WO2016123927A1 - 光学路径更换系统及成像设备 - Google Patents

光学路径更换系统及成像设备 Download PDF

Info

Publication number
WO2016123927A1
WO2016123927A1 PCT/CN2015/084913 CN2015084913W WO2016123927A1 WO 2016123927 A1 WO2016123927 A1 WO 2016123927A1 CN 2015084913 W CN2015084913 W CN 2015084913W WO 2016123927 A1 WO2016123927 A1 WO 2016123927A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
tray
optical path
optical element
imaging
Prior art date
Application number
PCT/CN2015/084913
Other languages
English (en)
French (fr)
Inventor
杜兴
Original Assignee
杜兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/612,253 external-priority patent/US20160223781A1/en
Priority claimed from US14/673,580 external-priority patent/US10126531B2/en
Application filed by 杜兴 filed Critical 杜兴
Publication of WO2016123927A1 publication Critical patent/WO2016123927A1/zh
Priority to US15/360,764 priority Critical patent/US10247906B2/en
Priority to US15/389,176 priority patent/US10295784B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/14Mountings, adjusting means, or light-tight connections, for optical elements for lenses adapted to interchange lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably

Definitions

  • the present disclosure relates to an optical path changing system and an imaging apparatus, and more particularly to an optical path changing system and an imaging apparatus that can select optical systems having different focal lengths.
  • the focal length of the fixed-focus lens is fixed, and the user must move his or her position to take the desired photo.
  • the zoom lens is flexible and easy to use, and can be adapted to different shooting environments.
  • the framing is more flexible than the fixed focus lens.
  • users can use a single lens to shoot photos from wide-angle to telephoto focal lengths without having to move their position.
  • this convenience is usually at the expense of photo quality, which is usually worse than a fixed-focus lens.
  • the aperture of the zoom lens is usually smaller than the fixed focus lens, this causes the amount of light entering the zoom lens to be less than that of the fixed focus lens.
  • the number of lenses of the zoom lens is usually larger than that of the fixed focus lens, which causes the scattering and intensity attenuation of the light after passing through the plurality of lenses.
  • the compact design of the fixed-focus lens determines the quality of the photo.
  • the fixed-focus lens is designed for only one focal length, which greatly reduces the number of lenses and parts that need to be moved, ensures the precision of the mechanism, and can produce sharper photos.
  • a zoom lens may have hundreds of parts. If there is a quality problem with a part, whether it is production or design, it will cause a great waste to the investment of the lens company, whether it is the production stage or the sales stage. And usually the zoom lens is big and heavy, which runs counter to the trend of small and portable.
  • a fixed-focus lens can generally take a picture with a higher level of quality than a zoom lens. And fixed-focus lenses are usually smaller and lighter than zoom lenses. For many camera devices, especially mobile phones, the small size is the most important, which makes it impractical to use a zoom lens in a mobile phone. So most mobile devices don't have a zoom function.
  • an optical path changing system comprising a first optical element tray, the first optical element tray forming a plurality of optical paths including a first optical path, wherein the first optical The path includes: an optical inlet from which light enters the first optical component tray; an optical outlet from which the light exits the first optical component tray; and a first optical channel disposed on the first optical component tray Between the optical inlet and the optical outlet, wherein the first optical channel is disposed such that a geometric length of the first optical path between the optical inlet and the optical outlet is greater than the first optical element
  • the thickness of the tray; and the first optical element tray is configured to be movable to select a desired optical path. Since different optical paths can have different optical effects (eg, different focal lengths, filtering effects, pupils), different imaging effects can be achieved in the imaging device by moving the optical tray to select different optical paths.
  • the optical path changing system may further include: a first motor configured to move the first optical component tray to select a desired optical path. By setting the motor, it is possible to automate the optical path replacement without manually moving the optical tray.
  • an optical element is mounted in the first optical path to form an optical system having a first focal length. Since the geometric length of the first optical path is larger than the thickness of the optical tray, an optical system formed by the first optical path (for example, an imaging lens) can realize a large focal length or an ultra wide-angle lens, so that it can be used in a miniaturized imaging device (for example, a smart phone) achieves telephoto super wide-angle photography. Additionally, optical elements may also be mounted in the first optical path to form an optical system having a particular filtering effect, aperture, and the like.
  • the first optical element tray further has an optical window formed through a through hole thereof as a second optical path, wherein the optical window is mounted with an optical element to form an optical system having a second focal length.
  • the second focal length is not equal to the first focal length.
  • the first focal length may be greater than the first focal length to achieve telephoto photography, or less than the first focal length to achieve an ultra wide angle lens.
  • the optical component tray can be made to have both a shorter focal length optical system and a longer focal length optical system, thereby meeting the zooming requirements of the imaging device for different focal lengths.
  • the present disclosure can use a plurality of fixed focus lenses (optical systems) to provide a zoom function so that high quality photos can be taken.
  • This lens replacement system provides zoom function and has the advantages of light weight and small size of the fixed focus lens, which is especially suitable for thin image forming devices such as smart phones.
  • the first optical component tray is a planar plate-shaped tray
  • the first optical channel is substantially parallel to the planar plate-shaped tray
  • the optical window is substantially perpendicular to the planar plate-shaped tray.
  • an incident reflector is provided at the optical inlet.
  • an optical element is disposed in front of the incident reflector.
  • the optical path changing system may further include: embedding an exit reflector in the first optical element tray at the optical outlet, such that the first optical channel can share an imaging with the optical window element.
  • the shape of the first optical element tray is a disc shape
  • the first motor is configured to rotate the first optical element tray.
  • the optical path changing system may further include: a hole passing through a geometric center of the disc-shaped first optical element tray such that the disc-shaped first optical element tray has an inner wall and an outer wall.
  • the optical path changing system may further include: a second optical channel disposed in the hole, wherein the second optical channel is when the first motor rotates the first optical component tray Fixed.
  • the optical path changing system may further include: a third optical channel disposed to be aligned with the first optical channel with respect to the hole.
  • the optical path changing system may further include: a third optical channel disposed to be aligned with the first optical channel with respect to the hole, wherein when the first optical path is selected, the first The optical channel, the second optical channel, and the third optical channel are aligned.
  • the optical inlet is disposed at an inner wall of the disc-shaped first optical element tray; and an incident reflector is placed in the aperture such that when the first optical path is selected, the light Reflected into the optical inlet.
  • the optical outlet is disposed at an inner wall of the disc-shaped first optical element tray.
  • the optical path changing system may further include an exit reflector placed in the hole such that when the first optical path is selected, the outgoing light emitted from the optical exit is reflected by the exit reflector.
  • the optical inlet is disposed on an outer wall of the first optical element tray; and an incident reflector is disposed outside an outer wall of the first optical element tray such that when the first optical path is selected, The light is reflected into the optical inlet.
  • the optical outlet is disposed on an outer wall of the first optical component tray.
  • the optical path changing system may further include: an exit reflector; wherein the exit reflector is placed outside an outer wall of the first optical component tray such that when the first optical path is selected, The exiting light emitted by the optical exit is reflected by the exit reflector.
  • an incident reflector is provided at the optical inlet to reflect the light into the first optical channel.
  • a reflector is disposed in the first optical channel for changing a direction of the first optical channel.
  • the first optical component tray is a planar plate-shaped tray, and the first optical channel passes or does not pass through a geometric center of the planar plate-shaped tray.
  • the optical path changing system may further include: a second optical component tray including a plurality of optical windows apertured in the second optical component tray, and at least one of the optical windows is configured to be An optical element mounted in the second planar optical element tray, and a second motor configured to move the second planar optical element tray to align one of the plurality of optical windows to a desired position such that The first optical element tray and the second optical element tray cooperate to achieve a desired optical effect.
  • Optical path can be made by setting a plurality of optical component trays The choice of diameter is more flexible, allowing for more different optical effects. For example, more focal length combinations can be achieved by the cooperation of the first optical element tray and the second optical element tray.
  • the optical path changing system may further include a second optical component tray, the second optical component tray includes: a second optical inlet from which light enters the second optical component tray; and a second optical outlet, the light is from It leaves the second optical element tray; a second optical channel is disposed in the second optical element tray between the second optical inlet and the second optical outlet.
  • Light emitted by the first optical element tray can enter the second optical inlet of the second planar optical element tray.
  • first optical element tray and the second optical element tray can be moved to form an optical system having different focal lengths and/or filter effects.
  • the plurality of optical paths share the same imaging element for imaging or the plurality of optical paths use at least two imaging elements for imaging.
  • an optical path changing system comprising: a first optical element tray including a plurality of first optical windows, each of the first optical windows being passed through the first optical element tray a via hole formed in which zero, one or more of the plurality of first optical windows are mounted with optical elements such that the plurality of first optical windows combined with optical elements that may be mounted therein have different optical effects, and A first motor configured to move the first optical element tray to align one of the plurality of first optical windows to a desired position.
  • lenses having different focal lengths or different apertures are mounted in at least some of the plurality of first optical windows.
  • the first optical element tray is disc-shaped, and a geometric center of one or more of the plurality of first optical windows is distributed concentrically with a center of the disc-shaped optical element tray
  • the first motor is configured to be capable of driving the disc-shaped tray to rotate.
  • the first optical component tray is rectangular.
  • the first optical windows are arranged in a one-dimensional array in the length direction of the rectangle; or the first optical window is arranged in two or more one-dimensional arrays, and each one-dimensional array comprises one Or multiple optical windows.
  • the shape of the first optical element tray is at least a part of a column ring, and the plurality of first optical windows of the first optical element tray are from an outer surface of the first optical element tray to A through hole of the inner surface is formed, and the first motor is configured to be capable of rotating the first optical element tray to align one of the plurality of first optical windows to a desired position.
  • the first optical element tray is a flexible ring formed by end-to-end contact of materials, the flexible ring can be configured into a geometric shape, and the ring is configured to be capable of driving at the first motor The trajectory is scrolled with the above geometry to move the one of the plurality of first optical windows to a desired position while maintaining the geometry.
  • the optical path changing system may further include a reflector configured to change a light direction to achieve a desired optical path.
  • the optical path changing system may further include a second optical component tray including a plurality of second optical windows, each of the second optical windows being formed by a through hole passing through the second planar optical component tray, Wherein at least one of the second optical windows is mounted with an optical element; and a second motor configured to move the second planar optical element tray to align one of the plurality of second optical windows to a desired a position such that the one of the plurality of first optical windows cooperates with the one of the plurality of second optical windows to achieve a desired optical effect.
  • a second optical component tray including a plurality of second optical windows, each of the second optical windows being formed by a through hole passing through the second planar optical component tray, Wherein at least one of the second optical windows is mounted with an optical element; and a second motor configured to move the second planar optical element tray to align one of the plurality of second optical windows to a desired a position such that the one of the plurality of first optical windows cooperates with the one of the plurality of second optical windows to achieve a desired optical effect.
  • At least some of the combined optical paths formed by the plurality of first optical windows and the plurality of second optical windows form an optical system having different focal lengths.
  • the first optical element tray, the reflector, and the second optical element tray are arranged such that incident light enters the one of the plurality of first optical windows a reflector and exiting the reflector into the one of the plurality of second optical windows.
  • an optical path changing system comprising: a first optical element tray that is a flexible ring formed by end-to-end contact of a flexible strip of material, including an inner surface and an outer surface, a plurality of optical windows a holder, each of the optical window holders being disposed on the flexible ring, and a first optical window formed inside the one or more of the optical window holders, the first optical window being configured to be capable of mounting an optical element .
  • the optical path changing system may further include a first motor configured to move the first optical element tray to align one of the first optical windows to a desired position.
  • the optical path changing system may further include: a second optical component tray including a plurality of second optical windows, wherein the one or more of the second optical windows are configured to mount optical elements
  • the second optical component tray is disposed according to one or more optical window holders of the first optical component tray including the first optical window such that light passing through the first optical window also passes through at least one The second optical window.
  • an image forming apparatus including an imaging controller, an imaging element, a motor controller, and the above optical path changing system, wherein the imaging controller controls the motor according to an input of a user changing an imaging effect Transmitting instructions; the motor controller drives a respective one of the optical path changing systems to move a respective optical component tray in the optical path changing system in accordance with an instruction from the imaging controller to select a suitable optical path; And the imaging element receives imaging light input from the selected optical path of the optical path changing system to form an image having a desired imaging effect.
  • the imaging controller controls the motor according to an input of a user changing an imaging effect Transmitting instructions
  • the motor controller drives a respective one of the optical path changing systems to move a respective optical component tray in the optical path changing system in accordance with an instruction from the imaging controller to select a suitable optical path
  • the imaging element receives imaging light input from the selected optical path of the optical path changing system to form an image having a desired imaging effect.
  • FIG. 1 shows a perspective view of an optical path changing system including an annular tray and a drive motor mounted in accordance with an embodiment of the present disclosure.
  • FIG. 2 shows a perspective view of an optical path changing system including a plurality of annular trays and mounting a drive motor in accordance with an embodiment of the present disclosure.
  • FIG 3 shows a perspective view of an optical path changing system including a rectangular tray and mounting a row of lenses in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of an optical path changing system including a rectangular tray in which a plurality of rows of lenses are mounted, in accordance with an embodiment of the present disclosure.
  • FIG. 5 shows a perspective view of an optical path changing system including a plurality of rectangular trays each having a plurality of rows of lenses, in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a lens mounted on an optical window of an optical component tray in accordance with an embodiment of the present disclosure.
  • Figure 7a shows a combination of an optical element tray, a reflector, and an imaging element in accordance with an embodiment of the present disclosure.
  • Figure 7b shows a combination of various optical element trays and imaging elements in accordance with an embodiment of the present disclosure.
  • Figure 7c shows a sector optical element tray, a reflector, a rectangular tray that is not in a plane with the sector optical element tray, and an imaging element, in accordance with an embodiment of the present disclosure. The way of combining.
  • Figure 7d shows a combination of a rectangular optical element tray, a reflector, a barrel optical element tray, and an imaging element, in accordance with an embodiment of the present disclosure.
  • Figure 7e shows a combination of two rectangular optical element trays, one reflector, and one imaging element in accordance with an embodiment of the present disclosure.
  • Figure 7f shows a combination of a rectangular optical element tray, a reflector, an imaging element, and a flexible ribbon optical element tray in accordance with an embodiment of the present disclosure.
  • Figure 7g shows a combination of a series of optical windows mounted on the inside of a flexible strip as an optical component tray, a reflector, and an imaging element, in accordance with an embodiment of the present disclosure.
  • Figure 8 shows that two lenses in different optical element trays can be combined to achieve a desired focal length in accordance with an embodiment of the present disclosure.
  • Figure 9 shows a disk shaped optical element tray mounted with an electromagnetic motor and locking device in accordance with an embodiment of the present disclosure.
  • Figure 10 shows a cross-sectional view of an electromagnetic motor that can simultaneously drive two disc-shaped optical element trays in accordance with an embodiment of the present disclosure.
  • Figure 11 shows an iris diaphragm mounted between two disc shaped optical element trays in accordance with an embodiment of the present disclosure.
  • FIG. 12 shows a block diagram of a mobile camera unit incorporating an optical path changing system in accordance with an embodiment of the present disclosure.
  • FIG. 13 shows a flow chart of an optical path replacement system incorporating camera software interpreting user input commands and moving corresponding lenses, in accordance with an embodiment of the present disclosure.
  • Figure 14 shows a long focal length obtained by placing a reflector in the center of an optical component tray and combining it with a lens in accordance with an embodiment of the present disclosure.
  • Figure 15 shows a lens assembly in which a long focal length is placed in an optical component tray in accordance with an embodiment of the present disclosure.
  • Figure 16 shows a need for an optical component tray with an elongated camera window to meet the need for different light entrances for different long focal length lens combinations in accordance with embodiments of the present disclosure.
  • Figure 17 shows a need for an optical component tray with multiple imaging elements to accommodate a single focal length for different focal lengths in accordance with an embodiment of the present disclosure.
  • Figure 18 shows an optical component tray with multiple movable optics in accordance with an embodiment of the present disclosure.
  • a channel, a reflector, and an imaging element placed on the outside of the moving tray.
  • Figure 19 shows an optical element tray with an elongated optical channel through the geometric center of the tray in accordance with an embodiment of the present disclosure.
  • Figure 20 shows an optical element tray with pairs of optical channels placed around the geometric center of the optical element tray in accordance with an embodiment of the present disclosure.
  • 21 shows an optical element tray with pairs of optical channels placed around the geometric center of the optical element tray, and one optical channel placed at the geometric center of the tray, in accordance with an embodiment of the present disclosure.
  • Figure 22 shows an optical element tray with pairs of optical channels surrounding the geometric center of the optical element tray, in accordance with an embodiment of the present disclosure.
  • Figure 23 shows an optical element tray with optical channels that do not pass through the geometric center of the optical element tray, in accordance with an embodiment of the present disclosure.
  • Figure 24 shows an optical element tray with optical channels that do not pass through the geometric center of the optical element tray, and that are surrounded by approximately triangular shapes, in accordance with an embodiment of the present disclosure.
  • Figure 25 shows an optical element tray with optical channels that do not pass through the geometric center of the optical element tray, and that are surrounded by an approximately quadrilateral, in accordance with an embodiment of the present disclosure.
  • Figure 26 shows a specific embodiment of an optical component tray with optical channels that do not pass through the geometric center of the optical component tray, in accordance with an embodiment of the present disclosure.
  • An optical path changing system in the present disclosure includes at least one optical component tray, and optionally, at least one motor that can be used in conjunction with at least one motor controller, and which can also include imaging elements or imaging The components are used together.
  • the optical path replacement system herein refers to a system that allows light to pass through different optical paths, which can pass light through lenses having different focal lengths (which may be referred to as lens replacement systems at this time), or optically pass through optical paths having different apertures, or Light is passed through optical components with different filtering effects, and so on.
  • optical path replacement systems can be designed for use in mobile devices, cameras, video cameras, and other imaging devices.
  • the optical window can be fitted with a lens, lens, lens cover, filter, or an empty optical window. Next, clarify the empty optics in detail A variety of uses for windows, or optical windows without optics.
  • an empty optical window allows the system to use only one lens without the need to combine with other lenses.
  • the imaging device can be equipped with an external lens module.
  • the optical window can also be fitted with lenses or lenses of different focal lengths or different filters. This way, you can flexibly load multiple lenses with different focal lengths in a compact device without the complexity, weight and size of the zoom lens. Because the size, thickness, and diameter of different fixed-focus lenses are different, the size of the optical window will also be different.
  • optical element tray does not necessarily mean that an optical element must be mounted therein, as described above, it may or may not be equipped with an optical element; and its shape is not necessarily " The disc may be in any suitable shape, such as illustrated by the different embodiments below.
  • the lens or lens may include H-shaped lenses, D-shaped lenses, rectangular lenses, or other shaped lenses. Different shapes of lenses, such as H-shaped lenses, can make more efficient use of the space of the lens tray. Filters or other optical refractive elements can be optionally included in the lens to change the color or geometrical optics of the light. Those of ordinary skill in the art will appreciate that the use of any lens, filter, or other optical component does not depart from the basic principles and spirit of the present disclosure.
  • the present disclosure is useful for fabricating compact imaging systems with multiple focal lengths and may also be waterproof, as all moving parts can be sealed in a waterproof body. No moving parts are exposed to the water, greatly simplifying the structure of the underwater multifocal imaging system and increasing reliability.
  • the optical path replacement system can include two or more optical component trays. Each tray can be moved independently. Thus optical components from different trays can be combined to provide more image or optical effects. For example, the lens A from the tray 1 can be more powerfully gathered or diverged if combined with the lens B from the tray 2. In another embodiment, the lens or lens set on the tray 1 can be combined with the filter on the tray 2, and if combined with an infrared filter, can be used for night vision purposes. Therefore, a combination of diverse optical components can produce a variety of image effects.
  • the optical path replacement system can be combined with a user interface of software to automatically select a combination of optical elements based on instructions entered by the user or in specific situations. This feature will be explained in detail in conjunction with FIG.
  • Figure 1 shows an optical component tray with multiple optical windows mounted with a motor and Like a unit.
  • the optical path changing system 100 may include one optical element tray 101 and one imaging unit 107.
  • the optical element tray 101 is annular or disc shaped such that there may be holes in the middle of the optical element tray and a plurality of optical windows 102 around the periphery of the optical element tray.
  • Each optical window is provided with a lens 103, a lens set, a filter, or other optical component.
  • the annular optical element tray 101 is provided with a motor 106a that can drive the annular tray to rotate about its axis to align an optical window with the imaging unit 107.
  • the interface board 105 is used to receive power and signals from an imaging device on which the optical path replacement system 100 is installed.
  • the interface board 105 can be attached to the imaging unit 107, the motor 106a, or the module housing of the optical component tray 101.
  • the interface board 105 is fixed without departing from the basic principles and spirit of the present disclosure.
  • the optical element tray 101 is of sufficient thickness so that a lens set (such as shown in Figure 6 below) or a single lens 103 can be mounted at different depths in each optical window 102.
  • a certain lens 103 can be mounted on the side of the optical element tray 101 near the light incident, that is, on the side where the lens cover assembly 104 is located.
  • the other lens can be mounted on the light exit side of the optical element tray 101, that is, on the side where the imaging unit 107 is located.
  • the relative depth of the optical window of the lens 103 or lens group embedded in the optical element tray 101 is determined by the geometrical characteristics of the lens and the configuration of the imaging unit 107. Lenses of different focal lengths may need to be mounted at different locations near or away from the imaging unit 107 to ensure proper operation.
  • the properties of the lens 103 or lens set determine where it is embedded in the optical element tray 101.
  • the motor 106a can be mounted at a position that makes the drive shaft perpendicular to the plane of the annular optical element tray 101.
  • the gear of the drive shaft of the motor 106a meshes with the gear teeth on the inner wall of the annular optical element tray 101.
  • the motor 106a is mounted at a position that parallels the drive shaft to the plane of the annular optical element tray 101.
  • the worm wheel mounted on the drive shaft of the motor 106a meshes with the gear teeth on the outer wall of the annular optical element tray 101.
  • the gear teeth of the optical element tray may also be disposed on the front surface of the front surface of the optical element tray 101, and the motor 106a may drive the optical element tray 101 using a bevel gear, a spiral bevel gear or a hypoid gear.
  • motor 106a drives optical component tray 101 does not deviate from the basic principles and spirit of the present disclosure.
  • the optical path replacement system 100 can also include imaging components such as imaging components, focusing components, image stabilization components, some additional lenses, filters, apertures, and the like. These imaging components can be mounted in the imaging unit or installed separately.
  • the imaging element can be any one used to capture a picture Image-like devices include film, CCD image sensors, and CMOS image sensors.
  • the focusing assembly can be any component that focuses the image on the imaging element.
  • the way to focus includes moving the imaging element closer to or away from the lens, moving the lens closer to or away from the imaging element, or moving an imaging assembly between the lens and the imaging element. Or you can use a liquid lens to focus, the focal length of this lens will vary with the strength of the electric field. Mirrors can also be used to focus.
  • focusing can be achieved by moving the imaging element, moving the focus lens, moving a single lens or a single set of lens sets, or moving the entire optical component tray.
  • One way to move the lens or lens set is to use a voice coil motor. This is done by mounting the lens or lens assembly on the optical window with a spring.
  • the first set of magnets is mounted on the lens assembly and the other set of magnets is mounted outside the optical path, between the lens assembly and the imaging element or on the other side of the lens assembly.
  • One set of magnets is an electromagnet and the other set of magnets may be permanent magnets.
  • the lens assembly can be pushed away or brought closer to the imaging element by energizing the electromagnet and adjusting the current.
  • Optical path replacement system 100 can also work in conjunction with a separate imaging system that is not integrated within optical path replacement system 100.
  • the lens cover assembly 104 can include one or more lenses, one or more filters, or a glass or plastic cover to protect the lens from dust and moisture.
  • This lens cover assembly can be mounted on a mobile phone, a camera, or other body of an imaging device in which the optical path replacement system 100 is mounted.
  • the optical element tray 101 is not necessarily annular.
  • the optical component tray can be annular, disc shaped, rectangular, curved or any shape that is permitted within the imaging device incorporating the optical path changing system 100 without departing from the basic principles and spirit of the present disclosure. .
  • the optical component tray of Figure 1 and other figures has only one lens 103 in the optical window 102. This is for the purpose of simplifying the illustration only and should not be construed as a limitation. There may be other forms of lens in the optical window 102, such as a lens set.
  • the optical component tray can contain any number of optical windows 102 and is component number 102.
  • the lens 103 refers to any lens in the optical element tray 101, including the lens 103 that is aligned with the imaging unit 107 and is not visible in the figures.
  • Figure 2 shows an automated lens change system with two optical component trays, each of which can be moved independently.
  • the first motor 106a controls the movement of the first optical element tray 101a
  • the second horse Up to 106b controls the movement of the second optical element tray 101b.
  • the control circuits of the two motors can share a single interface board 105.
  • the independent movement of the two optical element trays 101 allows the lenses from the optical element tray 101a and the optical element tray 101b, respectively, to be combined with each other to obtain a plurality of different focal lengths for the needs of different use environments.
  • the second optical element tray 101b can mount a certain number of optical filters
  • the first optical element tray 101a mounts a series of lenses of different focal lengths.
  • the second optical element tray 101b When the second optical element tray 101b mounts the optical filter, the second optical element tray 101b may have at least one optical window 102 that is an empty window to provide a filterless option when photographing the user. This allows the user to select different filters with different lenses to provide users with a variety of options.
  • Figure 2 shows only one lens 103, which should not be construed as a limitation.
  • the optical component tray 101 can have any number of optical windows, and any of the optical windows can contain the lens 103, or be empty. Even if all the windows are empty, these empty optical windows can be used as a variable-size aperture for changing the amount of light entering the imaging unit 107.
  • iris aperture is a good choice, it is also an ideal choice to use optical component trays with different sized optical windows in certain situations. Therefore, even if an optical component tray is not mounted with a lens, it does not depart from the basic principles and spirit of the present disclosure.
  • first optical element tray 101a and the second optical element tray 101b appear to have the same number of optical windows 102, this is not necessarily the case in practical applications.
  • the number of optical windows 102 of the second optical element tray 101b may be more than the first optical element tray, or may be less than the first optical element tray, and the number of all possible lens combinations is the optical window 102 in the first optical element tray 101a.
  • the number of products is the product of the number of optical windows 102 in the second optical component tray 101b.
  • FIG. 3 shows an optical path replacement system 200 in which all of the optical windows 202 are aligned in a row in one dimension.
  • This design can be installed with fewer lenses than a ring design, otherwise the optical component tray will become very long. However, it is easier to make room for this design inside devices such as mobile phones. In comparison, it is more difficult to design a space with curves.
  • the embodiment of Figure 3 makes the device more compact at the expense of reducing the number of lenses.
  • the motor is not shown in Figure 3, but a variety of motors and transmissions can move the optical element tray 201 to the desired position.
  • the motor 206 can drive the optical component trays in a desired manner by various gears such as vertical, parallel, and lateral, in conjunction with various gears such as a turbine gear, a bevel gear, a helical gear, a hypoid gear, and a rack.
  • Linear motors can also be used, and the movement of the linear motor is quieter. faster.
  • an ultrasonic motor can be used to move the optical component tray.
  • Figure 4 shows an optical path change system 200 in which all of the optical windows of the optical element tray 201 are arrayed in two dimensions.
  • the lenses are arranged in three columns: one column on the left, one column on the right including the optical window numbered 202, and one column including only one lens 203 in the middle.
  • the arrangement of the lenses can be described as the first row of lenses on top and only one lens 203, followed by the second row of optical windows containing two optical windows, and so on up to the bottom row of windows.
  • the combination can be described as the optical windows being arranged in an array with one or more optical windows per column (row).
  • two motors can be used to move the optical element tray, the X-axis motor completes the X-direction movement of the optical element tray, and the Y-axis motor completes the movement in the Y-direction of the tray.
  • Combining the X-axis and Y-axis movements positions the optics tray to any of the lenses on the tray.
  • the size of the optical window 202 can be different, and some optical windows can be relatively large, spanning to other rows or columns, like the lens 203 in the figure.
  • Such a design can strategically distribute different sized optical windows 202 on the optical element tray 201 to minimize the volume of the optical element tray 201.
  • the X-axis motor and the Y-axis motor can move the optical component tray 201 to any position for selecting a suitable lens.
  • the motor and transmission system used to move the optical element tray 201 in a two-dimensional direction is more complicated than the motor movement system that moves the optical element tray in a one-dimensional direction.
  • the prior art has various solutions for moving a platform in a two-dimensional direction, and those of ordinary skill in the art will appreciate that the use of any type of such system does not depart from the basic principles and spirit of the present disclosure.
  • Figure 5 shows an optical path replacement system 200 with a plurality of rectangular optical element trays 201.
  • Such an embodiment requires a more complex motor system to allow each optical component tray to move independently. But if the individual lens trays are designed to move together, then all of the lens trays can be moved using a motor and drive system that moves a set of lens trays.
  • Figure 6 shows a cutaway view of a lens set mounted in optical windows 102,202.
  • the optical windows 102, 202 may be empty windows, or an optical filter, a single lens, or a lens set may be mounted.
  • the lens group can be used for general purpose, or, to some extent, some optical window mounted wide-angle lenses can have a macro function to take macro photos.
  • the use of lens sets can also be used to correct for various variations and distortions, such as light of the same material for different colors. The color difference caused by the difference in refractive index.
  • the lens set can also be used to obtain a higher magnification required for macro or for taking close objects.
  • This optical window has multiple uses when the optical window 202 does not have any lens when it is mounted without any lens.
  • the optical path replacement system can be designed to externally connect optical components including, but not limited to, microscopes, telescopes, external lenses, filters, or other optical components.
  • optical components including, but not limited to, microscopes, telescopes, external lenses, filters, or other optical components.
  • the lens on the optical component tray may prevent the external optical components from functioning properly, so an empty optical window is used to avoid unnecessary refraction.
  • FIGS 7a-7g show various shapes of optical component trays and tissue forms that can produce different effects.
  • Each tray system can include a reflector 708, which can be a total reflection prism, a mirror, or other reflective system that can change the direction of the light, thereby maintaining both the compact size of the device and the optical path between the lens and imaging element 707. distance.
  • a reflector 708 can be a total reflection prism, a mirror, or other reflective system that can change the direction of the light, thereby maintaining both the compact size of the device and the optical path between the lens and imaging element 707. distance.
  • Figure 7a shows a basic form of tissue with an optical component tray associated with a reflector 708 for changing the direction of light passing through the optical component tray.
  • Figure 7 can be used to demonstrate that the optical component tray with the reflector installed can have more functionality and flexibility.
  • the imaging assembly 707 is mounted at one end of the reflector exit opening, flexibly increasing the distance of light between the lens and imaging assembly 707 without increasing the thickness of the camera system.
  • the optical path changing system depicted in FIG. 7a is mounted in a mobile phone, the disc-shaped optical component tray is placed flat on the back of the screen of the mobile phone, and the lens cover assembly 104 can be integrated in the casing of the mobile phone. Up, so you can see the camera's window from the back.
  • Reflector 708 reflects the light in the length to width direction of the mobile phone. If there is no reflector 708, the imaging unit 707 needs to be mounted in the same direction as the lens cover 104, as shown in Figures 1-5, so the focal length of the lens replacement system is limited by the thickness of the mobile phone. The reflector makes the distance between the lens and the imaging unit 707 more flexible, so the longest focal length of the lens replacement system is also more flexible.
  • Figure 7b shows the organization of a 3-layer optical component tray, indicating that the optical path replacement system can use more than two optical component trays, and each tray is not necessarily the same shape, size, or type.
  • the first optical element tray 101a is thicker than the second optical element tray 101b.
  • a lens set similar to that described in Figure 6 can be mounted in the optical window 102 of the first optical element tray 101a, or a single lens can be mounted at different depths of the window.
  • the second optical element tray 101b is thinner than the first optical element tray 101a and can be used to mount a single lens or an optical filter.
  • a single lens can be designed to be The lens 103 or lens group in an optical component tray works in conjunction.
  • the third optical element tray 201 is a rectangular optical element tray 201.
  • the lenses 103, 203 from all of the trays can be combined to produce suitable focal lengths and/or optical effects, and each tray can have more than one empty optical window 103, 203.
  • An empty optical window can be combined with the lens to combine a suitable optical effect or a suitable focal length that can be combined with less than three optical components.
  • the imaging unit 707 is mounted perpendicular to the optical component tray to indicate that the optical path replacement system does not necessarily require the reflector 708 of Figure 7a.
  • Figure 7c is used to illustrate how the reflector 708 can be used to assemble two differently shaped optical component trays in two different planes.
  • the first optical component tray 101 is fan-shaped, or a wedge-shaped portion of a disc shape.
  • Light enters from the lens cover 104 and passes through an optical window 102 of the first optical component tray and then into the reflector 708 where the direction of the light is changed to be parallel to the direction of the first optical component tray 101.
  • the second optical element tray 201 is mounted behind the reflector 708 perpendicular to the first optical element tray 101. Light passes through the optical window 202 of the second optical component tray and reaches the imaging unit 707.
  • Figure 7d shows a combination comprising: a rectangular optical element tray 201, a reflector 708, and a roller optical element tray 709, wherein the center of the roller optical element tray 709 places the imaging unit 707.
  • the drum optics tray 709 is different from the previously described optics trays 101, 201 because the roller optics tray 709 is not planar.
  • the drum optical element tray 709 is a cylindrical ring shape (a column ring shape) having an outer wall and an inner wall.
  • Figure 7d depicts a complete barrel ring
  • the roller optics tray 709 can be curved or a sector rather than a full cylinder ring. In other words, the ends of the drum optical element tray are not necessarily connected to form a complete disc shape.
  • This type of optical component tray is similar to the rectangular optical component tray 201 depicted in Figure 3, except that the planar tray is curved and curved along one of the long sides of the rectangle to form an arc. When the length of the rectangle is sufficiently long, the ends of the rectangle can be joined end to end to form a barrel-shaped optical element tray as depicted in Figure 7d.
  • the optical window is not placed on a flat surface but is placed on a cylindrical wall surface, unlike the rotating or sliding optical component tray, the roller optics tray 709 is rotated about its central axis. .
  • the light emitted by the rectangular optical element tray 201 is redirected by the reflector 708 to enter the roller optical element tray 709, which can change the direction of the roller optical element tray 709 to minimize the size of the entire tray assembly.
  • Figure 7e shows a combination comprising: a reflector 708, two rectangular optical element trays 201a, 201b, but in this embodiment, the two optical element trays are in parallel planes Above, light is reflected by reflector 708 into optical component trays 201a, 201b. The light entrance of the reflector 708 is covered by the optical cover glass 711, which ensures the passage of light and protects the reflector 708 from moisture and dust.
  • the imaging unit 707 is placed in the direction of the length or width of the mobile phone or camera along which the optical path replacement system is installed.
  • Fig. 7f is similar to Fig. 7d except that the roller optical element tray 709 is a flexible strip-shaped roller optical element tray 712 made of rubber, silicone, fiber, or a chain loop formed by hinged rigid segments.
  • An optical element such as a lens or a filter is mounted in the optical window 702.
  • the rotating optics tray 712 selects a suitable lens
  • the flexible strip 712 bends at the curved corners 713, which reduces the volume occupied by the optical path replacement system.
  • the curved corners 713 are designed to have a sufficiently large radius of curvature such that the rigid lens does not get stuck or obstruct the movement of the flexible ribbon roller optics tray 712 as it passes through the curved corners 713.
  • the roller optical component tray depicted in Figures 7d and 7f can cut some material between the optical windows, and cut a triangle, a square or a circle on one or both sides of the roller. Disc shaped teeth. This will make the optical component tray lighter or softer. Those of ordinary skill in the art will appreciate that the addition or subtraction of excess material for the optical component trays described herein does not depart from the basic principles and spirit of the present disclosure.
  • Figure 7g depicts another type of flexible optical element tray in which several optical window holders 715 are mounted on a flexible conveyor belt 714.
  • the optical window holder 715 is made of a piece of material that is independent of the remainder of the optical element tray, the edges being connected to the optical element tray.
  • the optical component tray can be flexible, rigid, can be planar or otherwise shaped, and can include several optical window holders 715.
  • the optical window holder 715 may be mounted on the optical component tray or may be made of the same material as the optical component tray, spaced apart in the middle. Or the optical window holder can be a section of an optical component tray, an optical window containing two or more optical component trays.
  • the optical window holder can be empty or does not include an optical window.
  • the material from which the optical window holder 715 is made may be flexible or rigid.
  • each optical window holder 715 is formed by the material extension of the inner surface of the flexible conveyor belt.
  • the flexible conveyor belt is made of a chain of rubber, silicone, fiber, or hinged rigid segments.
  • Each optical window holder can be empty or can be fitted with an optical component such as a lens, lens set or filter. Alternatively, the function of the empty window may be replaced by a spacing on the flexible conveyor that is sufficiently spaced apart from the fixed optical window holder 715.
  • the flexible conveyor belt 714 can mount many optical components with limited space.
  • the holder 715 can extend from the inside, the outside, or both the inside and the outside of the flexible conveyor belt without departing from the basic principles and spirit of the present disclosure.
  • Figures 7a-7g depict different tissue combinations of optical element tray 101, reflector 708, and imaging unit 707 to achieve suitable focal length and optical effects, and are suitable for loading into the limited interior space of today's mobile devices.
  • Figures 7a-7g depict different tissue combinations of optical element tray 101, reflector 708, and imaging unit 707 to achieve suitable focal length and optical effects, and are suitable for loading into the limited interior space of today's mobile devices.
  • Those of ordinary skill in the art will appreciate that the various elements of Figures 7a-7g can be combined with other combinations without departing from the basic principles and spirit of the present disclosure.
  • Figure 8 shows how the lenses from the two optical component trays combine different effects.
  • the combination above is referred to as a macro lens combination.
  • the lens D 801 from the tray 1 is combined with the lens E 802 from the tray 2 with a short focal length A to enlarge the object close to the lens.
  • the combination of lenses in the middle of Figure 8 is referred to as a telephoto lens.
  • the lens F 803 from the tray 1 and the lens E 802 from the optical element tray 2 are combined with a longer focal length B to effectively magnify objects away from the lens.
  • the lens E 802 of the tray 2 used for the telephoto lens and the lens E 802 of the tray 2 for combining the macro lens may be the same lens.
  • Figure 8 is for illustrative purposes only and should not be construed as a limitation.
  • a lens, whether from tray 1 or tray 2 may be used for a combination of multiple different focal lengths for different photographing purposes.
  • the combination of lenses below Figure 8 is referred to as a wide-angle lens.
  • the wide-angle mirror combines the same lens used in the macro combination, from the lens D 801 of the tray 1, but the lens of the tray 2 is replaced with the lens G 804. This combination produces a relatively short focal length C with a wide-angle effect on objects that are far from the lens.
  • any combination of lenses, lens sets, filters, optical components, and even empty windows can be used to achieve a suitable focal length or other optical effect.
  • FIG. 9 shows a schematic diagram of a motor and optical component tray locking mechanism for rotating a disk shaped optical element tray.
  • a motor and gear are required to rotate or slide the optical component tray to the appropriate position.
  • the gearing system is not required to move the optical component tray with the motor shown in FIG.
  • the optical component tray constitutes the rotor 901 of the motor.
  • a permanent magnet 908 is mounted in the center of the optical element tray rotor 901, and an electromagnet 909 is mounted on the stator 902.
  • Each lens corresponds to an electromagnet 909 and a locking slot 904.
  • a locking groove 904 corresponds to each of the lenses 903 and is disposed at an outer edge of the optical element tray rotor 901.
  • the magnetic locking latch 906 is held against the spring 905 and cooperates with the locking slot 904 to secure the optical component tray rotor to a position corresponding to the selected lens.
  • the electromagnetic locking bolt 906 is controlled by a locking electromagnet 907.
  • the locking electromagnet 907 When the locking electromagnet 907 is energized, the magnetic locking pin 906 is sucked in, and the spring 905 is Compression, the latch is disengaged from the locking slot 904, and the optical component tray rotor 901 is free to rotate.
  • the electromagnets 907, 909 are de-energized, the force acting on the permanent magnet 908 and the magnetic lock pin 906 disappears, and the spring 905 bounces the magnetic lock pin 906 back into the lock slot 904, and the rotor 901 is locked.
  • the selected lens 903 can be selected using the following steps.
  • the locking electromagnet 907 is energized.
  • the magnetic locking latch 906 can be attracted to the locking electromagnet 907, compressing the spring 905 such that the magnetic locking latch 906 is disengaged from the locking slot 904.
  • the electromagnets 909 are sequentially energized and de-energized in the correct order, so that the optical element tray rotor 901 can be rotated forward or reversed.
  • a Hall effect sensor, a light sensor, or other sensor (not shown in the figure) is used to detect whether the selected lens 903 has approached the correct position.
  • the electromagnet 909 corresponding to the selected lens remains energized and the correct magnetic pole is secured to hold the rotor in a closed position.
  • the electromagnets 907, 909 are de-energized, and the spring 905 pushes the magnetic locking pin 906 into the locking groove 904 corresponding to the selected lens 903. Once the locking pin 906 has secured the optical component tray rotor, it is no longer necessary to energize the electromagnet.
  • the permanent magnet 908 can be replaced with an electromagnet.
  • the relative positions of the stator and rotor can be interchanged.
  • the position and orientation of the permanent magnets 908 and electromagnets 909 can also be modified, for example, placed on the outer edge of the tray, or placed in a direction perpendicular to the plane of the tray, rather than parallel to the plane of the tray.
  • Other different locking pin designs are also available.
  • the locking pin can be placed on the rotating optics tray.
  • the position of the rotor brush can also be changed.
  • the system can also be modified to move with linearity, not just rotation.
  • Figure 10 shows a cross-sectional view of an electromagnetic motor system designed for an optical path change system with two optical component trays.
  • the first tray 1001 in the figure is mounted with two first rotor electromagnets 1003.
  • first rotor electromagnets 1003 are shown in the figures for purposes of description, many electromagnets may be used without departing from the basic principles and spirit of the present disclosure.
  • the first rotor electromagnet 1003 is energized by the first rotor brush 1005, and the rotor brush can maintain electrical contact.
  • Two second electromagnets 1004 are mounted on the turntable on which the second tray 1002 extends, and the axis of the extended turntable passes through the center of the first turntable 1001.
  • the second rotor electromagnet 1004 is energized by the second rotor brush 1006, and the rotor brush can remain in electrical contact.
  • the stator electromagnet 1007 is mounted at a position where it can simultaneously act with the two first electromagnets 1003 and the two second electromagnets 1004. As described in Figure 9, the electromagnet achieves the desired motion by energizing and de-energizing in a reasonable order.
  • the rotor electromagnet can be replaced by a permanent magnet, but in this particular case, an electromagnet is preferred. Electromagnets are a better choice unless adequate anti-magnetic measures are used or where the rotor magnets are placed in an undisturbed position, as the electromagnets can be selectively energized and de-energized. This makes it easier to move only one tray at a time.
  • the above described electromagnetic motor can be modified and expanded to move three or more layers of optical component trays as long as the magnets of each stator can interact with all of the rotors.
  • the rotation of a single tray can be achieved by energizing only the electromagnets of one of the trays that need to be rotated.
  • a piezo motor can also be used to rotate and lock the optics tray.
  • Figure 11 depicts how the iris diaphragm is integrated into the optical path replacement system.
  • the iris diaphragm 1101 in Fig. 11 is mounted between the first optical element tray 101a and the second optical element tray 101b.
  • the iris diaphragm 1101 can be mounted in any operable position in Figure 11, or in combination with the various tissue forms depicted in Figures 7a-7g, without departing from the basic principles and spirit of this patent.
  • the present disclosure also provides an imaging apparatus that can include an imaging controller, an imaging element, a motor controller, and any of the optical path replacement systems described above or described below, wherein the imaging controller can be changed according to a user
  • An input of an imaging effect issues an instruction to the motor controller
  • the motor controller can drive a corresponding one of the optical path changing systems to move a corresponding optical in the optical path changing system in accordance with an instruction from the imaging controller a component tray to select a suitable optical path
  • the imaging element can receive imaging light input from the selected optical path of the optical path replacement system to form an image having a desired imaging effect.
  • the imaging device 1201 includes a programmable device, which is composed of a processor 1202 and a memory 1203.
  • the memory is a medium readable by a computer for storing a program of instructions executable by the processor 1202.
  • the memory can also be used to store images captured by imaging element 1204.
  • the above imaging controller can be constructed by the processor 1202 herein.
  • Imaging device 1201 sends instructions to motor controller 1205 (e.g., via an imaging controller) such that optical component tray 1207 can be moved to align one optical element 1208 with imaging element 1204.
  • Optical element 1208 can be a lens, a filter, or other form of optical element.
  • Light 1209 is projected through light 1208 onto imaging element 1204.
  • Imaging device 1201 can install software and driver Order, let the user control the optical path replacement system through the graphical interface, or automatically control through the system software.
  • the user does not necessarily need to know which optical component is being used or when the optical component should be replaced.
  • the camera software receives an instruction from the user, applies a filter, zooms in, zooms out, switches to macro mode, or adjusts the aperture size.
  • the drive of the device which can be part of the camera software, or other software module of the phone, determines how to move the optical component tray to achieve the desired result.
  • Figure 13 shows a flow chart for interpreting user input in a software method, selecting the appropriate optical components, and moving the optical component tray to the appropriate location.
  • the software receives input from the user.
  • the user's input can come from a graphical interface with icons, buttons, menus, etc. that allow the user to select commands.
  • the user can zoom by using the slider on the screen, the sliding track of the touch screen, the dial of the software or hardware, the scroll wheel, and the button.
  • the camera software interprets the user's instructions.
  • the user's instructions may include changing other parameters of the camera.
  • the camera software determines what zoom level is required based on the user's instructions.
  • the camera software determines the location to which the optical component tray needs to be moved in order to satisfy the zoom level or focal length selected by the user by querying configuration parameters.
  • the software can determine the position of the optical component tray by querying configuration parameters.
  • the configuration parameters list each available zoom level or focal length and the position of the optical component tray corresponding to this zoom level and focal length.
  • the available zoom levels or focal lengths can be stored in a file, array, table, or directly into the software code.
  • the available zoom levels are discrete, so when the zoom level selected by the user does not have to be just the available zoom or the like, the software needs to find the last available discrete zoom level that is no higher than the user selected zoom level. Then with digital zoom to achieve the user's desired zoom level.
  • Optical component holder The position of the disc is stored in the configuration parameters. Based on the reading of the current position sensor, it is possible to know which zoom level and focal length the user needs, and which lens to select.
  • the position of the tray can be read by a Hall effect sensor, a light sensor, a bar code reader, or a motor position sensor, or by relative position of the known lens. Those of ordinary skill in the art will appreciate that reading or determining the position of the optical component tray in any manner does not depart from the basic principles and spirit of this patent.
  • the camera software can signal to move the optical component tray to the correct position.
  • the camera software can monitor the position of the optics tray through the sensor and continuously issue a move command until the optics tray moves to the desired position. Or the camera can know the position of the optical component tray and send a set move command to move the optical component tray to the appropriate position.
  • the camera software also automatically controls the iris diaphragm installed in the optical path change system. If the user wants to take a high-speed moving photo or shoot in a low-light environment, the user can set the camera to high-speed mode, or the sensor can detect that it needs to be shot in low-light mode. In either case, the software will react to send a signal to the iris diaphragm to increase the aperture size and select the universal lens. If the user issues an amplification command in software, the software will control the motor to rotate the optical component tray to the telephoto lens position.
  • the camera software also provides a "professional" mode for advanced users, allowing the user to directly select the lens and aperture size to use.
  • the camera software can present the available optical software and combinations as options to the user. If the optics tray includes a filter, the camera software can also list the filter as an option. If all optical component trays contain lenses, the camera software can know the available lens combinations and calculate the combined effective focal lengths and present them to the user as options or options. The user does not need to select each of the trays. lens.
  • the user can simply let the user issue an enlargement and reduction command, and the software automatically determines and selects the appropriate lens combination, and then uses the digital zoom to smoothly complement the interval between the discrete optical zooms.
  • Digital zoom is simply a magnification of the image obtained by the imaging element without changing its resolution. This means that digital zoom can degrade image quality and, in extreme cases, cause images to be mosaicized, blurred or distorted. In reality, there is no instruction to enhance the quality of the image, which allows the digitally magnified photo to show more details. Therefore, an experienced user may want to maintain the original resolution of the photo, the software allows the user to turn off the digital zoom, using only the discrete optical zoom options combined with the different lenses in the optics tray.
  • the optical path changing system includes a first optical element tray that forms a plurality of optical paths including a first optical path, wherein the first optical path includes: an optical inlet from which light rays Entering the first optical element tray; an optical exit from which the light exits the first optical element tray; and a first optical channel disposed in the first optical element tray, the optical inlet and the optical Between the exits.
  • the first optical channel is disposed such that a geometric length of the first optical path between the optical inlet and the optical outlet is greater than a thickness of the first optical element tray; and the first optical component tray is Configured to be able to move to select the desired optical path.
  • the optical path represents an arbitrary path of light passing through any of the light entrances to the corresponding light exit in the optical tray, which may be an optical window in the form of the aforementioned through hole, or the geometric length of the optical channel included herein may be greater than the thickness of the tray
  • the first optical path includes a first optical path having a geometric length of the optical channel greater than the thickness of the tray, and the other optical paths may be in any form, including a via form or a first optical path form herein.
  • the first optical component tray is a flat plate-shaped tray, such as a disc shape or a rectangle. Such flat plate-shaped trays are particularly suitable for smaller thickness imaging devices, such as smart phones.
  • the first optical channel is substantially parallel to the planar plate tray and the optical window is substantially perpendicular to the planar plate tray.
  • the optical path changing system may further include: a first motor configured to move the first optical component tray to select a desired optical path. By setting the motor, it is possible to automate the optical path replacement without manually moving the optical tray.
  • an optical element is mounted in the first optical path to form an optical system having a first focal length. Since the geometric length of the first optical path is larger than the thickness of the optical tray, an optical system (for example, an imaging lens) formed by the first optical path can realize a large focal length, so that a miniaturized imaging device (for example, a smartphone) can be realized. To achieve telephoto photography.
  • the first optical element tray further has an optical window formed through a through hole thereof as a second optical path, wherein the optical window is mounted with an optical element to form an optical system having a second focal length.
  • the second focal length is smaller than the first focal length.
  • Figure 14 shows an embodiment of an optical component tray 1401 that can achieve a combination of long focal length lenses.
  • the optical element tray also includes several optical channels 1404 that are parallel to the plane of the tray.
  • the optical channel is surrounded by walls of a particular material, separated, or defined by the passage of light.
  • An optical channel can be fitted with one or more optical elements to manipulate light passing through the optical channel.
  • the optical channel is a passageway of light defined by a set of optical elements that passes through the set of optical elements.
  • the optical channels are not necessarily square or rectangular, but may be cylindrical, elliptical, or other geometric shapes.
  • the rectangular optical channel depicted in the figure is for illustrative purposes only.
  • optical channels are not necessarily strictly parallel to the plane of the optical component tray.
  • parallel as used herein is for the purpose of simplicity and description only and should not be construed as a limitation.
  • One or more lenses, filters, or other optical components may be included in the optical channel 1404 to achieve a desired focal length.
  • One of ordinary skill in the art will understand how to mount a lens, filter, or other optical component in optical channel 1404 to achieve a desired focal length.
  • optical inlet in each optical component tray, and at least one optical outlet.
  • the optical entrance is where light enters the optical component tray
  • the optical exit is where light exits the optical component tray.
  • the optical inlet and the optical outlet are respectively at opposite ends of the optical window.
  • the optical channel and the reflector are included, the light is not simply taken in from the front side of the optical element tray, but is ejected on the reverse side, but is reflected into a channel of light inside the optical element tray, and then projected from the exit to the imaging element. . In this case, the optical exit does not have to be on the opposite side of the optical inlet.
  • a central lens 1405 is placed in front of the central reflector 1409. All optical channels 1404 can share a central lens 1405, which makes better use of the limited space of the optical component tray 1401 to achieve a long focal length. Central lens 1405 is not required. One of ordinary skill in the art will know when a moderate focal length central lens 1405 is needed to cooperate with optical channel 1404 to achieve a desired focal length.
  • the optical component tray of Figure 14 is an annular tray 1401 that is empty at the center.
  • the central reflector 1409 is fixed to a hole in the center of the optical element tray, and the optical element tray is rotatable around the central reflector 1409. Any of the optical channels can be aligned with the central reflector 1409 and the imaging unit 1407.
  • the central opening of the optical element tray 1401 forms the inner wall of the annular optical element tray, and each optical channel 1404 has an optical inlet on the inner wall.
  • Central reflector 1409 reflects light into the entrance of an optical channel 1404.
  • An exit reflector is placed at the other end of each optical channel 1404 1408, the light is reflected into the imaging unit 1407.
  • the image forming apparatus in which the optical element tray 1401 of Fig. 14 is mounted requires a light entrance near the outer edge of the optical element tray 1401 aligned with the imaging unit 1407, such as a camera window; and another position in the center of the optical element tray is required. Light entrance.
  • an image forming apparatus in which the optical element tray 1401 of FIG. 14 is mounted requires two camera windows. One camera window is aligned with the optical window 1402 for taking short focal length photos, and the other camera window is aligned with the central reflector 1402 for taking long focal length photos.
  • the optical window 1402 and the optical channel 1404 share an imaging unit 1407 because the exit reflector of the optical channel can also be aligned with the imaging unit 1407.
  • Figure 15 shows another embodiment of an optical component tray 1501 suitable for use with a telephoto lens assembly. Unlike the optical component tray of Figure 14, the optical component tray of Figure 15 has no central reflector. Each optical channel 1504 of the optical component tray of Figure 15 has an incident reflector 1510. According to an embodiment of the present disclosure, an imaging apparatus in which the optical element tray 1501 of FIG. 15 is mounted requires two camera windows. The position of a camera window at the outer edge of the optical component tray is used by optical window 1502. The second camera window is aligned with the incident light reflector 1510 and is used by the optical channel 1504.
  • optical channel 1504 When a long focal length photo is taken using optical channel 1504, light entering reflective reflector 1510 is reflected into optical channel 1504, through the lens of optical channel 1504, or other optical components, to exit light reflector 1508.
  • the exit light reflector 1508 reflects the light into the imaging unit 1507 mounted under the optical component tray.
  • the light may not be entered by the same light entrance or camera window, but the light is always projected onto the same imaging element 1407 or 1507.
  • Figure 16 shows another optical component tray employing an elongated camera window 1603 for accommodate multiple multiple light entrances with different long focal lengths.
  • the first entrance is in the center of the optical component tray and is labeled 1.
  • Light enters from position 1, is reflected by a central reflector 1609 and enters an optical channel 1604.
  • an exit reflector reflects light to the imaging unit 1607.
  • the light is reflected by the exit reflector 1608 and coincides with the position and direction of the light after passing through the normal optical window 1602.
  • the second light entrance is labeled 2.
  • a combination of two reflectors and an optical channel can be aligned with the light entrance 2, correspondingly also labeled 2.
  • One of the sets of reflectors and optical channels is combined in the same manner as shown in FIG.
  • Another combination of reflectors and optical channels includes two optical channels 1604 and a secondary reflector connecting the two optical channels 1604.
  • the secondary reflector reflects the light 180 degrees and enters the second optical channel 1604.
  • light is reflected by the intermediate reflector 1612 and directed toward the periphery of the optical element tray 1601. Light then passes through the last optical channel 1604, is reflected by the exit reflector 1608, and is projected onto the imaging unit 1607.
  • the second optical channel 1604 extends to the edge of the optical element tray where the exit reflector 1608 reflects the light and projects onto the imaging unit 1607.
  • the light may or may not pass through the intermediate reflector 1612 and/or the third optical channel 1604 before being reflected by the exit reflector 1608 to the imaging unit 1607.
  • tissue form whether one or more reflectors, and one or more optical channels, can be used to achieve the desired focal length and mount the optical exit in the desired location. Without departing from the basic principles and spirit of this disclosure.
  • the third entrance is marked as 3.
  • Each of the ordinary optical windows 1602 can be aligned with the entrance 3, and the light can pass directly through the optical window 1602 and enter the imaging unit 1607.
  • a separate camera window can be placed at each of positions 1, 2, and 3.
  • One of ordinary skill in the art will appreciate that the organization of the reflector and optical channel can be aligned with the optical entrance of the optical component tray 1601 using more or fewer different locations of the light entrance without departing from the basic principles of the present disclosure. spirit.
  • FIG 17 shows another embodiment.
  • the optical component tray 1701 has only one optical entrance or camera window, but contains three imaging units to match different focal lengths on the optical component tray 1701.
  • the three imaging units are labeled A, B and C.
  • the imaging unit A is aligned with the optical window 1702 on the optical component tray, just like the optical component tray described above.
  • the imaging unit B can be aligned with two sets of structures comprising reflectors and optical channels of the incident reflector 1710, which are also labeled B.
  • the first set of combinations is the same as that of the reflector and optical channel of Figure 15, except that the directions are opposite.
  • Light enters the incident reflector 1710 from the incident position of the optical window of the outer edge of the optical element tray.
  • the incident light reflector 1710 reflects the light into the optical channel 1704, and finally the light is reflected by the exit reflector 1708 and enters the imaging unit B.
  • the second set of combinations is the same as the second set of combinations in Figure 16, except that the directions are also opposite.
  • a short light can be passed according to the tissue form.
  • the intermediate reflector reflects light into the first optical channel 1704, and a secondary reflector 1711 reflects the light 180 degrees into the second optical channel 1704.
  • the final light is reflected again by the exit reflector 1708 and enters the imaging unit B.
  • the third set of combinations is the same as one of the combinations in Fig. 16, and the directions are also opposite.
  • Light is entered by an incident reflector 1710 located on the periphery of the optical element tray 1701.
  • the incident reflector 1710 optically reflects into the optical channel 1704.
  • the central reflector 1709 reflects the light into the imaging unit C.
  • the imaging unit C can be placed at the position of the central reflector 1709, replacing the central reflector 1709 such that light exits the optical exit of the optical channel 1704 and directly enters the imaging unit C.
  • the organization of the reflectors and optical channels can use more or fewer imaging units at different locations without departing from the basic principles and spirit of the present disclosure.
  • the imaging unit can be placed directly at the optical exit of the optical channel to receive images without the need to be reflected by reflectors such as prisms, lenses, lens systems, and the like.
  • an imaging unit can be placed on the periphery of the optical component tray facing the side of the optical component tray such that the optical exit can be placed on the outer wall of the optical component tray.
  • an imaging unit can be placed in the center of the optical element tray so that light can exit the imaging unit after exiting the optical exit of the inner wall of the optical element tray.
  • the optical channel can pass through the center of the optical element tray or from one end of the optical element tray to the other end, and in combination with any number of reflectors to accomplish the purpose of directing light into the imaging element.
  • Figure 18 shows an example of a simple optical component tray 1801 that includes only optical channels 1804 in accordance with an exemplary embodiment of the present disclosure.
  • Light enters the central incident light reflector 1809 and is reflected into one of the optical channels 1804. Which optical channel is entered depends on which optical channel is aligned with the central reflector 1809 and imaging unit 1807. This design may also be reversed, the incident light reflector being placed on the periphery of the optical component tray 1801, and the imaging unit 1807 being placed in the hole in the center of the optical component tray 1801.
  • the optical component tray 1901 shown in Fig. 19 has an optical passage 1904 that passes through the center of the disk-shaped optical component tray 1901.
  • the length of such an optical channel 1904 can exceed the radius of the disc shaped optical element tray.
  • Light enters the optical reflector 1904 after entering the incident reflector 1910. When the light is emitted from the exit of the optical channel 1904, it is again reflected by the exit reflector 1908 into the imaging unit.
  • the position of the camera window has two schemes that can be combined with the organization of different reflectors and optical channels.
  • the first option is to have an additional window or an elongated window that is placed or extended to the position of the longest optical channel 1904 where the incident reflector is located when the longest optical channel 1904 is aligned with the imaging unit 1907.
  • a second approach can be employed to have the optical channel 1904 share the same camera window as the normal optical window 1902.
  • an imaging unit 1907 is placed on the other side of the optical element tray 1901.
  • the normal optical window 1902 on the optical component tray 1901 can also be aligned with another camera window.
  • optical channels 2004 are placed around the holes in the center of the annular optical element tray 2001. Each optical channel is paired with another optical channel opposite the aperture.
  • the tray aligns a set of reflectors 2008, 2010 and a pair of optical channels 2004 with the imaging unit 2007 by rotation. When the optical window 2002 is used, light passes directly through the optical window 2002 into the imaging unit 2007.
  • Figure 21 shows another embodiment in which several optical channels are placed around a central optical channel 2104c in the center of the annular optical element tray 2101.
  • the central optical channel 2104c is secured in the center of the annular optical element tray 2101, and the annular optical element tray rotates about the central optical channel 2104c to align a pair of optical channels with the central optical channel 2104c.
  • the optical channels 2104a and 2104b are aligned with the central optical channel 2104c, light is reflected by the incident light reflector 2110 into the first optical channel 2104a.
  • Light exits the first optical channel 2104a and passes through the central optical channel 2104c into the second optical channel 2104b.
  • the exit of the optical passage is not placed with an exit reflector, and the light is emitted from the optical passage into the imaging unit 2107a located outside the outer wall of the optical element tray.
  • the central optical channel 2104c includes one lens or a group of lenses that all optical channels can share. This allows all optical channels to be combined to share a single lens or a group of lenses, reducing size, weight, and cost. Or the central optical channel 2104c may contain other optical components or no optical components.
  • the second imaging unit 2107b is placed under the optical component tray.
  • the imaging unit 2107b works in combination with the optical window 2102.
  • the incident reflector 2110 is placed in optics
  • the outer edge of the component tray 2101, the location of the optical window 2102. This allows the passage of light to extend to the length of the diameter of the entire annular optical element tray 2101, enabling a long focal length lens combination.
  • the optical window 2102, the incident reflector 2110, and the optical channel can be alternately arranged at the outer edge of the optical element tray 2101. If the imaging units 2107a and 2107b are properly placed at opposite ends of the optical element tray, the optical element tray can use only one camera window.
  • Figure 22 shows another embodiment which is similar to the embodiment of Figure 20.
  • the incident reflectors are placed on the outer edge of the annular optical element tray so that each set of optical channels maximizes the diameter of the optical element tray for longer focal lengths.
  • Ordinary optical windows are also placed on the outer edge of the annular optics tray, spaced apart from the optical channel.
  • the exit reflector or optical window can be aligned with the imaging unit by rotating the annular optical element tray.
  • the optics tray requires two camera windows, using only one imaging unit.
  • Figures 23-25 show several other embodiments.
  • the optical channels do not pass through the center of the optical component tray, and the individual optical channels are completely independent.
  • the incident reflector of Figures 23, 24 is placed on the outer edge of the optical component tray, just to simplify the depiction and should not be construed as a limitation.
  • the incident reflector can be placed anywhere that ensures that the individual optical channels do not interfere with each other.
  • the optical component tray requires two or more camera windows. If both the exit reflector and the optical window are placed on the outer edge of the optical component tray, the exit reflector or optical window can be aligned with the imaging unit by rotating the annular optical component tray such that only one imaging unit is used for the optical component tray.
  • Figure 26 shows a specific embodiment of an optical component tray with optical channels that do not pass through the geometric center of the optical component tray, in accordance with an embodiment of the present disclosure.
  • the optical element tray 2601 of Fig. 26 is a flat plate-shaped tray, and is preferably disc-shaped.
  • the optical element tray 2601 has three optical channels 2602a, 2602b, and 2602c that do not pass through the geometric center of the tray, and has six optical windows 2603a-2603f formed by through holes.
  • One or more optical components (such as lenses or filters) may be mounted in each optical window to produce corresponding optical effects (eg, to produce different focal lengths or color filters), and of course, one or more optical windows may be present. No optical components are installed in the middle.
  • one or more optical elements may be mounted to produce a corresponding optical effect (eg, to produce a different focal length or color filter effect), and may be A reflector is mounted at the entrance and exit of the optical channel for changing the direction of the optical path.
  • the optical channel 2602a as an example, at the entrance of the optical channel 2602a (in this embodiment, the light is Entering the optical entrance of the tray) is provided with an incident reflector 2604 (in this embodiment, a right angle prism) such that light directed toward the disk surface of the tray 2601 can be reflected by the incident reflector 2604 into the interior of the optical channel 2602a.
  • the incident reflector 2604 can reflect light that is perpendicular to the disk surface to be parallel to the disk surface.
  • one or more optical elements 2605 can be disposed in front of the incident reflector 2604 in the optical path, and FIG. 26 exemplarily shows that a lens 2605 is disposed in front of the incident reflector 2604.
  • an exit reflector 2606 is provided for changing the direction of the optical path at the optical exit.
  • the exit reflector 2606 is a quarter-corner prism that has been cut away and functions the same as a right-angle prism, which reflects light parallel to the disk surface to exit the tray 2601 perpendicular to the disk surface.
  • the optical element tray 2601 shown in FIG. 26 is applied to an imaging device such as a camera, different optical paths (formed by optical channels 2602a, 2602b and 2602c and optical windows 2603a-2603f, respectively) can share the same imaging optics.
  • the component because the optical exits of the plurality of optical paths are substantially the same distance from the geometric center of the optical component tray 2601, so when an optical path needs to be selected, the optical exit of the optical path only needs to be rotated to the imaging optical component. Align.
  • an imaging apparatus utilizing the optical element tray 2601 requires two camera windows for the injection of photographic light, one for the optical path formed by the optical windows 2603a-2603f, and one for the optical path formed by the optical channels 2602a, 2602b. It will be apparent that for the embodiment of Figure 26, if the optical entrances of all of the optical paths are set to be substantially the same distance from the geometric center of the optical element tray 2601, then only one camera window can be used and two imaging optics can be used.
  • the plurality of optical paths may share the same imaging element and the same camera window, or may use the same imaging element to use multiple camera windows, or use the same camera window to use multiple imaging elements.
  • multiple optical paths may use multiple imaging elements and multiple camera windows to achieve simultaneous imaging of multiple optical paths.
  • multiple optical paths can be simultaneously imaged through their respective camera windows and imaging elements to enable functions such as stereo imaging.
  • optical channels are all circular trays, they should not be construed as a limitation. Like optical windows, optical channels are equally applicable to, but not limited to, rectangular, cylindrical, or any irregular shape.
  • the thickness of the tray refers to the thickness of the annular wall of the column, and the optical channel may be located in the wall of the ring, for example parallel to the axis of the ring.
  • the optical inlet may be located on the outer wall of the tray, and an incident reflector may be disposed outside the outer wall of the tray such that light may be introduced into the optical inlet.
  • an incident reflector may be disposed outside the outer wall of the tray such that light may be introduced into the optical inlet.
  • the incident reflector is arranged outside the outer wall of the tray, it is not necessary to align the center of the circular tray, which can be based on optical The road is set specifically.
  • the optical channel is not aligned with the center of the circle, the incident reflector or the exit reflector does not need to be aligned with the center of the circle.
  • two or more optical component trays may be combined such that light passes through the first optical component tray and the second optical component tray to enter imaging unit.
  • the first optical element tray and the second optical element tray can be combined by connecting the optical outlet of the first optical element tray of the optical channel embedded in the two optical element trays with the optical inlet of the second optical element tray with an intermediate reflector Get a longer focal length.
  • the exit reflector of the first optical component tray with the incident reflector of the second optical component tray.
  • the advantage of combining optical component trays with optical channels in this way is that a combination of long focal length and short focal length can share an entrance aperture and an imaging unit.
  • the first optical component tray reflects light away from the camera window and the camera window and imaging unit are aligned.
  • the light enters the second optical element tray after exiting the first optical element tray it is reflected toward the position where the imaging element is located, and the optical outlet of the second optical element tray is aligned with the imaging element.
  • the method of aligning the imaging unit with a single camera entrance can satisfy the needs of both cases.
  • the combination of multiple optical component trays can be combined with various opticals using filters, lenses, lens sets, reflectors, optical channels, or empty windows. effect.
  • Those of ordinary skill in the art will appreciate that the use of various shapes of optical component trays, various combinations, optical windows, reflectors, optical channels, or imaging units, without departing from the basic principles and spirit of the present disclosure.
  • the optical channel can be fitted with one or more lenses, filters, optical components to achieve the desired focal length. It will be apparent to those skilled in the art that various combinations of the above-described possible functions, and combinations of functions and other functions of the various optical component trays described above, do not depart from the basic principles and spirit of the present disclosure.
  • a computer program consists of a limited sequence of calculation instructions or sequences of program instructions. It should be appreciated that a programmable device (e.g., a computing device) can receive such a computer program to produce further technical effects by processing the computing instructions.
  • a programmable device e.g., a computing device
  • the programmable device includes one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors, programmable devices, programmable gate arrays, programmable logic arrays, memory devices, application specific integrated circuits, Or similarly, computer program instructions, execution computer logic, computer data storage, and the like can be processed by appropriate use or configuration.
  • a computer can include any and all suitable combinations of at least one general purpose computer, special purpose computer, programmable data processing device, processor, processor architecture, and the like.
  • a computer can contain a computer readable storage medium that may be internal or external, removable and replaceable, or fixed.
  • a computer can include a basic input/output system (BIOS), firmware, operating system, database, or the like that can include, interact with, or support the software and hardware described herein.
  • BIOS basic input/output system
  • system implementations claimed herein are not limited to applications involving conventional computer programs or programmable devices that run such programs. It is contemplated that embodiments of the present disclosure as set forth herein may include an optical computer, a quantum computer, an analog computer, and the like.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium can be, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of any of the above.
  • An example of a more specific computer readable storage medium includes: a conductive connection having one or more wires, a portable computer floppy disk, a hard disk, a random access memory (RAM), a read only memory (ROM), A rewritable programmable read only memory (EPROM or flash memory), optical fiber, compact disc read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of any of the above.
  • a computer readable storage medium may be any tangible medium including a program that can be used by or associated with an instruction execution system, apparatus or device.
  • the computer program instructions can be stored in a computer readable memory and can direct a computer or other programmable data processing device to operate in a particular fashion.
  • the instructions stored in the computer readable memory constitute an article of manufacture, including computer readable instructions for implementing any or all of the above functions.
  • Computer program instructions may include computer executable code.
  • Can use each Languages express computer program instructions, including but not limited to C, C++, Java, JavaScript, assembly language, Lisp, HTML, Perl, and the like. These languages may include assembly language, hardware description language, database programming language, functional programming language, imperative programming language, and the like.
  • computer program instructions may be stored, compiled, or interpreted to operate on a system, such as a computer, a programmable data processing device, a processor, or various combinations of processor architectures.
  • embodiments of the above system may take the form of network-based computer software, including client/server software, ie, ready-to-use software, peer-to-peer software, cloud computing, or the like.
  • a computer is capable of executing computer program instructions comprising a plurality of programs or threads. More or less simultaneous execution of multiple programs or threads can increase processor utilization and facilitate synchronization.
  • various methods, program code, program instructions, and the like can be executed in one or more threads. Threads can spawn other threads and can assign their own associated priorities.
  • the computer can process the threads in the order of priority or any of the instructions provided in any program code.
  • execution and “processing” may be used to mean execution, processing, interpretation, compiling, assembling, linking, loading, or any combination of the above, or the like, unless otherwise specified. Accordingly, embodiments of executing or processing computer program instructions, computer executable code, or the like, can be executed as appropriate in accordance with the various instructions or code described above.
  • each element in the flowchart can be interpreted as a step in a computer-implemented method, or a set of steps.
  • each step may contain one or more sub-steps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

一种光学路径更换系统及包含其的成像设备。光学路径更换系统包括第一光学元件托盘(1401),第一光学元件托盘(1401)形成包括第一光学路径的多个光学路径。第一光学路径包括:光学入口,光线从其进入第一光学元件托盘(1401);光学出口,光线从其离开第一光学元件托盘(1401);以及第一光学通道(1404),布置在第一光学元件托盘(1401)中的光学入口和光学出口之间。第一光学通道(1404)被设置为使得光学入口和光学出口之间的第一光学路径的几何长度大于第一光学元件托盘(1401)的厚度,并且第一光学元件托盘(1401)被配置为能够移动以选择期望的光学路径。这种光学路径更换系统可以实现小型成像设备的光学变焦以及可变光圈功能。

Description

光学路径更换系统及成像设备
相关申请的交叉引用
本申请要求2015年2月2日提交的题为“Motorized Interchangeable Lens System”的美国专利申请US 14/612,253、2015年3月30日提交的题为“Motorized Interchangeable Lens System”的美国专利申请US 14/673,580、2015年5月13日提交的题为“光学路径更换系统及成像设备”的中国发明专利申请CN 201510243445.7、以及2015年5月13日提交的题为“光学路径更换系统及成像设备”的中国实用新型专利申请CN 201520307159.8的优先权,通过引用将它们的全文合并到这里。
技术领域
本公开涉及一种光学路径更换系统及成像设备,尤其涉及可以选择具有不同焦距的光学系统的光学路径更换系统及成像设备。
背景技术
数码相机和拍照手机的普及使得人们可以便利地拍照和共享照片。当今的技术让人们可以轻松的预览,拍照和回放拍出的照片。数码照相技术使得相机越来越小巧,便携,而且低功耗。但是很多时候相机的小巧便携是以牺牲相机的易用性以及拍照质量为代价的。
定焦镜头的焦距是固定的,用户必须移动自己的位置才能拍下想要的照片。当用户可移动的物理空间有限时,用户将无法拍到想要的照片。变焦镜头灵活易用,可以适应不同的拍摄环境,取景比定焦镜头灵活。使用变焦镜头时,用户可以使用一个镜头完成从广角到长焦各个焦段照片的拍摄,而不需要移动自己的位置。然而,这种便利通常是以牺牲照片质量为代价的,通常情况下变焦镜头的画质比定焦镜头差。因为变焦镜头的光圈通常比定焦镜头小,这导致变焦镜头的进光量比不上定焦镜头。而且变焦镜头的镜片数目通常比定焦镜头多,这造成了光经过多个镜片后的散射和强度的衰减。定焦镜头的简洁设计决定了它可以保证照片质量。定焦镜头只为一个焦段设计,大大减少了需要移动的镜片和零件的数量,保证了机构的精密性,可以拍出更锐利的照片。
另外,为了让一个相机模组具备变焦功能,它的内部结构会相当复杂。一个变焦镜头可能有数以百计的零部件。如果一个零件出现质量问题,无论是生产还是设计的问题,都会给镜头公司的投资造成极大的浪费,无论是生产阶段还是销售阶段。而且通常变焦镜头又大又重,跟小巧便携的趋势背道而驰。
定焦镜头总的来说可以拍出比变焦镜头画质水平更高的照片。而且定焦镜头通常比变焦镜头更小更轻。对于现在很多照相设备来说,特别是移动电话,体积小巧是最重要的,这使得在移动电话中使用变焦镜头是不实际的。所以大多数移动设备都没有可变焦功能。
公开内容
根据本公开的第一方面,提供了一种光学路径更换系统,包括第一光学元件托盘,所述第一光学元件托盘形成包括第一光学路径的多个光学路径,其中,所述第一光学路径包括:光学入口,光线从其进入所述第一光学元件托盘;光学出口,所述光线从其离开所述第一光学元件托盘;以及第一光学通道,布置在所述第一光学元件托盘中所述光学入口和所述光学出口之间,其中所述第一光学通道被设置为使得所述光学入口与所述光学出口之间的第一光学路径的几何长度大于所述第一光学元件托盘的厚度;并且所述第一光学元件托盘被配置为能够移动以选择期望的光学路径。由于不同的光学路径可以具有不同的光学效果(例如,不同的焦距、滤波效果、光阑),因此通过移动该光学托盘选择不同的光学路径,可以在成像设备中实现不同的成像效果。
可选地,所述的光学路径更换系统还可以包括:第一马达,被配置成能够移动所述第一光学元件托盘以选择期望的光学路径。通过设置马达可以不需要手动移动光学托盘,从而能够实现光学路径更换的自动化。
可选地,所述第一光学路径中安装光学元件以形成具有第一焦距的光学系统。由于第一光学路径的几何长度大于光学托盘的厚度,因此,通过第一光学路径形成的光学系统(例如,成像镜头)可以实现较大的焦距或者超广角镜头,从而可以在小型化的成像设备(例如智能手机)上实现长焦超广角照相。另外,所述第一光学路径中也可以安装光学元件以形成具有特定滤波效果、光圈等的光学系统。
可选地,所述第一光学元件托盘上还具有穿过其的通孔所形成的光学窗口作为第二光学路径,所述光学窗口中安装光学元件以形成具有第二焦距的光学系统,所述第二焦距不等于所述第一焦距。第一焦距可以大于第一焦距以实现长焦照相,或者小于第一焦距以实现超广角镜头。通过在光学元件托盘上既设置通过通孔形成的第二光学路径(其几何长度大致等于或者小于托盘的厚度)又设置通过光学通道形成的第一光学路径(其几何长度大于托盘的厚度),可以使得该光学元件托盘既有较短焦距的光学系统又有较长焦距的光学系统,从而可以满足成像设备对不同焦距的变焦要求。换言之,而本公开可以使用多个定焦镜头(光学系统)来提供变焦功能,从而可以拍出高画质的照片。这种镜头更换系统既可以提供变焦功能,同时又具备定焦镜头重量轻,体积小的优点,其尤其适用于例如智能手机的较薄的成像设备。特别地,在利用马达选择光学路径的情况下,可以使得不同的镜头自动对准成像元件和入光口,从而既带来了变焦的便利,又避免了传统变焦镜头体积大和重量重、设计复杂的缺点、以及成像质量下降的问题。
可选地,所述第一光学元件托盘为平面板状托盘,所述第一光学通道基本平行于所述平面板状托盘,并且所述光学窗口基本垂直于所述平面板状托盘。这种结构特别适合用于厚度较小的成像设备,可以在小厚度上实现大的变焦范围。
可选地,所述光学入口处设置入射反射器。进一步可选地,所述入射反射器前设置有光学元件。
可选地,所述光学路径更换系统还可以包括:在所述光学出口处嵌入所述第一光学元件托盘中的出射反射器,使得所述第一光学通道能够与所述光学窗口共用一个成像元件。
可选地,所述第一光学元件托盘的形状为圆盘形,并且所述第一马达被配置成旋转所述第一光学元件托盘。
可选地,所述光学路径更换系统还可以包括:穿过所述圆盘形第一光学元件托盘的几何中心的孔洞,使得所述圆盘形第一光学元件托盘具有内壁和外壁。
可选地,所述光学路径更换系统还可以包括:第二光学通道,设置在所述孔洞中,其中,当所述第一马达旋转所述第一光学元件托盘时,所述第二光学通道固定不动。
可选地,所述的光学路径更换系统还可以包括:第三光学通道,设置为相对于所述孔洞与所述第一光学通道对齐。
可选地,所述光学路径更换系统还可以包括:第三光学通道,设置为相对于所述孔洞与所述第一光学通道对齐,其中当选择所述第一光学路径时,所述第一光学通道、所述第二光学通道、和所述第三光学通道对齐。
可选地,所述光学入口被布置在所述圆盘形第一光学元件托盘的内壁处;并且在所述孔洞中放置入射反射器,使得当选择所述第一光学路径时,所述光线被反射进入所述光学入口。
可选地,所述光学出口被设置在所述圆盘形第一光学元件托盘的内壁处。
可选地,所述光学路径更换系统还可以包括放置在所述孔洞中的出射反射器,使得当选择第一光学路径时,从所述光学出口射出的出射光被所述出射反射器反射。
可选地,所述光学入口被设置在所述第一光学元件托盘的外壁上;而且在所述第一光学元件托盘的外壁外侧设置入射反射器,使得当选择所述第一光学路径时,所述光线被反射进入所述光学入口。
可选地,所述光学出口被设置在所述第一光学元件托盘的外壁上。
可选地,所述光学路径更换系统还可以包括:出射反射器;其中所述出射反射器被放置在所述第一光学元件托盘的外壁外侧,使得当选择所述第一光学路径时,从所述光学出口射出的出射光被所述出射反射器反射。
可选地,在所述光学入口处设置入射反射器以将所述光线反射进入所述第一光学通道中。
可选地,所述第一光学通道中设置有反射器用于改变所述第一光学通道的方向。
可选地,所述第一光学元件托盘是平面板状托盘,且所述第一光学通道通过或不通过所述平面板状托盘的几何中心。
可选地,所述光学路径更换系统还可以包括:第二光学元件托盘,包含在所述第二光学元件托盘上开孔的多个光学窗口,而且至少一个所述光学窗口被配置成在所述第二平面光学元件托盘内安装光学元件,以及第二马达,被配置成能够移动所述第二平面光学元件托盘以将所述多个光学窗口中的一个光学窗口对齐到期望的位置,使得所述第一光学元件托盘和第二光学元件托盘配合实现期望的光学效果。通过设置多个光学元件托盘,可以使光学路 径的选择更灵活,从而可以实现更多的不同光学效果。例如,通过第一光学元件托盘和第二光学元件托盘的配合可以实现更多的焦距组合。
可选地,所述光学路径更换系统还可以包括第二光学元件托盘,第二光学元件托盘包括:第二光学入口,光线从其进入所述第二光学元件托盘;第二光学出口,光线从其离开所述第二光学元件托盘;第二光学通道,设置在所述第二光学元件托盘中,在所述第二光学入口和所述第二光学出口之间。所述第一光学元件托盘射出的光线能够进入到所述第二平面光学元件托盘的第二光学入口。通过设置多个光学元件托盘,可以使光学路径的选择更灵活,从而可以实现更多的不同光学效果。例如,通过第一光学元件托盘和第二光学元件托盘的配合可以实现更多的焦距组合。
可选地,所述第一光学元件托盘和第二光学元件托盘能够移动形成具有不同焦距和/或滤镜效果的光学系统。
所述多个光学路径共用同一成像元件用于成像或者所述多个光学路径至少使用两个成像元件用于成像。
根据本公开的另一方面,提供一种光学路径更换系统,包括:第一光学元件托盘,包含多个第一光学窗口,所述第一光学窗口各自由穿过所述第一光学元件托盘的通孔形成,其中所述多个第一光学窗口中的零个、一个或多个中安装有光学元件使得所述多个第一光学窗口结合其中可能安装的光学元件具有不同的光学效果,以及第一马达,被配置为能够移动所述第一光学元件托盘以将所述多个第一光学窗口中的一个光学窗口对齐到期望的位置。
可选地,所述多个第一光学窗口中的至少一些中安装具有不同焦距或者不同光圈的镜头。
可选地,所述第一光学元件托盘是圆盘形的,所述多个第一光学窗口中的一个或多个光学窗口的几何中心分布在与所述圆盘形光学元件托盘的圆心同心的圆环上,并且,所述第一马达配置为能够驱动所述圆盘形托盘旋转。
可选地,所述第一光学元件托盘是长方形的。
可选地,所述第一光学窗口在所述长方形的长度方向排成一维阵列;或者所述第一光学窗口排成两个或者更多个一维阵列,且每个一维阵列包含一个或者多个光学窗口。
可选地,所述第一光学元件托盘的形状是柱环形的至少一部分,所述第一光学元件托盘的多个第一光学窗口由从所述第一光学元件托盘的外表面至 内表面的通孔形成,并且所述第一马达被配置成能够转动上述第一光学元件托盘以将所述多个第一光学窗口中的一个光学窗口对齐到期望位置。
可选地,所述第一光学元件托盘是由材料首尾相接形成的一个柔性环,所述柔性环能够被规制成几何形状,并且所述环被配置成能够在所述第一马达的驱动下以上述几何形状为轨迹滚动,以在保持所述几何形状的同时将所述多个第一光学窗口中的所述一个光学窗口移动到期望的位置。
可选地,所述光学路径更换系统还可以包括反射器,被配置为改变光线方向以实现期望的光路。
可选地,所述光学路径更换系统还可以包括第二光学元件托盘,包含多个第二光学窗口,所述第二光学窗口各自由穿过所述第二平面光学元件托盘的通孔形成,其中至少一个所述第二光学窗口中安装光学元件;以及第二马达,被配置成能够移动所述第二平面光学元件托盘以将所述多个第二光学窗口中的一个光学窗口对齐到期望的位置,使得所述多个第一光学窗口中的所述一个光学窗口与所述多个第二光学窗口中的所述一个光学窗口配合实现期望的光学效果。
可选地,所述多个第一光学窗口与所述多个第二光学窗口形成的组合光路中的至少一些构成具有不同焦距的光学系统。
可选地,所述第一光学元件托盘、所述反射器和所述第二光学元件托盘被布置为使得入射光经过所述多个第一光学窗口中的所述一个光学窗口后进入所述反射器,并且从所述反射器出射后进入所述多个第二光学窗口中的所述一个光学窗口。
根据本公开的另一方面,提供一种光学路径更换系统,包括:第一光学元件托盘,其是由柔性带状材料首尾相接形成的柔性环,包括内表面和外表面,多个光学窗口固定器,每个所述光学窗口固定器设置于所述柔性环上,以及一个或多个所述光学窗口固定器内部形成第一光学窗口,所述第一光学窗口被配置成能够安装光学元件。
可选地,所述光学路径更换系统还可以包括第一马达,被配置为能够移动所述第一光学元件托盘以将所述第一光学窗口中的一个光学窗口对齐到期望的位置。
可选地,所述光学路径更换系统还可以包括:第二光学元件托盘,包含多个第二光学窗口,其中一个或多个所述第二光学窗口被配置成安装光学元 件,其中,依据所述第一光学元件托盘的包含第一光学窗口的一个或多个光学窗口固定器布置所述第二光学元件托盘,使得通过所述第一光学窗口的光线也通过至少一个所述第二光学窗口。
根据本公开的另一方面,提供一种成像设备,包括成像控制器、成像元件、马达控制器和上述光学路径更换系统,其中所述成像控制器根据用户改变成像效果的输入向所述马达控制器发出指令;所述马达控制器根据来自所述成像控制器的指令驱动所述光学路径更换系统中的相应马达移动所述光学路径更换系统中的相应光学元件托盘,以便选择合适的光学路径;以及所述成像元件接收从所述光学路径更换系统的所选择的光学路径输入的成像光,以形成具有期望的成像效果的图像。这种成像设备具有以上关于光学路径更换系统所陈述的优点。
附图说明
图1显示的是根据本公开的实施例的一个光学路径更换系统的透视图,其包括环形托盘并安装了驱动电机。
图2显示的是根据本公开的实施例的一个光学路径更换系统的透视图,其包括多个环形托盘并安装了驱动电机。
图3显示的是根据本公开的实施例的一个光学路径更换系统的透视图,其包括长方形的托盘是并安装了一排镜头。
图4显示的是根据本公开的实施例的一个光学路径更换系统的透视图,其包括长方形的托盘是并安装了多排镜头。
图5显示的是根据本公开的实施例的一个光学路径更换系统的透视图,其包括多个长方形的托盘,每个托盘都安装了多排镜头。
图6显示的是根据本公开的实施例的安装在光学元件托盘光学窗口上的镜头的切面图。
图7a显示的是根据本公开的实施例的光学元件托盘、反射器和成像元件的组合方式。
图7b显示的是根据本公开的实施例的多种光学元件托盘和成像元件的组合方式。
图7c显示的是根据本公开的实施例的一个扇形光学元件托盘、一个反射器、一个与扇形光学元件托盘不在一个平面上的矩形托盘、和一个成像元件 的组合方式。
图7d显示的是根据本公开的、实施例,一个矩形光学元件托盘、一个反射器、一个桶形光学元件托盘、和一个成像元件的组合方式。
图7e显示的是根据本公开的、实施例的两个矩形光学元件托盘、一个反射器、和一个成像元件的组合方式。
图7f显示的是根据本公开的、实施例的一个矩形光学元件托盘、一个反射器、一个成像元件、和一个柔性带状光学元件托盘的组合方式。
图7g显示的是根据本公开的一种实施例的一系列光学窗口被安装在一个柔性带的内侧成为一个光学元件托盘、一个反射器、和一个成像元件的组合方式。
图8显示的是根据本公开的实施例的两个在不同光学元件托盘中的镜头对齐后可以组合出期望的焦距。
图9显示的是根据本公开的实施例的一个圆盘形光学元件托盘安装了电磁马达和锁定装置。
图10显示的是根据本公开的实施例的一个可以同时驱动两个圆盘形光学元件托盘的电磁马达的切面图。
图11显示的是根据本公开的实施例的在两个圆盘形光学元件托盘中间安装一个虹膜光圈。
图12显示的是根据本公开的实施例的一个整合了光学路径更换系统的移动拍照装置的结构图。
图13显示的是根据本公开的实施例的一个整合了相机软件的光学路径更换系统解释用户输入指令和移动对应镜头的流程图。
图14显示的是根据本公开的实施例的在光学元件托盘中心放置反射器,并将其跟镜片组合后获得长焦距。
图15显示的是根据本公开的实施例的在光学元件托盘放置长焦距的镜片组合。
图16显示的是根据本公开的实施例的光学元件托盘带有加长的相机窗口以满足不同长焦距镜片组合需要不同的入光口的需求。
图17显示的是根据本公开的实施例的光学元件托盘带有多个成像元件以满足不同焦距共用一个入光口的需求。
图18显示的是根据本公开的实施例的光学元件托盘带有多个可动的光学 通道、一个反射器和一个放在移动托盘外侧的成像元件。
图19显示的是根据本公开的实施例的光学元件托盘带有一个加长的通过托盘几何中心的光学通道。
图20显示的是根据本公开的实施例的光学元件托盘带有围绕光学元件托盘几何中心放置的多对光学通道。
图21显示的是根据本公开的实施例的光学元件托盘带有围绕光学元件托盘几何中心放置的多对光学通道,并且一个光学通道放置在托盘的几何中心。
图22显示的是根据本公开的实施例的光学元件托盘带有围绕光学元件托盘几何中心的多对光学通道。
图23显示的是根据本公开的实施例的光学元件托盘带有不经过光学元件托盘几何中心的光学通道。
图24显示的是根据本公开的实施例的光学元件托盘带有不经过光学元件托盘几何中心的光学通道,并且所述光学通道围成近似三角形。
图25显示的是根据本公开的实施例的光学元件托盘带有不经过光学元件托盘几何中心的光学通道,并且所述光学通道围成近似四边形。
图26显示的是根据本公开的实施例的光学元件托盘带有不经过光学元件托盘几何中心的光学通道的具体实施方式。
具体实施方式
本公开中的一种光学路径更换系统包括至少一个光学元件托盘,可选地,还可以包括至少一个马达,该马达可以与至少一个马达控制器配合使用,并且其还可以包括成像元件或与成像元件配合使用。这里的光学路径更换系统是指可以使光线经过不同光学路径的系统,其可以使光线经过具有不同焦距的镜头(此时可以称为镜头更换系统),或者使光学经过具有不同孔径的光路,或者使光线经过具有不同滤波效果的光学元件,等等。需要说明的是,这里所述的“不同光学路径”不仅指光线行走的几何路径不同,而且,即使光线行走的几何路径相同,但如果光线经历不同的光学元件或孔径,也称为光线经过了不同的光学路径。光学路径更换系统(例如镜头更换系统)可以被设计用于移动设备,相机,摄像机,以及其他成像设备。在光学元件托盘中有多个光学窗口(或者光学孔位),或者光学通道。光学窗口可以安装镜片,镜头,镜头盖板,滤镜,或者是一个空的光学窗口。接下来详细阐明空的光学 窗口,或者没有安装光学元件的光学窗口的多种用途。根据其中一个实施例,空的光学窗口可以让系统只使用一片镜片,而不需要跟其他镜片组合。利用空的光学窗口,成像设备可以安装外接镜头模组。除了空的光学窗口,光学窗口还可以安装不同焦距的镜片或者镜头,或者是不同的滤镜。这种方式可以灵活地在体积小巧设备中装入多个不同焦距的镜头,而不会带来变焦镜头的复杂性,重量和体积。因为不同定焦镜头的尺寸,厚度,直径都不同,光学窗口的尺寸也会不同。需要说明的是,这里的术语“光学元件托盘”不一定表示其中一定装有光学元件,如上所述的,其可以装有光学元件也可以未装有光学元件;并且其形状也不一定是“盘”状的,而可以是任意合适的形状,例如下文中不同实施例所说明的。
镜片或者镜头可能包括H-形镜片,D-形镜片,矩形镜片,或者其他形状的镜片。不同形状的镜片比如H-形镜片可以更有效的利用镜片托盘的空间。镜头中可以有选择的包括滤镜或者其他光学折射元件来改变光的颜色或者几何光学效果。本领域普通技术人员应该明白任何镜片,滤镜,或者其他光学元件的使用不会偏离本公开的基本原则和精神。
本公开用于制造带有多个焦距的体系小巧的成像系统,还可以具备防水功能,因为所有的移动部件都可以被密封在一个防水的机体内。没有任何移动部件会被暴露在水中,极大的简化了水下多焦距成像系统的结构而且增加了可靠性。
光学路径更换系统可以包括两个或者更多光学元件托盘。每个托盘可以独立移动。因此来自不同托盘的光学元件相互组合可以提供更多的影像或者光学效果。例如,来自托盘1的镜片A如果跟来自托盘2的镜片B组合,可以更有力的聚拢或者发散光线。另外一个实施例中,托盘1上的镜片或者镜片组可以跟托盘2上的滤镜组合,如果跟红外线滤镜组合,可以用于夜视用途。因此,多样的光学元件的组合可以产生多种影像效果。
根据本公开的一种实施例,光学路径更换系统可以与软件的用户界面结合,根据用户输入的指令或者特定情况下自动选择光学元件的组合。这一特征将结合图12一起详细阐明。
上面介绍了使用本公开的光学路径更换系统的基本结构和功能,下面将结合附图详细描述本公开的各种实施例。
图1显示的是一个有多个光学窗口的光学元件托盘,其安装了马达和成 像单元。根据本公开的一种实施例,光学路径更换系统100可以包括一个光学元件托盘101和一个成像单元107。在本公开的这个实施例中,光学元件托盘101是环形或圆盘形,所以光学元件托盘中间可以有孔洞,光学元件托盘的周边有多个光学窗口102。每个光学窗口装有镜片103,镜片组,滤镜,或者其他光学元件。环形光学元件托盘101上装有马达106a,可以驱动环形托盘围绕其轴心旋转来使某一光学窗口与成像单元107对齐。接口板105用来接收来自安装了光学路径更换系统100的成像设备的电力和信号。接口板105可以固定在成像单元107,马达106a,或者光学元件托盘101的模组外壳上。本领域普通技术人员应该明白无论接口板105固定在哪里都不会偏离本公开的基本原则和精神。
光学元件托盘101有足够的厚度,以便可以在每个光学窗口102中的不同深度安装镜片组(例如下面图6所示)或者单个镜片103。例如,某个镜片103可以安装在光学元件托盘101靠近光线入射一侧,也就是镜头盖板组件104所在一侧。另一个镜片可以被安装在光学元件托盘101光线出射一侧,也就是成像单元107所在一侧。镜片103或者镜片组嵌入光学元件托盘101的光学窗口的相对深度由镜头的几何特性和成像单元107的配置决定。不同焦距的镜头可能需要被安装在靠近或者远离成像单元107的不同位置,以确保正常工作。本领域普通技术人员应该明白镜片103或者镜片组的属性决定了其嵌入光学元件托盘101的位置。
马达106a可以安装在让传动轴与环形光学元件托盘101平面垂直的位置。马达106a的传动轴的齿轮与在环形光学元件托盘101内壁的齿轮齿咬合。在另一种实施例中,马达106a安装在让传动轴与环形光学元件托盘101平面平行的位置。这时,安装在马达106a传动轴上的蜗轮与在环形光学元件托盘101外壁的齿轮齿咬合。光学元件托盘的齿轮齿还可以配置在光学元件托盘101的前表面后者后表面,而且马达106a可以使用锥齿轮,螺旋锥齿轮或者准双曲面齿轮来驱动光学元件托盘101。本领域普通技术人员应该明白无论马达106a用何种方式驱动光学元件托盘101都不会偏离本公开的基本原则和精神。
光学路径更换系统100还可以包含一些成像组件,比如成像元件,对焦组件,图像防抖组件,一些附加镜片,滤镜,光圈等。这些成像组件可以安装在成像单元内或者分立安装。成像元件可以是任何一种被用来捕捉图片影 像的装置,包括胶片,CCD图像传感器,CMOS图像传感器。本领域普通技术人员应该明白无论使用何种成像组件都不会偏离本公开的基本原则和精神。
对焦组件可以是任何一种让图像聚焦在成像元件上的组件。对焦的方式包括移动成像元件使其靠近或者远离镜头,移动镜头使其靠近或者远离成像元件,或者在镜头和成像元件中间移动一个成像组件。或者可以使用液体透镜来对焦,这种透镜的焦距会随电场的强度变化。反光镜也可以用来对焦。在本公开中,对焦可以通过移动成像元件,移动对焦镜头,移动单个镜片或者单组镜片组,或者移动整个光学元件托盘来实现。本领域普通技术人员应该明白无论使用何种对焦方式都不会偏离本公开的基本原则和精神。
移动镜片或者镜片组的方式之一是使用音圈马达。这种方式是用弹簧将镜片或者镜片组安装在光学窗口上。第一组磁铁被安装在镜片组件上,另一组磁铁被安装在光路之外,镜片组件和成像元件之间或者镜片组件的另一侧。其中一组磁铁是电磁铁,另一组磁铁可以是永磁铁。为电磁铁通电并调节电流就可以把镜片组件推离或者拉近成像元件。
光学路径更换系统100还可以与没有集成在光学路径更换系统100内的分离的成像系统配合工作。镜头盖板组件104可以包括一个或者多个镜片,一个或者多个滤镜,或者玻璃或者塑料罩来保护镜头,隔离灰尘与湿气。这个镜头盖板组件可以安装在移动电话、相机、或者其他安装了光学路径更换系统100的成像设备的机体上。光学元件托盘101不一定是环形。本领域普通技术人员应该明白光学元件托盘可以是环形,圆盘形,矩形,弧形或者任何集成了光学路径更换系统100的成像设备内允许的形状,而不会偏离本公开的基本原则和精神。
图1和其他图中的光学元件托盘在光学窗口102中只有一片镜片103。这只用于简化图示的目的而不应该被理解为一种限制。光学窗口102中可以有其它形式的镜头,例如镜片组。光学元件托盘可以包含任意数目的光学窗口102,而且都是元件编号102。本领域普通技术人员应该明白镜片103指的是光学元件托盘101中的任何镜片,包括与成像单元107对齐,在图中看不到的那个镜片103。
图2显示一种有两个光学元件托盘的自动镜片更换系统,每个托盘都可以独立移动。第一马达106a控制第一光学元件托盘101a的移动,而第二马 达106b控制第二光学元件托盘101b的移动。两个马达的控制电路可以共用一个接口板105。两个光学元件托盘101的独立移动使得分别来自光学元件托盘101a和光学元件托盘101b的镜头可以互相组合来获得多种不同的焦距,以备不同使用环境的需求。或者第二光学元件托盘101b可以安装一定数目的光学滤镜,而第一光学元件托盘101a安装一系列不同焦距的镜头。当第二光学元件托盘101b安装光学滤镜的时候,第二光学元件托盘101b可以至少有一个光学窗口102是空窗口以便为用户拍照时提供无滤镜选项。这样就可以让用户选择不同的滤镜搭配不同的镜头,为用户提供多种选择。
图2只显示了一片镜片103,这不应该被理解为一种限制。光学元件托盘101可以有任意数目的光学窗口,而其中任一光学窗口都可以包含镜片103,或者是空的。即使所有的窗口都是空的,这些空的光学窗口也可以用作尺寸可变的光圈的作用,用来改变进入成像单元107的进光量。尽管虹膜光圈是一种不错的选择,但是在某些特定情况下使用带有不同尺寸光学窗口的光学元件托盘也是理想的选择。因此即便一个光学元件托盘没有安装镜片也是没有背离本公开的基本原则和精神。另外,虽然第一光学元件托盘101a与第二光学元件托盘101b看起来有相同数量的光学窗口102,但是实际应用中不一定这样。第二光学元件托盘101b的光学窗口102的数量可以比第一光学元件托盘多,也可以比第一光学元件托盘少,而所有可能的镜头组合的数量是第一光学元件托盘101a中光学窗口102的数量与第二光学元件托盘101b中光学窗口102的数量的乘积。
前面讨论的图2所描述的概念可以进一步扩展用来实现三层或者更多层光学元件托盘。
图3显示的是光学路径更换系统200,在光学元件托盘201上所有的光学窗口202在一维方向排成一列。这种设计可以安装的镜片数目可能比环形设计少,否则光学元件托盘将变得很长。然而,移动电话等设备内部更容易为这种设计留出空间,相比较起来,设计留出带有曲线的空间会更困难些。图3的实施例是以减少镜片数量为代价使设备变得更简洁。
图3中没有显示马达,但是多种马达和传动机构都可以把光学元件托盘201移动到期望的位置。马达206可以用垂直,平行,横向等各种安装位置配合涡轮齿轮、锥齿轮、螺旋齿轮、准双曲面齿轮、齿条等各种齿轮以期望的方式驱动光学元件托盘。也可以使用线性马达,线性马达的移动更安静, 速度更快。或者还可以使用超声波马达来移动光学元件托盘。本领域普通技术人员应该明白任何类型的马达以及传动机构的使用都不会背离本公开的基本原则和精神。
图4显示的是光学路径更换系统200,光学元件托盘201所有的光学窗口在二维方向排成阵列。正如图4显示的样子,镜头被排成3列:一列在左边,一列在右边包括编号为202的光学窗口,一列在中间只包括一个镜片203。或者镜片的排列可以描述为,第一排镜片在最上面,只包括一个镜片203,接下来下面是第二排光学窗口包含2个光学窗口,以此类推直到最下面一排窗口。无论怎么排列光学窗口,组合方式可以描述为光学窗口被排列为阵列,每列(排)有一个或者多个光学窗口。
针对图4所显示的例子,可以使用两个马达移动光学元件托盘,X轴向马达完成光学元件托盘X方向的移动,Y轴向马达完成托盘Y方向的移动。合并X轴向和Y轴向的移动可以把光学元件托盘定位到托盘上的任一镜头。光学窗口202的尺寸可以是不一样的,有的光学窗口可能比较大,会跨越到别的行或列,就像图中的镜片203。这样的设计可以把不同大小的光学窗口202有策略地分布在光学元件托盘201上,以尽可能地减小光学元件托盘201的体积。X轴马达和Y轴马达可以将光学元件托盘201移动到任意位置用以选择合适的镜片。
用以在二维方向移动光学元件托盘201的马达和传动系统会比在一维方向移动光学元件托盘的马达移动系统复杂。然而,现有技术已经有了在二维方向移动一个平台的各种解决方案,本领域普通技术人员应该明白任何类型的此类系统的使用不会背离本公开的基本原则和精神。
图5显示的是一个带有多个矩形光学元件托盘201的光学路径更换系统200。这种实施例需要一个更加复杂的马达系统来让各个光学元件托盘独立移动。但是如果各个镜片托盘是设计成一起移动的,那么可以使用移动一套镜片托盘的马达和传动系统来移动所有的镜片托盘。
图6显示的是一个安装在光学窗口102、202中的镜片组的切面图。根据本公开的某些实施例,光学窗口102、202可以是空窗口,也可以安装光学滤镜,单个镜片,或者镜片组。镜片组可以用作通用用途,或者,在某种程度上,有的光学窗口安装的广角镜头可以有微距功能来拍摄微距照片。镜片组的使用还可以用于纠正各种偏差和变形,比如由于同一材质对不同颜色的光 的折射率不同而引起的色差。镜片组还可以用于获得微距所需要更高的放大倍率,或者用于以拍摄很近的物体。当光学窗口202不安装任何镜片时不会对光线产生任何折射,这种光学窗口有多个用途。首先,有些镜片或者镜头不需要跟其他镜片配合工作来产生预期的效果,后面将结合图8详细阐明。其次,光学路径更换系统可以设计成可以外接光学组件,包括但是不限于,显微镜,望远镜,外接镜头,滤镜,或者其他光学组件等。在这种情况下,光学元件托盘上的镜片可能会让外接光学组件无法正常工作,所以使用空的光学窗口来避免不必要的折射。
图7a-7g显示的各种形状的光学元件托盘和组织形式,它们可以产生不同的效果。每个托盘系统可以包括反射器708,其可以是全反射棱镜,镜面,或者是其他可以改变光的方向的反射系统,这样既保持设备的小巧体积又可以增加镜头与成像元件707之间的光路距离。接下来详细说明每种组织形式的特征。
图7a显示的是一种基本的组织形式,一个光学元件托盘搭配一个反射器708,反射器708用来改变通过光学元件托盘的光线的方向。图7可以用来证明安装了反射器的光学元件托盘可以有更多的功能和灵活性。成像组件707被安装在反射器出光口的一端,灵活地增加了光线在镜头和成像组件707之间的距离而没有增加相机系统的厚度。在其中一个实施例中,图7a描述的光学路径更换系统安装在移动电话中,圆盘形的光学元件托盘平放在移动电话的屏幕背面,镜头盖板组件104可以集成在移动电话的机壳上,所以从背面可以看到相机的窗口。反射器708将光反射到移动电话的长宽方向。如果没有反射器708,成像单元707就需要安装在与镜头盖板104一致的方向上,如图1-5所示,因此,镜头更换系统的焦距就会受移动电话厚度的限制。反射器使得镜头和成像单元707之间的距离更灵活,所以镜头更换系统的最长焦距也更灵活。
图7b显示的是3层光学元件托盘的组织形式,表明光学路径更换系统可以使用多于2个光学元件托盘,而且每个托盘的形状、尺寸、类型也不一定相同。第一光学元件托盘101a比第二光学元件托盘101b厚一些。第一光学元件托盘101a的光学窗口102中可以安装类似图6描述的镜片组,或者是在窗口的不同的深度安装单个镜片。第二光学元件托盘101b比第一光学元件托盘101a薄,可以用于安装单片镜片或者光学滤镜。单个镜片可以设计成与第 一光学元件托盘中的镜片103或者镜片组搭配工作。第三光学元件托盘201是一个矩形光学元件托盘201。来自所有托盘的镜片103,203可以搭配组合出合适的焦距和/或光学特效,每个托盘还可以有一个以上空的光学窗口103,203。空的光学窗口可以配合镜片来组合出只需要少于三个光学元件就可以组合出的合适的光学特效或者合适的焦距。成像单元707被安装为垂直于光学元件托盘用来表明光学路径更换系统不一定需要图7a中的反射器708。
图7c用来说明如何利用反射器708把两个不同形状的光学元件托盘组装在两个不同的平面上。第一光学元件托盘101是扇形的,或者说是圆盘形的一个楔形部分。光线从镜头盖板104进入并经过第一光学元件托盘的一个光学窗口102,然后进入反射器708,在这里光线的方向被改变为平行于第一光学元件托盘101的方向。第二光学元件托盘201被安装在反射器708之后,垂直于第一光学元件托盘101。光线经过第二光学元件托盘的光学窗口202后到达成像单元707。
图7d显示的是一种组合,其包括:一个矩形光学元件托盘201、一个反射器708、和一个滚筒光学元件托盘709,其中,滚筒光学元件托盘709的圆心放置成像单元707。滚筒光学元件托盘709跟之前介绍的光学元件托盘101,201不同,因为滚筒光学元件托盘709不是平面的。滚筒光学元件托盘709是圆筒形的环形(一种柱环形),有外壁和内壁。尽管图7d描绘的是一个完整的圆桶环形,但是滚筒光学元件托盘709可以是弧形或者一个扇区,而不是一个完整圆筒环形。换句话讲,滚筒光学元件托盘的两端不一定连接起来而形成一个完整的圆盘形。这种类型的光学元件托盘与图3描绘的矩形光学元件托盘201相似,不同的是平面的托盘被弯曲,沿着矩形的一个长边弯曲形成了一个弧形。当矩形的长度足够长,矩形的两端被弯曲后可以首尾相接,形成如图7d所描绘的桶形光学元件托盘。
在滚筒光学元件托盘709上,光学窗口不是被安置在一个平面上,而是被安置在一个圆筒形的壁面上,不像转动或者滑动光学元件托盘,滚筒光学元件托盘709围绕其中心轴旋转。矩形光学元件托盘201射出的光线经反射器708改变方向后进入让滚筒光学元件托盘709,这样可以改变滚筒光学元件托盘709的方向而让整个托盘组合的尺寸减到最小。
图7e显示的是一种组合,其包括:一个反射器708、两个矩形光学元件托盘201a、201b,但是在这个实施例中,两个光学元件托盘是在平行的平面 上,光线经过反射器708反射进入光学元件托盘201a、201b。反射器708的入光口被光学盖板玻璃711覆盖,这样可以保证光的通过且保护反射器708,防止湿气和灰尘进入。在这个例子中,成像单元707被放置在沿着安装了光学路径更换系统的移动电话或者相机的长或者宽的方向。
图7f与图7d相似,不同的是滚筒光学元件托盘709是一个由橡胶、硅胶、纤维、或者铰接刚性链段形成的链条圈等做成的柔性的带状滚筒光学元件托盘712。光学窗口702中安装镜片或者滤镜等光学元件。当旋转光学元件托盘712选择合适的镜片时,柔性带712在弧形边角713处发生弯曲,这样可以减少光学路径更换系统所占用的体积。弧形边角713被设计成有足够大的曲率半径,这样,当刚性的镜片通过弧形边角713时不会卡住或者阻碍柔性带状滚筒光学元件托盘712的移动。
图7d和图7f描绘的滚筒光学元件托盘,无论是柔性的材质或者是刚性的材质制作的,都可以切除光学窗口之间的一些材料,在滚筒的一侧或者两侧切出三角形,方形或者圆盘形的齿。这样可以让光学元件托盘更轻,或者更柔软。本领域普通技术人员应该明白无论是为这里描述的光学元件托盘增加还是减少多余的材料都不会背离本公开的基本原则和精神。
图7g描绘的是另一种类型的柔性光学元件托盘,其中柔性传送带714上安装了几个光学窗口固定器715。根据图7g描绘的本公开的实施例,光学窗口固定器715是独立于光学元件托盘其余部分的一块材料制成,边缘与光学元件托盘连接。光学元件托盘可以是柔性的,刚性的,可以是平面的或者其他形状的,并可以包含几个光学窗口固定器715。光学窗口固定器715可以是安装在光学元件托盘上的,也可以是与光学元件托盘由同一材料制成,中间被间隔隔开。或者光学窗口固定器可以是光学元件托盘的一段,包含2个或者更多光学元件托盘的光学窗口。光学窗口固定器可以是空的,或者不包括光学窗口。制作光学窗口固定器715的材料可以是柔性的或者刚性的。
正如图7g所示,每个光学窗口固定器715是由柔性传送带的内表面的材料延伸形成的。柔性传送带是由橡胶、硅胶、纤维、或者铰接刚性链段形成的链条圈做成。每个光学窗口固定器可以是空的,也可以安装一个光学元件,例如镜片,镜片组或者滤镜。或者,空窗口的功能可以由柔性传送带上没有固定光学窗口固定器715的间距足够大的间隔来替代。柔性传送带714可以利用有限的空间安装很多光学元件。本领域普通技术人员应该明白光学窗口 固定器715可以延伸自柔性传送带的内侧,外侧,或者由内侧和外侧同时延伸出来而不会背离本公开的基本原则和精神。
图7a-7g描述了用光学元件托盘101、反射器708、和成像单元707的不同组织组合形式,来实现合适的焦距和光学效果,并适合装入当今移动设备有限的内部空间。本领域普通技术人员应该明白图7a-7g提到的各种元件可以混合搭配出更多的其他组合方式而不会背离本公开的基本原则和精神。
图8显示的是来自两个光学元件托盘的镜片如何组合出不同的效果。上面的组合被称为微距镜片组合。来自托盘1的镜片D 801跟来自托盘2的镜片E 802搭配出了短焦距A,可以放大贴近镜头的物体。
图8中间的镜片组合被称为长焦镜头。来自托盘1的镜片F 803和来自光学元件托盘2的镜片E 802搭配出较长的焦距B,可以有效的放大远离镜片的物体。值得注意的是,长焦镜头用到的托盘2的镜片E 802与用于组合微距镜头的托盘2的镜片E 802可以是同一个镜片。然而图8只是用于说明目的,而不应被理解为一种限制。本领域普通技术人员应该明白一个镜片,无论是来自托盘1还是托盘2,可能被用于多个不同的焦距的组合,以用于不同的拍照目的。
图8下方的镜片组合被称为广角镜头。广角镜组合使用了微距组合中用到的同一镜片,来自托盘1的镜片D 801,但是托盘2的镜片被换成了镜片G 804。这种组合产生了相对较短的焦距C,对远离镜片的物体有广角效果。本领域普通技术人员应该明白任何镜片,镜片组,滤镜,光学组件,甚至空窗口的组合都可以用来获得合适的焦距或者其他光学效果。
根据本公开的一种实施例,图9显示的是用来转动圆盘形光学元件托盘的马达和光学元件托盘锁定机制的示意图。在一种实施例中,需要马达和齿轮来转动或者滑动光学元件托盘到合适的位置。或者,用图9显示的马达来移动光学元件托盘就不需要齿轮传动系统。与无刷马达类似,光学元件托盘构成了马达的转子901。光学元件托盘转子901的中央装有永磁铁908,而定子902安装了电磁铁909。每一个镜片对应一个电磁铁909和一个锁定槽904。锁定槽904与每个镜片903对应,被安置在光学元件托盘转子901的外边缘。
磁锁定插销906被弹簧905顶住,配合锁定插槽904,将光学元件托盘转子固定在与选定的镜片对应的位置。电磁锁定插销906是由锁定电磁铁907控制。当锁定电磁铁907通电时,会把磁锁定插销906吸过来,弹簧905被 压缩,插销与锁定插槽904脱离,光学元件托盘转子901可以自由转动。当电磁铁907,909断电后,作用于永磁铁908和磁锁定插销906的作用力消失,弹簧905将磁锁定插销906弹回插入锁定插槽904,转子901被锁住。
选中的镜片903可以用下面的步骤来选定。第一步,锁定电磁体907通电。为锁定电磁铁07通电,可以将磁锁定插销906吸近锁定电磁铁907,压缩弹簧905,使得磁锁定插销906与锁定插槽904脱离。第二步,将电磁铁909按照正确的次序依次通电、断电,可以使光学元件托盘转子901正转或者反转。第三步,利用霍尔效应传感器、光传感器、或者其他传感器(图中没有画出传感器),探测是否被选定的镜片903已经接近正确的位置。当转子转到合适的位置,对应选中的镜片的电磁铁909保持通电,并保证正确的磁极,将转子固定在合式的位置。第四部,电磁铁907、909断电,弹簧905将磁锁定插销906推入与选中的镜片903对应的锁定槽904。锁定插销906将光学元件托盘转子固定后,就不再需要为电磁铁通电。
尽管上述旋转和锁定机制使用磁锁定插销锁定圆盘形光学元件托盘,但是还是可以有很多变化方式。永磁铁908可以替换为电磁铁。定子和转子的相对位置可以互换。永磁铁908和电磁铁909的位置和方向也可以修改,例如,放在托盘的外缘,或者放在垂直于托盘平面的方向,而不是平行于托盘平面。也可以使用其他不同锁定插销设计。锁定插销可以放在转动的光学元件托盘上。转子电刷的位置也可以更改。该系统修改后也可以用与线性移动,而不只是转动。本领域普通技术人员应该明白任何对该系统的修改不会背离本专利的基本原则和精神。
图10显示的是为有两个光学元件托盘的光学路径更换系统设计的电磁马达系统切面图。图中的第一托盘1001安装了两个第一转子电磁铁1003。虽然为了描述的目的,图中只显示了两个第一转子电磁铁1003,但是也可以使用多的电磁铁而不会偏离本公开的基本原则和精神。第一转子电磁铁1003通过第一转子电刷1005通电,转子电刷可以保持电接触。两个第二电磁铁1004安装在第二托盘1002延伸的转盘上,延伸的转盘的轴通过第一个转盘1001的中心。第二转子电磁铁1004通过第二转子电刷1006通电,转子电刷可以保持电接触。定子电磁铁1007被安装在可以跟两个第一电磁铁1003和两个第二电磁铁1004同时发生作用的位置。就像在图9中描述的一样,电磁铁通过按照合理的次序通电和断电来实现期望的运动。
转子电磁铁可以用永磁铁来取代,但是在这个特定的情形中,选用电磁铁更合适。除非采用足够的防磁措施,或者将转子磁铁放置在互不烦扰的位置,否则电磁铁是更好的选择,因为电磁铁可以有选择地通电和断电。这样干可以更容易地一次只移动一个托盘。
上述电磁马达可以被修改和扩充到移动三个或者更多层光学元件托盘,只要每个定子的磁铁都可以与所有的转子发生作用。只为需要转动的一个托盘的电磁铁通电,就可以实现单个托盘的旋转。或者压电马达也可以用来转动和锁定光学元件托盘。本领域普通技术人员应该明白使用任何种类的马达都不会背离本专利的基本原则和精神。
图11描绘的是如何将虹膜光圈集成到光学路径更换系统中。图11中的虹膜光圈1101被安装在第一光学元件托盘101a和第二光学元件托盘101b之间。本领域普通技术人员应该明白虹膜光圈1101可以安装在图11中任何可以工作的位置,或者与图7a-7g描述的各种组织形式结合,而不会背离本专利的基本原则和精神。
本公开还提供了一种成像设备,其可以包括成像控制器、成像元件、马达控制器以及以上描述的或以下将描述的任一种光学路径更换系统,其中所述成像控制器可以根据用户改变成像效果的输入向所述马达控制器发出指令;所述马达控制器可以根据来自所述成像控制器的指令驱动所述光学路径更换系统中的相应马达移动所述光学路径更换系统中的相应光学元件托盘,以便选择合适的光学路径;以及所述成像元件可以接收从所述光学路径更换系统的所选择的光学路径输入的成像光,以形成具有期望的成像效果的图像。作为示例,图12示意性地显示了集成了光学路径更换系统的成像设备1201(例如移动电话,相机,摄像机)的结构图。成像设备1201包括一个可编程装置,由处理器1202和存储器1203构成,存储器是可以由计算机读取的介质,用来存储处理器1202可以执行的指令程序。存储器还可以用来存储成像元件1204拍摄的影像。上述成像控制器可以由这里的处理器1202构成。成像设备1201(例如通过成像控制器)向马达控制器1205发送指令,这样可以移动光学元件托盘1207来将一个光学元件1208与成像元件1204对齐。光学元件1208可以是镜片,滤镜,或者其他形式的光学元件。光线1209经过光线1208投射到成像元件1204上。
成像设备1201(比如移动电话,相机,摄像机)可以安装软件和驱动程 序,来让用户通过图形界面控制光学路径更换系统,或者通过系统软件自动控制。用户不一定需要知道正在使用哪个光学元件或者什么时候应该更换光学元件。以移动电话为例,相机软件收到来自用户的指令,应用滤镜,放大,缩小,切换到微距模式,或者调整光圈尺寸等。装置的驱动,可以是相机软件的一部分,或者是手机的其他软件模块,决定如何移动光学元件托盘来实现用户期望的结果。
图13显示的是用软件方法解释用户输入,选择合适的光学元件,移动光学元件托盘到合适的位置的流程图。在步骤1302,软件接收到用户的输入。用户的输入可以来自一个图形界面,图形界面上有图标、按钮、菜单等允许用户选择命令。例如用户可以通过屏幕上的滑块、触摸屏的滑动轨迹、软件或者硬件的拨盘、滚轮、按钮来实现变焦。本领域普通技术人员应该明白用任何方式变焦不会背离本专利的基本原则和精神。
在基本的相机软件中,用户往往需要通过变焦的方式来获得合适的取景范围,而并不需要关心和知道获取这一结果的具体的相机参数和镜片组合方式。用户可以在取景框或者相机的显示屏看到合适的缩放等级时停止缩放操作。无论用户选择那个缩放等级,软件将决定需要使用的镜片以及数码缩放的等级来实现用户需要的缩放等级。软件的主要作用就是根据用户的指令选择合适的镜片组合。尽管上述以变焦为例描述软件的功能和特色,其他相机参数,比如快门速度,光圈尺寸,滤镜,胶卷速度等,也可以由软件根据用户的指令来决定如何选择。
在步骤1304,相机软件解释用户的指令。用户的指令除了缩放外,可能还包括改变相机的其他参数。然后,相机软件根据用户的指令来决定需要什么缩放等级。
在步骤1306,相机软件通过查询配置参数来决定为了满足用户选择的缩放等级或者焦距需要将光学元件托盘移动到的位置。软件可以是通过查询配置参数来确定光学元件托盘位置的。配置参数列出了每个可用的缩放等级或者焦距以及达到这个缩放等级和焦距对应的光学元件托盘位置。可用的缩放等级或者焦距可以存放在一个文件、数组、表格、或者直接写入软件代码中。可用的缩放等级是离散的,因此当用户选择的缩放等级不一定刚好是可用的缩放等时,软件需要找到不高于用户选择的缩放等级的最近一个可以用的离散缩放等级。然后配合数码缩放,来达到用户期望的缩放等级。光学元件托 盘的位置存储在配置参数中,根据当前位置传感器的读数,就可以知道达到用户需要的缩放等级和焦距,需要选择哪个镜片。托盘的位置可以通过霍耳效应传感器、光传感器、条码阅读器、或者电机位置传感器等读取,也可以通过相对已知镜片的位置来判断。本领域普通技术人员应该明白用任何方式来读取或者判断光学元件托盘的位置都不会背离本专利的基本原则和精神。
一旦从配置参数中获知光学元件托盘的位置,相机软件就可以发出信号来移动光学元件托盘到正确的位置。相机软件可以通过传感器监视光学元件托盘的位置,并不停地发出移动指令直到光学元件托盘移动到理想的位置。或者相机可以获知光学元件托盘的位置,并发送一个设置好的移动命令让光学元件托盘移动到合适的位置。
相机软件还可以自动控制光学路径更换系统中安装的虹膜光圈。如果用户希望拍摄高速移动的照片或者在低照度的环境下拍摄,用户可以将相机设成高速模式,或者传感器可以监测到需要用低照度模式拍摄。无论是哪种情况,软件将做出反应,向虹膜光圈发出信号增加光圈尺寸并选择通用镜片。如果用户用软件发出放大指令,软件将控制马达,把光学元件托盘转动到长焦镜头的位置。
相机软件还可以为高级用户提供“专业”模式,让用户直接选择使用的镜片和光圈尺寸。根据光学元件托盘提供的可用的光学元件,相机软件可以将可用的光学软件和组合方式作为选项展现给用户。如果光学元件托盘包括滤镜,相机软件可以将滤镜也列为选项。如果所有的光学元件托盘都含有镜片,相机软件可以知道可用的镜片组合方式,计算出组合后的有效焦距,并作为选项或者选项范围展现给用户,用户不需要去选择每个托盘上的每个镜片。当通过镜片组合可以得到很多有效焦距时,用户可以只让用户发出放大和缩小指令,而软件自动决定和选择合适的镜片组合方式,然后用数码变焦平滑的补足离散的光学变焦之间的间隔。
数码变焦仅仅是放大成像元件获得的照片,而不改变其分辨率。这意味着数码变焦会降低图像质量,在更极端的情况下,会导致图像马赛克化,模糊或者变形。现实中没有一个增强画质的指令,可以让数码放大的照片显示出更多细节。因此,一个有经验的用户可能会想保持照片原有的分辨率,软件可以允许用户关闭数码变焦,只使用光学元件托盘中不同镜片组合出的离散的光学变焦选项。
图14-25示出了包含光学通道的光学路径更换系统的实施例。具体地,该光学路径更换系统包括第一光学元件托盘,所述第一光学元件托盘形成包括第一光学路径的多个光学路径,其中,所述第一光学路径包括:光学入口,光线从其进入所述第一光学元件托盘;光学出口,所述光线从其离开所述第一光学元件托盘;以及第一光学通道,布置在所述第一光学元件托盘中所述光学入口和所述光学出口之间。其中所述第一光学通道被设置为使得所述光学入口与所述光学出口之间的第一光学路径的几何长度大于所述第一光学元件托盘的厚度;并且所述第一光学元件托盘被配置为能够移动以选择期望的光学路径。这里,光学路径表示光在光学托盘中经过的从任一光入口到对应光出口的任意路径,其可以是前述的通孔形式的光学窗口,也可以这里所述的包括光学通道的几何长度大于托盘厚度的第一光学路径。在该实施例中,多个路径中至少有一个包括光学通道的几何长度大于托盘厚度的第一光学路径,而其它光学路径可以是任意形式,包括通孔形式或这里的第一光学路径形式。可选地,所述第一光学元件托盘为平面板状托盘,例如圆盘形或长方形等。这种平面板状的托盘特别适合于厚度较小的成像设备,例如智能手机。特别地,所述第一光学通道基本平行于所述平面板状托盘,并且所述光学窗口基本垂直于所述平面板状托盘。
可选地,所述的光学路径更换系统还可以包括:第一马达,被配置成能够移动所述第一光学元件托盘以选择期望的光学路径。通过设置马达可以不需要手动移动光学托盘,从而能够实现光学路径更换的自动化。可选地,所述第一光学路径中安装光学元件以形成具有第一焦距的光学系统。由于第一光学路径的几何长度大于光学托盘的厚度,因此,通过第一光学路径形成的光学系统(例如,成像镜头)可以实现较大的焦距,从而可以在小型化的成像设备(例如智能手机)上实现长焦照相。
可选地,所述第一光学元件托盘上还具有穿过其的通孔所形成的光学窗口作为第二光学路径,所述光学窗口中安装光学元件以形成具有第二焦距的光学系统,所述第二焦距小于所述第一焦距。通过在光学元件托盘上既设置通过通孔形成的第二光学路径(其几何长度大致等于或者小于托盘的厚度)又设置通过光学通道形成的第一光学路径(其几何长度大于托盘的厚度),可以使得该光学元件托盘既有较短焦距的光学系统又有较长角度的光学系统,从而可以满足成像设备对不同焦距的变焦要求。
图14显示的是一种可以实现长焦距镜片组合的光学元件托盘1401的实施例。除了在其他实施例包含的光学窗口1402,光学元件托盘中还包括了几个与托盘平面平行的光学通道1404。光学通道由特定材料做成的壁围起来,分隔出来,或者定义出来的光的通行通道。一个光学通道可以装有一个或多个光学元件来操纵穿过光学通道的光线。或者光学通道是由一套光学元件定义的穿过这套光学元件的光的通行通道。本领域普通技术人员应该明白光学通道不一定是方形或者长方形的,还可以是圆柱形的,椭圆盘形的,或者是其他几何形状。图中画的长方形的光学通道只是为了图解的目的。本领域普通技术人员应该明白光学通道不一定是严格的与光学元件托盘的平面平行。这里用到的术语“平行”只是为了简化和描述的目的,而不应该被理解为一种局限。光学通道1404中可以包含一个或者更多镜片、滤镜、或者其他光学元件来获得期望的焦距。本领域普通技术人员应该明白如何在光学通道1404中安装镜片、滤镜、或者其他的光学元件来获得想要的焦距。
每个光学元件托盘中至少有一个光学入口,至少有一个光学出口。光学入口是光进入光学元件托盘的位置,光学出口是光离开光学元件托盘的位置。当光学元件托盘只包括光学窗口时,光学入口和光学出口分别在光学窗口的两端。当包括光学通道和反射器的时候,光线不是简单的从光学元件托盘的正面摄入,反面射出,而是被反射入光学元件托盘内部的一个光的通道,然后从出口射出投射到成像元件上。在这种情况下,光学出口不一定就在光学入口的相对的另一面。
根据本公开的一种实施例,在中央反射器1409的前面放置了一枚中央镜片1405。所有的光学通道1404都可以公用中央镜片1405,这样可以更好的利用光学元件托盘1401有限的空间来获得长的焦距。中央镜片1405不是必须的。本领域普通技术人员应该知道什么情况下需要采用适度的焦距的中央镜片1405来与光学通道1404配合得到期望的焦距。
图14的光学元件托盘是一个环形托盘1401,中央是空的。中央反射器1409固定在光学元件托盘中央的孔洞,光学元件托盘可以围绕中央反射器1409旋转。任何一个光学通道都可以与中央反射器1409和成像单元1407对齐。光学元件托盘1401的中央的孔洞形成了环形光学元件托盘的内壁,每个光学通道1404都在内壁有一个光学入口。中央反射器1409将光反射入一个光学通道1404的入口。每个光学通道1404的另一端都放置一个出射反射器 1408,将光反射到成像单元1407中。
安装了图14中的光学元件托盘1401的成像设备,需要一个与成像单元1407对齐的在光学元件托盘1401的外边缘附近的光线入口,比如相机窗口;还需要另一个在光学元件托盘中央位置的光线入口。根据本公开的一种实施例,安装了图14中的光学元件托盘1401的成像设备需要两个相机窗口。一个相机窗口与光学窗口1402对齐,用来拍摄短焦距照片,另一个相机窗口与中央反射器1402对齐,用来拍摄长焦距照片。光学窗口1402和光学通道1404共用一个成像单元1407,因为光学通道的出射反射器也可以与成像单元1407对齐。
图15显示的是另一个适用于长焦镜片组合的光学元件托盘1501的实施例。与图14的光学元件托盘不同,图15的光学元件托盘没有中央反射器。图15的光学元件托盘的每个光学通道1504都有一个入射反射器1510。根据本公开的一种实施例,安装了图15中的光学元件托盘1501的成像设备需要两个相机窗口。一个相机窗口在光学元件托盘外边缘的位置,由光学窗口1502使用。第二个相机窗口与入射光反射器1510对齐,由光学通道1504使用。当使用光学通道1504拍摄长焦距照片时,光线进入入射反射器1510被反射入光学通道1504,经过光学通道1504的镜片折射或者其他光学元件后,到达出射光反射器1508。出射光反射器1508将光线反射到安装在光学元件托盘下面的成像单元1507中。对于图14和图15中的光学托盘,光线或许不是由同一个入光口或者相机窗口进入,但是光线总是被投射到同一个成像元件1407或者1507。
图16显示的是另一个为了适应多个不同的长焦距的多个入光口而采用加长的相机窗口1603的光学元件托盘。加长的相机窗口1603上有三个入光口。第一个入光口在光学元件托盘的中央,标为1。光线由位置1进入,由一个中央反射器1609反射后进入一个光学通道1604。在光学通道1604的另一端,出射反射器将光线反射到成像单元1607。光线经出口反射器1608反射后,与光线经过普通的光学窗口1602后的位置和方向一致。
第二光线入口被标为2。有两个反射器和光学通道的组合可以与入光口2对齐,对应的也标注了2。其中一套反射器和光学通道的组合方式与图15显示的一样。另外一套反射器和光学通道的组合方式包括:两个光学通道1604和一个二次反射器连接两个光学通道1604。当这个组合方式与成像单元1607 对齐时,光线由相机窗口1603的位置2射入后被入射光反射器1610反射,然后进入第一个光学通道1604。二次反射器将光线反射180度后进入第二个光学通道1604。在第二个光学通道1604的出口,光线经中间反射器1612反射后射向光学元件托盘1601的外围。此后光线穿过最后一个光学通道1604,经出射反射器1608反射后投射到成像单元1607。
在另一个实施例中,第二光学通道1604延伸到光学元件托盘的边缘,在这里出射反射器1608将光反射后投射到成像单元1607上。根据不同的组织形式,光线在经过出射反射器1608反射到成像单元1607前,可以经过也可以不经过中间反射器1612和/或第三个光学通道1604。本领域普通技术人员应该明白,可以使用任何组织形式,无论是一个或者是更多个反射器,以及一个或者是更多个光学通道,来获得需要的焦距长度并把光学出口安装在需要的位置,而不会背离本公开的基本原则和精神。
第三个入光口被标为3。每个普通的光学窗口1602都可以与入口3对齐,光线可以直接经过光学窗口1602后进入成像单元1607。在另一种实施例中,可以在每个位置1,2,3都放置一个独立的相机窗口。本领域普通技术人员应该明白,反射器和光学通道的组织形式可以使用更多或者更少的不同位置的入光口与光学元件托盘1601的光学入口对齐,而不会背离本公开的基本原则和精神。
图17显示的是另一种实施例,光学元件托盘1701只有一个光学入口或者相机窗口,但是包含了三个成像单元来匹配光学元件托盘1701上不同的焦距。根据图17显示的实施例,三个成像单元被标为A、B和C。成像单元A与光学元件托盘上的光学窗口1702对齐,就像前面描述过的光学元件托盘一样。
成像单元B可以与两套包含了入射反射器1710的反射器和光学通道的组织形式对齐,这两个入射反射器1710也标注了B。第一套组合形式与图15中反射器和光学通道的组织形式一样,只不过方向是相反的。光线由光学元件托盘的外边缘的光学窗口的入射位置进入入射反射器1710。入射光反射器1710将光线反射进入光学通道1704,最后光线经出射反射器1708反射后进入成像单元B。
第二套组合形式与图16中的第二套组合形式也是一样,只不过方向是也是相反的。光线进入入射反射器1710后,根据组织形式可以经过一个短的光 学通道1704后进入中间反射器1712。中间反射器将光线反射进入第一个光学通道1704,一个二次反射器1711将光线反射180度后进入第二光学通道1704。最终光线经出射反射器1708再次反射后进入成像单元B。
第三套组合形式与图16中的一个组合形式也是一样,方向是也是相反的。光线由位于光学元件托盘1701外围的入射反射器1710进入。入射反射器1710将光学反射进入光学通道1704。最终,中央反射器1709将光线反射进入成像单元C。或者,成像单元C可以放在中央反射器1709的位置,替换掉中央反射器1709,这样光线经光学通道1704的光学出口射出后直接进入成像单元C。本领域普通技术人员应该明白,反射器和光学通道的组织形式可以使用更多或者更少的不同位置的成像单元,而不会背离本公开的基本原则和精神。
根据本公开的另一种实施例,成像单元可以直接放置在光学通道的光学出口接收图像,而不需要经过像棱镜,镜片,镜片系统等反射器反射。例如在图14-16中,可以在光学元件托盘的外围放置一个成像单元面向光学元件托盘的侧边,这样光学出口就可以放置于光学元件托盘的外壁上。在图17的实施例中可以放置一个成像单元在光学元件托盘的中央,这样光线从光学元件托盘内壁的光学出口射出后可以进入成像单元。光学通道可以经过光学元件托盘的中央,或者从光学元件托盘的一端延伸到另一端,而且与与任意数目的反射器组合来完成将光线射入成像元件的目的。这样和其他的一些实施例将在下文中与图18-21结合阐明。
图18显示的是一个简单的光学元件托盘1801的例子,根据本公开的一种示范性实施例,这个光学元件托盘只包含了光学通道1804。光线进入中央的入射光反射器1809后被反射进入其中一个光学通道1804。进入哪一个光学通道取决于哪个光学通道与中央反射器1809和成像单元1807是对齐的。这种设计也可以是反向的,入射光反射器被放置在光学元件托盘1801的外围,而成像单元1807被放置在光学元件托盘1801中央的孔中。
图19显示的光学元件托盘1901带有一个穿过圆盘形光学元件托盘1901中心的光学通道1904。这样的光学通道1904的长度可以超过圆盘形光学元件托盘的半径。光线进入入射反射器1910后被反射进入光学通道1904。当光线由光学通道1904的出口射出后,再次被出口反射器1908反射进入成像单元。
在图19的例子中,相机窗口的位置有两个方案可以配合不同的反射器和光学通道的组织形式。第一个方案是有一个附加的窗口或者是加长的窗口被放置在或者延长到,当最长的光学通道1904与成像单元1907对齐时,最长的光学通道1904的入射反射器所在的位置。如果最长的光学通道1904被延伸到光学元件托盘1901的另一端,可以采用第二个方案,让光学通道1904与普通的光学窗口1902共享同一个相机窗口。在这种情况下,如要在光学元件托盘1901的另一侧再放置一个成像单元1907。这样,光学元件托盘1901上的普通光学窗口1902也可以与另一个相机窗口对齐。
图20显示的另一种实施例,在这个实施例中几个光学通道2004围绕环形光学元件托盘2001中央的孔洞放置。每个光学通道与孔对面的另一个光学通道搭配为一组。光线进入入射反射器2010后被反射进入第一个光学通道2004a。当光线从第一光学通道2004a射出后,穿过光学元件托盘中央的孔然后进入另一侧的第二个光学通道2004b。在第二个光学通道2004b的另一端,出射反射器2008将光线反射进入成像单元2007。托盘通过旋转将一套反射器2008、2010以及一对光学通道2004与成像单元2007对齐。当使用光学窗口2002时,光线穿过光学窗口2002直接进入成像单元2007。
图21显示另一种实施例,在这个实施例中几个光学通道围绕环形光学元件托盘2101中央的一个中心光学通道2104c放置。中央光学通道2104c是固定在环形光学元件托盘2101中央的,环形光学元件托盘围绕中央光学通道2104c旋转,使一对光学通道与中央光学通道2104c对齐。当光学通道2104a和2104b与中央光学通道2104c对齐时,光线由入射光反射器2110反射进入第一光学通道2104a。光线从第一光学通道2104a射出后经过中央光学通道2104c进入第二光学通道2104b。在本公开的这个实施例中,光学通道的出口没有放置出射反射器,光线从光学通道射出后进入位于光学元件托盘外壁外侧的成像单元2107a。
根据本公开的另一种实施例,中央光学通道2104c包含所有光学通道可以共用的一个镜片或者一组镜片。这样可以让所有的光学通道组合共用一个镜片或者一组镜片,可以减小尺寸、减少重量、并节约成本。或者中央光学通道2104c可以含有其他光学元件,或者不安装任何光学元件。
第二成像单元2107b被放置在光学元件托盘的下面。成像单元2107b与光学窗口2102组合工作。在另一种实施例中,入射反射器2110放置在光学 元件托盘2101的外边缘,光学窗口2102所在的位置。这样可以让光的通道延伸到整个环形光学元件托盘2101的直径的长度,可以实现长焦距的镜片组合方式。用这种组织形式,光学窗口2102、入射反射器2110、和光学通道可以交替布置在光学元件托盘2101的外边缘。如果成像单元2107a和2107b被合理的放置在光学元件托盘两端相对的位置,光学元件托盘可以只使用一个相机窗口。
图22显示另一种实施例,该实施例与图20中的实施例相似。不同的是入射反射器被放置在环形光学元件托盘的外边缘,使得每组光学通道可以最大限度地利用光学元件托盘的直径,用于获得更长的焦距。普通的光学窗口还是放置在环形光学元件托盘的外边缘,与光学通道相隔放置。通过旋转环形光学元件托盘可以将出射反射器或者光学窗口与成像单元对齐。光学元件托盘需要两个相机窗口,只使用一个成像单元。
图23-25显示另外几种实施例。在这几种实施例中光学通道没有通过光学元件托盘的中心,各个光学通道的是完全独立的。图23、24的入射反射器被放置在光学元件托盘的外边缘,这只是为了简化描绘,而不应该被理解为一种局限。入射反射器可以放置在保证各个光学通道互不干扰的任何位置,视各个入射反射器的位置,光学元件托盘需要两个或者更多相机窗口。如果出射反射器和光学窗口都放置在光学元件托盘的外边缘,通过旋转环形光学元件托盘可以将出射反射器或者光学窗口与成像单元对齐,这样光学元件托盘只使用一个成像单元。
图26显示了根据本公开的实施例的光学元件托盘带有不经过光学元件托盘几何中心的光学通道的具体实施方式。图26的光学元件托盘2601为平面板状托盘,并优选为圆盘形。光学元件托盘2601具有三个不经过托盘几何中心的光学通道2602a、2602b和2602c,并且具有6个由通孔形成的光学窗口2603a-2603f。每个光学窗口中可以分别安装一个或多个光学元件(例如透镜或滤波片)以产生相应的光学效果(例如产生不同的焦距或滤色效果),当然,也可以有一个或多个光学窗口中不安装任何光学元件。同样,对于每个光学通道2602a、2602b和2602c,其中可以安装一个或多个光学元件(例如透镜或滤波片)以产生相应的光学效果(例如产生不同的焦距或滤色效果),并且可以在光学通道的入口处和出口处安装反射器用于改变光学路径的方向。以光学通道2602a为例,在光学通道2602a的入口处(在该实施例中,为光线 进入该托盘的光学入口处)设置有入射反射器2604(在该实施例中,为直角棱镜),从而射向托盘2601的盘面的光线可以被入射反射器2604反射进入光学通道2602a内部。在该实施例中,入射反射器2604可以将垂直于盘面的光线反射为平行于盘面。进一步可选地,可以在该光学路径中入射反射器2604前方设置一个或多个光学元件2605,图26中示例地显示出了在入射反射器2604的前方设置一个透镜2605。在光学通道2602a的出口处(在该实施例中,为光线离开该托盘的光学出口处)设置有出射反射器2606用于在光学出口处改变光学路径的方向。在该实施例中,出射反射器2606为切去了一部分的直角棱镜,其作用与直角棱镜相同,其可以将平行于盘面的光线反射为垂直于盘面而离开托盘2601。当将图26所示的光学元件托盘2601应用于成像设备(例如相机)中时,不同的光学路径(分别由光学通道2602a、2602b和2602c和光学窗口2603a-2603f形成)可以共用同一个成像光学元件,因为该多个光学路径的光学出口距离该光学元件托盘2601的几何中心的距离基本相同,因此当需要选用某个光学路径时,只需将该光学路径的光学出口旋转到与成像光学元件对齐。然而,利用光学元件托盘2601的成像设备需要两个相机窗口用于照相光的射入,一个用于光学窗口2603a-2603f形成的光学路径,一个用于光学通道2602a、2602b形成的光学路径。显然,对于图26的实施例,如果将所有光学路径的光学入口都设置为距离该光学元件托盘2601的几何中心的距离基本相同,则可以仅使用一个相机窗口,而使用两个成像光学元件。
根据以上描述可知,多个光学路径可以共用同一成像元件和同一相机窗口,也可以共用同一成像元件而使用多个相机窗口,或者共用同一相机窗口而使用多个成像元件。替代地,多个光学路径可以使用多个成像元件和多个相机窗口,实现多个光学路径同时成像。换言之,同时可以有多个光学路径通过其各自的相机窗口和成像元件进行成像,以便实现例如立体成像等功能。
虽然图中使用光学通道的实施方案都是圆形托盘,但是不应该被理解为一种限制。像光学窗口一样,光学通道同样适用于但是不限于矩形、柱环形或者任何不规则的形状。例如,在柱环形中,托盘的厚度指柱环形的环壁的厚度,光学通道可以位于环壁中,例如平行于环的轴线方向。
此外,在本公开中,光学入口可以位于托盘的外壁上,并且可以在托盘的外壁外侧布置入射反射器,使得光可以被引入光学入口。当在托盘的外壁外侧布置入射反射器时,不一定需要对准圆形托盘圆心,其可以根据光学通 道而具体设置。当光学通道不对准圆心时,入射反射器或出射反射器也不需要对准圆心。
根据本公开的另一种实施例,可以将与上述各种光学元件托盘一样的两个或者多个光学元件托盘组合在一起,使得光线经过第一光学元件托盘和第二光学元件托盘后进入成像单元。可以通过用中间反射器把嵌入两个光学元件托盘的光学通道的第一光学元件托盘的光学出口和第二光学元件托盘的光学入口连接起来,第一光学元件托盘和第二光学元件托盘可以组合得到更长的焦距。
或者,还可以把第一光学元件托盘的出射反射器与第二光学元件托盘的入射反射器对齐。这样组合带有光学通道的光学元件托盘的优点是,长焦距和短焦距组合可以共用一个入光口和一个成像单元。例如,第一光学元件托盘将光线反射离开相机窗口,相机窗口和成像单元是对齐的。当光线离开第一光学元件托盘后进入第二光学元件托盘后被向成像元件所在的位置反射,第二光学元件托盘的光学出口与成像元件是对齐的。这样,无论是长焦距(使用光学通道)还是短焦距(使用光学窗口),用成像单元与单个相机入口对齐的方法,可以满足两种情况的需要。
像图2、图5、图7a-7f描绘的一样,多个光学元件托盘的组合可以用滤镜、镜片,镜片组、反射器、光学通道、或者空窗口等组合出各种不同的的光学效果。本领域普通技术人员应该明白,使用各种形状的光学元件托盘、各种组合形式、光学窗口、反射器、光学通道或者成像单元来的组合,都不会背离本公开的基本原则和精神。像上述的光学元件托盘一样,光学通道可以安装一个或者多个镜片、滤镜、光学元件来获得期望的焦距。本领域普通技术人员应该明白,各种上述可能的功能的组合,以及各种上述各种光学元件托盘的功能与其他功能的组合,都不会背离本公开的基本原则和精神。
传统上,一个计算机程序由一个有限的计算指令或程序指令序列组成。应明确的是,可编程装置(例如,计算设备)可以接收这样的计算机程序,通过处理计算指令,产生进一步的技术效果。
可编程装置包括一个或多个微处理器、微控制器、嵌入式微控制器、可编程数字信号处理器、可编程设备、可编程门阵列、可编程序逻辑阵列、记忆设备、专用集成电路、或类似的可以通过适当的使用或配置来处理计算机程序指令、执行计算机逻辑、计算机数据存储等等。贯穿本公开内容和其他 地方,一台电脑可以包含至少一个通用计算机、专用计算机、可编程数据处理装置、处理器、处理器体系结构等等任何及所有合适的组合。
很明显,一台电脑可以包含计算机可读存储介质,这个介质可能是内部的或外部的,可拆卸和更换,或者固定的。同样地,一台电脑可以包括一个基本输入/输出系统(BIOS),固件,操作系统,数据库,或诸如此类可以包含,与之交互,或支持在这里描述的软件和硬件。
这里要求的系统实施方案并不局限于涉及传统计算机程序的应用程序或运行这些程序的可编程设备。可以设想,例如,这里提出的本公开的实施方案可能包括一个光学计算机,量子计算机,模拟计算机等等。
系统实施方案可以使用任何一个或多个计算机可读媒体的组合。计算机可读介质可能是一个计算机可读信号介质或计算机可读存储介质。计算机可读存储介质可以是但不限于,例如,电子、磁性、光学、电磁、红外或半导体系统、装置或设备,或任何合适的任何上述方式的组合。更具体的计算机可读存储介质的例子(一个非穷尽列表)包括:有一条或多条电线的导电连接,便携式计算机软盘、硬盘、随机存取存储器(RAM),一个只读存储器(ROM),一个可擦写可编程只读存储器(EPROM或闪存),光纤、便携式光盘只读存储器(CD-ROM)、光学存储装置、磁存储设备,或任何合适的任何上述方式的组合。在本文中,一个计算机可读存储介质可以是任何有形的介质包括,可以被一个指令执行系统,设备或装置使用或者与之相关的程序。
计算机程序指令可以存储在一个计算机可读内存中,能够指挥电脑或其他可编程数据处理装置以一个特定的方式运行。存储在计算机可读内存中的指令构成一件制品,包括用于实现任何或者所有上述函数的计算机可读指令。
在附图的流程图和结构图中描述的元素指明了元素之间的逻辑界限。然而,根据软件或硬件的实际研发实践中,上述元素和其功能可以实现为一个复杂软件构架的一部分,一个独立的软件模块,或者使用外部例程,代码,服务的模组等等,还可以是这些形式的组合。所有这类实施方式都在目前公开信息的范围之内。
综上所述,现在应明确的是,附图的结构图和流程图中的元素包括,执行特定功能的方式的组合,执行特定功能的步骤的组合,执行特定功能的程序指令方式等等。
应明确的是,计算机程序指令可能包括计算机可执行的代码。可以用各 种语言表达计算机程序指令,包括但不限于C、C++、Java、JavaScript、汇编语言、Lisp、HTML、Perl等等。这些语言可能包括汇编语言、硬件描述语言、数据库编程语言、函数式编程语言、命令式编程语言等等。在某些实施方案中,计算机程序指令可以存储,编译,或解释为在计算机、可编程数据处理设备、处理器或处理器架构的各种组合等系统上运行。但不限于此,上述系统的实施方案可以采取基于网络的计算机软件的形式,包括客户端/服务器软件,即需即用软件、点对点软件,云计算,或诸如此类。
在某些实施方案中,一台计算机能够执行包括多个程序或线程的计算机程序指令。多个程序或线程或多或少的同步执行可以提高处理器的利用率,并促进同步功能。各种实施方式,各种方法,程序代码,程序指令以及与这些类似的,可以在一个或多个线程中执行。线程可以派生其他线程,并可以自己分配了与之相关联的优先权。在某些具体情况下,计算机可以以优先级或任何程序代码中提供的指令的顺序的方式处理这些线程。
除非有特殊说明或文中另行明确,动词“执行”和“处理”都可以用来表示执行,处理,解释,编译、组装、链接,加载,或者任何及所有上述的组合或诸如此类。因此,执行或处理计算机程序指令的实施方案,计算机可执行代码,或诸如此类可以适当的按照上述各种指令或代码运行。
贯穿本公开内容和其他地方,结构图和流程图描述了方法、设备(即系统)和计算机程序产品。每个结构图和流程图的元素,以及结构图和流程图各个元素的各种组合,描述了方法、设备(即系统)和计算机程序产品的功能。任何及所有这些功能(“上述功能”)可以由计算机程序指令、专用的基于硬件的计算机系统、专用的硬件和计算机指令的组合、通用硬件和计算机指令的组合等来实现,任何或者所有的这些被统称为“电路”,“模块”或“系统”。
尽管上述图示和描述阐明了被公开的系统的功能,除非有特殊说明或文中另行明确,不应该从这些描述来推断实施这些功能的软件的某种特定的方案。
流程图中的每一个元素,可以解释为一个计算机实施方法的一个步骤,或一组步骤。此外,每个步骤都可能包含一个或更多的子步骤。出于演示的目的,这些步骤(以及任何及所有其他上面确定和描述的步骤)按顺序呈现。应明确的是,一个实施方案可以根据公开的技术的具体应用采取不同顺序的步骤。这些不同方式和步骤也可以适用于本公开的原则。除非特定的应用的需 求、有特殊说明或文中另行明确,上述任何特定步骤的叙述和描述并不排除有不同步骤顺序的实施方案。
这里所描述的功能、系统和方法可以使用多种语言实现。个别系统可能使用一种或多种语言,甚至可以在流程中随时改变使用的语言。本领域一个普通的技术人员应该知道系统可以使用各种语言,本公开的实施方案可以考虑使用任何语言。
尽管披露了多个实施方案,对本领域技术人员而言,本公开仍然有一些其他实施方案是显而易见的。本公开可以在完全不背离本公开的精神和范围内对各个方面进行多种修改。因此,这些图示和描述在本质上只是说明性的,而不是限制性的。

Claims (28)

  1. 一种光学路径更换系统,包括第一光学元件托盘,所述第一光学元件托盘形成包括第一光学路径的多个光学路径,其中,所述第一光学路径包括:
    光学入口,光线从其进入所述第一光学元件托盘;
    光学出口,所述光线从其离开所述第一光学元件托盘;以及
    第一光学通道,布置在所述第一光学元件托盘中所述光学入口和所述光学出口之间,
    其中所述第一光学通道被设置为使得所述光学入口与所述光学出口之间的第一光学路径的几何长度大于所述第一光学元件托盘的厚度;并且
    所述第一光学元件托盘被配置为能够移动以选择期望的光学路径。
  2. 如权利要求1所述的光学路径更换系统,还包括:
    第一马达,被配置成能够移动所述第一光学元件托盘以选择期望的光学路径。
  3. 如权利要求1所述的光学路径更换系统,其中,
    所述第一光学路径中安装光学元件以形成具有第一焦距的光学系统。
  4. 如权利要求3所述的光学路径更换系统,其中
    所述第一光学元件托盘上还具有穿过其的通孔所形成的光学窗口作为第二光学路径,所述光学窗口中安装光学元件以形成具有第二焦距的光学系统,所述第二焦距不等于所述第一焦距。
  5. 如权利要求4所述的光学路径更换系统,其中
    所述第一光学元件托盘为平面板状托盘,所述第一光学通道基本平行于所述平面板状托盘,并且所述光学窗口基本垂直于所述平面板状托盘。
  6. 如权利要求1-5中的任一项所述的光学路径更换系统,还包括:
    所述光学入口处设置入射反射器。
  7. 如权利要求6所述的光学路径更换系统,还包括:
    所述入射反射器前设置有光学元件。
  8. 如权利要求1-5中的任一项所述的光学路径更换系统,还包括:
    在所述光学出口处嵌入所述第一光学元件托盘中的出射反射器,使得所述第一光学通道能够与所述光学窗口共用一个成像元件。
  9. 如权利要求2-5中的任一项所述的光学路径更换系统,其中,所述第 一光学元件托盘的形状为圆盘形,并且所述第一马达被配置成旋转所述第一光学元件托盘。
  10. 如权利要求9所述的光学路径更换系统,还包括:
    穿过所述圆盘形第一光学元件托盘的几何中心的孔洞,使得所述圆盘形第一光学元件托盘具有内壁和外壁。
  11. 如权利要求10所述的光学路径更换系统,还包括:
    第三光学通道,设置为相对于所述孔洞与所述第一光学通道对齐。
  12. 如权利要求10所述的光学路径更换系统,其中
    所述光学入口被布置在所述圆盘形第一光学元件托盘的内壁处;并且
    在所述孔洞中放置入射反射器,使得当选择所述第一光学路径时,所述光线被反射进入所述光学入口。
  13. 如权利要求10所述的光学路径更换系统,其中
    所述光学出口被设置在所述圆盘形第一光学元件托盘的内壁处。
  14. 如权利要求13所述的光学路径更换系统,还包括放置在所述孔洞中的出射反射器,使得当选择第一光学路径时,从所述光学出口射出的出射光被所述出射反射器反射。
  15. 如权利要求1所述的光学路径更换系统,其中,所述光学入口被设置在所述第一光学元件托盘的外壁上;而且在所述第一光学元件托盘的外壁外侧设置入射反射器,使得当选择所述第一光学路径时,所述光线被反射进入所述光学入口。
  16. 如权利要求1所述的光学路径更换系统,其中,所述光学出口被设置在所述第一光学元件托盘的外壁上。
  17. 如权利要求1所述的光学路径更换系统,其中所述第一光学通道中设置有反射器用于改变所述第一光学通道的方向。
  18. 如权利要求1所述的光学路径更换系统中,所述第一光学元件托盘是平面板状托盘,且所述第一光学通道通过或不通过所述平面板状托盘的几何中心。
  19. 如权利要求1所述的光学路径更换系统,其中所述多个光学路径共用同一成像元件用于成像或者所述多个光学路径至少使用两个成像元件用于成像。
  20. 一种光学路径更换系统,包括:
    第一光学元件托盘,包含多个第一光学窗口,所述第一光学窗口各自由穿过所述第一光学元件托盘的通孔形成,其中所述多个第一光学窗口中的零个、一个或多个中安装有光学元件使得所述多个第一光学窗口结合其中可能安装的光学元件具有不同的光学效果,以及
    第一马达,被配置为能够移动所述第一光学元件托盘以将所述多个第一光学窗口中的一个光学窗口对齐到期望的位置。
  21. 如权利要求20所述的光学路径更换系统,其中所述第一光学元件托盘是圆盘形的,所述多个第一光学窗口中的一个或多个光学窗口的几何中心分布在与所述圆盘形光学元件托盘的圆心同心的圆环上,并且,所述第一马达配置为能够驱动所述圆盘形托盘旋转。
  22. 如权利要求20所述的光学路径更换系统,其中所述第一光学元件托盘是长方形的。
  23. 如权利要求22所述的光学路径更换系统,其中所述第一光学窗口在所述长方形的长度方向排成一维阵列;或者所述第一光学窗口排成两个或者更多个一维阵列,且每个一维阵列包含一个或者多个光学窗口。
  24. 如权利要求20所述的光学路径更换系统,其中:
    所述第一光学元件托盘的形状是柱环形的至少一部分,所述第一光学元件托盘的多个第一光学窗口由从所述第一光学元件托盘的外表面至内表面的通孔形成。
  25. 如权利要求21所述的光学路径更换系统,其中:
    所述第一光学元件托盘是由材料首尾相接形成的一个柔性环,
    所述柔性环能够被规制成几何形状,并且
    所述环被配置成能够在所述第一马达的驱动下以上述几何形状为轨迹滚动,以在保持所述几何形状的同时将所述多个第一光学窗口中的所述一个光学窗口移动到期望的位置。
  26. 一种光学路径更换系统,包括:
    第一光学元件托盘,其是由柔性带状材料首尾相接形成的柔性环,包括内表面和外表面,
    多个光学窗口固定器,每个所述光学窗口固定器设置于所述柔性环上,以及
    一个或多个所述光学窗口固定器内部形成第一光学窗口,所述第一光 学窗口被配置成能够安装光学元件。
  27. 如权利要求26所述的光学路径更换系统,还包括:
    第一马达,被配置为能够移动所述第一光学元件托盘以将所述第一光学窗口中的一个光学窗口对齐到期望的位置。
  28. 一种成像设备,包括成像控制器、成像元件、马达控制器和权利要求2-25和27中的任一项所述的光学路径更换系统,其中
    所述成像控制器根据用户改变成像效果的输入向所述马达控制器发出指令;
    所述马达控制器根据来自所述成像控制器的指令驱动所述光学路径更换系统中的相应马达移动所述光学路径更换系统中的相应光学元件托盘,以便选择合适的光学路径;以及
    所述成像元件接收从所述光学路径更换系统的所选择的光学路径输入的成像光,以形成具有期望的成像效果的图像。
PCT/CN2015/084913 2015-02-02 2015-07-23 光学路径更换系统及成像设备 WO2016123927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/360,764 US10247906B2 (en) 2015-02-02 2016-11-23 Imaging system with movable tray of selectable optical elements
US15/389,176 US10295784B2 (en) 2015-02-02 2016-12-22 Imaging system with movable tray of selectable optical elements

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US14/612,253 US20160223781A1 (en) 2015-02-02 2015-02-02 Motorized interchangeable lens system
US14/612,253 2015-02-02
US14/673,580 US10126531B2 (en) 2015-02-02 2015-03-30 Motorized interchangeable lens system
US14/673,580 2015-03-30
CN201510243445.7 2015-05-13
CN201520307159.8 2015-05-13
CN201510243445.7A CN106199888A (zh) 2015-02-02 2015-05-13 光学路径更换系统及成像设备
CN201520307159.8U CN204855912U (zh) 2015-02-02 2015-05-13 光学路径更换系统及成像设备

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/612,253 Continuation-In-Part US20160223781A1 (en) 2015-02-02 2015-02-02 Motorized interchangeable lens system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/360,764 Continuation-In-Part US10247906B2 (en) 2015-02-02 2016-11-23 Imaging system with movable tray of selectable optical elements

Publications (1)

Publication Number Publication Date
WO2016123927A1 true WO2016123927A1 (zh) 2016-08-11

Family

ID=56563385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084913 WO2016123927A1 (zh) 2015-02-02 2015-07-23 光学路径更换系统及成像设备

Country Status (1)

Country Link
WO (1) WO2016123927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444001A (zh) * 2016-11-29 2017-02-22 中国科学院紫金山天文台 滤光片磁定位更换装置
EP3699664A3 (en) * 2019-02-01 2020-11-11 Tdk Taiwan Corp. Optical element driving mechanism

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576897A (en) * 1995-01-24 1996-11-19 Tamarack Telecom, Inc. Multi-lens optical device for use in an optical scanner
US5617260A (en) * 1995-04-03 1997-04-01 Wescam Inc. Optical instrument with rotatable lens turret
US5818637A (en) * 1996-02-26 1998-10-06 Hoover; Rex A. Computerized video microscopy system
WO2013094811A1 (ko) * 2011-12-22 2013-06-27 Song Ji-Hyeon 개인휴대통신장치 및 전자장치 카메라용 이중복합렌즈
CN103513394A (zh) * 2012-06-25 2014-01-15 华晶科技股份有限公司 变焦镜头及其变焦控制方法
CN203535358U (zh) * 2013-08-15 2014-04-09 重庆盾银科技有限公司 一种用于摄像机的多光谱滤光片切换装置
CN203982057U (zh) * 2014-07-31 2014-12-03 浙江大华技术股份有限公司 双滤光片切换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576897A (en) * 1995-01-24 1996-11-19 Tamarack Telecom, Inc. Multi-lens optical device for use in an optical scanner
US5617260A (en) * 1995-04-03 1997-04-01 Wescam Inc. Optical instrument with rotatable lens turret
US5818637A (en) * 1996-02-26 1998-10-06 Hoover; Rex A. Computerized video microscopy system
WO2013094811A1 (ko) * 2011-12-22 2013-06-27 Song Ji-Hyeon 개인휴대통신장치 및 전자장치 카메라용 이중복합렌즈
CN103513394A (zh) * 2012-06-25 2014-01-15 华晶科技股份有限公司 变焦镜头及其变焦控制方法
CN203535358U (zh) * 2013-08-15 2014-04-09 重庆盾银科技有限公司 一种用于摄像机的多光谱滤光片切换装置
CN203982057U (zh) * 2014-07-31 2014-12-03 浙江大华技术股份有限公司 双滤光片切换装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444001A (zh) * 2016-11-29 2017-02-22 中国科学院紫金山天文台 滤光片磁定位更换装置
EP3699664A3 (en) * 2019-02-01 2020-11-11 Tdk Taiwan Corp. Optical element driving mechanism
US11226466B2 (en) 2019-02-01 2022-01-18 Tdk Taiwan Corp. Optical element driving mechanism
US20220091358A1 (en) * 2019-02-01 2022-03-24 Tdk Taiwan Corp. Optical element driving mechanism
US11714332B2 (en) * 2019-02-01 2023-08-01 Tdk Taiwan Corp. Optical element driving mechanism
US20230324766A1 (en) * 2019-02-01 2023-10-12 Tdk Taiwan Corp. Optical element driving mechanism

Similar Documents

Publication Publication Date Title
CN204855912U (zh) 光学路径更换系统及成像设备
US10295784B2 (en) Imaging system with movable tray of selectable optical elements
JP6700345B2 (ja) フォールデッドオプティクスを用いたマルチカメラシステム
WO2020259442A1 (zh) 电子设备及拍摄方法
KR100900486B1 (ko) 촬상 장치용 광학 모듈 및 이를 구비한 촬상 장치
US10247906B2 (en) Imaging system with movable tray of selectable optical elements
CN111901503B (zh) 一种摄像模组、终端设备、成像方法及成像装置
CN203799159U (zh) 成像装置
US20170276954A1 (en) Image diversion to capture images on a portable electronic device
US20160223781A1 (en) Motorized interchangeable lens system
JP2018510393A (ja) カメラモジュールに使用されるフィルタ切り替え装置及びカメラモジュールを含むモバイル機器
US20160116824A1 (en) Photographing device and control method for photographing device
KR20060050544A (ko) 침동식 렌즈경통 및 촬상장치
WO2016123927A1 (zh) 光学路径更换系统及成像设备
US9025010B2 (en) Light amount adjusting apparatus and photographing apparatus including the same
JP2010262293A (ja) 像空間焦点
WO2020010886A1 (zh) 摄像头模组、组件、电子设备、移动终端及拍摄方法
CN202351594U (zh) 有光照射功能的变焦透镜驱动装置、相机及移动终端装置
JP2015031900A (ja) レンズ鏡筒および撮像装置
KR100617829B1 (ko) 줌 카메라의 광학 장치
WO2020007085A1 (zh) 摄像头组件、电子装置、移动终端以及电子设备
JP5566164B2 (ja) レンズ鏡筒及び撮像装置
WO2022166658A1 (zh) 光学成像系统及相关设备
JP2007133214A (ja) レンズ鏡胴及び撮像装置
US20140071329A1 (en) Reconfigurable optical device using a total internal reflection (tir) optical switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880878

Country of ref document: EP

Kind code of ref document: A1