WO2016124035A1 - 一种电解炉组 - Google Patents

一种电解炉组 Download PDF

Info

Publication number
WO2016124035A1
WO2016124035A1 PCT/CN2015/095277 CN2015095277W WO2016124035A1 WO 2016124035 A1 WO2016124035 A1 WO 2016124035A1 CN 2015095277 W CN2015095277 W CN 2015095277W WO 2016124035 A1 WO2016124035 A1 WO 2016124035A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
furnace
electrolytic furnace
power source
switch
Prior art date
Application number
PCT/CN2015/095277
Other languages
English (en)
French (fr)
Inventor
龚斌
蔡志双
章立志
刘明彪
林伟清
李孝璋
朱伦磊
陈炎鑫
谢楠
钟延东
Original Assignee
虔东稀土集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 虔东稀土集团股份有限公司 filed Critical 虔东稀土集团股份有限公司
Priority to MYPI2017702866A priority Critical patent/MY198306A/en
Publication of WO2016124035A1 publication Critical patent/WO2016124035A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the invention belongs to the technical field of rare earth metallurgy electrolysis equipment. It relates to an electrolytic furnace group and an electrolytic method thereof.
  • electrolysis is a common production method.
  • the utility model is a power saving method for the rare earth molten salt electrolysis.
  • the Chinese patent application published as CN1690252A on November 2, 2005 discloses that "the plurality of electrolytic cells are combined in series and then used.
  • a set of rectifying power supply equipment supplies power to a plurality of electrolyzers at the same time...
  • the electrolysis tank with an air-cooling device is used to open the cooling device of the electrolyzer when the temperature of a certain electrolyzer is too high to solve a certain electrolysis Technical problem that the bath temperature is too high.
  • This technical solution has the potential to transfer part of the energy to an environment that is not strongly related to the product, which wastes energy and pollutes the environment, and it is difficult to accurately control the temperature of the electrolytic cell.
  • the present invention provides an electrolytic furnace group and an electrolytic method therefor. Adopt the following technical solutions:
  • An electrolytic furnace group comprising a common power source 12, at least two electrolytic furnaces and at least one auxiliary power source 13; each of the electrolytic furnaces respectively comprises a cathode 31 and an anode 36; the common power source 12 and each electrolytic furnace are in accordance with a common power source 12
  • the positive electrode is connected to the anode 36 of the first electrolytic furnace, and then the anode 36 of each electrolytic furnace is connected to the cathode 31 of the previous electrolytic furnace, and the cathode 31 of the last electrolytic furnace is connected with the negative electrode of the common power source 12.
  • the circuit that supplies the common power source 12 to each of the electrolytic furnaces is the main circuit 41.
  • At least one electrolytic furnace in each electrolytic furnace is provided with an auxiliary power source 13.
  • the positive electrodes of the auxiliary power sources 13 are connected to the anodes 36 of the respective electrolytic furnaces, and the negative electrodes are connected to the cathodes 31 of the respective electrolytic furnaces.
  • One of the preferred technical solutions of the present invention further includes a switch 1 and a switch 2.
  • the switches 2 are located between the anode 36 of each electrolytic furnace in the main circuit 41 and the cathode 31 of the preceding electrolytic furnace or between the anode 36 of the first electrolytic furnace and the positive electrode of the common power source 12.
  • One end of each switch 1 is connected to each switch 2 in the main circuit 41, and the other end is connected to the next switch 2 in the main circuit 41 to form each control circuit 42.
  • the switch 2 can cut off the power supply of the common power source 12 to each electrolytic furnace, and at this time, turning on the switch 1 does not affect the use of other electrolytic furnaces in the electrolytic furnace group.
  • the switch further includes each of the electrolytic furnaces being cut from the electrolytic furnace group.
  • Each of the control circuits 42 includes each switch 1 .
  • Still another preferred technical solution of the present invention comprises a shared power source 12 and 24 electrolytic furnaces (A, B, C, D, E, F, in order) G, H, J, K, L, M, N, P, Q, R, S, T, U, V, W, X, Y and Z), 24 auxiliary power supplies (A13, B13...Z13 in order) And 48 switches (in order, A1, A2, B1, B2, C1, C2, ... Z1 and Z2).
  • the common power source 12 is connected in series with the above-mentioned 24 electrolytic furnaces.
  • the anode A36 of the first electrolytic furnace A is connected to the positive electrode of the common power source 12, and the switch A2 is connected between the anode A36 and the common power source 12; from the second electrolytic furnace B, the anode 36 of each electrolytic furnace and the previous one are electrolyzed.
  • the cathode 31 of the furnace is connected, the anode 36 of each electrolytic furnace has a switch 2 between the cathode 31 of the previous electrolytic furnace, and so on; and the cathode Z31 of the 24th electrolytic furnace Z is connected with the negative electrode of the common power source 12 Electrolytic furnace group.
  • the anode of the auxiliary power source A13 is connected to the anode A36, the cathode is connected to the cathode A31, the anode of the auxiliary power source B13 is connected to the anode B36, the cathode is connected to the cathode B31, and so on.
  • Each of the switches 1 and the wires respectively constitute a control circuit 42 connected in parallel in the main circuit 41 at both ends of the corresponding electrolytic furnace. That is, one end of the switch A1 is connected between the common power source 12 and the switch A2 in the main circuit 41, and the other end of the switch A1 is connected between the cathode A31 and the switch B2 in the main circuit 41, and the control circuit A42 and the switch A2 can cut off the electrolysis.
  • the switch B1 is connected in parallel with the wire composition control circuit B42 at the anode B36 and the cathode B31 of the electrolytic furnace B, that is, one end of the switch B1 is connected between the cathode A31 and the switch B2 in the main circuit 41, and the other end of the switch B1 is connected. Between the cathode B31 and the switch C2 in the main circuit 41, the control circuit B42 and the switch B2 can cut off the electrolytic furnace B... and so on.
  • electrolytic furnaces A, B, C, D, E, F, G, H produce metal bismuth
  • electrolysis temperature is 1030-1150 °C
  • auxiliary power supply A13-H13 output current is 300-800A
  • electrolytic furnace J, K, L, M production Metal crucible electrolysis temperature 1000-1100 degrees.
  • electrolytic furnace N, P, Q, R, S, T, U, V, W, X, Y, Z produce niobium alloy, electrolysis temperature 1030-1150 degrees.
  • the method of using the electrolytic furnace group of the present invention adjusts the process parameters of each electrolytic furnace by adjusting the output current and/or voltage of the common power source 12.
  • the common power source 12 is used to provide main power for each electrolytic furnace, and the current and/or voltage output from the common power source 12 are used to adjust the electrolytic voltage, electrolysis temperature, electrolysis current and current of each electrolytic furnace. Process parameters such as density.
  • the process parameters such as the electrolysis temperature are adjusted by adjusting the output current of the auxiliary power source 13 to adjust the total current intensity of each corresponding electrolytic furnace.
  • each of the switch-on control circuits 42 is controlled to cut off any one of the electrolytic furnaces from the electrolytic furnace group.
  • the total voltage required for each electrolytic furnace and the minimum required electrolytic current are provided by the common power source 12.
  • the auxiliary power source 13 can be controlled to adjust the process parameters such as the temperature, current and current density of the electrolysis furnace of the corresponding electrolytic furnace. After cutting one or more electrolytic furnaces in the furnace group, the total voltage and/or current output from the common power source 12 should be adjusted to adjust the corresponding process parameters. It is also possible to control each auxiliary power source 13 to adjust process parameters such as temperature, current, current density of the electrolytic furnace corresponding to the electrolytic furnace.
  • the electrolytic furnace group of the invention adopts dual power sources to supply power to each electrolytic furnace in parallel, and the main function of the common power supply is to provide most energy to the electrolytic furnace group, and the auxiliary power supply only provides a process for adjusting the electrolysis temperature of a single electrolytic furnace for a single electrolytic furnace. A small portion of the energy of the parameter. Since the electrolysis energy provided by the power source is separated from the energy required to adjust the process parameters, the process parameters of each electrolyzer are flexibly adjusted, and the overall influence of the power source on the electrolysis furnace group is changed when the power supply operation condition is changed and/or the part of the electrolysis furnace condition needs to be adjusted. Minimized.
  • the utility model has the advantages of low total voltage loss, suitable furnace temperature of each electrolytic furnace, low power consumption of the product, and the overall control of the electrolytic furnace group can also be controlled by a single control.
  • the use of a high-voltage power supply reduces the loss of the power supply device itself, and the circuit loss is also reduced after the electrolytic furnace is connected in series, and the energy utilization rate is high.
  • Process parameters such as the current control electrolysis temperature of any electrolytic furnace can be adjusted.
  • the power consumption of the product decreases as the number of electrolytic furnaces operating in the furnace group increases.
  • Embodiment 1 is a schematic view of Embodiment 1.
  • Figure 2 is a schematic view of Embodiments 2 and 3.
  • Figure 3 is a schematic diagram of the comparative example.
  • Electrolyzer group see Figure 1.
  • Each of the common power source 12, the electrolytic furnace A, the electrolytic furnace Z, and the auxiliary power source Z13 is included;
  • the electrolytic furnace A includes a cathode A31 and an anode A36.
  • the electrolytic furnace Z includes a cathode Z31 and an anode Z36; and the electrolytic furnace Z is provided with an auxiliary power source Z13.
  • the positive electrode of the common power source 12 is connected to the anode A36, the anode Z36 is connected to the cathode A31, and the cathode Z31 is connected to the negative electrode of the common power source 12.
  • the positive electrode of the auxiliary power source Z13 is connected to the anode Z36, and the cathode is connected to the cathode Z31.
  • the electrolytic furnaces A and Z form a series circuit 41 with the common power source 12, and the two electrolytic furnaces A and Z share a single power source 12 to constitute an electrolytic furnace group.
  • the common power source 12 and the auxiliary power source Z13 form a parallel power supply circuit for the electrolytic furnace Z.
  • auxiliary power source Z13 can be turned on and controlled to adjust the total current of the electrolytic furnace Z to adjust the corresponding process parameters.
  • the total voltage output from the common power source 12 is lower than the voltage sum when the electrolytic furnaces A and Z are not used in series before being used in series.
  • the average electricity consumption of the metal bismuth of the product decreased.
  • Electrolyzers A and Z produce metal crucibles.
  • the electrolysis furnace A and Z electrolysis temperatures are 1030-1100 degrees.
  • the shared power supply 12 has an output voltage of 19V and an output current of approximately 5000A.
  • the auxiliary power supply Z13 outputs current 100A-500A.
  • the average electricity consumption of metal bismuth is 8.1 kW ⁇ h/kg.
  • Electrolyzer group see Figure 2. Includes 1 common power supply 12, 4 electrolytic furnaces (A, N, P, Z), 4 auxiliary power supplies (A13, N13, P13, Z13) and 8 switches (A1, A2, N1, N2, P1, P2) , Z1 and Z2).
  • the electrolytic furnace A includes a cathode A31 and an anode A36, and is provided with an auxiliary power source A13.
  • the electrolytic furnace N includes a cathode N31 and an anode N36, and is provided with an auxiliary power source N13.
  • the electrolytic furnace P includes a cathode P31 and an anode P36, and is provided with an auxiliary power source P13.
  • the electrolytic furnace Z includes a cathode Z31 and an anode Z36, and is provided with an auxiliary power source Z13.
  • the anode A36 is connected to the anode of the common power source 12, the switch A2 is connected between the A36 and the common power source 12, the cathode A31 is connected to the anode N36, the switch N2 is connected between the cathode A31 and the anode N36, the cathode N31 is connected to the anode P36, and the cathode N31 is connected.
  • the positive electrode of the auxiliary power source A13 is connected to the anode A36, and the cathode is connected to the cathode A31.
  • the anode of the auxiliary power source N13 is connected to the anode N36, and the cathode is connected to the cathode N31.
  • the anode of the auxiliary power source P13 is connected to the anode P36, and the cathode is connected to the cathode P31.
  • the positive electrode of the auxiliary power source Z13 is connected to the anode Z36, and the cathode is connected to the cathode Z31.
  • the switch A1 is connected in parallel with the wire composition control circuit A42 in the circuit of the electrolytic furnace A, and the control circuit A42 and the switch A2 can cut off the electrolytic furnace A.
  • the switch N1 is connected in parallel with the wire composition control circuit N42 in the circuit of the electrolytic furnace N, and the control circuit N42 and the switch N2 are combined to cut the electrolytic furnace N.
  • the switch P1 is connected in parallel with the wire composition control circuit P42 in the circuit of the electrolytic furnace P, and the control circuit P42 and the switch P2 are combined to cut the electrolytic furnace P.
  • the switch Z1 is connected in parallel with the wire composition control circuit Z42 in the circuit of the electrolytic furnace Z, and the control circuit Z42 and the switch Z2 are combined to cut the electrolytic furnace Z.
  • the above-mentioned switches 2 and the corresponding control circuits 42 act in combination, and the electrolytic furnaces A, N, P, and Z can be arbitrarily cut out from the electrolytic furnace group without affecting the use of the remaining electrolytic furnaces.
  • the auxiliary power source 13 can be controlled to adjust the process parameters such as the temperature, current and current density of the electrolysis furnace of the corresponding electrolytic furnace.
  • the total voltage and/or current output from the common power supply 12 should be adjusted to adjust the corresponding process parameters. It is also possible to control the auxiliary power source 13 to adjust the process parameters such as the temperature, current, and current density of the electrolytic furnace corresponding to the electrolytic furnace.
  • the electrolytic furnaces A, N, P, and Z all produce metal bismuth; the electrolysis furnace A, N, P, Z electrolysis temperature is 1000-1100 degrees; the common power supply 12 output voltage is 38V, and the output current is about 5000A.
  • the auxiliary power supply A13 is turned off.
  • the auxiliary power source N13 outputs a current of 100A-300A.
  • the auxiliary power supply P13 outputs a current of 100A-500A.
  • Auxiliary power supply Z13 outputs current 300A-800A.
  • the average product metal ⁇ electricity consumption is 8.1kW ⁇ h/kg.
  • the electrolysis furnace A, N, P, and Z electrolysis temperatures are 1030-1100 degrees.
  • the shared power supply 12 has an output voltage of 37V and an output current of approximately 5000A.
  • the auxiliary power supply A13 is turned off.
  • the auxiliary power source N13 outputs a current of 100A-300A.
  • the auxiliary power supply P13 outputs a current of 100A-500A.
  • Auxiliary power supply Z13 outputs current 200A-500A.
  • the average electricity consumption per unit of metal bismuth is 7.9kW ⁇ h/kg.
  • Electrolyzer group see Figure 2. Including 12, 24 electrolytic furnaces (A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q, R, S, T, U, V, W, X, Y and Z), 24 auxiliary power supplies (A13, B13...Z13) and 48 switches (A1, A2, B1, B2...Z1 and Z2).
  • the common power source 12 is connected in series with the above-mentioned 24 electrolytic furnaces.
  • the anode A36 of the first electrolytic furnace A is connected to the positive electrode of the common power source 12, and the switch A2 is connected between the anode A36 and the common power source 12; from the second electrolytic furnace B, the cathode 31 of each electrolytic furnace and the previous one are electrolyzed.
  • the anode 36 of the furnace is connected... and so on; the cathode Z31 of the 24th electrolytic furnace Z is connected to the negative electrode of the common power source 12 to constitute an electrolytic furnace group.
  • the anode of the auxiliary power source A13 is connected to the anode A36, the cathode is connected to the cathode A31, the anode of the auxiliary power source B13 is connected to the anode B36, the cathode is connected to the cathode B31, and so on.
  • the switch A1 is connected in parallel with the wire composition control circuit A42 in the anode A36 and the cathode A31 of the electrolytic furnace A, that is, one end of the switch A1 is connected between the common power source 12 and the switch A2 in the main circuit 41, and the other end of the switch A1 is connected to the main switch.
  • the control circuit A42 and the switch A2 can cut off the electrolytic furnace A; the switch B1 and the wire composition control circuit B42 are connected in parallel with the anode B36 and the cathode B31 of the electrolytic furnace B, that is, the switch B1.
  • One end is connected between the cathode A31 and the switch B2 in the main circuit 41, the other end of the switch B1 is connected between the cathode B31 and the switch C2 in the main circuit 41, and the control circuit B42 and the switch B2 can cut the electrolytic furnace B... And so on.
  • switches 2 and the corresponding control circuits 42 function in combination, and any one or more of the 24 electrolytic furnaces can be arbitrarily cut from the electrolytic furnace group without affecting the use of the remaining electrolytic furnaces.
  • the total voltage required for each electrolytic furnace is supplied from the common power source 12 and the current required to be supplied to the electrolytic furnace which requires the minimum electrolytic current in the electrolytic furnace group.
  • the auxiliary power source 13 can be controlled to adjust the process parameters such as the temperature, current and current density of the electrolysis furnace of the corresponding electrolytic furnace.
  • the total voltage and/or current output from the common power supply 12 can be adjusted to adjust the corresponding process parameters. It is also possible to control each auxiliary power source 13 to adjust the temperature, current, current density and the like of the electrolytic furnace corresponding to the electrolytic furnace. number.
  • the total voltage and current output from the common power source 12 can be not adjusted, and only the voltage and/or current outputted by each auxiliary power source 13 can be adjusted to control the electrolysis temperature and current of the corresponding electrolysis furnace. Process parameters such as current density.
  • the main electrolysis process technical indicators the common power supply 12 output voltage 230V, the output current is about 5000A.
  • Electrolyzer AH produces metal crucible, electrolysis temperature is 1030-1150 degrees, auxiliary power supply A13-H13 output current is 300-800A; metal crucible average electric unit consumption is 7.6kW ⁇ h/kg; electrolytic furnace JM produces metal crucible, electrolysis temperature 1000- 1100 degrees.
  • a 5KA rare earth molten salt electrolyzer consisting of a cathode 31 and an anode 36.
  • the electrolytic furnace is equipped with a power source 29.
  • the cathode 31 is connected to the negative electrode of the power source 29, and the anode 36 is connected to the positive electrode of the power source.
  • the main technical indicators for the production of metal ruthenium by electrolysis in this comparative 5KA electrolytic furnace are as follows:
  • the electrolysis current is about 5000A
  • the power output is 10-10.5V
  • the electrolysis temperature is 1030-1150 degrees
  • the average electricity consumption is 8.8kW ⁇ h/kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

一种电解炉组及其电解方法,属于稀土冶金电解设备及其使用技术领域。包括共用电源(12)、至少2台电解炉和至少1台辅助电源(13);各电解炉包括阴极(31)和阳极(36);共用电源(12)与各电解炉按照共用电源(12)的正极与第一台电解炉的阳极(36)连接、其后每台电解炉的阳极(36)与前一台电解炉的阴极(31)连接、最末一台电解炉的阴极(31)与共用电源(12)的负极连接组成。共用电源(12)向各电解炉供电的电路为主电路(41);各辅助电源(13)的正极分别与对应电解炉的阳极(36)连接,负极分别与各对应电解炉的阴极(31)连接。具有控制灵敏、使用方便、能源利用率高、电耗低等优点。产品电单耗随电解炉组中电解炉数量增加而降低。

Description

一种电解炉组 技术领域
本发明属于稀土冶金电解设备技术领域。涉及一种电解炉组及其电解方法。
背景技术
在稀土金属及其合金生产中,电解是常用生产方法。
名称为一种稀土熔盐电解的节电方法,公开日为2005年11月02日,公开号为CN1690252A的中国专利申请公开了“将多个电解槽以串联供电的方式组合在一起,然后用一套整流电源设备对多个电解槽同时供电……采用带有风冷装置的电解槽,在某一电解槽温度过高时将该电解槽的冷却装置开启”的技术方案以解决某一电解槽温度过高的技术问题。该技术方案存在将部分能源转移至与产品关联性不强的环境,既浪费了能源又污染了环境、难以准确控制电解槽温度等缺陷。
发明内容
针对现有技术存在的上述缺陷,本发明提供电解炉组及其电解方法。采用如下技术方案:
一种电解炉组,包括共用电源12、至少2台电解炉和至少1台辅助电源13;所述各电解炉分别包括阴极31和阳极36;所述共用电源12与各电解炉按照共用电源12的正极与第一台电解炉的阳极36连接、其后每台电解炉的阳极36与前一台电解炉的阴极31连接、最末一台电解炉的阴极31与共用电源12的负极连接组成。共用电源12向各电解炉供电的电路为主电路41。各电解炉中至少有一台电解炉配有辅助电源13。所述各辅助电源13的正极与各对应电解炉的阳极36连接,负极与各自电解炉的阴极31连接。
本发明优选技术方案之一,还包括开关1和开关2。所述各开关2位于主电路41中各电解炉的阳极36与前一电解炉的阴极31之间或第一台电解炉的阳极36与共用电源12的正极之间。所述各开关1的一端连接于主电路41中各开关2之前,另一端连接于主电路41中下一开关2之前组成各控制电路42。所述开关2可以切断共用电源12向各电解炉的供电,此时接通开关1不影响电解炉组中其它电解炉的使用。
本发明再一优选技术方案,还包括开关及将每一台电解炉自电解炉组中分别切停的。所述各控制电路42分别包括各开关1。
本发明再一优选技术方案,包括共用电源12、24台电解炉(依次为A、B、C、D、E、F、 G、H、J、K、L、M、N、P、Q、R、S、T、U、V、W、X、Y及Z)、24台辅助电源(依次为A13、B13……Z13)及48个开关(依次为A1、A2、B1、B2、C1、C2……Z1及Z2)。所述共用电源12与上述24台电解炉串联。即第1台电解炉A的阳极A36与共用电源12的正极连接、阳极A36与共用电源12之间有开关A2;自第2台电解炉B起,各电解炉的阳极36与前一台电解炉的阴极31连接、各电解炉的阳极36与前一台电解炉的阴极31之间有开关2……以此类推;至第24台电解炉Z的阴极Z31与共用电源12的负极连接组成电解炉组。
所述辅助电源A13的正极与阳极A36连接,负极与阴极A31连接;所述辅助电源B13的正极与阳极B36连接,负极与阴极B31连接……以此类推。
所述各开关1与导线分别组成各控制电路42并联在主电路41中对应电解炉的两端。即开关A1的一端连接于主电路41中共用电源12与开关A2之间,开关A1的另一端连接于主电路41中阴极A31与开关B2之间,控制电路A42与开关A2联合可以切停电解炉A;所述开关B1与导线组成控制电路B42并联在电解炉B的阳极B36和阴极B31,即开关B1的一端连接于主电路41中阴极A31与开关B2之间,开关B1的另一端连接于主电路41中阴极B31与开关C2之间,控制电路B42与开关B2联合可以切停电解炉B……以此类推。
其中电解炉A、B、C、D、E、F、G、H生产金属钕,电解温度1030-1150℃,辅助电源A13-H13输出电流300-800A;电解炉J、K、L、M生产金属镧,电解温度1000-1100度。辅助电源J13-M13输出电流0-500A;电解炉N、P、Q、R、S、T、U、V、W、X、Y、Z生产镨钕合金,电解温度1030-1150度。辅助电源N13-Z13输出电流200-600A。
本发明电解炉组使用方法,通过调整共用电源12输出电流和/或电压调整各电解炉工艺参数。
本发明电解炉组使用方法再一优选技术方案,以共用电源12为各电解炉提供主要电源,通过共用电源12输出的电流和/或电压调整各电解炉电解电压、电解温度、电解电流、电流密度等工艺参数。
通过调整辅助电源13输出电流调整各对应电解炉总电流强度从而调整电解温度等工艺参数。
本发明电解炉组使用方法再一优选技术方案,所述电解炉组中任一电解炉需暂停时,控制各开关接通控制电路42将任一电解炉自电解炉组中切除。
本发明电解炉组使用方法再一优选技术方案,由共用电源12提供各电解炉所需总电压和需要的最低电解电流。需要调整各电解炉的电解电流、电流密度、温度等工艺参数时,可以控制各辅助电源13调整相应电解炉的电解炉温度、电流、电流密度等工艺参数。自电解炉组中切停1台或多台电解炉后,应调整共用电源12输出的总电压和/或电流调整相应工艺参数。 还可以控制各辅助电源13调整对应电解炉的电解炉温度、电流、电流密度等工艺参数。
本发明电解炉组采用双电源对各电解炉并联供电,共用电源主要功能为向电解炉组提供大部分能量,辅助电源仅对单台电解炉提供主要用作调节单台电解炉电解温度等工艺参数的少部分能量。由于将电源提供的电解能量与调节工艺参数所需能量分开,灵活地调节各电解炉工艺参数,在改变电源供电工况和/或需要调节部分电解炉工况时将电源对电解炉组整体影响降到最小。具有总电压损耗低、各电解炉炉温适宜、产品电单耗低、电解炉组可以整体关联控制也可单一控制等优点。采用高电压电源,降低了电源设备自身的损耗,电解炉串联后电路损耗也降低,能源利用率高。可以调整任一电解炉电流控制电解温度等工艺参数。在电解炉组中不仅可以生产单一产品,也可以在电解炉组中同时生产多种产品。产品电单耗随电解炉组中工作的电解炉数量增加而降低。
附图说明
图1为实施例1示意图。
图2为实施例2、3示意图。
图3为对比例示意图。
具体实施方式
实施例1
电解炉组,参见图1。包括共用电源12、电解炉A、电解炉Z和辅助电源Z13各1台;所述电解炉A包括阴极A31、及阳极A36。电解炉Z包括阴极Z31、及阳极Z36;电解炉Z配有辅助电源Z13。所述共用电源12的正极与阳极A36连接,阳极Z36与阴极A31连接,阴极Z31与共用电源12的负极连接组成。所述辅助电源Z13的正极与阳极Z36连接,负极与阴极Z31连接。电解炉A、Z与共用电源12形成串联电路41,使2台电解炉A、Z共用1台电源12组成电解炉组。
共用电源12及辅助电源Z13对电解炉Z形成并联供电电路。
电解时,由共用电源12提供电解炉A、Z所需大部分电能。通过调整共用电源12输出电流、电压调整电解炉组中所需电解电流较低的电解炉A达到适宜工艺参数。如电解炉Z的炉温等工艺参数偏低时,可以开启并控制辅助电源Z13调整电解炉Z的总电流以调整相应工艺参数。
本实施例电解炉A、Z串联后,共用电源12输出的总电压低于电解炉A、Z未串联前单独使用时的电压和。产品金属钕平均电单耗下降。
主要电解工艺技术指标:
电解炉A、Z生产金属钕。电解炉A、Z电解温度1030-1100度。共用电源12输出电压19V,输出电流约5000A。辅助电源Z13输出电流100A-500A。金属钕平均电单耗8.1kW·h/kg。
实施例2
电解炉组,参见图2。包括1台共用电源12、4台电解炉(A、N、P、Z)、4台辅助电源(A13、N13、P13、Z13)及8个开关(A1、A2、N1、N2、P1、P2、Z1及Z2)。所述电解炉A包括阴极A31、及阳极A36,并配有辅助电源A13。所述电解炉N包括阴极N31、及阳极N36,并配有辅助电源N13。所述电解炉P包括阴极P31、及阳极P36,并配有辅助电源P13。所述电解炉Z包括阴极Z31、及阳极Z36,并配有辅助电源Z13。
所述阳极A36与共用电源12的正极连接、A36与共用电源12之间有开关A2,阴极A31与阳极N36连接,阴极A31与阳极N36之间有开关N2,阴极N31与阳极P36连接、阴极N31与阳极P36之间有开关P2,阴极P31与阳极Z36连接、阴极P31与阳极Z36之间有开关Z2,阴极Z31与共用电源12的负极连接组成电解炉组。
所述辅助电源A13的正极与阳极A36连接,负极与阴极A31连接。所述辅助电源N13的正极与阳极N36连接,负极与阴极N31连接。所述辅助电源P13的正极与阳极P36连接,负极与阴极P31连接。所述辅助电源Z13的正极与阳极Z36连接,负极与阴极Z31连接。
所述开关A1与导线组成控制电路A42并联在电解炉A的电路中,控制电路A42与开关A2联合可以切停电解炉A。所述开关N1与导线组成控制电路N42并联在电解炉N的电路中,控制电路N42与开关N2联合可以切停电解炉N。所述开关P1与导线组成控制电路P42并联在电解炉P的电路中,控制电路P42与开关P2联合可以切停电解炉P。所述开关Z1与导线组成控制电路Z42并联在电解炉Z的电路中,控制电路Z42与开关Z2联合可以切停电解炉Z。
上述各开关2及对应的各控制电路42组合作用,可以将电解炉A、N、P、Z自电解炉组中任意切除而不影响其余电解炉的使用。
电解时,由共用电源12提供电解炉A、N、P、Z所需总电压和需要的最低电解电流。需要调整各电解炉的电解电流、电流密度、温度等工艺参数时,可以控制各辅助电源13调整相应电解炉的电解炉温度、电流、电流密度等工艺参数。
自电解炉组中任意切除电解炉A、N、P、Z后,应调整共用电源12输出的总电压和/或电流调整相应工艺参数。还可以各控制辅助电源13调整对应电解炉的电解炉温度、电流、电流密度等工艺参数。
主要电解工艺技术指标:
电解炉A、N、P、Z均生产金属镧时;电解炉A、N、P、Z电解温度1000-1100度;共用电源12输出电压38V,输出电流约5000A。辅助电源A13关闭。辅助电源N13输出电流100A-300A。辅助电源P13输出电流100A-500A。辅助电源Z13输出电流300A-800A。平均产品金属镧电单耗8.1kW·h/kg。
电解炉A、N、P、Z均生产金属钕时,电解炉A、N、P、Z电解温度1030-1100度。共用电源12输出电压37V,输出电流约5000A。辅助电源A13关闭。辅助电源N13输出电流100A-300A。辅助电源P13输出电流100A-500A。辅助电源Z13输出电流200A-500A。产品金属钕平均电单耗为7.9kW·h/kg。
实施例3
电解炉组,参见图2。包括共用电源12、24台电解炉(A、B、C、D、E、F、G、H、J、K、L、M、N、P、Q、R、S、T、U、V、W、X、Y及Z)、24台辅助电源(A13、B13……Z13)及48个开关(A1、A2、B1、B2……Z1及Z2)。所述共用电源12与上述24台电解炉串联。即第1台电解炉A的阳极A36与共用电源12的正极连接、阳极A36与共用电源12之间有开关A2;自第2台电解炉B起,各电解炉的阴极31与前一台电解炉的阳极36连接……以此类推;至第24台电解炉Z的阴极Z31与共用电源12的负极连接组成电解炉组。
所述辅助电源A13的正极与阳极A36连接,负极与阴极A31连接;所述辅助电源B13的正极与阳极B36连接,负极与阴极B31连接……以此类推。
所述开关A1与导线组成控制电路A42并联在电解炉A的阳极A36和阴极A31,即开关A1的一端连接于主电路41中共用电源12与开关A2之间,开关A1的另一端连接于主电路41中阴极A31与开关B2之间,控制电路A42与开关A2联合可以切停电解炉A;所述开关B1与导线组成控制电路B42并联在电解炉B的阳极B36和阴极B31,即开关B1的一端连接于主电路41中阴极A31与开关B2之间,开关B1的另一端连接于主电路41中阴极B31与开关C2之间,控制电路B42与开关B2联合可以切停电解炉B……以此类推。
上述各开关2及各对应的控制电路42组合作用,可以将24台电解炉中任一台或多台电解炉自电解炉组中任意切停而不影响其余电解炉的使用。
电解时,由共用电源12提供各电解炉所需总电压和按电解炉组中需要最低电解电流的电解炉所需提供电流。需要调整各电解炉的电解电流、电流密度、温度等工艺参数时,可以控制各辅助电源13调整相应电解炉的电解炉温度、电流、电流密度等工艺参数。
自电解炉组中切停电解炉后,可以调整共用电源12输出的总电压和/或电流调整相应工艺参数。还可以控制各辅助电源13调整对应电解炉的电解炉温度、电流、电流密度等工艺参 数。
自电解炉组中切停1-2台电解炉后,可以不调整共用电源12输出的总电压、电流,仅调整各辅助电源13输出的电压和/或电流控制对应电解炉的电解温度、电流、电流密度等工艺参数。
主要电解工艺技术指标:共用电源12输出电压230V,输出电流约5000A。
电解炉A-H生产金属钕,电解温度1030-1150度,辅助电源A13-H13输出电流300-800A;金属钕平均电单耗为7.6kW·h/kg;电解炉J-M生产金属镧,电解温度1000-1100度。辅助电源J13-M13输出电流0-500A;金属镧平均电单耗为7.9kW·h/kg;电解炉N-Z生产镨钕合金,电解温度1030-1150度。辅助电源N13-Z13输出电流200-600A。镨钕合金平均电单耗为7.6kW·h/kg。
对比例
参见图3。5KA稀土熔盐电解炉,包括阴极31和阳极36。该电解炉配有电源29。所述阴极31与电源29的负极连接,阳极36与电源正极连接。
采用本对比例5KA电解炉电解生产金属钕的主要工艺技术指标:
电解电流约5000A,电源输出10-10.5V,电解温度1030-1150度,平均电单耗8.8kW·h/kg。
以上仅是本发明所列举的几种优选方式,本领域技术人员应理解,本发明实施方式并不限于以上几种,任何在本发明的基础上所作的等效变换,均应属于本发明的范畴。

Claims (10)

  1. 一种电解炉组,包括共用电源(12)、至少2台电解炉和至少1台辅助电源(13);所述各电解炉分别包括阴极(31)和阳极(36),各电解炉中至少有1台电解炉配有辅助电源(13);所述共用电源(12)与各电解炉按照共用电源(12)的正极与第一台电解炉的阳极(36)连接、其后每台电解炉的阳极(36)与前一台电解炉的阴极(31)连接、最末一台电解炉的阴极(31)与共用电源(12)的负极连接组成,共用电源(12)向各电解炉供电的电路为主电路(41);所述各辅助电源(13)的正极分别与对应电解炉的阳极(36)连接,负极分别与各对应电解炉的阴极(31)连接。
  2. 如权利要求1所述电解炉组,其特征在于还包括开关及将任一台电解炉自电解炉组中切停的控制电路(42)。
  3. 如权利要求2所述电解炉组,其特征在于包括共用电源(12)、24台电解炉(A、B、C、D、E、F、G、H、J、K、L、M、N、P、Q、R、S、T、U、V、W、X、Y及Z)、24台辅助电源(A13、B13……Z13)及48个开关(A1、A2、B1、B2、C1、C2……Z1及Z2);所述共用电源(12)与上述24台电解炉串联,即第1台电解炉(A)的阳极(A36)与共用电源(12)的正极连接、阳极(A36)与共用电源(12)之间有开关(A2);自第2台电解炉(B)起,各电解炉的阳极(36)与前一台电解炉的阴极(31)连接、在前一台电解炉的阴极(31)与后一台电解炉的阳极(36)之间有开关(2)……以此类推;至第24台电解炉(Z)的阴极(Z31)与共用电源(12)的负极连接;
    各电解炉分别配备1台辅助电源(13),各辅助电源(13)的正极与对应电解炉的阳极(36)连接,各辅助电源(13)的负极与对应电解炉的阴极(31)连接;
    所述开关(A1)与导线组成控制电路(A42),开关(A1)的两端分别并联 在电解炉(A)的阳极(A36)或阴极(A31),即开关(A1)的一端连接于主电路(41)中共用电源(12)与开关(A2)之间,开关(A1)的另一端连接于主电路(41)中阴极(A31)与开关(B2)之间,控制电路(A42)与开关(A2)联合可以切停电解炉(A);所述开关(B1)与导线组成控制电路(B42)并联在电解炉(B)的阳极(B36)和阴极(B31),即开关(B1)的一端连接于主电路(41)中阴极(A31)与开关(B2)之间,开关(B1)的另一端连接于主电路(41)中阴极(B31)与开关(C2)之间,控制电路(B42)与开关(B2)联合可以切停电解炉(B)……以此类推;
    其中前8台电解炉A、B、C、D、E、F、G、H生产金属钕,电解温度1030-1150℃,辅助电源A13-H13输出电流300-800A;中间4台电解炉J、K、L、M生产金属镧,电解温度1000-1100度。辅助电源J13-M13输出电流0-500A;后12台电解炉N、P、Q、R、S、T、U、V、W、X、Y、Z生产镨钕合金,电解温度1030-1150度,辅助电源N13-Z13输出电流200-600A。
  4. 如权利要求1所述电解炉组的使用方法,其特征在于以共用电源(12)为各电解炉提供电源,通过共用电源(12)输出的电流和/或电压调整电解炉组的电解工艺参数。
  5. 如权利要求4所述电解炉组的使用方法,其特征在于由共用电源(12)提供各电解炉所需总电压和需要的最低电解电流,控制各辅助电源(13)调整对应电解炉的电解工艺参数。
  6. 如权利要求4所述电解炉组的使用方法,其特征在于所述电解炉组中任意电解炉需暂停时,控制各开关切断主电路(41)向该电解炉供电的电路并接通该电解炉的控制电路(42)将该电解炉自电解炉组中切停。
  7. 如权利要求6所述电解炉组的使用方法,其特征在于自电解炉组中切停1台 以上电解炉后,可以调整共用电源(12)输出的总电压和/或电流调整相应工艺参数。
  8. 如权利要求7所述电解炉组的使用方法,其特征在于自电解炉组中切停电解炉后,可以调整各辅助电源(13)输出的电压和/或电流调整对应电解炉的工艺参数。
  9. 如权利要求5-8任一所述电解炉组的使用方法,其特征在于优先调整共用电源(12)输出的总电压。
  10. 如权利要求6所述电解炉组的使用方法,其特征在于自电解炉组中切停1台或2台电解炉后,可以仅调整其余未停止工作电解炉对应辅助电源(13)的输出的电压和/或电流调整未停止工作电解炉的工艺参数。
PCT/CN2015/095277 2015-02-06 2015-11-23 一种电解炉组 WO2016124035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2017702866A MY198306A (en) 2015-02-06 2015-11-23 Electrolysis furnace group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510063260.8 2015-02-06
CN201510063260.8A CN104818498B (zh) 2015-02-06 2015-02-06 一种电解炉组

Publications (1)

Publication Number Publication Date
WO2016124035A1 true WO2016124035A1 (zh) 2016-08-11

Family

ID=53728973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095277 WO2016124035A1 (zh) 2015-02-06 2015-11-23 一种电解炉组

Country Status (3)

Country Link
CN (1) CN104818498B (zh)
MY (1) MY198306A (zh)
WO (1) WO2016124035A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818498B (zh) * 2015-02-06 2016-05-25 虔东稀土集团股份有限公司 一种电解炉组

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1690252A (zh) * 2004-04-23 2005-11-02 苏承慧 一种稀土熔盐电解的节电方法
CN101368282A (zh) * 2007-08-14 2009-02-18 北京有色金属研究总院 下阴极稀土金属电解槽及采用该电解槽的电解工艺
WO2012078524A1 (en) * 2010-12-05 2012-06-14 Metal Oxygen Separation Technologies, Inc. Methods and apparatus for processing of rare earth metal ore
CN103614747A (zh) * 2013-12-17 2014-03-05 包头市玺骏稀土有限责任公司 大型组合式稀土熔盐电解槽系统
CN104818499A (zh) * 2015-02-06 2015-08-05 虔东稀土集团股份有限公司 一种电解炉组
CN104818498A (zh) * 2015-02-06 2015-08-05 虔东稀土集团股份有限公司 一种电解炉组
CN204661841U (zh) * 2015-02-06 2015-09-23 虔东稀土集团股份有限公司 一种电解炉组
CN204661840U (zh) * 2015-02-06 2015-09-23 虔东稀土集团股份有限公司 一种电解炉组
CN105088284A (zh) * 2015-02-06 2015-11-25 虔东稀土集团股份有限公司 一种电解炉
CN205062204U (zh) * 2015-02-06 2016-03-02 虔东稀土集团股份有限公司 一种电解炉

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69625346T2 (de) * 1995-10-25 2003-08-21 Santoku Corp Verfahren zur herstellung von seltenen erdmetallen
CN203999854U (zh) * 2014-08-05 2014-12-10 阳泉市林兴磁性材料有限责任公司 一种10kv节能型电解槽

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1690252A (zh) * 2004-04-23 2005-11-02 苏承慧 一种稀土熔盐电解的节电方法
CN101368282A (zh) * 2007-08-14 2009-02-18 北京有色金属研究总院 下阴极稀土金属电解槽及采用该电解槽的电解工艺
WO2012078524A1 (en) * 2010-12-05 2012-06-14 Metal Oxygen Separation Technologies, Inc. Methods and apparatus for processing of rare earth metal ore
CN103614747A (zh) * 2013-12-17 2014-03-05 包头市玺骏稀土有限责任公司 大型组合式稀土熔盐电解槽系统
CN104818499A (zh) * 2015-02-06 2015-08-05 虔东稀土集团股份有限公司 一种电解炉组
CN104818498A (zh) * 2015-02-06 2015-08-05 虔东稀土集团股份有限公司 一种电解炉组
CN204661841U (zh) * 2015-02-06 2015-09-23 虔东稀土集团股份有限公司 一种电解炉组
CN204661840U (zh) * 2015-02-06 2015-09-23 虔东稀土集团股份有限公司 一种电解炉组
CN105088284A (zh) * 2015-02-06 2015-11-25 虔东稀土集团股份有限公司 一种电解炉
CN205062204U (zh) * 2015-02-06 2016-03-02 虔东稀土集团股份有限公司 一种电解炉

Also Published As

Publication number Publication date
MY198306A (en) 2023-08-22
CN104818498A (zh) 2015-08-05
CN104818498B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
KR101684813B1 (ko) 알루미늄 전해를 위해 사용된 전해조 및 상기 전해조를 이용하는 전해방법
WO2016082726A1 (zh) 一种电解炉
CN103757661A (zh) 一种铝电解惰性阳极
WO2016124034A1 (zh) 电解炉组
CN105088284B (zh) 一种电解炉
CN101613864B (zh) 熔盐电解法制备镁稀土合金的方法
Vogel et al. Development and research trends of the neodymium electrolysis–a literature review
WO2003071005A3 (en) Carbon containing cu-ni-fe anodes for electrolysis of alumina
WO2016124035A1 (zh) 一种电解炉组
CN110846687A (zh) 一种Mg-Zn-Zr中间合金及其制备方法
CN203653714U (zh) 一种氯化铝多极电解槽
CN204661840U (zh) 一种电解炉组
WO2012092868A1 (zh) 一种氯化镁电解装置及电解方法
CN106835196A (zh) 生产阴极铜的混合电解系统
CN105908031A (zh) 高导电率的铝合金材料及其制备方法
JP2761002B2 (ja) Nd−Fe合金又はNd金属の製造方法
JPH03140491A (ja) 希土類金属および希土類合金の製造方法
JP4403463B2 (ja) 単・複極式電解装置
CN107557812B (zh) 一种延长镁电解槽使用寿命的方法
CN208802872U (zh) 一种三维电解催化氧化装置
CN105937040A (zh) 一种处理高杂矿锌湿法冶炼中降低阴极锌直流电单耗的工艺
CN106048638B (zh) 一种小阴极周期反向电流电溶金属镍造液的方法
RU2282680C1 (ru) Электролизер для производства алюминия
CN109082686B (zh) 棒状形貌钛粉及其制备方法
CN208136306U (zh) 锰铜合金丝生产线的熔炼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880977

Country of ref document: EP

Kind code of ref document: A1