the inductance in the circuit, so that the period of the current limiting state can be determined.
  • the current limiting module 10 can only include the switching unit 101 and the unidirectional conduction unit 102, and the inductor 103 can be replaced by the inductance in the boost circuit. .
  • the design of the current limiting module 10 is designed separately from the pre-regulating circuit in the load branch connected to the PDU, so the designer has no
  • the method knows the parameters of the pre-regulation circuit and the pre-regulation circuit in the load branch connected to the PDU. Therefore, when the current limiting module 10 is located in the PDU, the current limiting module 10 needs to include the unidirectional conduction unit 102 at the same time. And the inductor 103.
  • the pre-regulation circuit is a Boost circuit
  • the unidirectional conduction unit 102 is a diode D1
  • the switch unit 101 is an N-channel FET Q1.
  • the selective protection circuit A can be as shown in FIG. 10; wherein the N-channel FET Q1, the diode D1, the inductance L in the Boost circuit, and the capacitance C in the Boost circuit form a Buck circuit (a step-down circuit)
  • the Boost circuit shares the inductance L with the Buck circuit.
  • FIG. 10 exemplifies the optional solution based on FIG. 8 .
  • the current limiting module 10 is located in the first PDU of the at least two PDUs.
  • the pre-regulation circuit is a Boost circuit
  • the unidirectional conduction unit 102 When the diode D1 and the switching unit 101 are N-channel FET Q1, the selective protection circuit A can be as shown in FIG. Specifically, FIG. 11 exemplarily illustrates the alternative solution based on FIG. 9.
  • the power supply bus is connected when a plurality of load branches are connected in parallel, and when one of the load branches is short-circuited and the protection device in the load branch is not tripped.
  • the current on the bus will increase.
  • the power supply bus has a certain resistance, the voltage on the power bus will increase, causing the voltage supplied to the other load branches (ie, the bus voltage) to be reduced by the power bus. Therefore, during the trip of the load branch to the trip of the protection device in the load branch, the bus voltage drops instantaneously.
  • the protection device when the load branch is short-circuited and the short-circuit current is too large, in the case where the breaking capacity of the protection device is limited, the protection device is liable to be incapable of being disconnected or stuck, causing a fire or a component burst.
  • the control module 11 detects that the value of the total current flowing through the switch unit 101 reaches a preset threshold, the switch unit 101 can be controlled to be turned off to prevent the short circuit current from rising to a large extent. Value, therefore, does not cause the bus voltage to be supplied to the voltage transients of other load branches Dropping can also prevent the protection device from being broken or stuck.
  • the embodiment of the present invention further provides a selective protection method, which is applied to a scenario in which a high-voltage direct current HVDC power supply is used.
  • the HVDC power supply supplies power to at least two load branches connected in parallel, and each load branch includes a pre-
  • the voltage stabilizing circuit can be specifically applied to the selective protection circuit provided by the foregoing embodiment. As shown in FIG. 12, the method includes:
  • the target path refers to a positive pole of a bus voltage of the HVDC power source and a pre-regulator circuit of one of the at least two load branches a path between the positive poles of the power supply; or a path between the negative pole of the bus voltage of the HVDC power supply and the negative pole of the power supply of the pre-regulator circuit in one of the at least two load branches.
  • the executive body of this embodiment may be a control module in the selective protection circuit.
  • the executive body of this embodiment may be a control module in the selective protection circuit.
  • control module can detect the value of the total current flowing through the target path in real time.
  • the selective protection method provided by the embodiment of the present invention when the load branch connected through the target path is short-circuited, and the short-circuit current flowing through the target path is greater than or equal to a preset threshold, the control target path is turned off, thereby quickly cutting off the circuit. Prevents the occurrence of power outages of some important communication devices due to excessive short-circuit current flowing through the target path.
  • the method may further include: after the first preset time period, controlling the periodic on-off of the target path; wherein the first preset time period and a period of time during which the target path is turned off in the periodic on-off of the target path, less than or equal to a load in the load branch connected through the target path when the target path is turned off period.
  • the inductance in the selective protection circuit can supply the load in the load branch through the one-way conduction unit.
  • the method may further include: after the second preset time period, when the value of the total current is still Controlling the target path to be turned off when greater than or equal to the preset threshold; or, after the second predetermined time period, controlling the target path when the value of the total current is less than the preset threshold And wherein the second preset time period is greater than or equal to a duration of the powering up phase of the target path.
  • the control module detects that the value of the total current flowing through the target path is still greater than or equal to the preset threshold, it may be considered that the detected current is short-circuited when the load branch connected to the target path is short-circuited.
  • the short-circuit current after the second predetermined period of time, when the control module detects that the value of the total current flowing through the switch unit is less than a preset threshold, then the detected current can be considered as the starting surge current in the target path.
  • the step 1202 includes: after the third preset time period, if the value of the total current is still greater than or equal to the preset threshold, controlling the target path to be turned off; The third predetermined time period is greater than or equal to the duration of the lightning current in the target path.
  • the control module After the third preset time period, if the control module detects that the value of the total current flowing through the target path is still greater than or equal to the preset threshold, it may be considered that the detected current is short-circuited when the load branch connected to the target path is short-circuited. Short-circuit current, the control module controls the target The channel is turned off; after the third preset period of time, if the control module detects that the value of the total current flowing through the target path is less than a preset threshold, it can be considered that the detected current is the current of the target path when there is a lightning current in the target path. , the control module can do nothing.
  • the embodiment of the invention further provides a power supply system, comprising a high-voltage direct current HVDC power supply, wherein the HVDC power supply supplies power to at least two load branches connected in parallel, each load branch includes a pre-regulation circuit; Any of the selective protection circuits A provided by the above embodiments are included.
  • the power supply system can be as shown in Figures 1, 2, 3 and 4.
  • the power supply system provided by the embodiment of the present invention includes a selective protection circuit.
  • the control module in the selective protection circuit can control the switching unit to be turned off, thereby quickly cutting off the circuit and preventing the occurrence of power failure of some important communication devices due to excessive short-circuit current flowing through the switching unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nonlinear Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种选择性保护电路、方法及供电系统,该选择性保护电路(A)包括:限流模块(10)和控制模块(11);其中,限流模块包括开关单元(101),开关单元包括第一端(1011)、第二端(1012)和控制端(1013);第一端与HVDC电源的母线电压的正极连接,第二端与限流模块连接的负载支路中的预稳压电路的电源正极连接;或,第一端与HVDC电源的母线电压的负极连接,第二端与限流模块连接的负载支路中的预稳压电路的电源负极连接;控制端与控制模块连接;控制模块用于在流过开关单元的总电流的值大于或等于预设阈值时,向控制端输出一控制信号,以使开关单元关断。

Description

一种选择性保护电路、方法及供电系统 技术领域
本发明涉及电路保护技术领域,尤其涉及一种选择性保护电路、方法及供电系统。
背景技术
近年来,随着通信设备功率的不断增大,以及通信行业内对高效节能的要求,数据中心及通信机房逐渐采用高压直流(High Voltage Direct Current,HVDC)电源进行供电,因此,HVDC技术在通信领域发展迅速。
然而,随着数据中心及通信机房供电电压的增大,通过供电链路连接的负载支路发生短路时,负载支路及供电链路中的短路电流也在不断增大,短路电流过大可能会导致一些重要的通信设备断电。
发明内容
本发明实施例提供一种选择性保护电路、方法及供电系统,用于解决由于短路电流过大可能会导致一些重要的通信设备断电的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种选择性保护电路,应用于采用高压直流HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;所述选择性保护电路包括:限流模块和控制模块;其中,所述限流模块包括开关单元,所述开关单元包括第一端、第二端和控制端;
所述第一端与所述HVDC电源的母线电压的正极连接,所述第二端与所述限流模块连接的负载支路中的预稳压电路的电源正极连接;或,所述第一端与所述HVDC电源的母线电压的负极连接,所述第二端与所述限流模块连接的负载支路中的预稳压电路的电源负极连接;
所述控制端与所述控制模块连接;
所述控制模块用于在流过所述开关单元的总电流的值大于或等于预设阈值时,向所述控制端输出一控制信号,以使所述开关单元关断;其中,所述预设阈值大于流过所述开关单元的最大正常工作电流值。
结合第一方面,在第一种可能的实现方式中,所述限流模块位于所述至少两条负载支路中的第一负载支路,所述限流模块连接的负载支路为所述第一负载支路;
或,所述至少两条负载支路通过至少两个电源分配单元PDU与所述HVDC电源连接,所述限流模块位于所述至少两个PDU中的第一PDU,所述限流模块连接的负载支路为与所述第一PDU连接的负载支路。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述限流模块还包括:单向导通单元和电感;所述单向导通单元导通时,流过所述单向导通单元的电流的方向为:从所述单向导通单元的正极到所述单向导通单元的负极的方向;
所述单向导通单元的正极与所述限流模块连接的负载支路中的预稳压电路的电源负极连接;
所述单向导通单元的负极与所述限流模块连接的负载支路中的预稳压电路的电源正极连接;
所述电感的一端与所述单向导通单元的负极连接,另一端与所述限流模块连接的负载支路中的预稳压电路的电源正极连接。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述限流模块位于所述至少两条负载支路中的第一负载支路,在所述预稳压电路为升压boost电路的情况下,所述电感与所述预稳压电路中的电感集成在一起。
结合第一方面的第二种可能的实现方式或第三种可能的实现方式,在第四种可能的实现方式中,所述控制模块还用于:在所述开关单元关断之后的第一预设时间段之后,向所述控制端输出另一控制信号,以使所述开 关单元进入打嗝限流状态;其中,所述第一预设时间段小于或等于所述开关单元关断时所述电感利用自身储存的电能对与所述限流模块连接的负载支路中的负载进行供电的时间段。
结合第一方面,在第五种可能的实现方式中,所述控制模块的供电电源由所述HVDC电源的母线提供。
结合第一方面,在第六种可能的实现方式中,所述开关单元为场效应管或功率晶体管。
第二方面,提供一种选择性保护方法,应用于采用高压直流HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;所述方法包括:
检测流过目标通路的总电流的值;其中,所述目标通路是指HVDC电源的母线电压的正极与所述至少两个负载支路中的一条负载支路中的预稳压电路的电源正极之间的通路;或,HVDC电源的母线电压的负极与所述至少两个负载支路中的一条负载支路中的预稳压电路的电源负极之间的通路;
当所述总电流的值大于或等于预设阈值时,控制所述目标通路关断;其中,所述预设阈值大于流过所述目标通路的最大正常工作电流值。
结合第二方面,在第一种可能的实现方式中,在所述控制所述目标通路关断之后,所述方法还包括:
在第一预设时间段之后,控制所述目标通路周期性的导通-关断;其中,所述第一预设时间段和所述目标通路周期性的导通-关断中的所述目标通路关断的时间段,小于或等于所述目标通路关断时通过所述目标通路连接的负载支路中的负载不断电的时间段。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,在所述控制所述目标通路周期性的导通-关断之后,所述方法还包括:
在第二预设时间段之后,当所述总电流的值仍大于或等于所述预设阈值时,控制所述目标通路关断;或,
在第二预设时间段之后,当所述总电流的值小于所述预设阈值时,控制所述目标通路导通;
其中,所述第二预设时间段大于或等于所述目标通路上电阶段的持续时间。
结合第二方面,在第三种可能的实现方式中,所述控制所述目标通路关断,包括:
在第三预设时间段之后,若所述总电流的值仍大于或等于所述预设阈值,则控制所述目标通路关断;其中,所述第三预设时间段大于或等于所述目标通路中的雷电流的持续时间。
第三方面,提供一种供电系统,包括高压直流HVDC电源,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;所述供电系统还包括如第一方面提供的任一种选择性保护电路。
本发明实施例提供的选择性保护电路、方法及供电系统,当选择性保护电路中的限流模块连接的负载支路发生短路,且流过限流模块中的开关单元的短路电流大于或等于预设阈值时,选择性保护电路中的控制模块可以控制开关单元关断,从而快速切断电路,防止出现由于流过开关单元的短路电流过大而引起一些重要的通信设备断电的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种供电系统的结构示意图;
图2为本发明实施例提供的又一种供电系统的结构示意图;
图3为本发明实施例提供的又一种供电系统的结构示意图;
图4为本发明实施例提供的又一种供电系统的结构示意图;
图5为本发明实施例提供的一种负载支路中发生短路时的负载支路中的电流-时间曲线示意图;
图6为本发明实施例提供的又一种供电系统的结构示意图;
图7为本发明实施例提供的又一种供电系统的结构示意图;
图8为本发明实施例提供的又一种供电系统的结构示意图;
图9为本发明实施例提供的又一种供电系统的结构示意图;
图10为本发明实施例提供的又一种供电系统的结构示意图;
图11为本发明实施例提供的再一种供电系统的结构示意图;
图12为本发明实施例提供的一种选择性保护方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中字符“/”,一般表示前后关联对象是一种“或”的关系。另外,本文中的术语“多个”是指两个或两个以上。
本发明实施例提供了一种选择性保护电路A,应用于采用HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;如图1、2、3和4所示,为一种供电系统的结构示意图,供电系统中包括选择性保护电路A,所述选择性保护电路A包括:限流模块10和控制模块11;其中,所述限流模块10包括开关单元101,所述开关单元101包括第一端1011、第二端1012和控制端1013;
其中,如图1和图2所示,所述第一端1011与所述HVDC电源的母线电压的正极连接,所述第二端1012与所述限流模块10连接的负载支路中的预稳压电路的电源正极连接;或,如图3和图4所 示,所述第一端1011与所述HVDC电源的母线电压的负极连接,所述第二端1012与所述限流模块10连接的负载支路中的预稳压电路的电源负极连接;
如图1、2、3和4所示,所述控制端1013与所述控制模块11连接;
所述控制模块11用于在流过所述开关单元101的总电流的值大于或等于预设阈值时,向所述控制端1013输出一控制信号,以使所述开关单元101关断;其中,所述预设阈值大于流过所述开关单元101的最大正常工作电流值。
其中,控制模块11具体可以为微控制器,本发明实施例提供的选择性保护电路A可以应用在承载较大电流的供电链路或者负载支路中,也可以应用在承载中小电流的供电链路或者负载支路中。
本发明实施例提供的选择性保护电路,当选择性保护电路中的限流模块连接的负载支路发生短路,且流过限流模块中的开关单元的短路电流大于或等于预设阈值时,选择性保护电路中的控制模块可以控制开关单元关断,从而快速切断电路,防止出现由于流过开关单元的短路电流过大而引起一些重要的通信设备断电的问题。
可选的,如图1和图3所示,所述限流模块10位于所述至少两条负载支路中的第一负载支路,所述限流模块10连接的负载支路为所述第一负载支路;
或,如图2和图4所示,所述至少两条负载支路通过至少两个PDU(Power Distribution Unit,电源分配单元)与所述HVDC电源连接,所述限流模块10位于所述至少两个PDU中的第一PDU,所述限流模块10连接的负载支路为与所述第一PDU连接的负载支路。
具体的,当限流模块10位于至少两条负载支路中的第一负载支路时,“开关单元101的最大正常工作电流值”是指第一负载支路正常工作时的最大电流值;当限流模块10位于至少两个PDU中的第 一PDU时,“开关单元101的最大正常工作电流值”是指第一PDU正常工作时的最大电流值。
其中,需要说明的是,图1和图3均以两条负载支路中的一条负载支路中包含选择性保护电路A为例进行说明,且图1和图3中的选择性保护电路A所在的负载支路即第一负载支路;图2和图4中,示出了两个PDU,其中一个PDU连接了两条负载支路,另一个PDU连接了一条负载支路;图2和图4均以两个PDU中的一个PDU包含选择性保护电路A为例进行说明,其中,连接了两条负载支路的PDU即第一PDU。
需要说明的是,本发明实施例提供的选择性保护电路A可以应用在负载支路中或者含有多级保护器件的供电链路中;例如,含有二级或三级保护器件的供电链路中。采用HVDC电源为负载供电的供电链路中可以不包括PDU,也可以包括PDU,PDU用于为负载支路分配电源;当供电链路包括多个PDU时,多个PDU之间并联。一个PDU可以连接一条负载支路,也可以连接并联的多条负载支路。当供电链路不包括PDU时,限流模块10可以位于至少两条负载支路中的一条负载支路,或,所有的负载支路中;当供电链路包括PDU时,限流模块10可以位于负载支路中,也可以位于PDU中;具体的,限流模块10可以位于所有的负载支路或PDU中,也可以位于部分负载支路或PDU中。另外,在HVDC电源与PDU之间还可以包括MDF(Main Distribution Frame,总配线架)、PDF(电源配线架,Power Distribution Frame)等,本发明实施例中的附图中均未画出该部分。本发明实施例附图6-附图11均为一种供电系统的结构示意图,并且均以供电链路中包括一个PDU,且该PDU连接并联的两条负载支路为例对本发明实施例提供的选择性保护电路A进行示例性说明。
示例性的,预稳压电路可以为Boost电路(一种升压电路),具 体可参见图10或图11。
具体的,控制模块11中可以包括:电流采样单元,该电流采样单元用于实时的检测流过开关单元101的总电流的值;控制模块11中还可以包括:端口电路,该端口电路用于向开关单元101的控制端1013输出一控制信号,以使开关单元101导通或关断。
需要说明的是,如图5所示,图中的x轴代表时间,y轴代表限流模块10连接的负载支路的总电流值,I0代表该负载支路正常工作时的总电流值;In代表预设阈值,Im代表该负载支路的预期短路总电流值。当该负载支路在t1时刻发生短路时,该负载支路的总电流值可能会在很短的时间段t1-t3内上升并达到一个很大的值Im,在本发明实施例提供的方案中,控制模块11可以实时检测流过开关单元101的总电流的值,当检测到总电流的值大于或等于预设阈值In时,在t2时刻向控制端1013输出一控制信号,以使开关单元101关断,此时,限流模块10连接的负载支路的总电流的值会小于In
可选的,所述开关单元101可以为场效应管或功率晶体管。其中,场效应管可以为N沟道场效应管或P沟道场效应管;具体的:
当开关单元101为N沟道场效应管,若第一端1011与HVDC电源的母线电压的正极连接,第二端1012与限流模块10连接的负载支路中的预稳压电路的电源正极连接,则第一端1011为场效应管的漏极,第二端1012为场效应管的源极,控制端1013为场效应管的栅极;若第一端1011与HVDC电源的母线电压的负极连接,第二端1012与限流模块10连接的负载支路中的预稳压电路的电源负极连接,则第一端1011为场效应管的源极,第二端1012为场效应管的漏极,控制端1013为场效应管的栅极。
当开关单元101为P沟道场效应管,若第一端1011与HVDC电源的母线电压的正极连接,第二端1012与限流模块10连接的负载支路中的预稳压电路的电源正极连接,则第一端1011为场效应管的 源极,第二端1012为场效应管的漏极,控制端1013为场效应管的栅极;若第一端1011与HVDC电源的母线电压的负极连接,第二端1012与限流模块10连接的负载支路中的预稳压电路的电源负极连接,则第一端1011为场效应管的漏极,第二端1012为场效应管的源极,控制端1013为场效应管的栅极。
当开关单元101为功率晶体管时,若第一端1011为功率晶体管的集电极,则第二端1012为功率晶体管的发射极;若第一端1011为功率晶体管的发射极,则第二端1012为功率晶体管的集电极;控制端1013为功率晶体管的基极。
可选的,如图6和图7所示,所述限流模块10还可以包括:单向导通单元102和电感103;所述单向导通单元102导通时,流过所述单向导通单元102的电流的方向为:从所述单向导通单元102的正极到所述单向导通单元102的负极的方向;
所述单向导通单元102的正极与所述限流模块10连接的负载支路中的预稳压电路的电源负极连接;
所述单向导通单元102的负极与所述限流模块10连接的负载支路中的预稳压电路的电源正极连接。
所述电感103的一端与所述单向导通单元102的负极连接,另一端与所述限流模块10连接的负载支路中的预稳压电路的电源正极连接。
其中,电感103可以在开关单元101关断后,通过单向导通单元102对负载支路中的负载进行供电。
具体的,图6以图3为基础对该可选的方案进行示例性说明,图7以图4为基础对该可选的方案进行示例性说明。
具体的,单向导通单元102可以为二极管;另外,单向导通单元102还可以为场效应管或功率晶体管等,该情况下,单向导通单元102的单向导通性可以通过控制模块11控制。其中,场效应管可 以为N沟道场效应管或P沟道场效应管,具体的:
当单向导通单元102为N沟道场效应管时,单向导通单元102的正极为场效应管的源极,单向导通单元102的负极为场效应管的漏极,控制模块11可以通过向场效应管的栅极输出一控制信号,从而控制单向导通单元102导通或关断。
当单向导通单元102为P沟道场效应管时,单向导通单元102的正极为场效应管的漏极,单向导通单元102的负极为场效应管的源极,控制模块11可以通过向场效应管的栅极输出一控制信号,从而控制单向导通单元102是否导通。
当单向导通单元102为功率晶体管时,单向导通单元102的正极为功率晶体管的集电极,负极为功率晶体管的发射极;或者,单向导通单元102的正极为功率晶体管的发射极,负极为功率晶体管的集电极;控制模块11可以通过向功率晶体管的基极输出一控制信号,从而控制单向导通单元102是否导通。
可选的,所述控制模块11还用于:在所述开关单元101关断之后的第一预设时间段之后,向所述控制端1013输出另一控制信号,以使所述开关单元101进入打嗝限流状态;其中,所述第一预设时间段小于或等于所述开关单元101关断时所述电感103利用自身储存的电能对与所述限流模块10连接的负载支路中的负载进行供电的时间段。具体的,打嗝限流状态是指开关单元101处于周期性的导通-关断的状态,打嗝限流状态的周期是指控制模块11控制开关单元101进行一次导通-关断所需的时间。打嗝限流状态的周期与电感103的大小有关,在开关单元101处于打嗝限流状态、且开关单元101关断期间,电感103通过单向导通单元102对负载进行供电。需要说明的是,当单向导通单元102为场效应管或功率晶体管时,在开关单元101进入打嗝限流状态、且开关单元101关断时,控制模块11控制单向导通单元102导通。
需要说明的是,在负载支路及供电链路上电阶段(即HVDC电源刚刚为负载支路供电到负载支路正常工作的阶段),负载支路及供电链路中会存在启动冲击电流,启动冲击电流的电流值较大且持续时间较长。
该情况下,在控制模块11控制开关单元101进入打嗝限流状态,并在第二预设时间段之后,当控制模块11检测到流过开关单元101的总电流仍大于或等于预设阈值时,则控制开关单元101关断;或,在第二预设时间段之后,当检测到流过开关单元101的总电流的值小于预设阈值时,控制开关单元101导通。
其中,第二预设时间段大于负载支路及供电链路的上电阶段的持续时间;第二预设时间段之后,当控制模块11检测到流过开关单元101的总电流的值仍大于或等于预设阈值时,可以认为检测到的电流为限流模块10连接的负载支路发生短路时的短路电流;第二预设时间段之后,当控制模块11检测到流过开关单元101的总电流的值小于预设阈值时,则可以认为检测到的电流为限流模块10连接的负载支路中的启动冲击电流。
当电路处于正常工作阶段,且与限流模块10连接的负载支路发生短路时,当控制模块11控制开关单元101关断时,限流模块10中可以没有单向导通单元102与电感103;当控制模块11控制开关单元101关断并在第一预设时间段后控制开关单元101进入打嗝限流状态时,限流模块10中可以包含单向导通单元102与电感103,用于开关单元101进入打嗝限流状态、且开关单元101关断时,电感103通过单向导通单元102对负载进行供电。
当为负载支路提供电源的供电系统处于正常工作阶段,且遇到雷击时,开关单元101所在的供电链路或者负载支路中可能会存在雷电流,使得流过开关单元101的电流较大,但雷电流会在很短的时间内消失。该情况下,当控制模块11检测到流过开关单元101的 总电流的值大于或等于预设阈值时,在第三预设时间段之后,若控制模块11检测到流过开关单元101的总电流的值仍大于或等于预设阈值,则控制开关单元101关断。其中,第三预设时间段大于雷电流的持续时间。
在第三预设时间段之后,若控制模块11检测到流过开关单元101的总电流的值仍大于或等于预设阈值,可以认为检测到的电流为限流模块10连接的负载支路发生短路时的短路电流,则控制模块11控制限流模块10中的开关单元101关断;在第三预设时间段之后,若控制模块11检测到流过开关单元101的总电流的值小于预设阈值,可以认为检测到的电流为开关单元101所在的供电链路或者负载支路中存在雷电流时流过开关单元101的电流,则控制模块11可以不进行任何操作。
可选的,如图8和图9所示,所述控制模块11的供电电源可以由所述HVDC电源的母线提供。具体的,控制模块11的供电电源也可以为单独的电源,本发明实施例不对其进行限制。
具体的,图8以图6为基础对该可选的方案进行示例性说明,图9以图7为基础对该可选的方案进行示例性说明。
可选的,所述限流模块10位于所述至少两条负载支路中的第一负载支路,在所述预稳压电路为升压boost电路的情况下,所述电感103与所述预稳压电路中的电感集成在一起。
具体的,当限流模块10位于负载支路中时,限流模块10和负载支路中的预稳压电路可以一起设计;例如,当预稳压电路为boost电路时,设计人员可以得知boost电路中的电感的值,因此可以确定打嗝限流状态的周期长短,该情况下,限流模块10中可以只包含开关单元101和单向导通单元102,电感103可以通过boost电路中的电感代替。当限流模块10位于PDU中时,限流模块10的设计和与PDU连接的负载支路中的预稳压电路分开设计,因此,设计人员无 法得知与PDU连接的负载支路中的预稳压电路及预稳压电路中各个器件的参数,因此,当限流模块10位于PDU中时,限流模块10需要同时包含单向导通单元102和电感103。
具体的,如图10所示,当控制模块11的供电电源由HVDC电源的母线提供、预稳压电路为Boost电路、单向导通单元102为二极管D1、开关单元101为N沟道场效应管Q1时,选择性保护电路A可以如图10所示;其中,N沟道场效应管Q1、二极管D1、Boost电路中的电感L和Boost电路中的电容C组成了一个Buck电路(一种降压电路);Boost电路与Buck电路共用电感L。具体的,图10以图8为基础对该可选的方案进行示例性说明。
另外,如图11所示,限流模块10位于至少两个PDU中的第一PDU,当控制模块11的供电电源由HVDC电源的母线提供、预稳压电路为Boost电路、单向导通单元102为二极管D1、开关单元101为N沟道场效应管Q1时,选择性保护电路A可以如图11所示。具体的,图11以图9为基础对该可选的方案进行示例性说明。
现有技术中,HVDC电源连接多条负载支路时,由于多条负载支路之间并联,当其中一条负载支路发生短路且该负载支路中的保护器件还未脱扣时,供电母线上的电流会增大,由于供电母线有一定的电阻,因此,供电母线上的电压会增大,导致通过供电母线提供给其他负载支路上的电压(即母线电压)会降低。因此,在负载支路发生短路到负载支路中的保护器件脱扣的过程中,母线电压会瞬时跌落。另外,当负载支路发生短路,且短路电流过大时,在保护器件分断能力有限的情况下,保护器件容易发生无法分断或粘死等情况,引起火灾或部件爆裂。而本发明实施例提供的选择性保护电路A,控制模块11检测到流过开关单元101的总电流的值到达预设阈值时,即可控制开关单元101关断,防止短路电流上升到很大的值,因此,不会使得母线电压提供给其他负载支路上的电压瞬时 跌落,也可以避免保护器件发生无法分断或粘死等情况。
本发明实施例还提供了一种选择性保护方法,应用于采用高压直流HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;具体可以应用于上述实施例提供的选择性保护电路中,如图12所示,所述方法包括:
1201、检测流过目标通路的总电流的值;其中,所述目标通路是指HVDC电源的母线电压的正极与所述至少两条负载支路中的一条负载支路中的预稳压电路的电源正极之间的通路;或,HVDC电源的母线电压的负极与所述至少两条负载支路中的一条负载支路中的预稳压电路的电源负极之间的通路。
需要说明的是,该实施例的执行主体可以为选择性保护电路中的控制模块,该实施例中的相关解释可以参见上述实施例。
具体的,步骤1201在具体实现时,控制模块可以实时检测流过目标通路的总电流的值。
1202、当所述总电流的值大于或等于预设阈值时,控制所述目标通路关断;其中,所述预设阈值大于流过所述目标通路的最大正常工作电流值。
本发明实施例提供的选择性保护方法,当通过目标通路连接的负载支路发生短路,且流过目标通路的短路电流大于或等于预设阈值时,控制目标通路关断,从而快速切断电路,防止出现由于流过目标通路的短路电流过大而引起一些重要的通信设备断电的问题。
可选的,在步骤1202之后,所述方法还可以包括:在第一预设时间段之后,控制所述目标通路周期性的导通-关断;其中,所述第一预设时间段和所述目标通路周期性的导通-关断中的所述目标通路关断的时间段,小于或等于所述目标通路关断时通过所述目标通路连接的负载支路中的负载不断电的时间段。
需要说明的是,在控制目标通路周期性的导通-关断过程中,在目标通路关断期间,选择性保护电路中的电感可以通过单向导通单元对负载支路中的负载进行供电。
需要说明的是,在负载支路及供电链路上电阶段(即HVDC电源刚刚为负载支路供电到负载支路正常工作的阶段),负载支路及供电链路中会存在启动冲击电流;因此,目标通路中也会存在启动冲击电流,启动冲击电流的电流值较大且持续时间较长。该情况下,可选的,在所述控制所述目标通路周期性的导通-关断之后,所述方法还可以包括:在第二预设时间段之后,当所述总电流的值仍大于或等于所述预设阈值时,控制所述目标通路关断;或,在第二预设时间段之后,当所述总电流的值小于所述预设阈值时,控制所述目标通路导通;其中,所述第二预设时间段大于或等于所述目标通路上电阶段的持续时间。
其中,第二预设时间段之后,当控制模块检测到流过目标通路的总电流的值仍大于或等于预设阈值时,可以认为检测到的电流为目标通路连接的负载支路发生短路时的短路电流;第二预设时间段之后,当控制模块检测到流过开关单元的总电流的值小于预设阈值时,则可以认为检测到的电流为目标通路中的启动冲击电流。
当为负载支路提供电源的供电系统处于正常工作阶段,且遇到雷击时,目标通路中可能会存在雷电流,使得目标通路中的电流较大,但雷电流会在很短的时间内消失。该情况下,可选的,步骤1202包括:在第三预设时间段之后,若所述总电流的值仍大于或等于所述预设阈值,则控制所述目标通路关断;其中,所述第三预设时间段大于或等于所述目标通路中的雷电流的持续时间。
在第三预设时间段之后,若控制模块检测到流过目标通路的总电流的值仍大于或等于预设阈值,可以认为检测到的电流为与目标通路连接的负载支路发生短路时的短路电流,则控制模块控制目标 通路关断;在第三预设时间段之后,若控制模块检测到流过目标通路的总电流的值小于预设阈值,可以认为检测到的电流为目标通路中存在雷电流时目标通路的电流,则控制模块可以不进行任何操作。
本发明实施例还提供了一种供电系统,包括高压直流HVDC电源,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;所述供电系统包括上述实施例提供的任一种选择性保护电路A。
具体的,供电系统可以如图1、2、3和4所示。
本发明实施例提供的供电系统,包括选择性保护电路,当选择性保护电路中的限流模块连接的负载支路发生短路,且流过限流模块中的开关单元的短路电流大于或等于预设阈值时,选择性保护电路中的控制模块可以控制开关单元关断,从而快速切断电路,防止出现由于流过开关单元的短路电流过大而引起一些重要的通信设备断电的问题。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种选择性保护电路,应用于采用高压直流HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;其特征在于,所述选择性保护电路包括:限流模块和控制模块;其中,所述限流模块包括开关单元,所述开关单元包括第一端、第二端和控制端;
    所述第一端与所述HVDC电源的母线电压的正极连接,所述第二端与所述限流模块连接的负载支路中的预稳压电路的电源正极连接;或,所述第一端与所述HVDC电源的母线电压的负极连接,所述第二端与所述限流模块连接的负载支路中的预稳压电路的电源负极连接;
    所述控制端与所述控制模块连接;
    所述控制模块用于在流过所述开关单元的总电流的值大于或等于预设阈值时,向所述控制端输出一控制信号,以使所述开关单元关断;其中,所述预设阈值大于流过所述开关单元的最大正常工作电流值。
  2. 根据权利要求1所述的选择性保护电路,其特征在于,
    所述限流模块位于所述至少两条负载支路中的第一负载支路,所述限流模块连接的负载支路为所述第一负载支路;
    或,所述至少两条负载支路通过至少两个电源分配单元PDU与所述HVDC电源连接,所述限流模块位于所述至少两个PDU中的第一PDU,所述限流模块连接的负载支路为与所述第一PDU连接的负载支路。
  3. 根据权利要求1或2所述的选择性保护电路,其特征在于,所述限流模块还包括:单向导通单元和电感;所述单向导通单元导通时,流过所述单向导通单元的电流的方向为:从所述单向导通单元的正极到所述单向导通单元的负极的方向;
    所述单向导通单元的正极与所述限流模块连接的负载支路中的 预稳压电路的电源负极连接;
    所述单向导通单元的负极与所述限流模块连接的负载支路中的预稳压电路的电源正极连接;
    所述电感的一端与所述单向导通单元的负极连接,另一端与所述限流模块连接的负载支路中的预稳压电路的电源正极连接。
  4. 根据权利要求3所述的选择性保护电路,其特征在于,所述限流模块位于所述至少两条负载支路中的第一负载支路,在所述预稳压电路为升压boost电路的情况下,所述电感与所述预稳压电路中的电感集成在一起。
  5. 根据权利要求3或4所述的选择性保护电路,其特征在于,
    所述控制模块还用于:在所述开关单元关断之后的第一预设时间段之后,向所述控制端输出另一控制信号,以使所述开关单元进入打嗝限流状态;其中,所述第一预设时间段小于或等于所述开关单元关断时所述电感利用自身储存的电能对与所述限流模块连接的负载支路中的负载进行供电的时间段。
  6. 根据权利要求1所述的选择性保护电路,其特征在于,
    所述控制模块的供电电源由所述HVDC电源的母线提供。
  7. 根据权利要求1所述的选择性保护电路,其特征在于,所述开关单元为场效应管或功率晶体管。
  8. 一种选择性保护方法,应用于采用高压直流HVDC电源供电的场景中,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;其特征在于,所述方法包括:
    检测流过目标通路的总电流的值;其中,所述目标通路是指HVDC电源的母线电压的正极与所述至少两条负载支路中的一条负载支路中的预稳压电路的电源正极之间的通路;或,HVDC电源的母线电压的负极与所述至少两条负载支路中的一条负载支路中的预稳压电路的电源负极之间的通路;
    当所述总电流的值大于或等于预设阈值时,控制所述目标通路关断;其中,所述预设阈值大于流过所述目标通路的最大正常工作电流值。
  9. 根据权利要求8所述的方法,其特征在于,在所述控制所述目标通路关断之后,所述方法还包括:
    在第一预设时间段之后,控制所述目标通路周期性的导通-关断;其中,所述第一预设时间段和所述目标通路周期性的导通-关断中的所述目标通路关断的时间段,均小于或等于所述目标通路关断时通过所述目标通路连接的负载支路中的负载不断电的时间段。
  10. 根据权利要求9所述的方法,其特征在于,在所述控制所述目标通路周期性的导通-关断之后,所述方法还包括:
    在第二预设时间段之后,当所述总电流的值仍大于或等于所述预设阈值时,控制所述目标通路关断;或,
    在第二预设时间段之后,当所述总电流的值小于所述预设阈值时,控制所述目标通路导通;
    其中,所述第二预设时间段大于或等于所述目标通路上电阶段的持续时间。
  11. 根据权利要求8所述的方法,其特征在于,所述控制所述目标通路关断,包括:
    在第三预设时间段之后,若所述总电流的值仍大于或等于所述预设阈值,则控制所述目标通路关断;其中,所述第三预设时间段大于或等于所述目标通路中的雷电流的持续时间。
  12. 一种供电系统,其特征在于,包括高压直流HVDC电源,所述HVDC电源向相互并联的至少两条负载支路供电,每条负载支路包括一个预稳压电路;所述供电系统还包括如权利要求1-7任一项所述的选择性保护电路。
PCT/CN2015/083003 2015-02-15 2015-06-30 一种选择性保护电路、方法及供电系统 WO2016127549A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15881710.6A EP3249781B1 (en) 2015-02-15 2015-06-30 Selective protection circuit and method, and power supply system
BR112017017492-8A BR112017017492B1 (pt) 2015-02-15 2015-06-30 Circuito e método de proteção seletiva, e sistema de fornecimento de energia
US15/676,196 US10177561B2 (en) 2015-02-15 2017-08-14 Selective protection circuit and method, and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510082383.6 2015-02-15
CN201510082383.6A CN104617653B (zh) 2015-02-15 2015-02-15 一种选择性保护电路、方法及供电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/676,196 Continuation US10177561B2 (en) 2015-02-15 2017-08-14 Selective protection circuit and method, and power supply system

Publications (1)

Publication Number Publication Date
WO2016127549A1 true WO2016127549A1 (zh) 2016-08-18

Family

ID=53151990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083003 WO2016127549A1 (zh) 2015-02-15 2015-06-30 一种选择性保护电路、方法及供电系统

Country Status (5)

Country Link
US (1) US10177561B2 (zh)
EP (1) EP3249781B1 (zh)
CN (1) CN104617653B (zh)
BR (1) BR112017017492B1 (zh)
WO (1) WO2016127549A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617653B (zh) 2015-02-15 2017-07-21 华为技术有限公司 一种选择性保护电路、方法及供电系统
US10505391B2 (en) 2017-04-28 2019-12-10 Ciena Corporation Power management for network device line modules
CN108601138B (zh) * 2018-04-20 2020-04-14 华为技术有限公司 异常保护电路、pse、供电系统及异常隔离方法
US10944287B2 (en) * 2018-07-02 2021-03-09 Schneider Electric It Corporation AVR bypass relay welding detection
CN109768524A (zh) * 2018-12-18 2019-05-17 深圳市优必选科技有限公司 一种用于高压系统的电流保护电路及电流保护方法
US11635797B2 (en) * 2019-10-11 2023-04-25 Schneider Electric It Corporation Method for reducing UPS component stresses during transition from inverter to green/bypass operation
CN112788903B (zh) * 2019-11-07 2022-07-22 国创移动能源创新中心(江苏)有限公司 一种pdu机器人模块、移动式开关装置及功率分配器
US11605949B2 (en) 2020-07-20 2023-03-14 Abb Schweiz Ag Electrification arrangement for supplying power to electrical loads
CN112865070B (zh) * 2020-12-28 2022-11-01 珠海格力电器股份有限公司 一种电源系统的控制装置、方法和空调机组
CN113691113A (zh) * 2021-08-16 2021-11-23 珠海格力电器股份有限公司 一种变频器电源的输出保护装置、方法和变频器
TWI808531B (zh) * 2021-11-10 2023-07-11 群聯電子股份有限公司 切換式供電模組與記憶體儲存裝置
CN116533908A (zh) * 2023-05-08 2023-08-04 广州汽车集团股份有限公司 供电系统、方法以及车辆
CN116827090B (zh) * 2023-08-29 2023-11-10 深圳市力生美半导体股份有限公司 开关电源电路及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200844A (zh) * 1995-09-14 1998-12-02 雷伊化学公司 过电流保护电路
CN101515758A (zh) * 2008-02-21 2009-08-26 施耐德东芝换流器欧洲公司 用于抵抗过电流的保护速度控制器的装置
CN104617653A (zh) * 2015-02-15 2015-05-13 华为技术有限公司 一种选择性保护电路、方法及供电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080544A1 (en) * 2000-12-22 2002-06-27 John Pellegrino Apparatus and methods for limiting electrical current in circuit breaker applications
JP2004282964A (ja) * 2003-03-18 2004-10-07 Fujitsu General Ltd 電源回路
US7005995B2 (en) * 2003-09-16 2006-02-28 The Boeing Company System and method for remotely detecting and locating damaged conductors in a power system
CA2579675A1 (en) * 2004-09-10 2006-03-23 Cooper Technologies Company System and method for circuit protector monitoring and management
CN202906431U (zh) * 2012-09-24 2013-04-24 华为技术有限公司 一种供电设备
CN203466740U (zh) * 2013-09-17 2014-03-05 陕西中科天地航空模块有限公司 一种开关电源
CN203561907U (zh) * 2013-10-17 2014-04-23 陕西华威凯德电子科技有限公司 一种低功耗直流稳压电源
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200844A (zh) * 1995-09-14 1998-12-02 雷伊化学公司 过电流保护电路
CN101515758A (zh) * 2008-02-21 2009-08-26 施耐德东芝换流器欧洲公司 用于抵抗过电流的保护速度控制器的装置
CN104617653A (zh) * 2015-02-15 2015-05-13 华为技术有限公司 一种选择性保护电路、方法及供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249781A4 *

Also Published As

Publication number Publication date
EP3249781B1 (en) 2018-12-05
US10177561B2 (en) 2019-01-08
US20170346275A1 (en) 2017-11-30
EP3249781A1 (en) 2017-11-29
EP3249781A4 (en) 2017-11-29
CN104617653B (zh) 2017-07-21
BR112017017492A2 (pt) 2018-06-26
BR112017017492B1 (pt) 2022-09-06
CN104617653A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016127549A1 (zh) 一种选择性保护电路、方法及供电系统
US10748724B2 (en) Power-on/off drive circuit and method for controlling power-on/off drive circuit
US9979286B2 (en) Power converting device
WO2013107320A1 (zh) 浪涌保护电路
US9786457B2 (en) Systems and methods for freewheel contactor circuits
CN204967252U (zh) 一种电源输入保护电路
US9653998B2 (en) Boost converter and power controling method thereof
CN107706906A (zh) 防倒灌电路及电源冗余电路
CN116545257A (zh) 一种开关电路的控制方法及开关电路
CN103457472A (zh) 一种开关电源及使用该开关电源的灯具
WO2019085544A1 (zh) 一种开关电源输出软启动电路
WO2015143716A1 (zh) 信息转换器的供电电路、系统及供电方法
CN205304240U (zh) 一种大功率直流防反接控制电路
CN216672596U (zh) 一种防反接电路、自动充电机器人和充电系统
US10498135B2 (en) Switch protection device
CN203368331U (zh) 一种带输入欠压保护的开关电源
JP5632732B2 (ja) 発光ダイオード点灯装置及び該発光ダイオード点灯装置を用いた照明装置
CN202094845U (zh) 一种电源管理装置
CN212210489U (zh) 一种新型尖峰电压抑制电路
CN204290715U (zh) Dc/dc升压变换模块和电路
CN108418300B (zh) 一种主备用电池供电自动切换输出电路
US10886835B2 (en) Solid state regulator and circuit breaker for high-power DC bus distributions
CN216530712U (zh) 低压直流电力设备冗余供电控制电路
CN210957841U (zh) 一种应用于充电回路中的防电池反接电路
CN211123819U (zh) 一种交直流切换控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015881710

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017492

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017017492

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170815