WO2016123831A1 - Procédé d'ascension circulaire de précision de rectifieuse sur base d'une partie de broche de pression hydrostatique - Google Patents

Procédé d'ascension circulaire de précision de rectifieuse sur base d'une partie de broche de pression hydrostatique Download PDF

Info

Publication number
WO2016123831A1
WO2016123831A1 PCT/CN2015/073745 CN2015073745W WO2016123831A1 WO 2016123831 A1 WO2016123831 A1 WO 2016123831A1 CN 2015073745 W CN2015073745 W CN 2015073745W WO 2016123831 A1 WO2016123831 A1 WO 2016123831A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrostatic
grinding machine
main shaft
machining
precision
Prior art date
Application number
PCT/CN2015/073745
Other languages
English (en)
Chinese (zh)
Inventor
熊万里
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2016123831A1 publication Critical patent/WO2016123831A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes

Definitions

  • the invention relates to an ultra-precision machining technology based on a hydrostatic spindle grinding machine, in particular to a grinding machine precision cycle lifting method based on a hydrostatic main shaft component.
  • Ultra-precision machining is an advanced technology that represents the world's manufacturing level and future development trends. It is widely used in the aerospace industry, optical instrument industry, ultra-precision machine tool industry, etc., such as ultra-precision machining of large optical lenses, mobile phones/cameras. Ultra-precision machining of optical lenses, ultra-precision machining of spindle parts for ultra-precision machine tools, ultra-precision machining of key parts of high-performance engines, ultra-precision machining of high-precision bearing ring channels and inner and outer torus surfaces, etc. Machine tools and ultra-precision spindle components.
  • Ultra-precision machine tools are the basis for equipment for ultra-precision machining.
  • the precision of grinding workpieces by ultra-precision grinding machines is largely determined by the rotation accuracy of the spindle's functional components.
  • the main shaft components include cylindrical grinding wheel spindles and internal grinding wheel spindles. , the workpiece headstock spindle.
  • hydrostatic bearing Since the hydrostatic bearing has a unique "error homogenization effect", the rotation accuracy is much higher than that of the rolling bearing; at the same time, since the liquid medium is not compressible, the bearing capacity and rigidity of the hydrostatic bearing are much higher than that of the hydrostatic bearing;
  • the pressure bearing has been widely used in grinding machines with high requirements for rotation accuracy and high load carrying capacity.
  • hydrostatic bearings are widely used as bearings for the outer cylindrical grinding wheel spindles in internal and external cylindrical grinding machines at home and abroad.
  • the above-mentioned spindle function components are usually composed of main components such as a main shaft, a bearing and a sleeve, and the accuracy of the spindle, the bearing and the sleeve component directly affect the rotation precision of the assembled spindle component.
  • the precision of the rotation of these parts to the assembled spindle components is mainly reflected in two aspects. First, the dimensional accuracy of the part affects the interference/gap between the sleeve and the front and rear bearings, and the consistency between the front and rear bearings and the main shaft, thereby affecting the coaxiality between the front and rear bearing inner holes.
  • the geometrical tolerance of the part affects the uniformity of the interference/gap fit between the sleeve and the front and rear bearings, and the uniformity of the gap between the front and rear bearings and the main shaft, which in turn affects the final
  • the uniformity of the gap between the front and rear bearings and the main shaft; the roundness of the inner bore of the bearing and the roundness of the main shaft directly affect the rotation accuracy of the main shaft member.
  • the roundness of the grinding wheel, bearing and main shaft of the domestic and international round grinding machine can reach 0.5-2 ⁇ m, a few can reach 0.2-0.5 ⁇ m, the coaxiality can reach 2-5 ⁇ m, and very few can reach 1- 2 ⁇ m.
  • the hydrostatic spindle at home and abroad can achieve a rotation accuracy of 0.5-2 ⁇ m, and a very small number can reach 0.1-0.5 ⁇ m.
  • the precision level of the existing hydrostatic main shaft and ultra-precision grinding machine is not high enough, the precision improvement period is long, the development and production cycle is long, and the manufacturing cost is high.
  • the industrialization and application of the ultra-precision hydrostatic main shaft and ultra-precision grinding machine are seriously restricted.
  • the technical problem to be solved by the invention is to overcome the deficiencies of the prior art, and to provide a grinding machine precision cycle lifting method based on a hydrostatic main shaft component which can improve the machining precision limit of the grinding machine and is simple and convenient to operate.
  • the present invention adopts the following technical solutions:
  • a grinding machine precision cycle lifting method based on a hydrostatic main shaft component comprising the following steps:
  • S1 detecting the current limit machining precision of the grinding machine by using a hydrostatic main shaft component as a spindle component of the grinding machine, including roundness b 0 , coaxiality c 0 and perpendicularity d 0 ;
  • the hydrostatic main shaft component comprises a main shaft, a hydrostatic bearing, a sleeve and a bearing seat, and the hydrostatic bearing is provided with two or more, the main shaft is supported by a hydrostatic bearing, and two or more of the liquid static
  • the pressure bearing is divided into a bearing housing and a sleeve, and the bearing housing is installed in the sleeve.
  • At least one of a spindle, a hydrostatic bearing, a sleeve and a bearing housing is selected for processing.
  • the hydrostatic main shaft component is a cylindrical grinding wheel spindle component, an inner grinding wheel spindle component and a workpiece head frame spindle component.
  • the grinding machine precision cycle lifting method based on the hydrostatic main shaft component of the invention the hydrostatic main shaft component is used as the main shaft component of the grinding machine, the new hydrostatic main shaft component is processed, and the spindle of the grinding machine is updated with the new hydrostatic main shaft component.
  • the hydrostatic main shaft component is used as the main shaft component of the grinding machine
  • the new hydrostatic main shaft component is processed
  • the spindle of the grinding machine is updated with the new hydrostatic main shaft component.
  • the grinding machine precision cycle lifting method based on the hydrostatic main shaft component of the invention improves the processing precision of the grinding machine, and also obtains a set of high precision hydrostatic main shaft components, or liquid static Press some of the parts in the spindle part.
  • Figure 1 is a flow chart of a method for refining the precision of a grinding machine based on a hydrostatic spindle component of the present invention.
  • Figure 2 is a schematic view showing the structure of the outer circumference of the grinding machine spindle.
  • Figure 3 is a schematic view showing the structure of the outer circumference of a hydrostatic bearing for grinding machine.
  • Figure 4 is a schematic view showing the structure of the outer circumference of the grinding machine processing sleeve.
  • Fig. 5 is a structural schematic view of the outer circle of the bearing housing of the grinding machine.
  • FIG. 1 shows a flow of an embodiment of a grinding machine precision cycle lifting method based on a hydrostatic spindle component of the present invention, comprising the following steps:
  • the hydrostatic main shaft component comprises a main shaft 1, a hydrostatic bearing 2, a sleeve 3 and a bearing housing 4, and the hydrostatic bearing 2 is provided with two or more, and the main shaft 1 is supported by the hydrostatic bearing 2, More than one hydrostatic bearing 2 is divided into the bearing housing 4 and the sleeve 3, and the bearing housing 4 is installed in the sleeve 3.
  • the main shaft 1 and the hydrostatic pressure are selected. At least one of the bearing 2, the sleeve 3 and the bearing housing 4 is processed. In this embodiment, all of the above parts are selected for processing.
  • the outer circular surface of the spindle 1 when the spindle 1 is machined, the outer circular surface of the spindle 1 (shown in FIG. 2), the outer tapered surface, the inner tapered surface and the end surface are processed; when the hydrostatic bearing 2 is processed, the hydrostatic bearing is processed.
  • the outer circular surface of 2 shown in Figure 3), the inner circular surface and the end surface; when the sleeve 3 is machined, the outer circular surface of the processing sleeve 3 (shown in Figure 4), the inner circular surface and the end surface;
  • the bearing housing 4 When the bearing housing 4 is machined, the outer circular surface of the bearing housing 4 (shown in FIG.
  • the hydrostatic main shaft component is a cylindrical grinding wheel spindle component, an inner grinding wheel spindle component, and a workpiece head frame spindle component.
  • the oil film of the hydrostatic bearing has an "error homogenization effect", for example, a hydrostatic bearing with a circular hole of 5 ⁇ m and a spindle with an outer circularity of 3 ⁇ m.
  • the hydrostatic spindle component can achieve a rotation accuracy of less than 1 ⁇ m or even higher.
  • the hydrostatic spindle component with high rotation accuracy can be used as a spindle component of the grinding machine to further machine parts with higher roundness and spindles.
  • the rotation precision of the hydrostatic main shaft component is further improved, and the precision of the machined parts is further improved. According to this idea, the accuracy of the hydrostatic spindle and the machining accuracy of the grinding machine can be cyclically increased.
  • the rotation accuracy of the hydrostatic main shaft component can usually be increased to one-third to one-tenth of the roundness of the hydrostatic main shaft.
  • the rotational accuracy of the hydrostatic main shaft component can theoretically reach 10 nm to 33 nm.
  • the rotational precision of hydrostatic spindle components is generally around 1 ⁇ m to 3 ⁇ m, and there is a large room for improvement in the rotational accuracy of the hydrostatic main shaft components and the machining accuracy of the grinding machine.
  • the grinding machine precision cycle lifting method based on the hydrostatic main shaft component of the invention the hydrostatic main shaft component is used as the main shaft component of the grinding machine, the new hydrostatic main shaft component is processed, and the spindle of the grinding machine is updated with the new hydrostatic main shaft component.
  • the hydrostatic main shaft component is used as the main shaft component of the grinding machine
  • the new hydrostatic main shaft component is processed
  • the spindle of the grinding machine is updated with the new hydrostatic main shaft component.
  • the grinding machine precision cycle lifting method based on the hydrostatic main shaft component of the invention improves the processing precision of the grinding machine, and also obtains a set of high precision hydrostatic main shaft components, or liquid static Press some of the parts in the spindle part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

L'invention concerne un procédé d'ascension circulaire de précision de rectifieuse sur la base d'une partie de broche de pression hydrostatique, comprenant les étapes suivantes : S1, utilisation de la partie de broche de pression hydrostatique en tant que partie de broche d'une rectifieuse et détection de la précision d'usinage limite actuelle, qui comprend la rotondité b0, la coaxialité c0 et la perpendicularité d0, de la rectifieuse ; S2, préréglage de la précision d'usinage cible ascendant circulaire, qui comprend la rotondité bm, la coaxialité cm et la perpendicularité dm, de la rectifieuse ; S3, usinage d'une nouvelle partie de broche de pression hydrostatique par la rectifieuse et détection de la précision, qui comprend la rotondité bn, la coaxialité cn et la perpendicularité dn, de la nouvelle partie de broche statique hydraulique ; S4, lorsque bn est égal à b0, cn est égal à c0 et dn est égal à d0, passage à l'étape S5, sinon retour à l'étape S3 ; S5, remplacement de la partie de broche de pression hydrostatique de la rectifieuse par la nouvelle partie de broche de pression hydrostatique de façon à obtenir une nouvelle rectifieuse, détection et mise à jour de la précision d'usinage limite actuelle, qui comprend la rotondité b0, la coaxialité c0 et la perpendicularité d0, de la rectifieuse, et achèvement de l'ascension circulaire de précision de la rectifieuse lorsque b0 est inférieur ou égal à bm, c0 est inférieur ou égal à cm et d0 est inférieur ou égal à dm, sinon retour à l'étape S3. Le procédé peut améliorer la précision d'une rectifieuse.
PCT/CN2015/073745 2015-02-06 2015-03-06 Procédé d'ascension circulaire de précision de rectifieuse sur base d'une partie de broche de pression hydrostatique WO2016123831A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510062622.1A CN104647146B (zh) 2015-02-06 2015-02-06 基于液体静压主轴部件的磨床精度循环递升方法
CN201510062622.1 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016123831A1 true WO2016123831A1 (fr) 2016-08-11

Family

ID=53239055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073745 WO2016123831A1 (fr) 2015-02-06 2015-03-06 Procédé d'ascension circulaire de précision de rectifieuse sur base d'une partie de broche de pression hydrostatique

Country Status (2)

Country Link
CN (1) CN104647146B (fr)
WO (1) WO2016123831A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332133A (en) * 1964-10-14 1967-07-25 Lamb Co F Jos Method of making a hydrostatic spindle assembly
US20110299806A1 (en) * 2010-06-08 2011-12-08 Leonid Kashchenevsky Spindle, shaft supporting device and method of supporting a rotatable shaft
CN102880766A (zh) * 2012-10-18 2013-01-16 哈尔滨工业大学 基于参数化设计的液体静压主轴制作方法
CN102902865A (zh) * 2012-10-22 2013-01-30 哈尔滨工业大学 一种液体静压主轴的逆向制作方法
CN103335833A (zh) * 2013-07-02 2013-10-02 哈尔滨工业大学 在线测量超精密静压主轴动态性能的装置及采用该装置测量静压主轴动态性能的方法
CN104174877A (zh) * 2013-05-27 2014-12-03 北京海普瑞森科技发展有限公司 用于机床的超精密水静压主轴结构的设计

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE367564B (fr) * 1968-09-17 1974-06-04 Bendix Corp
JP3819530B2 (ja) * 1997-04-25 2006-09-13 住友重機械工業株式会社 研削ホイール用超精密ツルーイング装置
CN100351535C (zh) * 2003-11-28 2007-11-28 广东工业大学 采用液体静压轴承实施支承浮动的机床电主轴
CN100569422C (zh) * 2007-08-02 2009-12-16 大连华根机械有限公司 提高加工工件精度的精密镗头的安装方法
CN101417410B (zh) * 2008-11-19 2010-10-20 湖南大学 实现超精密磨削的磨床静压头架
CN102179698B (zh) * 2011-03-18 2013-12-04 陕西秦川机械发展股份有限公司 一种提高精密数控机床加工精度的方法
CN104200063B (zh) * 2014-08-06 2017-07-14 北京工业大学 机床空间加工误差的非确定性描述及预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332133A (en) * 1964-10-14 1967-07-25 Lamb Co F Jos Method of making a hydrostatic spindle assembly
US20110299806A1 (en) * 2010-06-08 2011-12-08 Leonid Kashchenevsky Spindle, shaft supporting device and method of supporting a rotatable shaft
CN102880766A (zh) * 2012-10-18 2013-01-16 哈尔滨工业大学 基于参数化设计的液体静压主轴制作方法
CN102902865A (zh) * 2012-10-22 2013-01-30 哈尔滨工业大学 一种液体静压主轴的逆向制作方法
CN104174877A (zh) * 2013-05-27 2014-12-03 北京海普瑞森科技发展有限公司 用于机床的超精密水静压主轴结构的设计
CN103335833A (zh) * 2013-07-02 2013-10-02 哈尔滨工业大学 在线测量超精密静压主轴动态性能的装置及采用该装置测量静压主轴动态性能的方法

Also Published As

Publication number Publication date
CN104647146A (zh) 2015-05-27
CN104647146B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN104625765B (zh) 一种高精度微小型空气静压转台
CN203600055U (zh) 数控内圆磨床的工件主轴结构
CN106625061A (zh) 用于超精密薄壁轴套类零件内孔外圆的磨削方法
CN202291424U (zh) 热过盈锁紧套结构
CN103056397A (zh) 一种大直径超精密气体静压回转轴系
WO2021120647A1 (fr) Procédé de production de roue de rotation
CN105690046B (zh) 双圆盘简支机构加工工装及其精加工方法
CN104942549A (zh) 一种机器人rv减速器花键偏心轴的制造工艺
CN204135775U (zh) 管筒装夹装置
CN107511725B (zh) 精密活动顶尖装置
CN106270575A (zh) 一种高精密数控走心机床主轴
WO2016123831A1 (fr) Procédé d'ascension circulaire de précision de rectifieuse sur base d'une partie de broche de pression hydrostatique
CN103394936A (zh) 车削工件装夹方法
CN102728858A (zh) 一种带吹气装置内置转子可拆卸的车床电主轴
CN111595774B (zh) 一种防逆转机构摩擦性能试验工装
CN212553328U (zh) 带自动循环供油系统的磨床专用动压轴系
CN201799613U (zh) 用于夹持轮毂轴承的车床夹持机构
CN204867435U (zh) 用于车削偏心零件的车床
CN210231548U (zh) 一种高速气浮电主轴的芯轴结构
CN204159886U (zh) 一种改进的电主轴轴芯组件
CN202185593U (zh) 一种车床定位装置
CN211071917U (zh) 用于连续多段高精度深内锥孔的加工装置
CN103042239B (zh) 一种机床顶尖与顶尖轴的安装结构
CN208005238U (zh) 邦迪管轧辊同轴双轴承孔加工专用工装
CN215392501U (zh) 一种数控车床副主轴尾座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880786

Country of ref document: EP

Kind code of ref document: A1