WO2016125809A1 - 滅菌装置及び滅菌方法 - Google Patents

滅菌装置及び滅菌方法 Download PDF

Info

Publication number
WO2016125809A1
WO2016125809A1 PCT/JP2016/053111 JP2016053111W WO2016125809A1 WO 2016125809 A1 WO2016125809 A1 WO 2016125809A1 JP 2016053111 W JP2016053111 W JP 2016053111W WO 2016125809 A1 WO2016125809 A1 WO 2016125809A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sterilization chamber
hydrogen peroxide
sterilization
sterilant
Prior art date
Application number
PCT/JP2016/053111
Other languages
English (en)
French (fr)
Inventor
加藤 雅樹
理樹 福嶋
貞末 数也
義徳 白原
Original Assignee
株式会社湯山製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社湯山製作所 filed Critical 株式会社湯山製作所
Priority to JP2016573391A priority Critical patent/JPWO2016125809A1/ja
Publication of WO2016125809A1 publication Critical patent/WO2016125809A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/70Cleaning devices specially adapted for surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration

Definitions

  • the present invention relates to a sterilization apparatus and a sterilization method.
  • Hydrogen peroxide has self-decomposability, and the only gas generated after decomposition is water vapor and oxygen. Therefore, sterilization can be performed more safely than in the case of using ethylene oxide gas.
  • hydrogen peroxide has a high sterilizing power and can be sterilized in a shorter time than other sterilization methods.
  • An object of the present invention is to provide a sterilization apparatus and a sterilization method for performing more efficient sterilization.
  • a sterilization chamber for storing an object to be sterilized, a supply unit for supplying a sterilant containing liquid hydrogen peroxide into the sterilization chamber, a liquid unit located in the sterilization chamber and the liquid excess.
  • a sterilization apparatus including an evaporation unit that evaporates hydrogen oxide in the sterilization chamber.
  • a step of storing an object to be sterilized in a sterilization chamber a supply step of supplying a sterilant containing liquid hydrogen peroxide in the sterilization chamber, and the liquid peroxidation in the sterilization chamber
  • a method of sterilization comprising the step of evaporating hydrogen.
  • FIG. 1 is a flowchart illustrating an example of the flow of a sterilization method according to an aspect of the present invention.
  • FIG. 2 is a flowchart illustrating an example of the flow of a sterilization method according to an aspect of the present invention.
  • FIG. 3 is a flowchart illustrating an example of the flow of a sterilization method according to an aspect of the present invention.
  • FIG. 4 is a conceptual diagram illustrating an overall configuration of a sterilization apparatus according to an aspect of the present invention.
  • FIG. 5 is a perspective view showing a plurality of holes provided in the supply unit of the sterilizer according to one aspect of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a hydrogen peroxide supply step of the sterilization method according to an aspect of the present invention.
  • FIG. 1 is a flowchart illustrating an example of the flow of a sterilization method according to an aspect of the present invention.
  • FIG. 2 is a flowchart illustrating an example of the flow of a sterilization method according
  • FIG. 7 is a perspective view showing an example of an evaporating dish constituting the evaporating unit of the sterilizing apparatus according to one aspect of the present invention.
  • FIG. 8 is a conceptual diagram illustrating an overall configuration of a sterilization apparatus according to an aspect of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a configuration of an evaporator according to one embodiment.
  • FIG. 10 is a perspective view showing the configuration of the evaporation unit with the upper wall member removed.
  • FIG. 11 is a cross-sectional view illustrating a configuration of an evaporator according to one embodiment.
  • FIG. 12 is a cross-sectional view illustrating a configuration of an evaporator according to one embodiment.
  • FIG. 13 is a cross-sectional perspective view showing the configuration of an evaporator according to one embodiment.
  • FIG. 14 is a cross-sectional perspective view showing the configuration of an evaporator according to one embodiment.
  • FIG. 15 is a perspective view of an overview of one form of the residual liquid recovery unit.
  • FIG. 16 is a perspective view showing a cross section of one form of the residual liquid recovery unit.
  • FIG. 17 is a perspective view showing a cross section of one form of the residual liquid recovery unit.
  • FIG. 18 is a perspective view illustrating a configuration of a supply member according to one embodiment.
  • FIG. 19 is an example of a flowchart showing the opening / closing control of the solenoid valve SV18 in the concentration step.
  • FIG. 19 is an example of a flowchart showing the opening / closing control of the solenoid valve SV18 in the concentration step.
  • FIG. 20 is a schematic diagram illustrating an example of installation of the sensor SNS.
  • FIG. 21 is a schematic diagram illustrating an example of installation of the sensor SNS.
  • FIG. 22 is a schematic diagram illustrating an example of the configuration of the sensor SNS.
  • FIG. 23 is a graph showing the relationship between the sterilization time and the number of surviving bacteria.
  • FIGS. 1 to 3 are flowcharts showing an example of the flow of a sterilization method according to one embodiment of the present invention.
  • the sterilization method and the sterilization apparatus according to one embodiment of the present invention will be described with reference to this flowchart, the scope of the present invention is not limited thereto.
  • FIG. 4 is a conceptual diagram showing an overall configuration of a sterilization apparatus according to one aspect of the present invention.
  • 4 includes a sterilization chamber 20, a supply unit 30, an evaporation unit 40, a concentration measuring unit 45, a filling unit 50, a decompression unit 60, a first decomposition unit 70, and a second decomposition.
  • a unit 71, a residual liquid recovery unit 80, a dehumidifying unit 90, and a filter 91 are provided.
  • the concentration measuring unit 45, the filling unit 50, the decompression unit 60, the first decomposition unit 70, the second decomposition unit 71, the residual liquid recovery unit 80, the dehumidifying unit 90, and the filter 91 may be omitted.
  • specific configurations such as a pressure gauge, a valve, a vacuum gauge, a pump, and a sensor, which will be described later, are merely examples, and the scope of the present invention is not limited thereto.
  • the sterilization chamber 20 is configured to accommodate an object to be sterilized.
  • the sterilization chamber 20 is typically a vacuum chamber.
  • the sterilization chamber 20 includes a pressure gauge PG1.
  • the sterilization chamber 20 is connected to the outside of the system through a solenoid valve SV14 and a filter 91.
  • the sterilization chamber 20 includes a door (not shown). This door may be provided with an arbitrary safety mechanism.
  • the supply unit 30 is connected to the sterilization chamber 20 via three-way solenoid valves SV7 and SV8.
  • the supply unit 30 is configured to supply a sterilant containing liquid hydrogen peroxide into the sterilization chamber 20.
  • the hydrogen peroxide may be hydrogen peroxide gas or liquid hydrogen peroxide.
  • the supply unit 30 includes a pressure gauge PG2.
  • the supply unit 30 is connected to the outside of the system through a solenoid valve SV6 and a filter 91.
  • the supply unit 30 may include a heater.
  • the supply unit 30 includes a member 31 having a plurality of holes. The configuration and function of the member 31 will be described in detail later. The member 31 may be omitted.
  • the sterilization chamber 20 and the supply unit 30 are connected to the vacuum gauge CG1 via the three-way solenoid valve SV11.
  • the vacuum gauge CG1 is used to measure the absolute pressure of the sterilization chamber 20 and / or the supply unit 30.
  • the vacuum gauge CG1 is also used for indirect concentration management in the supply unit 30 when, for example, the supply unit 30 concentrates the sterilant by referring to the saturated vapor pressure curve of hydrogen peroxide. Can do.
  • the evaporation unit 40 is provided inside the sterilization chamber 20.
  • the evaporation unit 40 is configured to evaporate the liquid hydrogen peroxide supplied from the supply unit 30 in the sterilization chamber 20.
  • the sterilization chamber 20 is filled with hydrogen peroxide gas, and the object to be sterilized can be sterilized.
  • the evaporation unit 40 is preferably installed near the center of the sterilization chamber 20. This makes it possible to more efficiently diffuse the hydrogen peroxide gas in the sterilization chamber 20. Note that the evaporation unit 40 may be provided outside the sterilization chamber 20.
  • the evaporation unit 40 typically includes an evaporating dish that receives liquid hydrogen peroxide and a heater that heats the evaporating dish.
  • a flat thing, a crucible shape, or a cylindrical thing is mentioned, for example.
  • the sterilization apparatus 10 may include a concentration measuring unit 45 in the sterilization chamber 20. This concentration measuring means 45 is used for measuring the concentration of hydrogen peroxide gas in the sterilization chamber 20.
  • the sterilizer 10 may further include a control unit (not shown) that adjusts the amount of sterilant supplied to the sterilization chamber 20 in accordance with the hydrogen peroxide gas concentration measured by the concentration measuring means 45. .
  • the concentration measuring means 45 typically includes a light source 45A and a photometer 45B.
  • the concentration measuring means 45 typically further includes a measuring unit (probe) 45C.
  • the light source can be freely selected as long as it contains ultraviolet light having a wavelength of 300 nm or less and / or infrared light having a wavelength of 1400 nm or more, which is absorbed by hydrogen peroxide, but preferably a monochromatic light source such as a light emitting diode is used.
  • a monochromatic light source can be used. In this case, it is not necessary to perform wavelength selection using a prism, an optical filter, or the like, so that the apparatus can be reduced in size and cost. In this case, the amount of light is increased and the measurement accuracy is improved.
  • a photodiode can be used as the photometer.
  • the filling unit 50 is configured to fill the supply unit 30 with a sterilant.
  • the filling unit 50 is connected to the supply unit 30 via a liquid feed pump TP and a solenoid valve SV5.
  • a sensor SNS and a pressure gauge PG3 are connected to the piping connecting the filling unit 50 and the supply unit 30.
  • the pressure gauge PG3 functions as a safety device that forcibly stops the liquid feeding pump when the pressure in the pipe rises due to a device abnormality.
  • the filling unit 50 typically includes a cartridge containing a sterilant.
  • the filling unit 50 is configured to suck up the sterilizing agent from the cartridge using an extraction tube, for example, and fill the supply unit 30 with the sterilizing agent.
  • the decompression unit 60 is configured to decompress the inside of the sterilization chamber 20 and / or the supply unit 30.
  • the decompression unit 60 is connected to the first disassembly unit 70 via the solenoid valve SV0.
  • the decompression unit 60 is connected to the second disassembly unit 71 through solenoid valves SV0 and SV4.
  • the decompression unit 60 is connected to the outside of the system through a solenoid valve SV1.
  • the decompression unit 60 includes a rotary pump RP and an oil mist separator Sep.
  • the oil mist separator Sep is connected to the discharge side of the rotary pump RP and is configured to collect oil mist generated from the rotary pump RP.
  • the oil mist separator Sep is connected to the suction side of the rotary pump RP via a solenoid valve SV16. Thereby, the oil collected by the oil mist separator Sep can be collected by the rotary pump RP.
  • the oil mist separator Sep may be omitted.
  • other vacuum pumps such as a dry pump, can also be used instead of rotary pump RP.
  • the first decomposition unit 70 is provided between the sterilization chamber 20 and the decompression unit 60.
  • the first decomposition unit 70 includes, for example, a first decomposition catalyst unit 70A and a second decomposition catalyst unit 70B. These decomposition catalyst units are configured to decompose hydrogen peroxide.
  • the first cracking catalyst unit 70A and the second cracking catalyst unit 70B are connected in series.
  • the first disassembly unit 70 is connected to the sterilization chamber 20 via solenoid valves SV2 and SV3 arranged in parallel with each other.
  • the first decomposition unit 70 is configured such that when the solenoid valve SV2 is opened, the gas passes only through the first decomposition catalyst unit 70A.
  • first decomposition unit 70 is configured such that when the solenoid valve SV3 is opened, the gas passes through both the first decomposition catalyst unit 70A and the second decomposition catalyst unit 70B.
  • the configuration and function of the first disassembly unit 70 will be described in detail later.
  • the example in which the first cracking unit 70 includes two cracking catalyst units has been described.
  • the first cracking unit 70 may include a single cracking catalyst unit, and may include three or more cracking catalyst units.
  • a cracking catalyst unit may be provided.
  • the second disassembly unit 71 is connected to the supply unit 30 via the solenoid valve SV9.
  • the second decomposition unit 71 includes a decomposition catalyst unit configured to decompose hydrogen peroxide.
  • the second decomposition unit 71 is used in a concentration step and a residual liquid recovery step described later.
  • the configuration and function of the second disassembly unit 71 will be described in detail later.
  • the solenoid valve SV4 may be connected to the first disassembly unit 70 without providing the second disassembly unit 71.
  • the “decomposition unit” and the “decomposition catalyst unit” are not limited to those capable of detoxifying hydrogen peroxide, and include not only those that decompose hydrogen peroxide and those that catalyze the decomposition reaction. Also included are those that adsorb and remove hydrogen peroxide.
  • the residual liquid recovery unit 80 is configured to recover the sterilant remaining in the supply unit 30.
  • the residual liquid recovery unit 80 typically includes a heater for vaporizing the recovered sterilant.
  • the hydrogen peroxide vaporized in the residual liquid recovery unit 80 passes through the second decomposition unit 71 and is discharged out of the system.
  • the configuration and function of the residual liquid recovery unit 80 will be described in detail later.
  • the dehumidifying unit 90 is configured to dehumidify air flowing into the system.
  • the dehumidifying unit 90 is connected to the sterilization chamber 20 via a solenoid valve SV12.
  • the dehumidifying unit 90 is connected to the sterilization chamber 20, the supply unit 30, and the residual liquid recovery unit 80 via the solenoid valve SV10.
  • the dehumidifying unit 90 is connected to the outside of the system through a solenoid valve SV13 and a filter 91. Further, the dehumidifying unit 90 is connected to the outside of the system through a solenoid valve SV15.
  • the configuration and function of the dehumidifying unit 90 will be described in detail later.
  • the filter 91 is used for cleaning air flowing into the system. As the filter 91, for example, a HEPA filter can be used.
  • the supply unit 30 is decompressed. This decompression step corresponds to step 100 in FIG.
  • This filling step corresponds to step 110 in FIG.
  • a sterilant containing liquid hydrogen peroxide is filled from the filling unit 50 to the supply unit 30.
  • This step can be performed, for example, as follows. First, in a state where the tip of the extraction tube in the filling unit 50 is positioned below the liquid level of the sterilizing agent in the cartridge, the solenoid valve SV5 is opened and the liquid feed pump TP is operated. When the sensor SNS detects the required amount of suction, the liquid feeding pump TP is stopped. The extraction tube is moved above the liquid level of the sterilizing agent, and the liquid feeding pump TP is operated again. Thereby, a necessary amount of the sterilizing agent is filled from the filling unit 50 into the supply unit 30.
  • the sensor SNS functions to detect that a fixed amount (for example, 3 ml) has been sucked out. Specifically, the sensor SNS is turned on when a fixed amount of suction is completed. Further, after the completion of the sucking, when the same amount of liquid feeding is completed, the state is turned off. At this time, the time from the start of suction until the sensor SNS is turned on is compared with the time from when the sensor SNS is turned on until the sensor SNS is turned off, and if both are not equal, a warning is issued. It can also be. In this way, it is possible to more reliably detect that the entire amount of the sterilizing agent sucked out has been supplied to the supply unit 30.
  • a fixed amount for example, 3 ml
  • the first pressure reduction is performed.
  • This first decompression step corresponds to step 120 in FIG.
  • the inside of the sterilization chamber 20 is decompressed.
  • This decompression can be performed, for example, as follows. First, the solenoid valve SV11 is opened. Then, the solenoid valve SV2 is opened while the solenoid valve SV3 is closed. The rotary pump RP is activated, and in conjunction with this, the solenoid valve SV0 is opened and the solenoid valve SV1 is closed. Thereby, the inside of the sterilization chamber 20 can be decompressed.
  • this first decompression step is performed with the solenoid valve SV2 opened while the solenoid valve SV3 is closed. Thereby, the gas passes only through the first cracking catalyst unit 70A and does not pass through the second cracking catalyst unit 70B.
  • This temperature adjustment step corresponds to step 130 in FIG.
  • air from outside the system is introduced into the sterilization chamber 20 to increase the temperature of the object to be sterilized disposed in the sterilization chamber 20.
  • This step can be performed, for example, as follows. First, the solenoid valves SV13 and SV12 are opened, and a small amount of air is introduced into the sterilization chamber 20 from outside the system. Due to the kinetic energy of the introduced air, the temperature of the object to be sterilized disposed in the sterilization chamber 20 that has decreased in the first decompression step can be increased. Note that air introduced into the sterilization chamber 20 is purified by the filter 91 and dehumidified by the dehumidifying unit 90.
  • the inlet for introducing air into the sterilization chamber 20 in the temperature adjustment step is preferably provided in the vicinity of the evaporation unit 40, for example, in the vicinity of the center of the sterilization chamber 20. If it carries out like this, it will become possible to warm more efficiently the to-be-sterilized thing in the sterilization chamber 20 by introduction
  • a nozzle that causes an air flow in a direction opposite to the direction toward the connection port with the first decomposition unit 70 may be further provided at the inlet of the sterilization chamber 20. In this way, the introduced air can be circulated through the sterilization chamber 20 and then sucked toward the first decomposition unit 70. Therefore, by adopting such a configuration, the temperature can be adjusted more efficiently.
  • this temperature adjustment may be performed by heating an object to be sterilized in the sterilization chamber 20 using a heating means such as an infrared heater.
  • a heating means such as an infrared heater.
  • using a method of adjusting the temperature by introducing air is more efficient because the sterilization chamber 20 can be heated from the inside.
  • the temperature adjustment step may be omitted, and the product to be sterilized in the sterilization chamber 20 may be naturally warmed by heat transfer or radiant heat from the sterilization chamber 20.
  • the efficiency of heating can be further increased by installing a heater in the middle of the path for injecting air and heating the inflowing air.
  • the filling step 110, the first decompression step 120, and the temperature adjustment step 130 are performed in parallel, but the filling step 110, the first decompression step 120, and the temperature adjustment step 130 are performed. It is also possible to perform them in series instead of in parallel. However, if the filling step 110, the first decompression step 120, and the temperature adjustment step 130 are performed in parallel, the time required for the entire sterilization operation can be shortened.
  • the sterilization method after the filling step 110 is completed, it is determined whether or not it is necessary to concentrate the sterilant. If the sterilant needs to be concentrated, the process proceeds to steps 140 and 150. If the sterilant does not need to be concentrated, the process 140 is omitted and the process proceeds to step 150.
  • the determination of the necessity of concentration of the sterilizing agent is performed according to, for example, the type of article to be sterilized. For example, in the case of sterilizing only the surface of a sterilized product having no lumen (surface sterilization), sterilization is typically performed using a concentrated sterilizing agent.
  • concentration corresponds to step 140 in FIG.
  • the sterilizing agent filled in the supply unit 30 is concentrated as necessary.
  • This concentration process can be performed as follows, for example. That is, the solenoid valve SV11 is closed and SV4 and SV9 are opened. Thereby, the supply unit 30 is depressurized, and the sterilizing agent in the supply unit 30 can be concentrated to an appropriate concentration by continuing the depressurization in the supply unit 30 to an appropriate pressure according to the saturated vapor pressure curve of hydrogen peroxide. It becomes possible.
  • the supply unit 30 is typically configured such that the sterilizing agent in the supply unit 30 is concentrated by the decompression unit 60. By using the decompression unit 60 at the time of concentration, it becomes possible to concentrate the sterilizing agent at a lower temperature than in the case where the decompression unit 60 is not used.
  • the supply unit 30 is preferably temperature-adjusted to a temperature at which the concentration of the sterilant can be ignored under atmospheric pressure. Thereby, the concentration of the sterilizing agent can be started only after the supply unit 30 is decompressed.
  • the temperature of the supply unit 30 is, for example, preferably 70 ° C. or less, more preferably in the range of 30 ° C. to 70 ° C., and still more preferably in the range of 40 ° C. to 60 ° C.
  • concentration under reduced pressure the time required for concentration can be shortened.
  • concentration can be performed at a relatively low temperature, unintended decomposition of the sterilant due to heating can be suppressed.
  • the temperature adjustment of the supply unit 30 can be performed using, for example, the heater described above.
  • the supply unit 30 includes a member 31 having a plurality of holes. This member 31 is provided in the supply unit 30 and above the liquid level of the filled sterilant.
  • FIG. 5 is a perspective view showing an example of a member having a plurality of holes provided in the supply unit of the sterilization apparatus according to one aspect of the present invention.
  • the member 31 includes a plurality of holes 31H.
  • the two or more holes 31H should just be provided.
  • a mesh member may be used as the member 31 having a plurality of holes. Even when such a configuration is adopted, at least a part of the hydrogen peroxide scattered in the concentration step is captured by the mesh member and can be recovered in the supply unit 30. That is, by adopting such a configuration, the loss of hydrogen peroxide in the concentration step can be reduced.
  • a sintered filter may be used as the member 31 having a plurality of holes. Even when such a configuration is employed, at least a part of the hydrogen peroxide scattered in the concentration step is captured by the sintered filter and can be recovered in the supply unit 30. That is, by adopting such a configuration, the loss of hydrogen peroxide in the concentration step can be reduced.
  • the diameter of the hole 31H is, for example, 10 mm or less, preferably in the range of 0.001 to 10 mm, more preferably in the range of 0.1 to 5 mm, and still more preferably in the range of 0.5 to 1.5 mm. To do.
  • two or more members 31 can be used in an overlapping manner. In this case, the positions of the holes 31H of the plurality of members 31 may be shifted from each other.
  • the collected gas passes through the second decomposition unit 71.
  • disassembly unit 70 can be decreased. That is, this makes it possible to shorten the time required to re-evaporate the condensation in the first decomposition unit 70. Thus, this makes it possible to shorten the entire sterilization operation.
  • This second decompression step corresponds to step 150 in FIG.
  • This 2nd pressure reduction process can be performed by the method similar to the 1st pressure reduction process mentioned above, for example.
  • This pre-supply holding step corresponds to step 160 in FIG.
  • the solenoid valve SV2 is closed and held for a short time.
  • steps 170, 180, and 190 described later are repeated until a predetermined time elapses. As a result, a sufficient amount of hydrogen peroxide gas is allowed to reach the sterilization chamber 20.
  • FIG. 6 is a conceptual diagram illustrating a hydrogen peroxide supply step of the sterilization method according to an aspect of the present invention.
  • This hydrogen peroxide supply step corresponds to step 170 in FIG.
  • a sterilant containing liquid hydrogen peroxide is supplied from the supply unit 30 into the sterilization chamber 20.
  • the liquid hydrogen peroxide supplied from the supply unit 30 into the sterilization chamber 20 is configured to be vaporized in the evaporation unit 40.
  • the evaporation unit 40 typically includes an evaporating dish 41 that receives liquid hydrogen peroxide and a heater that heats the evaporating dish 41.
  • This step can be realized, for example, by opening the three-way solenoid valves SV7 and SV8 for a certain time. Note that this step may be performed by supplying a sterilant containing hydrogen peroxide gas into the sterilization chamber 20.
  • the evaporation unit 40 is provided in the sterilization chamber 20. That is, the liquid hydrogen peroxide supplied from the supply unit 30 is instantly vaporized in the sterilization chamber 20 and diffused into the sterilization chamber 20. By adopting such a configuration, more efficient and safe sterilization becomes possible.
  • FIG. 7 is a perspective view showing an example of an evaporating dish constituting the evaporating unit of the sterilizing apparatus according to one aspect of the present invention.
  • the evaporating dish 41 shown in FIG. 7 includes a plurality of radial grooves G1 and a plurality of circumferential grooves G2.
  • the surface area of the evaporating dish 41 is increased by providing the evaporating dish 41 with at least one concave portion and / or convex portion. Therefore, by providing the evaporating dish 41 with at least one recess and / or protrusion, it is possible to more efficiently vaporize the liquid hydrogen peroxide supplied from the supply unit 30.
  • the sterilizing agent can be prevented from falling off from the evaporating dish 41, so that the sterilizing agent can be evaporated on the evaporating dish 41 more efficiently.
  • the evaporation speed is increased due to the expansion of the liquid level on the evaporating dish 41, and the sterilizing agent is evaporated more efficiently on the evaporating dish 41.
  • the sterilizing agent is evaporated more efficiently on the evaporating dish 41 by a combination of the above effects. be able to.
  • a slight recovery pressure is subsequently performed.
  • This slight pressure-reducing step corresponds to step 180 in FIG.
  • a small amount of air is caused to flow from outside the system into the sterilization chamber 20 via the sterilant supply path.
  • This can be realized, for example, by closing the three-way solenoid valve SV8 and opening the solenoid valve SV10. Thereby, hydrogen peroxide remaining in a trace amount in the path can be pushed out to the evaporation section.
  • This post-supply holding step corresponds to step 190 in FIG.
  • the above-described slight recovery pressure is stopped and the state in the sterilization chamber 20 is maintained for a certain period of time. Thereby, the pressure in the sterilization chamber 20 is stabilized.
  • steps 170 to 190 are repeated.
  • the hydrogen peroxide concentration in the sterilization chamber 20 can be measured by, for example, the concentration measuring means 45 as described above.
  • the number of times of supplying the sterilizing agent is controlled depending on whether the hydrogen peroxide concentration in the sterilization chamber 20 has reached a predetermined concentration, but this control sets the number of times of supplying the sterilizing agent to the predetermined number of times. It can also be done by defining. This number of times may be, for example, once or twice or more.
  • the process described in the lower part of FIG. 1 is repeated. After reaching the predetermined number of times, the process proceeds to step 220.
  • the predetermined number of times is not particularly limited. However, when performing sterilization guarantee based on the half cycle method, it is necessary to be an even number of times. If the predetermined number of times described above has not been reached, the hydrogen peroxide gas is diffused and the sterilant is refilled. This diffusion and filling process corresponds to the process 200 in FIG. In this diffusion and filling step, diffusion of hydrogen peroxide gas in the sterilization chamber 20 and filling of the sterilizing agent from the filling unit 50 to the supply unit 30 are performed simultaneously.
  • the diffusion of the hydrogen peroxide gas in the sterilization chamber 20 is performed, for example, by causing air to flow into the sterilization chamber 20 from outside the system and generating an air flow in the sterilization chamber 20.
  • This diffusion can be realized, for example, by opening the solenoid valves SV12 and SV13.
  • Filling of the sterilizing agent from the filling unit 50 to the supply unit 30 can be performed, for example, by the same method as described above.
  • the hydrogen peroxide gas diffusion and the sterilizing agent filling may be performed in series.
  • This hydrogen peroxide removal step corresponds to step 210 in FIG.
  • the hydrogen peroxide gas in the sterilization chamber 20 is removed.
  • This process is performed as follows, for example. That is, the solenoid valves SV12 and SV13 are closed and the solenoid valve SV3 is opened. Thereby, the inside of the sterilization chamber 20 is depressurized, and the gas in the sterilization chamber 20 passes through the second decomposition catalyst unit 70B and the first decomposition catalyst unit 70A and is discharged out of the system.
  • the gas in the sterilization chamber 20 passes through the two decomposition catalyst units. Thereby, hydrogen peroxide in the gas in the sterilization chamber 20 can be more reliably removed.
  • the gas in the sterilization chamber 20 passes through only one catalyst unit.
  • one cracking catalyst unit is used in the first and second decompression steps, and two cracking catalyst units are used in the hydrogen peroxide removal step.
  • a similar effect can be achieved if the number of catalyst units used is smaller than the number of cracking catalyst units used in the hydrogen peroxide removal step. That is, when decompressing by the decompression unit 60 before supplying hydrogen peroxide into the sterilization chamber 20, the gas passes through a smaller number of decomposition catalyst units, and after supplying hydrogen peroxide into the sterilization chamber 20. When the pressure is reduced by the pressure reducing unit 60, the gas may pass through a larger number of cracking catalyst units.
  • the first and second decompression steps may employ a configuration in which the exhausted gas does not use the cracking catalyst unit. More specifically, in a situation where hydrogen peroxide is not present in the sterilization chamber 20 (first decompression step and / or second decompression step), no decomposition catalyst unit is used and hydrogen peroxide is present in the sterilization chamber 20. In this situation (step 240 described below), decompression may be performed using a cracking catalyst unit.
  • This diffusion step corresponds to step 220 in FIG.
  • This diffusion step can be performed, for example, in the same manner as the former in the diffusion and filling step described above.
  • the hydrogen peroxide gas is removed.
  • This step 230 can be performed, for example, by the same method as described above.
  • the sterilization chamber 20 is depressurized.
  • This step 240 can be performed, for example, by the same method as described above.
  • the decompression and decompression of the sterilization chamber 20 are repeated a predetermined number of times as necessary.
  • the sterilization chamber 20 is decompressed.
  • This return pressure can be performed, for example, by opening the solenoid valve SV14.
  • the predetermined number of times There is no particular limitation on the predetermined number of times.
  • the decompression process 250 may be performed only once, may be performed twice or more, and may not be performed at all. Further, this repetition may be controlled not by the number of times but by time.
  • This final return pressure and residual liquid recovery step corresponds to step 260 in FIG.
  • the return pressure in the sterilization chamber 20 and the recovery of the sterilant remaining in the supply unit 30 are performed simultaneously.
  • the former can be performed, for example, by the same method as described above.
  • the latter can be performed, for example, by opening the solenoid valve SV4 and the three-way solenoid valve SV8 and transferring the residual liquid in the supply unit 30 to the residual liquid recovery unit 80.
  • This residual liquid is vaporized in the residual liquid recovery unit 80, and the vaporized hydrogen peroxide is decomposed in the second decomposition unit 71.
  • the residual liquid recovery unit 80 and the second decomposition unit 71 may be integrated. Employing such a configuration makes it possible to recover the remaining liquid and decompose hydrogen peroxide more efficiently.
  • the residual liquid recovery unit 80 is connected to the second decomposition unit 71 in the above, the residual liquid recovery unit 80 can be connected to the first decomposition unit 70 and used. Further, the final return pressure and the residual liquid recovery may be performed as separate steps.
  • This residual liquid recovery step corresponds to step 270 in FIG.
  • This step residual liquid remaining on the wall surface of the supply unit 30 is further removed by evaporating to a harmless level, and decomposition of hydrogen peroxide in the second decomposition unit 71 is continued.
  • This step can be realized, for example, by closing the three-way solenoid valve SV8 and opening the solenoid valve SV9.
  • the subsequent steps can be performed completely independently from the sterilization chamber 20. That is, the user can freely take out the article to be sterilized at this point.
  • step 280 drain the dehumidification unit and collect oil.
  • step 280 Drain the dehumidification unit 90 and oil recovery from the rotary pump RP are performed simultaneously. These two steps may be performed in series.
  • the drainage of the dehumidifying unit 90 is performed as follows, for example. That is, drainage from the dehumidifying unit 90 is performed by opening the solenoid valves SV13 and SV15. Thereby, it becomes possible to use the dehumidification unit 90 over a long period of time.
  • Oil collection is performed, for example, as follows. That is, first, the solenoid valve SV16 is opened. Thereafter, the rotary pump RP is stopped, and in conjunction therewith, the solenoid valve SV0 is closed and the solenoid valve SV1 is opened. Thereby, oil is collect
  • a sterilization apparatus includes a sterilization chamber for storing an object to be sterilized, a supply unit for supplying a sterilant containing liquid hydrogen peroxide into the sterilization chamber, and the liquid hydrogen peroxide located in the sterilization chamber. As long as it has an evaporation section that evaporates the inside of the sterilization chamber, and other components may be omitted.
  • the sterilization apparatus includes a sterilization chamber for storing an object to be sterilized, a supply unit for supplying a sterilant containing hydrogen peroxide into the sterilization chamber, a decompression unit for decompressing the sterilization chamber, A sterilization apparatus including a first decomposition unit for decomposing the hydrogen peroxide during decompression, wherein the first decomposition unit includes a plurality of decomposition catalyst units and the number of the decomposition catalyst units through which gas passes during the decompression. It is only necessary to include a switching means for switching between them, and other components may be omitted.
  • the sterilization method according to the present invention includes a step of storing an object to be sterilized in a sterilization chamber, a supply step of supplying a sterilant containing liquid hydrogen peroxide in the sterilization chamber, and the liquid peroxidation in the sterilization chamber. As long as it includes a step of evaporating hydrogen, and other steps may be omitted.
  • the sterilization method according to the present invention includes a step of storing an object to be sterilized in a sterilization chamber, a first depressurization step of depressurizing the sterilization chamber, and hydrogen peroxide in the sterilization chamber after the first depressurization step.
  • a sterilization method including a supply step of supplying a sterilizing agent and a second pressure reduction step of reducing the pressure in the sterilization chamber after the supply step, wherein the cracking catalyst unit has a smaller number of gases in the first pressure reduction step.
  • the gas may pass through a larger number of cracking catalyst units, and the other steps may be omitted.
  • the supply unit 30, the evaporation unit 40, the sterilization chamber 20, and the first decomposition unit 70, the second decomposition unit 71, and the residual liquid recovery unit 80 which are optional elements.
  • the negative pressure or the atmospheric pressure is always set. That is, these components are configured such that the pressure does not exceed atmospheric pressure.
  • FIG. 8 is a conceptual diagram illustrating an overall configuration of a sterilization apparatus according to an aspect of the present invention.
  • the sterilization apparatus 1000 shown in FIG. 8 has a configuration that overlaps with the sterilization apparatus 10 shown in FIG. Therefore, the description of the overlapping configuration will be omitted as appropriate, and the configuration different from the sterilization apparatus 10 of FIG. 4 will be mainly described.
  • the sterilization method using the sterilizer 1000 is the same as the flowchart shown in FIGS. 1 to 3 except for the flow related to the concentration of the sterilant, and thus the description thereof is omitted. The flow related to the concentration of the sterilant will be described later.
  • the sterilization apparatus 1000 shown in FIG. 8 is different from the sterilization apparatus 10 of FIG. 4 in that the dehumidifying unit 90 of FIG. 4 is not provided. In connection with the fact that the dehumidifying unit 90 is not provided, neither the solenoid valve SV13 nor the solenoid valve SV15 is provided.
  • the air flowing into the system via the filter 1091 is directly supplied to the solenoid valve SV10 and the solenoid valve SV12.
  • the concentration measuring means 1045, the filling unit 1050, the decompression unit 1060, the first decomposition unit 1070, the second decomposition unit 1071, the residual liquid recovery unit 1080, and the filter 1091 may be omitted.
  • specific configurations such as a pressure gauge, a valve, a vacuum gauge, a pump, and a sensor, which will be described later, are merely examples, and the scope of the present invention is not limited thereto.
  • the sterilization chamber 1020 is the same as the sterilization chamber 20 of FIG.
  • the supply unit 1030 is the same as the supply unit 30 of FIG.
  • the sterilizer 1000 includes a filter 1092 between the solenoid valve SV6 and the filter 1091. Accordingly, the supply unit 1030 is connected to the outside of the system through the solenoid valve SV6, the filter 1092, and the filter 1091.
  • the sterilization chamber 1020, the supply unit 1030, and the residual liquid recovery unit 1080 are connected to the vacuum gauge CG1 via the three-way solenoid valves SV11 and SV17.
  • This vacuum gauge CG1 is used to measure the absolute pressure of the sterilization chamber 1020, the supply unit 1030, and / or the residual liquid recovery unit 1080. Specifically, the vacuum gauge CG1 measures the pressure of the residual liquid recovery unit 1080 when the three-way solenoid valve SV17 is switched toward the residual liquid recovery unit 1080.
  • the vacuum gauge CG1 is configured such that when the three-way solenoid valve SV17 is switched toward the sterilization chamber 1020 and the supply unit 1030 and the three-way solenoid valve SV11 is switched toward the sterilization chamber 1020, the pressure in the sterilization chamber 1020 is displayed. Measure. Further, the vacuum gauge CG1 is configured such that when the three-way solenoid valve SV17 is switched toward the sterilization chamber 1020 and the supply unit 1030 and the three-way solenoid valve SV11 is switched toward the supply unit 1030, the pressure of the supply unit 1030 is changed. Measure. The vacuum gauge CG1 is also used for indirect concentration management in the supply unit 1030 when the sterilant is concentrated in the supply unit 1030, for example, by referring to the saturated vapor pressure curve of hydrogen peroxide. Can do.
  • the evaporation unit 1040 is provided inside the sterilization chamber 1020 in the same manner as the evaporation unit 40 of FIG. In the present embodiment, an example in which the evaporation unit 1040 is provided inside the sterilization chamber 1020 is shown, but not limited to this, the evaporation unit 1040 may be provided outside the sterilization chamber 1020. The specific configuration and function of the evaporation unit 1040 will be described in detail later.
  • the sterilizer 1000 may include a concentration measuring means 1045 in the sterilization chamber 1020.
  • the density measuring means 1045 is the same as the density measuring means 45 in FIG.
  • the filling unit 1050 is the same as the filling unit 50 of FIG. Further, the point that the pressure gauge PG3 is connected to the pipe connecting the filling unit 1050 and the supply unit 1030 is the same as in FIG. However, in the sterilizer 1000, the pressure gauge PG3 is connected to the outside of the system via the relief valve RV2.
  • the decompression unit 1060 is the same as the decompression unit 60 of FIG. However, the sterilization apparatus 1000 of FIG. 8 differs from FIG. 4 in that the solenoid valve SV1 is not provided.
  • the first disassembly unit 1070 is the same as the first disassembly unit 70 of FIG.
  • the configuration of the second disassembly unit 1071 is the same as that of the second disassembly unit 71 in FIG. However, the second decomposition unit 1071 is different from the sterilizer 10 of FIG. 4 in that it is connected to the supply unit 1030 via the solenoid valve SV9 and the residual liquid recovery unit 1080.
  • the residual liquid recovery unit 1080 is configured to recover the sterilant remaining in the supply unit 1030.
  • the residual liquid recovery unit 1080 typically includes a heater for vaporizing the recovered sterilant.
  • the hydrogen peroxide vaporized in the residual liquid recovery unit 1080 passes through the second decomposition unit 1071 and is discharged out of the system.
  • the configuration and function of the residual liquid recovery unit 1080 will be described in detail later.
  • FIG. 9 is a cross-sectional view illustrating a configuration of the evaporator 1040 according to one embodiment.
  • the evaporation unit 1040 includes an evaporating dish 1041 and an upper wall member 1046 that covers the evaporating dish 1041.
  • a hole is formed in the center of the upper wall member 1046, and a supply nozzle 1031 for liquid hydrogen peroxide is inserted into the hole.
  • the supply nozzle 1031 is connected to the supply unit 1030. Liquid hydrogen peroxide in the supply unit 1030 is dropped onto the evaporating dish 1041 via the supply nozzle 1031.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 evaporates by being heated in the evaporating unit 1040 and fills the sterilization chamber 1020 as hydrogen peroxide gas.
  • the scattered liquid hydrogen peroxide can be blocked by the upper wall member 1046. Therefore, by providing the upper wall member 1046, the evaporation unit 1040 can suppress liquid hydrogen peroxide from being discharged from the evaporation unit 1040 in a liquid state.
  • FIG. 10 is a perspective view showing the configuration of the evaporation unit 1040 with the upper wall member 1046 removed.
  • the evaporating dish 1041 includes first protrusions 1042 ⁇ / b> A and 1042 ⁇ / b> B that protrude in the direction of the upper wall member 1046.
  • 1042A of 1st convex parts are provided in the center part of the evaporating dish 1041 in the periphery shape.
  • the first convex portion 1042B is circumferentially provided on the outer periphery of the first convex portion 1042A.
  • a first flow path 1043A is formed between the first convex portion 1042A and the upper wall member 1046.
  • a first flow path 1043B is formed between the first protrusion 1042B and the upper wall member 1046.
  • the evaporation unit 1040 includes a heater 1025H and a thermistor 1025S.
  • the heater 1025H is used to heat the evaporation unit 1040.
  • the thermistor 1025S is used as a sensor for measuring the temperature of the evaporator 1040.
  • the upper wall member 1046 includes a second convex portion 1047 that projects in the direction of the evaporating dish 1041.
  • the second convex portion 1047 is provided on the upper wall member 1046 in a circumferential shape so as to be positioned between the first convex portion 1042A and the first convex portion 1042B.
  • a second flow path 1048 is formed between the second convex portion 1047 and the evaporating dish 1041. As shown in FIGS.
  • the first convex portions 1042A, 1042B and the second convex portion 1047 are alternately arranged in the direction (radial direction) from the central portion of the evaporating dish 1041 and the upper wall member 1046 to the outside, that is, The first convex portion 1042A, the second convex portion 1047, and the first convex portion 1042B are formed in this order.
  • the first protrusions 1042A and 1042B and the second protrusion 1047 are formed at different positions in the radial direction of the evaporating dish 1041 and the upper wall member 1046, thereby forming a labyrinth structure (labyrinth packing).
  • the first protrusions 1042A, 1042B and the second protrusions 1047 are alternately formed in the direction from the center of the evaporating dish 1041 and the upper wall member 1046 (radial direction). Although shown, it is not limited to this.
  • the first protrusions 1042A, 1042B, and the second protrusions 1047 are arranged so that the first protrusions 1042A, the first protrusions 1042B, and the second protrusions are outward from the central portions of the evaporating dish 1041 and the upper wall member 1046. It may be formed in various modes, such as being formed in the order of the portions 1047.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 is blocked by the first protrusions 1042A, 1042B and / or the second protrusions 1047. Therefore, by providing the first convex portions 1042A and 1042B and the second convex portion 1047, it is possible to suppress the liquid hydrogen peroxide from being discharged from the evaporation portion 1040 in a liquid state. Further, since the surface area of the evaporation unit 1040 is increased by providing the first protrusions 1042A and 1042B and the second protrusion 1047, the evaporation of the liquid hydrogen peroxide in the evaporation unit 1040 is promoted and the liquid hydrogen peroxide is vaporized. Defects can be suppressed.
  • the upper surface of the upper wall member 1046 is installed at a distance from the wall surface of the sterilization chamber 1020.
  • a channel 1022 is formed between the upper surface of the upper wall member 1046 and the wall surface of the sterilization chamber 1020.
  • a hole 1024 to which a pipe extending from the solenoid valve SV12 is connected is formed on the wall surface of the sterilization chamber 1020.
  • the sterilizer 1000 can inject air into the flow path 1022 through the hole 1024.
  • the side surface of the upper wall member 1046 is in contact with the wall surface of the sterilization chamber 1020 via the O-ring 1049.
  • the air injected into the flow path 1022 flows toward the center of the upper wall member 1046 and is supplied to the vaporization area 1040A at the center of the evaporating dish 1041 through the hole at the center of the upper wall member 1046.
  • the hydrogen peroxide gas flows in the order of the first flow path 1043A, the second flow path 1048, and the first flow path 1043B, and is supplied to the sterilization chamber 1020. In this way, the hydrogen peroxide gas can be efficiently diffused by extruding the hydrogen peroxide gas staying in the vaporization area 1040A with air.
  • the sterilization apparatus 1000 may include at least one of these. .
  • a raised portion 1041 ⁇ / b> H that protrudes toward the upper wall member 1046 is formed in the central portion of the evaporating dish 1041.
  • the supply nozzle 1031 for liquid hydrogen peroxide is installed so that its tip is located in the vicinity of the raised portion 1041H. Thereby, scattering of the liquid hydrogen peroxide dropped on the evaporating dish 1041 is suppressed.
  • an inclined surface 1041A extending obliquely downward from the lower portion of the liquid hydrogen peroxide supply nozzle 1031 is formed on the raised portion 1041H.
  • FIG. 11 is a cross-sectional view illustrating a configuration of an evaporation unit 1040 according to one embodiment.
  • the evaporation unit 1040 includes an evaporating dish 1041 and an upper wall member 1046 that covers the evaporating dish 1041.
  • the evaporating dish 1041 and the upper wall member 1046 are suspended and fixed to the wall of the sterilization chamber 1020 by two columns 1026H and 1026S.
  • a heater is provided inside the column 1026H. This heater is used to heat the evaporation unit 1040.
  • a thermistor is provided inside the pillar 1026S.
  • This thermistor is used as a sensor for measuring the temperature of the evaporator 1040.
  • a hole is formed in the center of the upper wall member 1046, and a supply nozzle 1031 for liquid hydrogen peroxide is inserted into this hole.
  • the supply nozzle 1031 is connected to the supply unit 1030. Liquid hydrogen peroxide in the supply unit 1030 is dropped onto the evaporating dish 1041 via the supply nozzle 1031.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 evaporates by being heated in the evaporating unit 1040 and fills the sterilization chamber 1020 as hydrogen peroxide gas.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 is scattered, the scattered liquid hydrogen peroxide is blocked by the upper wall member 1046. Therefore, by providing the upper wall member 1046, the evaporation unit 1040 can suppress liquid hydrogen peroxide from being discharged from the evaporation unit 1040 in a liquid state.
  • a groove 1041B can be formed in the evaporating dish 1041 in a circumferential shape.
  • the surface area of the evaporating dish 1041 can be increased, so that the evaporation of the liquid hydrogen peroxide can be promoted and the vaporization failure of the liquid hydrogen peroxide can be suppressed. Further, by providing the groove 1041B, scattering of liquid hydrogen peroxide can be suppressed.
  • the tube 1028 extending from the solenoid valve SV12 is inserted into the vaporization area 1041B between the evaporating dish 1041 and the upper wall member 1046, and air can be injected into the vaporization area 1041B.
  • the hydrogen peroxide gas evaporated in the vaporization area 1041B is pushed out into the air and efficiently diffused into the sterilization chamber 1020.
  • the evaporation unit 1040 includes a baffle plate 1044 provided on the side opposite to the upper wall member 1046 of the evaporation dish 1041.
  • the baffle plate 1044 is fixed to the lower surface of the evaporating dish 1041 with a bolt or the like.
  • the baffle plate 1044 includes a flange portion 1044B that projects outward from the outer circumference of the evaporating dish 1041 in the radial direction. Therefore, when the liquid hydrogen peroxide splash (fine water droplets of liquid hydrogen peroxide) spills from the evaporating dish 1041, the baffle plate 1044 can receive the liquid hydrogen peroxide splash by the flange portion 1044B. As a result, the liquid hydrogen peroxide can be prevented from being discharged from the evaporation unit 1040 in a liquid state.
  • FIG. 12 is a cross-sectional view illustrating a configuration of the evaporator 1040 according to one embodiment.
  • the evaporator 1040 in FIG. 12 has a configuration that overlaps with the evaporator 1040 in FIG. 11, and thus description of the overlapping configuration is omitted as appropriate, and a configuration different from the evaporator 1040 in FIG.
  • the upper wall member 1046 is in contact with the wall surface of the sterilization chamber 1020 via the O-ring 1049.
  • a tube 1028 extending from the solenoid valve SV12 is inserted into the flow path 1022 between the upper wall member 1046 and the wall surface of the sterilization chamber 1020. Therefore, the air injected into the flow path 1022 flows toward the center of the upper wall member 1046, and the vaporization area 1040B between the evaporating dish 1041 and the upper wall member 1046 passes through the hole in the center of the upper wall member 1046. Supplied to.
  • the hydrogen peroxide gas retained in the vaporization area 1040B is pushed out by the air and efficiently diffused into the sterilization chamber 1020.
  • FIGS. 13 and 14 are cross-sectional perspective views showing the configuration of the evaporator 1040 according to one embodiment.
  • the evaporation unit 1040 includes an evaporating dish 1041 and an upper wall member 1046 that covers the evaporating dish 1041.
  • a hole is formed in the center of the upper wall member 1046, and a supply nozzle 1031 for liquid hydrogen peroxide is inserted into this hole.
  • the supply nozzle 1031 is connected to the supply unit 1030. Liquid hydrogen peroxide in the supply unit 1030 is dropped onto the evaporating dish 1041 via the supply nozzle 1031.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 evaporates by being heated in the evaporating unit 1040 and fills the sterilization chamber 1020 as hydrogen peroxide gas.
  • the liquid hydrogen peroxide dropped on the evaporating dish 1041 is scattered, the scattered liquid hydrogen peroxide is blocked by the upper wall member 1046. Therefore, by providing the upper wall member 1046, the evaporation unit 1040 can suppress liquid hydrogen peroxide from being discharged from the evaporation unit 1040 in a liquid state.
  • the upper wall member 1046 includes a plurality of circumferential grooves 1046 ⁇ / b> D on the surface facing the evaporating dish 1041.
  • holes are formed in two places on the outer peripheral portion of the upper wall member 1046.
  • the heater 1029H is inserted into one hole, and the thermistor 1029S is inserted into the other hole.
  • the heater 1029H is used to heat the evaporation unit 1040.
  • the thermistor 1029S is used as a sensor for measuring the temperature of the evaporator 1040.
  • the evaporating dish 1041 includes a plurality of radial grooves 1041C and a plurality of circumferential grooves 1041D.
  • the groove 1041C and the groove 1041D unevenness is formed on the surface of the evaporating dish 1041.
  • a plurality of concentric convex portions 1041E are formed on the surface of the evaporating dish 1041 by providing the groove 1041D.
  • the side surface on the inner peripheral side of the convex portion 1041E is inclined toward the outer peripheral direction of the evaporating dish 1041. Thereby, an inclined surface 1041F is formed on the convex portion 1041E.
  • the evaporation part 1040 of this embodiment it can suppress that liquid hydrogen peroxide is discharged
  • FIG. 15 is a perspective view of the appearance of one form of the residual liquid recovery unit 1080.
  • FIG. 16 is a perspective view showing a cross section of the residual liquid recovery unit 1080 according to one embodiment.
  • the residual liquid recovery unit 1080 includes a first recovery space 1082 and a second recovery space 1084.
  • the first recovery space 1082 is connected to the supply unit 1030 via solenoid valves SV7 and SV8.
  • the second recovery space 1084 is connected to the first recovery space 1082 via a flow path 1083 outside the residual liquid recovery unit 1080.
  • the residual liquid recovery unit 1080 includes a solenoid valve SV18 provided in a flow path 1083 that connects the first recovery space 1082 and the second recovery space 1084.
  • the solenoid valve SV18 can open and close the flow path 1083.
  • the volume of the first collection space 1082 is configured to be larger than the volume of the second collection space 1084.
  • the first recovery space 1082 has a depth greater than that of the second recovery space 1084 in order to prevent the liquid hydrogen peroxide from flowing into the second recovery space as a liquid even if the liquid hydrogen peroxide bumps. Is also deeply formed.
  • the residual liquid recovery unit 1080 includes a heater 1088 for heating the first recovery space 1082 and the second recovery space 1084.
  • the sterilizing agent recovered from the supply unit 1030 to the first recovery space 1082 is heated and evaporated by the heater 1088 and flows into the second recovery space 1084 through the flow path 1083. Then, the second recovery space 1084 is heated again and supplied to the second decomposition unit 1071.
  • the residual liquid recovery unit 1080 is divided into a first recovery space 1082 and a second recovery space 1084. Therefore, even if the liquid hydrogen peroxide that has not been vaporized in the first recovery space 1082 flows out as a liquid, it is vaporized by being heated in the second recovery space 1084.
  • the second collection space 1084 also has a function of increasing the length and volume of the flow path connecting the supply unit 1030 and the second decomposition unit 1071. That is, as shown in FIG.
  • the supply unit 1030 is connected to the second disassembly unit 1071 via the solenoid valve SV9 and the second recovery space 1084.
  • the second recovery space 1084 By providing the second recovery space 1084, the length and volume of the flow path from the supply unit 1030 to the second decomposition unit 1071 are increased. Therefore, even if liquid hydrogen peroxide bumps in the supply unit 1030, the hydrogen peroxide can be prevented from flowing into the second decomposition unit 1071 in the liquid state.
  • FIG. 17 is a perspective view showing a cross section of the residual liquid recovery unit 1080 according to one embodiment.
  • FIG. 18 is a perspective view illustrating a configuration of a liquid hydrogen peroxide supply member 1086 according to one embodiment.
  • the residual liquid recovery unit 1080 may include a supply member 1086 provided in the first recovery space 1082.
  • the supply member 1086 includes a cylindrical member 1086A and a disk 1086C that covers one opening of the cylindrical member 1086A.
  • the supply member 1086 is installed at the bottom of the first collection space 1082 with the disk 1086C facing upward.
  • a plurality of holes 1086D are formed in the disk 1086C.
  • a spiral groove 1086B is formed on the outer peripheral surface of the cylindrical member 1086A.
  • the spiral groove 1086B communicates with a hydrogen peroxide supply port (not shown) formed in the side wall of the first recovery space 1082. Accordingly, the liquid hydrogen peroxide supplied from the supply unit 1030 to the first recovery space 1082 flows into the first recovery space 1082 while spiraling through the spiral groove 1086B. As a result, the surface area of the first recovery space 1082 is increased, and the hydrogen peroxide is stirred and uniformly heated, so that the risk of bumping of the liquid hydrogen peroxide can be suppressed.
  • the disk 1086C can suppress scattering and inflow into the second recovery space 1084.
  • the hydrogen peroxide gas vaporized in the first recovery space 1082 is supplied to the second recovery space 1084 through the plurality of holes 1086D and the flow path 1083.
  • the sterilizer 1000 includes a vacuum gauge CG1 (pressure gauge) configured to measure the pressure of the residual liquid recovery unit 1080.
  • the vacuum gauge CG1 is configured to measure the pressure in the first recovery space 1082 via the solenoid valve SV17.
  • the volume of the first recovery space 1082 is configured to be equal to or larger than the volume of the sterilizing agent cartridge 1052 in the filling unit 1050. Thereby, for example, when the expiration date of the cartridge 1052 expires, the entire amount of the sterilizing agent in the cartridge 1052 can be collected in the first collection space 1082.
  • the residual liquid recovery units 80 and 1080 not only recover the residual liquid of the sterilizing agent in the supply units 30 and 1030 but also the sterilizing agent (waste liquid) that has expired in the filling units 50 and 1050. It also has a function of recovering.
  • the residual liquid recovery unit 1080 recovers the sterilant from the cartridge 1052 to the first recovery space 1082 when the pressure in the first recovery space 1082 measured by the vacuum gauge CG1 becomes a threshold value or less. It is configured as follows. That is, when the sterilizing agent in the first recovery space 1082 becomes empty, the pressure in the first recovery space 1082 becomes a certain threshold value or less. The threshold value is obtained in advance by experiments or the like.
  • the sterilizer 1000 considers that the sterilizing agent in the first recovery space 1082 is empty, and the cartridge The sterilizing agent is collected from 1052 to the first collection space 1082.
  • the sterilant since the sterilant is recovered from the cartridge 1052 to the first recovery space 1082 only when the sterilant in the first recovery space 1082 is empty, the sterilant may overflow from the first recovery space 1082. Can be suppressed.
  • the solenoid valve SV18 is provided in the flow path 1083 that communicates the first recovery space 1082 and the second recovery space 1084.
  • the sterilizer 1000 can open and close the flow path 1083 by opening and closing the solenoid valve SV18.
  • the solenoid valve SV18 is controlled to be “open” at a time other than the step of concentrating the sterilant stored in the supply unit 1030 (concentration step). As a result, the flow path 1083 is opened, and the first recovery space 1082 and the second recovery space 1084 communicate with each other.
  • FIG. 19 is an example of a flowchart showing the opening / closing control of the solenoid valve SV18 in the concentration step.
  • the sterilizer 1000 determines whether or not to perform a concentration step (310). When it is determined that the concentration process is not performed (310, No), the sterilizer 1000 controls the solenoid valve SV18 to “open” (320).
  • the sterilizer 1000 controls the solenoid valve SV18 to be “closed” (330). As a result, the first recovery space 1082 and the second recovery space 1084 are not communicated. In this state, the sterilizer 1000 performs the concentration process by opening the solenoid valve SV9 (340). Specifically, the sterilizer 1000 performs pressure reduction using the pressure reduction unit 1060. Then, the supply unit 1030 is decompressed through only the second recovery space 1084 out of the first recovery space 1082 and the second recovery space 1084.
  • the concentration process takes time.
  • the first recovery space 1082 and the second recovery space 1084 do not communicate with each other, so that liquid hydrogen peroxide remains in the first recovery space 1082.
  • the pressure is reduced only through the second recovery space 1084, and as a result, the time required for the concentration step can be shortened.
  • the sterilization apparatus 1000 performs a self-check of the apparatus before the operation of the sterilization apparatus 1000 starts. That is, the sterilization apparatus 1000 automatically checks the state of the apparatus after the user instructs the start of operation and before the actual sterilization process starts. Specifically, the sterilizer 1000 compares the values of the pressure gauges PG1 to PG3 and / or the vacuum gauge CG1 with preset thresholds while appropriately switching the opening and closing of the solenoid valves SV0 to SV18 of the sterilizer 1000. The status of the device is automatically checked.
  • the conduction confirmation of the decompression path of the supply unit 1030 is described.
  • the sterilizer 1000 opens the solenoid valves SV0, SV4, SV9, SV14, and the solenoid valves SV11, SV17 are connected to the supply unit 1030 by the vacuum gauge CG1. Switch so that the pressure can be measured, and control the other solenoid valves to "close”. Thereby, a closed path from the rotary pump RP to the supply unit 1030 is formed.
  • the sterilizer 1000 can check various fluid paths and solenoid valves of the sterilizer 1000. In the sterilizer 1000, the check process is completed within a few minutes when the apparatus is normal so as not to affect the operation time.
  • the sterilizer 1000 includes a catalyst powder collection filter 1072 between the second decomposition unit 1071 and the solenoid valve SV4.
  • the catalyst powder collection filter 1072 is a catalyst powder collection filter that can be replaced after-sales.
  • a decomposition catalyst is provided after the vacuum pump (rotary pump RP in the present embodiment). In this case, the oil mist generated from the vacuum pump may contaminate the catalyst and cause gas leakage.
  • the sterilizer 1000 of the present embodiment has the second disassembly unit 1071 installed at the front stage of the rotary pump RP. For this reason, the contamination of the catalyst can be suppressed, but the powder falling from the catalyst is directly sucked into the rotary pump RP, so that the rotary pump RP may break down. Therefore, the sterilizer 1000 includes a catalyst powder collection filter 1072 between the second decomposition unit 1071 and the rotary pump RP, specifically between the second decomposition unit 1071 and the solenoid valve SV4. Thereby, even if powder falls from the catalyst of the second decomposition unit 1071, it is collected by the catalyst powder collection filter 1072, and thus it is possible to suppress the failure of the rotary pump RP.
  • the supply unit 1030, the evaporation unit 1040, the sterilization chamber 1020, and the optional first decomposition unit 1070, second decomposition unit 1071, and residual liquid recovery unit 1080 are The negative pressure or the atmospheric pressure is always set. That is, these components are configured such that the pressure does not exceed atmospheric pressure. By adopting such a configuration, even if a problem occurs in the piping system or the like, it is possible to prevent the gas from leaking to the outside.
  • the inflow speed in the diffusion process is controlled to be smaller than the inflow speed in the return pressure process 250.
  • This control is realized, for example, by making the opening area when the solenoid valve SV12 is opened smaller than the solenoid valve SV14.
  • the hydrogen peroxide gas that is difficult to diffuse in the diffusion step can be diffused into the lumen of the object to be sterilized.
  • the decompression step 250 the hydrogen peroxide in the sterilization chamber 20 can be removed in a short time.
  • FIG. 20 is a schematic diagram illustrating an example of installation of the sensor SNS.
  • the sterilization apparatus may include a plurality (for example, two) of sensors SNS.
  • the sensor SNS-1 and the sensor SNS-2 are installed at a distance.
  • the sensor SNS-1 is provided at a position where the volume in the pipe from the tip of the extraction pipe to the sensor SNS-1 becomes a first predetermined amount (eg, 3.4 ml).
  • the sensor SNS-2 is provided at a position where the volume in the pipe from the sensor SNS-1 to the sensor SNS-2 becomes a second predetermined amount (for example, 3.3 ml) smaller than the first predetermined amount.
  • the filling process of the sterilizing agent from the filling unit 50 to the supply unit 30 in this configuration is performed as follows. First, with the extraction tube inserted into the cartridge 1052 and the tip of the extraction tube positioned below the sterilant liquid level, the solenoid valve SV5 is opened and the liquid feed pump TP is operated. When the sensor SNS-1 detects the sterilizing agent (when turned on), the liquid feeding pump TP is stopped, the extraction tube is moved above the liquid level of the sterilizing agent, and the liquid feeding pump TP is operated again. If the sensor SNS-2 detects the sterilant (turns ON) before the sensor SNS-1 does not detect the sterilant (becomes OFF), at least the second predetermined amount (for example, 3. It can be determined that 3 ml) of sterilant has been aspirated.
  • the second predetermined amount for example, 3. It can be determined that 3 ml
  • FIG. 21 is a schematic diagram illustrating an example of installation of the sensor SNS.
  • FIG. 22 is a schematic diagram illustrating an example of the configuration of the sensor SNS. As shown in FIGS. 21 and 22, in this example, the pipe connecting the liquid feed pump TP and the supply unit 30 is wound so as to loop, and the winding start portion 52 and the winding end portion 54 of the loop of the piping are Adjacent to each other. The sensor SNS is disposed so as to sandwich the adjacent winding start portion 52 and winding end portion 54.
  • the sensor SNS is provided at a position where the volume in the pipe from the tip of the extraction pipe to the sensor SNS becomes a first predetermined amount (for example, 3.4 ml).
  • the sensor SNS has a second predetermined amount (for example, 3.3 ml) smaller than the first predetermined amount in the pipe from the sensor SNS through the looped pipe to the sensor SNS again.
  • a first predetermined amount for example, 3.4 ml
  • the sensor SNS has a second predetermined amount (for example, 3.3 ml) smaller than the first predetermined amount in the pipe from the sensor SNS through the looped pipe to the sensor SNS again.
  • the sensor SNS includes a light emitting unit 56 and a light receiving unit 58 that face each other across a member in which a slit 57 is formed.
  • Two pipes (a pipe at the winding start portion 52 and a pipe at the winding end portion 54) are arranged in the slit 57.
  • the sensor SNS detects the presence or absence of liquid (sterilizing agent) in the pipe based on the amount of light received by the light receiving unit 58. That is, if the sterilizing agent is present in both of the two pipes, the light is largely blocked by the slit 57, so that the amount of light received by the light receiving unit 58 is reduced (first received light amount).
  • the slit 57 On the other hand, if there is no sterilizing agent in either of the two pipes, light is transmitted through the slit 57 greatly, so that the amount of received light is increased (second received light amount). Further, if any of the two pipes has a sterilizing agent, light is partially blocked and transmitted through the slit 57, so that the amount of light received by the light receiving unit 58 is between the first received light amount and the second received light amount. Of the third received light amount.
  • the sensor SNS has two pipes depending on whether the amount of light received by the light receiving unit 58 is the first received light amount, the second received light amount, or the third received light amount, or the proximity thereof. The presence or absence of a sterilant can be detected.
  • the filling process of the sterilizing agent from the filling unit 50 to the supply unit 30 in this configuration is performed as follows. First, while the extraction tube is inserted into the cartridge 1052 and the tip of the extraction tube is positioned below the level of the sterilant, the solenoid valve SV5 is opened and the amount of light received by the light receiving unit 58 of the sensor SNS is the first. The liquid feed pump TP is operated until the amount of received light reaches three. That is, the liquid feed pump TP is operated until the sterilant is sucked up to the winding start portion 52 of the pipe.
  • the liquid feeding pump TP When the amount of light received by the light receiving unit 58 of the sensor SNS reaches the third amount of received light, the liquid feeding pump TP is stopped, the extraction tube is moved above the level of the sterilant, and the liquid feeding pump TP is operated again.
  • the sensor SNS sucks out the second predetermined amount (for example, 3.3 ml) of the sterilizing agent at least when the amount of light received by the light receiving unit 58 of the sensor SNS becomes faster than the second amount of received light. Can be determined. That is, if the sensor SNS reacts at the winding end portion 54 of the pipe (becomes ON state) before the sensor SNS does not react at the pipe winding start portion 52 (becomes in the OFF state), at least second.
  • a predetermined amount (eg, 3.3 ml) of the sterilant has been sucked out. 20 and 21, it is possible to reliably detect that a predetermined amount of sterilizing agent has been sucked out from the filling unit 50 regardless of individual differences in the liquid feeding speed of the liquid feeding pump TP. That is, when the liquid feed pump TP is not a mechanism that can completely seal air, there may be individual differences in the liquid feed speed due to slight leakage when air is sent. For this reason, the time until the sensor SNS detects the sterilant after the liquid pump TP is operated when the sterilant is sucked out, and the liquid pump TP is operated with the extraction tube removed from the cartridge 1052.
  • a predetermined amount eg, 3.3 ml
  • the liquid hydrogen peroxide is evaporated outside the sterilization chamber, and the generated hydrogen peroxide gas is charged into the sterilization chamber. And the time required for the hydrogen peroxide gas concentration to reach the peak value.
  • the survival cell count could be reduced to zero by taking a sterilization time of 6 minutes or more. That is, it was found that sufficient sterilization performance can be achieved by the sterilization apparatus and sterilization method according to the present invention.
  • the first cracking unit includes a plurality of cracking catalyst units and gas passes through during the decompression.
  • Switching means for switching the number of the cracking catalyst units In order to verify the effect of adopting such a configuration, the following experiment was conducted.
  • Example 2 In the decompression step, by opening the solenoid valve SV2, the cracking catalyst unit through which gas passes in the first cracking unit 70 is only the first cracking catalyst unit 70A. And the time required until the pressure of the sterilization chamber 20 became 100 Pa from the time of pressure reduction start was measured.
  • Second decomposition catalyst unit 71, 1071 ... Second Decomposition unit; 80, 1080 ... Residual liquid recovery unit; 90, 1090 ... Dehumidification unit; 91, 1091 ... Filter; 1042A 1042B ... 1st convex part; 1043A, 1043B ... 1st flow path; 1044 ... Baffle plate; 1046 ... Upper wall member; 1047 ... 2nd convex part; 1048 ... 2nd flow path; 1082 ... 1st collection space; Second recovery space; 1083 ... flow path; 1052 ... cartridge; G1 ... groove; G2 ... groove; PG1, PG2, PG3 ... pressure gauge; RP ... rotary pump; Sep ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

【課題】より効率的な滅菌を行うための滅菌装置及び滅菌方法を提供する。 【解決手段】本発明に係る滅菌装置は、被滅菌物を収容する滅菌室と、前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給ユニットと、前記滅菌室内に位置し且つ前記液体過酸化水素を前記滅菌室内で蒸発させる蒸発部とを備えている。

Description

滅菌装置及び滅菌方法
 本発明は、滅菌装置及び滅菌方法に関する。
 従来、医療用機器などを滅菌する方法について、種々の開発が為されている。このような滅菌方法としては、例えば、エチレンオキサイドガスを用いた方法が挙げられる。しかしながら、エチレンオキサイドガスの使用については、排出量に規制を設ける自治体が次第に増加している。そのため、この方法を用いる場合、高価な分解装置が必要になることがある。
 そこで、近年では、過酸化水素ガスを用いた滅菌方法が注目されている(例えば特許文献1を参照)。過酸化水素は、自己分解性を有しており、分解後に生じるガスが水蒸気と酸素のみである。そのため、エチレンオキサイドガスを用いる場合と比較して、より安全に滅菌を行うことができる。また、過酸化水素は殺菌力が高く、他の滅菌法に比べて短時間で滅菌できるという特徴がある。
特開2013-81560号公報
 本発明は、より効率的な滅菌を行うための滅菌装置及び滅菌方法を提供することを目的としている。
 本発明の第1の側面によると、被滅菌物を収容する滅菌室と、前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給ユニットと、前記滅菌室内に位置し且つ前記液体過酸化水素を前記滅菌室内で蒸発させる蒸発部とを具備した滅菌装置が提供される。
 本発明の第2の側面によると、滅菌室内に被滅菌物を収容する工程と、前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給工程と、前記滅菌室内で前記液体過酸化水素を蒸発させる工程とを含んだ滅菌方法が提供される。
 本発明によると、より効率的な滅菌を行うための滅菌装置及び滅菌方法を提供することが可能となる。
図1は、本発明の一態様に係る滅菌方法の流れの一例を示すフローチャートである。 図2は、本発明の一態様に係る滅菌方法の流れの一例を示すフローチャートである。 図3は、本発明の一態様に係る滅菌方法の流れの一例を示すフローチャートである。 図4は、本発明の一態様に係る滅菌装置の全体構成を示す概念図である。 図5は、本発明の一態様に係る滅菌装置の供給ユニットに設けられた複数の孔を示す斜視図である。 図6は、本発明の一態様に係る滅菌方法の過酸化水素供給工程を示す概念図である。 図7は、本発明の一態様に係る滅菌装置の蒸発部を構成する蒸発皿の一例を示す斜視図である。 図8は、本発明の一態様に係る滅菌装置の全体構成を示す概念図である。 図9は、一形態の蒸発部の構成を示す断面図である。 図10は、上壁部材を外した状態の蒸発部の構成を示す斜視図である。 図11は、一形態の蒸発部の構成を示す断面図である。 図12は、一形態の蒸発部の構成を示す断面図である。 図13は、一形態の蒸発部の構成を示す断面斜視図である。 図14は、一形態の蒸発部の構成を示す断面斜視図である。 図15は、一形態の残液回収ユニットの概観の斜視図である。 図16は、一形態の残液回収ユニットの断面を示す斜視図である。 図17は、一形態の残液回収ユニットの断面を示す斜視図である。 図18は、一形態の供給部材の構成を示す斜視図である。 図19は、濃縮工程におけるソレノイドバルブSV18の開閉制御を示すフローチャートの一例である。 図20は、センサSNSの設置の一例を示す模式図である。 図21は、センサSNSの設置の一例を示す模式図である。 図22は、センサSNSの構成の一例を示す模式図である。 図23は、滅菌時間と生残菌数との関係を示すグラフである。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、各図において、同様または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する記載は省略する。
 図1乃至図3は、本発明の一態様に係る滅菌方法の流れの一例を示すフローチャートである。以下、このフローチャートに沿って本発明の一態様に係る滅菌方法及び滅菌装置について説明するが、本発明の範囲はこれらに限定されるものではない。
 図4は、本発明の一態様に係る滅菌装置の全体構成を示す概念図である。図4に示す滅菌装置10は、滅菌室20と、供給ユニット30と、蒸発部40と、濃度測定手段45と、充填ユニット50と、減圧ユニット60と、第1分解ユニット70と、第2分解ユニット71と、残液回収ユニット80と、除湿ユニット90と、フィルタ91とを備えている。なお、濃度測定手段45、充填ユニット50、減圧ユニット60、第1分解ユニット70、第2分解ユニット71、残液回収ユニット80、除湿ユニット90、及びフィルタ91は、省略してもよい。また、後述する圧力計、バルブ、真空計、ポンプ、及びセンサなどの具体的な構成は、単なる一例であり、本発明の範囲がこれらに限定されるものではない。
 滅菌室20は、被滅菌物を収容するように構成されている。滅菌室20は、典型的には、真空チャンバである。滅菌室20は、圧力計PG1を備えている。滅菌室20は、ソレノイドバルブSV14及びフィルタ91を介して系外に接続されている。滅菌室20は、図示しない扉を備えている。この扉には、任意の安全機構を設けてもよい。
 供給ユニット30は、三方向ソレノイドバルブSV7及びSV8を介して、滅菌室20に接続されている。供給ユニット30は、滅菌室20内に液体過酸化水素を含んだ滅菌剤を供給するように構成されている。この過酸化水素は、過酸化水素ガスであってもよく、液体過酸化水素であってもよい。供給ユニット30は、圧力計PG2を備えている。供給ユニット30は、ソレノイドバルブSV6及びフィルタ91を介して系外に接続されている。なお、供給ユニット30は、ヒータを備えていてもよい。
 供給ユニット30は、複数の孔を有する部材31を備えている。この部材31の構成及び機能については、追って詳しく説明する。なお、部材31は、省略してもよい。
 滅菌室20及び供給ユニット30は、三方向ソレノイドバルブSV11を介して、真空計CG1に接続されている。この真空計CG1は、滅菌室20及び/又は供給ユニット30の絶対圧を計測するために用いられる。また、この真空計CG1は、過酸化水素の飽和蒸気圧曲線を参照することにより、例えば供給ユニット30で滅菌剤の濃縮を行う際の供給ユニット30内の間接的な濃度管理にも使用することができる。
 蒸発部40は、滅菌室20の内部に設けられている。蒸発部40は、供給ユニット30から供給された液体過酸化水素を、滅菌室20内で蒸発させるように構成されている。これにより、滅菌室20内に過酸化水素ガスが充満し、被滅菌物の滅菌が可能となる。なお、蒸発部40は、滅菌室20の中央付近に設置することが好ましい。こうすると、滅菌室20内における過酸化水素ガスの拡散をより効率的に行うことが可能となる。なお、蒸発部40は、滅菌室20の外部に設けてもよい。
 蒸発部40は、典型的には、液体過酸化水素を受け取る蒸発皿と、蒸発皿を加熱するヒータとを備えている。この蒸発皿としては、例えば、平面状のもの、るつぼ状のもの、又は円筒状のものが挙げられる。これらの構成及び機能については、追って詳しく説明する。
 滅菌装置10は、滅菌室20内に濃度測定手段45を備えていてもよい。この濃度測定手段45は、滅菌室20内における過酸化水素ガスの濃度を計測するために用いられる。なお、滅菌装置10は、濃度測定手段45で計測された過酸化水素ガス濃度に応じて滅菌室20への滅菌剤の供給量を調整する制御ユニット(図示せず)を更に備えていてもよい。
 濃度測定手段45は、典型的には、光源45Aと光度計45Bとを備えている。濃度測定手段45は、典型的には、測定部(プローブ)45Cも更に備えている。光源としては、例えば過酸化水素が吸収を示す波長300nm以下の紫外光及び/又は波長1400nm以上の赤外光を含むものであれば自由に選択できるが、好ましくは単色光源、例えば発光ダイオードを用いた単色光源を用いることができる。この場合、プリズム及び光学フィルタなどを用いた波長選択を行う必要がなくなるため、装置の小型化やコストの削減を達成できる。また、この場合、光量が増大し、測定精度が向上する。また、光度計としては、例えば、フォトダイオードを用いることができる。
 充填ユニット50は、供給ユニット30に滅菌剤を充填するように構成されている。充填ユニット50は、送液ポンプTP及びソレノイドバルブSV5を介して、供給ユニット30に接続されている。また、充填ユニット50と供給ユニット30とを繋ぐ配管には、センサSNSと圧力計PG3とが接続されている。圧力計PG3は、例えば、装置異常で配管内の圧力が上がった際に強制的に送液ポンプを停止する安全装置として機能する。
 充填ユニット50は、典型的には、滅菌剤を含んだカートリッジを含んでいる。充填ユニット50は、例えば、抽出管を用いて上記カートリッジから滅菌剤を吸い上げて、その滅菌剤を供給ユニット30に充填するように構成されている。
 減圧ユニット60は、滅菌室20及び/又は供給ユニット30内を減圧するように構成されている。減圧ユニット60は、ソレノイドバルブSV0を介して、第1分解ユニット70に接続されている。また、減圧ユニット60は、ソレノイドバルブSV0及びSV4を介して、第2分解ユニット71に接続されている。減圧ユニット60は、ソレノイドバルブSV1を介して、系外に接続されている。
 減圧ユニット60は、ロータリーポンプRPと、オイルミストセパレータSepとを備えている。オイルミストセパレータSepは、ロータリーポンプRPの排出側と接続されており、ロータリーポンプRPから発生するオイルミストを捕集するように構成されている。また、オイルミストセパレータSepは、ロータリーポンプRPの吸入側とソレノイドバルブSV16を介して接続されている。これにより、オイルミストセパレータSepに捕集されたオイルをロータリーポンプRPに回収することが可能となる。なお、オイルミストセパレータSepは、省略してもよい。また、ロータリーポンプRPの代わりに、ドライポンプなどの他の真空ポンプを使用することもできる。
 第1分解ユニット70は、滅菌室20と減圧ユニット60との間に設けられている。第1分解ユニット70は、例えば、第1分解触媒ユニット70Aと、第2分解触媒ユニット70Bとを備えている。これら分解触媒ユニットは、過酸化水素を分解するように構成されている。第1分解触媒ユニット70Aと第2分解触媒ユニット70Bとは、直列に接続されている。第1分解ユニット70は、互いに並列したソレノイドバルブSV2及びSV3を介して滅菌室20と接続されている。第1分解ユニット70は、ソレノイドバルブSV2を開状態にした場合、気体は第1分解触媒ユニット70Aのみを通過するように構成されている。また、第1分解ユニット70は、ソレノイドバルブSV3を開状態にした場合、気体は第1分解触媒ユニット70Aと第2分解触媒ユニット70Bとの両者を通過するように構成されている。第1分解ユニット70の構成及び機能については、追って詳しく説明する。なお、上では、第1分解ユニット70が2つの分解触媒ユニットを備えている例について説明したが、第1分解ユニット70は、単一の分解触媒ユニットを備えていてもよく、3つ以上の分解触媒ユニットを備えていてもよい。
 第2分解ユニット71は、ソレノイドバルブSV9を介して、供給ユニット30に接続されている。第2分解ユニット71は、過酸化水素を分解するように構成された分解触媒ユニットを備えている。第2分解ユニット71は、後述する濃縮工程及び残液回収工程において使用される。第2分解ユニット71の構成及び機能については、追って詳しく説明する。また、後述するように、第2分解ユニット71を設けずに、ソレノイドバルブSV4から第1分解ユニット70に接続してもよい。
 なお、本明細書において、「分解ユニット」及び「分解触媒ユニット」は、過酸化水素を無害化できるものであればよく、過酸化水素を分解するもの及びその分解反応を触媒するもののみならず、過酸化水素を吸着及び除去するものも包含している。
 残液回収ユニット80は、供給ユニット30に残存した滅菌剤を回収するように構成されている。残液回収ユニット80は、典型的には、回収した滅菌剤を気化させるためのヒータを備えている。残液回収ユニット80において気化された過酸化水素は、第2分解ユニット71を通過して、系外に排出される。残液回収ユニット80の構成及び機能については、追って詳しく説明する。
 除湿ユニット90は、系内に流入する空気を除湿するように構成されている。除湿ユニット90は、ソレノイドバルブSV12を介して滅菌室20に接続されている。除湿ユニット90は、ソレノイドバルブSV10を介して、滅菌室20、供給ユニット30及び残液回収ユニット80に接続されている。除湿ユニット90は、ソレノイドバルブSV13及びフィルタ91を介して系外と接続されている。また、除湿ユニット90は、ソレノイドバルブSV15を介して系外と接続されている。除湿ユニット90の構成及び機能については、追って詳しく説明する。
 フィルタ91は、系内に流入する空気の清浄化のために用いられる。フィルタ91としては、例えば、HEPAフィルタを用いることができる。
 図1乃至図3に例示する滅菌方法では、まず、供給ユニット30の復圧を行う。この復圧工程は、図1における工程100に相当する。
 この復圧工程では、ソレノイドバルブSV6が開かれ、フィルタ91を介して、系外から供給ユニット30に空気が流入する。これにより、滅菌装置10のうち、供給ユニット30が大気圧に戻される。
 次いで、滅菌剤の充填を行う。この充填工程は、図1における工程110に相当する。
 この充填工程では、液体過酸化水素を含んだ滅菌剤が、充填ユニット50から供給ユニット30へと充填される。この工程は、例えば、以下のようにして行うことができる。まず、充填ユニット50内の抽出管の先端がカートリッジ内の滅菌剤の液面より下に位置している状態で、ソレノイドバルブSV5を開くと共に、送液ポンプTPを稼働する。センサSNSが必要量の吸い出しを検知すると、送液ポンプTPを停止する。抽出管を滅菌剤の液面より上に移動させ、送液ポンプTPを再び稼働する。これにより、必要量の滅菌剤が、充填ユニット50から供給ユニット30へと充填される。
 なお、この充填工程において、センサSNSは、定量分(例えば3ml)の吸い出しを行ったことを感知するように機能する。具体的には、センサSNSは、定量分の吸い出しが完了するとON状態となる。また、吸い出し完了後、これと同量の送液が完了すると、OFF状態となる。このとき、吸い出し開始からセンサSNSがON状態になるまでの時間と、センサSNSがON状態になってからOFF状態になるまでの時間とを比較し、両者が同値でない場合には警告を発するようにすることもできる。こうすると、吸い出した滅菌剤の全量が供給ユニット30に供給されたことをより確実に検出することができる。
 上記充填工程と並行して、第1の減圧を行う。この第1減圧工程は、図1における工程120に相当する。
 この第1減圧工程では、滅菌室20内の減圧を行う。この減圧は、例えば、以下のようにして行うことができる。まず、ソレノイドバルブSV11を開状態とする。そして、ソレノイドバルブSV3を閉状態にしたまま、ソレノイドバルブSV2を開状態とする。ロータリーポンプRPを起動し、これに連動させてソレノイドバルブSV0を開状態とし且つソレノイドバルブSV1を閉状態とする。これにより、滅菌室20内を減圧することが可能となる。
 上述した通り、この第1減圧工程は、ソレノイドバルブSV3を閉状態にしたまま、ソレノイドバルブSV2を開状態として行う。これにより、気体は第1分解触媒ユニット70Aのみを通過し、第2分解触媒ユニット70Bを通過しない。このような構成を採用することにより、滅菌室20内の減圧を、すべての分解触媒ユニットを通過させた場合より短い時間で効率的に行うことが可能となる。
 その後、被滅菌物の温度調整を行う。この温度調整工程は、図1における工程130に相当する。
 この温度調整工程では、系外から空気を滅菌室20内に導入することにより、滅菌室20内に配置された被滅菌物の温度を上昇させる。この工程は、例えば、以下のようにして行うことができる。まず、ソレノイドバルブSV13及びSV12を開状態とし、系外から微量の空気を滅菌室20内に導入する。この導入された空気の運動エネルギーにより、第1減圧工程において低下した滅菌室20内に配置された被滅菌物の温度を上昇させることができる。なお、滅菌室20内に導入される空気は、フィルタ91によって浄化され、除湿ユニット90によって除湿されている。
 なお、温度調整工程において滅菌室20内に空気を導入する際の流入口は、蒸発部40の近傍に設けることが好ましく、例えば滅菌室20の中央付近に設けることが好ましい。こうすると、空気が蒸発部40で暖められることによって、空気の導入による滅菌室20内の被滅菌物の加温をより効率的に行うことが可能となる。
 また、滅菌室20の上記流入口には、第1分解ユニット70との接続口へ向かう方向とは逆の方向に空気の流れを起こすノズルを更に設けてもよい。こうすると、導入された空気は、滅菌室20内を循環してから第1分解ユニット70の方に吸引されるようにすることができる。それゆえ、このような構成を採用することにより、温度の調整をより効率的に行うことが可能となる。
 なお、温度調整工程における滅菌室20内の温度の上昇は、他の方法によって実現してもよい。例えば、この温度調整は、赤外線ヒータなどの加熱手段を用いて滅菌室20内の被滅菌物を加熱することにより行ってもよい。但し、空気の導入によって温度調整を行う方法を用いると、滅菌室20を内部から温めることができるため、より効率的である。なお、温度調整工程を省略し、滅菌室20からの伝熱や輻射熱によって滅菌室20内の被滅菌物が自然に温まるのを待ってもよい。但し、温度調整工程を積極的に行うと、滅菌作業全体に要する時間を短縮することが可能となる。また、空気を注入する経路の途中にヒータを設置し、流入する空気を加熱することでさらに加温の効率を上げることもできる。
 また、図1に示すフローチャートでは、充填工程110と、第1減圧工程120及び温度調整工程130とを、並行して行っているが、充填工程110と第1減圧工程120及び温度調整工程130とを並行して行わず、直列に行うことも可能である。但し、充填工程110と第1減圧工程120及び温度調整工程130とを並行して行うと、滅菌作業全体に要する時間を短縮することが可能となる。
 図1に示す通り、当該滅菌方法では、充填工程110が完了した後に、滅菌剤の濃縮の要否を判断する。滅菌剤の濃縮が必要な場合、工程140及び150に移行し、滅菌剤の濃縮が不要な場合、工程140を省略して工程150に移行する。滅菌剤の濃縮の要否の判断は、例えば、被滅菌物の種類に応じて行う。例えば、内腔をもたない滅菌物の表面のみを滅菌する(表面滅菌)の場合、典型的には、濃縮された滅菌剤を用いて滅菌を行う。他方、内腔をもった滅菌物の内部まで滅菌する(内腔物滅菌)の場合、使用者の具体的なニーズに応じて、濃縮を行うか行わないかを判断する。なお、濃縮の要否の判断をせず、常に濃縮を行うことにしてもよく、或いは、常に濃縮を行わないことにしてもよい。
 次いで、必要に応じて、濃縮を行う。この濃縮工程は、図1における工程140に相当する。
 この濃縮工程では、必要に応じて、供給ユニット30に充填された滅菌剤の濃縮を行う。この濃縮工程は、例えば、以下のようにして行うことができる。即ち、ソレノイドバルブSV11を閉状態とすると共に、SV4及びSV9を開状態にする。これにより、供給ユニット30が減圧され、過酸化水素の飽和蒸気圧曲線に従って適切な圧力まで供給ユニット30内の減圧を続けることで、 供給ユニット30中の滅菌剤を適切な濃度まで濃縮することが可能となる。
 供給ユニット30は、典型的には、減圧ユニット60によって供給ユニット30内の滅菌剤が濃縮されるように構成されている。濃縮の際に減圧ユニット60を用いることにより、減圧ユニット60を用いない場合と比較して、より低い温度で滅菌剤の濃縮を行うことが可能となる。
 なお、供給ユニット30は、大気圧下で滅菌剤の濃縮が無視できる程度の温度に温度調整しておくことが望ましい。これにより、供給ユニット30が減圧されてはじめて滅菌剤の濃縮が開始されるようにすることができる。供給ユニット30の温度は、例えば、70℃以下とすることが好ましく、30℃~70℃の範囲とすることがより好ましく、40℃~60℃の範囲とすることが更に好ましい。減圧下で濃縮を行うことにより、濃縮に要する時間を短縮できる。また、比較的低温で濃縮ができるため、加熱による滅菌剤の意図しない分解を抑制することも可能となる。なお、供給ユニット30の温度調整は、例えば、上述したヒータを用いて行うことができる。
 なお、上述した通り、供給ユニット30は、複数の孔を有する部材31を備えている。この部材31は、供給ユニット30内であり且つ充填された滅菌剤の液面より上に設けられている。このような構成を採用することにより、上記濃縮工程において、滅菌剤から蒸気を吸引すると共に、沸騰した液体の吸引を抑制することが可能となる。即ち、このような構成を採用することにより、上記濃縮工程における過酸化水素のロスを少なくすることができる。
 図5は、本発明の一態様に係る滅菌装置の供給ユニットに設けられた複数の孔を有する部材の一例を示す斜視図である。この部材31は、複数の孔31Hを備えている。このような構成を採用することにより、上述した効果を達成することができる。なお、図5では、孔31Hを4つ設けた態様を描いているが、孔31Hは2つ以上設けられていればよい。また、この部材31では、複数の孔31Hの上部をるつぼ状にしてもよい。こうすると、複数の孔31Hを通過してしまった液体を、濃縮工程後に再度供給ユニット30に戻すことが可能となる。
 なお、複数の孔を有する部材31として、網目状部材を用いてもよい。このような構成を採用した場合でも、上記濃縮工程において飛散した過酸化水素の少なくとも一部が網目状部材に捕捉され、供給ユニット30中に回収することが可能となる。即ち、このような構成を採用することによっても、上記濃縮工程における過酸化水素のロスを少なくすることができる。
 また、複数の孔を有する部材31として、焼結フィルタを用いてもよい。このような構成を採用した場合でも、上記濃縮工程において飛散した過酸化水素の少なくとも一部が焼結フィルタに捕捉され、供給ユニット30中に回収することが可能となる。即ち、このような構成を採用することによっても、上記濃縮工程における過酸化水素のロスを少なくすることができる。
 孔31Hの直径は、例えば10mm以下とし、好ましくは0.001~10mmの範囲内とし、より好ましくは0.1~5mmの範囲内とし、更に好ましくは0.5~1.5mmの範囲内とする。また、部材31は、2つ以上を重ねて使用することもできる。この場合、複数の部材31の孔31Hの位置を互いにずらしてもよい。
 また、上記濃縮工程では、回収された気体は、第2分解ユニット71を通過する。これにより、濃縮工程において回収された気体が第1分解ユニット70を通過する場合と比較して、第1分解ユニット70における当該気体中の湿気による結露の発生を少なくすることができる。即ち、これにより、第1分解ユニット70における結露を再蒸発させるために必要となる時間を短縮できる。したがって、これにより、滅菌作業全体に要する短縮することが可能となる。
 次いで、第2の減圧を行う。この第2減圧工程は、図1における工程150に相当する。この第2減圧工程は、例えば、上述した第1減圧工程と同様の方法で行うことができる。
  その後、供給前の保持を行う。この供給前保持工程は、図2における工程160に相当する。この保持工程では、ソレノイドバルブSV2を閉状態とし、短時間保持する。
 次いで、図2に示すように、所定時間が経過するまで、後述する工程170、180及び190を繰り返す。これにより、滅菌室20内に、充分な量の過酸化水素ガスが行きわたるようにする。
 図6は、本発明の一態様に係る滅菌方法の過酸化水素供給工程を示す概念図である。この過酸化水素供給工程は、図2における工程170に相当する。
 図6に示す過酸化水素供給工程では、供給ユニット30から滅菌室20内に、液体過酸化水素を含んだ滅菌剤が供給される。供給ユニット30から滅菌室20内に供給された液体過酸化水素は、蒸発部40において気化されるように構成されている。蒸発部40は、典型的には、液体過酸化水素を受け取る蒸発皿41と、蒸発皿41を加熱するヒータとを備えている。この工程は、例えば、三方向ソレノイドバルブSV7及びSV8を一定時間開けることにより実現することができる。なお、この工程は、過酸化水素ガスを含んだ滅菌剤を滅菌室20内に供給することによって行ってもよい。
 上述の通り、蒸発部40は、滅菌室20内に設けられている。即ち、供給ユニット30から供給された液体過酸化水素は、滅菌室20内で瞬時に気化され、滅菌室20内に拡散される。このような構成を採用することで、より効率的且つ安全な滅菌が可能となる。
 図7は、本発明の一態様に係る滅菌装置の蒸発部を構成する蒸発皿の一例を示す斜視図である。図7に示す蒸発皿41は、複数の放射状の溝G1と、複数の周状の溝G2とを備えている。このように、蒸発皿41に少なくとも1つの凹部及び又は凸部を設けることにより、蒸発皿41の表面積が増大する。したがって、蒸発皿41に少なくとも1つの凹部及び又は凸部を設けることにより、供給ユニット30から供給される液体過酸化水素の気化をより効率的に行うことが可能となる。特に、蒸発皿41に少なくとも1つの周状の溝を設けると、滅菌剤の蒸発皿41からの脱落を抑止できるため、蒸発皿41上での滅菌剤の蒸発をより効率的に行うことができる。また、蒸発皿41に少なくとも1つの放射状の溝を設けると、蒸発皿41上での液面の拡大により蒸発速度が速くなり、蒸発皿41上での滅菌剤の蒸発をより効率的に行うことができる。そして、蒸発皿41に少なくとも1つの周状の溝とこれに交差する少なくとも1つの溝とを設けると、上記の効果の組み合わせにより、蒸発皿41上での滅菌剤の蒸発を更に効率的に行うことができる。
 図1乃至図3に例示する滅菌方法では、続いて、微復圧を行う。この微復圧工程は、図2における工程180に相当する。この微復圧工程では、系外から滅菌室20に滅菌剤の供給経路を経由して微量の空気を流入させる。これは、例えば、三方向ソレノイドバルブSV8を閉状態とすると共に、ソレノイドバルブSV10を開状態とすることにより実現できる。これにより、経路内に微量に残留した過酸化水素を蒸発部に押し出すことができる。
 次いで、供給後の保持を行う。この供給後保持工程は、図2における工程190に相当する。この工程では、上述した微復圧を止めて、一定時間、滅菌室20内の状態を保持する。これにより、滅菌室20内の圧力を安定させる。
 以上の工程の後、所定時間が経過しておらず且つ滅菌室20内の過酸化水素濃度が所定濃度に達していない場合には、工程170乃至190が繰り返される。滅菌室20内の過酸化水素濃度は、上述した通り、例えば濃度測定手段45により計測することができる。なお、ここでは、滅菌室20内の過酸化水素濃度が所定濃度に到達したかに依って滅菌剤の供給回数を制御しているが、この制御は、滅菌剤の供給回数を所定の回数に定めることにより行うこともできる。この回数は、例えば1回であってもよく、2回以上であってもよい。
  上述した所定時間経過後、図3の上部に示す通り、所定回数経過の有無による分岐が生じる。所定回数に達するまでは、工程200及び210を経た後に、図1の下部に記載されているプロセスから繰り返す。所定回数に達した後は、工程220に移行する。なお、この所定回数には、特に制限はない。但し、ハーフサイクル法に基づく滅菌保証を行う際には、偶数回である必要がある。
 上述した所定回数に達していない場合、過酸化水素ガスの拡散及び滅菌剤の再充填を行う。この拡散及び充填工程は、図3における工程200に相当する。
 この拡散及び充填工程では、滅菌室20内における過酸化水素ガスの拡散と、充填ユニット50から供給ユニット30への滅菌剤の充填とが、同時に行われる。
 滅菌室20内における過酸化水素ガスの拡散は、例えば、滅菌室20内に系外から空気を流入させ、滅菌室20内に気流を生じさせることにより行う。この拡散は、例えば、ソレノイドバルブSV12及びSV13を開状態とすることにより実現できる。
 充填ユニット50から供給ユニット30への滅菌剤の充填は、例えば、先に説明したのと同様の方法により行うことができる。このように、過酸化水素ガスの拡散と滅菌剤の充填とを同時に行うことにより、当該工程に要する時間を短縮し、ひいては滅菌作業全体に要する時間を短縮することが可能となる。なお、過酸化水素ガスの拡散と滅菌剤の充填とは、直列に行ってもよい。
 次いで、過酸化水素の除去を行う。この過酸化水素除去工程は、図3における工程210に相当する。
 この過酸化水素除去工程では、滅菌室20内における過酸化水素ガスが除去される。この工程は、例えば、以下のようにして行われる。即ち、ソレノイドバルブSV12及びSV13を閉状態とし、ソレノイドバルブSV3を開状態とする。これにより、滅菌室20内が減圧され、滅菌室20中の気体が第2分解触媒ユニット70B及び第1分解触媒ユニット70Aを通過して系外に排出される。
 このように、過酸化水素除去工程では、滅菌室20内の気体は、2つの分解触媒ユニットを通過する。これにより、滅菌室20内の気体中の過酸化水素をより確実に除去することが可能となる。他方、上述した通り、第1及び第2減圧工程では、滅菌室20内の気体は、1つの触媒ユニットのみを通過する。このような構成を採用することにより、滅菌全体に要する時間をより短縮すると共に、過酸化水素ガスの除去をより確実に行うことが可能となる。
 なお、上述の構成では、第1及び第2減圧工程では1つの分解触媒ユニットが使用され、過酸化水素除去工程では2つの分解触媒ユニットが使用されているが、第1及び第2減圧工程で使用される触媒ユニットの数が過酸化水素除去工程で使用される分解触媒ユニットの数より小さければ、同様の効果を達成することができる。即ち、滅菌室20内に過酸化水素を供給する前に減圧ユニット60によって減圧する際には、気体がより少ない数の分解触媒ユニットを通過し、滅菌室20内に過酸化水素を供給した後に減圧ユニット60によって減圧する際には、気体がより多い数の分解触媒ユニットを通過するようにしてもよい。或いは、滅菌室20内に過酸化水素を供給する前に減圧ユニット60によって減圧する際には、複数の上記分解触媒ユニットのうち一部のみを気体が通過するようにしてもよい。例えば、第1及び第2減圧工程では1つの分解触媒ユニットを使用し、過酸化水素除去工程では2つ以上の分解触媒ユニットを使用してもよい。或いは、第1及び第2減圧工程では、排出される気体が分解触媒ユニットを使用しない構成を採用してもよい。より具体的には、滅菌室20内に過酸化水素が存在しない状況(第1減圧工程及び/又は第2減圧工程)では分解触媒ユニットを使用せず、滅菌室20内に過酸化水素が存在する状況(以下で説明する工程240)では分解触媒ユニットを使用して減圧が実行されてもよい。
 上述した所定回数に達した場合、過酸化水素ガスの拡散を行う。この拡散工程は、図3における工程220に相当する。この拡散工程は、例えば、先に説明した拡散及び充填工程における前者と同様にして行うことができる。
 その後、図3に示すように、過酸化水素ガスの除去を行う。この工程230は、例えば、先に説明したのと同様の方法により行うことができる。
 続いて、図3に示すように、滅菌室20内の減圧を行う。この工程240は、例えば、先に説明したのと同様の方法により行うことができる。
 次いで、必要に応じて、滅菌室20の復圧及び減圧を所定回数だけ繰り返す。復圧工程250では、滅菌室20の復圧を行う。この復圧は、例えば、ソレノイドバルブSV14を開状態にすることによって行うことができる。なお、この所定回数に特に制限はない。例えば、復圧工程250は、1回だけ行ってもよく、2回以上行ってもよく、全く行わなくてもよい。また、この繰り返しは、回数ではなく、時間によって制御してもよい。
 次いで、最終復圧及び残液回収を行う。この最終復圧及び残液回収工程は、図3における工程260に相当する。
 この最終復圧及び残液回収工程では、滅菌室20の復圧と、供給ユニット30内に残存した滅菌剤の回収とを同時に行う。前者は、例えば、先に説明したのと同様の方法により行うことができる。後者は、例えば、ソレノイドバルブSV4及び三方向ソレノイドバルブSV8を開状態とし、供給ユニット30中の残液を残液回収ユニット80に移行させることにより行うことができる。この残液は残液回収ユニット80において気化されて、気化された過酸化水素は第2分解ユニット71で分解される。なお、残液回収ユニット80と第2分解ユニット71とは、一体化されていてもよい。このような構成を採用すると、残液の回収と過酸化水素の分解とをより効率的に行うことが可能となる。なお、上では残液回収ユニット80を第2分解ユニット71に接続して用いているが、残液回収ユニット80を第1分解ユニット70に接続して用いることも可能である。また、最終復圧と残液回収とは、別個の工程として行ってもよい。
 次いで、更に残液回収を行う。この残液回収工程は、図3における工程270に相当する。この工程では、供給ユニット30の壁面などに残留した残液をさらに無害なレベルまで蒸発させて除去すると共に、第2分解ユニット71における過酸化水素の分解を引き続き進行させる。この工程は、例えば、三方向ソレノイドバルブSV8を閉状態にすると共に、ソレノイドバルブSV9を開状態にすることにより実現できる。なお、これ以降の工程は、滅菌室20とは完全に独立して行うことができる。すなわち、ユーザーは、この時点で、被滅菌物を自由に取り出すことができる。
 次いで、除湿ユニットの排水及びオイル回収を行う。この工程は、図3における工程280に相当する。この工程では、除湿ユニット90の排水と、ロータリーポンプRPからのオイルの回収とが同時に行われる。なお、これら両工程は、直列して行ってもよい。
 除湿ユニット90の排水は、例えば、以下のようにして行われる。即ち、ソレノイドバルブSV13及びSV15を開状態とすることにより、除湿ユニット90からの排水を行う。これにより、除湿ユニット90をより長期間に亘って使用することが可能となる。
 オイルの回収は、例えば、以下のようにして行われる。即ち、まず、ソレノイドバルブSV16を開状態とする。その後、ロータリーポンプRPを停止し、それに連動してソレノイドバルブSV0が閉状態となり、ソレノイドバルブSV1が開状態となる。これにより、セパレータSepからロータリーポンプRPにオイルが回収される。即ち、これにより、ロータリーポンプRPをより長期間に亘って使用できるようになる。
 以上により、被滅菌物の滅菌が完了する。但し、図1乃至図7を参照しながら説明した構成、及び、以下に説明する図8乃至図19を参照しながら説明する構成は、あくまで一例である。本発明に係る滅菌装置は、被滅菌物を収容する滅菌室と、前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給ユニットと、前記滅菌室内に位置し且つ前記液体過酸化水素を前記滅菌室内で蒸発させる蒸発部とを備えていればよく、その他の構成要素は省略してもよい。また、本発明に係る滅菌装置は、被滅菌物を収容する滅菌室と、前記滅菌室内に過酸化水素を含んだ滅菌剤を供給する供給ユニットと、前記滅菌室内を減圧する減圧ユニットと、前記減圧時に前記過酸化水素を分解する第1分解ユニットとを具備した滅菌装置であって、前記第1分解ユニットは、複数の分解触媒ユニットと、前記減圧時に気体が通過する前記分解触媒ユニットの数を切り替えるための切替手段とを備えていればよく、その他の構成要素は省略してもよい。また、本発明に係る滅菌方法は、滅菌室内に被滅菌物を収容する工程と、前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給工程と、前記滅菌室内で前記液体過酸化水素を蒸発させる工程とを含んでいればよく、その他の工程は省略してもよい。また、本発明に係る滅菌方法は、滅菌室内に被滅菌物を収容する工程と、前記滅菌室内を減圧する第1減圧工程と、前記第1減圧工程の後に前記滅菌室内に過酸化水素を含んだ滅菌剤を供給する供給工程と、前記供給工程の後に前記滅菌室内を減圧する第2減圧工程とを含んだ滅菌方法であって、前記第1減圧工程では気体がより少ない数の分解触媒ユニットを通過し、前記第2減圧工程では気体がより多い数の分解触媒ユニットを通過するように構成されていればよく、その他の工程は省略してもよい。
 なお、上述した滅菌装置及び滅菌方法において、供給ユニット30、蒸発部40、及び滅菌室20、並びに、任意の要素である第1分解ユニット70、第2分解ユニット71、及び残液回収ユニット80は、常に陰圧又は大気圧となるように構成されている。即ち、これらの構成要素は、圧力が大気圧を超えないように構成されている。このような構成を採用することにより、配管系統等に万が一問題が生じた場合でも、ガスが外部に漏出することを抑止することができる。
 次に、滅菌装置の他の実施形態について説明する。図8は、本発明の一態様に係る滅菌装置の全体構成を示す概念図である。図8に示す滅菌装置1000は、図4に示す滅菌装置10と重複する構成がある。そこで、重複する構成については適宜説明を省略し、図4の滅菌装置10とは異なる構成について重点的に説明を行う。また、滅菌装置1000による滅菌方法は、滅菌剤の濃縮に関連するフローを除いて、図1~図3に示したフローチャートと同様であるので、説明を省略する。滅菌剤の濃縮に関連するフローについては後述する。
 図8に示す滅菌装置1000は、滅菌室1020と、供給ユニット1030と、蒸発部1040と、濃度測定手段1045と、充填ユニット1050と、減圧ユニット1060と、第1分解ユニット1070と、第2分解ユニット1071と、残液回収ユニット1080と、フィルタ1091と、を備えている。図8に示す滅菌装置1000は、図4の除湿ユニット90が設けられていない点で、図4の滅菌装置10とは異なる。除湿ユニット90が設けられていないことに関連して、ソレノイドバルブSV13及びソレノイドバルブSV15も設けられていない。フィルタ1091を介して系内に流入した空気は直接ソレノイドバルブSV10及びソレノイドバルブSV12に供給される。なお、濃度測定手段1045、充填ユニット1050、減圧ユニット1060、第1分解ユニット1070、第2分解ユニット1071、残液回収ユニット1080、及びフィルタ1091は、省略してもよい。また、後述する圧力計、バルブ、真空計、ポンプ、及びセンサなどの具体的な構成は、単なる一例であり、本発明の範囲がこれらに限定されるものではない。
 滅菌室1020は、図4の滅菌室20と同様である。供給ユニット1030は、図4の供給ユニット30と同様である。しかしながら、滅菌装置1000は、ソレノイドバルブSV6とフィルタ1091との間にフィルタ1092を備えている。したがって、供給ユニット1030は、ソレノイドバルブSV6、フィルタ1092、及びフィルタ1091を介して系外に接続されている。
 滅菌室1020、供給ユニット1030、及び残液回収ユニット1080は、三方向ソレノイドバルブSV11及びSV17を介して、真空計CG1に接続されている。この真空計CG1は、滅菌室1020、供給ユニット1030及び/又は残液回収ユニット1080の絶対圧を計測するために用いられる。具体的には、真空計CG1は、三方向ソレノイドバルブSV17が残液回収ユニット1080の方へ切り替えられたときには、残液回収ユニット1080の圧力を測定する。また、真空計CG1は、三方向ソレノイドバルブSV17が滅菌室1020及び供給ユニット1030の方へ切り替えられ、かつ、三方向ソレノイドバルブSV11が滅菌室1020の方へ切り替えられたときには、滅菌室1020の圧力を計測する。また、真空計CG1は、三方向ソレノイドバルブSV17が滅菌室1020及び供給ユニット1030の方へ切り替えられ、かつ、三方向ソレノイドバルブSV11が供給ユニット1030の方へ切り替えられたときには、供給ユニット1030の圧力を計測する。また、この真空計CG1は、過酸化水素の飽和蒸気圧曲線を参照することにより、例えば供給ユニット1030で滅菌剤の濃縮を行う際の供給ユニット1030内の間接的な濃度管理にも使用することができる。
 蒸発部1040は、図4の蒸発部40と同様に滅菌室1020の内部に設けられている。本実施形態においては、蒸発部1040が滅菌室1020の内部に設けられる例を示すが、これに限らず、蒸発部1040は滅菌室1020の外部に設けられていても良い。蒸発部1040の具体的な構成及び機能については、追って詳しく説明する。
 滅菌装置1000は、滅菌室1020内に濃度測定手段1045を備えていてもよい。濃度測定手段1045は、図4の濃度測定手段45と同様である。
 充填ユニット1050は、図4の充填ユニット50と同様である。また、充填ユニット1050と供給ユニット1030とを繋ぐ配管に圧力計PG3が接続されている点は図4と同様である。しかしながら、滅菌装置1000においては、圧力計PG3がリリーフバルブRV2を介して系外に接続されている。
 減圧ユニット1060は、図4の減圧ユニット60と同様である。ただし、図8の滅菌装置1000では、ソレノイドバルブSV1が設けられていない点で、図4と異なる。第1分解ユニット1070は、図4の第1分解ユニット70と同様である。
 第2分解ユニット1071の構成は、図4の第2分解ユニット71と同様である。しかしながら、第2分解ユニット1071は、ソレノイドバルブSV9、及び、残液回収ユニット1080を介して供給ユニット1030に接続されている点が、図4の滅菌装置10とは異なる。
 残液回収ユニット1080は、供給ユニット1030に残存した滅菌剤を回収するように構成されている。残液回収ユニット1080は、典型的には、回収した滅菌剤を気化させるためのヒータを備えている。残液回収ユニット1080において気化された過酸化水素は、第2分解ユニット1071を通過して、系外に排出される。残液回収ユニット1080の構成及び機能については、追って詳しく説明する。
 次に、蒸発部1040について説明する。図9は、一形態の蒸発部1040の構成を示す断面図である。図9に示すように、蒸発部1040は、蒸発皿1041と、蒸発皿1041を覆う上壁部材1046と、を備える。上壁部材1046の中央には穴が形成されおり、この穴には、液体過酸化水素の供給ノズル1031が挿入される。供給ノズル1031は、供給ユニット1030に接続されている。供給ユニット1030の液体過酸化水素は、供給ノズル1031を介して蒸発皿1041に滴下される。
 蒸発皿1041に滴下された液体過酸化水素は、蒸発部1040において加熱されることによって蒸発し、過酸化水素ガスとなって滅菌室1020内に充満する。ここで、例えば、蒸発皿1041に滴下された液体過酸化水素が飛び散った場合には、飛び散った液体過酸化水素は上壁部材1046にブロックされ得る。したがって、蒸発部1040は、上壁部材1046を備えることによって、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。
 図10は、上壁部材1046を外した状態の蒸発部1040の構成を示す斜視図である。図9,10に示すように、蒸発皿1041は、上壁部材1046の方向に突出する第1凸部1042A,1042Bを備える。第1凸部1042Aは、蒸発皿1041の中央部に周状に設けられる。第1凸部1042Bは、第1凸部1042Aの外周に周状に設けられる。また、第1凸部1042Aと上壁部材1046との間には第1流路1043Aが形成される。第1凸部1042Bと上壁部材1046との間には第1流路1043Bが形成される。また、図10に示すように、蒸発部1040は、ヒータ1025Hと、サーミスタ1025Sと、を備える。ヒータ1025Hは、蒸発部1040を加熱するのに用いられる。サーミスタ1025Sは、蒸発部1040の温度を測定するためのセンサとして用いられる。
 一方、上壁部材1046は、蒸発皿1041の方向に突出する第2凸部1047を備える。第2凸部1047は、第1凸部1042Aと第1凸部1042Bとの間に位置するように、上壁部材1046に周状に設けられる。第2凸部1047と蒸発皿1041との間には第2流路1048が形成される。図9及び図10に示すように、第1凸部1042A,1042B及び第2凸部1047は、蒸発皿1041及び上壁部材1046の中央部から外側へ向かう方向(放射方向)に交互に、つまり、第1凸部1042A、第2凸部1047、第1凸部1042Bの順番で形成される。言い換えると、第1凸部1042A,1042B及び第2凸部1047は、蒸発皿1041及び上壁部材1046の径方向の異なる位置に形成されることによって、ラビリンス構造(ラビリンスパッキン)を形成する。なお、本実施形態では、第1凸部1042A,1042B及び第2凸部1047が、蒸発皿1041及び上壁部材1046の中央部から外側へ向かう方向(放射方向)に交互に形成される例を示したが、これに限定されない。例えば、第1凸部1042A,1042B及び第2凸部1047が、蒸発皿1041及び上壁部材1046の中央部から外側へ向かう方向に、第1凸部1042A、第1凸部1042B、第2凸部1047の順番に形成されるなど、様々な態様で形成されていてもよい。
 蒸発皿1041に滴下された液体過酸化水素は、第1凸部1042A,1042B及び/又は第2凸部1047にブロックされる。したがって、第1凸部1042A,1042B及び第2凸部1047を設けることによって、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。また、第1凸部1042A,1042B及び第2凸部1047を設けることによって、蒸発部1040の表面積が増大するので、蒸発部1040における液体過酸化水素の蒸発を促進し、液体過酸化水素の気化不良を抑制することができる。
 また、図9に示すように、上壁部材1046の上面は、滅菌室1020の壁面と間隔をあけて設置されている。これによって、上壁部材1046の上面と滅菌室1020の壁面との間には流路1022が形成される。滅菌室1020の壁面にはソレノイドバルブSV12から延びる管が接続される穴1024が形成されている。滅菌装置1000は、穴1024を介して流路1022に空気を注入できるようになっている。また、上壁部材1046の側面は、Oリング1049を介して滅菌室1020の壁面と接している。したがって、流路1022に注入された空気は、上壁部材1046の中央に向かって流れ、上壁部材1046の中央の穴を介して、蒸発皿1041の中央の気化エリア1040Aへ供給される。気化エリア1040Aに空気が供給されることによって、過酸化水素ガスは、第1流路1043A、第2流路1048、及び第1流路1043Bの順に流れて滅菌室1020に供給される。このように、気化エリア1040Aに滞留した過酸化水素ガスを空気で押し出すことによって、過酸化水素ガスの拡散を効率的に行うことができる。なお、本実施形態では、第1凸部1042A,1042B及び第2凸部1047を設ける例を示したが、これに限らず、滅菌装置1000は、これらのうち少なくとも1つを備えていればよい。
 また、図9及び図10に示すように、蒸発皿1041の中央部には、上壁部材1046の方へ向けて隆起する隆起部1041Hが形成されている。これに加えて、液体過酸化水素の供給ノズル1031は、その先端が隆起部1041Hの近傍に位置するように設置されている。これによって、蒸発皿1041に滴下された液体過酸化水素の飛び散りを抑制している。また、図9に示すように、隆起部1041Hには、液体過酸化水素の供給ノズル1031の下部から斜め下へ向けて延びる斜面1041Aが形成される。斜面1041Aを設けることによって、供給ノズル1031から滴下された液体過酸化水素は、斜面1041Aを流れるので、液体過酸化水素を薄く広げて蒸発を促進することができる。
 次に、蒸発部1040の他の態様について説明する。図11は、一形態の蒸発部1040の構成を示す断面図である。図11に示すように、蒸発部1040は、蒸発皿1041と、蒸発皿1041を覆う上壁部材1046と、を備える。蒸発皿1041及び上壁部材1046は、2本の柱1026H,1026Sによって滅菌室1020の壁に吊り下げ固定されている。柱1026Hの内部には、ヒータが設けられる。このヒータは、蒸発部1040を加熱するのに用いられる。また、柱1026Sの内部には、サーミスタが設けられる。このサーミスタは、蒸発部1040の温度を測定するためのセンサとして用いられる。上壁部材1046の中央部には穴が形成されおり、この穴には、液体過酸化水素の供給ノズル1031が挿入される。供給ノズル1031は、供給ユニット1030に接続されている。供給ユニット1030の液体過酸化水素は、供給ノズル1031を介して蒸発皿1041に滴下される。
 蒸発皿1041に滴下された液体過酸化水素は、蒸発部1040において加熱されることによって蒸発し、過酸化水素ガスとなって滅菌室1020内に充満する。ここで、例えば、蒸発皿1041に滴下された液体過酸化水素が飛び散った場合には、飛び散った液体過酸化水素は上壁部材1046にブロックされる。したがって、蒸発部1040は、上壁部材1046を備えることによって、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。
 図11に示すように、蒸発皿1041には、周状に溝1041Bを形成することができる。溝1041Bを形成することによって、蒸発皿1041の表面積を増大することができるので、液体過酸化水素の蒸発を促進し、液体過酸化水素の気化不良を抑制することができる。また、溝1041Bを設けることによって、液体過酸化水素の飛び散りを抑制することができる。
 また、図11に示すように、ソレノイドバルブSV12から延びる管1028は、蒸発皿1041と上壁部材1046との間の気化エリア1041Bに挿入され、気化エリア1041Bに空気を注入することができる。これにより、気化エリア1041Bで蒸発した過酸化水素ガスは、空気に押し出されて滅菌室1020内に効率的に拡散される。
 ここで、蒸発部1040は、蒸発皿1041の反上壁部材1046側に設けられたバッフルプレート1044を備える。バッフルプレート1044は、蒸発皿1041の下面にボルトなどによって固定されている。バッフルプレート1044は、蒸発皿1041の外周から径方向の外側に張り出すフランジ部1044Bを備える。したがって、蒸発皿1041から液体過酸化水素のしぶき(液体過酸化水素の細かな水滴)がこぼれ落ちた場合に、バッフルプレート1044は、フランジ部1044Bによって液体過酸化水素のしぶきを受け止めることができる。その結果、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。
 次に、蒸発部1040の他の態様について説明する。図12は、一形態の蒸発部1040の構成を示す断面図である。図12の蒸発部1040は、図11の蒸発部1040と重複する構成があるので、重複する構成については適宜説明を省略し、図11の蒸発部1040と異なる構成を重点的に説明する。
 図12に示すように、上壁部材1046は、Oリング1049を介して滅菌室1020の壁面と接している。また、ソレノイドバルブSV12から延びる管1028は、上壁部材1046と滅菌室1020の壁面との間の流路1022に挿入されている。したがって、流路1022に注入された空気は、上壁部材1046の中央へ向かって流れ、上壁部材1046の中央の穴を介して、蒸発皿1041と上壁部材1046との間の気化エリア1040Bへ供給される。気化エリア1040Bに空気が供給されることによって、気化エリア1040Bに滞留した過酸化水素ガスは、空気で押し出されて、滅菌室1020内に効率的に拡散される。
 次に、蒸発部1040の他の態様について説明する。図13,14は、一形態の蒸発部1040の構成を示す断面斜視図である。図13,14に示すように、蒸発部1040は、蒸発皿1041と、蒸発皿1041を覆う上壁部材1046と、を備える。上壁部材1046の中央部には穴が形成されおり、この穴には、液体過酸化水素の供給ノズル1031が挿入される。供給ノズル1031は、供給ユニット1030に接続されている。供給ユニット1030の液体過酸化水素は、供給ノズル1031を介して蒸発皿1041に滴下される。
 蒸発皿1041に滴下された液体過酸化水素は、蒸発部1040において加熱されることによって蒸発し、過酸化水素ガスとなって滅菌室1020内に充満する。ここで、例えば、蒸発皿1041に滴下された液体過酸化水素が飛び散った場合には、飛び散った液体過酸化水素は上壁部材1046にブロックされる。したがって、蒸発部1040は、上壁部材1046を備えることによって、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。
 また、図13に示すように、上壁部材1046は、蒸発皿1041に対向する面に複数の周状の溝1046Dを備えている。また、上壁部材1046の外周部には、2か所に穴が形成されており、一方の穴には、ヒータ1029Hが挿入され、他方の穴には、サーミスタ1029Sが挿入される。ヒータ1029Hは、蒸発部1040を加熱するのに用いられる。サーミスタ1029Sは、蒸発部1040の温度を測定するためのセンサとして用いられる。
 また、図13,14に示すように、蒸発皿1041は、複数の放射状の溝1041Cと、複数の周状の溝1041Dとを備えている。溝1041C及び溝1041Dを設けることによって、蒸発皿1041の表面には凹凸が形成される。具体的には、溝1041Dを設けることによって、蒸発皿1041の表面には、同心円状の複数の凸部1041Eが形成される。凸部1041Eの内周側の側面は、蒸発皿1041の外周方向に向けて傾斜している。これによって、凸部1041Eには、傾斜面1041Fが形成される。傾斜面1041Fが形成されているので、蒸発皿1041に滴下されて飛び散った液体過酸化水素は、傾斜面1041Fに接触して蒸発皿1041の内周側へ跳ね返る。したがって、本実施形態の蒸発部1040によれば、液体過酸化水素が液体のまま蒸発部1040から排出されることを抑制することができる。
 次に、残液回収ユニット1080について説明する。図15は、一形態の残液回収ユニット1080の外観の斜視図である。図16は、一形態の残液回収ユニット1080の断面を示す斜視図である。図15,16に示すように、残液回収ユニット1080は、第1回収空間1082と、第2回収空間1084と、を備える。ここで、図8を参照すると、第1回収空間1082は、ソレノイドバルブSV7,SV8を介して供給ユニット1030と接続されている。また、第2回収空間1084は、残液回収ユニット1080の外部の流路1083を介して第1回収空間1082と接続されている。残液回収ユニット1080は、第1回収空間1082と第2回収空間1084とを接続する流路1083に設けられたソレノイドバルブSV18を備える。ソレノイドバルブSV18は、流路1083の開閉を行うことができる。図16に示すように、第1回収空間1082の容積は、第2回収空間1084の容積よりも大きく構成されている。また、図16に示すように、第1回収空間1082は、液体過酸化水素が突沸したとしても液体のまま第2回収空間へ流入するのを抑制するために、第2回収空間1084の深さよりも深く形成されている。また、残液回収ユニット1080は、第1回収空間1082及び第2回収空間1084を加熱するためのヒータ1088を備える。
 供給ユニット1030から第1回収空間1082に回収された滅菌剤は、ヒータ1088によって加熱されて蒸発し、流路1083を介して第2回収空間1084に流入する。そして、第2回収空間1084において再度加熱されて第2分解ユニット1071へ供給される。本実施形態では、残液回収ユニット1080が、第1回収空間1082と第2回収空間1084とに分かれている。したがって、第1回収空間1082において気化されなかった液体過酸化水素が液体のまま流出したとしても、第2回収空間1084において加熱されることによって気化される。仮に液体過酸化水素が液体のまま第2分解ユニット1071へ供給された場合、第2分解ユニット1071において過剰反応が生じて第2分解ユニット1071の温度が上昇し、その結果、第2分解ユニット1071がダメージを受けるおそれがある。しかしながら、本実施形態によれば、液体過酸化水素が液体のまま第2分解ユニット1071へ供給されることを抑制することができるので、第2分解ユニット1071にダメージが生じることを抑制することができる。なお、第2回収空間1084は、供給ユニット1030と第2分解ユニット1071とを接続する流路の長さ及び容積を増大するという機能も有する。すなわち、図8に示すように、供給ユニット1030は、ソレノイドバルブSV9及び第2回収空間1084を介して第2分解ユニット1071へ接続される。第2回収空間1084を設けることによって、供給ユニット1030から第2分解ユニット1071への流路の長さ及び容積は増大する。したがって、仮に供給ユニット1030において液体過酸化水素の突沸が生じたとしても、過酸化水素が液体のまま第2分解ユニット1071に流入することを抑制することができる。
 次に、残液回収ユニット1080の他の態様について説明する。図17は、一形態の残液回収ユニット1080の断面を示す斜視図である。図18は、一形態の液体過酸化水素の供給部材1086の構成を示す斜視図である。図17,18に示すように、残液回収ユニット1080は、第1回収空間1082に設けられた供給部材1086を備えていてもよい。図17,18に示すように、供給部材1086は、筒状部材1086Aと、筒状部材1086Aの一方の開口を覆う円板1086Cと、を備える。供給部材1086は、円板1086Cが上に向いた状態で、第1回収空間1082の底部に設置される。
 図18に示すように、円板1086Cには、複数の穴1086Dが形成される。また、筒状部材1086Aの外周面には、らせん状の溝1086Bが形成される。らせん状の溝1086Bは、第1回収空間1082の側壁に形成された、図示していない過酸化水素の供給口と連通している。したがって、供給ユニット1030から第1回収空間1082に供給された液体過酸化水素は、らせん状の溝1086Bを通って渦を巻きながら第1回収空間1082内に流入する。これにより、第1回収空間1082の表面積が増大するとともに、過酸化水素が撹拌されて万遍なく加熱されるので、液体過酸化水素の突沸が生じるおそれを抑制することができる。また、仮に液体過酸化水素の突沸が発生したとしても、円板1086Cによって飛び散りや第2回収空間1084への流入を抑制することができる。第1回収空間1082において気化した過酸化水素ガスは、複数の穴1086D、及び、流路1083を介して第2回収空間1084に供給される。
 次に、カートリッジからの滅菌剤の回収について説明する。図8を参照すると、滅菌装置1000は、残液回収ユニット1080の圧力を計測するように構成された真空計CG1(圧力計)を備える。具体的には、真空計CG1は、ソレノイドバルブSV17を介して第1回収空間1082の圧力を計測するよう構成されている。ここで、第1回収空間1082の容積は、充填ユニット1050内の滅菌剤のカートリッジ1052の容積と等しいか又は大きく構成されている。これにより、例えば、カートリッジ1052の有効期限切れの時などにカートリッジ1052内の滅菌剤を第1回収空間1082に全量回収することができる。なお、本明細書において、残液回収ユニット80,1080は、供給ユニット30,1030内の滅菌剤の残液を回収するだけではなく、充填ユニット50,1050内の有効期限切れの滅菌剤(廃液)を回収する機能も有する。
 しかしながら、第1回収空間1082内に滅菌剤が収容されている状態でカートリッジ1052内の滅菌剤を回収すると、第1回収空間1082から滅菌剤が溢れるおそれがある。そこで、本実施形態の残液回収ユニット1080は、真空計CG1によって計測された第1回収空間1082の圧力がしきい値以下になったらカートリッジ1052から第1回収空間1082へ滅菌剤が回収されるよう構成されている。すなわち、第1回収空間1082内の滅菌剤が空になると、第1回収空間1082内の圧力は、あるしきい値以下になる。しきい値は、あらかじめ実験などによって得られる。そこで、滅菌装置1000は、真空計CG1によって計測された第1回収空間1082の圧力がしきい値以下になったら、第1回収空間1082内の滅菌剤が空になっているとみなして、カートリッジ1052から第1回収空間1082へ滅菌剤を回収する。このように、第1回収空間1082内の滅菌剤が空になっている状態でのみ、カートリッジ1052から第1回収空間1082へ滅菌剤を回収するので、第1回収空間1082から滅菌剤が溢れるおそれを抑制することができる。
 次に、滅菌剤の濃縮工程におけるソレノイドバルブSV18の開閉制御について説明する。上述のとおり、第1回収空間1082と第2回収空間1084とを連通する流路1083には、ソレノイドバルブSV18が設けられている。滅菌装置1000は、ソレノイドバルブSV18の開閉を行うことにより、流路1083の開閉を行うことができる。供給ユニット1030に収容された滅菌剤の濃縮を行う工程(濃縮工程)以外の際には、ソレノイドバルブSV18は、「開」に制御される。これにより、流路1083は開き、第1回収空間1082と第2回収空間1084とは連通する。
 一方、濃縮工程は、残液回収ユニット1080を構成する第1回収空間1082及び第2回収空間1084のうち一方の第2回収空間1084のみを介して滅菌剤の収容空間である供給ユニット1030を減圧することによって行われる。この点を具体的に説明する。図19は、濃縮工程におけるソレノイドバルブSV18の開閉制御を示すフローチャートの一例である。図19に示すように、滅菌装置1000は、濃縮工程を行うか否かを判定する(310)。滅菌装置1000は、濃縮工程を行わないと判定したときには(310,No)、ソレノイドバルブSV18を「開」に制御する(320)。一方、滅菌装置1000は、濃縮工程を行うと判定したときには(310,Yes)、ソレノイドバルブSV18を「閉」に制御する(330)。これによって、第1回収空間1082と第2回収空間1084とは、連通しなくなる。この状態で、滅菌装置1000は、ソレノイドバルブSV9を開いて濃縮工程を行う(340)。具体的には、滅菌装置1000は、減圧ユニット1060を用いて減圧を行う。すると、供給ユニット1030は、第1回収空間1082及び第2回収空間1084のうち第2回収空間1084のみを介して減圧される。仮に、第1回収空間1082と第2回収空間1084とが連通しており、かつ、第1回収空間1082に液体過酸化水素が残っていれば、第1回収空間1082に残っている液体過酸化水素の気化作業も発生するために濃縮工程に時間がかかる。これに対して本実施形態によれば、濃縮工程の際には、第1回収空間1082と第2回収空間1084とが連通しないので、仮に第1回収空間1082に液体過酸化水素が残っていたとしても、第2回収空間1084のみを通って減圧が行われ、その結果、濃縮工程に要する時間を短縮することができる。
 次に、滅菌装置1000の運転開始前に装置の状態を自動で判別するセルフチェックについて説明する。一般的に、滅菌装置では、装置の状態を1日1回判別することが推奨されているが、1日1回の判別では装置の故障のタイミングによっては故障を検知することが難しい場合がある。 また、装置の状態判別を実行するかどうかはユーザーの操作に任されている。仮に装置の故障が運転中に検知された場合、ユーザーは滅菌物を解体して再組立てする必要があり、また排蒸やガスの分解など待ち時間が発生するためにデメリットが大きかった。
 これに対して、本実施形態の滅菌装置1000は、滅菌装置1000の運転開始前に装置のセルフチェックを行う。すなわち、滅菌装置1000は、ユーザーが運転開始を指示した後、実際の滅菌工程が始まる前に装置の状態を自動でチェックする。具体的には、滅菌装置1000は、滅菌装置1000のソレノイドバルブSV0~SV18の開閉を適宜切り替えながら、圧力計PG1~PG3及び/又は真空計CG1の値をあらかじめ設定されたしきい値を比較することによって、装置の状態を自動でチェックする。
 滅菌工程が始まる前の滅菌装置1000のセルフチェックの一例として、供給ユニット1030の減圧路の導通確認について説明する。供給ユニット1030の減圧路の導通確認を行う場合には、滅菌装置1000は、ソレノイドバルブSV0、SV4、SV9、SV14を「開」にし、ソレノイドバルブSV11、SV17については真空計CG1によって供給ユニット1030の圧力を計測できるように切り替え、その他のソレノイドバルブを「閉」に制御する。これによって、ロータリーポンプRPから供給ユニット1030への閉じた経路が形成される。この状態において、ロータリーポンプRPをONに制御して所定時間が経過した後、真空計CG1の圧力が所定のしきい値より小さくなっているか否かを判定する。真空計CG1の圧力が所定のしきい値より小さくなっていれば、供給ユニット1030の減圧路は正常であると判定することができる。一方、真空計CG1の圧力が所定のしきい値より小さくなっていなければ、供給ユニット1030の減圧路において漏れが生じていたり、ソレノイドバルブが正常に開閉できていない可能性がある。滅菌装置1000は、このようにして、滅菌装置1000の各種の流体経路及びソレノイドバルブのチェックを行うことができる。滅菌装置1000は、運転時間に影響を与えないように、チェック工程は装置が正常な場合には数分以内に完了するようになっている。
 次に、触媒粉捕集フィルタについて説明する。図8に示すように、滅菌装置1000は、第2分解ユニット1071とソレノイドバルブSV4との間に、触媒粉捕集フィルタ1072を備える。触媒粉捕集フィルタ1072は、アフター交換可能な、触媒粉の捕集フィルタである。一般的な滅菌装置では、真空ポンプ(本実施形態におけるロータリーポンプRP)の後段に分解触媒が設けられる。この場合、真空ポンプから発生するオイルミストにより触媒が汚染され、ガス漏れが発生するおそれがある。
 これに対して、本実施形態の滅菌装置1000は、ロータリーポンプRPの前段に第2分解ユニット1071を設置している。このため、触媒の汚染を抑制することができるが、触媒から落ちる粉が直接ロータリーポンプRPに吸引されることによって、ロータリーポンプRPが故障するおそれがある。そこで、滅菌装置1000は、第2分解ユニット1071とロータリーポンプRPとの間、具体的には第2分解ユニット1071とソレノイドバルブSV4との間に、触媒粉捕集フィルタ1072を備える。これにより、第2分解ユニット1071の触媒から粉が落ちたとしても触媒粉捕集フィルタ1072に捕集されるので、ロータリーポンプRPが故障することを抑制することができる。
 なお、上述した滅菌装置及び滅菌方法において、供給ユニット1030、蒸発部1040、及び滅菌室1020、並びに、任意の要素である第1分解ユニット1070、第2分解ユニット1071、及び残液回収ユニット1080は、常に陰圧又は大気圧となるように構成されている。即ち、これらの構成要素は、圧力が大気圧を超えないように構成されている。このような構成を採用することにより、配管系統等に万が一問題が生じた場合でも、ガスが外部に漏出することを抑止することができる。
 次に、拡散工程及び復圧工程250は滅菌室20内に系外から空気を流入させるが、ここで両工程における空気の流入速度について説明する。拡散工程における流入速度は復圧工程250における流入速度より小さくなるように制御される。この制御は、例えば、ソレノイドバルブSV12開放時の開口面積をソレノイドバルブSV14より小さくすることにより実現される。これにより、拡散工程において拡散しづらい過酸化水素ガスを被滅菌物の内腔に拡散させることができる。一方で、復圧工程250において滅菌室20内の過酸化水素除去を短時間で行うことができる。
 また、上記の実施形態では、センサSNSが1個設けられる例を示したが、これには限定されない。図20は、センサSNSの設置の一例を示す模式図である。図20に示すように、滅菌装置は、複数(例えば2個)のセンサSNSを備えていてもよい。センサSNS-1とセンサSNS-2は、距離を離して設置される。具体的には、センサSNS-1は、抽出管の先端からセンサSNS-1までの配管内の体積が第1所定量(例えば3.4ml)となる位置に設けられる。センサSNS-2は、センサSNS-1からセンサSNS-2までの配管内の体積が第1所定量より少ない第2所定量(例えば3.3ml)となる位置に設けられる。
 この構成における充填ユニット50から供給ユニット30への滅菌剤の充填工程は、以下のように行われる。まず、抽出管をカートリッジ1052内に挿入して抽出管の先端が滅菌剤の液面より下に位置している状態で、ソレノイドバルブSV5を開くと共に、送液ポンプTPを稼働する。センサSNS-1が滅菌剤を検出したら(ON状態になったら)、送液ポンプTPを停止し、抽出管を滅菌剤の液面より上に移動させ、送液ポンプTPを再び稼働する。センサSNS-1が滅菌剤を検出しなくなる(OFF状態になる)よりも早く、センサSNS-2が滅菌剤を検出すれば(ON状態になれば)、最低でも第2所定量(例えば3.3ml)の滅菌剤が吸い出されたと判断することができる。
 また、上記では複数(例えば2個)のセンサSNSを設置する例を示したが、1個のセンサSNSを用いて上記と同様の滅菌剤の吸い出し量の検出を行うこともできる。図21は、センサSNSの設置の一例を示す模式図である。図22は、センサSNSの構成の一例を示す模式図である。図21,22に示すように、本例では、送液ポンプTPと供給ユニット30とを接続する配管がループするように巻かれており、配管のループの巻き始め部分52と巻き終わり部分54が隣接して配置されている。センサSNSは、隣接している巻き始め部分52と巻き終わり部分54とを挟むように配置される。具体的には、センサSNSは、抽出管の先端からセンサSNSまでの配管内の体積が第1所定量(例えば3.4ml)となる位置に設けられる。これに加えて、センサSNSは、センサSNSからループした配管を通って再びセンサSNSに至るまでの配管内の体積が第1所定量より少ない第2所定量(例えば3.3ml)となるように設けられている。なお、ここでは、センサSNSが巻き始め部分52と巻き終わり部分54とを挟むように配置される例を示したが、これには限定されない。センサSNSは、配管のループする前の部分とループした後の部分とを挟むように配置されていればよい。
 センサSNSは、図22に示すように、スリット57が形成された部材を挟んで向かい合う発光部56と受光部58を備えている。2本の配管(巻き始め部分52の配管と巻き終わり部分54の配管)は、スリット57の部分に配置される。センサSNSは、受光部58による受光量に基づいて配管内の液体(滅菌剤)の有無を検出する。すなわち、2本の配管の両方に滅菌剤があれば、光はスリット57において大きく遮られるので、受光部58による受光量は小さくなる(第1受光量)。一方、2本の配管のいずれにも滅菌剤がなければ、光はスリット57において大きく透過するので、受光量は大きくなる(第2受光量)。また、2本の配管のうちいずれかに滅菌剤があれば、光はスリット57において一部遮られ一部透過するので、受光部58による受光量は第1受光量と第2受光量の間の第3受光量になる。センサSNSは、受光部58による受光量が、第1受光量、第2受光量、及び、第3受光量のいずれになっているか、又は、いずれに近接しているかによって、2本の配管内の滅菌剤の有無を検出することができる。
 この構成における充填ユニット50から供給ユニット30への滅菌剤の充填工程は、以下のように行われる。まず、抽出管をカートリッジ1052内に挿入して抽出管の先端が滅菌剤の液面より下に位置している状態で、ソレノイドバルブSV5を開くと共に、センサSNSの受光部58による受光量が第3受光量になるまで、送液ポンプTPを稼働する。つまり、配管の巻き始め部分52まで滅菌剤が吸い出されるまで送液ポンプTPを稼働する。センサSNSの受光部58による受光量が第3受光量になったら送液ポンプTPを停止し、抽出管を滅菌剤の液面より上に移動させ、送液ポンプTPを再び稼働する。センサSNSは、センサSNSの受光部58による受光量が第2受光量になるよりも早く、第1受光量になれば、最低でも第2所定量(例えば3.3ml)の滅菌剤が吸い出されたと判断することができる。つまり、配管の巻き始め部分52においてセンサSNSが反応しなくなる(OFF状態になる)よりも早く、配管の巻き終わり部分54においてセンサSNSが反応すれば(ON状態になれば)、最低でも第2所定量(例えば3.3ml)の滅菌剤が吸い出されたと判断することができる。図20及び図21の構成によれば、送液ポンプTPの送液速度の個体差に関わらず、充填ユニット50から所定量の滅菌剤が吸い出されたことを確実に検出することができる。すなわち、送液ポンプTPが空気を完全に封止できる機構ではない場合、空気を送ったときの若干の漏れにより送液速度に個体差が生じる可能性がある。このため、滅菌剤の吸い出しの際に送液ポンプTPを稼働してからセンサSNSが滅菌剤を検出するまでの時間と、抽出管をカートリッジ1052から抜いた状態で送液ポンプTPを稼働してからセンサSNSが滅菌剤を検出しなくなるまでの時間と、を比較して滅菌剤の抽出量を検出する方法では誤差が生じるおそれがある。これに対して、この構成によれば、時間の比較による滅菌剤の抽出量の検出を行っていないので、送液ポンプTPの送液速度の個体差に関わらず、充填ユニット50から所定量の滅菌剤が吸い出されたことを確実に検出することができ、抽出量不足による滅菌不良を防止することができる。
(1)過酸化水素の拡散スピード
 上述した通り、本発明に係る滅菌装置では、蒸発部が滅菌室内に設けられており、本発明に係る滅菌方法では、滅菌室内で液体過酸化水素が蒸発させられる。このような構成を採用することによる効果を検証するため、以下のような実験を行った。なお、以下は、図4及び図6に示した滅菌装置10に対して行った実験の結果である。
(実施例1)
 滅菌室内の温度が50℃の条件で、図6を参照しながら説明した滅菌剤の投入を行い、滅菌室内で液体過酸化水素を蒸発させた。そして、上述した濃度測定手段を用いて、過酸化水素ガス濃度のピーク値と、過酸化水素ガス濃度がピーク値に達するまでに要した時間を測定した。
(比較例1)
 蒸発部を滅菌室外に設置し、滅菌室外で液体過酸化水素を蒸発させ、発生した過酸化水素ガスを滅菌室内に投入した場合について、以下の文献に基いて、過酸化水素ガス濃度のピーク値と、過酸化水素ガス濃度がピーク値に達するまでに要した時間を計算した。
 文献名:“Advances in hydrogen peroxide gas plasma sterilization” International Annual Meeting and Scientific Workshop 25-28 March 2009
 以上の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、蒸発部を滅菌室内に設けることにより、過酸化水素ガス濃度のピーク値が向上するとともに、過酸化水素ガス濃度がピーク値に達するまでに要する時間も大幅に短縮できることが分かったそれゆえ、このような構成を採用することにより、滅菌室内における過酸化水素ガスの拡散スピードが大幅に向上することが分かった。即ち、これにより、従来と比較してより効率的な滅菌が行えることがわかった。
(2)生残菌数の測定
 次に、本発明に係る滅菌装置及び滅菌方法により、滅菌が適切に行われることを確認する実験を行った。被滅菌物としては、直径0.5mm×長さ10000mmのテフロン(登録商標)製チューブを両端に接続した内腔物内に10CFUのGeobacillus Stearothermophilus(ATCC7935)の芽胞を指標菌として設置したものを用いた。そして、滅菌時間を変更しながら、ハーフサイクル法で滅菌処理を行い、培養後のコロニー数を滅菌時間に対してプロットした。その結果を図23に示す。
 図23に示す通り、滅菌時間を6分以上取ることにより、生残菌数をゼロにすることができた。即ち、本発明に係る滅菌装置及び滅菌方法により、充分な滅菌性能を達成できることが分かった。
(3)減圧時に気体が通過する分解触媒ユニットの数を切り替えることによる効果
 上述した通り、本発明に係る滅菌装置では、第1分解ユニットは、複数の分解触媒ユニットと、前記減圧時に気体が通過する前記分解触媒ユニットの数を切り替えるための切替手段とを備えている。このような構成を採用することによる効果を検証するため、以下のような実験を行った。
(実施例2)
 減圧工程において、ソレノイドバルブSV2を開状態とすることにより、第1分解ユニット70において気体が通過する分解触媒ユニットを第1分解触媒ユニット70Aのみとした。そして、減圧開始時から滅菌室20の圧力が100Paになるまでに要した時間を測定した。
(比較例2)
 減圧工程において、ソレノイドバルブSV2の代わりにソレノイドバルブSV3を開状態とすることにより、第1分解ユニット70において気体が通過する分解触媒ユニットを第1分解触媒ユニット70A及び第2分解触媒ユニット70Bの2つとした。そして、減圧開始時から滅菌室20の圧力が100Paになるまでに要した時間を測定した。
 以上の結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例2の場合、比較例2の場合と比較して、減圧開始時から滅菌室20の圧力が100Paになるまでに要する時間を19秒短縮することができた。即ち、例えば、滅菌室20の圧力を100Paまで減圧する工程が全6回ある場合には、全体の所要時間を約2分間短縮できることがわかった。即ち、これにより、従来と比較してより効率的な滅菌が行えることがわかった。
 10,1000…滅菌装置;20,1020…滅菌室;30,1030…供給ユニット;31…複数の孔を有する部材;31H…孔;40,1040…蒸発部;41,1041…蒸発皿;45,1045…濃度測定手段;45A,1045A…光源;45B,1045B…光度計;45C,1045C…測定部(プローブ);50,1050…充填ユニット;52…巻き始め部分;54…巻き終わり部分;56…発光部;57…スリット;58…受光部;60,1060…減圧ユニット;70,1070…第1分解ユニット;70A…第1分解触媒ユニット;70B…第2分解触媒ユニット;71,1071…第2分解ユニット;80,1080…残液回収ユニット;90,1090…除湿ユニット;91,1091…フィルタ;1042A,1042B…第1凸部;1043A,1043B…第1流路;1044…バッフルプレート;1046…上壁部材;1047…第2凸部;1048…第2流路;1082…第1回収空間;1084…第2回収空間;1083…流路;1052…カートリッジ;G1…溝;G2…溝;PG1、PG2、PG3…圧力計;RP…ロータリーポンプ;Sep…オイルミストセパレータ;SNS…センサ;SV0、SV1、SV2、SV3、SV4、SV5、SV6…ソレノイドバルブ;SV7、SV8…三方向ソレノイドバルブ;SV9、SV10…ソレノイドバルブ;SV11…三方向ソレノイドバルブ;SV12、SV13、SV14、SV15、SV16、SV17、SV18…ソレノイドバルブ;TP…送液ポンプ

 

Claims (34)

  1.  被滅菌物を収容する滅菌室と、
     前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給ユニットと、
     前記滅菌室内に位置し且つ前記液体過酸化水素を前記滅菌室内で蒸発させる蒸発部と
    を具備した滅菌装置。
  2.  前記滅菌室内の過酸化水素ガスの濃度を検出する濃度測定手段と、
     前記過酸化水素ガスの前記濃度に応じて前記滅菌剤の前記滅菌室内への供給量を調整する制御ユニットと
    を更に具備した請求項1に記載の滅菌装置。
  3.  前記滅菌室内の過酸化水素ガスの濃度を検出する濃度測定手段を更に具備し、前記濃度測定手段は光源と光度計とを備え、前記光源は単色光源である請求項1又は2に記載の滅菌装置。
  4.  前記蒸発部は蒸発皿を備え、前記蒸発皿は少なくとも1つの凹部及び/又は凸部を備えている請求項1乃至3の何れか1項に記載の滅菌装置。
  5.  前記凹部及び/又は凸部は周状の溝と前記周状の溝と交差する溝である請求項4に記載の滅菌装置。
  6.  前記供給ユニット内の前記滅菌剤の液面より上に複数の孔を有する部材が設けられている請求項1乃至5の何れか1項に記載の滅菌装置。
  7.  前記滅菌室内を減圧する減圧ユニットと、
     前記減圧時に前記滅菌室内の過酸化水素を分解する第1分解ユニットと
    を更に具備し、
     前記第1分解ユニットは、複数の分解触媒ユニットと、前記減圧時に気体が通過する前記分解触媒ユニットの数を切り替えるための切替手段とを備えている請求項1乃至6の何れか1項に記載の滅菌装置。
  8.  前記第1分解ユニットは、前記滅菌室内に前記過酸化水素を供給する前に前記減圧ユニットによって減圧する際には、前記気体がより少ない数の前記分解触媒ユニットを通過し、前記滅菌室内に前記過酸化水素を供給した後に前記減圧ユニットによって減圧する際には、前記気体がより多い数の前記分解触媒ユニットを通過するように構成されている、請求項7に記載の滅菌装置。
  9.  前記第1分解ユニットは、前記滅菌室内に前記過酸化水素を供給する前に前記減圧ユニットによって減圧する際には、前記気体が1つの前記分解触媒ユニットを通過し、前記滅菌室内に前記過酸化水素を供給した後に前記減圧ユニットによって減圧する際には、前記気体が2つ以上の前記分解触媒ユニットを通過するように構成されている、請求項7に記載の滅菌装置。
  10.  前記滅菌室内を減圧する減圧ユニットと、
     前記減圧時に前記滅菌室内の過酸化水素を分解する第1分解ユニットと
    を更に具備し、
     前記供給ユニットは、前記減圧ユニットによって前記供給ユニット内の前記滅菌剤が濃縮されるように構成されている、請求項1乃至9の何れか1項に記載の滅菌装置。
  11.  前記滅菌装置は前記滅菌剤の濃縮又は回収の際に気化した過酸化水素を分解する第2分解ユニットを更に具備している請求項1乃至10の何れか1項に記載の滅菌装置。
  12.  前記供給ユニット内に存在する前記滅菌剤を回収する残液回収ユニットを更に具備した請求項1乃至11の何れか1項に記載の滅菌装置。
  13.  前記供給ユニットに前記滅菌剤を充填する充填ユニットを更に具備し、前記残液回収ユニットは前記充填ユニット内に存在する前記滅菌剤も回収できるように構成されている請求項12に記載の滅菌装置。
  14.  前記蒸発部は、蒸発皿と、前記蒸発皿を覆う上壁部材と、を備える請求項1乃至13の何れか1項に記載の滅菌装置。
  15.  前記蒸発皿は、前記上壁部材の方向に突出する第1凸部を備え、
     前記第1凸部と前記上壁部材との間には第1流路が形成される請求項14に記載の滅菌装置。
  16.  前記上壁部材は、前記蒸発皿の方向に突出する第2凸部を備え、
     前記第2凸部と前記蒸発皿との間には第2流路が形成される請求項14又は15に記載の滅菌装置。
  17.  前記第1凸部及び前記第2凸部は、前記蒸発皿及び前記上壁部材の中央部から外側へ向かう方向に交互に形成される請求項16に記載の滅菌装置。
  18.  前記残液回収ユニットは、前記供給ユニットと接続された第1回収空間と、前記第1回収空間と接続された第2回収空間と、を備える請求項12又は13に記載の滅菌装置。
  19.  前記第1回収空間の容積は、前記第2回収空間の容積よりも大きく構成されている請求項17に記載の滅菌装置。
  20.  前記残液回収ユニットは、前記第1回収空間と前記第2回収空間とを接続する流路に設けられたバルブを備える請求項18又は19に記載の滅菌装置。
  21.  前記滅菌剤を濃縮する工程においては、前記バルブが閉に制御されることによって、前記第2回収空間のみを介して前記減圧ユニットによって前記供給ユニット内の前記滅菌剤が濃縮されるようになっている請求項20に記載の滅菌装置。
  22.  前記残液回収ユニットの圧力を計測するように構成された圧力計をさらに備える請求項12乃至21の何れか1項に記載の滅菌装置。
  23.  前記圧力計は、前記第1回収空間の圧力を計測するよう構成されている請求項22に記載の滅菌装置。
  24.  前記第1回収空間の容積は、前記充填ユニット内の前記滅菌剤のカートリッジの容積と等しいか又はより大きく構成されている請求項17乃至23の何れか1項に記載の滅菌装置。
  25.  前記残液回収ユニットは、前記圧力計によって計測された前記第1回収空間の圧力がしきい値以下になったら前記カートリッジから前記第1回収空間へ前記滅菌剤が回収されるよう構成されている請求項23又は24に記載の滅菌装置。 
  26.  前記滅菌室内を減圧する減圧ユニットと、
     前記減圧時に前記滅菌室内の過酸化水素を分解する第1分解ユニットと
    を更に具備し、
     前記供給ユニット、前記蒸発部、前記滅菌室、及び前記第1分解ユニットは、大気圧を超えないように構成されている、請求項1乃至25の何れか1項に記載の滅菌装置。
  27.  滅菌室内に被滅菌物を収容する工程と、
     前記滅菌室内に液体過酸化水素を含んだ滅菌剤を供給する供給工程と、
     前記滅菌室内で前記液体過酸化水素を蒸発させる工程と
    を含んだ滅菌方法。
  28.  前記滅菌室内の過酸化水素ガスの濃度を検出する工程と、
     前記過酸化水素ガスの濃度に応じて前記滅菌剤の前記滅菌室内への供給量を調整する工程と
    を更に含んだ請求項27に記載の滅菌方法。
  29.  前記供給工程の前に、前記滅菌剤の濃縮を行うか否かを選択する工程を更に含んだ請求項27又は28に記載の滅菌方法。
  30.  前記供給工程の前に前記滅菌剤を濃縮する工程を更に含んだ請求項27乃至29の何れか1項に記載の滅菌方法。
  31.  前記供給工程の前に前記滅菌室内を減圧する第1減圧工程と、 
     前記供給工程の後に前記滅菌室内を減圧する第2減圧工程と
    を含んだ滅菌方法であって、
     前記第1減圧工程では気体がより少ない数の分解触媒ユニットを通過し、前記第2減圧工程では気体がより多い数の分解触媒ユニットを通過するように構成されている請求項27乃至30の何れか1項に記載の滅菌方法。
  32.  前記供給工程の前に前記滅菌室内を減圧する第1減圧工程と、
     前記第1減圧工程と前記供給工程との間に前記滅菌室内に空気を導入することにより前記滅菌室内の前記被滅菌物の加温を行う工程と
    を更に含んだ請求項27乃至31の何れか1項に記載の滅菌方法。
  33.  前記滅菌剤を濃縮する工程は、前記滅菌剤を回収する残液回収ユニットを構成する第1回収空間及び第2回収空間のうち一方のみを介して前記滅菌剤の収容空間を減圧することによって行われる請求項30乃至32の何れか1項に記載の滅菌方法。
  34.  前記滅菌剤を濃縮する工程は、
     前記滅菌剤の濃縮を行うか否かを判定する工程と、
     前記滅菌剤を濃縮を行うと判定された場合に、前記第1回収空間と前記第2回収空間とを接続する流路に設けられたバルブを閉にする工程と、
    前記第2回収空間を介して前記滅菌剤の収容空間を減圧する工程と、を備える請求項33に記載の滅菌方法。
     

     
PCT/JP2016/053111 2015-02-03 2016-02-02 滅菌装置及び滅菌方法 WO2016125809A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573391A JPWO2016125809A1 (ja) 2015-02-03 2016-02-02 滅菌装置及び滅菌方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-019680 2015-02-03
JP2015019680 2015-02-03
JP2015-148817 2015-07-28
JP2015148817 2015-07-28

Publications (1)

Publication Number Publication Date
WO2016125809A1 true WO2016125809A1 (ja) 2016-08-11

Family

ID=56564149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053111 WO2016125809A1 (ja) 2015-02-03 2016-02-02 滅菌装置及び滅菌方法

Country Status (2)

Country Link
JP (1) JPWO2016125809A1 (ja)
WO (1) WO2016125809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381917A (zh) * 2018-11-23 2019-02-26 楚天科技股份有限公司 药液灌装前除菌过滤装置、除菌过滤方法、灌装系统及灌装方法
CN111228522A (zh) * 2020-01-17 2020-06-05 英诺维尔智能科技(苏州)有限公司 一种自动化药品生产系统高效伴随式灭菌的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531414A (en) * 1978-08-25 1980-03-05 Hitachi Ltd Concentrator operation control
JPS63503440A (ja) * 1986-06-12 1988-12-15 ブリティッシュ・テクノロジー・グループ・リミテッド 蒸留器及び蒸留方法
JPH038434U (ja) * 1989-06-10 1991-01-28
JPH06510932A (ja) * 1992-03-13 1994-12-08 アメリカン ステリライザー カンパニー 多数の成分を含有する滅菌剤のための滅菌装置および方法
JP2000217894A (ja) * 1998-12-30 2000-08-08 Ethicon Inc ロ―ドを決定するために少量の滅菌剤を用いる滅菌方法
JP2004050170A (ja) * 2002-05-31 2004-02-19 Air Water Inc ガス滅菌器用排ガス処理方法および装置
JP2008119142A (ja) * 2006-11-09 2008-05-29 Ihi Shibaura Machinery Corp 殺菌ガス浸透装置
US20110176959A1 (en) * 2004-11-26 2011-07-21 Human Meditek Co., Ltd. Hydrogen peroxide vapor sterilizer and sterilizing methods using the same
JP2012135378A (ja) * 2010-12-24 2012-07-19 Nikki Universal Co Ltd 濃縮器及びこれを備えた過酸化水素ガス発生装置
JP2013081560A (ja) * 2011-10-06 2013-05-09 Canon Marketing Japan Inc 滅菌装置および滅菌方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531414A (en) * 1978-08-25 1980-03-05 Hitachi Ltd Concentrator operation control
JPS63503440A (ja) * 1986-06-12 1988-12-15 ブリティッシュ・テクノロジー・グループ・リミテッド 蒸留器及び蒸留方法
JPH038434U (ja) * 1989-06-10 1991-01-28
JPH06510932A (ja) * 1992-03-13 1994-12-08 アメリカン ステリライザー カンパニー 多数の成分を含有する滅菌剤のための滅菌装置および方法
JP2000217894A (ja) * 1998-12-30 2000-08-08 Ethicon Inc ロ―ドを決定するために少量の滅菌剤を用いる滅菌方法
JP2004050170A (ja) * 2002-05-31 2004-02-19 Air Water Inc ガス滅菌器用排ガス処理方法および装置
US20110176959A1 (en) * 2004-11-26 2011-07-21 Human Meditek Co., Ltd. Hydrogen peroxide vapor sterilizer and sterilizing methods using the same
JP2008119142A (ja) * 2006-11-09 2008-05-29 Ihi Shibaura Machinery Corp 殺菌ガス浸透装置
JP2012135378A (ja) * 2010-12-24 2012-07-19 Nikki Universal Co Ltd 濃縮器及びこれを備えた過酸化水素ガス発生装置
JP2013081560A (ja) * 2011-10-06 2013-05-09 Canon Marketing Japan Inc 滅菌装置および滅菌方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109381917A (zh) * 2018-11-23 2019-02-26 楚天科技股份有限公司 药液灌装前除菌过滤装置、除菌过滤方法、灌装系统及灌装方法
CN111228522A (zh) * 2020-01-17 2020-06-05 英诺维尔智能科技(苏州)有限公司 一种自动化药品生产系统高效伴随式灭菌的方法

Also Published As

Publication number Publication date
JPWO2016125809A1 (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6141950B2 (ja) 滅菌方法及び装置
EP1166802B1 (en) Method for rapidly determining the acceptability of loads to be sterilized
US9522205B2 (en) Multi mode low temperature plasma sterilizer
CA2550781C (en) Apparatus for bio-decontamination of enclosures
KR101545407B1 (ko) 멸균 장치, 멸균 방법, 기록 매체
KR20160052697A (ko) 살균 방법 및 장치와 그 적응제어
WO2016125809A1 (ja) 滅菌装置及び滅菌方法
US8894926B2 (en) Sterilization apparatus and sterilization method
US9320819B2 (en) Sterilization apparatus and method
US9775924B2 (en) Decontamination process device and decontamination process method
KR100939788B1 (ko) 과산화수소의 분리 농축을 이용한 멸균 방법 및 장치
JP7116053B2 (ja) 押込空気を利用する除染システムおよびそれを用いる方法
WO2016125810A1 (ja) 滅菌装置及び滅菌方法
JP2018519971A (ja) 内腔装置の除染システムおよび方法
KR101671208B1 (ko) 멸균방법 및 멸균장치
JP4660084B2 (ja) 除染方法、及び連設無菌装置
KR101424179B1 (ko) 저온 플라즈마 멸균기의 건조장치
JP2015119776A (ja) 滅菌装置、滅菌方法
JP2016083090A (ja) 過酸化水素ガス滅菌装置
JP2014155860A5 (ja)
JP2017093747A (ja) 滅菌装置、滅菌方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573391

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746640

Country of ref document: EP

Kind code of ref document: A1