WO2016125658A1 - 光送信装置、光受信装置、及び光ケーブル - Google Patents

光送信装置、光受信装置、及び光ケーブル Download PDF

Info

Publication number
WO2016125658A1
WO2016125658A1 PCT/JP2016/052350 JP2016052350W WO2016125658A1 WO 2016125658 A1 WO2016125658 A1 WO 2016125658A1 JP 2016052350 W JP2016052350 W JP 2016052350W WO 2016125658 A1 WO2016125658 A1 WO 2016125658A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
connector
light
unit
optical cable
Prior art date
Application number
PCT/JP2016/052350
Other languages
English (en)
French (fr)
Inventor
中嶋 康久
山本 真也
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680007628.1A priority Critical patent/CN107209332B/zh
Priority to RU2017127147A priority patent/RU2707243C2/ru
Priority to US15/544,980 priority patent/US10578814B2/en
Priority to EP16746489.0A priority patent/EP3255470B1/en
Priority to KR1020177019962A priority patent/KR102468121B1/ko
Publication of WO2016125658A1 publication Critical patent/WO2016125658A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3598Switching means directly located between an optoelectronic element and waveguides, including direct displacement of either the element or the waveguide, e.g. optical pulse generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • G02B6/4293Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements hybrid electrical and optical connections for transmitting electrical and optical signals

Definitions

  • the present disclosure relates to an optical transmission device, an optical reception device, and an optical cable.
  • optical data transmission is mainly used for data transmission in infrastructure systems with a large amount of data transmission and data transmission between data servers, and has not yet been widely used for consumer use.
  • the connection between the device and the optical cable has a structure in which only the reliability of the connection is given priority, and is not a structure that can be easily used by general users.
  • Patent Document 2 has two optical connection surfaces, one optical connection surface is connected in a straight line from the optical transmission line of the optical cable, and the other optical connection surface is perpendicular to the optical transmission line. The structure of the optical connector is described.
  • Patent Document 3 although optical connection is performed on two surfaces facing the optical connector, a configuration is described in which the orientation of the optical connector is aligned in both the optical transmission device and the optical reception device.
  • an optical connector connecting portion to which a connector portion of an optical cable is mounted, a light emitting end that emits light to transmit an optical signal via the optical cable, and irradiates light on a reflective surface of the connector portion
  • the connector portion is mounted in the first orientation
  • the light irradiated to the reflective surface by driving the reflective surface is refracted toward the optical transmission path of the optical cable by refraction at the reflective surface
  • the connector unit is connected in a second direction different from the first direction
  • the light transmission path of the optical cable is driven by refraction at the reflection surface by driving the reflection surface and irradiating the reflection surface.
  • a drive unit that refracts the optical transmission device.
  • an optical connector connecting portion to which a connector portion of an optical cable is mounted, and an optical signal transmitted through the optical cable are received and emitted from an optical transmission path of the optical cable to be connected to the connector portion.
  • the light receiving end for receiving light reflected by the reflecting surface and the connector portion are mounted in the first orientation, the light emitted from the optical transmission path by driving the reflecting surface is refracted by the reflecting surface.
  • the connector portion is connected in a second direction different from the first direction, the light emitted from the optical transmission path is driven by driving the reflective surface And a drive unit that refracts toward the light receiving end by refraction at the reflecting surface.
  • an optical transmission path through which an optical signal is transmitted a connector section that is provided at an end of the optical transmission path, is attached to an optical connector connection section of an external device, and is provided in the connector section.
  • the optical signal is transmitted between the light emitting end or the light receiving end of the external device and the optical transmission path by reflecting the light of the optical signal, and the connector portion is in the first direction and the optical connector connecting portion A reflective surface that is driven to a first position when attached to the optical connector and is driven to a second position when the connector part is attached to the optical connector connecting part in a second orientation.
  • connection between devices that perform optical transmission is possible even if the orientation of the connector is changed.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • the system according to the present embodiment includes an optical transmission device 100, an optical reception device 200, and an optical cable 300 that connects the optical transmission device 100 and the optical reception device 200.
  • the optical transmitter 100 includes a light emitting unit 110 for optical data, a lens 120, a light emitting end 130, and an optical connector receptacle unit 140.
  • the optical receiving apparatus 200 includes a light receiving end 210, a lens 220, a light receiving unit 230, and an optical connector receptable unit 240.
  • FIG. 2 is a schematic diagram showing the configuration of the optical cable.
  • the optical cable 300 includes an optical transmission path 310 for transmitting an optical signal, and optical connector portions 320 and 330 provided at both ends of the optical transmission path 310. Although the optical connector portions 320 and 330 are not shown in FIG. 1, the optical connector portion 320 is attached to the optical connector receptacle portion 140, and the optical connector portion 330 is attached to the optical connector receptacle portion 240.
  • the optical connector 320 can be attached to the optical connector receptacle 240 and the optical connector 330 can be attached to the optical connector receptacle 140.
  • the optical connector 320 is reflected by the reflection surface 321 for guiding the light from the light emitting end 130 to the optical transmission path 310, the lens 322 for condensing the light from the reflection surface 321, and the insertion direction of the optical connector 320.
  • Guide holes 323 and 324 and mediation mechanisms 325 and 326 for moving the surface 321 are provided.
  • Guide holes 333 and 334 and mediation mechanisms 335 and 336 for moving the reflecting surface 331 depending on the direction are provided.
  • Video data, audio data, and other data transmitted from the optical transmitter 100 to the optical receiver 200 are output as optical signals from the light emitting unit 110 of the optical transmitter 100.
  • the light emitted from the light emitting unit 110 as an optical signal enters the lens 120.
  • the incident light passes through the lens 120 and becomes, for example, parallel light, and is emitted from the light emitting end 130 provided in the optical connector receptacle 140 to the reflection surface 321 of the optical connector 320.
  • the lens 120 and the light emitting end 130 may be integrated.
  • the optical signal emitted from the light emitting end 130 enters from the side surface of the optical connector unit 320 and is refracted in the optical axis direction of the optical transmission line 310 by the reflecting surface 321.
  • the light emitted from the light emitting end 130 is refracted by the reflecting surface 321 in the optical axis direction of the optical transmission path 310.
  • the optical signal reflected by the reflecting surface 321 passes through the lens 322 and is collected on the optical transmission path 310 and transmitted through the optical transmission path 310.
  • the optical signal emitted from the optical transmission path 310 is converted into, for example, parallel light by the lens 332, then refracted by the reflection surface 331, and emitted from the side surface of the optical connector unit 330.
  • the optical signal emitted from the side surface of the optical connector 330 is incident on the light receiving end 210 in the optical connector receptacle 240 of the optical receiver 200.
  • the light refracted by the reflecting surface 331 enters the light receiving end 210.
  • the light incident on the light receiving end 210 is collected through the lens 220 and received by the light receiving unit 230.
  • FIG. 3 is a diagram illustrating the configuration of the optical connector receptacles 140 and 240 provided in the optical transmission device 100 and the optical reception device 200.
  • the optical transmission device 100 includes a substrate 160, and the optical connector receptacle 140 is provided on the substrate 140. Further, the light emitting ends 130 are arranged on the substrate 160.
  • the optical receiver 200 includes a substrate 260, and an optical connector receptacle 240 is provided on the substrate 260. A light receiving end 210 is arranged on the substrate 260.
  • the guide pin 150 provided in the optical connector receptacle unit 140 is inserted into one of the guide holes 323 and 324.
  • the insertion direction of the optical connector 320 can be determined.
  • the guide pin 250 provided in the optical connector receptacle 240 is inserted into one of the guide holes 333 and 334. By doing so, the insertion direction of the optical connector 330 can be determined.
  • FIG. 4 shows the optical connector section when the optical connector section 320 and the optical connector section 330 of the optical cable 300 are not inserted into the optical connector receptacle section 140 of the optical transmission apparatus 100 and the optical connector receptacle section 240 of the optical reception apparatus 200.
  • the mediation mechanisms 335 and 336 provided in the optical connector 330 are The guide holes 333 and 334 are closed. Accordingly, it is possible to reliably prevent foreign matters such as dust from entering the optical connector portion 330 from the guide holes 333 and 334.
  • FIGS. 5A and 5B are schematic diagrams showing details of the operations of the guide holes 323 and 324 and the mediation mechanisms 325 and 326 and the reflecting surface 321 of the optical connector portion 320 of the optical cable 300.
  • FIG. 5A and 5B show the guide hole 323, the mediation mechanism 325, and the reflection surface 321, but the other guide holes, the mediation mechanism, and the reflection surface provided in the optical connector unit 320 and the optical connector unit 330 perform the same operation. Do.
  • the mediating mechanism 325 is fixed at a position where the guide hole 323 is closed by the force of the compression spring 340. Further, the reflecting surface 321 is fixed at a position extending in the vertical direction with respect to the optical transmission line 310 of FIG. 3 by the force of the coiled spring 341 attached to the rotating shaft 321a of the reflecting surface 321. Thereby, intrusion of a foreign substance or the like from the guide hole 323 can be reliably suppressed.
  • the reflecting surface 321 is positioned in the vertical direction with respect to the optical transmission path 310, the light from the optical transmission path 310 is transmitted to the optical connector section in a state where the optical connector section 320 is not inserted into the optical connector receptacle section 140. It can be reliably prevented from being emitted from the side surface of 320.
  • the optical connector portion 320 of the optical cable 300 is provided with two guide holes 323 and 324 at positions that are opposed to each other about the rotation shaft 321 a of the reflection surface 321. Accordingly, when the optical connector 320 of the optical cable 300 is connected to the optical connector receptacle 140 in a state where the optical connector 320 is turned upside down in the drawing, the guide pin 150 is inserted into the guide hole 324, and the mediation mechanism 325 is reflected on the reflecting surface. The back of 321 will be pushed. Also in this case, the light emitted from the light emitting end 130 is refracted by the reflection surface 321 and guided to the optical transmission line 310. Accordingly, the user can connect the optical cable 300 to the optical transmission device 100 without considering the direction of the optical cable 300.
  • two guide holes 333 and 334 are provided at positions that are vertically opposite to each other in the drawing with the rotation axis of the reflection surface 331 as the center. Accordingly, even when the optical cable 300 and the optical connector receptacle 240 of the optical receiver 200 are connected in a state where the optical connector 330 is turned upside down in the drawing, the light refracted by the lens 332 is not reflected. The light is refracted by the reflection surface 331 and guided to the light receiving end 210. Thereby, the user can connect the optical cable 300 to the optical receiver 200 without considering the direction of the optical cable 300.
  • the optical connector unit 320 is connected to the optical connector receptacle 240 of the optical receiver 200, and the optical connector unit 330 is connected to the optical transmitter 100. Even when connected to the connector receptacle 140, an optical signal can be transmitted from the optical transmitter 100 to the optical receiver 200.
  • the user can connect to the optical transmission device 100 and the optical reception device 200 without considering the vertical orientation of the optical connector units 320 and 330, the user's convenience is greatly improved. Can be increased.
  • the optical transmission device 100 has one light emitting unit 110, one lens 120, and one light emitting end 130 corresponding to the optical cable 300 having one optical transmission line 310.
  • the optical cable 300 includes a plurality of optical transmission paths 310
  • a plurality of light emitting units 110, lenses 120, and light emitting ends 130 of the optical transmission device 100 may be provided.
  • FIG. 1 shows a configuration in which the optical receiver 200 includes one light receiving unit 230, one lens 220, and one light receiving end 210 corresponding to the optical cable 300 having one optical transmission path 310.
  • the optical cable 300 includes a plurality of optical transmission paths, a plurality of light receiving units 230, lenses 220, and light receiving ends 210 of the optical receiver 200 may be provided.
  • FIG. 6 is a schematic diagram illustrating an arrangement example of a plurality of light emitting ends 130 of the optical transmission device 100, and includes four light emitting ends on the optical connector receptacle 150 provided on the substrate 160 of the optical transmission device 100.
  • An example in which 130 is provided is shown.
  • the four light emitting ends 130 are arranged in parallel to the end surface of the substrate 160.
  • four optical transmission paths 310 face the light emitting end 130 in the optical connector portion 320 at one end of the optical cable 300.
  • the number of light emitting ends 130 is not limited to the number shown in FIG. 6, and the number of light emitting ends 130 may be more or less. Further, the arrangement is not limited to the arrangement of the light emitting ends 130 shown in FIG. 6, and other arrangements may be used. Further, FIG. 6 shows the arrangement of the light emitting end 130 in the optical transmitting apparatus 100, but the arrangement of the light receiving end 310 in the optical receiving apparatus 200 can be similarly arranged.
  • FIG. 1 illustrates unidirectional communication from the optical transmission device 100 to the optical reception device 200
  • bidirectional communication may be used.
  • the lens 120 may be disposed at the position of the light emitting end 130
  • the lens 220 may be disposed at the position of the light receiving end 210.
  • FIG. 7 is a schematic diagram of an optical connector portion in which a plurality of optical transmission lines 310 are arranged in the optical cable 300.
  • an optical cable 300 provided with an optical transmission line 310 having a total of 8 channels in 2 stages and 4 rows is shown.
  • FIG. 7 a case where two stages and two rows of transmission channels 310 a and two stages and two rows of reception channels 310 b are arranged in the optical connector section 320 of the optical cable 300 is shown.
  • the transmission channel 310a faces the light emitting end 130 provided on the substrate 160 even if it is refracted by 90 degrees on the reflection surface 321 provided on the optical connector 320. That is, in FIG.
  • the light emitted from the four light emitting ends 130 is reflected by the reflecting surface 321 and enters the left four of the eight optical transmission lines 310. Further, the light emitted from the left four of the eight optical transmission lines 310 is reflected by the reflecting surface 331 and enters the four light receiving ends 210.
  • the optical connector part 320 it is not necessary to provide the reflective surface 321 by the number of channels, and only one reflective surface 321 is required.
  • the laser safety standards are “IEC60825 / JIS C6802: Laser product safety standards” and “IEC60825 / JIS C6803: Laser product safety-safety of optical fiber communication systems.
  • This IEC60825 / JIS C6802 classifies the “class” determined by the amount of laser exposure when a single device is used for the purpose of expressing the risk when operating a device equipped with a laser light source into seven categories. It prescribes.
  • the optical fiber system used for consumer use must fall under “Class 1” or “Class 1M” in this “Class”.
  • the “Class 1” risk level is such that the retina is not damaged even if the laser beam is continuously viewed for 100 seconds without blinking.
  • “Class 1M” is the same as “Class 1”, but a loupe, etc. If an auxiliary optical system is used, there is a possibility of danger, so a warning display is required.
  • the standard value of laser light output (Accessible Emission Limit, hereinafter referred to as AEL) in “Class 1” and “Class 1M” is calculated by the following formula 1 when the light wavelength is 700 nm to 1050 nm and a distributed light source. . Equations 2 to 4 are calculation formulas for C4, C6, and T2 in Equation 1.
  • Equation 1 ⁇ is the light wavelength of the light source used for transmission. Further, as shown in FIG. 8, A is a light source diameter which is a light emitting end face dimension of the optical connector 300, and ⁇ is a viewing angle determined by the measurement distance D (70 mm / 100 mm / 2000 mm) and the light source diameter A.
  • the light source diameter A is an average value in the vertical and horizontal directions when a plurality of light sources are dispersedly arranged.
  • FIG. 9 shows an example in which an optical transmission path (transmission channel) 310a and an optical transmission path (reception channel) 310b are arranged in view of these matters.
  • the left four of the 8-channel optical transmission lines 310 correspond to the transmission channel 310a, and the right four correspond to the reception channel 310b.
  • the light emitting ends 130 are arranged in a row, and in the optical connector receptacle 240, the light receiving ends 210 are arranged in a row.
  • the diameter of the light source is increased, and the output P of the laser beam can be increased.
  • the transmission channel 310a and the reception channel 310b are reflecting surfaces 321 having a fixed refraction angle (90 degrees in this case) provided in the optical connector unit 320 or the optical connector unit 330. Even if the light is refracted at 331, the light receiving end 210 and the light emitting end 130 cannot be associated with each other and connected. For this reason, it is necessary to provide the reflective surfaces 321 and 331 by the number of channels and adjust the respective reflection angles.
  • the light source diameter of the transmission channel 310a is as small as 0.18 mm, for example, it is difficult to realize with a mechanical reflecting surface.
  • MEMS Micro Electro Mechanical System
  • MEMS Micro Electro Mechanical System
  • the recent development of MEMS (Micro Electro Mechanical System) technology has made practical use of movable micromirrors with a mirror surface size of more than a dozen microns.
  • FIG. 10 is a schematic diagram showing the operation of the MEMS mirror.
  • the MEMS mirror includes a mirror part 400, a substrate 410, and electrodes 420a to 420d.
  • An arrangement direction of the electrodes 420b and 420d is an X axis 430
  • an arrangement direction of the electrodes 420a and 420c is a Y axis 440.
  • FIG. 10B shows a cross-sectional view along the X-axis 430 direction.
  • the mirror unit 400 moves from the state indicated by the broken line to a state inclined by an angle ⁇ .
  • the voltage V is applied to the electrode 420b in the reverse direction
  • the mirror unit 400 is inclined by the angle ⁇ in the reverse direction.
  • the angle ⁇ is an angle proportional to the square of the voltage V applied to each electrode, and can be expressed by the following Expression 5.
  • ⁇ ⁇ V 2 (Formula 5)
  • the inclination of the mirror unit 400 can be set to an arbitrary angle ⁇ , and a plurality of transmission channels 310a and reception channels 310b, and a substrate
  • the light receiving end 210 and the light emitting end 130 provided in 160 can be correctly connected at an arbitrary angle by adjusting the angle ⁇ of the MEMS mirror provided in the optical connector unit 320, respectively.
  • the degree of freedom of arrangement of the transmission channel and the reception channel in the light emitting end 130, the light receiving end 210, and the optical transmission line 300 is increased, and an optimum arrangement can be performed.
  • FIG. 11 is a schematic diagram showing an example in which the reflection angle ⁇ is controlled differently by different voltages applied to different mirror units 400a and 400b.
  • Incident light 450a enters the mirror section 400a from the transmission channel 310a. Due to the reflection angle generated by the voltage V1 applied to the MEMS mirror 400a, the incident light 450a is reflected as reflected light 460a at an angle ⁇ 1.
  • incident light 450b enters the mirror unit 400b from the transmission channel 310b. Due to the reflection angle generated by the voltage V2 applied to the mirror part 400b, the incident light 450b is reflected as reflected light 460b at an angle of ⁇ 2. In this manner, the reflected lights 460a and 460b having different reflection angles ⁇ 1 and ⁇ 2 can be reflected with respect to the plurality of incident lights 450a and 450b.
  • FIG. 11 two examples of the mirror unit 400a and the mirror unit 400b are shown.
  • the optical transmission line 310 shown in FIG.
  • the transmission channel 310a, the reception channel 310b, the light emitting end 130, and the light receiving end 210 can be arbitrarily arranged even in the example of the arrangement of 2 ⁇ 4 in the vertical and horizontal directions.
  • FIG. 12 is a schematic diagram showing a composite cable for transmitting the voltage applied to the MEMS mirror and its control signal together with the optical signal, and shows a cross section orthogonal to the transmission direction.
  • the optical transmission path 310 transmission channel 310a, reception channel 310b
  • the voltage applied to the MEMS mirror and its control signal are transmitted from the transmitting device 100 or the receiving device 200 to the optical connector units 320 and 330. Supplied to. Thereby, the MEMS mirror arrange
  • FIG. 13 is a schematic diagram showing a control unit of the MEMS mirror.
  • the control unit of the MEMS mirror supplies power, a control signal, and a ground potential to the control unit 480 built in the optical connector units 320 and 330 through the copper wires 470a to 470c of the optical cable 300, respectively.
  • an applied voltage control line corresponding to the number of mirror units 400 is connected from the control unit 480 to each mirror unit 400, and the reflection angle ⁇ of each mirror unit 400 is set.
  • the control signal of the MEMS mirror may be transmitted while being superimposed on the copper wire 470a as indicated by a broken line in FIG.
  • an optical connector connecting portion to which a connector portion of an optical cable is attached;
  • a light emitting end that emits light to transmit an optical signal via the optical cable, and irradiates the reflective surface of the connector;
  • the connector portion is mounted in the first orientation, the light irradiated to the reflective surface by driving the reflective surface is refracted toward the optical transmission path of the optical cable by refraction at the reflective surface,
  • the connector unit is connected in a second direction different from the first direction, the light transmission path of the optical cable is driven by refraction at the reflection surface by driving the reflection surface and irradiating the reflection surface.
  • a drive unit that refracts toward the An optical transmission device comprising: (2) The optical communication device according to (1), wherein the driving unit rotates the reflection surface in accordance with movement of the connector unit in a mounting direction. (3) The optical communication device according to (2), wherein the driving unit includes a guide pin that rotates the reflecting surface by pressing the reflecting surface as the connector unit moves in the mounting direction. (4) The guide pin pushes back the mediation portion of the connector portion biased in the direction toward the optical connector connection portion in a direction away from the optical connector connection portion as the connector portion moves in the mounting direction. The optical communication device according to (3), wherein the reflection surface is rotated.
  • the drive unit includes a first guide pin that rotates the reflection surface in the first direction when the connector unit is mounted in the first direction, and the connector unit is in the second direction.
  • the optical communication device further including: a second guide pin that rotates the reflection surface in the second direction when mounted in (2).
  • the second direction is a direction in which the connector part is rotated by 180 ° with respect to the first direction when the mounting direction of the connector part is a rotation axis.
  • an optical connector connecting portion to which the connector portion of the optical cable is attached;
  • a light receiving end for receiving an optical signal transmitted through the optical cable, and receiving the light signal emitted from the optical transmission path of the optical cable and reflected by the reflection surface of the connector;
  • the reflection surface is driven to refract the light emitted from the optical transmission path toward the light receiving end by refraction at the reflection surface,
  • the parts are connected in a second direction different from the first direction, the light emitted from the optical transmission path by driving the reflective surface is directed to the light receiving end by refraction at the reflective surface.
  • the driving unit includes a guide pin that rotates the reflecting surface by pressing the reflecting surface as the connector unit moves in the mounting direction.
  • the guide pin pushes back the mediation portion of the connector portion biased in the direction toward the optical connector connection portion in a direction away from the optical connector connection portion as the connector portion moves in the mounting direction.
  • the optical receiver according to (9), wherein the reflecting surface is rotated by the movement.
  • the drive unit includes a first guide pin that rotates the reflection surface in a first direction when the connector unit is mounted in the first direction, and the connector unit is in the second direction.
  • the optical receiver according to (8) comprising: a second guide pin that rotates the reflecting surface in the second direction when mounted in (2).
  • the second direction is a direction in which the connector part is rotated by 180 ° with respect to the first direction when the mounting direction of the connector part is a rotation axis.
  • an optical transmission path through which an optical signal is transmitted Provided at the end of the optical transmission path, a connector part to be attached to an optical connector connection part of an external device, The optical signal is transmitted between the light emitting end or the light receiving end of the external device and the optical transmission path by reflecting the light of the optical signal provided in the connector unit, and the connector unit is in the first direction
  • the reflective surface is driven to the first position when attached to the optical connector connecting portion and is driven to the second position when the connector portion is attached to the optical connector connecting portion in the second orientation.
  • An optical cable comprising: (14) The reflection surface is driven by being pushed by a guide pin provided in the optical connector connection portion of the external device, along with the movement of the connector portion toward the optical connector connection portion, When the connector portion is attached to the optical connector connecting portion in the first orientation, the connector portion is rotated to the first position; The optical cable according to (13), wherein the optical cable is rotated to the second position when the connector part is attached to the optical connector connection part in the second direction.
  • the optical cable according to (14) comprising an intermediary portion that is pushed by the guide pin as the connector portion moves toward the optical connector connection portion;
  • the intermediary part is urged in a direction toward the optical connector connecting part, and is driven in a direction opposite to the urged direction by the guide pin, so that the intermediary part contacts the reflective surface and rotates the reflective surface.
  • the connector portion is provided with a through hole into which the guide pin is inserted as the connector portion moves toward the optical connector connection portion, and the mediation portion is the guide pin inserted into the through hole.
  • the second direction is a direction in which the connector portion is rotated by 180 ° with respect to the first direction when the mounting direction of the connector portion is a rotation axis.
  • the optical transmission device according to any one of (16).
  • DESCRIPTION OF SYMBOLS 100 Optical communication apparatus 130 Light emitting end 140 Optical connector receptacle part 150 Guide pin 200 Optical receiving apparatus 210 Light receiving end 240 Optical connector receptacle part 250 Guide pin 260 Board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 本開示に係る光送信装置は、光ケーブルのコネクタ部が装着される光コネクタ接続部と、前記光ケーブルを介して光信号を伝送するために発光し、前記コネクタの反射面に光を照射する発光端と、前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させる駆動部と、を備える。

Description

光送信装置、光受信装置、及び光ケーブル
 本開示は、光送信装置、光受信装置、及び光ケーブルに関する。
 近時における通信容量の急激な増大に伴い、光によるデータ伝送が用いられつつある。しかしながら、光によるデータ伝送は、主としてデータ伝送量が多いインフラの基幹系におけるデータ伝送や、データサーバー間のデータ伝送に使用され、民生用としてはまだ広く普及していない。そして、機器と光ケーブルとの接続は、接続の確実性のみが優先された構造となっており、一般のユーザが気軽に使えるような構造にはなっていない。
 一方、既に民生機器間の接続で普及している電気的なデータ伝送では、特殊な器具や技能を持ち合わせていなくともユーザ自身が機器間の接続を行うことが可能となっている。更に、ユーザの使い勝手を考慮し、機器にケーブルを装着する際には、コネクタを上下どちらの向きで挿入しても装着可能な方式が望ましい。
 例えば、下記の特許文献1には、光出力端からの光軸方向とは異なる光軸方向を持つ光伝送路に光を導き、光伝送路とは異なる光軸方向の光入力端へ光を導く光コネクタに関する技術が記載されている。
 また、下記の特許文献2には、2つの光接続面を有し、一つの光接続面は光ケーブルの光伝送路から直線で接続され、もう一つの光接続面は光伝送路と垂直になっている光コネクタの構成が記載されている。
 また、下記の特許文献3には、光コネクタに対して相対する2面で光接続を行っているが、光送信装置と光受信装置共に光コネクタの向きは揃える構成が記載されている。
特開2008-292962号公報 特開2007-240866号公報 特開2000-147333号公報
 しかしながら、上記特許文献に記載された技術は、いずれも、コネクタの上下方向の極性は一義的に決まっており、上下を逆にして接続することや、他の向きにして接続することは不可能であった。このため、ユーザは、接続の際にコネクタの向きを確認して接続する必要があり、接続時の利便性が低下する問題が生じていた。
 このため、光伝送を行う機器間の接続において、コネクタの向きを変えても接続を可能とすることが望まれていた。
 本開示によれば、光ケーブルのコネクタ部が装着される光コネクタ接続部と、前記光ケーブルを介して光信号を伝送するために発光し、前記コネクタ部の反射面に光を照射する発光端と、前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させる駆動部と、を備える、光送信装置が提供される。
 また、本開示によれば、光ケーブルのコネクタ部が装着される光コネクタ接続部と、前記光ケーブルを介して伝送された光信号を受光し、前記光ケーブルの光伝送路から出射されて前記コネクタ部の反射面で反射された受光する受光端と、前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させる駆動部と、を備える、光受信装置が提供される。
 また、本開示によれば、光信号が伝送される光伝送路と、前記光伝送路の末端に設けられ、外部機器の光コネクタ接続部と装着されるコネクタ部と、前記コネクタ部に設けられ、前記光信号の光を反射することで前記外部機器の発光端又は受光端と前記光伝送路との間で前記光信号を伝送し、前記コネクタ部が第1の向きで前記光コネクタ接続部に装着された場合に第1の位置に駆動され、前記コネクタ部が第2の向きで前記光コネクタ接続部に装着された場合に第2の位置に駆動される反射面と、を備える、光ケーブルが提供される。
 以上説明したように本発明によれば、光伝送を行う機器間の接続において、コネクタの向きを変えても接続が可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本発明の一実施形態に係る光ケーブルシステムの構成を示す模式図である。 光ケーブルの構成を示す模式図である。 光コネクタレセプタクル部の構成を示す模式図である。 光ケーブルの光コネクタ部が光コネクタレセプタクル部に挿入されない状態を示す模式図である。 光ケーブルの光コネクタ部のガイド穴と仲介機構の動作の詳細を示す模式図である。 光ケーブルの光コネクタ部のガイド穴と仲介機構の動作の詳細を示す模式図である。 複数の光伝送路を有する光ケーブルの発光端の配置例を示す模式図である。 複数の光伝送路を有する光ケーブルのチャネル配列、および発光端と受信端の配置の関係を示す模式図である。 レーザ光源に対する安全規格による出力規制値を説明するための模式図である。 複数の光伝送路を持つ光ケーブルのチャネル配列、および発光端と受信端の配置の関係を示す模式図である。 反射面に用いられるMEMSミラーの構成を示す模式図である。 反射面に用いられるMEMSミラーの構成を示す模式図である。 反射面に用いられるMEMSミラーの反射角制御を示す模式図である。 光伝送路と銅線が複合化されたケーブルの断面を示す模式図である。 反射面に用いられるMEMSミラーの角度制御回路の構成を示す模式図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本発明の一実施形態に係るシステムの構成
 2.光ケーブルが複数の伝送路を有する構成例
 3.反射面にMEMSミラーを適用した構成例
 1.本発明の一実施形態に係るシステムの構成
 まず、図1を参照して、本発明の一実施形態に係るシステムの構成について説明する。図1に示すように、本実施形態に係るシステムは、光送信装置100、光受信装置200、及び光送信装置100と光受信装置200とを接続する光ケーブル300を有して構成されている。
 光送信装置100は、光データの発光部110、レンズ120、発光端130、光コネクタレセプタクル部140を有している。光受信装置200は、受光端210、レンズ220、受光部230、光コネクタレセプタブル部240を有している。
 図2は光ケーブルの構成を示す模式図である。光ケーブル300は、光信号を伝送する為の光伝送路310と、光伝送路310の両端に設けられた光コネクタ部320,330を有している。図1では光コネクタ部320,330を図示していないが、光コネクタ部320は光コネクタレセプタクル部140に装着され、光コネクタ部330は光コネクタレセプタクル部240に装着される。なお、光コネクタ部320を光コネクタレセプタクル部240に装着し、光コネクタ部330を光コネクタレセプタクル部140に装着することもできる。
 光コネクタ部320には、発光端130からの光を光伝送路310へ導くための反射面321と、反射面321からの光を集光するレンズ322と、光コネクタ部320の挿入方向により反射面321を可動させるためのガイド穴323,324および仲介機構325,326とが設けられている。光コネクタ部330には、光伝送路310からの光が通過するレンズ332と、レンズ332からの光を光受信装置200の受光端210へ導くための反射面331と、光コネクタ部330の挿入方向により反射面331を可動させるためのガイド穴333,334および仲介機構335,336とが設けられている。
 光送信装置100から光受信装置200へ伝送する映像データ、音声データ及びその他のデータは、光送信装置100の発光部110より光信号として出力される。発光部110が光信号として発光した光は、レンズ120へ入射する。入射した光はレンズ120を通って例えば平行光となり、光コネクタレセプタクル部140に設けられた発光端130から光コネクタ部320の反射面321へ出射される。なお、レンズ120と発光端130は一体であっても良い。
 発光端130から出射された光信号は、光コネクタ部320の側面から入射し、反射面321によって光伝送路310の光軸方向に屈折させられる。図2に示す光ケーブル300では、発光端130から出射された光が反射面321によって光伝送路310の光軸方向へ屈折される。反射面321で反射した光信号は、レンズ322を通って光伝送路310に集光され、光伝送路310を伝送される。光伝送路310から出射した光信号は、レンズ332により例えば平行光とされ、その後、反射面331によって屈折され、光コネクタ部330の側面から出射される。
 光コネクタ部330の側面から出射された光信号は、光受信装置200の光コネクタレセプタクル部240内にある受光端210へ入射する。図2に示す光ケーブル300では、反射面331によって屈折された光は受光端210へ入射する。受光端210へ入射した光は、レンズ220を通って集光され、受光部230で受光される。
 図3は、光送信装置100および光受信装置200に設けられた、光コネクタレセプタクル部140および240の構成を示す図である。光送信装置100は基板160を備え、基板140上に光コネクタレセプタクル部140が設けられている。また、基板160上には発光端130が配列されている。同様に、光受信装置200は基板260を備え、基板260上に光コネクタレセプタクル部240が設けられている。また、基板260上には受光端210が配列されている。
 光送信装置100においては、光コネクタ部320が光コネクタレセプタクル部140に挿入される際、光コネクタレセプタクル部140に設けられたガイドピン150が、ガイド穴323,324のいずれかに挿入されることで、光コネクタ部320の挿入方向が決定できる。同様に、光受信装置200においては、光コネクタ部330が光コネクタレセプタクル部240に挿入される際、光コネクタレセプタクル部240に設けられたガイドピン250が、ガイド穴333,334のいずれかに挿入されることで、光コネクタ部330の挿入方向が決定できる。
 図4は、光ケーブル300の光コネクタ部320および光コネクタ部330が、光送信装置100の光コネクタレセプタクル部140および光受信装置200の光コネクタレセプタクル部240に挿入されていないときの、光コネクタ部320および光コネクタ部330の内部状態を示す模式図である。光送信装置100の光コネクタレセプタクル部140に設けられたガイドピン150が、ガイド穴323,324のいずれにも挿入されていないため、光コネクタ部320に設けられた仲介機構325,326はガイド穴323,324を塞ぐ状態にある。これにより、ガイド穴323,324から埃等の異物が光コネクタ部320内部に侵入することを確実に抑止できる。また、光受信装置200の光コネクタレセプタクル部240に設けられたガイドピン250が、ガイド穴333,334のいずれにも挿入されていないため、光コネクタ部330に設けられた仲介機構335,336はガイド穴333,334を塞ぐ状態にある。これにより、ガイド穴333,334から埃等の異物が光コネクタ部330内部に侵入することを確実に抑止できる。
 図5A及び図5Bは、光ケーブル300の光コネクタ部320のガイド穴323,324および仲介機構325,326と反射面321の動作の詳細を示す模式図である。図5A及び図5Bでは、ガイド穴323と仲介機構325と反射面321を示しているが、光コネクタ部320及び光コネクタ部330が備える他のガイド穴と仲介機構と反射面も同様の動作を行う。
 図5Aに示すように、光コネクタ部320が光コネクタレセプタクル部140に挿入されていない場合は、仲介機構325は圧縮バネ340の力によってガイド穴323を塞ぐ位置に固定される。また、反射面321は、反射面321の回転軸321aに装着された弦巻バネ341の力により、図3の光伝送路310に対し垂直方向に延在する位置に固定される。これにより、ガイド穴323からの異物等の侵入を確実に抑止することができる。また、反射面321が光伝送路310に対し垂直方向に位置しているため、光コネクタ部320が光コネクタレセプタクル部140に挿入されていない状態で、光伝送路310からの光が光コネクタ部320の側面から出射されてしまうことを確実に抑止できる。
 一方、図5Bに示すように、光コネクタ部320が光コネクタレセプタクル部140に挿入されている場合は、ガイド穴323にガイドピン150が挿入され、仲介機構325はガイドピン150により反射面321に向かう方向に押し込まれる。これにより、仲介機構325が反射面321の裏面を押すことで、反射面321は回転軸321aを中心に回転し、光コネクタ部320の側面から入射した光信号は、反射面321によって光伝送路310の光軸方向に屈折させられる。
 図2に示したように、光ケーブル300の光コネクタ部320には、反射面321の回転軸321aを中心として、上下相対する箇所に2つガイド穴323,324が設けられている。従って、光ケーブル300の光コネクタ部320が図面上で上下逆向きとされた状態で光コネクタレセプタクル部140と接続された場合は、ガイドピン150がガイド穴324に挿入され、仲介機構325が反射面321の裏面を押すことになる。この場合も、発光端130から出射された光が反射面321で屈折して光伝送路310へ導かれる。これにより、ユーザは、光ケーブル300の向きを考慮することなく、光ケーブル300を光送信装置100へ接続することが可能である。
 同様に、光ケーブル300の光コネクタ部330においても、反射面331の回転軸を中心として、図面上で上下相対する箇所に2つのガイド穴333,334が設けられている。従って、光コネクタ部330が図面上で上下逆向きとされた状態で光ケーブル300と光受信装置200の光コネクタレセプタクル部240とが接続された場合であっても、レンズ332で屈折された光が反射面331で屈折して受光端210へ導かれる。これにより、ユーザは、光ケーブル300の向きを考慮することなく、光ケーブル300を光受信装置200へ接続することが可能である。
 また、光コネクタ部320と光コネクタ部330は共に同一の構造であるため、光コネクタ部320を光受信装置200の光コネクタレセプタクル部240に接続し、光コネクタ部330を光送信装置100の光コネクタレセプタクル部140に接続したとしても、光送信装置100から光受信装置200へ光信号を伝送することができる。
 従って、本実施形態によれば、ユーザは、光コネクタ部320および330の上下の向きを考慮することなく光送信装置100および光受信装置200へ接続することができるため、ユーザの利便性を大幅に高めることができる。
 2.光ケーブルが複数の伝送路を有する例
 図1においては、1つの光伝送路310を有する光ケーブル300に対応して、光送信装置100が1つの発光部110、1つのレンズ120、1つの発光端130を備える構成を示したが、光ケーブル300が複数の光伝送路310を備えている場合は、光送信装置100の発光部110、レンズ120、及び発光端130を複数設けても良い。同様に、図1においては、1つの光伝送路310を有する光ケーブル300に対応して、光受信装置200が1つの受光部230、1つのレンズ220、1つの受光端210を備える構成を示したが、光ケーブル300が複数の光伝送路を備えている場合は、光受信装置200の受光部230、レンズ220、及び受光端210を複数設けても良い。
 一例として、図6は、光送信装置100の複数の発光端130の配置例を示す模式図であって、光送信装置100の基板160に設けられた光コネクタレセプタクル部150に、4つの発光端130が設けられた場合の例を示している。4つの発光端130は、基板160の端面に平行に配置される。また、光ケーブル300の一端の光コネクタ部320には4つの光伝送路310が発光端130に正対している。
 なお、発光端130の個数は図6に示す個数に限定されるものではなく、これ以上又はこれ以下の発光端130の個数であってもよい。また、図6に示す発光端130の配置に限定されるものではなく、これ以外の配置でもよい。さらに、図6では、光送信装置100における発光端130の配置について示したが、光受信装置200における受光端310の配置についても同様に配置することができる。
 また、図1では光送信装置100から光受信装置200への単一方向通信を例示しているが、双方向通信であっても良い。また、レンズ120は発光端130の位置に配置されていても良く、レンズ220は受光端210の位置に配置されていても良い。
 図7は、光ケーブル300に複数の光伝送路310を配置した光コネクタ部の模式図を示す。ここでは、2段4列合計8チャネルの光伝送路310が設けられた光ケーブル300を示している。図7の例では、光ケーブル300の光コネクタ部320に2段2列の送信チャネル310aと2段2列の受信チャネル310bが配置された場合を示している。送信チャネル310aは、基板160上に設けられた発光端130に対し、光コネクタ部320に設けられた反射面321で90度屈折させたとしても正対する。つまり、図7において、4つの発光端130から出射した光は反射面321で反射して8つの光伝送路310のうちの左側の4つに入射する。また、8つの光伝送路310のうちの左側の4つから出射された光は反射面331で反射して4つの受光端210へ入射する。このため、光コネクタ部320において反射面321はチャネル数だけ設ける必要がなく、1つあればよい。同様に、光コネクタ部320においても反射面331はチャネル数だけ設ける必要がなく、1つあればよい。
 レーザ製品による使用者への障害発生を防止する目的で、レーザ安全規格として、「IEC60825/JIS C6802:レーザ製品の安全基準」および「IEC60825/JIS C6803:レーザ製品の安全―光ファイバ通信システムの安全」が定められており、このIEC60825/JIS C6802では、レーザ光源を搭載した機器動作時の危険度を表す目的で、機器単体使用時のレーザ被ばく量で決まる「クラス」を7つに区分して規定している。
 民生用で用いる光ファイバシステムは、この「クラス」の中で、「クラス1」もしくは「クラス1M」に該当しなければならない。「クラス1」の危険度は、100秒間レーザ光を瞬きなしに見続けても、網膜に損傷がないレベルであり、「クラス1M」は、「クラス1」と同じであるが、ルーペ等の補助光学系を用いた場合、危険となる可能性があるので、注意喚起の表示が必要となる。
 「クラス1」および「クラス1M」におけるレーザ光の出力の規定値(Accessible Emission Limit、以降AELと呼ぶ)は、光波長が700nm~1050nmかつ分散光源の場合、以下の式1にて算出される。なお、式2~式4は、式1におけるC4,C6,T2の算出式である。
P=7*10-4*C*C*T -0.25 (W) ・・・(式1)
   C = 100.002(λ-700) ・・・(式2)
   C=α/0.0015 ・・・(式3)
   T=10×10[(α-0.0015)/98.5] ・・・(式4)
 なお、式1において、λは伝送に使用する光源の光波長である。また、図8に示すように、Aは光コネクタ300の光放出端面寸法である光源径であり、αは測定距離D(70mm/100mm/2000mm)及び光源径Aで決まる視角である。
 式1によれば、レーザ光の出力Pを大きくするためには、波長λの長さと光源径Aに依存する。波長を固定とすると、光源径を大きくする方法が最も効果的である。ここで、光源径Aは、複数の光源が分散して配置されている場合は、縦横の平均値となる。
 図9は、これらを鑑みて光伝送路(送信チャネル)310aおよび光伝送路(受信チャネル)310bを配置した例を示している。図9に示すように、8チャネルの光伝送路310のうち左側の4つは送信チャネル310aに対応し、右側の4つは受信チャネル310bに対応している。
 また、光コネクタレセプタクル部140において発光端130は一列に並び、光コネクタレセプタクル部240において受光端210は一列に並んでいる。このように、発光端130を一列に並べることで光源径が大きくなり、レーザ光の出力Pを大きくすることができる。
 図9に示すようなチャネル配置の場合、送信チャネル310aおよび受信チャネル310bは、光コネクタ部320または光コネクタ部330に設けられた固定された屈折角度(この場合90度)を持つ反射面321,331で屈折させたとしても、受光端210、発光端130と対応付けて接続することができない。このため、反射面321,331をチャネル数だけ設けて、それぞれの反射角度を調整する必要がある。
 送信チャネル310aの光源径は、例えば、φ0.18mmと小さいため、機構的な反射面で実現することは困難である。一方、近年のMEMS(Micro Electro Mechanical System)技術開発により、十数ミクロンの鏡面サイズを持つ可動式マイクロミラーが実用化され、これを本実施形態の反射面321,331に用いることで、各発光端130の光を対応する送信チャネル310aに導くことができ、送信チャネル310aの光を対応する受光端210に導くことができる。以下、詳細に説明する。
 3.反射面にMEMSミラーを適用した例
 図10は、MEMSミラーの動作を示す模式図である。図10Aに示すように、MEMSミラーは、ミラー部400、基板410、電極420a~420dで構成される。電極420bと420dの配列方向をX軸430、電極420aと420cの配列方向をY軸440とする。図10Bは、X軸430方向に沿った断面図を示している。図10Bに示すように、電極420dに電圧Vが印加されると、ミラー部400は破線で示した状態から角度θだけ傾斜した状態に可動する。同様に、逆方向の電極420bに電圧Vを印加すると、ミラー部400は逆方向に角度θだけ傾斜した状態になる。
 角度θは、各電極に印加される電圧Vの二乗に比例した角度となり、以下の式5で表すことができる。
θ=α×V    ・・・(式5)
 このようにして、X軸430およびY軸440の方向に適切な電圧を印加することで、任意の角度θにミラー部400の傾きを設定でき、複数の送信チャネル310aおよび受信チャネル310bと、基板160に設けられた受光端210および発光端130とは、光コネクタ部320に設けられたMEMSミラーの角度θをそれぞれ調整することで、任意の角度で正しく接続することが可能となる。この結果、発光端130、受光端210および光伝送路300内の送信チャネルと受信チャネルの配置の自由度が増し、最適な配置を行うことができる。
 図11は、異なるミラー部400a,400bに印加した異なる電圧により反射角度θが異なる制御を行った例を示す模式図である。ミラー部400aには、入射光450aが送信チャネル310aから入射される。MEMSミラー400aに印加された電圧V1により生じる反射角により、入射光450aはθ1の角度で反射光460aとして反射する。同様に、ミラー部400bには、入射光450bが送信チャネル310bから入射される。ミラー部400bに印加された電圧V2により生じる反射角により、入射光450bはθ2の角度で反射光460bとして反射する。この様にして、複数の入射光450a,450bに対して、異なる反射角θ1,θ2による反射光460a,460bを反射させることができる。
 図11では、ミラー部400aおよびミラー部400bの2つの例を示したが、必要な数のミラー部400を配置し、それぞれの印加電圧を制御することで、図9に示した光伝送路310が縦横2×4の配列の例でも送信チャネル310a、受信チャネル310b、発光端130および受光端210を任意に配置することが可能となる。
 図12は、光信号とともに、MEMSミラーに印加される電圧およびその制御信号を送信するための複合ケーブルを示す模式図であって、伝送方向と直交する断面を示している。図12に示すように、光伝送路310(送信チャネル310a、受信チャネル310b
と、電気信号を送るための銅線470a~470cを組み合わせた複合ケーブルを用いることで、MEMSミラーに印加される電圧およびその制御信号は、送信装置100または受信装置200から光コネクタ部320,330へ供給される。これにより、光コネクタ部320,330に配置されたMEMSミラーが駆動される。
 図13は、MEMSミラーの制御部を示す模式図である。図13に示すように、MEMSミラーの制御部は、光ケーブル300の銅線470a~470cにより、光コネクタ部320および330に内蔵された制御部480に電源、制御信号、接地電位がそれぞれ供給される。また、ミラー部400の数に相当する印加電圧制御線が制御部480から各ミラー部400に接続され、それぞれのミラー部400の反射角θを設定する。また、MEMSミラーの制御信号は、図13の破線に示す様に、銅線470aに重畳されて伝送されてもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 光ケーブルのコネクタ部が装着される光コネクタ接続部と、
 前記光ケーブルを介して光信号を伝送するために発光し、前記コネクタの反射面に光を照射する発光端と、
 前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させる駆動部と、
 を備える、光送信装置。
(2) 前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を回動させる、前記(1)に記載の光通信装置。
(3) 前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を押して前記反射面を回動させるガイドピンから構成される、前記(2)に記載の光通信装置。
(4) 前記ガイドピンは、前記コネクタ部の装着方向への移動に伴い、前記光コネクタ接続部に向かう方向に付勢された前記コネクタ部の仲介部を前記光コネクタ接続部から離れる方向に押し戻すことで前記反射面を回動させる、前記(3)に記載の光通信装置。
(5) 前記駆動部は、前記コネクタ部が前記第1の向きで装着された場合に前記反射面を第1の方向に回動させる第1のガイドピンと、前記コネクタ部が前記第2の向きで装着された場合に前記反射面を第2の方向に回動させる第2のガイドピンと、から構成される、前記(2)に記載の光通信装置。
(6) 前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、前記(1)~(5)のいずれかに記載の光送信装置。
(7) 光ケーブルのコネクタ部が装着される光コネクタ接続部と、
 前記光ケーブルを介して伝送された光信号を受光し、前記光ケーブルの光伝送路から出射されて前記コネクタ部の反射面で反射された受光する受光端と、
 前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させる駆動部と、
 を備える、光受信装置。
(8) 前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を回動させる、前記(7)に記載の光受信装置。
(9) 前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を押して前記反射面を回動させるガイドピンから構成される、前記(8)に記載の光受信装置。
(10) 前記ガイドピンは、前記コネクタ部の装着方向への移動に伴い、前記光コネクタ接続部に向かう方向に付勢された前記コネクタ部の仲介部を前記光コネクタ接続部から離れる方向に押し戻すことで前記反射面を回動させる、前記(9)に記載の光受信装置。
(11) 前記駆動部は、前記コネクタ部が前記第1の向きで装着された場合に前記反射面を第1の方向に回動させる第1のガイドピンと、前記コネクタ部が前記第2の向きで装着された場合に前記反射面を第2の方向に回動させる第2のガイドピンと、から構成される、前記(8)に記載の光受信装置。
(12) 前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、前記(7)~(11)のいずれかに記載の光受信装置。
(13) 光信号が伝送される光伝送路と、
 前記光伝送路の末端に設けられ、外部機器の光コネクタ接続部と装着されるコネクタ部と、
 前記コネクタ部に設けられ、前記光信号の光を反射することで前記外部機器の発光端又は受光端と前記光伝送路との間で前記光信号を伝送し、前記コネクタ部が第1の向きで前記光コネクタ接続部に装着された場合に第1の位置に駆動され、前記コネクタ部が第2の向きで前記光コネクタ接続部に装着された場合に第2の位置に駆動される反射面と、
 を備える、光ケーブル。
(14) 前記反射面は、前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い、前記外部機器の光コネクタ接続部に設けられたガイドピンによって押されることによって駆動され、
 前記コネクタ部が前記第1の向きで前記光コネクタ接続部に装着された場合に前記第1の位置に回動され、
 前記コネクタ部が前記第2の向きで前記光コネクタ接続部に装着された場合に前記第2の位置に回動される、前記(13)に記載の光ケーブル。
(15) 前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い前記ガイドピンによって押される仲介部を備え、
 前記仲介部は、前記光コネクタ接続部に向かう方向に付勢され、前記ガイドピンによって当該付勢された方向と逆方向へ駆動されることで前記反射面と当接して前記反射面を回動させる、前記(14)に記載の光ケーブル。
(16) 前記コネクタ部には、前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い前記ガイドピンが挿入される貫通孔が設けられ、前記仲介部は前記貫通孔に挿入された前記ガイドピンによって駆動される、前記(15)に記載の光ケーブル。
(17) 前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、前記(13)~(16)のいずれかに記載の光送信装置。
(18) 複数の前記光伝送路と、複数の前記光伝送路に対応する複数の前記反射面を備え、複数の前記反射面はMEMSミラーから構成される、前記(13)に記載の光ケーブル。
(19) 制御信号に基づいて前記MEMSミラーを制御する制御部を備える、前記(18)に記載の光ケーブル。
(20) 前記光伝送路とともに、前記制御信号を伝送する信号線を備える、前記(19)に記載の光ケーブル。
 100  光通信装置
 130  発光端
 140  光コネクタレセプタクル部
 150  ガイドピン
 200  光受信装置
 210  受光端
 240  光コネクタレセプタクル部
 250  ガイドピン
 260  基板
 300  光ケーブル
 310  光伝送路
 320,330  光コネクタ部
 321,331,333,334  反射面
 323,324  ガイド穴
 325,326,335,336  仲介機構
 340  仲介機構用バネ
 341  反射面用バネ
 400  ミラー部
 470  銅線
 480  制御部

Claims (20)

  1.  光ケーブルのコネクタ部が装着される光コネクタ接続部と、
     前記光ケーブルを介して光信号を伝送するために発光し、前記コネクタ部の反射面に光を照射する発光端と、
     前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記反射面に照射した光を前記反射面での屈折により前記光ケーブルの光伝送路に向けて屈折させる駆動部と、
     を備える、光送信装置。
  2.  前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を回動させる、請求項1に記載の光送信装置。
  3.  前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を押して前記反射面を回動させるガイドピンから構成される、請求項2に記載の光送信装置。
  4.  前記ガイドピンは、前記コネクタ部の装着方向への移動に伴い、前記光コネクタ接続部に向かう方向に付勢された前記コネクタ部の仲介部を前記光コネクタ接続部から離れる方向に押し戻すことで前記反射面を回動させる、請求項3に記載の光送信装置。
  5.  前記駆動部は、前記コネクタ部が前記第1の向きで装着された場合に前記反射面を第1の方向に回動させる第1のガイドピンと、前記コネクタ部が前記第2の向きで装着された場合に前記反射面を第2の方向に回動させる第2のガイドピンと、から構成される、請求項2に記載の光送信装置。
  6.  前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、請求項1に記載の光送信装置。
  7.  光ケーブルのコネクタ部が装着される光コネクタ接続部と、
     前記光ケーブルを介して伝送された光信号を受光し、前記光ケーブルの光伝送路から出射されて前記コネクタ部の反射面で反射された受光する受光端と、
     前記コネクタ部が第1の向きで装着された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させ、前記コネクタ部が前記第1の向きとは異なる第2の向きで接続された場合に、前記反射面を駆動して前記光伝送路から出射された光を前記反射面での屈折により前記受光端に向けて屈折させる駆動部と、
     を備える、光受信装置。
  8.  前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を回動させる、請求項7に記載の光受信装置。
  9.  前記駆動部は、前記コネクタ部の装着方向への移動に伴い前記反射面を押して前記反射面を回動させるガイドピンから構成される、請求項8に記載の光受信装置。
  10.  前記ガイドピンは、前記コネクタ部の装着方向への移動に伴い、前記光コネクタ接続部に向かう方向に付勢された前記コネクタ部の仲介部を前記光コネクタ接続部から離れる方向に押し戻すことで前記反射面を回動させる、請求項9に記載の光受信装置。
  11.  前記駆動部は、前記コネクタ部が前記第1の向きで装着された場合に前記反射面を第1の方向に回動させる第1のガイドピンと、前記コネクタ部が前記第2の向きで装着された場合に前記反射面を第2の方向に回動させる第2のガイドピンと、から構成される、請求項8に記載の光受信装置。
  12.  前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、請求項7に記載の光受信装置。
  13.  光信号が伝送される光伝送路と、
     前記光伝送路の末端に設けられ、外部機器の光コネクタ接続部と装着されるコネクタ部と、
     前記コネクタ部に設けられ、前記光信号の光を反射することで前記外部機器の発光端又は受光端と前記光伝送路との間で前記光信号を伝送し、前記コネクタ部が第1の向きで前記光コネクタ接続部に装着された場合に第1の位置に駆動され、前記コネクタ部が第2の向きで前記光コネクタ接続部に装着された場合に第2の位置に駆動される反射面と、
     を備える、光ケーブル。
  14.  前記反射面は、前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い、前記外部機器の光コネクタ接続部に設けられたガイドピンによって押されることによって駆動され、
     前記コネクタ部が前記第1の向きで前記光コネクタ接続部に装着された場合に前記第1の位置に回動され、
     前記コネクタ部が前記第2の向きで前記光コネクタ接続部に装着された場合に前記第2の位置に回動される、請求項13に記載の光ケーブル。
  15.  前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い前記ガイドピンによって押される仲介部を備え、
     前記仲介部は、前記光コネクタ接続部に向かう方向に付勢され、前記ガイドピンによって当該付勢された方向と逆方向へ駆動されることで前記反射面と当接して前記反射面を回動させる、請求項14に記載の光ケーブル。
  16.  前記コネクタ部には、前記コネクタ部の前記光コネクタ接続部へ向かう移動に伴い前記ガイドピンが挿入される貫通孔が設けられ、前記仲介部は前記貫通孔に挿入された前記ガイドピンによって駆動される、請求項15に記載の光ケーブル。
  17.  前記第2の向きは、前記コネクタ部の装着方向を回転軸とした場合に、前記コネクタ部が前記第1の向きに対して180°回転された向きである、請求項13に記載の光ケーブル。
  18.  複数の前記光伝送路と、複数の前記光伝送路に対応する複数の前記反射面を備え、複数の前記反射面はMEMSミラーから構成される、請求項13に記載の光ケーブル。
  19.  制御信号に基づいて前記MEMSミラーを制御する制御部を備える、請求項18に記載の光ケーブル。
  20.  前記光伝送路とともに、前記制御信号を伝送する信号線を備える、請求項19に記載の光ケーブル。
PCT/JP2016/052350 2015-02-05 2016-01-27 光送信装置、光受信装置、及び光ケーブル WO2016125658A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680007628.1A CN107209332B (zh) 2015-02-05 2016-01-27 光发送设备、光接收设备和光缆
RU2017127147A RU2707243C2 (ru) 2015-02-05 2016-01-27 Оптическое передающее устройство, оптическое приемное устройство и оптический кабель
US15/544,980 US10578814B2 (en) 2015-02-05 2016-01-27 Optical transmission device, optical reception device, and optical cable
EP16746489.0A EP3255470B1 (en) 2015-02-05 2016-01-27 Optical transmission device, optical reception device, and optical cable
KR1020177019962A KR102468121B1 (ko) 2015-02-05 2016-01-27 광송신 장치, 광수신 장치 및 광케이블

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015020916A JP2016143018A (ja) 2015-02-05 2015-02-05 光送信装置、光受信装置、及び光ケーブル
JP2015-020916 2015-02-05

Publications (1)

Publication Number Publication Date
WO2016125658A1 true WO2016125658A1 (ja) 2016-08-11

Family

ID=56564007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052350 WO2016125658A1 (ja) 2015-02-05 2016-01-27 光送信装置、光受信装置、及び光ケーブル

Country Status (8)

Country Link
US (1) US10578814B2 (ja)
EP (1) EP3255470B1 (ja)
JP (1) JP2016143018A (ja)
KR (1) KR102468121B1 (ja)
CN (1) CN107209332B (ja)
RU (1) RU2707243C2 (ja)
TW (1) TWI676830B (ja)
WO (1) WO2016125658A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138683A1 (ja) * 2018-01-15 2019-07-18 ソニー株式会社 コネクタ、コネクタセット、ケーブル及び電子機器
CN113196692B (zh) * 2018-12-29 2022-11-25 华为技术有限公司 光发送装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521209U (ja) * 1991-08-29 1993-03-19 アルプス電気株式会社 光フアイバ用連結装置
JP2007233325A (ja) * 2006-02-03 2007-09-13 Hosiden Corp 光電フレキシブル配線板の接続構造、並びにコネクタ及び光電フレキシブル配線板
JP2016009059A (ja) * 2014-06-24 2016-01-18 ソニー株式会社 光送信装置、光受信装置、光ケーブル及び光伝送方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3468660B2 (ja) 1997-03-27 2003-11-17 三菱電機株式会社 レーザビーム分岐装置
JP2000147333A (ja) * 1998-11-18 2000-05-26 Sony Corp 光ファイバ用コネクタとこれを利用した光送受信装置
US6422761B1 (en) * 2000-03-06 2002-07-23 Fci Americas Technology, Inc. Angled optical connector
JP3758526B2 (ja) * 2000-08-10 2006-03-22 シャープ株式会社 双方向光通信器および双方向光通信装置並びに双方向光通信器の組み立て方法
JP2004513385A (ja) * 2000-10-30 2004-04-30 サンター コーポレイション レーザ/ファイバ結合の制御
US20040008920A1 (en) 2002-07-15 2004-01-15 Eric Endicott Optically sensed high density switch position sensor
JP2004126368A (ja) 2002-10-04 2004-04-22 Sumitomo Electric Ind Ltd 光スイッチ
EP1424583A3 (en) * 2002-11-26 2004-06-09 LG Electronics Inc. Optical receiver and optical transmitter using a variable optical attenuator, and method for producing a variable optical attenuator
US20060215954A1 (en) * 2004-03-22 2006-09-28 Jenkins Richard M Optical routing device comprising hollow waveguides and mems reflective elements
US7062132B2 (en) * 2003-12-23 2006-06-13 Lucent Technologies Inc. Coupler assembly for an optical backplane system
US7263256B2 (en) * 2004-04-02 2007-08-28 Samsung Electronics Co., Ltd. Optical connection block, optical module, and optical axis alignment method using the same
US7376299B2 (en) * 2005-12-19 2008-05-20 Nokia Corporation Optical bi-directional rotary hinge
WO2007099827A1 (ja) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. 液晶表示装置及び液晶表示システム
JP2007240866A (ja) 2006-03-08 2007-09-20 Fuji Xerox Co Ltd 光コネクタ
JP4353219B2 (ja) 2006-08-14 2009-10-28 日産自動車株式会社 レーザ加工装置、レーザ加工装置の制御方法
US7873246B2 (en) * 2006-11-07 2011-01-18 Olympus Corporation Beam steering element and associated methods for manifold fiberoptic switches and monitoring
JP2008292962A (ja) 2007-05-28 2008-12-04 Fujikura Ltd 光コネクタ固定構造および光コネクタ
US7835065B2 (en) * 2008-01-30 2010-11-16 Corning Incorporated Optical packages and methods for aligning optical packages
JP4983703B2 (ja) * 2008-04-08 2012-07-25 日立電線株式会社 光伝送システム
JP5428256B2 (ja) * 2008-09-10 2014-02-26 日本電気株式会社 光モジュール及び光伝送方法
EP2577372A1 (en) * 2010-06-01 2013-04-10 Apple Inc. Hybrid optical connector
CN102590959A (zh) * 2011-01-07 2012-07-18 智原科技股份有限公司 光纤连接装置
JP2012163922A (ja) 2011-02-09 2012-08-30 Hitachi Cable Ltd 光スイッチ
US8734024B2 (en) * 2011-11-28 2014-05-27 Corning Cable Systems Llc Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
JP5737199B2 (ja) * 2012-01-24 2015-06-17 日立金属株式会社 光モジュール及びその製造方法
US10114174B2 (en) * 2012-05-31 2018-10-30 Corning Optical Communications LLC Optical connectors and optical coupling systems having a translating element
US8897611B2 (en) * 2012-09-06 2014-11-25 Corning Incorporated Optical fiber interfaces comprising light blocking elements and illumination systems comprising light blocking elements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521209U (ja) * 1991-08-29 1993-03-19 アルプス電気株式会社 光フアイバ用連結装置
JP2007233325A (ja) * 2006-02-03 2007-09-13 Hosiden Corp 光電フレキシブル配線板の接続構造、並びにコネクタ及び光電フレキシブル配線板
JP2016009059A (ja) * 2014-06-24 2016-01-18 ソニー株式会社 光送信装置、光受信装置、光ケーブル及び光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3255470A4 *

Also Published As

Publication number Publication date
TWI676830B (zh) 2019-11-11
CN107209332B (zh) 2019-12-17
EP3255470A1 (en) 2017-12-13
KR20170115043A (ko) 2017-10-16
RU2017127147A3 (ja) 2019-06-10
RU2017127147A (ru) 2019-01-28
US10578814B2 (en) 2020-03-03
JP2016143018A (ja) 2016-08-08
EP3255470A4 (en) 2018-08-29
EP3255470B1 (en) 2021-10-06
US20170363824A1 (en) 2017-12-21
CN107209332A (zh) 2017-09-26
RU2707243C2 (ru) 2019-11-25
TW201631345A (zh) 2016-09-01
KR102468121B1 (ko) 2022-11-18

Similar Documents

Publication Publication Date Title
US10139578B2 (en) Optical transceiver module and optical cable module
US9341828B2 (en) Multi-core fiber optical coupling elements
US8469610B2 (en) Optical connection system with plug having optical turn
US7174067B2 (en) Method and apparatus for spatial domain multiplexing in optical fiber communications
US20160231521A1 (en) Optical communication assemblies
US9106338B2 (en) Dual-wavelength bidirectional optical communication system and method for communicating optical signals
US10502908B2 (en) Long-reach active optical cable
JP2018516389A (ja) 光学回転電気接続
WO2016125658A1 (ja) 光送信装置、光受信装置、及び光ケーブル
WO2015133164A1 (ja) 光コネクタとケーブルおよび光通信装置
KR102359959B1 (ko) 광 커넥터와 케이블 및 광 통신 장치
US7782921B2 (en) Integrated optical detector in semiconductor reflector
US10326528B2 (en) Optical transceiver and control method for optical transceiver
US20150102211A1 (en) Telecentric Optical Assembly
US10690866B2 (en) Optical connector
CN106068473B (zh) 光学连接器、线缆和光通信设备
WO2011083454A2 (en) Optical data communication
KR20050103033A (ko) 자유공간 광연결 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177019962

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544980

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016746489

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017127147

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE