WO2016121682A1 - 表示制御素子および表示装置 - Google Patents

表示制御素子および表示装置 Download PDF

Info

Publication number
WO2016121682A1
WO2016121682A1 PCT/JP2016/051997 JP2016051997W WO2016121682A1 WO 2016121682 A1 WO2016121682 A1 WO 2016121682A1 JP 2016051997 W JP2016051997 W JP 2016051997W WO 2016121682 A1 WO2016121682 A1 WO 2016121682A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
control element
source
gate line
display control
Prior art date
Application number
PCT/JP2016/051997
Other languages
English (en)
French (fr)
Inventor
酒井 保
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/543,729 priority Critical patent/US10185194B2/en
Publication of WO2016121682A1 publication Critical patent/WO2016121682A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a display control element used in an active matrix display device and an active matrix display device using the display control element.
  • Patent Document 1 discloses an active matrix type display device using a thin film transistor (hereinafter referred to as “TFT”) as a display control element, and discloses a field sequential drive liquid crystal display device.
  • TFT thin film transistor
  • FIG. 8 is a plan view showing a peripheral configuration of a TFT disclosed in Patent Document 1 as a conventional technique.
  • Patent Document 1 describes that the display device can be driven at a high speed because these configurations can increase the on-current of the TFT without increasing the size of the TFT.
  • Patent Document 2 discloses a liquid crystal display device in which two pixel electrodes are arranged for “one pixel” and a TFT is connected to each pixel electrode as a display control element.
  • FIG. 9 is a diagram showing a peripheral configuration of a TFT disclosed in Patent Document 2 as a prior art, in which (a) is a plan view and (b) is a circuit diagram showing an equivalent circuit of (a).
  • TFTs are connected to the two pixel electrodes 13 and 14, respectively. These TFTs are indicated as S1 and S2 in FIG. 9B.
  • the drains of S1 and S2 are connected to the liquid crystal capacitors Clc1 and Clc2, respectively. That is, in Patent Document 2, in order to substantially drive “one pixel” separately, it is divided into two pixels (a pixel represented by a liquid crystal capacitor Clc1 and a pixel represented by a liquid crystal capacitor Clc2). Yes.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-175248 (published on June 30, 2005)” Japanese Patent Publication “JP 7-311390 A (published on November 28, 1995)”
  • Patent Document 1 also describes a parasitic capacitance generated between the drain electrode and the source electrode of the TFT. In order to drive the display device at high speed, it is preferable that the capacitance value of such parasitic capacitance is small.
  • the parasitic capacitance generated between the source electrode of the TFT and the gate line of the display device is not considered. Therefore, as shown in FIG. 8, increasing the channel width W, which is the length of the source electrode S and the drain electrode D facing each other on the semiconductor layer 12 of the TFT, contributes to high-speed driving of the display device. Although there is a possibility, the parasitic capacitance generated between the source electrode S of the TFT and the gate line Xn + 1 also increases. At this time, since the TFT ON / OFF speed decreases, it is difficult to increase the driving speed of the display device.
  • an object of the present invention is to provide a display control element capable of increasing the drive speed of a display device, and a display device having a high drive speed using the display control element.
  • a display control element is a display control element that drives an active matrix display device having a plurality of source lines and a plurality of gate lines.
  • a semiconductor layer having a gate surface connected to a gate line; a source electrode disposed on one surface of the semiconductor layer and connected to the source line; and disposed on the one surface and connected to the same pixel of the display device.
  • the gate surface, the source electrode, and each drain electrode form a thin film transistor as a gate, a source, and a drain, respectively.
  • a display device is an active matrix display device having a plurality of source lines, a plurality of gate lines, and a plurality of pixels, and includes the display control element described above.
  • the gate line and the gate surface are connected, the source line and the source electrode are connected, and the pixel and the drain electrode are connected.
  • the display control element can achieve both an improvement in on-current and a reduction in the capacitance value of the parasitic capacitance, the display device can be driven at high speed.
  • This display control element is particularly suitable for a display device that employs a field sequential driving method that requires high-speed driving.
  • FIG. 1 is a plan view illustrating a configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 2 is a circuit diagram / plan view showing a detailed configuration of the liquid crystal display device shown in FIG. 1.
  • FIG. 3 is a circuit diagram / plan view showing a configuration of a comparative example of the liquid crystal display device shown in FIG. 2.
  • 6 is a plan view illustrating a configuration of a gate line of a liquid crystal display device according to Embodiment 2.
  • FIG. 6 is a plan view illustrating a configuration of a gate line of a liquid crystal display device according to Embodiment 3.
  • FIG. It is a schematic diagram which shows the structure of the transparent display of Embodiment 4.
  • FIG. 10 is a plan view illustrating a configuration of a display control element according to a fifth embodiment. It is a top view which shows the periphery structure of TFT of patent document 1 as a prior art. It is a top view and circuit diagram which show the periphery structure of TFT of patent document 2 as a prior art.
  • the liquid crystal display device of this embodiment is suitable for high-speed driving.
  • the reason is that the gate drive speed of the TFT included in the display control element used in the liquid crystal display device is high.
  • the liquid crystal display device and the display control element will be specifically described.
  • FIG. 1 is a plan view showing the configuration of the liquid crystal display device 1 of the present embodiment.
  • the liquid crystal display device 1 is an active matrix display device including a plurality of source lines SLn ⁇ SLn + 1, a plurality of gate lines GLn ⁇ GLn + 1, and a plurality of pixel portions P. .
  • the broken line in FIG. 1 shows one pixel portion P.
  • the pixel portion P is driven by the source line SLn and the gate line GLn + 1.
  • the source line SLn + 1 and the gate line GLn drive a pixel portion other than the pixel portion P indicated by a broken line in FIG.
  • the number and dimensions of the source lines, the number and dimensions of the gate lines, and the number and dimensions of the pixels included in the liquid crystal display device 1 are determined according to the screen size and definition of the liquid crystal display device 1.
  • (Equivalent circuit) 2 is a diagram showing a detailed configuration of the liquid crystal display device 1 shown in FIG. 1, wherein (a) is a circuit diagram showing a configuration equivalent to the liquid crystal display device 1, and (b) is a liquid crystal display device 1. It is a top view which shows the structure for one pixel.
  • the pixel portion P includes a display control element A, an auxiliary capacitor Cs, and a liquid crystal LC.
  • Display control element A includes two TFTs.
  • the source electrodes of these TFTs are connected to the source line SLn.
  • the gate electrodes of these TFTs are connected to the gate line GLn + 1. Further, the drain electrode of these TFTs is connected to one end of the auxiliary capacitor Cs and one end of the liquid crystal LC. That is, two TFTs are arranged in parallel.
  • the semiconductor layer 1 includes, for example, amorphous silicon (a-Si), polycrystalline silicon (poly-Si), or IGZO (InGaZnOx: registered trademark) which is an InGaZnO-based oxide semiconductor.
  • a-Si amorphous silicon
  • poly-Si polycrystalline silicon
  • IGZO InGaZnOx: registered trademark
  • the auxiliary capacitor Cs is a capacitor element that contributes to the value of the voltage applied to the liquid crystal LC, but is not an essential configuration.
  • Vcom is a signal line connected to the other end of the auxiliary capacitor Cs and the other end of the liquid crystal LC, and applies a common potential to the auxiliary capacitor Cs and the liquid crystal LC.
  • the display control element A includes a semiconductor layer l, one source electrode s provided on one surface of the semiconductor layer 1, and two drains provided on the one surface. And electrodes da and db.
  • the display control element A is disposed on the gate line GL. Connected to the source electrode s is a tip portion f branched from the source line SL.
  • one of the plurality of source lines of the liquid crystal display device 1 is indicated as “SL” as a representative.
  • One of the plurality of gate lines of the liquid crystal display device 1 is indicated as “GL” as a representative.
  • the source electrode s, the drain electrode da, the facing surface p (gate surface) that is the surface facing the gate line GL of the semiconductor layer l, and the semiconductor layer 1 function as one TFT (hereinafter “TFTa”).
  • TFTa TFT
  • the source electrode s is the source of the TFTa.
  • the drain electrode da is the drain of the TFTa.
  • the facing surface p is a gate of TFTa.
  • the source electrode s, the drain electrode db, the facing surface p, and the semiconductor layer l all function as one TFT (hereinafter referred to as “TFTb”). That is, the source electrode s is the source of the TFTb.
  • the drain electrode db is the drain of the TFTb.
  • the facing surface p is a gate of the TFTb.
  • the sources of two TFTs are overlapped as one source electrode s.
  • the channel portion CH which is a portion where the source electrode s and the drain electrodes da and db face each other, extends in the direction in which the source line SL extends, and the drain electrodes da and db extend in the gate line GL of the source electrode s. It is arranged on the direction side.
  • the drain electrodes da and db are connected to a transparent pixel electrode T containing indium tin oxide (ITO) through a connection electrode E.
  • the pixel electrode T relays each liquid crystal LC and the drain electrodes da and db.
  • the contact t connects the connection electrode E and the pixel electrode T.
  • the display control element A having the above configuration can drive pixels at a higher speed than the conventional display control element.
  • the liquid crystal display device 1 using the display control element A can be driven at high speed.
  • the reason for this is that, as will be described later, it is possible to achieve both an improvement in the on-current of TFTa and TFTb and a reduction in the capacitance value of the parasitic capacitance Csg.
  • the on-current is improved as the channel width, which is the length of the source electrode and the drain electrode on the semiconductor layer facing each other, so that the display device can be driven at high speed.
  • two TFTa / TFTb are formed corresponding to the two drain electrodes da / db. That is, in the display control element A, two TFTa / TFTb are arranged in parallel.
  • the channel width Wa is a length on the semiconductor layer 1 where the tip f connected to the source electrode s and the connection electrode E connected to the drain electrode da face each other.
  • the channel width Wb is a length on the semiconductor layer 1 where the tip f connected to the source electrode s and the connection electrode E connected to the drain electrode db face each other.
  • each drain electrode is connected to the same liquid crystal LC, the on-current is improved according to the sum of the channel width Wa of TFTa and the channel width Wb of TFTb. Therefore, in the display control element A, the on-current is improved as compared with the conventional display control element in which a plurality of TFTs are not formed.
  • This parasitic capacitance corresponds to a capacitance element indicated as Csg in FIG.
  • the parasitic capacitance Csg is generated in a range indicated by a range B in FIG.
  • the electrostatic capacitance value of the parasitic capacitance Csg is proportional to the area of the range B of the tip portion f. Further, this capacitance value is half proportional to the film thickness in the range B of the semiconductor layer l.
  • liquid crystal display devices are required to be thinned. For this reason, the film thickness of the semiconductor layer l tends to be thin.
  • the area of the tip f of the range B greatly contributes to the capacitance value of the parasitic capacitance Csg. The smaller the capacitance value, the faster the TFTa and TFTb can be turned on / off.
  • the source of the two TFTa / TFTb is not overlapped as one source electrode s.
  • the area of the range B can be reduced. Thereby, the electrostatic capacitance value of the parasitic capacitance Csg can be reduced.
  • the total area of the source electrode s is smaller than the total area of the drain electrodes da and db. For this reason, the electrostatic capacitance value of the parasitic capacitance Csg generated between the source electrode and the gate line can be reliably reduced.
  • TFT parallelization number the number of TFTs included in the display control element A (hereinafter referred to as “TFT parallelization number”) is not limited to two. As described above, each TFT is paralleled, and the source of each TFT is one source. If they are stacked as electrodes, three or more may be used.
  • the parasitic capacitance Csg exists as many as the number of display control elements A connected to the source line SL. For example, if the liquid crystal display device 1 is a full high-definition (full-HD), there are 1080 parasitic capacitances Csg. Therefore, as the number of TFTs in parallel increases, the effect of reducing the capacitance value of the parasitic capacitance Csg increases.
  • the capacitance value of the parasitic capacitance between the TFT drain electrode included in the display control element A and the gate line GL increases.
  • this capacitance value only contributes to the pixel charging rate. Therefore, there is almost no influence on the ON / OFF speed of the TFT gate, that is, the driving speed of the liquid crystal display device 1.
  • FIG. 3 is a diagram showing a configuration of a comparative example of the liquid crystal display device 1 shown in FIG. 2, wherein (a) is a circuit diagram showing a configuration equivalent to the comparative example, and (b) is 1 of the comparative example. It is a top view which shows the structure for a pixel.
  • the display control element Aa of the comparative example is composed of one TFT.
  • the display control element Aa includes a semiconductor layer la, one source electrode sa provided in the semiconductor layer la, and one drain electrode provided in the semiconductor layer la. d.
  • the display control element Aa is disposed on the gate line GL.
  • a tip end fa branched from the source line SL is connected to the source electrode sa.
  • the drain electrode d is connected to the transparent pixel electrode T containing ITO through the connection electrode Ea.
  • the pixel electrode T relays each liquid crystal LC and the drain electrode d.
  • the contact t connects the connection electrode Ea and the pixel electrode T.
  • the source electrode sa, the drain electrode d, the facing surface pa that is the surface facing the gate line GL of the semiconductor layer la, and the semiconductor layer la function as one TFT. That is, the source electrode sa is the source of this TFT.
  • the drain electrode d is the drain of this TFT.
  • the facing surface pa is the gate of this TFT.
  • the parasitic capacitance Csg shown in (a) of FIG. 3 occurs in a range indicated by a range Ba in (b) of FIG. At this time, the capacitance value of the parasitic capacitance Csg is proportional to the area of the range Ba of the tip portion fa.
  • the display control element Aa a plurality of TFTs are not arranged in parallel. If the tip end fa is extended in the direction of the arrow X and the channel width W, which is the length where the source electrode sa and the drain electrode d on the TFT semiconductor layer la face each other, is increased, the area of the range Ba increases. The capacitance value of the parasitic capacitance Csg cannot be reduced while maintaining the channel width W of the channel portion CHa wide.
  • the pixel portion P is a square.
  • the shape is not limited to this.
  • the square pixel portion P is suitable for a field sequential display (FSD).
  • the gate line GL is thicker than the source line SL. For this reason, the resistance value of the gates of TFTa and TFTb can be lowered. Thereby, the driving speed of the liquid crystal display device 1 is improved. Furthermore, by providing the semiconductor layer 1 on the thick gate line GL, the aperture ratio of the liquid crystal display device 1 is improved.
  • the tip part f of the source line SL can be made thin to the minimum value defined by the design rule of the liquid crystal display device.
  • the tip portion f particularly, the portion in the range B
  • the capacitance value of the parasitic capacitance Csg can be reduced.
  • FIG. 4 is a plan view showing the configuration of the gate line GLa of the liquid crystal display device 1a of the present embodiment, where (a) shows the position of the opening O provided in the gate line GLa, and (b) shows the gate. The positions of the openings Oa and Ob provided in the line GLa are shown.
  • the liquid crystal display device 1a has a configuration in which the gate line GL of the liquid crystal display device 1 is replaced with a gate line GLa.
  • the gate line GLa is provided with an opening O in a range B (see FIG. 2B).
  • the parasitic capacitance Csg (see FIG. 2A) occurs in the range B.
  • the parasitic capacitance Csg can be regarded as a capacitive element having the tip f and the gate line GLa as the counter electrode in the range B.
  • the opening O is provided in the gate line GLa in the range B, one of the counter electrodes of the capacitive element does not exist. Therefore, there is almost no parasitic capacitance Csg. For this reason, in the liquid crystal display device 1a, the electrostatic capacitance value of the parasitic capacitance Csg can be further reduced.
  • the electric resistance value of the gate line GLa is larger than the electric resistance value of the gate line GL.
  • the range in which the opening O is provided in the gate line GLa may be smaller than the range B so that the electrical resistance value of the gate line GLa does not exceed a predetermined value.
  • the gate line GLa may further include an opening Oa in the range Ba and / or may further include an opening Ob in the range Bb.
  • the range Ba means a range in which the tip of the connection electrode E on the drain electrode da side covers the semiconductor layer 1 in FIG.
  • the range Bb means a range in which the tip of the connection electrode E on the drain electrode db side covers the semiconductor layer 1 in FIG.
  • the capacitance value of the parasitic capacitance Csg can be further reduced.
  • Gate line with a small opening In order to suppress an increase in the electrical resistance value of the gate line GL, it is preferable to provide an opening smaller than the openings O, Oa, and Ob in the gate line GL.
  • FIG. 5 is a plan view showing the configuration of the gate line GLb of the liquid crystal display device 1b of the present embodiment, in which (a) shows the position of the small opening Oc provided in the gate line GLb, and (b) shows. The positions of the small openings Oca and Ocb provided in the gate line GLb are shown.
  • the liquid crystal display device 1b has a configuration in which the gate line GL of the liquid crystal display device 1 is replaced with a gate line GLb.
  • the gate line GLb has a small opening Oc in a range C that is a range in which the source electrode s of the semiconductor layer l is provided.
  • a range C is a range in which the tip portion f of the source line SL and the semiconductor layer 1 are in contact with each other.
  • the range included in the range B of the semiconductor layer 1 and smaller than the range B is set as the range C. Doping. Since the region other than the range C of the range B of the semiconductor layer l is not doped, the parasitic capacitance Csg does not substantially occur. At this time, in the range C, the parasitic capacitance Csg can be regarded as a capacitive element having the tip portion f and the gate line GLb as the counter electrode.
  • the capacitance value of the parasitic capacitance Csg can be further reduced while suppressing an increase in the electrical resistance value of the gate line GLb.
  • the gate line GLb may further include a small opening Oca in the range Ca and / or may further include a small opening Ocb in the range Cb.
  • the range Ca is a range in which the tip of the connection electrode E on the drain electrode da side contacts the semiconductor layer 1 in FIG.
  • the semiconductor layer 1 includes, for example, a-Si or poly-Si, and doping is required
  • the range is included in the range Ba of the semiconductor layer 1 (see FIG. 4B) and smaller than the range Ba. Is defined as a range Ca, and this range Ca is doped.
  • the range Cb is a range in which the tip of the connection electrode E on the drain electrode db side contacts the semiconductor layer 1 in FIG.
  • the semiconductor layer 1 includes, for example, a-Si or poly-Si and needs doping
  • the capacitance value of the parasitic capacitance Csg can be further reduced while further suppressing the increase in the electric resistance value of the gate line GL.
  • FIG. 6 is a schematic diagram showing the configuration of the transparent display 5 of the present embodiment, where (a) shows the overall configuration of the transparent display 5 and (b) shows the environment in which the transparent display 5 is used.
  • the transparent display 5 includes a liquid crystal display device 1 and a base 2.
  • the liquid crystal display device 1 does not include a color filter, but includes, for example, RGB LEDs as pixels, and is driven by field sequential driving.
  • the liquid crystal display device 1 may be the above-described liquid crystal display device 1a or 1b.
  • the base unit 2 houses a driver of the liquid crystal display device 1 and an attached circuit.
  • the base part 2 is not an essential structure.
  • the display control element A is arranged on the gate line GL.
  • the dimension of the semiconductor layer 1 is smaller than that of the gate line GL in the direction in which the source line SL extends. For this reason, an aperture ratio becomes high compared with the conventional liquid crystal display device.
  • the liquid crystal display device 1 is higher in transparency than the conventional liquid crystal display device because the transparent pixel electrode T is disposed between the gate line GL and the source line SL.
  • the transparent display 5 can be installed at a reception counter, for example.
  • the female F can point the information I displayed on the transparent display 5 to the male M facing the transparent display 5.
  • the gesture indicating the information can be visually recognized by the male M without being blocked by the transparent display 5. In this way, it is possible to provide a transparent display that has no sense of incongruity even when installed at a reception counter or the like and has excellent design.
  • FIG. 7 is a plan view showing the configuration of the display control element Ab of the present embodiment.
  • the display control element Ab includes a semiconductor layer lb, one source electrode sa provided on one surface of the semiconductor layer lb, and two drain electrodes dA and dB provided on the one surface. With.
  • the display control element Ab is disposed on the gate line GL.
  • a tip end fa branched from the source line SL is connected to the source electrode sa.
  • the source electrode sa, the drain electrode dA, the facing surface pb (gate surface) that is the surface facing the gate line GL of the semiconductor layer lb, and the semiconductor layer lb function as one TFT (hereinafter “TFT_A”).
  • TFT_A TFT
  • the source electrode sa is the source of the TFT_A.
  • the drain electrode dA is a drain of the TFT_A.
  • the facing surface pb is the gate of the TFT_A.
  • the source electrode sa, the drain electrode dB, the opposing surface pb, and the semiconductor layer lb all function as one TFT (hereinafter “TFT_B”). That is, the source electrode sa is the source of the TFT_B.
  • the drain electrode dB is a drain of the TFT_B.
  • the facing surface pb is the gate of the TFT_B.
  • the sources of the two TFTs are overlapped as one source electrode sa.
  • the display control element Ab can be represented by a circuit equivalent to the display control element A.
  • a circuit equivalent to a liquid crystal display device using the display control element Ab can be expressed as shown in FIG.
  • the channel portion CHb which is a portion of the source electrode sa and the drain electrodes dA and dB facing each other, extends in the direction in which the gate line GL extends, and the drain electrode dA and dB extends from the source line SL of the source electrode sa. It is arranged on the direction side.
  • the drain electrodes dA and dB are connected to a transparent pixel electrode T containing ITO via a connection electrode Eb.
  • the pixel electrode T relays each liquid crystal LC and the drain electrodes dA and dB.
  • the contact t connects the connection electrode Eb and the pixel electrode T.
  • the display control element Ab having the above configuration can drive pixels at a higher speed than the conventional display control element.
  • the liquid crystal display device 1 using the display control element Ab can be driven at high speed.
  • the reason for this is that, as will be described later, it is possible to achieve both an improvement in the on-current of TFT_A and TFT_B and a reduction in the capacitance value of the parasitic capacitance Csg.
  • TFT_A / TFT_B are formed according to the two drain electrodes dA / dB. That is, in the display control element Ab, two TFT_A and TFT_B are arranged in parallel.
  • the channel width WA is a length in which the front end fa connected to the source electrode sa on the semiconductor layer lb and the connection electrode Eb connected to the drain electrode dA face each other.
  • the channel width WB is a length on the semiconductor layer lb where the front end fa connected to the source electrode sa and the connection electrode Eb connected to the drain electrode dB face each other.
  • each drain electrode is connected to the same liquid crystal LC, the on-current is improved according to the sum of the channel width WA of TFT_A and the channel width WB of TFT_B. Therefore, in the display control element Ab, the on-current is improved as compared with the conventional display control element in which a plurality of TFTs are not formed.
  • the parasitic capacitance Csg is generated in a range indicated by a range Ba in FIG. At this time, the capacitance value of the parasitic capacitance Csg is proportional to the area of the range Ba of the tip portion fa. The capacitance value is half proportional to the film thickness of the range Ba of the semiconductor layer lb.
  • the sources of the two TFT_A / TFT_B are overlapped as one source electrode sa, the source of the two TFT_A / TFT_B is not overlapped as one source electrode sa.
  • the area of the range Ba can be reduced. Thereby, the electrostatic capacitance value of the parasitic capacitance Csg can be reduced.
  • the total area of the source electrode sa is smaller than the total area of the drain electrodes dA and dB. For this reason, the electrostatic capacitance value of the parasitic capacitance Csg generated between the source electrode and the gate line can be reliably reduced.
  • TFT parallelization number the number of TFTs included in the display control element Ab
  • each TFT is paralleled, and the source of each TFT is one source. If they are stacked as electrodes, three or more may be used.
  • the parasitic capacitance Csg exists as many as the number of display control elements Ab connected to the source line SL. For example, if the liquid crystal display device using the display control element Ab is full-HD, there are 1080 parasitic capacitances Csg. Therefore, as the number of TFTs in parallel increases, the effect of reducing the capacitance value of the parasitic capacitance Csg increases.
  • the capacitance value of the parasitic capacitance between the drain electrode of the TFT included in the display control element Ab and the gate line GL increases.
  • this capacitance value only contributes to the pixel charging rate. Therefore, there is almost no influence on the ON / OFF speed of the TFT gate, that is, the driving speed of the liquid crystal display device using the display control element Ab.
  • the display control element Ab Suitable for high-speed driving of the apparatus.
  • the display control elements A and Ab according to the first aspect of the present invention include an active matrix type display device (liquid crystal display devices 1, 1 a, and 1 b) having a plurality of source lines SL and a plurality of gate lines GL, GLa, and GLb.
  • an active matrix type display device liquid crystal display devices 1, 1 a, and 1 b having a plurality of source lines SL and a plurality of gate lines GL, GLa, and GLb.
  • a display control element to be driven which has semiconductor layers l and lb having gate surfaces (opposing surfaces p and pb) connected to the gate line, and is arranged on one surface of the semiconductor layer and connected to the source line
  • the drain electrode forms one thin film transistor as a gate, a source, and a drain, respectively.
  • the on-state current is improved as the channel width, which is a length in which the source electrode and the drain electrode on the semiconductor layer face each other, and thus the display device can be driven at high speed.
  • a plurality of thin film transistors are formed according to the number of drain electrodes. Since each drain electrode is connected to the same pixel, the on-current is improved according to the total channel width of the plurality of thin film transistors. Therefore, in the above-described display control element, the on-current is improved as compared with the conventional display control element in which a plurality of thin film transistors are not formed.
  • Parasitic capacitance is generated between the source electrode of the thin film transistor and the gate line of the liquid crystal display device.
  • the capacitance value of the parasitic capacitance is proportional to the total area of the source electrode.
  • the thin film transistor has a higher ON / OFF speed as the parasitic capacitance is smaller, so that the display device can be driven at a higher speed.
  • the sources of the plurality of thin film transistors are overlapped as one source electrode. Therefore, the display control element can reduce the total area of the source electrode as compared with the conventional display control element in which the source of the thin film transistor is not overlapped as one source electrode. For this reason, the capacitance value of the parasitic capacitance can be reduced as compared with the display control element.
  • the display control element can achieve both an improvement in on-current and a reduction in the capacitance value of the parasitic capacitance, the display device can be driven at high speed.
  • This display control element is particularly suitable for a display device that employs a field sequential driving method that requires high-speed driving.
  • the total area of the source electrode may be smaller than the total area of the plurality of drain electrodes.
  • the mounting surface When the source electrode and the plurality of drain electrodes are arranged on the same surface of the semiconductor layer (hereinafter referred to as “mounting surface”), when one of the source electrode or the drain electrode becomes larger, the mounting for arranging the other is performed. The area of the placement surface is reduced. Therefore, if the total area of the plurality of drain electrodes is large, the source electrode may not be arranged on the mounting surface.
  • the source electrode is surely arranged on the mounting surface and is generated between the source electrode and the gate line.
  • the capacitance value of the parasitic capacitance can be reduced. Therefore, the display control element can reliably drive the display device at high speed.
  • the source electrode may be disposed between the plurality of drain electrodes on the one surface.
  • the channel portion of the thin film transistor which is a portion where the source electrode and the drain electrode on the semiconductor layer face each other, is formed so as to sandwich the source electrode. Since the peripheral portion of the source electrode is effectively used as a channel portion, the total channel width can be further increased.
  • the display device (liquid crystal display devices 1, 1 a, 1 b) according to aspect 4 of the present invention has an active matrix type having a plurality of source lines SL, a plurality of gate lines GL, GLa, GLb, and a plurality of pixel portions P.
  • a display control element according to any one of aspects 1 to 3, wherein the gate line and the gate surface are connected, and the source line and the source electrode are The pixel and the drain electrode are connected.
  • the display device may further include a transparent pixel electrode T that relays each pixel and the drain electrode in aspect 4 above.
  • an area that transmits light can be provided in the display area of the display device.
  • Such a display device is suitable as a transparent display.
  • transparent is not limited to the light transmittance being 100%, but also means that the light transmittance is, for example, 1 to 99%, that is, translucent.
  • the dimension of the semiconductor layer may be smaller than the gate line in the direction in which the source line extends.
  • the aperture ratio of the display device is improved.
  • This display device is more suitable as a transparent display.
  • an opening may be provided at a position of the gate line facing the source electrode.
  • the parasitic capacitance described above occurs in a range where the source electrode and the gate line face each other.
  • the parasitic capacitance can be regarded as a capacitive element having a source electrode and a gate line as counter electrodes.
  • an opening may be provided at a position of the gate line facing the drain electrode.
  • the capacitance value of the parasitic capacitance can be further reduced.
  • the gate line is positioned at a position facing the doped portion for forming the source electrode on the one surface.
  • a small opening may be provided.
  • the electrical resistance value of the gate line increases when an opening is provided.
  • parasitic capacitance generally does not occur in the undoped part of the semiconductor layer.
  • the parasitic capacitance can be regarded as a capacitive element in which the source electrode and the gate line at the doped portion are opposed electrodes.
  • the capacitance value of the parasitic capacitance can be further reduced while suppressing an increase in the electrical resistance value of the gate line.
  • the gate line is positioned at a position facing the doped portion for forming the drain electrode on the one surface.
  • a small opening may be provided.
  • the present invention can be used for a field sequential drive type display device and a transparent display.
  • Liquid crystal display device (display device) 5 Transparent display A / Ab Display control element Csg Parasitic capacitance GL / GLa / GLb Gate line LC Liquid crystal (pixel) O / Oa / Ob Opening portion Oc / Oca / Ocb Small opening portion P Pixel portion SL Source line T Pixel electrode da / db / dA / dB Drain electrode l / lb Semiconductor layer p / pb Opposing surface (gate surface) s ⁇ sa Source electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

 表示装置の駆動速度を高めることができる表示制御素子等を提供する。表示制御素子(A)は、ゲートライン(GL)に接続される対向面(p)を有する半導体層(l)と、その一面に配されかつソースライン(SL)に接続されるソース電極(s)と、この一面に配されかつ同一の画素(P)に接続される複数のドレイン電極(da・db)とを備え、ゲート面と、ソース電極(s)と、各ドレイン電極とは、一つの薄膜トランジスタを形成する。

Description

表示制御素子および表示装置
 本発明は、アクティブマトリクス型の表示装置に利用される表示制御素子と、この表示制御素子を利用したアクティブマトリクス型の表示装置とに関する。
 特許文献1は、表示制御素子として薄膜トランジスタ(Thin Film Transistor;以下「TFT」)を利用したアクティブマトリクス型の表示装置であって、フィールドシーケンシャル駆動の液晶表示装置を開示している。
 フィールドシーケンシャル駆動では、表示装置のすべての画素を原色(例えばRGB)ごとに時分割駆動する。このため、色割れ等の問題を抑制するために、原色に例えばW(ホワイト)を追加するために、または、映像の表示速度を向上させるために、表示装置の高速駆動が特に求められる。
 図8は、従来技術として特許文献1のTFTの周辺構成を示す平面図である。
 図8に示されるように、ドレイン電極Dの先端部14は、半円状である。また、ソース電極Sの先端部16は、半円弧状である。これらの構成により、TFTのサイズを大きくすることなくTFTのオン電流を増やせるため、表示装置を高速駆動できるということが、特許文献1には記載されている。
 特許文献2は、「一つの画素」について2個の画素電極配し、各画素電極に表示制御素子としてTFTを接続した液晶表示装置を開示している。
 図9は、従来技術として特許文献2のTFTの周辺構成を示す図であって、(a)は平面図であり、(b)は(a)の等価回路を示す回路図である。
 図9の(a)に示されるように、2個の画素電極13・14には、それぞれTFTが接続される。これらのTFTは、図9の(b)においてS1・S2と示されている。
 図9の(b)に示されるように、S1・S2のドレインは、それぞれ液晶容量Clc1・Clc2に接続されている。つまり、特許文献2では、実質的に「一つの画素」を別々に駆動するために、2個の画素(液晶容量Clc1で表される画素および液晶容量Clc2で表される画素)に分割している。
日本国公開特許公報「特開2005-175248号公報(2005年6月30日公開)」 日本国公開特許公報「特開平7-311390号公報(1995年11月28日公開)」
 特許文献1には、TFTのドレイン電極とソース電極との間に発生する寄生容量についても記載されている。表示装置の高速に駆動するためには、このような寄生容量の静電容量値は小さいことが好ましい。
 しかし、特許文献1に記載された構成では、TFTのソース電極と表示装置のゲートラインとの間に発生する寄生容量が考慮されていない。ゆえに、図8に示されるように、TFTの半導体層12上でソース電極Sとドレイン電極Dとが対向している長さであるチャネル幅Wを大きくすれば、表示装置の高速駆動に寄与する可能性があるものの、TFTのソース電極SとゲートラインXn+1との間に発生する寄生容量も大きくなる。このとき、TFTのON/OFFの速度が低下するため、表示装置の駆動速度を高めることは困難である。
 特許文献2に記載された構成でも、TFTのソース電極と表示装置のゲートラインとの間に発生する寄生容量が考慮されておらず、表示装置の駆動速度を高めることは困難である。
 本発明は、以上の問題に鑑み、表示装置の駆動速度を高めることができる表示制御素子と、この表示制御素子を利用した駆動速度が高い表示装置とを提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る表示制御素子は、複数のソースラインと複数のゲートラインとを有するアクティブマトリクス型の表示装置を駆動する表示制御素子であって、上記ゲートラインに接続されるゲート面を有する半導体層と、上記半導体層の一面に配されかつ上記ソースラインに接続されるソース電極と、上記一面に配されかつ上記表示装置の同一の画素に接続される複数のドレイン電極とを備え、上記ゲート面と、上記ソース電極と、各ドレイン電極とは、それぞれ、ゲートと、ソースと、ドレインとして、一つの薄膜トランジスタを形成する。
 また、本発明の他の態様に係る表示装置は、複数のソースラインと、複数のゲートラインと、複数の画素とを有するアクティブマトリクス型の表示装置であって、上述の表示制御素子を備え、上記ゲートラインと、上記ゲート面とは、接続されており、上記ソースラインと、上記ソース電極とは、接続されており、上記画素と、上記ドレイン電極とは、接続されている。
 本発明の各態様によれば、表示制御素子は、オン電流の向上と、寄生容量の静電容量値の低減とを両立できるため、高速に表示装置を駆動できるという効果を奏する。この表示制御素子は、特に、高速駆動が求められるフィールドシーケンシャル駆動方式を採用した表示装置に好適である。
 以上のように、表示装置の駆動速度を高めることができる表示制御素子と、この表示制御素子を利用した駆動速度が高い表示装置とを得ることができる。
実施形態1の液晶表示装置の構成を示す平面図である。 図1に示される液晶表示装置の詳細構成を示す回路図・平面図である。 図2に示される液晶表示装置の比較例の構成を示す回路図・平面図である。 実施形態2の液晶表示装置のゲートラインの構成を示す平面図である。 実施形態3の液晶表示装置のゲートラインの構成を示す平面図である。 実施形態4の透明ディスプレイの構成を示す模式図である。 実施形態5の表示制御素子の構成を示す平面図である。 従来技術として特許文献1のTFTの周辺構成を示す平面図である。 従来技術として特許文献2のTFTの周辺構成を示す平面図・回路図である。
 〔実施形態1〕
 本発明の第一実施形態について、図1~図3に基づき説明する。なお、以下の説明において図の符号が示すものと、「背景技術」および「発明が解決しようとする課題」において図の符号が示すものとは異なる。
 本実施形態の液晶表示装置は、高速駆動に適している。その理由は、この液晶表示装置に利用される表示制御素子に含まれるTFTのゲート駆動速度が高いことにある。以下では、これらの液晶表示装置と表示制御素子とについて具体的に説明する。
 ≪液晶表示装置の構成≫
 図1は、本実施形態の液晶表示装置1の構成を示す平面図である。
 図1に示されるように、液晶表示装置1は、複数のソースラインSLn・SLn+1と、複数のゲートラインGLn・GLn+1と、複数の画素部Pとを備えた、アクティブマトリクス型の表示装置である。
 図1の破線は、1個の画素部Pを示す。画素部Pは、ソースラインSLnとゲートラインGLn+1とにより駆動される。なお、ソースラインSLn+1とゲートラインGLnとは、図1において破線で示される画素部P以外の画素部を駆動する。液晶表示装置1が備える、ソースラインの本数および寸法と、ゲートラインの本数および寸法と、画素の個数および寸法とは、液晶表示装置1の画面サイズや精細度に応じ定まる。
 (等価回路)
 図2は、図1に示される液晶表示装置1の詳細構成を示す図であって、(a)は液晶表示装置1と等価な構成を示す回路図であり、(b)は液晶表示装置1の1画素分の構成を示す平面図である。
 図2の(a)に示されるように、画素部Pは、表示制御素子Aと、補助容量Csと、液晶LCとを備える。
 表示制御素子Aは、2個のTFTを備える。これらのTFTのソース電極は、ソースラインSLnに接続されている。また、これらのTFTのゲート電極は、ゲートラインGLn+1に接続されている。また、こられのTFTのドレイン電極は、補助容量Csの一端と、液晶LCの一端とに接続されている。つまり、2個のTFTが、並列化されている。
 半導体層lは、例えば、アモルファスシリコ ン(a-Si)、多結晶シリコン(poly-Si)、またはInGaZnO系酸化物半導体であるIGZO(InGaZnOx:登録商標)を含む。
 なお、補助容量Csは、液晶LCに印加される電圧の値に寄与する容量素子であるが、必須の構成ではない。
 Vcomは、補助容量Csの他端と、液晶LCの他端とに接続された信号線であり、補助容量Csと液晶LCとに共通する電位を与える。
 ≪液晶表示素子の構成≫
 図2の(b)に示されるように、表示制御素子Aは、半導体層lと、半導体層lの一面に設けられた1個のソース電極sと、この一面に設けられた2個のドレイン電極da・dbとを備える。そして、表示制御素子Aは、ゲートラインGL上に配されている。ソース電極sには、ソースラインSLから分岐した先端部fが接続されている。
 なお、図2の(b)では、液晶表示装置1の複数のソースラインのうちの一つが、代表として「SL」と示されている。また、液晶表示装置1の複数のゲートラインのうちの一つが、代表として「GL」と示されている。
 ソース電極sと、ドレイン電極daと、半導体層lのゲートラインGLに対向する面である対向面p(ゲート面)と、半導体層lとは、1個のTFT(以下「TFTa」)として機能する。つまり、ソース電極sは、TFTaのソースである。また、ドレイン電極daは、TFTaのドレインである。また、対向面pは、TFTaのゲートである。
 ソース電極sと、ドレイン電極dbと、対向面pと、半導体層lとも、1個のTFT(以下「TFTb」)として機能する。つまり、ソース電極sは、TFTbのソースである。また、ドレイン電極dbは、TFTbのドレインである。また、対向面pは、TFTbのゲートである。
 以上のように、2個のTFTのソースは、1個のソース電極sとして重ねられている。
 ソース電極sとドレイン電極da・dbとの互いに対向する部位であるチャネル部CHは、ソースラインSLが延びる方向側に延びており、ドレイン電極da・dbは、ソース電極sのゲートラインGLが延びる方向側に配されている。
 ドレイン電極da・dbは、接続電極Eを介し、インジウムスズ酸化物(ITO;Indium Tin Oxide)を含む透明の画素電極Tに接続されている。画素電極Tは、各液晶LCとドレイン電極da・dbとを中継している。コンタクトtは、接続電極Eと、画素電極Tとを接続している。
 ≪表示制御素子および液晶表示装置の動作および効果≫
 以上の構成の表示制御素子Aは、従来の表示制御素子よりも高速に画素を駆動できる。これにより、表示制御素子Aを利用した液晶表示装置1の高速駆動が可能となる。この理由は、後述するように、TFTa・TFTbのオン電流の向上と寄生容量Csgの静電容量値の低減とを両立できることにある。
 (チャネル幅)
 TFTは、半導体層上のソース電極とドレイン電極とが対向する長さであるチャネル幅が長いほどオン電流が向上するため、表示装置を高速に駆動できる。
 表示制御素子Aでは、2個のドレイン電極da・dbに応じ、2個のTFTa・TFTbが形成される。つまり、表示制御素子Aでは、2個のTFTa・TFTbが並列化されている。
 ここで、チャネル幅Waは、半導体層l上の、ソース電極sに接続された先端部fと、ドレイン電極daに接続された接続電極Eとが対向する長さである。また、チャネル幅Wbは、半導体層l上の、ソース電極sに接続された先端部fと、ドレイン電極dbに接続された接続電極Eとが対向する長さである。
 そして、各ドレイン電極が同一の液晶LCに接続されているため、TFTaのチャネル幅WaとTFTbのチャネル幅Wbとの合計に応じオン電流が向上する。ゆえに、表示制御素子Aでは、複数のTFTが形成されていない従来の表示制御素子よりも、オン電流が向上する。
 (寄生容量)
 液晶表示装置1を高速駆動するためには、TFTaおよびTFTbのON/OFF速度を高速化することが好ましい。従来の液晶表示装置では、TFTのソース電極と液晶表示装置のゲートラインとの間に発生する寄生容量が考慮されていないため、液晶表示装置を高速駆動することが困難であった。
 この寄生容量は、図2の(a)においてCsgと示される容量素子に相当する。そして、寄生容量Csgは、図2の(b)において範囲Bで示される範囲に発生する。このとき、寄生容量Csgの静電容量値は、先端部fの範囲Bの面積に比例する。また、この静電容量値は、半導体層lの範囲Bの膜厚に半比例する。
 一般的に、液晶表示装置は、薄型化することが求められている。このため、半導体層lの膜厚は、薄くなる傾向にある。このとき、範囲Bの先端部fの面積は、寄生容量Csgの静電容量値に大きく寄与する。この静電容量値が小さいほど、高速にTFTaおよびTFTbをON/OFFできる。
 上述のように、2個のTFTa・TFTbのソースが1個のソース電極sとして重ねられているため、2個のTFTa・TFTbのソースが1個のソース電極sとして重ねられていない構成よりも、範囲Bの面積を小さくできる。これにより、寄生容量Csgの静電容量値を小さくできる。
 また、ソース電極sの総面積は、ドレイン電極da・dbの総面積よりも小さい。このため、確実にソース電極とゲートラインとの間に発生する寄生容量Csgの静電容量値を低減できる。
 (チャネル幅の維持と寄生容量の静電容量値の低減との両立)
 以上のように、2個のTFTが並列化され、かつ、2個のTFTのソースが1個のソース電極sとして重ねられることにより、チャネル幅を広く維持しつつ、寄生容量の静電容量値を低減できる。
 ここで、表示制御素子Aが含むTFTの個数(以下「TFT並列化数」)は2個に限定されず、上述のように各TFTを並列化し、かつ、各TFTのソースを1個のソース電極として重ねられるのであれば、3個以上であってもよい。
 TFT並列化数が増えるほど、寄生容量Csgの静電容量値を小さくできる。そして、寄生容量Csgは、ソースラインSLに接続された表示制御素子Aの個数だけ存在する。例えば、液晶表示装置1が、フルハイビジョン(full-HD;Full High Definition)であれば、寄生容量Csgは、1080個存在する。ゆえに、TFT並列化数が増えるほど、寄生容量Csgの静電容量値の削減効果は大きくなる。
 また、TFT並列化数が増えると、表示制御素子Aが含むTFTのドレイン電極と、ゲートラインGLとの間の寄生容量の静電容量値が増える。しかし、この静電容量値は、画素の充電速度にのみ寄与する。よって、TFTのゲートのON/OFF速度、つまり液晶表示装置1の駆動速度には、おおむね影響がない。
 (比較例1)
 図3は、図2に示される液晶表示装置1の比較例の構成を示す図であって、(a)は比較例と等価な構成を示す回路図であり、(b)は比較例の1画素分の構成を示す平面図である。
 図3の(a)に示されるように、比較例の表示制御素子Aaは、1個のTFTからなる。
 図3の(b)に示されるように、表示制御素子Aaは、半導体層laと、半導体層laに設けられた1個のソース電極saと、半導体層laに設けられた1個のドレイン電極dとを備える。そして、表示制御素子Aaは、ゲートラインGL上に配されている。ソース電極saには、ソースラインSLから分岐した先端部faが接続されている。
 ドレイン電極dは、接続電極Eaを介し、ITOを含む透明の画素電極Tに接続されている。画素電極Tは、各液晶LCとドレイン電極dとを中継している。コンタクトtは、接続電極Eaと画素電極Tとを接続している。
 ここで、ソース電極saと、ドレイン電極dと、半導体層laのゲートラインGLに対向する面である対向面paと、半導体層laとは、1個のTFTとして機能する。つまり、ソース電極saは、このTFTのソースである。また、ドレイン電極dは、このTFTのドレインである。また、対向面paは、このTFTのゲートである。
 図3の(a)に示される寄生容量Csgは、図3の(b)において範囲Baで示される範囲に発生する。このとき、寄生容量Csgの静電容量値は、先端部faの範囲Baの面積に比例する。
 表示制御素子Aaでは、複数のTFTが並列化されていない。仮に、先端部faを矢印Xの方向へ伸ばし、TFTの半導体層la上のソース電極saとドレイン電極dとが対向する長さであるチャネル幅Wを長くすると、範囲Baの面積も増えるため、チャネル部CHaのチャネル幅Wを広く維持しつつ、寄生容量Csgの静電容量値を低減できない。
 (比較例2)
 図8に示されるように、特許文献1の液晶表示装置では、半円状のドレイン電極Dの先端部14を、半円弧上のソース電極Sの先端部16の内側に配している。先端部14を先端部16の外側に配することはできないため、液晶表示装置1のように、表示制御素子に含まれる複数のTFTを並列化すること、および、TFTのソースを1個のソース電極に重ねることは困難である。
 (その他の構成)
 図1に示されるように、画素部Pは正方形である。なお、この形状に限定されるわけではない。正方形の画素部Pは、フィールドシーケンシャルディスプレイ(FSD)に好適である。
 図2の(b)に示されるように、ゲートラインGLは、ソースラインSLよりも太い。このため、TFTa・TFTbのゲートの抵抗値を下げることができる。これにより、液晶表示装置1の駆動速度が向上する。さらに、この太いゲートラインGL上に半導体層lを配することにより、液晶表示装置1の開口率が向上する。
 ソースラインSLの先端部fは、液晶表示装置のデザインルールにより規定される最小値まで細くすることができる。先端部f(特に範囲Bの部分)を細く形成することで、寄生容量Csgの静電容量値を低減できる。
 〔実施形態2〕
 本発明の第二実施形態について、図4に基づき説明する。なお、上述の部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。以下の実施形態についても同様である。
 (開口部を設けたゲートライン)
 図4は、本実施形態の液晶表示装置1aのゲートラインGLaの構成を示す平面図であって、(a)はゲートラインGLaに設けられた開口部Oの位置を示し、(b)はゲートラインGLaに設けられた開口部Oa・Obの位置を示す。
 図4の(a)に示されるように、液晶表示装置1aは、液晶表示装置1のゲートラインGLをゲートラインGLaに置き換えた構成を備える。ゲートラインGLaには、範囲B(図2の(b)参照)に開口部Oが設けられている。
 上述のように、寄生容量Csg(図2の(a)参照)は、範囲Bに発生する。そして、液晶表示装置1では、寄生容量Csgは、範囲Bにおいて、先端部fとゲートラインGLaとを対向電極とする容量素子であるとみなせる。
 しかし、液晶表示装置1aでは、範囲Bにおいて、ゲートラインGLaには開口部Oが設けられているため、この容量素子の対向電極の一方が存在しない。ゆえに、寄生容量Csgもおおむね存在しない。このため、液晶表示装置1aでは、寄生容量Csgの静電容量値をさらに低減できる。
 なお、ゲートラインGLaの電気抵抗値は、ゲートラインGLの電気抵抗値よりも大きくなる。このため、ゲートラインGLaの電気抵抗値が、所定の値を越えないように、ゲートラインGLaに開口部Oを設ける範囲を、範囲Bよりも小さくしてもよい。
 図4の(b)に示されるように、ゲートラインGLaには、範囲Baに開口部Oaをさらに設けてもよい、および/または、範囲Bbに開口部Obをさらに設けてもよい。
 ここで、範囲Baは、図2の(b)において、ドレイン電極da側の接続電極Eの先端部が、半導体層lを覆う範囲を意味する。また、範囲Bbは、図2の(b)において、ドレイン電極db側の接続電極Eの先端部が、半導体層lを覆う範囲を意味する。
 以上の構成によっても、寄生容量Csgの静電容量値をさらに低減できる。
 〔実施形態3〕
 本発明の第三実施形態について、図5に基づき説明する。
 (小開口部を設けたゲートライン)
 ゲートラインGLの電気抵抗値の上昇を抑制するためには、ゲートラインGLに開口部O・Oa・Obよりも小さい開口部を設けることが好ましい。
 図5は、本実施形態の液晶表示装置1bのゲートラインGLbの構成を示す平面図であって、(a)はゲートラインGLbに設けられた小開口部Ocの位置を示し、(b)はゲートラインGLbに設けられた小開口部Oca・Ocbの位置を示す。
 図5の(a)に示されるように、液晶表示装置1bは、液晶表示装置1のゲートラインGLをゲートラインGLbに置き換えた構成を備える。ゲートラインGLbには、半導体層lのソース電極sが設けられた範囲である範囲Cに小開口部Ocが設けられている。範囲Cは、ソースラインSLの先端部fと半導体層lとがコンタクトする範囲である。
 半導体層lが、例えばa-Siまたはpoly-Siを含み、ドーピングを必要とする場合には、半導体層lの範囲Bに含まれかつ範囲Bよりも小さい範囲を範囲Cとして、この範囲Cにドーピングを行う。半導体層lの範囲Bの範囲C以外の領域には、ドーピングが行われていないため、寄生容量Csgはおおむね発生しない。このとき、寄生容量Csgは、範囲Cにおいて、先端部fとゲートラインGLbとを対向電極とする容量素子であるとみなせる。
 しかし、液晶表示装置1bでは、範囲Cにおいて、ゲートラインGLbには小開口部Ocが設けられているため、この容量素子の対向電極の一方が存在しない。ゆえに、寄生容量Csgもおおむね存在しない。このため、液晶表示装置1bでは、ゲートラインGLbの電気抵抗値の上昇を抑制しつつ、寄生容量Csgの静電容量値をよりさらに低減できる。
 図5の(b)に示されるように、ゲートラインGLbには、範囲Caに小開口部Ocaをさらに設けてもよい、および/または、範囲Cbに小開口部Ocbをさらに設けてもよい。
 ここで、範囲Caは、図2の(b)において、ドレイン電極da側の接続電極Eの先端部と半導体層lとがコンタクトする範囲である。半導体層lが、例えばa-Siまたはpoly-Siを含み、ドーピングを必要とする場合には、半導体層lの範囲Ba(図4の(b)参照)に含まれかつ範囲Baよりも小さい範囲を範囲Caとして、この範囲Caにドーピングを行う。
 また、範囲Cbは、図2の(b)において、ドレイン電極db側の接続電極Eの先端部と半導体層lとがコンタクトする範囲である。半導体層lが、例えばa-Siまたはpoly-Siを含み、ドーピングを必要とする場合には、半導体層lの範囲Bb(図4の(b)参照)に含まれかつ範囲Bbよりも小さい範囲を範囲Cbとして、この範囲Cbにドーピングを行う。
 以上の構成によっても、ゲートラインGLの電気抵抗値の上昇をさらに抑制しつつ、寄生容量Csgの静電容量値をさらに低減できる。
 〔実施形態4〕
 本発明の第四実施形態について、図6に基づき説明する。
 (透明ディスプレイ)
 図6は、本実施形態の透明ディスプレイ5の構成を示す模式図であって、(a)は透明ディスプレイ5の全体構成を示し、(b)は透明ディスプレイ5を利用する環境を示す。
 図6の(a)に示されるように、透明ディスプレイ5は、液晶表示装置1と、台部2とを備える。
 液晶表示装置1は、カラーフィルターを備えず、画素として例えばRGBのLEDを備え、フィールドシーケンシャル駆動により駆動される。液晶表示装置1は、上述の液晶表示装置1aまたは1bであってもよい。
 台部2は、液晶表示装置1のドライバおよび付属する回路を収納している。なお、台部2は必須の構成ではない。
 ここで、図2の(b)に示されるように、液晶表示装置1は、ゲートラインGL上に表示制御素子Aが配されている。具体的には、ソースラインSLが延びる方向について、半導体層lの寸法は、ゲートラインGLよりも小さい。このため、従来の液晶表示装置と比較して開口率が高くなる。かつ、液晶表示装置1は、ゲートラインGLとソースラインSLとの間に透明の画素電極Tが配されているため、従来の液晶表示装置と比較して透明度が高い。
 (透明ディスプレイの利用形態)
 図6の(b)に示されるように、透明ディスプレイ5は、例えば受付のカウンターに設置できる。女性Fは、透明ディスプレイ5を挟み対向する男性Mに対し、透明ディスプレイ5に表示した情報Iを指し示すことができる。このとき、情報を指し示す身ぶりは、透明ディスプレイ5に遮られることなく、男性Mにより視認可能である。このように、受付のカウンターなどに設置しても違和感がなく、かつ、デザイン性にも優れた透明ディスプレイを提供することができる。
 〔実施形態5〕
 本発明の第五実施形態について、図7に基づき説明する。
 ≪液晶表示素子の構成≫
 図7は、本実施形態の表示制御素子Abの構成を示す平面図である。
 図7に示されるように、表示制御素子Abは、半導体層lbと、半導体層lbの一面に設けられた1個のソース電極saと、この一面に設けられた2個のドレイン電極dA・dBとを備える。そして、表示制御素子Abは、ゲートラインGL上に配されている。ソース電極saには、ソースラインSLから分岐した先端部faが接続されている。
 ソース電極saと、ドレイン電極dAと、半導体層lbのゲートラインGLに対向する面である対向面pb(ゲート面)と、半導体層lbとは、1個のTFT(以下「TFT_A」)として機能する。つまり、ソース電極saは、TFT_Aのソースである。また、ドレイン電極dAは、TFT_Aのドレインである。また、対向面pbは、TFT_Aのゲートである。
 ソース電極saと、ドレイン電極dBと、対向面pbと、半導体層lbとも、1個のTFT(以下「TFT_B」)として機能する。つまり、ソース電極saは、TFT_Bのソースである。また、ドレイン電極dBは、TFT_Bのドレインである。また、対向面pbは、TFT_Bのゲートである。
 以上のように、2個のTFTのソースは、1個のソース電極saとして重ねられている。
 表示制御素子Abは、表示制御素子Aと等価な回路で表すことができる。そして、表示制御素子Abを利用する液晶表示装置と等価な回路は、図2の(a)に示されるように表すことができる。
 ソース電極saとドレイン電極dA・dBとの互いに対向する部位であるチャネル部CHbは、ゲートラインGLが延びる方向側に延びており、ドレイン電極dA・dBは、ソース電極saのソースラインSLが延びる方向側に配されている。
 ドレイン電極dA・dBは、接続電極Ebを介し、ITOを含む透明の画素電極Tに接続されている。画素電極Tは、各液晶LCとドレイン電極dA・dBとを中継している。コンタクトtは、接続電極Ebと画素電極Tとを接続している。
 ≪液晶表示装置の動作および効果≫
 以上の構成の表示制御素子Abは、従来の表示制御素子よりも高速に画素を駆動できる。これにより、表示制御素子Abを利用した液晶表示装置1の高速駆動が可能となる。この理由は、後述するように、TFT_A・TFT_Bのオン電流の向上と寄生容量Csgの静電容量値の低減とを両立できることにある。
 (チャネル幅)
 表示制御素子Abでは、2個のドレイン電極dA・dBに応じ、2個のTFT_A・TFT_Bが形成される。つまり、表示制御素子Abでは、2個のTFT_A・TFT_Bが並列化されている。
 ここで、チャネル幅WAは、半導体層lb上の、ソース電極saに接続された先端部faと、ドレイン電極dAに接続された接続電極Ebとが対向する長さである。また、チャネル幅WBは、半導体層lb上の、ソース電極saに接続された先端部faと、ドレイン電極dBに接続された接続電極Ebとが対向する長さである。
 そして、各ドレイン電極が同一の液晶LCに接続されているため、TFT_Aのチャネル幅WAとTFT_Bのチャネル幅WBとの合計に応じオン電流が向上する。ゆえに、表示制御素子Abでは、複数のTFTが形成されていない従来の表示制御素子よりも、オン電流が向上する。
 (寄生容量)
 寄生容量Csgは、図7において範囲Baで示される範囲に発生する。このとき、寄生容量Csgの静電容量値は、先端部faの範囲Baの面積に比例する。また、この静電容量値は、半導体層lbの範囲Baの膜厚に半比例する。
 上述のように、2個のTFT_A・TFT_Bのソースが1個のソース電極saとして重ねられているため、2個のTFT_A・TFT_Bのソースが1個のソース電極saとして重ねられていない構成よりも、範囲Baの面積を小さくできる。これにより、寄生容量Csgの静電容量値を小さくできる。
 また、ソース電極saの総面積は、ドレイン電極dA・dBの総面積よりも小さい。このため、確実にソース電極とゲートラインとの間に発生する寄生容量Csgの静電容量値を低減できる。
 (チャネル幅の維持と寄生容量の静電容量値の低減との両立)
 以上のように、2個のTFTが並列化され、かつ、2個のTFTのソースが1個のソース電極saとして重ねられることにより、チャネル幅を広く維持しつつ、寄生容量の静電容量値を低減できる。
 ここで、表示制御素子Abが含むTFTの個数(以下「TFT並列化数」)は2個に限定されず、上述のように各TFTを並列化し、かつ、各TFTのソースを1個のソース電極として重ねられるのであれば、3個以上であってもよい。
 TFT並列化数が増えるほど、寄生容量Csgの静電容量値を小さくできる。そして、寄生容量Csgは、ソースラインSLに接続された表示制御素子Abの個数だけ存在する。例えば、表示制御素子Abを使用する液晶表示装置が、full-HDであれば、寄生容量Csgは、1080個存在する。ゆえに、TFT並列化数が増えるほど、寄生容量Csgの静電容量値の削減効果は大きくなる。
 また、TFT並列化数が増えると、表示制御素子Abが含むTFTのドレイン電極と、ゲートラインGLとの間の寄生容量の静電容量値が増える。しかし、この静電容量値は、画素の充電速度にのみ寄与する。よって、TFTのゲートのON/OFF速度、つまり表示制御素子Abを利用する液晶表示装置の駆動速度には、おおむね影響がない。
 特に、チャネル幅を長くすることによる液晶表示装置の駆動速度の向上が、寄生容量の静電容量値の増加による液晶表示装置の駆動速度の低下よりも大きい場合、表示制御素子Abは、液晶表示装置の高速駆動に好適である。
 〔まとめ〕
 本発明の態様1に係る表示制御素子A・Abは、複数のソースラインSLと複数のゲートラインGL・GLa・GLbとを有するアクティブマトリクス型の表示装置(液晶表示装置1・1a・1b)を駆動する表示制御素子であって、上記ゲートラインに接続されるゲート面(対向面p・pb)を有する半導体層l・lbと、上記半導体層の一面に配されかつ上記ソースラインに接続されるソース電極s・saと、上記一面に配されかつ上記表示装置の同一の画素に接続される複数のドレイン電極da・db・dA・dBとを備え、上記ゲート面と、上記ソース電極と、各ドレイン電極とは、それぞれ、ゲートと、ソースと、ドレインとして、一つの薄膜トランジスタを形成する。
 (オン電流の向上)
 薄膜トランジスタは、半導体層上のソース電極とドレイン電極とが対向する長さであるチャネル幅が長いほどオン電流が向上するため、表示装置を高速に駆動できる。
 上記構成によれば、ドレイン電極の個数に応じ複数の薄膜トランジスタが形成される。そして、各ドレイン電極が同一の画素に接続されているため、複数の薄膜トランジスタのチャネル幅の合計に応じオン電流が向上する。ゆえに、上述の表示制御素子では、複数の薄膜トランジスタが形成されていない従来の表示制御素子よりも、オン電流が向上する。
 (寄生容量の静電容量値の低減)
 薄膜トランジスタのソース電極と液晶表示装置のゲートラインとの間には、寄生容量が発生する。この寄生容量の静電容量値は、ソース電極の総面積に比例する。薄膜トランジスタは、この寄生容量が小さいほどON/OFF速度が向上するため、表示装置を高速に駆動できる。
 上記構成によれば、複数の薄膜トランジスタのソースは、1個のソース電極として重ねられている。ゆえに、表示制御素子は、薄膜トランジスタのソースが1個のソース電極として重ねられていない従来の表示制御素子よりも、ソース電極の総面積を低減できる。このため、この表示制御素子よりも、寄生容量の静電容量値を低減できる。
 (オン電流の向上と寄生容量の静電容量値の低減との両立)
 以上により、表示制御素子は、オン電流の向上と、寄生容量の静電容量値の低減とを両立できるため、高速に表示装置を駆動できる。
 この表示制御素子は、特に、高速駆動が求められるフィールドシーケンシャル駆動方式を採用した表示装置に好適である。
 本発明の態様2に係る表示制御素子では、上記態様1において、上記ソース電極の総面積は、上記複数のドレイン電極の総面積よりも小さくてよい。
 ソース電極と、複数のドレイン電極とが、半導体層の同一面(以下「載置面」)に配される場合、ソース電極またはドレイン電極のうちの一方が大きくなると、他方を配すための載置面の面積が小さくなる。ゆえに、複数のドレイン電極の総面積が大きければ、載置面にソース電極を配せない可能性がある。
 上記構成によれば、ソース電極の総面積が、複数のドレイン電極の総面積よりも小さいため、確実に載置面にソース電極を配し、かつ、ソース電極とゲートラインとの間に発生する寄生容量の静電容量値を低減できる。ゆえに、表示制御素子は、確実に表示装置を高速駆動できる。
 本発明の態様3に係る表示制御素子では、上記態様1または2において、上記ソース電極は、上記一面において、上記複数のドレイン電極の間に配されていてよい。
 上記構成によれば、薄膜トランジスタの、半導体層上のソース電極とドレイン電極とが対向する部位であるチャネル部は、ソース電極を挟むように形成される。ソース電極の周辺部位が、チャネル部として有効に利用されるため、チャネル幅の合計をさらに増やすことができる。
 本発明の態様4に係る表示装置(液晶表示装置1・1a・1b)は、複数のソースラインSLと、複数のゲートラインGL・GLa・GLbと、複数の画素部Pとを有するアクティブマトリクス型の表示装置であって、態様1から3のいずれか一態様における表示制御素子を備え、上記ゲートラインと、上記ゲート面とは、接続されており、上記ソースラインと、上記ソース電極とは、接続されており、上記画素と、上記ドレイン電極とは、接続されている。
 本発明の態様5に係る表示装置は、上記態様4において、各画素と上記ドレイン電極とを中継する透明の画素電極Tをさらに備えてよい。
 上記構成によれば、表示装置の表示領域に光を透過する領域を設けることができる。このような表示装置は、透明ディスプレイとして好適である。
 なお、この「透明」とは、光の透過率が100%であることに限定されるわけではなく、光の透過率が例えば1~99%である、つまり半透明であることも意味する。
 本発明の態様6に係る表示装置では、上記態様4または5において、上記半導体層の寸法は、上記ソースラインが延びる方向について、上記ゲートラインよりも小さくてよい。
 上記構成によれば、表示装置の開口率が向上する。この表示装置は、透明ディスプレイとしてより好適である。
 本発明の態様7に係る表示装置では、上記態様4から6のいずれか一態様において、上記ゲートラインの上記ソース電極に対向する位置には、開口部が設けられていてよい。
 上述の寄生容量は、ソース電極とゲートラインとが対向する範囲に発生する。そして、この寄生容量は、ソース電極とゲートラインとを対向電極とする容量素子であるとみなせる。
 上記構成によれば、ゲートラインに開口部が設けられているため、この容量素子の対向電極の一方が存在しない。ゆえに、寄生容量もおおむね存在しない。このため、寄生容量の静電容量値をさらに低減できる。
 本発明の態様8に係る表示装置では、上記態様4から7のいずれか一態様において、上記ゲートラインの上記ドレイン電極に対向する位置には、開口部が設けられていてよい。
 上記構成によれば、寄生容量の静電容量値をよりさらに低減できる。
 本発明の態様9に係る表示装置では、上記態様4から8のいずれか一態様において、上記ゲートラインの、上記一面の上記ソース電極を形成するためにドーピングされた部位に対向する位置には、小開口部が設けられていてよい。
 ゲートラインの電気抵抗値は、開口部を設けられると大きくなる。
 上記構成によれば、半導体層のドーピングされていない部位には、寄生容量がおおむね発生しない。上述のように、この寄生容量は、ドーピングされた部位のソース電極とゲートラインとを対向電極とする容量素子であるとみなせる。
 そして、ドーピングされた部位において、ゲートラインには小開口部が設けられているため、この容量素子の対向電極の一方が存在しない。ゆえに、寄生容量もおおむね存在しない。このため、表示装置では、ゲートラインの電気抵抗値の上昇を抑制しつつ、寄生容量の静電容量値をさらに低減できる。
 本発明の態様10に係る表示装置では、上記態様4から9のいずれか一態様において、上記ゲートラインの、上記一面の上記ドレイン電極を形成するためにドーピングされた部位に対向する位置には、小開口部が設けられていてよい。
 上記構成によれば、ゲートラインの電気抵抗値の上昇を抑制しつつ、寄生容量の静電容量値をよりさらに低減できる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、フィールドシーケンシャル駆動方式の表示装置および透明ディスプレイに利用することができる。
1・1a・1b 液晶表示装置(表示装置)
5 透明ディスプレイ
A・Ab 表示制御素子
Csg 寄生容量
GL・GLa・GLb ゲートライン
LC 液晶(画素)
O・Oa・Ob 開口部
Oc・Oca・Ocb 小開口部
P 画素部
SL ソースライン
T 画素電極
da・db・dA・dB ドレイン電極
l・lb 半導体層
p・pb 対向面(ゲート面)
s・sa ソース電極

Claims (10)

  1.  複数のソースラインと複数のゲートラインとを有するアクティブマトリクス型の表示装置を駆動する表示制御素子であって、
     上記ゲートラインに接続されるゲート面を有する半導体層と、
     上記半導体層の一面に配されかつ上記ソースラインに接続されるソース電極と、
     上記一面に配されかつ上記表示装置の同一の画素に接続される複数のドレイン電極と、を備え、
     上記ゲート面と、上記ソース電極と、各ドレイン電極とは、それぞれ、ゲートと、ソースと、ドレインとして、一つの薄膜トランジスタを形成することを特徴とする表示制御素子。
  2.  上記ソース電極の総面積は、上記複数のドレイン電極の総面積よりも小さいことを特徴とする請求項1に記載の表示制御素子。
  3.  上記ソース電極は、上記一面において、上記複数のドレイン電極の間に配されていることを特徴とする請求項1または2に記載の表示制御素子。
  4.  複数のソースラインと、複数のゲートラインと、複数の画素とを有するアクティブマトリクス型の表示装置であって、
     請求項1から3のいずれか一項に記載の表示制御素子を備え、
     上記ゲートラインと、上記ゲート面とは、接続されており、
     上記ソースラインと、上記ソース電極とは、接続されており、
     上記画素と、上記ドレイン電極とは、接続されている、
    ことを特徴とする表示装置。
  5.  各画素と上記ドレイン電極とを中継する透明の画素電極をさらに備えることを特徴とする請求項4に記載の表示装置。
  6.  上記半導体層の寸法は、上記ソースラインが延びる方向について、上記ゲートラインよりも小さいことを特徴とする請求項4または5に記載の表示装置。
  7.  上記ゲートラインの上記ソース電極に対向する位置には、開口部が設けられていることを特徴とする請求項4から6のいずれか一項に記載の表示装置。
  8.  上記ゲートラインの上記ドレイン電極に対向する位置には、開口部が設けられていることを特徴とする請求項4から7のいずれか一項に記載の表示装置。
  9.  上記ゲートラインの、上記一面の上記ソース電極を形成するためにドーピングされた部位に対向する位置には、開口部が設けられていることを特徴とする請求項4から8のいずれか一項に記載の表示装置。
  10.  上記ゲートラインの、上記一面の上記ドレイン電極を形成するためにドーピングされた部位に対向する位置には、小開口部が設けられていることを特徴とする請求項4から9のいずれか一項に記載の表示装置。
PCT/JP2016/051997 2015-01-30 2016-01-25 表示制御素子および表示装置 WO2016121682A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/543,729 US10185194B2 (en) 2015-01-30 2016-01-25 Display control element and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017835 2015-01-30
JP2015017835 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121682A1 true WO2016121682A1 (ja) 2016-08-04

Family

ID=56543295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051997 WO2016121682A1 (ja) 2015-01-30 2016-01-25 表示制御素子および表示装置

Country Status (2)

Country Link
US (1) US10185194B2 (ja)
WO (1) WO2016121682A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010231A (ja) * 2016-07-15 2018-01-18 株式会社ジャパンディスプレイ 表示装置
JP2020126218A (ja) * 2019-02-06 2020-08-20 株式会社ジャパンディスプレイ 半導体基板及び表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296553A (ja) * 2000-04-14 2001-10-26 Advanced Display Inc 表示装置および表示装置の製造方法
JP2007156468A (ja) * 2005-12-02 2007-06-21 Samsung Electronics Co Ltd 液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311390A (ja) 1994-05-18 1995-11-28 Sanyo Electric Co Ltd 液晶表示装置
KR100370800B1 (ko) * 2000-06-09 2003-02-05 엘지.필립스 엘시디 주식회사 액정표시장치용 어레이기판 제작방법
JP2005175248A (ja) 2003-12-12 2005-06-30 Sanyo Electric Co Ltd フィールドシーケンシャル方式液晶表示装置
US8120720B2 (en) * 2009-12-03 2012-02-21 Century Display(ShenZhen)Co., Ltd. Pixel structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296553A (ja) * 2000-04-14 2001-10-26 Advanced Display Inc 表示装置および表示装置の製造方法
JP2007156468A (ja) * 2005-12-02 2007-06-21 Samsung Electronics Co Ltd 液晶表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010231A (ja) * 2016-07-15 2018-01-18 株式会社ジャパンディスプレイ 表示装置
JP2020126218A (ja) * 2019-02-06 2020-08-20 株式会社ジャパンディスプレイ 半導体基板及び表示装置
JP7317593B2 (ja) 2019-02-06 2023-07-31 株式会社ジャパンディスプレイ 半導体基板及び表示装置

Also Published As

Publication number Publication date
US20180011382A1 (en) 2018-01-11
US10185194B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6655720B2 (ja) アクティブマトリクス基板と、それを備えたタッチパネル付き表示装置及び液晶表示装置
KR102429122B1 (ko) 터치스크린 내장형 표시장치 및 그 제조방법
JP5670991B2 (ja) 液晶ディスプレイ装置とその製造方法
US9965087B2 (en) Touch array substrate, liquid crystal display panel and liquid crystal display device
EP2461364B1 (en) Thin film transistor
US8704966B2 (en) Pixel array, active device array substrate and flat display panel
KR102652674B1 (ko) 초고 해상도 액정 표시장치
US20140264330A1 (en) Thin film transistor array substrate and liquid crystal display device
KR102156057B1 (ko) 표시장치용 표시패널
CN107850963B (zh) 具有触摸面板的显示装置以及其制造方法
US10331248B2 (en) Touch-integrated display device
US10775660B2 (en) Touch-panel-equipped display device and method for producing touch-panel-equipped display device
US10103178B2 (en) Display device
JP2019061202A (ja) 表示装置
WO2011151955A1 (ja) 半導体素子、薄膜トランジスタ基板及び表示装置
JP6433169B2 (ja) 薄膜半導体装置
JP2016009719A5 (ja)
US20160329358A1 (en) Pixel structure
US20190302557A1 (en) Display device
WO2016121682A1 (ja) 表示制御素子および表示装置
US9064978B2 (en) Pixel structure and fabricating method thereof
US10108039B2 (en) Touch array substrate, liquid crystal display panel and liquid crystal display device
EP3686665A1 (en) Pixel structure, array substrate and display device
KR102428434B1 (ko) 백플레인 기판 및 이를 이용한 액정 표시 장치
JP2015227981A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15543729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743285

Country of ref document: EP

Kind code of ref document: A1