WO2016127429A1 - 一种胶原蛋白表面改性聚丙烯腈纤维的方法 - Google Patents

一种胶原蛋白表面改性聚丙烯腈纤维的方法 Download PDF

Info

Publication number
WO2016127429A1
WO2016127429A1 PCT/CN2015/073098 CN2015073098W WO2016127429A1 WO 2016127429 A1 WO2016127429 A1 WO 2016127429A1 CN 2015073098 W CN2015073098 W CN 2015073098W WO 2016127429 A1 WO2016127429 A1 WO 2016127429A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacrylonitrile fiber
collagen
solution
reaction
polyacrylonitrile
Prior art date
Application number
PCT/CN2015/073098
Other languages
English (en)
French (fr)
Inventor
丁志文
庞晓燕
李希青
Original Assignee
中国皮革和制鞋工业研究院
河北中皮东明环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国皮革和制鞋工业研究院, 河北中皮东明环境科技有限公司 filed Critical 中国皮革和制鞋工业研究院
Priority to PCT/CN2015/073098 priority Critical patent/WO2016127429A1/zh
Publication of WO2016127429A1 publication Critical patent/WO2016127429A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof

Definitions

  • the present invention relates to the field of comprehensive utilization of waste in leather production, and in particular to a method for surface modification of polyacrylonitrile fibers by collagen.
  • Polyacrylonitrile cellulose is known as "synthetic wool". Its good strength and bright color have been loved by people.
  • the disadvantages such as poor water absorption and easy static electricity restrict the polyacrylonitrile fiber to a certain extent. application.
  • the pursuit of clothing is becoming more and more comfortable and natural, so it is necessary to modify the polyacrylonitrile fiber to meet the current consumer demand.
  • the patent application 201010554958.7 provides a tanning retanning method using chrome shavings, which extracts collagen from chrome shavings by alkali method Drying the collagen, amidating the acrylic monomer under anhydrous conditions, preparing a collagen modification by graft copolymerization, and then applying the collagen modification in the retanning of the leather.
  • the utilization of collagen in retanning agents is very low, and the leather products produced are not optimally produced.
  • the modification of the polyacrylonitrile fiber is mainly a modification of the polyacrylonitrile fiber by using a protein
  • the patent application document 200710044994.7 discloses a preparation method of the protein-modified polyacrylonitrile fiber, including Step: (1) dissolving the protein and polyacrylonitrile in an ionic liquid to prepare a homogeneous mixed spinning dope; (2) spinning the dope after defoaming, filtering, metering, and extruding through a spinneret to form a spinning fine Flow, through the wet air layer, into the coagulation bath for solidification; (3) Pre-stretching, stretching, water washing, drying and heat setting, spinning and fiber-forming, and preparing protein-modified polyacrylonitrile fibers.
  • the production cost of using protein is too high and the production method is complicated.
  • the main problem solved by the present invention is to provide a method for collagen-modified polyacrylonitrile fiber, which can solve the problem of fully utilizing the resources of chrome shavings which cannot be solved by the prior art, has simple production process, high production efficiency, and is suitable for industrialization.
  • the present invention discloses a method for surface-modifying polyacrylonitrile fibers of collagen, comprising the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline, and the surface is modified.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber in the step 3, it is filtered and dried.
  • the collagen solution is further: a collagen solution extracted from the chrome-containing black shavings.
  • reaction condition of the step 1 is: the mass fraction of the alkaline agent in the alkaline solution is 6% to 16%, and the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1: 100, the reaction temperature is 60 to 90 ° C, and the reaction time is 10 to 20 min.
  • alkali agent is further one or more of sodium carbonate, sodium hydrogencarbonate, sodium phosphate, sodium silicate, potassium hydroxide, sodium hydroxide and barium hydroxide.
  • reaction condition of the step 2 is: the ratio of the acid chloride reagent to the hydrolyzed polyacrylonitrile fiber is 0.2 ml: 1 g to 8 ml: 1 g, and the sealing temperature is 80 ° C. Under the conditions, the oil bath was refluxed for 10-90 min.
  • the acid chloride reagent is further: phosgene, phosphorus pentachloride, triphosgene, thionyl chloride, phosphorus trichloride, diphosgene or oxalyl chloride.
  • the concentration of the collagen solution is 1% to 10%
  • the ratio of the collagen solution to the acylated polyacrylonitrile fiber is 20 ml: 1 g.
  • the pH of the reaction solution was adjusted to 8 to 10
  • the reaction temperature was 40 to 100 ° C
  • the reaction time was 5 to 30 min.
  • step 4 is further: repeatedly rinsing the surface-modified polyacrylonitrile fiber obtained in the step 3, filtering, and testing the filtrate with ninhydrin until the color of the filtrate is colorless.
  • the rinsed surface modified polyacrylonitrile fibers were dried and weighed.
  • the collagen solution is a collagen solution extracted by an acid method, an acid-enzyme method, an alkali method or an alkali-enzymatic method
  • the collagen has a relative molecular mass of 2000-10000 Da.
  • drying is further: atmospheric drying, vacuum drying under vacuum, fluidized bed drying or freeze drying.
  • the method for surface modification of polyacrylonitrile fibers of collagen according to the present invention achieves the following effects:
  • the method for modifying the polyacrylonitrile fiber on the surface of the collagen according to the present invention can fully utilize the collagen extracted from the chrome shavings, has a simple production process, high production efficiency, and is suitable for industrialization;
  • the method for surface-modifying polyacrylonitrile fiber of collagen according to the present invention can not only solve the environmental pollution caused by the waste of chrome-containing leather waste, but also can make better use of the polyacrylonitrile fiber, which not only reduces the Cost can also improve the quality of life.
  • FIG. 1 is a specific flow chart of a method for surface-modifying polyacrylonitrile fibers of collagen of the present invention
  • FIG. 2 is a diagram showing the relationship between collagen surface-modified polyacrylonitrile fiber and collagen content according to Examples 1 to 8 of the present invention
  • FIG. 3 is a comparison diagram of FTIR-ATR of surface-modified polyacrylonitrile fibers and non-surface-modified polyacrylonitrile fibers of Example 4 of the present invention
  • Figure 4 is a spectral absorption curve of acid red B
  • Fig. 5 is a graph showing the comparison of the dyeing rate curves of the surface-modified polyacrylonitrile fibers and the non-surface-modified polyacrylonitrile fibers of Example 4 of the present invention.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a sodium carbonate solution having a mass fraction of 6%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:100, and the reaction temperature is 60 ° C.
  • the time was 10 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 16.7%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 1 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated by phosgene, and the ratio of the phosgene to the hydrolyzed polyacrylonitrile fiber is 0.2 ml: 1 g, that is, the light
  • the amount of gas used was 0.2 ml, and the oil bath was refluxed for 10 minutes under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Collagen surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 1%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 20 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 1 g, so the amount of the collagen solution was 20 ml, a 10% sodium carbonate solution was added, the pH of the reaction solution was adjusted to 8, the reaction temperature was 40 ° C, and the reaction time was 5 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 1.0267 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 2.67%:
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing leather shavings; the collagen solution is a collagen solution extracted by an acid method, and the relative molecular mass of the collagen It is 9500Da.
  • the collagen extracted by the acid method specifically, 0.2-0.5 ml of sulfuric acid or 0.5-1.0 g of oxalic acid is added to the pulverized chrome shavings, and hydrolyzed in a water bath constant temperature oscillator at 60 ° C - 100 ° C for 0.5-4 h.
  • Ca(OH) 2 or CaO was added to adjust the pH of the reaction solution to about 10, and the mixture was heated at a high temperature until the blue solution turned pale yellow and had a pale blue precipitate.
  • the hydrolyzate was cooled and filtered to obtain a viscous hydrolyzed collagen solution, which was dried to obtain a collagen powder.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a sodium carbonate solution having a mass fraction of 6.5%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:100, and the reaction temperature is 65 ° C.
  • the reaction time was 11 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 21.3%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 10 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated with phosphorus pentachloride, and the ratio of the phosphorus pentachloride to the hydrolyzed polyacrylonitrile fiber is 0.5 ml: 1 g, that is, The phosphorus pentachloride was used in an amount of 5 ml, and the oil bath was refluxed for 15 minutes under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Collagen surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 1.5%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 25 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 10 g, so the amount of the collagen solution was 250 ml, a 10% sodium hydrogen carbonate solution was added, the pH of the reaction solution was adjusted to 8.3, the reaction temperature was 45 ° C, and the reaction time was 8 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 10.2843 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 4.83%.
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing leather shavings; the collagen solution is a collagen solution extracted by an acid method, and the relative molecular mass of the collagen It is around 10000Da.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a sodium phosphate solution having a mass fraction of 7%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:150, and the reaction temperature is 70 ° C.
  • the time was 12 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 28.9%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 100 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to triphosgene acylation, and the ratio of the triphosgene to the hydrolyzed polyacrylonitrile fiber is 1 ml: 1 g, that is, the triphosgene
  • the amount used was 100 ml, and the oil bath was refluxed for 20 min under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Collagen surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 2%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 30 ml: 1 g, because of the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 100 g, so the amount of the collagen solution was 3000 ml, a 10% sodium phosphate solution was added, the pH of the reaction solution was adjusted to 8.5, the reaction temperature was 50 ° C, and the reaction time was 10 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 105.9847 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 5.98%:
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing black shavings; the collagen solution is a collagen solution extracted by an acid-enzymatic method, and the relative of the collagen The molecular mass is around 3000 Da.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a sodium silicate solution having a mass fraction of 11%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:120, and the reaction temperature is 80 ° C.
  • the reaction time was 15 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 45.4%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated with thionyl chloride, and the ratio of the thionyl chloride to the hydrolyzed polyacrylonitrile fiber is 3 ml: 1 g, that is, The amount of the thionyl chloride was 3000 ml, and the oil bath was refluxed for 40 min under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 5%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 50 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber is 1000g, so the amount of the collagen solution is 50,000ml, plus A 10% sodium silicate solution was added, and the pH of the reaction solution was adjusted to 9, the reaction temperature was 60 ° C, and the reaction time was 16 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 1087.9467 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing black shavings; the collagen solution is a collagen solution extracted by an acid-enzymatic method, and the relative of the collagen The molecular mass is about 5000 Da.
  • the reaction After the reaction, Ca(OH) 2 or CaO was added to adjust the pH of the reaction solution to about 10, and the mixture was heated at a high temperature until the blue solution turned pale yellow and had a pale blue precipitate. The hydrolyzate was cooled and filtered to obtain a viscous hydrolyzed collagen solution, which was dried to obtain a collagen powder.
  • the sulfuric acid described in this example is 98% concentrated sulfuric acid.
  • the NaOH here can also be KOH, CaO, and the like.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is hydrolyzed in an alkaline solution to hydrolyze the polypropylene.
  • the nitrile fiber is washed to neutrality and then dried to obtain hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a potassium hydroxide solution having a mass fraction of 12%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:100, and the reaction temperature is 85 ° C.
  • the reaction time was 16 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 54.2%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 1 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated with phosphorus trichloride, and the ratio of the phosphorus trichloride to the hydrolyzed polyacrylonitrile fiber is 5 ml: 1 g, that is, The phosphorus trichloride was used in an amount of 5 ml, and the oil bath was refluxed for 60 minutes under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 7%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 70 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 1 g, so the amount of the collagen solution was 60 ml, a 10% potassium hydroxide solution was added, the pH of the reaction solution was adjusted to 9.2, the reaction temperature was 70 ° C, and the reaction time was 22 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 1.0977 g, and was calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 9.77%:
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing black shavings; the collagen solution is a collagen solution extracted by an alkali method, and the relative molecular mass of the collagen It is around 9000Da.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a sodium hydroxide solution having a mass fraction of 15%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:70, and the reaction temperature is 90 ° C.
  • the reaction time was 18 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 69.8%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 10 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to double phosgene acylation, and the ratio of the diphosgene to the hydrolyzed polyacrylonitrile fiber is 7 ml: 1 g, that is, the The amount of diphosgene used was 70 ml, and the oil bath was refluxed for 80 min under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 9%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 90 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 10 g, so the amount of the collagen solution was 900 ml, 10% sodium hydroxide solution was added, the pH of the reaction solution was adjusted to 9.5, the reaction temperature was 90 ° C, and the reaction time was 25 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 10.8124 g and calculated by the formula:
  • Collagen content (m 1- m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 8.12%.
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing black shavings; the collagen solution is a collagen solution extracted by an alkali method, and the relative molecular mass of the collagen It is around 7000Da.
  • the collagen is extracted by an alkali method by adding 4-8% of NaOH and/or CaO to the pulverized chrome shavings and hydrolyzing at 55-100 ° C for 3-8 h.
  • the hydrolyzate was cooled and filtered to obtain a viscous hydrolyzed collagen solution, which was dried to obtain a collagen powder.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is subjected to hydrolysis in an alkaline solution, and the hydrolyzed polyacrylonitrile fiber is washed to neutrality and then dried to obtain a hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a cerium hydroxide solution having a mass fraction of 15.5%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:60, and the reaction temperature is 95 ° C.
  • the reaction time was 19 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 75.5%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • 100 g of the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated with oxalyl chloride, and the ratio of the oxalyl chloride to the hydrolyzed polyacrylonitrile fiber is 7.5 ml: 1 g, that is, the grass
  • the amount of the acid chloride was 750 ml, and the oil bath was refluxed for 85 minutes under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 9.5%
  • the amount of the hydrolyzed polyacrylonitrile fiber in the first step is 95 ml: 1 g, and since the hydrolyzed polyacrylonitrile fiber used in the present embodiment is 100 g, the amount of the collagen solution is 95000 ml, and 10% of barium hydroxide is added.
  • the solution was adjusted to have a pH of 9.7, a reaction temperature of 95 ° C, and a reaction time of 27 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 106.9846 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 6.98%:
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing leather shavings; the collagen solution is a collagen solution extracted by an alkali-enzyme, and the relative molecules of the collagen The mass is around 2,500 Da.
  • the alkali-enzymatically extracted collagen is specifically added to the pulverized chrome shavings by adding 2-6% NaOH, CaO and/or MgO, and hydrolyzed in a water bath thermostat at 60-100 ° C for 2-6 h. Decrease the temperature to the optimum temperature of the enzyme, add the pH of the reaction solution to the optimum pH of the enzyme by adding sulfuric acid or the corresponding NaOH, CaO and/or MgO, and add 0.03-0.08g of alkaline protease, papain and/or medium. The protease reaction is 0.3-2h. The hydrolyzate was cooled and filtered to obtain a viscous hydrolyzed collagen solution, which was dried to obtain a collagen powder.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • a method for surface-modifying polyacrylonitrile fibers of collagen comprises the following steps:
  • Step 1 The polyacrylonitrile fiber is hydrolyzed in an alkaline solution to hydrolyze the polypropylene.
  • the nitrile fiber is washed to neutrality and then dried to obtain hydrolyzed polyacrylonitrile fiber;
  • the polyacrylonitrile fiber is hydrolyzed in a cerium hydroxide solution having a mass fraction of 16%, the mass ratio of the polyacrylonitrile fiber to the alkaline solution is 1:50, and the reaction temperature is 100 ° C.
  • the reaction time was 20 min; the hydrolysis rate of the hydrolyzed polyacrylonitrile fiber was 80.1%.
  • Step 2 The hydrolyzed polyacrylonitrile fiber in the step 1 is subjected to an acylation reaction using an acid chloride reagent to remove the acid chloride reagent remaining after the reaction to obtain an acylated polyacrylonitrile fiber;
  • the hydrolyzed polyacrylonitrile fiber in the step 1 is acylated with oxalyl chloride, and the ratio of the oxalyl chloride to the hydrolyzed polyacrylonitrile fiber is 8 ml: 1 g, that is, the oxalyl chloride
  • the amount used was 8000 ml, and the oil bath was refluxed for 90 min under a sealing condition of a reaction temperature of 80 °C.
  • Step 3 The acylated polyacrylonitrile fiber obtained in the step 2 is subjected to a condensation reaction with a collagen solution, and an alkali agent is added during the condensation reaction to adjust the pH of the reaction solution to be alkaline.
  • Surface modified polyacrylonitrile fiber
  • the concentration of the collagen solution is 10%
  • the ratio of the collagen solution to the hydrolyzed polyacrylonitrile fiber in the step 1 is 100 ml: 1 g, due to the hydrolyzed polypropylene used in the present example.
  • the nitrile fiber was 1000 g, so the amount of the collagen solution was 100,000 ml, a 10% cesium hydroxide solution was added, the pH of the reaction solution was adjusted to 10, the reaction temperature was 100 ° C, and the reaction time was 30 min.
  • Step 4 After repeatedly washing the surface-modified polyacrylonitrile fiber obtained in the step 3, it is filtered and dried.
  • the surface-modified polyacrylonitrile fiber obtained in the step 3 is repeatedly washed, filtered, and the filtrate is inspected using ninhydrin hydrate until the color of the filtrate is colorless, and the surface after the rinsing is modified.
  • the polyacrylonitrile fiber was dried and weighed to obtain a surface-modified polyacrylonitrile fiber having a mass of 1058.7258 g and calculated by the formula:
  • Collagen content (m 1 - m 0 ) / m 0 ⁇ 100%
  • m 0 is the mass of the hydrolyzed polyacrylonitrile fiber, and the unit is g;
  • m 1 is the mass of the modified polyacrylonitrile fiber in g.
  • the collagen content was calculated to be 5.87%.
  • the collagen solution described in this embodiment is further: a collagen solution extracted from the chrome-containing leather shavings; the collagen solution is a collagen solution extracted by an alkali-enzymatic method, and the relative of the collagen is The molecular mass is around 2000Da.
  • drying described in the present embodiment is further: atmospheric drying, vacuum drying, fluidized bed drying or freeze drying.
  • the non-surface-modified polyacrylonitrile fiber has poor water absorption and the water absorption rate is only 9.4%.
  • the water absorption of the fiber is obviously improved, and as the collagen content increases, the water absorption rate increases.
  • the collagen content was 4.83%
  • the water absorption of the surface-modified polyacrylonitrile fiber was 12.5%, which was 33.0% higher than that of the polyacrylonitrile fiber.
  • the collagen content was 8.79%
  • the water absorption of the surface-modified polyacrylonitrile fiber was 19.4%, which was increased by 106.4%.
  • the surface-modified polyacrylonitrile fibers prepared in Example 4 and the non-surface-modified polyacrylonitrile fibers were selected, and the dyeing reaction was measured by Coomassie Brilliant Blue method to determine whether the present invention achieved the surface of collagen on polyacrylonitrile fibers. Modification.
  • the staining solution used was: 100 mg of Coomassie Brilliant Blue G-250 was dissolved in 50 mL of 95% ethanol, then 100 mL of 85% phosphoric acid was added, and diluted to 1000 mL with distilled water, and filtered by a filter paper.
  • 0.2 g of the fiber to be inspected was immersed in 20 ml of the dyeing solution, and it was observed for color development after 5 minutes, and then washed with a decolorizing liquid "small times" until the decolorizing liquid was colorless, and then the fiber was observed to be discolored.
  • the experimental results show that the surface-modified polyacrylonitrile fiber and the non-surface-modified polyacrylonitrile fiber are blue after being dyed by Coomassie blue, but only the surface-modified polyacrylonitrile fiber is washed by the decolorizing solution.
  • the cyan green, non-surface modified polyacrylonitrile fibers appear light blue. This is because, in the surface-modified polyacrylonitrile fiber, between the collagen and the polyacrylonitrile fiber is a chemical bond.
  • the decolorizing liquid can not destroy the chemical bond between the two; while the non-surface-modified polyacrylonitrile fiber, the reagent is only attached to the fiber surface by physical adsorption, and is unstable, so the decolorizing liquid can make it almost Completely discolored. From this, it can be confirmed that the method for surface-modifying polyacrylonitrile fibers of collagen according to the present invention achieves the modification of the surface of the polyacrylonitrile fibers by collagen.
  • FIG. 3 it is a comparative FTIR-ATR spectrum of the surface-modified polyacrylonitrile fiber and the non-surface-modified polyacrylonitrile fiber of Example 4 of the present invention, wherein the curve 1 is a surface-modified polyacrylonitrile.
  • curve 2 is FTIR-ATR spectrum of unmodified polyacrylonitrile fiber, due to alkane absorption peak of polyacrylonitrile fiber near 2930 cm -1 and 1450 cm -1 , near 2243 cm -1
  • the cyano characteristic absorption peak also appeared in the FTIR-ATR spectrum of collagen surface modified polyacrylonitrile fiber, indicating that the modification of polyacrylonitrile fiber by collagen did not affect the internal structure of the fiber, but only for polyacrylonitrile.
  • the surface of the fiber is modified.
  • the percentage of dyeing of the surface-modified polyacrylonitrile fiber and the non-surface-modified polyacrylonitrile fiber of Example 4 of the present invention was determined by a constant temperature dyeing method, and the specific steps were as follows:
  • 0.04% acid red B dye solution was prepared, 2.0 ml was taken in a 100 ml volumetric flask, the volume was adjusted in distilled water, and the absorbance in the wavelength range of 300-700 nm was measured by an ultraviolet spectrophotometer to obtain a spectral absorption curve.
  • the dyebath was prepared as shown in Table 1, and the pH was adjusted with sulfuric acid (pH 2-3), and the surface-modified polyacrylonitrile fibers and the non-surface-modified poly were placed at 70 °C.
  • Acrylonitrile fiber then take the corresponding dyeing cup according to the dyeing time shown in Table 1, and clean the surface modified polyacrylonitrile fiber and the non-surface modified polyacrylonitrile fiber, and mix the cleaning liquid with the dyeing residue.
  • the absorbance was measured at the maximum absorption wavelength, and the percentage of dyeing was calculated to obtain a dye uptake rate curve.
  • the spectral absorption curve of the acid red B is known from the acid red B spectrum absorption curve, and the maximum absorption wavelength at 536 nm is such that the maximum absorption wavelength ⁇ of the acid red B is 536 nm.
  • curve 3 is a dyeing rate map of the surface-modified polyacrylonitrile fiber of the present invention
  • curve 4 is a dyeing rate map of the unmodified polyacrylonitrile fiber, wherein the acid red B pair
  • the equilibrium dyeing percentage of collagen surface-modified polyacrylonitrile fiber was 91%, which was higher than 14% of non-surface-modified polyacrylonitrile fiber, and the percentage of dyeing reached 67% when dyed for 2 min. Therefore, it can be concluded that the method for surface-modifying polyacrylonitrile fibers of collagen according to the present invention greatly increases the percentage of dyeing of unmodified surface polyacrylonitrile fibers.
  • the term "practicality" means that the subject matter of the invention or utility model application must be capable of being manufactured or used in the industry, and can produce a positive effect.
  • the method for surface-modifying polyacrylonitrile fibers of collagen according to the present invention is based on a theoretical basis, and is a clear, reliable, and reproducible invention.
  • the theoretical basis is the scientific basis of the invention and is a prerequisite for the correctness of industrial applicability.
  • the invention is a pioneering new method for sequentially hydrolyzing, acylating and condensing polyacrylonitrile fibers, so that the polyacrylonitrile fibers are modified only on the surface thereof.
  • the method of the present invention is a particularly urgent need for the environmental pollution crisis and the effective utilization of fibers, and can solve the environmental pollution caused by the waste of chrome-containing leather waste, and can also make polyacrylonitrile. Better use of fiber not only reduces costs, but also improves quality of life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种胶原蛋白表面改性聚丙烯腈纤维的方法,1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;2:将1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;3:将2中得到的酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;4:反复冲洗3中的表面改性的聚丙烯腈纤维后,过滤、干燥。解决了铬革屑的不能充分利用,生产工艺复杂、生产效率低、不适于产业化并且生产的服饰的舒适度低、保健性性能差的技术问题。

Description

一种胶原蛋白表面改性聚丙烯腈纤维的方法 技术领域
本发明涉及皮革生产中废弃物的综合利用领域,具体的说,涉及一种胶原蛋白表面改性聚丙烯腈纤维的方法。
背景技术
制革削匀铬革屑中虽然胶原蛋白含量高(以绝干含铬革屑计算,其中含胶原蛋白质90%左右),却因含有重金属铬,长期以来只能作为垃圾废弃或被非法利用,最终危害人类身体健康或者导致严重的环境污染。近年来,国内外的学者对制革固废提取胶原蛋白有了一定的研究,并将提取出来的胶原蛋白用于轻工业、农业等各方面,这样既可以减轻含铬革屑的污染,也可以利用其价值。
聚丙烯腈纤维素有“合成羊毛”之称,其良好的强度、明亮的色泽得到了人们的喜爱,但较差的吸水性、容易起静电等缺点在一定程度上制约了聚丙烯腈纤维的应用。如今,人们对服装的追求越来越趋向于舒适化、自然化,因此需要对聚丙烯腈纤维进行改性,使其满足当前的消费需求。
现有技术中,对从铬革屑中提取的胶原蛋白的利用,专利申请文件201010554958.7提供了一种利用铬革屑的制革复鞣方法,该方法利用碱法提取铬革屑中的胶原蛋白并将胶原蛋白干燥,在无水条件下与丙烯酸类单体进行酰胺化反应,在进行接枝共聚反应制备胶原蛋白改性物,再将胶原蛋白改性物在皮革的复鞣中进行应用,但是将胶原蛋白利用在复鞣剂中的利用率很低,并且也不能使生产的皮革制品达到最佳的效果。
另外,现有技术中对聚丙烯腈纤维的改性,主要是利用蛋白质对聚丙烯腈纤维进行改性的研究,专利申请文件200710044994.7公开了一种蛋白质改性聚丙烯腈纤维的制备方法,包括步骤:(1)将蛋白质与聚丙烯腈溶解在离子液体中,制备均相混合纺丝原液;(2)纺丝原液经过脱泡、过滤、计量后通过喷丝头挤出后形成纺丝细流,通过湿空气层后进入凝固浴凝固成形;(3)进行 预拉伸、拉伸、水洗、干燥热定型后纺丝成纤,制备蛋白质改性聚丙烯腈纤维。但是选用蛋白质的生产成本过高,生产方法复杂。
因此,如何研发一种胶原蛋白表面改性聚丙烯腈纤维的方法,解决上述问题,便成为亟待解决的技术问题。
发明内容
本发明解决的主要问题是提供一种胶原蛋白改性聚丙烯腈纤维的方法,以解决现有技术无法解决的铬革屑的资源充分利用,生产工艺简单、生产效率高、适于产业化并且改性后的聚丙烯腈纤维的生产的服饰的舒适度高、保健性性能好的技术问题。
为了解决上述技术问题,本发明公开了一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
步骤3:将所述步骤2中得到的酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
步骤4:反复冲洗所述步骤3中的表面改性的聚丙烯腈纤维后,过滤、干燥。
进一步地,其中,所述胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液。
进一步地,其中,所述步骤1的反应条件为:所述碱性溶液中碱剂的质量分数为6%至16%,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:100,反应温度为60至90℃,反应时间为10至20min。
进一步地,其中,所述碱剂,进一步为:碳酸钠、碳酸氢钠、磷酸钠、硅酸钠、氢氧化钾、氢氧化钠和氢氧化钡中的一种或几种。
进一步地,其中,所述步骤2的反应条件为:所述酰氯化试剂与水解的聚丙烯腈纤维的用量比为0.2ml:1g至8ml:1g,在反应温度为80℃的密封 条件下,油浴回流10-90min。
进一步地,其中,所述酰氯化试剂,进一步为:光气,五氯化磷,三光气,氯化亚砜,三氯化磷,双光气或草酰氯。
进一步地,其中,所述步骤3的反应条件为:所述胶原蛋白溶液的浓度为1%至10%,所述胶原蛋白溶液与所述酰化的聚丙烯腈纤维的用量比为20ml:1g至100ml:1g,调整反应液的pH值为8至10,反应温度为40至100℃,反应时间为5至30min。
进一步地,其中,所述步骤4进一步为:反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重。
进一步地,其中,所述胶原蛋白溶液为采用酸法、酸-酶法、碱法或碱-酶法提取的胶原蛋白溶液,所述胶原蛋白的相对分子质量为2000-10000Da。
进一步地,其中,所述干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
与现有技术相比,本发明所述的一种胶原蛋白表面改性聚丙烯腈纤维的方法,达到了如下效果:
1、本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法,依次进行水解、酰化、缩合,使聚丙烯腈纤维只在表面进行改性,且经表面改性后的聚丙烯腈纤维的生产的服饰的舒适度高、保健性能好,并且不会影响聚丙烯腈纤维的强度和色泽;
2、本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法,可以使从铬革屑中提取的胶原蛋白得到充分利用,生产工艺简单,生产效率高,适于产业化;
3、本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法,既可以解决含铬革屑废弃物带来的环境污染,还可以使聚丙烯腈纤维得到更好的利用,不仅降低了成本,还可以使生活质量得到提高。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的 不当限定。在附图中:
图1为本发明的胶原蛋白表面改性聚丙烯腈纤维的方法的具体流程图;
图2为本发明实施例1-实施例8的胶原蛋白表面改性聚丙烯腈纤维与胶原蛋白含量的关系图;
图3为本发明实施例4表面改性的聚丙烯腈纤维与未表面改性的聚丙烯腈纤维的FTIR-ATR对比图;
图4为酸性红B的光谱吸收曲线;
图5为本发明实施例4表面改性的聚丙烯腈纤维与未表面改性的聚丙烯腈纤维的上染速率曲线对比图。
具体实施方式
以下将配合图式及实施例来详细说明本发明的实施方式,藉此对本发明如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。
实施例1
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为6%的碳酸钠溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:100,反应温度为60℃,反应时间为10min;可得水解的聚丙烯腈纤维的水解率为16.7%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取1g所述步骤1中的水解的聚丙烯腈纤维采用光气酰化,所述光气与水解的聚丙烯腈纤维的用量比为0.2ml:1g,也就是说,所述光气的用量为0.2ml,在反应温度为80℃的密封条件下,油浴回流10min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到胶原蛋白表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为1%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为20ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为1g,因此所述胶原蛋白溶液的用量为20ml,加入10%碳酸钠溶液,调整反应液的pH值为8,反应温度为40℃,反应时间为5min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为1.0267g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为2.67%:
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用酸法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为9500Da。
采用酸法提取的胶原蛋白,具体为,向粉碎的铬革屑中加入0.2-0.5ml的硫酸或者0.5-1.0g的草酸,60℃-100℃下在水浴恒温振荡器中水解0.5-4h。反应完之后,加入Ca(OH)2或CaO调节反应液的pH值在10左右,高温加热,直到蓝色的溶液变为淡黄色,并且有浅蓝色沉淀为止。将水解液冷却过滤,得到粘稠的水解胶原液,烘干,得到胶原蛋白粉末。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例2
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为6.5%的碳酸氢钠溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:100,反应温度为65℃,反应时间为11min;可得水解的聚丙烯腈纤维的水解率为21.3%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取10g所述步骤1中的水解的聚丙烯腈纤维采用五氯化磷酰化,所述五氯化磷与水解的聚丙烯腈纤维的用量比为0.5ml:1g,也就是说,所述五氯化磷的用量为5ml,在反应温度为80℃的密封条件下,油浴回流15min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到胶原蛋白表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为1.5%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为25ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为10g,因此所述胶原蛋白溶液的用量为250ml,加入10%碳酸氢钠溶液,调整反应液的pH值为8.3,反应温度为45℃,反应时间为8min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为10.4833g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为4.83%。
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用酸法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为10000Da左右。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例3
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为7%的磷酸钠溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:150,反应温度为70℃,反应时间为12min;可得水解的聚丙烯腈纤维的水解率为28.9%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取100g所述步骤1中的水解的聚丙烯腈纤维采用三光气酰化,所述三光气与水解的聚丙烯腈纤维的用量比为1ml:1g,也就是说,所述三光气的用量为100ml,在反应温度为80℃的密封条件下,油浴回流20min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到胶原蛋白表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为2%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为30ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为100g,因此所述胶原蛋白溶液的用量为3000ml,加入10%磷酸钠溶液,调整反应液的pH值为8.5,反应温度为50℃,反应时间为10min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为105.9847g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为5.98%:
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用酸-酶法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为3000Da左右。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例4
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为11%的硅酸钠溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:120,反应温度为80℃,反应时间为15min;可得水解的聚丙烯腈纤维的水解率为45.4%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取1000g所述步骤1中的水解的聚丙烯腈纤维采用氯化亚砜酰化,所述氯化亚砜与水解的聚丙烯腈纤维的用量比为3ml:1g,也就是说,所述氯化亚砜的用量为3000ml,在反应温度为80℃的密封条件下,油浴回流40min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为5%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为50ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为1000g,因此所述胶原蛋白溶液的用量为50000ml,加 入10%硅酸钠溶液,调整反应液的pH值为9,反应温度为60℃,反应时间为16min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为1087.9467g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为:8.79%
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用酸-酶法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为5000Da左右。
采用酸-酶法提取胶原蛋白,具体为向粉碎的铬革屑中加入0.1-0.4ml的硫酸或者0.5-0.9g的草酸,60-100℃下在水浴恒温振荡器中水解1-4h,将温度降至酶的最适温度,加入NaOH和相应的硫酸或者加入NaOH或相应的草酸调反应液的pH至酶的最适pH,加入0.05-0.3g的酸性蛋白酶反应0.5-2h。反应完之后,加入Ca(OH)2或者CaO调节反应液的pH值在10左右,高温加热,直到蓝色的溶液变为淡黄色,并且有浅蓝色沉淀为止。将水解液冷却过滤,得到粘稠的水解胶原液,烘干,得到胶原蛋白粉末。本实施例所述的硫酸,为98%的浓硫酸。当然这里的NaOH还可以KOH、CaO等。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例5
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯 腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为12%的氢氧化钾溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:100,反应温度为85℃,反应时间为16min;可得水解的聚丙烯腈纤维的水解率为54.2%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取1g所述步骤1中的水解的聚丙烯腈纤维采用三氯化磷酰化,所述三氯化磷与水解的聚丙烯腈纤维的用量比为5ml:1g,也就是说,所述三氯化磷的用量为5ml,在反应温度为80℃的密封条件下,油浴回流60min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为7%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为70ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为1g,因此所述胶原蛋白溶液的用量为60ml,加入10%氢氧化钾溶液,调整反应液的pH值为9.2,反应温度为70℃,反应时间为22min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为1.0977g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为9.77%:
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用碱法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为9000Da左右。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例6
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为15%的氢氧化钠溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:70,反应温度为90℃,反应时间为18min;可得水解的聚丙烯腈纤维的水解率为69.8%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取10g所述步骤1中的水解的聚丙烯腈纤维采用双光气酰化,所述双光气与水解的聚丙烯腈纤维的用量比为7ml:1g,也就是说,所述双光气的用量为70ml,在反应温度为80℃的密封条件下,油浴回流80min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为9%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为90ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为10g,因此所述胶原蛋白溶液的用量为900ml,加入10%氢氧化钠溶液,调整反应液的pH值为9.5,反应温度为90℃,反应时间为25min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为10.8124g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为8.12%。
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用碱法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为7000Da左右。
采用碱法提取胶原蛋白,具体方法为,向粉碎的铬革屑中加入4-8%的NaOH和/或者CaO,在55-100℃下水解3-8h。将水解液冷却过滤,得到粘稠的水解胶原液,烘干,得到胶原蛋白粉末。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例7
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为15.5%的氢氧化钡溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:60,反应温度为95℃,反应时间为19min;可得水解的聚丙烯腈纤维的水解率为75.5%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取100g所述步骤1中的水解的聚丙烯腈纤维采用草酰氯酰化,所述草酰氯与水解的聚丙烯腈纤维的用量比为7.5ml:1g,也就是说,所述草酰氯的用量为750ml,在反应温度为80℃的密封条件下,油浴回流85min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为9.5%,所述胶原蛋白溶液与所述步 骤1中的水解的聚丙烯腈纤维的用量比为95ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为100g,因此所述胶原蛋白溶液的用量为95000ml,加入10%氢氧化钡溶液,调整反应液的pH值为9.7,反应温度为95℃,反应时间为27min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为106.9846g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为6.98%:
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用碱-酶提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为2500Da左右。
采用碱-酶法提取的胶原蛋白,具体为向粉碎的铬革屑中加入2-6%的NaOH、CaO和/或者MgO,60-100℃下在水浴恒温振荡器中水解2-6h。将温度降至酶的最适温度,加入硫酸或相应的NaOH、CaO和/或者MgO调反应液的pH至酶的最适pH,加入0.03-0.08g的碱性蛋白酶,木瓜蛋白酶和/或者中性蛋白酶反应0.3-2h。将水解液冷却过滤,得到粘稠的水解胶原液,烘干,得到胶原蛋白粉末。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
实施例8
如图1所示,为本发明提供的一种胶原蛋白表面改性聚丙烯腈纤维的方法,包括以下步骤:
步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯 腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
具体地,将聚丙烯腈纤维置于质量分数为16%的氢氧化钡溶液中进行水解,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:50,反应温度为100℃,反应时间为20min;可得水解的聚丙烯腈纤维的水解率为80.1%。
步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
具体地,取1000g所述步骤1中的水解的聚丙烯腈纤维采用草酰氯酰化,所述草酰氯与水解的聚丙烯腈纤维的用量比为8ml:1g,也就是说,所述草酰氯的用量为8000ml,在反应温度为80℃的密封条件下,油浴回流90min。
步骤3:将所述步骤2中得到的所述酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
具体地,所述胶原蛋白溶液的浓度为10%,所述胶原蛋白溶液与所述步骤1中的水解的聚丙烯腈纤维的用量比为100ml:1g,由于本实施例所用的水解的聚丙烯腈纤维为1000g,因此所述胶原蛋白溶液的用量为100000ml,加入10%氢氧化钡溶液,调整反应液的pH值为10,反应温度为100℃,反应时间为30min。
步骤4:反复冲洗所述步骤3中所得的表面改性的聚丙烯腈纤维后,过滤、干燥。
具体地,反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重,得到表面改性的聚丙烯腈纤维的质量为1058.7258g,并通过计算公式:
胶原蛋白含量=(m1-m0)/m0×100%
其中:m0为水解的聚丙烯腈纤维的质量,单位为g;
m1为改性的的聚丙烯腈纤维的质量,单位为g。
计算出胶原蛋白的含量为5.87%。
本实施例中所述的胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液;所述胶原蛋白溶液为采用碱-酶法提取的胶原蛋白溶液,且所述胶原蛋白的相对分子质量为2000Da左右。
另外,本实施例中所述的干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
表征实验1
将实施例1至实施例8所制备的表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维称重,记为w0,在水中浸泡1h后用3000r/min离心机甩干称重,记为w1,计算吸水率,则:吸水率=(w1-w0)/w0×100%;计算结果如图2所示。
由图2可知,未表面改性的聚丙烯腈纤维吸水性比较差,吸水率只有9.4%。而经胶原蛋白表面改性后,纤维的吸水性明显提高,并且随着胶原蛋白含量的增加,吸水率随之增加。当胶原蛋白含量为4.83%时,表面改性的聚丙烯腈纤维吸水率为12.5%,比聚丙烯腈纤维提高了33.0%。当胶原蛋白含量为8.79%时,表面改性的聚丙烯腈纤维的吸水率为19.4%,提高了106.4%。这说明,采用本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法,使聚丙烯腈纤维的表面改性后的亲水性基团增多,吸水性得到一定的提高。
表征实验2
选取实施例4所制备的表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维,采用考马斯亮蓝法测定染色反应,测定本发明是否实现了胶原蛋白对聚丙烯腈纤维的表面的改性。
具体地,所用的染色液为:称取100mg考马斯亮蓝G-250溶于50mL95%乙醇中,然后加入100mL85%的磷酸,并用蒸馏水稀释至1000mL,滤纸过滤。
具体地,所用的脱色液为:按乙醇:乙酸:水=2:1:7的比例配制;
取0.2g待检验纤维浸于20ml染色液中,5min后观察其是否显色,之后用脱色液“少量多次”清洗,直至脱色液无色,然后观察纤维是否脱色。
实验结果表明,经考马斯亮蓝染色后,表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维都呈现蓝色,但经脱色液清洗后,只有表面改性的聚丙烯腈纤维呈现青绿色,未表面改性的聚丙烯腈纤维呈现淡蓝色。这是因为,表面改性的聚丙烯腈纤维中,胶原蛋白和聚丙烯腈纤维之间是通过化学键的 方式结合在一起,脱色液不能破坏二者之间的化学键结合作用;而未表面改性的聚丙烯腈纤维,试剂只是通过物理吸附作用附着在纤维表面,不稳定,所以脱色液能使之几乎完全脱色。由此可证明,本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法,实现了胶原蛋白对聚丙烯腈纤维的表面的改性。
表征实验3
如图3所示,为本发明实施例4的表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维的FTIR-ATR对比图谱,其中,曲线1为表面改性的聚丙烯腈纤维的FTIR-ATR图谱,曲线2为未表面改性的聚丙烯腈纤维的FTIR-ATR图谱,由于聚丙烯腈纤维在2930cm-1和1450cm-1附近的烷烃基吸收峰,在2243cm-1附近的氰基特征吸收峰,也在胶原蛋白表面改性的聚丙烯腈纤维的FTIR-ATR图谱中出现,说明胶原蛋白对聚丙烯腈纤维的改性并没有影响纤维内部结构,只是对聚丙烯腈纤维的表面进行改性。在胶原蛋白改性聚丙烯腈的纤维FTIR-ATR图谱中出现了新的特征吸收峰:1669cm-1处的酰胺I带的C=O伸缩振动,1550cm-1处的酰胺II带的N-H弯曲振动,3360cm-1附近的羟基吸收峰;此外,与聚丙烯腈纤维的FTIR-ATR图谱比较,代表氰基的特征吸收峰强度明显降低,说明氰基数目减少。这些新特征峰的出现和氰基峰强的下降表明,聚丙烯腈纤维表面发生了水解、缩合等一系列化学反应,实现了胶原蛋白对聚丙烯腈纤维的表面改性。
表征实验4
采用恒温染色法判断本发明实施例4的表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维的上染百分率,具体步骤为:
配制0.04%的酸性红B染液,移取2.0ml于100ml容量瓶中,蒸馏水定容,用紫外分光光度计测定300~700nm波长范围内的吸光度,得出光谱吸收曲线。
采用恒温染色法,按表1所示配制染浴,并用硫酸调节pH(pH为2~3),在70℃放入称量好的表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维,然后按表1所示染色时间取出对应的染杯,将表面改性的聚丙烯腈纤维和未表面改性的聚丙烯腈纤维进行清洗,将清洗液与染色残液混合定容到 100ml,在最大吸收波长测其吸光度,计算上染百分率,得出上染速率曲线。
上染百分率=(1-A1/A0)×100%,其中A0为原液吸光度,A1为染色后残液吸光度。
表1 纤维染色试验设计
Figure PCTCN2015073098-appb-000001
如图4所示,为所述酸性红B的光谱吸收曲线,由酸性红B光谱吸收曲线可知,在536nm处有最大吸光度,所以酸性红B的最大吸收波长λ为536nm。
如图5所示,曲线3为本发明的表面改性的聚丙烯腈纤维的上染速率图谱,曲线4为未表面改性的聚丙烯腈纤维的上染速率图谱,其中,酸性红B对胶原蛋白表面改性的聚丙烯腈纤维的平衡上染百分率为91%,高于未表面改性的聚丙烯腈纤维的14%,并且染色2min时,上染百分率就达到了67%。因此,可以得出,本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法大幅度提高了未表面改性的聚丙烯腈纤维的上染百分率。
上述说明示出并描述了本发明的若干优选实施例,但如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
工业实用性
所谓实用性,是指发明或者实用新型申请的主题必须能够在产业上制造或者使用,并且能够产生积极效果。本发明所述的胶原蛋白表面改性聚丙烯腈纤维的方法是基于理论基础的发明,是一种清晰、可靠、并且具有应用重复性的发明。理论基础是本发明的科学性基础,并且是工业实用性的正确性前提。
构成工业实用性的另一判据是宏观和微观的经济性。本发明是一种开创性的新方法,依次对聚丙烯腈纤维进行水解、酰化以及缩合,使聚丙烯腈纤维只在其表面进行改性。本发明所述的方法对于环境污染危机和纤维的有效利用性来说,本发明是一种特别急需的创造,既可以解决含铬革屑废弃物带来的环境污染,还可以使聚丙烯腈纤维得到更好的利用,不仅降低了成本,还可以使生活质量得到提高。

Claims (10)

  1. 一种胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,包括以下步骤:
    步骤1:将聚丙烯腈纤维置于碱性溶液中进行水解,将水解后的聚丙烯腈纤维冲洗至中性后进行干燥,得到水解的聚丙烯腈纤维;
    步骤2:将所述步骤1中的水解的聚丙烯腈纤维采用酰氯化试剂进行酰化反应,除去反应后残留的酰氯化试剂,得到酰化的聚丙烯腈纤维;
    步骤3:将所述步骤2中得到的酰化的聚丙烯腈纤维与胶原蛋白溶液进行缩合反应,在所述缩合反应的过程中加入碱剂调节反应液的pH值为碱性,得到表面改性的聚丙烯腈纤维;
    步骤4:反复冲洗所述步骤3中的表面改性的聚丙烯腈纤维后,过滤、干燥。
  2. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述胶原蛋白溶液,进一步为:从含铬革屑中提取的胶原蛋白溶液。
  3. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述步骤1的反应条件为:所述碱性溶液中碱剂的质量分数为6%至16%,所述聚丙烯腈纤维与所述碱性溶液的质量比为1:100,反应温度为60至90℃,反应时间为10至20min。
  4. 根据权利要求1或3所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述碱剂,进一步为:碳酸钠、碳酸氢钠、磷酸钠、硅酸钠、氢氧化钾、氢氧化钠和氢氧化钡中的一种或几种。
  5. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述步骤2的反应条件为:所述酰氯化试剂与水解的聚丙烯腈纤维的用量比为0.2ml:1g至8ml:1g,在反应温度为80℃的密封条件下,油 浴回流10-90min。
  6. 根据权利要求5所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述酰氯化试剂,进一步为:光气,五氯化磷,三光气,氯化亚砜,三氯化磷,双光气或草酰氯。
  7. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述步骤3的反应条件为:所述胶原蛋白溶液的浓度为1%至10%,所述胶原蛋白溶液与所述酰化的聚丙烯腈纤维的用量比为20ml:1g至100ml:1g,调整反应液的pH值为8至10,反应温度为40至100℃,反应时间为5至30min。
  8. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述步骤4进一步为:反复冲洗所述步骤3中得到的表面改性的聚丙烯腈纤维后过滤,采用水合茚三酮检验滤液,直至所述滤液的颜色为无色时,将冲洗后的表面改性的聚丙烯腈纤维干燥并称重。
  9. 根据权利要求2所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述胶原蛋白溶液为采用酸法、酸-酶法、碱法或碱-酶法提取的胶原蛋白溶液,所述胶原蛋白的相对分子质量为2000-10000Da。
  10. 根据权利要求1所述的胶原蛋白表面改性聚丙烯腈纤维的方法,其特征在于,所述干燥,进一步为:常压干燥、减压真空干燥、硫化床干燥或冷冻干燥。
PCT/CN2015/073098 2015-02-15 2015-02-15 一种胶原蛋白表面改性聚丙烯腈纤维的方法 WO2016127429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073098 WO2016127429A1 (zh) 2015-02-15 2015-02-15 一种胶原蛋白表面改性聚丙烯腈纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073098 WO2016127429A1 (zh) 2015-02-15 2015-02-15 一种胶原蛋白表面改性聚丙烯腈纤维的方法

Publications (1)

Publication Number Publication Date
WO2016127429A1 true WO2016127429A1 (zh) 2016-08-18

Family

ID=56614090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073098 WO2016127429A1 (zh) 2015-02-15 2015-02-15 一种胶原蛋白表面改性聚丙烯腈纤维的方法

Country Status (1)

Country Link
WO (1) WO2016127429A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111379162A (zh) * 2020-04-01 2020-07-07 青岛大学 一种苎麻纤维柔化方法
CN111792866A (zh) * 2020-07-01 2020-10-20 南通大学 一种亲油改性聚丙烯腈纤维及沥青混凝土的制备方法
CN113729260A (zh) * 2021-09-20 2021-12-03 河南中烟工业有限责任公司 一种焦甜香韵潜香物质及潜香型再造烟叶的制备方法
CN115180774A (zh) * 2022-07-31 2022-10-14 深圳同享投资有限合伙企业(有限合伙) 一种养殖废水回收磷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590609A (zh) * 2003-09-03 2005-03-09 中国皮革和制鞋工业研究院 一种胶原蛋白-聚丙烯腈复合纤维及其制备方法
CN101831806A (zh) * 2010-05-05 2010-09-15 山东理工大学 腈纶表面接枝豆汁中蛋白质改性纤维的制造方法
CN104313101A (zh) * 2014-11-04 2015-01-28 中国皮革和制鞋工业研究院 一种可控制分子量的提取胶原蛋白的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1590609A (zh) * 2003-09-03 2005-03-09 中国皮革和制鞋工业研究院 一种胶原蛋白-聚丙烯腈复合纤维及其制备方法
CN101831806A (zh) * 2010-05-05 2010-09-15 山东理工大学 腈纶表面接枝豆汁中蛋白质改性纤维的制造方法
CN104313101A (zh) * 2014-11-04 2015-01-28 中国皮革和制鞋工业研究院 一种可控制分子量的提取胶原蛋白的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU , XUEMIN ET AL.: "Dyeing Thermodynamics of Collagen Modified Acrylic Fibers", JOURNAL OF TEXTILE RESEARCH, vol. 35, no. 09, 30 September 2014 (2014-09-30), pages 90 - 94, ISSN: 0253-9721 *
JIA, ZHAO: "Study on the Grafting Modification of Protein onto Surface of Polyacrylonitrile Fiber", SCIENCE -ENGINEERING (A), CHINA DOCTOR'S THESES FULL-TEXT DATABASE, 15 March 2010 (2010-03-15), ISSN: 1674-022X *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111379162A (zh) * 2020-04-01 2020-07-07 青岛大学 一种苎麻纤维柔化方法
CN111379162B (zh) * 2020-04-01 2022-06-17 青岛大学 一种苎麻纤维柔化方法
CN111792866A (zh) * 2020-07-01 2020-10-20 南通大学 一种亲油改性聚丙烯腈纤维及沥青混凝土的制备方法
CN113729260A (zh) * 2021-09-20 2021-12-03 河南中烟工业有限责任公司 一种焦甜香韵潜香物质及潜香型再造烟叶的制备方法
CN115180774A (zh) * 2022-07-31 2022-10-14 深圳同享投资有限合伙企业(有限合伙) 一种养殖废水回收磷的方法
CN115180774B (zh) * 2022-07-31 2023-08-22 深圳同享投资有限合伙企业(有限合伙) 一种养殖废水回收磷的方法

Similar Documents

Publication Publication Date Title
WO2016127429A1 (zh) 一种胶原蛋白表面改性聚丙烯腈纤维的方法
CN106012584B (zh) 一种锦纶56纤维/棉混纺面料的碱性一浴法染色方法
CN108442110B (zh) 一种氨基酸共价偶联蛋白改性纤维材料及其制备方法
CN102817251B (zh) 羊毛酸性媒介染料低温低铬染色助剂的制备及使用方法
WO2022110089A1 (zh) 一种用于印染废水的污水处理组合物及其制备方法
CN107159122A (zh) 一种杂原子掺杂型炭气凝胶及其制备方法
CN111253776B (zh) 全棉与全棉混纺面料用藏青活性染料配方,及应用
CN112900076A (zh) 一种多功能涤纶纤维及其制备方法
CN112409933B (zh) 一种鱼源明胶及纳米纤维膜的生产方法
CN106333569B (zh) 一种聚酰亚胺拉舍尔毛毯及其非水溶剂染色方法
CN111118920B (zh) 一种床垫织物染色剂及染色方法
CN104532391B (zh) 一种高上染率聚酯纤维及其制备方法
CN110468460A (zh) 一种再生腈纶的制备方法及再生腈纶产品
Liu et al. Preparation of a cationic environment-friendly fixing agent
JP2010216051A (ja) 高白度耐変色性架橋アクリレート系繊維
CN109577021A (zh) 一种仿真效果良好的假发制备方法
WO2022088852A1 (zh) 一种高伸长间位芳纶聚合体及其制备方法
CN110886113B (zh) 一种由水性聚氨酯处理棉织物的分散染料染色方法
CN109796786B (zh) 一种复合型鲜艳红色活性染料及其制备方法与应用
CN113234331B (zh) 一种蓝色分散染料
CN109735669A (zh) 一种皮革防护型加脂剂及其制备方法
CN104153190A (zh) 一种绿棉纤维的处理方法
CN102493218A (zh) 一种利用结构改性的蒽醌类天然染料进行染色的方法
TW201335450A (zh) 具耐燃功能之天然纖維素纖維的製法
CN107522639B (zh) 一种对氨基苯-β-羟乙基砜硫酸酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881591

Country of ref document: EP

Kind code of ref document: A1