WO2016121331A1 - Double glazed glass and optical device - Google Patents

Double glazed glass and optical device Download PDF

Info

Publication number
WO2016121331A1
WO2016121331A1 PCT/JP2016/000243 JP2016000243W WO2016121331A1 WO 2016121331 A1 WO2016121331 A1 WO 2016121331A1 JP 2016000243 W JP2016000243 W JP 2016000243W WO 2016121331 A1 WO2016121331 A1 WO 2016121331A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode wiring
spacer
optical device
glass plate
glass
Prior art date
Application number
PCT/JP2016/000243
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 和也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016121331A1 publication Critical patent/WO2016121331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers

Definitions

  • the present invention relates to a multilayer glass and an optical device including the multilayer glass.
  • the multi-layer glass includes a plurality of glass plates and a spacer that keeps intervals between the plurality of glass plates (for example, see Patent Document 1).
  • smart windows have been developed that can realize functions such as light emission and light control by arranging optical elements in the internal space of the double-glazed glass.
  • electrical wiring for supplying electric power to an internal optical element is provided between the spacer and the glass plate. At this time, when bonding a plurality of glass plates through the spacer, there is a problem that the electrical wiring may be disconnected.
  • an object of the present invention is to provide a multilayer glass and an optical device that can suppress the occurrence of disconnection of electrical wiring.
  • a multilayer glass includes a pair of glass plates arranged to face each other, and a spacing member provided in an annular shape to form an interval between the pair of glass plates. And an electrode wiring provided on at least one of the pair of glass plates so as to overlap a part of the ring, and a protection portion that covers the electrode wiring to protect the electrode wiring from the spacing material.
  • the occurrence of disconnection of the electrical wiring can be suppressed.
  • FIG. 1 is a perspective view showing an optical device according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view showing the optical device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a portion where the spacer and the electrode wiring of the optical device according to Embodiment 1 of the present invention overlap.
  • FIG. 4 is a cross-sectional view showing the spacer of the optical device according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a spacer of the optical device according to the modification of the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a portion where the spacer and the electrode wiring of the optical device according to Embodiment 2 of the present invention overlap.
  • FIG. 7 is a cross-sectional view showing a spacer of the optical device according to Embodiment 2 of the present invention.
  • FIG. 8A is a cross-sectional view showing an optical device according to a variation of Embodiment 2 of the present invention.
  • FIG. 8B is a cross-sectional view showing an optical device according to another variation of Embodiment 2 of the present invention.
  • FIG. 8C is a cross-sectional view showing an optical device according to another variation of Embodiment 2 of the present invention.
  • FIG. 9 is a plan view showing an optical device according to Embodiment 3 of the present invention.
  • FIG. 10 is a cross-sectional view showing a part of the optical device according to Embodiment 3 of the present invention.
  • FIG. 11 is a plan view showing the shape of the recess of the spacing member provided in the optical device according to Embodiment 3 of the present invention.
  • FIG. 12 is a plan view showing the positional relationship between the spacer and the electrode wiring of the optical device according to the modification of the embodiment of the present invention.
  • FIG. 1 is a perspective view showing an optical device 100 (and multi-layer glass 1) according to the present embodiment.
  • FIG. 2 is a plan view showing the optical device 100 (and the multilayer glass 1) according to the present embodiment.
  • the internal structure of the optical device 100 is schematically shown by shading.
  • FIG. 3 is a cross-sectional view showing a portion where the spacer 30 and the electrode wiring 40 of the optical device 100 (and the multi-layer glass 1) according to the present embodiment overlap. Specifically, FIG. 3 shows a cross section taken along line III-III shown in FIG. More specifically, FIG. 3 shows a cross section along the electrode wiring 40 included in the optical device 100.
  • FIG. 4 is a cross-sectional view showing the spacer 30 of the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, FIG. 4 shows a cross section taken along line IV-IV shown in FIG.
  • the direction orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis.
  • Direction and Y-axis direction are the directions orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis.
  • Direction and Y-axis direction is the direction orthogonal to the main surface of the optical device 100.
  • the optical device 100 includes a multilayer glass 1 and an optical element 20.
  • the multilayer glass 1 includes a pair of glass plates 10 and 11, a spacing material 30, an electrode wiring 40, a protective film 50, and a sealing material 60.
  • the optical device 100 can be used for windows of buildings and vehicles, for example.
  • the optical device 100 includes the optical element 20 to realize a function such as light emission or light control. That is, the optical device 100 can be used as a so-called smart window.
  • the glass plate 10 and the glass plate 11 have translucency and transmit at least part of visible light.
  • the glass plate 10 and the glass plate 11 are transparent flat plates formed from, for example, soda glass or non-alkali glass.
  • the glass plate 10 and the glass plate 11 are arrange
  • interval of the glass plate 10 and the glass plate 11 is 6 mm, for example.
  • the glass plate 10 and the glass plate 11 have substantially the same shape and substantially the same size, and are arranged so as to overlap each other in plan view as shown in FIG.
  • the “plan view” means a case where the optical device 100 (and the multi-layer glass 1) is viewed from the front. Specifically, the “plan view” means a case where the main surfaces (surfaces having the largest areas) of the glass plate 10 and the glass plate 11 are viewed from the front, that is, when viewed in the Z-axis direction.
  • the planar shape of the glass plate 10 and the glass plate 11 is a rectangle, but may be a square or other polygons, or a circle or an ellipse.
  • the glass plate 10 and the glass plate 11 are not limited to flat plates but may be curved plates.
  • an internal space 12 (intermediate layer) is formed between the glass plate 10 and the glass plate 11.
  • the internal space 12 is a space surrounded by the glass plate 10 and the glass plate 11 and the spacing material 30.
  • the internal space 12 is filled with, for example, a gas having a low thermal permeability.
  • the gas having a low thermal permeability is, for example, dry air or an inert gas such as argon.
  • the optical element 20 is disposed in the internal space 12.
  • optical element 20 is sealed with a pair of glass plate 10 and glass plate 11, and a spacing material 30. Specifically, the optical element 20 is disposed in the internal space 12.
  • the optical element 20 is connected to the electrode wiring 40.
  • the optical element 20 includes one or more electrodes (for example, an anode and a cathode).
  • An electrode wiring 40 is connected to each of the one or more electrodes.
  • the optical element 20 is an element that can change optical characteristics by supplying power. Specifically, the optical element 20 performs self light emission or light control.
  • the dimming is, for example, changing light transmittance (visible light), reflectance, refractive index, scattering property, and the like.
  • the optical element 20 is an organic EL (Electroluminescence) element.
  • the optical element 20 is a liquid crystal or an electrochromic element.
  • a plurality of optical elements 20 may be arranged in the internal space 12.
  • the spacing material 30 forms a gap between the pair of glass plates 10 and the glass plate 11. That is, the spacing member 30 is a member that keeps a constant distance between the glass plate 10 and the glass plate 11. The spacer 30 forms the internal space 12 between the glass plate 10 and the glass plate 11 by separating the glass plate 10 and the glass plate 11 from each other.
  • the spacing material 30 is provided between the glass plate 10 and the glass plate 11. As shown in FIG. 2, the spacer 30 is provided in an annular shape in plan view. In this Embodiment, the planar view shape of the spacer 30 is a shape along the periphery of the glass plate 10 (or glass plate 11). Specifically, the spacing member 30 is a substantially rectangular frame body along the circumference of the glass plate 10. The spacing member 30 may be formed by combining four substantially linear members (spacers) and four corner members.
  • the spacer 30 is a cylindrical spacer.
  • the spacer 30 includes a hollow member 31 and a desiccant 32 as shown in FIG.
  • the hollow member 31 and the desiccant 32 are not shown, but only the spacing material 30 is shown.
  • the hollow member 31 is formed of a metal material such as aluminum, for example.
  • the hollow member 31 is, for example, a substantially rectangular tubular frame. Although not shown, the hollow member 31 is bonded to the glass plate 10 and the glass plate 11 with an adhesive.
  • the desiccant 32 is filled in the hollow member 31 (hollow space).
  • the desiccant 32 for example, particulate materials such as silica gel and zeolite can be used. Thereby, it is possible to suppress moisture from entering the internal space 12.
  • the hollow member 31 is provided with a through hole (not shown) that communicates the hollow space and the internal space 12. Thereby, the moisture that has entered the internal space 12 can be absorbed by the desiccant 32.
  • the electrode wiring 40 is a wiring for supplying power to the optical element 20. One end of the electrode wiring 40 is connected to the optical element 20, and the other end is connected to a drive circuit (or power supply circuit) for driving the optical element 20.
  • the electrode wiring 40 connects the internal space 12 and the outside of the optical device 100. It is provided to do. That is, the electrode wiring 40 is provided on at least one of the pair of glass plates 10 and 11 so as to overlap a part of the ring.
  • the ring is a virtual ring represented by the shape of the spacer 30 in plan view.
  • the electrode wiring 40 is provided so as to overlap a part of the spacer 30 in a plan view. Specifically, as shown in FIG. 2, the electrode wiring 40 overlaps at the corner portion of the spacing material 30.
  • the electrode wiring 40 is a wiring layer formed on at least one of the pair of glass plates 10 and the glass plate 11.
  • the electrode wiring 40 is formed from a metal film such as silver or copper, or a conductive oxide film such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a paste containing an electrode material such as silver is applied to the main surface of the glass plate 10, or a metal film or a conductive oxide film is formed by a vapor deposition method or a sputtering method.
  • the electrode wiring 40 can be formed by patterning.
  • the film thickness of the electrode wiring 40 is, for example, 50 nm to 50 ⁇ m.
  • the electrode wiring 40 is connected to the optical element 20 at two locations. Thereby, the voltage drop in the surface of the optical element 20 can be suppressed, and the in-plane uniformity of the optical element 20 can be improved.
  • the optical device 100 may include a plurality of electrode wirings 40.
  • the plurality of electrode wirings 40 supply different electric powers to the optical element 20, for example.
  • the optical device 100 may include two electrode wirings 40. At this time, for example, one of the two electrode wirings 40 is connected to the anode (positive electrode) of the optical element 20 and the other is connected to the cathode (negative electrode) of the optical element 20.
  • the protective film 50 is an example of a protective unit that covers the electrode wiring 40 to protect the electrode wiring 40 from the spacing material 30.
  • the protective film 50 is provided so as to contact and cover the electrode wiring 40 in a portion where the electrode wiring 40 and the spacing material 30 overlap.
  • the protective film 50 suppresses the application of a strong load from the spacer 30 to the electrode wiring 40. Specifically, the protective film 50 disperses the load applied from the spacer 30 and suppresses the electrode wiring 40 from being applied with a strong load that causes disconnection.
  • the protective film 50 is provided along the electrode wiring 40.
  • the protective film 50 is provided in a linear shape as shown in FIGS. Note that the protective film 50 may be provided not only in the portion where the electrode wiring 40 and the spacing material 30 overlap, but also in the portion where the electrode wiring 40 and the sealing material 60 overlap. Alternatively, the protective film 50 may cover the entire electrode wiring 40.
  • the protective film 50 is formed of a resin material such as an acrylic resin or an epoxy resin, for example.
  • the protective film 50 can be formed by applying a resin material on the electrode wiring 40 using a discharge device such as a dispenser and curing the applied resin material.
  • the thickness of the protective film 50 is, for example, several ⁇ m to 500 ⁇ m.
  • the protective film 50 has an insulating property, for example. Thereby, the electrical insulation with the electrode wiring 40 and the spacer 30 (hollow member 31) is securable. In addition, when it is not necessary to ensure insulation with the electrode wiring 40 and the spacing material 30, the protective film 50 may have electroconductivity.
  • the protective film 50 covers the upper surface and the side surface of the electrode wiring 40, but is not limited thereto.
  • the protective film 50 may cover only the upper surface of the electrode wiring 40.
  • the protective film 50 may be formed of an inorganic material such as a silicon oxide film or a silicon nitride film.
  • a silicon nitride film is formed on a metal film formed on the glass plate 10, and the silicon nitride film and the metal film are patterned. Thereby, the electrode wiring 40 and the protective film 50 can be formed.
  • the sealing material 60 is a resin material used for enhancing the sealing performance of the internal space 12. As shown in FIGS. 2 and 3, the sealing material 60 is provided so as to cover the outside of the spacing material 30 (the side opposite to the internal space 12). The sealing material 60 is provided along the planar view shape of the spacing material 30. Specifically, the sealing material 60 is provided in an annular shape in plan view.
  • the sealing material 60 has, for example, insulation and adhesiveness.
  • a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
  • the sealing material 60 is, for example, butyl rubber.
  • the multilayer glass 1 and the optical device 100 are formed by laminating the glass plate 10 and the glass plate 11 with the spacer 30 interposed therebetween. At this time, the electrode wiring 40 is sandwiched between the spacer 30 and the glass plate 10. Thereby, a load is applied to the electrode wiring 40 from the spacer 30.
  • the electrode wiring 40 When the electrode wiring 40 is exposed (that is, when the protective film 50 is not provided), the electrode wiring 40 may be disconnected by a load applied from the spacer 30.
  • the multi-layer glass 1 includes a pair of glass plates 10 and 11 that are disposed to face each other, and a pair of glass plates 10 and glass plates 11 that are provided in an annular shape.
  • the electrode member 40 is formed by covering the electrode member 40 and the electrode member 40 that is provided on at least one of the pair of the glass plate 10 and the glass plate 11 so as to overlap a part of the ring.
  • a protection unit that protects 40 from the spacer 30.
  • the optical device 100 according to the present embodiment includes the multilayer glass 1, the pair of glass plates 10, the glass plate 11, and the spacing member 30, and the optical element 20 connected to the electrode wiring 40. Prepare.
  • the protection part which protects the electrode wiring 40 from the spacing material 30 is provided, generation
  • the protection unit suppresses the load applied from the spacer 30 from being applied to the electrode wiring 40 as it is.
  • the electrode wiring 40 is provided so as to overlap with a part of the spacing material 30, and the protection unit covers and covers the electrode wiring 40 in a portion where the electrode wiring 40 and the spacing material 30 overlap.
  • the protective film 50 is provided on the surface.
  • the protective film 50 is provided in the portion where the electrode wiring 40 and the spacing material 30 overlap, the occurrence of disconnection of the electrode wiring 40 can be suppressed. That is, since the protective film 50 disperses the load applied to the electrode wiring 40 from the spacing material 30, it is possible to suppress a strong load that causes disconnection from being applied to the electrode wiring 40.
  • the spacer 30 is a cylindrical spacer.
  • the spacer 30 is a cylindrical spacer, a stronger load may be applied to the electrode wiring 40.
  • a square cylindrical spacer is often used as shown in FIG. Therefore, there is a possibility that the load concentrates on the corner portion of the spacer 30 and the electrode wiring 40 is more likely to be disconnected. For this reason, by providing the protective film 50, the occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed as compared to the case where the protective film 50 is not provided.
  • the electrode wiring 40 is a wiring layer formed on at least one of the pair of glass plates 10 and the glass plate 11.
  • the electrode wiring 40 is a wiring layer, the electrode wiring 40 is weaker than the externally applied force than the covered wire such as a lead wire, and is easily disconnected. Therefore, by providing the protective film 50, the occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed as compared to the case where the protective film 50 is not provided.
  • the spacing material 30 may be an adhesive containing granular spacers.
  • FIG. 5 is a cross-sectional view showing a spacing member 30a according to this modification.
  • the spacer 30a includes a granular spacer 31a and an adhesive 32a.
  • the granular spacer 31 a is a particle for forming a gap between the pair of glass plates 10 and the glass plate 11.
  • the granular spacer 31a is glass beads, resin beads, silica particles, or the like.
  • a plurality of granular spacers 31a are included in the adhesive 32a.
  • the plurality of granular spacers 31a are spheres having substantially the same diameter.
  • the adhesive 32 a is a member that bonds the glass plate 10 and the glass plate 11 in order to seal the internal space 12.
  • the adhesive 32a is provided in an annular shape in plan view. Specifically, the adhesive 32 a is formed in a frame shape along the circumference of the pair of glass plates 10 and the glass plate 11.
  • a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
  • the spacing member 30a in the present modification is provided on the glass plate 10 (or the glass plate 11) using a discharge device such as a dispenser, for example. At this time, the position where the granular spacer 31a is arranged cannot be controlled.
  • the electrode wiring 40 and the granular spacer 31a may overlap each other.
  • the electrode wiring 40 may be disconnected by the granular spacer 31a as in the first embodiment.
  • the protective film 50 is provided so as to cover the electrode wiring 40, the load applied from the granular spacer 31a can be dispersed, Disconnection of the electrode wiring 40 can be suppressed.
  • the multi-layer glass and the optical device according to the present embodiment include a spacing material different from that of the first embodiment.
  • the spacing member according to the present embodiment will be described, and the other configurations are the same as those in the first embodiment, and therefore the description may be simplified or omitted.
  • FIG. 6 is a cross-sectional view showing a portion where the spacing member 230 and the electrode wiring 40 of the optical device 200 (and the multi-layer glass 2) according to the present embodiment overlap. 6 corresponds to a cross section taken along line IV-IV shown in FIG.
  • the optical device 200 includes a recess 233 as a protection unit that protects the electrode wiring 40 from the spacing material 230.
  • the recess 233 is provided in the spacing material 230 at a portion where the electrode wiring 40 and the spacing material 230 overlap in plan view.
  • the concave portion 233 is provided in a linear shape along the electrode wiring 40, for example.
  • the cross-sectional shape of the recess 233 is, for example, a rectangle as shown in FIG. 6, but is not limited thereto.
  • the cross-sectional shape of the recess 233 may be a semicircle or any shape.
  • FIG. 7 is a cross-sectional view showing the spacer 230 of the optical device 200 according to the present embodiment. Specifically, FIG. 7 shows a cross section taken along line IV-IV shown in FIG.
  • the spacing member 230 includes a hollow member 231 and a desiccant 32.
  • the hollow member 231 is made of a metal material such as aluminum, for example.
  • the hollow member 231 is, for example, a substantially rectangular tubular frame.
  • the hollow member 231 is provided with a recess 233. That is, the recessed part 233 is formed because a part of side surface of the hollow member 231 is dented inward (hollow space side).
  • the hollow member 231 having the recess 233 is formed, for example, by pressing an aluminum plate material. Alternatively, the hollow member 231 may be formed by extrusion or the like.
  • the electrode wiring 40 is provided so as to overlap a part of the spacing material 230, and the protection portion is a portion where the electrode wiring 40 and the spacing material 230 overlap.
  • the recess 233 is provided in the spacer 230.
  • the electrode wiring 40 and the spacer 230 are not in contact with each other as shown in FIG. Since the electrode wiring 40 and the spacing material 230 do not contact each other, a load from the spacing material 230 is not applied to the electrode wiring 40. Therefore, occurrence of disconnection of the electrode wiring 40 can be suppressed.
  • a protective film 50 may be provided on the electrode wiring 40 as in the first embodiment.
  • FIG. 8A is a cross-sectional view showing an optical device 200a (and multi-layer glass 2a) according to a modification of the present embodiment.
  • FIG. 8A corresponds to a cross section taken along line IV-IV shown in FIG.
  • the optical device 200a is different from the optical device 200 shown in FIG. 6 in that a protective film 50 is further provided.
  • the spacer 230 is disposed so that the recess 233 covers the electrode wiring 40 when the glass plate 10 and the glass plate 11 are bonded together. At this time, even if the spacing member 230 comes into contact with the electrode wiring 40, the pressing force is hardly applied to the electrode wiring 40 by providing the protective film 50. Therefore, occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed.
  • the gap may be filled with a protective film 50 as shown in FIG. 8B.
  • FIG. 8B is a cross-sectional view showing an optical device 200b (and multi-layer glass 2b) according to another modification of the present embodiment.
  • FIG. 8B corresponds to a cross section taken along line IV-IV shown in FIG.
  • the protective film 50 is provided so as to cover the electrode wiring 40 and fill the recess 233. Thereby, since the space
  • FIG. 8B the protective film 50 is provided so as to cover the electrode wiring 40 and fill the recess 233.
  • electrode wiring 40 and the recess 233 may be in direct contact without providing the protective film 50.
  • the protection portion may be a separation space 233c as shown in FIG. 8C instead of the recess 233. That is, the protection part may be the separation space 233c from which the spacer 230 is separated.
  • FIG. 8C is a cross-sectional view showing an optical device 200c (and multi-layer glass 2c) according to another modification of the present embodiment.
  • FIG. 8C corresponds to a cross section taken along line IV-IV shown in FIG.
  • the spacer 230c has a separation space 233c.
  • the spacing material 230c is separated. That is, as in the example illustrated in FIG. 2, the spacing member 230 c is provided in an annular shape, but is not provided over the entire circumference, but is partially separated.
  • the separated part of the spacer 230 c is a separation space 233 c and is a protection part of the electrode wiring 40.
  • the electrode wiring 40 does not overlap with the annularly spaced spacer 230c in plan view.
  • the electrode wiring 40 is provided so as to intersect a virtual ring along the spacing member 230c. Specifically, the electrode wiring 40 is disposed in the separation space 233c formed by the separation material 230c separating.
  • the electrode wiring 40 is not in contact with the spacer 230c. Since the electrode wiring 40 and the spacing material 230c do not contact each other, the load from the spacing material 230c is not applied to the electrode wiring 40. Therefore, occurrence of disconnection of the electrode wiring 40 can be suppressed.
  • FIG. 9 is a plan view of the optical device 300 (and the multilayer glass 3) according to the present embodiment.
  • FIG. 10 is a cross-sectional view showing a portion where the spacer 330 and the electrode wiring 340 of the optical device 300 (and the multi-layer glass 3) according to the present embodiment overlap. Specifically, FIG. 10 shows a cross section taken along line XX shown in FIG. More specifically, FIG. 10 shows a cross section along the electrode wiring 340 included in the optical device 300.
  • the optical device 300 according to the present embodiment is different from the optical device 100 according to the first embodiment in that the spacing material 330, the electrode wiring 340, and the protective film are used instead of the spacing material 30, the electrode wiring 40, and the protective film 50.
  • the difference is that 350 is provided. Below, it demonstrates centering on a different point from Embodiment 1 or 2.
  • FIG. 1 illustrates centering on a different point from Embodiment 1 or 2.
  • the spacing member 330 forms a gap between the pair of glass plates 10 and the glass plate 11.
  • the spacing member 330 is provided with a recess 333.
  • the function and material of the spacer 330 are the same as those of the spacer 230 according to the second embodiment, for example. That is, the spacing material 330 is a cylindrical spacer, like the spacing material 230. Details of the recess 333 will be described later with reference to FIG.
  • Part of the electrode wiring 340 is provided along the ring.
  • the ring is a virtual ring represented by the shape of the spacing member 330 in plan view. Specifically, a part of the electrode wiring 340 is linearly provided along the spacer 330 as shown in FIGS. 9 and 10. More specifically, a part of the electrode wiring 340 is covered with a linear recess 333 provided in the spacing member 330.
  • the function and material of the electrode wiring 340 are the same as the electrode wiring 40, for example.
  • the protective film 350 is provided so as to cover the electrode wiring 340 along the electrode wiring 340. Specifically, the protective film 350 is provided so as to fill the concave portion 333 provided in the spacing member 330.
  • the planar view shape of the protective film 350 is substantially the same as the planar view shape of the recess 333. For example, the cross section orthogonal to the elongate direction of the electrode wiring 340 and the protective film 350 becomes the same as that of FIG. 8B.
  • FIG. 11 is a plan view showing the shape of the recess 333 of the spacer 330 provided in the optical device 300 according to the present embodiment. Specifically, FIG. 11 shows only the spacing member 330 in the region XI indicated by the one-dot chain line in FIG.
  • the recess 333 is a linear recess along a part of the ring. Specifically, the recess 333 is provided so as to communicate the internal space 12 and the outside of the optical device 300 along the electrode wiring 340.
  • the recess 333 is arranged so that the internal space 12 and the outside of the optical device 300 do not communicate with each other at the shortest distance.
  • the recess 333 is provided in a polygonal line shape, not a straight line connecting the internal space 12 and the outside of the optical device 300.
  • the concave portion 333 has a first short portion 333a, a second short portion 333b, and a long portion 333c.
  • the first short part 333 a is a part that communicates the long part 333 c with the outside of the optical device 300.
  • the first short portion 333 a is provided at a corner portion of the spacing member 330.
  • the first short portion 333a is a portion corresponding to an entrance when moisture enters the internal space 12 from the outside.
  • the second short part 333b is a part that connects the long part 333c and the internal space 12.
  • the second short part 333b is a part corresponding to an outlet when moisture enters the internal space 12 from the outside.
  • the recessed part 333 has the two 2nd short parts 333b, you may have only the 2nd short part 333b. At this time, as the distance from the first short part 333a (that is, the distance from the long part 333c) to the second short part 333b is long, the infiltration of moisture can be delayed.
  • the longitudinal portion 333c is a portion that is long in the direction along the ring of the spacer 330 (for example, the X-axis direction in FIG. 11). The longer the distance in the longitudinal direction of the longitudinal portion 333c, the longer the distance between the outside and the internal space 12.
  • the longitudinal portion 333 c is provided at a position farther from the internal space 12 with reference to the center line of the spacer 330 (the chain line shown in FIG. 11).
  • the length of the 2nd short part 333b can be lengthened, and the penetration
  • the recess 333 is a linear recess along a part of the ring.
  • the shorter the distance between the outside and the internal space 12 the easier the moisture enters from the outside. Therefore, the penetration of moisture from the outside can be suppressed by increasing the distance between the outside and the internal space 12.
  • the recess 333 is linearly provided along the ring (specifically, the spacing member 330), the distance between the outside and the internal space 12 can be increased. Thereby, the penetration
  • the spacing member 330 is provided with a recess 333 as a protection portion so that the electrode wiring 340 and the spacing member 330 do not come into contact with each other, the disconnection of the electrode wiring 340 is prevented as in the first and second embodiments. Occurrence can be suppressed.
  • FIG. 12 is a plan view showing the positional relationship between the spacer 30a and the electrode wiring 40 of the optical device according to this modification.
  • the example in which the adhesive 32a containing the granular spacer 31a is used as the spacing material has been described.
  • the electrode wiring 40 may be disconnected. Therefore, in the example illustrated in FIG. 5, the protective film 50 that protects the electrode wiring 40 is provided. .
  • the electrode wiring 40 is provided in the separation space 33c of the spacer 30a.
  • the separation space 33 c is filled with the sealing material 430.
  • production of the disconnection of the electrode wiring 40 can be suppressed, and it can suppress that a water
  • the sealing material 430 the same material as the adhesive agent 32a can be used, for example.
  • the sealing material 430 may be provided not only in the separation space 33c but also in a length longer than the width of the spacing material 30a along the electrode wiring 40. Therefore, since the path
  • the spacing material 30a instead of the sealing material 430.
  • the spacing material 30a in the vicinity of the electrode wiring 40 may be thickened. Thereby, generation
  • the electrode wiring 40 may be a conductive metal wire whose surface is covered with an insulating coating material such as vinyl.
  • the electrode wiring 40 may be a lead wire such as a vinyl wire or an enameled wire.
  • the pair of glass plates 10 and the glass plate 11 may have different shapes.
  • the glass plate 10 may be a rectangular plate, and the glass plate 11 may be a circular plate.
  • one of the glass plate 10 and the glass plate 11 is disposed inside the other so as not to protrude outside the other in plan view.
  • the optical device 100 may include another device (for example, a heating element such as a heater) connected to the electrode wiring 40 instead of the optical element 20.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • Multi-layer glass 10 11 Glass plate 20 Optical element 30, 30a, 230, 230c, 330 Spacing material 31, 231 Hollow member 31a Granular spacer 32a Adhesive 33c, 233c Separation space 40, 340 Electrode wiring 50, 350 Protective film 100, 200, 200a, 200b, 200c, 300 Optical device 233, 333 Recess

Abstract

This double glazed glass (1) is provided with: a pair of a glass plate (10) and a glass plate (11), which are arranged to face each other; a separation member (30) which is provided in a ring-like shape for the purpose of forming a space between the pair of the glass plate (10) and the glass plate (11); and an electrode wiring line (40) that is provided on at least one of the pair of the glass plate (10) and the glass plate (11) so as to overlap a part of the ring; and a protection film (50) which protects the electrode wiring line (40) from the separation member (30) by covering the electrode wiring line (40).

Description

複層ガラス及び光学デバイスMulti-layer glass and optical device
 本発明は、複層ガラス、及び、当該複層ガラスを備える光学デバイスに関する。 The present invention relates to a multilayer glass and an optical device including the multilayer glass.
 従来、断熱性能の向上などを目的として、建造物及び車両などの窓に複層ガラスが利用されている。複層ガラスは、複数のガラス板と、当該複数のガラス板の間隔を保持するスペーサとを備える(例えば、特許文献1参照)。 Conventionally, double-glazed glass has been used for windows of buildings and vehicles for the purpose of improving heat insulation performance. The multi-layer glass includes a plurality of glass plates and a spacer that keeps intervals between the plurality of glass plates (for example, see Patent Document 1).
特開2007-277052号公報JP 2007-277052 A
 ところで、近年、複層ガラスの内部空間に光学素子を配置することで、発光及び調光などの機能を実現可能な、いわゆるスマートウィンドウの開発が進められている。スマートウィンドウでは、例えば、内部の光学素子に電力を供給するための電気配線が、スペーサとガラス板との間に設けられている。このとき、スペーサを介して複数のガラス板を貼り合わせるときに、当該電気配線が断線する場合があるという課題がある。 By the way, in recent years, so-called smart windows have been developed that can realize functions such as light emission and light control by arranging optical elements in the internal space of the double-glazed glass. In the smart window, for example, electrical wiring for supplying electric power to an internal optical element is provided between the spacer and the glass plate. At this time, when bonding a plurality of glass plates through the spacer, there is a problem that the electrical wiring may be disconnected.
 そこで、本発明は、電気配線の断線の発生を抑制することができる複層ガラス及び光学デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a multilayer glass and an optical device that can suppress the occurrence of disconnection of electrical wiring.
 上記目的を達成するため、本発明の一態様に係る複層ガラスは、互いに対向して配置された一対のガラス板と、環状に設けられた、前記一対のガラス板の間隔を形成する離間材と、前記一対のガラス板の少なくとも一方に、前記環の一部に重なるように設けられた電極配線と、前記電極配線を覆うことで、前記電極配線を前記離間材から保護する保護部とを備える。 In order to achieve the above object, a multilayer glass according to one embodiment of the present invention includes a pair of glass plates arranged to face each other, and a spacing member provided in an annular shape to form an interval between the pair of glass plates. And an electrode wiring provided on at least one of the pair of glass plates so as to overlap a part of the ring, and a protection portion that covers the electrode wiring to protect the electrode wiring from the spacing material. Prepare.
 本発明によれば、電気配線の断線の発生を抑制することができる。 According to the present invention, the occurrence of disconnection of the electrical wiring can be suppressed.
図1は、本発明の実施の形態1に係る光学デバイスを示す斜視図である。FIG. 1 is a perspective view showing an optical device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る光学デバイスを示す平面図である。FIG. 2 is a plan view showing the optical device according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る光学デバイスの離間材と電極配線とが重なる部分を示す断面図である。FIG. 3 is a cross-sectional view showing a portion where the spacer and the electrode wiring of the optical device according to Embodiment 1 of the present invention overlap. 図4は、本発明の実施の形態1に係る光学デバイスの離間材を示す断面図である。FIG. 4 is a cross-sectional view showing the spacer of the optical device according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1の変形例に係る光学デバイスの離間材を示す断面図である。FIG. 5 is a cross-sectional view showing a spacer of the optical device according to the modification of the first embodiment of the present invention. 図6は、本発明の実施の形態2に係る光学デバイスの離間材と電極配線とが重なる部分を示す断面図である。FIG. 6 is a cross-sectional view showing a portion where the spacer and the electrode wiring of the optical device according to Embodiment 2 of the present invention overlap. 図7は、本発明の実施の形態2に係る光学デバイスの離間材を示す断面図である。FIG. 7 is a cross-sectional view showing a spacer of the optical device according to Embodiment 2 of the present invention. 図8Aは、本発明の実施の形態2の変形例に係る光学デバイスを示す断面図である。FIG. 8A is a cross-sectional view showing an optical device according to a variation of Embodiment 2 of the present invention. 図8Bは、本発明の実施の形態2の別の変形例に係る光学デバイスを示す断面図である。FIG. 8B is a cross-sectional view showing an optical device according to another variation of Embodiment 2 of the present invention. 図8Cは、本発明の実施の形態2の別の変形例に係る光学デバイスを示す断面図である。FIG. 8C is a cross-sectional view showing an optical device according to another variation of Embodiment 2 of the present invention. 図9は、本発明の実施の形態3に係る光学デバイスを示す平面図である。FIG. 9 is a plan view showing an optical device according to Embodiment 3 of the present invention. 図10は、本発明の実施の形態3に係る光学デバイスの一部を示す断面図である。FIG. 10 is a cross-sectional view showing a part of the optical device according to Embodiment 3 of the present invention. 図11は、本発明の実施の形態3に係る光学デバイスが備える離間材の凹部の形状を示す平面図である。FIG. 11 is a plan view showing the shape of the recess of the spacing member provided in the optical device according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態の変形例に係る光学デバイスの離間材と電極配線との位置関係を示す平面図である。FIG. 12 is a plan view showing the positional relationship between the spacer and the electrode wiring of the optical device according to the modification of the embodiment of the present invention.
 以下では、本発明の実施の形態に係る複層ガラス及び光学デバイスについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the multilayer glass and the optical device according to the embodiment of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態1)
 [光学デバイス]
 まず、本実施の形態に係る光学デバイス及び複層ガラスの概要について、図1~図4を用いて説明する。
(Embodiment 1)
[Optical device]
First, the outline of the optical device and the multilayer glass according to the present embodiment will be described with reference to FIGS.
 図1は、本実施の形態に係る光学デバイス100(及び複層ガラス1)を示す斜視図である。 FIG. 1 is a perspective view showing an optical device 100 (and multi-layer glass 1) according to the present embodiment.
 図2は、本実施の形態に係る光学デバイス100(及び複層ガラス1)を示す平面図である。なお、図2では、光学デバイス100の内部構造を網掛けによって模式的に示している。 FIG. 2 is a plan view showing the optical device 100 (and the multilayer glass 1) according to the present embodiment. In FIG. 2, the internal structure of the optical device 100 is schematically shown by shading.
 図3は、本実施の形態に係る光学デバイス100(及び複層ガラス1)の離間材30と電極配線40とが重なる部分を示す断面図である。具体的には、図3は、図2に示すIII-III線における断面を示している。より具体的には、図3は、光学デバイス100が備える電極配線40に沿った断面を示している。 FIG. 3 is a cross-sectional view showing a portion where the spacer 30 and the electrode wiring 40 of the optical device 100 (and the multi-layer glass 1) according to the present embodiment overlap. Specifically, FIG. 3 shows a cross section taken along line III-III shown in FIG. More specifically, FIG. 3 shows a cross section along the electrode wiring 40 included in the optical device 100.
 図4は、本実施の形態に係る光学デバイス100(及び複層ガラス1)の離間材30を示す断面図である。具体的には、図4は、図2に示すIV-IV線における断面を示している。 FIG. 4 is a cross-sectional view showing the spacer 30 of the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, FIG. 4 shows a cross section taken along line IV-IV shown in FIG.
 各図において、光学デバイス100の主面に直交する方向(すなわち、光学デバイス100の厚さ方向)をZ軸方向とし、光学デバイス100の主面に平行で、互いに直交する2つの方向をX軸方向及びY軸方向とする。 In each figure, the direction orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis. Direction and Y-axis direction.
 本実施の形態に係る光学デバイス100は、複層ガラス1と、光学素子20とを備える。複層ガラス1は、図1及び図2に示すように、一対のガラス板10及びガラス板11と、離間材30と、電極配線40と、保護膜50と、シール材60とを備える。 The optical device 100 according to the present embodiment includes a multilayer glass 1 and an optical element 20. As shown in FIGS. 1 and 2, the multilayer glass 1 includes a pair of glass plates 10 and 11, a spacing material 30, an electrode wiring 40, a protective film 50, and a sealing material 60.
 なお、光学デバイス100は、例えば、建造物及び車両などの窓に利用することができる。光学デバイス100は、光学素子20を備えることによって、発光又は調光などの機能を実現する。すなわち、光学デバイス100は、いわゆるスマートウィンドウとして利用することができる。 The optical device 100 can be used for windows of buildings and vehicles, for example. The optical device 100 includes the optical element 20 to realize a function such as light emission or light control. That is, the optical device 100 can be used as a so-called smart window.
 以下では、光学デバイス100が備える構成要素の各々について、詳細に説明する。 Hereinafter, each of the components included in the optical device 100 will be described in detail.
 [ガラス板]
 ガラス板10及びガラス板11は、透光性を有し、可視光の少なくとも一部を透過させる。ガラス板10及びガラス板11は、例えば、ソーダガラス、無アルカリガラスなどから形成される透明な平板である。
[Glass plate]
The glass plate 10 and the glass plate 11 have translucency and transmit at least part of visible light. The glass plate 10 and the glass plate 11 are transparent flat plates formed from, for example, soda glass or non-alkali glass.
 ガラス板10及びガラス板11は、図1、図3及び図4に示すように、互いに対向して配置されている。具体的には、ガラス板10及びガラス板11は、互いの距離(内部空間12の厚さ)が略一定になるように、すなわち、平行に配置されている。ガラス板10及びガラス板11の間隔は、例えば6mmである。 The glass plate 10 and the glass plate 11 are arrange | positioned facing each other, as shown in FIG.1, FIG3 and FIG.4. Specifically, the glass plate 10 and the glass plate 11 are arrange | positioned so that a mutual distance (thickness of the internal space 12) may become substantially constant, ie, parallel. The space | interval of the glass plate 10 and the glass plate 11 is 6 mm, for example.
 ガラス板10及びガラス板11は、略同じ形状及び略同じ大きさを有し、図1に示すように、平面視において互いに重なるように配置されている。なお、「平面視」とは、光学デバイス100(及び複層ガラス1)を正面から見た場合を意味する。具体的には、「平面視」とは、ガラス板10及びガラス板11の主面(面積が最大の面)を正面から見た場合、すなわち、Z軸方向に見た場合を意味する。 The glass plate 10 and the glass plate 11 have substantially the same shape and substantially the same size, and are arranged so as to overlap each other in plan view as shown in FIG. The “plan view” means a case where the optical device 100 (and the multi-layer glass 1) is viewed from the front. Specifically, the “plan view” means a case where the main surfaces (surfaces having the largest areas) of the glass plate 10 and the glass plate 11 are viewed from the front, that is, when viewed in the Z-axis direction.
 ガラス板10及びガラス板11の平面視形状は、矩形であるが、正方形若しくはその他多角形、又は、円形若しくは楕円形などでもよい。あるいは、ガラス板10及びガラス板11は、平板に限らず、湾曲板でもよい。 The planar shape of the glass plate 10 and the glass plate 11 is a rectangle, but may be a square or other polygons, or a circle or an ellipse. Alternatively, the glass plate 10 and the glass plate 11 are not limited to flat plates but may be curved plates.
 本実施の形態では、ガラス板10とガラス板11との間に内部空間12(中間層)が形成されている。内部空間12は、ガラス板10及びガラス板11と、離間材30とによって囲まれた空間である。内部空間12には、例えば、熱貫流率が低い気体が充填されている。熱貫流率が低い気体は、例えば、乾燥空気、又は、アルゴンなどの不活性ガスである。本実施の形態では、図2に示すように、光学素子20が内部空間12に配置されている。 In this embodiment, an internal space 12 (intermediate layer) is formed between the glass plate 10 and the glass plate 11. The internal space 12 is a space surrounded by the glass plate 10 and the glass plate 11 and the spacing material 30. The internal space 12 is filled with, for example, a gas having a low thermal permeability. The gas having a low thermal permeability is, for example, dry air or an inert gas such as argon. In the present embodiment, as shown in FIG. 2, the optical element 20 is disposed in the internal space 12.
 [光学素子]
 光学素子20は、一対のガラス板10及びガラス板11と、離間材30とによって封止されている。具体的には、光学素子20は、内部空間12に配置されている。
[Optical element]
The optical element 20 is sealed with a pair of glass plate 10 and glass plate 11, and a spacing material 30. Specifically, the optical element 20 is disposed in the internal space 12.
 また、光学素子20は、電極配線40に接続されている。具体的には、光学素子20は、1以上の電極(例えば、陽極及び陰極)を備えている。1以上の電極の各々に電極配線40が接続されている。 The optical element 20 is connected to the electrode wiring 40. Specifically, the optical element 20 includes one or more electrodes (for example, an anode and a cathode). An electrode wiring 40 is connected to each of the one or more electrodes.
 光学素子20は、電力の供給によって、光学特性を変化させることができる素子である。具体的には、光学素子20は、自発光又は調光を行う。調光は、例えば、光(可視光)の透過率、反射率、屈折率、散乱性などを変化させることである。 The optical element 20 is an element that can change optical characteristics by supplying power. Specifically, the optical element 20 performs self light emission or light control. The dimming is, for example, changing light transmittance (visible light), reflectance, refractive index, scattering property, and the like.
 例えば、光学素子20は、有機EL(Electroluminescence)素子である。あるいは、光学素子20は、液晶、又は、エレクトロクロミック素子である。なお、複数の光学素子20が内部空間12に配置されていてもよい。 For example, the optical element 20 is an organic EL (Electroluminescence) element. Alternatively, the optical element 20 is a liquid crystal or an electrochromic element. A plurality of optical elements 20 may be arranged in the internal space 12.
 [離間材]
 離間材30は、一対のガラス板10及びガラス板11の間隔を形成する。つまり、離間材30は、ガラス板10とガラス板11との間を一定距離に保つ部材である。離間材30は、ガラス板10とガラス板11とを離間させることによって、ガラス板10とガラス板11との間に内部空間12を形成する。
[Spacer]
The spacing material 30 forms a gap between the pair of glass plates 10 and the glass plate 11. That is, the spacing member 30 is a member that keeps a constant distance between the glass plate 10 and the glass plate 11. The spacer 30 forms the internal space 12 between the glass plate 10 and the glass plate 11 by separating the glass plate 10 and the glass plate 11 from each other.
 離間材30は、ガラス板10とガラス板11との間に設けられている。離間材30は、図2に示すように、平面視において、環状に設けられている。本実施の形態では、離間材30の平面視形状は、ガラス板10(又はガラス板11)の周に沿った形状である。具体的には、離間材30は、ガラス板10の周に沿った略矩形の枠体である。なお、離間材30は、略直線状の4つの部材(スペーサ)と、4つのコーナー部材とを組み合わせて形成されてもよい。 The spacing material 30 is provided between the glass plate 10 and the glass plate 11. As shown in FIG. 2, the spacer 30 is provided in an annular shape in plan view. In this Embodiment, the planar view shape of the spacer 30 is a shape along the periphery of the glass plate 10 (or glass plate 11). Specifically, the spacing member 30 is a substantially rectangular frame body along the circumference of the glass plate 10. The spacing member 30 may be formed by combining four substantially linear members (spacers) and four corner members.
 本実施の形態では、離間材30は、筒状のスペーサである。具体的には、離間材30は、図4に示すように、中空部材31と、乾燥剤32とを備える。なお、図3には中空部材31及び乾燥剤32を示しておらず、単に離間材30を示している。 In the present embodiment, the spacer 30 is a cylindrical spacer. Specifically, the spacer 30 includes a hollow member 31 and a desiccant 32 as shown in FIG. In FIG. 3, the hollow member 31 and the desiccant 32 are not shown, but only the spacing material 30 is shown.
 中空部材31は、例えば、アルミニウムなどの金属材料から形成される。中空部材31は、例えば、略角筒状の枠体である。なお、図示しないが、中空部材31は、接着剤によってガラス板10及びガラス板11と接着されている。 The hollow member 31 is formed of a metal material such as aluminum, for example. The hollow member 31 is, for example, a substantially rectangular tubular frame. Although not shown, the hollow member 31 is bonded to the glass plate 10 and the glass plate 11 with an adhesive.
 乾燥剤32は、中空部材31の内部(中空空間)に充填されている。乾燥剤32としては、例えば、シリカゲル、ゼオライトなどの粒状物質を用いることができる。これにより、内部空間12に水分が浸入するのを抑制することができる。また、中空部材31には、中空空間と内部空間12とを連通する貫通孔(図示せず)が設けられている。これにより、内部空間12に浸入した水分を乾燥剤32によって吸収することができる。 The desiccant 32 is filled in the hollow member 31 (hollow space). As the desiccant 32, for example, particulate materials such as silica gel and zeolite can be used. Thereby, it is possible to suppress moisture from entering the internal space 12. The hollow member 31 is provided with a through hole (not shown) that communicates the hollow space and the internal space 12. Thereby, the moisture that has entered the internal space 12 can be absorbed by the desiccant 32.
 [電極配線]
 電極配線40は、光学素子20に電力を供給するための配線である。電極配線40の一方の端部は、光学素子20に接続され、他方の端部は、光学素子20を駆動するための駆動回路(又は電源回路)に接続される。
[Electrode wiring]
The electrode wiring 40 is a wiring for supplying power to the optical element 20. One end of the electrode wiring 40 is connected to the optical element 20, and the other end is connected to a drive circuit (or power supply circuit) for driving the optical element 20.
 なお、光学素子20は内部空間12に配置され、駆動回路(図示せず)は光学デバイス100の外部に配置されているので、電極配線40は、内部空間12と光学デバイス100の外部とを接続するように設けられている。つまり、電極配線40は、一対のガラス板10及びガラス板11の少なくとも一方に、環の一部に重なるように設けられている。当該環とは、離間材30の平面視における形状が表す仮想的な環である。本実施の形態では、電極配線40は、平面視において、離間材30の一部に重なるように設けられている。具体的には、図2に示すように、電極配線40は、離間材30のコーナー部分で重なっている。 Since the optical element 20 is arranged in the internal space 12 and the drive circuit (not shown) is arranged outside the optical device 100, the electrode wiring 40 connects the internal space 12 and the outside of the optical device 100. It is provided to do. That is, the electrode wiring 40 is provided on at least one of the pair of glass plates 10 and 11 so as to overlap a part of the ring. The ring is a virtual ring represented by the shape of the spacer 30 in plan view. In the present embodiment, the electrode wiring 40 is provided so as to overlap a part of the spacer 30 in a plan view. Specifically, as shown in FIG. 2, the electrode wiring 40 overlaps at the corner portion of the spacing material 30.
 本実施の形態では、電極配線40は、一対のガラス板10及びガラス板11の少なくとも一方に形成された配線層である。例えば、電極配線40は、銀、銅などの金属膜、又は、酸化インジウムスズ(ITO)などの導電性酸化物膜などから形成される。例えば、ガラス板10の主面に銀などの電極材料を含むペーストを塗布する、あるいは、蒸着法又はスパッタリング法などによって金属膜又は導電性酸化物膜を形成し、金属膜又は導電性酸化物膜をパターニングすることで、電極配線40を形成することができる。電極配線40の膜厚は、例えば、50nm~50μmである。 In the present embodiment, the electrode wiring 40 is a wiring layer formed on at least one of the pair of glass plates 10 and the glass plate 11. For example, the electrode wiring 40 is formed from a metal film such as silver or copper, or a conductive oxide film such as indium tin oxide (ITO). For example, a paste containing an electrode material such as silver is applied to the main surface of the glass plate 10, or a metal film or a conductive oxide film is formed by a vapor deposition method or a sputtering method. The electrode wiring 40 can be formed by patterning. The film thickness of the electrode wiring 40 is, for example, 50 nm to 50 μm.
 なお、本実施の形態では、図2に示すように、電極配線40は、2ヶ所で光学素子20に接続されている。これにより、光学素子20の面内での電圧降下を抑制し、光学素子20の面内均一性を高めることができる。 In the present embodiment, as shown in FIG. 2, the electrode wiring 40 is connected to the optical element 20 at two locations. Thereby, the voltage drop in the surface of the optical element 20 can be suppressed, and the in-plane uniformity of the optical element 20 can be improved.
 また、光学デバイス100は、複数の電極配線40を備えてもよい。複数の電極配線40は、例えば、互いに異なる電力を光学素子20に供給する。具体的には、光学デバイス100は、2つの電極配線40を備えてもよい。このとき、例えば、2つの電極配線40の一方は、光学素子20の陽極(正極)に接続され、他方は、光学素子20の陰極(負極)に接続される。 Further, the optical device 100 may include a plurality of electrode wirings 40. The plurality of electrode wirings 40 supply different electric powers to the optical element 20, for example. Specifically, the optical device 100 may include two electrode wirings 40. At this time, for example, one of the two electrode wirings 40 is connected to the anode (positive electrode) of the optical element 20 and the other is connected to the cathode (negative electrode) of the optical element 20.
 [保護膜]
 保護膜50は、電極配線40を覆うことで、電極配線40を離間材30から保護する保護部の一例である。本実施の形態では、保護膜50は、電極配線40と離間材30とが重なる部分において、電極配線40を接触して覆うように設けられている。
[Protective film]
The protective film 50 is an example of a protective unit that covers the electrode wiring 40 to protect the electrode wiring 40 from the spacing material 30. In the present embodiment, the protective film 50 is provided so as to contact and cover the electrode wiring 40 in a portion where the electrode wiring 40 and the spacing material 30 overlap.
 保護膜50は、離間材30から電極配線40に強い荷重が加わるのを抑制する。具体的には、保護膜50は、離間材30から加えられる荷重を分散させて、断線が発生するような強い荷重が電極配線40に加わることを抑制する。 The protective film 50 suppresses the application of a strong load from the spacer 30 to the electrode wiring 40. Specifically, the protective film 50 disperses the load applied from the spacer 30 and suppresses the electrode wiring 40 from being applied with a strong load that causes disconnection.
 保護膜50は、電極配線40に沿って設けられている。例えば、保護膜50は、図2及び図3に示すように、線状に設けられている。なお、保護膜50は、電極配線40と離間材30とが重なる部分だけでなく、電極配線40とシール材60とが重なる部分にも設けられていてもよい。あるいは、保護膜50は、電極配線40の全体を覆っていてもよい。 The protective film 50 is provided along the electrode wiring 40. For example, the protective film 50 is provided in a linear shape as shown in FIGS. Note that the protective film 50 may be provided not only in the portion where the electrode wiring 40 and the spacing material 30 overlap, but also in the portion where the electrode wiring 40 and the sealing material 60 overlap. Alternatively, the protective film 50 may cover the entire electrode wiring 40.
 保護膜50は、例えば、アクリル系樹脂又はエポキシ系樹脂などの樹脂材料から形成される。具体的には、ディスペンサーなどの吐出装置を用いて、電極配線40上に樹脂材料を塗布し、塗布した樹脂材料を硬化させることで、保護膜50を形成することができる。保護膜50の膜厚は、例えば、数μm~500μmである。 The protective film 50 is formed of a resin material such as an acrylic resin or an epoxy resin, for example. Specifically, the protective film 50 can be formed by applying a resin material on the electrode wiring 40 using a discharge device such as a dispenser and curing the applied resin material. The thickness of the protective film 50 is, for example, several μm to 500 μm.
 保護膜50は、例えば、絶縁性を有する。これにより、電極配線40と離間材30(中空部材31)との電気的な絶縁を確保することができる。なお、電極配線40と離間材30との絶縁を確保する必要がない場合は、保護膜50は、導電性を有してもよい。 The protective film 50 has an insulating property, for example. Thereby, the electrical insulation with the electrode wiring 40 and the spacer 30 (hollow member 31) is securable. In addition, when it is not necessary to ensure insulation with the electrode wiring 40 and the spacing material 30, the protective film 50 may have electroconductivity.
 本実施の形態では、保護膜50は、電極配線40の上面と側面とを覆っているが、これに限らない。保護膜50は、電極配線40の上面のみを覆っていてもよい。 In the present embodiment, the protective film 50 covers the upper surface and the side surface of the electrode wiring 40, but is not limited thereto. The protective film 50 may cover only the upper surface of the electrode wiring 40.
 なお、保護膜50は、シリコン酸化膜又はシリコン窒化膜などの無機材料から形成されてもよい。例えば、ガラス板10上に成膜した金属膜上にシリコン窒化膜を形成し、シリコン窒化膜と金属膜とをパターニングする。これにより、電極配線40と保護膜50とを形成することができる。 Note that the protective film 50 may be formed of an inorganic material such as a silicon oxide film or a silicon nitride film. For example, a silicon nitride film is formed on a metal film formed on the glass plate 10, and the silicon nitride film and the metal film are patterned. Thereby, the electrode wiring 40 and the protective film 50 can be formed.
 [シール材]
 シール材60は、内部空間12の封止性を高めるために用いられる樹脂材料である。シール材60は、図2及び図3に示すように、離間材30の外側(内部空間12とは反対側)を覆うように設けられている。シール材60は、離間材30の平面視形状に沿って設けられている。具体的には、シール材60は、平面視において環状に設けられている。
[Sealant]
The sealing material 60 is a resin material used for enhancing the sealing performance of the internal space 12. As shown in FIGS. 2 and 3, the sealing material 60 is provided so as to cover the outside of the spacing material 30 (the side opposite to the internal space 12). The sealing material 60 is provided along the planar view shape of the spacing material 30. Specifically, the sealing material 60 is provided in an annular shape in plan view.
 シール材60は、例えば、絶縁性及び粘着性を有する。具体的には、シール材60としては、例えば、エポキシ系樹脂、アクリル系樹脂又はシリコーン樹脂などの光硬化性、熱硬化性又は二液硬化性の接着性樹脂を用いることができる。本実施の形態では、シール材60は、例えば、ブチルゴムである。 The sealing material 60 has, for example, insulation and adhesiveness. Specifically, as the sealing material 60, for example, a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used. In the present embodiment, the sealing material 60 is, for example, butyl rubber.
 [効果など]
 以下では、本実施の形態に係る複層ガラス1及び光学デバイス100の効果について説明する。
[Effects, etc.]
Below, the effect of the multilayer glass 1 which concerns on this Embodiment, and the optical device 100 is demonstrated.
 複層ガラス1及び光学デバイス100は、ガラス板10とガラス板11とを離間材30を間に挟んで貼り合わせることで形成される。このとき、電極配線40は、離間材30とガラス板10との間に挟まれる。これにより、電極配線40には、離間材30から荷重が加わる。 The multilayer glass 1 and the optical device 100 are formed by laminating the glass plate 10 and the glass plate 11 with the spacer 30 interposed therebetween. At this time, the electrode wiring 40 is sandwiched between the spacer 30 and the glass plate 10. Thereby, a load is applied to the electrode wiring 40 from the spacer 30.
 電極配線40がむき出しである場合(すなわち、保護膜50が設けられていない場合)、離間材30から加えられる荷重によって電極配線40が断線する恐れがある。 When the electrode wiring 40 is exposed (that is, when the protective film 50 is not provided), the electrode wiring 40 may be disconnected by a load applied from the spacer 30.
 これに対して、本実施の形態に係る複層ガラス1は、互いに対向して配置された一対のガラス板10及びガラス板11と、環状に設けられた、一対のガラス板10及びガラス板11の間隔を形成する離間材30と、一対のガラス板10及びガラス板11の少なくとも一方に、環の一部に重なるように設けられた電極配線40と、電極配線40を覆うことで、電極配線40を離間材30から保護する保護部とを備える。また、本実施の形態に係る光学デバイス100は、複層ガラス1と、一対のガラス板10及びガラス板11と離間材30とによって封止され、電極配線40に接続された光学素子20とを備える。 On the other hand, the multi-layer glass 1 according to the present embodiment includes a pair of glass plates 10 and 11 that are disposed to face each other, and a pair of glass plates 10 and glass plates 11 that are provided in an annular shape. The electrode member 40 is formed by covering the electrode member 40 and the electrode member 40 that is provided on at least one of the pair of the glass plate 10 and the glass plate 11 so as to overlap a part of the ring. And a protection unit that protects 40 from the spacer 30. In addition, the optical device 100 according to the present embodiment includes the multilayer glass 1, the pair of glass plates 10, the glass plate 11, and the spacing member 30, and the optical element 20 connected to the electrode wiring 40. Prepare.
 これにより、電極配線40を離間材30から保護する保護部が設けられているので、電極配線40の断線の発生を抑制することができる。具体的には、保護部は、離間材30から加えられる荷重が電極配線40にそのまま加えられるのを抑制する。 Thereby, since the protection part which protects the electrode wiring 40 from the spacing material 30 is provided, generation | occurrence | production of the disconnection of the electrode wiring 40 can be suppressed. Specifically, the protection unit suppresses the load applied from the spacer 30 from being applied to the electrode wiring 40 as it is.
 本実施の形態では、電極配線40は、離間材30の一部に重なるように設けられ、保護部は、電極配線40と離間材30とが重なる部分において、電極配線40を接触して覆うように設けられた保護膜50である。 In the present embodiment, the electrode wiring 40 is provided so as to overlap with a part of the spacing material 30, and the protection unit covers and covers the electrode wiring 40 in a portion where the electrode wiring 40 and the spacing material 30 overlap. The protective film 50 is provided on the surface.
 これにより、電極配線40と離間材30とが重なる部分において保護膜50が設けられているので、電極配線40の断線の発生を抑制することができる。つまり、保護膜50が、離間材30から電極配線40に加えられる荷重を分散させるので、断線が発生するような強い荷重が電極配線40に加わることを抑制することができる。 Thereby, since the protective film 50 is provided in the portion where the electrode wiring 40 and the spacing material 30 overlap, the occurrence of disconnection of the electrode wiring 40 can be suppressed. That is, since the protective film 50 disperses the load applied to the electrode wiring 40 from the spacing material 30, it is possible to suppress a strong load that causes disconnection from being applied to the electrode wiring 40.
 また、例えば、離間材30は、筒状のスペーサである。 For example, the spacer 30 is a cylindrical spacer.
 これにより、離間材30が筒状のスペーサであるので、電極配線40には、より強い荷重が加わる恐れがある。例えば、離間材30としては、図4に示したように角筒状のスペーサが用いられることが多い。したがって、離間材30の角の部分に荷重が集中し、電極配線40がより断線しやすくなる恐れがある。このため、保護膜50を設けることにより、保護膜50が設けられていない場合に比べて、電極配線40の断線の発生をより効果的に抑制することができる。 Thereby, since the spacer 30 is a cylindrical spacer, a stronger load may be applied to the electrode wiring 40. For example, as the spacing member 30, a square cylindrical spacer is often used as shown in FIG. Therefore, there is a possibility that the load concentrates on the corner portion of the spacer 30 and the electrode wiring 40 is more likely to be disconnected. For this reason, by providing the protective film 50, the occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed as compared to the case where the protective film 50 is not provided.
 また、例えば、電極配線40は、一対のガラス板10及びガラス板11の少なくとも一方に形成された配線層である。 For example, the electrode wiring 40 is a wiring layer formed on at least one of the pair of glass plates 10 and the glass plate 11.
 これにより、電極配線40が配線層であるので、電極配線40は、リード線などの被覆線よりも、外部から加えられる力に対して弱く、断線しやすい。したがって、保護膜50を設けることにより、保護膜50が設けられていない場合に比べて、電極配線40の断線の発生をより効果的に抑制することができる。 Thereby, since the electrode wiring 40 is a wiring layer, the electrode wiring 40 is weaker than the externally applied force than the covered wire such as a lead wire, and is easily disconnected. Therefore, by providing the protective film 50, the occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed as compared to the case where the protective film 50 is not provided.
 (実施の形態1の変形例)
 以下では、実施の形態1に係る複層ガラス1及び光学デバイス100の変形例について図面を用いて説明する。
(Modification of Embodiment 1)
Below, the modification of the multilayer glass 1 which concerns on Embodiment 1, and the optical device 100 is demonstrated using drawing.
 例えば、実施の形態1では、離間材30が筒状のスペーサである場合について示したが、これに限らない。離間材30は、粒状のスペーサを含有する接着剤でもよい。 For example, in the first embodiment, the case where the spacer 30 is a cylindrical spacer is shown, but the present invention is not limited to this. The spacing material 30 may be an adhesive containing granular spacers.
 図5は、本変形例に係る離間材30aを示す断面図である。 FIG. 5 is a cross-sectional view showing a spacing member 30a according to this modification.
 図5に示すように、離間材30aは、粒状のスペーサ31aと、接着剤32aとを備える。 As shown in FIG. 5, the spacer 30a includes a granular spacer 31a and an adhesive 32a.
 粒状のスペーサ31aは、一対のガラス板10及びガラス板11の間隔を形成するための粒子である。例えば、粒状のスペーサ31aは、ガラスビーズ、樹脂ビーズ、シリカ粒子などである。粒状のスペーサ31aは、接着剤32a内に複数含まれている。複数の粒状のスペーサ31aは、略同じ径の球体である。 The granular spacer 31 a is a particle for forming a gap between the pair of glass plates 10 and the glass plate 11. For example, the granular spacer 31a is glass beads, resin beads, silica particles, or the like. A plurality of granular spacers 31a are included in the adhesive 32a. The plurality of granular spacers 31a are spheres having substantially the same diameter.
 接着剤32aは、内部空間12を封止するために、ガラス板10とガラス板11とを接着する部材である。接着剤32aは、平面視において環状に設けられている。具体的には、接着剤32aは、一対のガラス板10及びガラス板11の周に沿って枠状に形成される。接着剤32aとしては、例えば、エポキシ系樹脂、アクリル系樹脂、又は、シリコーン樹脂などの光硬化性、熱硬化性又は二液硬化性の接着性樹脂を用いることができる。 The adhesive 32 a is a member that bonds the glass plate 10 and the glass plate 11 in order to seal the internal space 12. The adhesive 32a is provided in an annular shape in plan view. Specifically, the adhesive 32 a is formed in a frame shape along the circumference of the pair of glass plates 10 and the glass plate 11. As the adhesive 32a, for example, a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
 本変形例における離間材30aは、例えば、ディスペンサーなどの吐出装置を用いてガラス板10(又はガラス板11)上に設けられる。このとき、粒状のスペーサ31aが配置される位置を制御することができない。 The spacing member 30a in the present modification is provided on the glass plate 10 (or the glass plate 11) using a discharge device such as a dispenser, for example. At this time, the position where the granular spacer 31a is arranged cannot be controlled.
 このため、図5に示すように、電極配線40と粒状のスペーサ31aとが重なる場合が発生する。電極配線40と粒状のスペーサ31aとが重なった場合、実施の形態1と同様に、粒状のスペーサ31aによって電極配線40が断線するという恐れがある。 For this reason, as shown in FIG. 5, the electrode wiring 40 and the granular spacer 31a may overlap each other. When the electrode wiring 40 and the granular spacer 31a overlap, the electrode wiring 40 may be disconnected by the granular spacer 31a as in the first embodiment.
 これに対して、本変形例では、実施の形態1と同様に、電極配線40を覆うように保護膜50が設けられているので、粒状のスペーサ31aから加えられる荷重を分散させることができ、電極配線40の断線を抑制することができる。 On the other hand, in the present modification, as in the first embodiment, since the protective film 50 is provided so as to cover the electrode wiring 40, the load applied from the granular spacer 31a can be dispersed, Disconnection of the electrode wiring 40 can be suppressed.
 (実施の形態2)
 続いて、実施の形態2に係る複層ガラス及び光学デバイスについて説明する。
(Embodiment 2)
Subsequently, the multilayer glass and the optical device according to Embodiment 2 will be described.
 本実施の形態に係る複層ガラス及び光学デバイスは、実施の形態1とは異なる離間材を備える。以下では、本実施の形態に係る離間材について説明し、その他の構成については、実施の形態1と同じであるので、説明を簡略化又は省略する場合がある。 The multi-layer glass and the optical device according to the present embodiment include a spacing material different from that of the first embodiment. In the following, the spacing member according to the present embodiment will be described, and the other configurations are the same as those in the first embodiment, and therefore the description may be simplified or omitted.
 [離間材]
 図6は、本実施の形態に係る光学デバイス200(及び複層ガラス2)の離間材230と電極配線40とが重なる部分を示す断面図である。図6は、図2に示すIV-IV線における断面に相当する。
[Spacer]
FIG. 6 is a cross-sectional view showing a portion where the spacing member 230 and the electrode wiring 40 of the optical device 200 (and the multi-layer glass 2) according to the present embodiment overlap. 6 corresponds to a cross section taken along line IV-IV shown in FIG.
 本実施の形態に係る光学デバイス200は、電極配線40を離間材230から保護する保護部として、凹部233を備える。 The optical device 200 according to the present embodiment includes a recess 233 as a protection unit that protects the electrode wiring 40 from the spacing material 230.
 凹部233は、電極配線40と離間材230とが平面視において重なる部分において、離間材230に設けられている。凹部233は、例えば、電極配線40に沿って線状に設けられている。凹部233の断面形状は、例えば、図6に示すように矩形であるが、これに限らない。凹部233の断面形状は、半円でもよく、いかなるものでもよい。 The recess 233 is provided in the spacing material 230 at a portion where the electrode wiring 40 and the spacing material 230 overlap in plan view. The concave portion 233 is provided in a linear shape along the electrode wiring 40, for example. The cross-sectional shape of the recess 233 is, for example, a rectangle as shown in FIG. 6, but is not limited thereto. The cross-sectional shape of the recess 233 may be a semicircle or any shape.
 ここで、離間材230のより詳細な構成について図7を用いて説明する。図7は、本実施の形態に係る光学デバイス200の離間材230を示す断面図である。具体的には、図7は、図2に示すIV-IV線における断面を示している。 Here, a more detailed configuration of the spacer 230 will be described with reference to FIG. FIG. 7 is a cross-sectional view showing the spacer 230 of the optical device 200 according to the present embodiment. Specifically, FIG. 7 shows a cross section taken along line IV-IV shown in FIG.
 図7に示すように、離間材230は、中空部材231と、乾燥剤32とを備える。 As shown in FIG. 7, the spacing member 230 includes a hollow member 231 and a desiccant 32.
 中空部材231は、例えば、アルミニウムなどの金属材料から形成される。中空部材231は、例えば、略角筒状の枠体である。中空部材231には、凹部233が設けられている。つまり、中空部材231の側面の一部が内方(中空空間側)に凹むことで、凹部233が形成されている。凹部233を有する中空部材231は、例えば、アルミニウムの板材をプレス加工することで形成される。あるいは、押出加工などによって中空部材231を形成してもよい。 The hollow member 231 is made of a metal material such as aluminum, for example. The hollow member 231 is, for example, a substantially rectangular tubular frame. The hollow member 231 is provided with a recess 233. That is, the recessed part 233 is formed because a part of side surface of the hollow member 231 is dented inward (hollow space side). The hollow member 231 having the recess 233 is formed, for example, by pressing an aluminum plate material. Alternatively, the hollow member 231 may be formed by extrusion or the like.
 以上のように、本実施の形態に係る複層ガラス2では、電極配線40は、離間材230の一部に重なるように設けられ、保護部は、電極配線40と離間材230とが重なる部分において、離間材230に設けられた凹部233である。 As described above, in the multilayer glass 2 according to the present embodiment, the electrode wiring 40 is provided so as to overlap a part of the spacing material 230, and the protection portion is a portion where the electrode wiring 40 and the spacing material 230 overlap. The recess 233 is provided in the spacer 230.
 これにより、離間材230に凹部233が設けられていることで、図6に示すように、電極配線40と離間材230とは接触しない。電極配線40と離間材230とが接触しないので、離間材230からの荷重は電極配線40には加わらない。したがって、電極配線40の断線の発生を抑制することができる。 Thereby, since the recess 233 is provided in the spacer 230, the electrode wiring 40 and the spacer 230 are not in contact with each other as shown in FIG. Since the electrode wiring 40 and the spacing material 230 do not contact each other, a load from the spacing material 230 is not applied to the electrode wiring 40. Therefore, occurrence of disconnection of the electrode wiring 40 can be suppressed.
 [変形例1]
 なお、実施の形態1と同様に、電極配線40に保護膜50を設けてもよい。
[Modification 1]
Note that a protective film 50 may be provided on the electrode wiring 40 as in the first embodiment.
 図8Aは、本実施の形態の変形例に係る光学デバイス200a(及び複層ガラス2a)を示す断面図である。図8Aは、図2に示すIV-IV線における断面に相当する。 FIG. 8A is a cross-sectional view showing an optical device 200a (and multi-layer glass 2a) according to a modification of the present embodiment. FIG. 8A corresponds to a cross section taken along line IV-IV shown in FIG.
 図8Aに示すように、光学デバイス200aは、図6に示す光学デバイス200に比べて、さらに、保護膜50を備える点が異なっている。 8A, the optical device 200a is different from the optical device 200 shown in FIG. 6 in that a protective film 50 is further provided.
 これにより、電極配線40の断線の発生をより効果的に抑制することができる。例えば、ガラス板10とガラス板11とを貼り合わせる際に、凹部233が電極配線40を覆うように離間材230を配置する。このとき、離間材230が電極配線40に接触してしまったとしても、保護膜50が設けられていることで、電極配線40には押圧力が加わりにくくなる。したがって、電極配線40の断線の発生をより効果的に抑制することができる。 Thereby, the occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed. For example, the spacer 230 is disposed so that the recess 233 covers the electrode wiring 40 when the glass plate 10 and the glass plate 11 are bonded together. At this time, even if the spacing member 230 comes into contact with the electrode wiring 40, the pressing force is hardly applied to the electrode wiring 40 by providing the protective film 50. Therefore, occurrence of disconnection of the electrode wiring 40 can be more effectively suppressed.
 [変形例2]
 また、図6~図8Aに示す例では、電極配線40と凹部233との間に空隙が形成されている。当該空隙によって、外部から内部空間12に水分が浸入する恐れがある。
[Modification 2]
In the example shown in FIGS. 6 to 8A, a gap is formed between the electrode wiring 40 and the recess 233. Due to the gap, moisture may enter the internal space 12 from the outside.
 そこで、図8Bに示すように、空隙が保護膜50によって埋められていてもよい。 Therefore, the gap may be filled with a protective film 50 as shown in FIG. 8B.
 図8Bは、本実施の形態の別の変形例に係る光学デバイス200b(及び複層ガラス2b)を示す断面図である。図8Bは、図2に示すIV-IV線における断面に相当する。 FIG. 8B is a cross-sectional view showing an optical device 200b (and multi-layer glass 2b) according to another modification of the present embodiment. FIG. 8B corresponds to a cross section taken along line IV-IV shown in FIG.
 図8Bに示すように、保護膜50は、電極配線40を覆い、かつ、凹部233を充填するように設けられている。これにより、電極配線40と凹部233との間の空隙が埋められるので、水分が内部空間12に浸入するのを抑制することができる。 As shown in FIG. 8B, the protective film 50 is provided so as to cover the electrode wiring 40 and fill the recess 233. Thereby, since the space | gap between the electrode wiring 40 and the recessed part 233 is filled, it can suppress that a water | moisture content permeates into the internal space 12. FIG.
 なお、保護膜50を設けずに、電極配線40と凹部233とが直接密着されていてもよい。 Note that the electrode wiring 40 and the recess 233 may be in direct contact without providing the protective film 50.
 [変形例3]
 また、保護部は、凹部233ではなく、図8Cに示すような分離空間233cでもよい。つまり、保護部は、離間材230が分離した分離空間233cでもよい。
[Modification 3]
Further, the protection portion may be a separation space 233c as shown in FIG. 8C instead of the recess 233. That is, the protection part may be the separation space 233c from which the spacer 230 is separated.
 図8Cは、本実施の形態の別の変形例に係る光学デバイス200c(及び複層ガラス2c)を示す断面図である。図8Cは、図2に示すIV-IV線における断面に相当する。 FIG. 8C is a cross-sectional view showing an optical device 200c (and multi-layer glass 2c) according to another modification of the present embodiment. FIG. 8C corresponds to a cross section taken along line IV-IV shown in FIG.
 図8Cに示すように、離間材230cは、分離空間233cを有する。言い換えると、離間材230cは、分離している。つまり、図2に示す例と同様に、離間材230cは、環状に設けられているが、全周に亘って設けられているのではなく、一部が分離している。離間材230cの分離した部分が、分離空間233cであり、電極配線40の保護部である。 As shown in FIG. 8C, the spacer 230c has a separation space 233c. In other words, the spacing material 230c is separated. That is, as in the example illustrated in FIG. 2, the spacing member 230 c is provided in an annular shape, but is not provided over the entire circumference, but is partially separated. The separated part of the spacer 230 c is a separation space 233 c and is a protection part of the electrode wiring 40.
 電極配線40は、平面視において、環状に設けられた離間材230cとは重なっていない。電極配線40は、離間材230cに沿った仮想的な環に交差するように設けられている。具体的には、電極配線40は、離間材230cが分離することで形成される分離空間233cに配置されている。 The electrode wiring 40 does not overlap with the annularly spaced spacer 230c in plan view. The electrode wiring 40 is provided so as to intersect a virtual ring along the spacing member 230c. Specifically, the electrode wiring 40 is disposed in the separation space 233c formed by the separation material 230c separating.
 したがって、図8Cに示すように、電極配線40は、離間材230cには接触していない。電極配線40と離間材230cとが接触しないので、離間材230cからの荷重は電極配線40には加わらない。したがって、電極配線40の断線の発生を抑制することができる。 Therefore, as shown in FIG. 8C, the electrode wiring 40 is not in contact with the spacer 230c. Since the electrode wiring 40 and the spacing material 230c do not contact each other, the load from the spacing material 230c is not applied to the electrode wiring 40. Therefore, occurrence of disconnection of the electrode wiring 40 can be suppressed.
 (実施の形態3)
 続いて、実施の形態3に係る複層ガラス及び光学デバイスについて説明する。なお、実施の形態1又は2と同じ構成要素については、説明を簡略化又は省略する場合がある。
(Embodiment 3)
Subsequently, the multilayer glass and the optical device according to the third embodiment will be described. Note that description of the same components as those in Embodiment 1 or 2 may be simplified or omitted.
 図9は、本実施の形態に係る光学デバイス300(及び複層ガラス3)の平面図である。 FIG. 9 is a plan view of the optical device 300 (and the multilayer glass 3) according to the present embodiment.
 図10は、本実施の形態に係る光学デバイス300(及び複層ガラス3)の離間材330と電極配線340とが重なる部分を示す断面図である。具体的には、図10は、図9に示すX-X線における断面を示している。より具体的には、図10は、光学デバイス300が備える電極配線340に沿った断面を示している。 FIG. 10 is a cross-sectional view showing a portion where the spacer 330 and the electrode wiring 340 of the optical device 300 (and the multi-layer glass 3) according to the present embodiment overlap. Specifically, FIG. 10 shows a cross section taken along line XX shown in FIG. More specifically, FIG. 10 shows a cross section along the electrode wiring 340 included in the optical device 300.
 本実施の形態に係る光学デバイス300は、実施の形態1に係る光学デバイス100と比較して、離間材30、電極配線40及び保護膜50の代わりに、離間材330、電極配線340及び保護膜350を備える点が異なっている。以下では、実施の形態1又は2と異なる点を中心に説明する。 The optical device 300 according to the present embodiment is different from the optical device 100 according to the first embodiment in that the spacing material 330, the electrode wiring 340, and the protective film are used instead of the spacing material 30, the electrode wiring 40, and the protective film 50. The difference is that 350 is provided. Below, it demonstrates centering on a different point from Embodiment 1 or 2. FIG.
 離間材330は、一対のガラス板10及びガラス板11の間隔を形成する。離間材330には、凹部333が設けられている。離間材330の機能及び材料などは、例えば、実施の形態2に係る離間材230と同じである。つまり、離間材330は、離間材230と同様に、筒状のスペーサである。凹部333の詳細については、図11を用いて後で説明する。 The spacing member 330 forms a gap between the pair of glass plates 10 and the glass plate 11. The spacing member 330 is provided with a recess 333. The function and material of the spacer 330 are the same as those of the spacer 230 according to the second embodiment, for example. That is, the spacing material 330 is a cylindrical spacer, like the spacing material 230. Details of the recess 333 will be described later with reference to FIG.
 電極配線340は、一部が環に沿って設けられている。当該環は、離間材330の平面視における形状が表す仮想的な環である。具体的には、電極配線340の一部は、図9及び図10に示すように、離間材330に沿って線状に設けられている。より具体的には、電極配線340の一部は、離間材330に設けられた線状の凹部333に覆われている。なお、電極配線340の機能及び材料などは、例えば、電極配線40と同じである。 Part of the electrode wiring 340 is provided along the ring. The ring is a virtual ring represented by the shape of the spacing member 330 in plan view. Specifically, a part of the electrode wiring 340 is linearly provided along the spacer 330 as shown in FIGS. 9 and 10. More specifically, a part of the electrode wiring 340 is covered with a linear recess 333 provided in the spacing member 330. The function and material of the electrode wiring 340 are the same as the electrode wiring 40, for example.
 保護膜350は、電極配線340に沿って電極配線340を覆うように設けられている。具体的には、保護膜350は、離間材330に設けられた凹部333を埋めるように設けられている。保護膜350の平面視形状は、凹部333の平面視形状と略同じである。また、例えば、電極配線340及び保護膜350の長尺方向に直交する断面は、図8Bと同様になる。 The protective film 350 is provided so as to cover the electrode wiring 340 along the electrode wiring 340. Specifically, the protective film 350 is provided so as to fill the concave portion 333 provided in the spacing member 330. The planar view shape of the protective film 350 is substantially the same as the planar view shape of the recess 333. For example, the cross section orthogonal to the elongate direction of the electrode wiring 340 and the protective film 350 becomes the same as that of FIG. 8B.
 [凹部]
 図11は、本実施の形態に係る光学デバイス300が備える離間材330の凹部333の形状を示す平面図である。具体的には、図11は、図9の一点鎖線で示す領域XI内の離間材330のみを示している。
[Concave]
FIG. 11 is a plan view showing the shape of the recess 333 of the spacer 330 provided in the optical device 300 according to the present embodiment. Specifically, FIG. 11 shows only the spacing member 330 in the region XI indicated by the one-dot chain line in FIG.
 図11に示すように、凹部333は、環の一部に沿った線状の凹部である。具体的には、凹部333は、電極配線340に沿って、内部空間12と光学デバイス300の外部とを連通するように設けられている。 As shown in FIG. 11, the recess 333 is a linear recess along a part of the ring. Specifically, the recess 333 is provided so as to communicate the internal space 12 and the outside of the optical device 300 along the electrode wiring 340.
 本実施の形態では、図11に示すように、凹部333は、内部空間12と光学デバイス300の外部とが最短距離で連通しないように配置されている。具体的には、凹部333は、内部空間12と光学デバイス300の外部とを結ぶ直線状ではなく、折れ線状に設けられている。 In the present embodiment, as shown in FIG. 11, the recess 333 is arranged so that the internal space 12 and the outside of the optical device 300 do not communicate with each other at the shortest distance. Specifically, the recess 333 is provided in a polygonal line shape, not a straight line connecting the internal space 12 and the outside of the optical device 300.
 具体的には、凹部333は、図11に示すように、第1短手部333aと、第2短手部333bと、長手部333cとを有する。 Specifically, as shown in FIG. 11, the concave portion 333 has a first short portion 333a, a second short portion 333b, and a long portion 333c.
 第1短手部333aは、長手部333cと光学デバイス300の外部とを連通する部分である。本実施の形態では、第1短手部333aは、離間材330のコーナー部分に設けられている。第1短手部333aは、外部から内部空間12に水分が浸入するときの入口に相当する部分である。 The first short part 333 a is a part that communicates the long part 333 c with the outside of the optical device 300. In the present embodiment, the first short portion 333 a is provided at a corner portion of the spacing member 330. The first short portion 333a is a portion corresponding to an entrance when moisture enters the internal space 12 from the outside.
 第2短手部333bは、長手部333cと内部空間12とを連通する部分である。第2短手部333bは、外部から内部空間12に水分が浸入するときの出口に相当する部分である。 The second short part 333b is a part that connects the long part 333c and the internal space 12. The second short part 333b is a part corresponding to an outlet when moisture enters the internal space 12 from the outside.
 なお、本実施の形態では、凹部333は、2つの第2短手部333bを有するが、1つのみの第2短手部333bを有してもよい。このとき、第2短手部333bは、第1短手部333aからの距離(すなわち、長手部333cの距離)が長い程、水分の浸入を遅くすることができる。 In addition, in this Embodiment, although the recessed part 333 has the two 2nd short parts 333b, you may have only the 2nd short part 333b. At this time, as the distance from the first short part 333a (that is, the distance from the long part 333c) to the second short part 333b is long, the infiltration of moisture can be delayed.
 長手部333cは、離間材330の環に沿った方向(例えば、図11におけるX軸方向)に長い部分である。長手部333cの長手方向の距離が長い程、外部と内部空間12との距離を長くすることができる。 The longitudinal portion 333c is a portion that is long in the direction along the ring of the spacer 330 (for example, the X-axis direction in FIG. 11). The longer the distance in the longitudinal direction of the longitudinal portion 333c, the longer the distance between the outside and the internal space 12.
 長手部333cは、図11に示すように、離間材330の中央線(図11に示す一点鎖線)を基準として、内部空間12より遠い位置に設けられている。これにより、第2短手部333bの長さを長くすることができ、水分の浸入をより遅くすることができる。 As shown in FIG. 11, the longitudinal portion 333 c is provided at a position farther from the internal space 12 with reference to the center line of the spacer 330 (the chain line shown in FIG. 11). Thereby, the length of the 2nd short part 333b can be lengthened, and the penetration | invasion of a water | moisture content can be made slower.
 [効果など]
 以上のように、本実施の形態に係る光学デバイス300は、例えば、電極配線340は、一部が環に沿って設けられ、凹部333は、環の一部に沿った線状の凹部である。
[Effects, etc.]
As described above, in the optical device 300 according to the present embodiment, for example, a part of the electrode wiring 340 is provided along the ring, and the recess 333 is a linear recess along a part of the ring. .
 光学デバイス300では、外部と内部空間12との距離が短い程、外部から水分が浸入しやすくなる。したがって、外部と内部空間12との距離を長くすることで、外部からの水分の浸入を抑制することができる。 In the optical device 300, the shorter the distance between the outside and the internal space 12, the easier the moisture enters from the outside. Therefore, the penetration of moisture from the outside can be suppressed by increasing the distance between the outside and the internal space 12.
 本実施の形態では、凹部333が環(具体的には、離間材330)に沿って線状に設けられているので、外部と内部空間12との距離を長くすることができる。これにより、内部空間12への水分の浸入を抑制することができる。また、電極配線340と離間材330とが接触しないように、離間材330には保護部としての凹部333が設けられているので、実施の形態1及び2と同様に、電極配線340の断線の発生を抑制することができる。 In the present embodiment, since the recess 333 is linearly provided along the ring (specifically, the spacing member 330), the distance between the outside and the internal space 12 can be increased. Thereby, the penetration | invasion of the water | moisture content to the internal space 12 can be suppressed. In addition, since the spacing member 330 is provided with a recess 333 as a protection portion so that the electrode wiring 340 and the spacing member 330 do not come into contact with each other, the disconnection of the electrode wiring 340 is prevented as in the first and second embodiments. Occurrence can be suppressed.
 (その他変形例)
 以下では、上記の実施の形態の変形例に係る光学デバイス及び複層ガラスについて、図12を用いて説明する。図12は、本変形例に係る光学デバイスの離間材30aと電極配線40との位置関係を示す平面図である。
(Other variations)
Below, the optical device and multilayer glass which concern on the modification of said embodiment are demonstrated using FIG. FIG. 12 is a plan view showing the positional relationship between the spacer 30a and the electrode wiring 40 of the optical device according to this modification.
 例えば、上記の実施の形態1の変形例では、粒状のスペーサ31aを含有する接着剤32aを離間材として用いる例を説明した。このとき、粒状のスペーサ31aが電極配線40上に設けられた場合に、電極配線40が断線する恐れがあるため、図5に示す例では、電極配線40を保護する保護膜50を設けている。 For example, in the modification of the first embodiment described above, the example in which the adhesive 32a containing the granular spacer 31a is used as the spacing material has been described. At this time, when the granular spacer 31 a is provided on the electrode wiring 40, the electrode wiring 40 may be disconnected. Therefore, in the example illustrated in FIG. 5, the protective film 50 that protects the electrode wiring 40 is provided. .
 これに対して、図12に示すように、電極配線40上には離間材30aを設けなくてもよい。すなわち、図8Cの場合と同様に、電極配線40は、離間材30aの分離空間33cに設けられている。 On the other hand, as shown in FIG. 12, it is not necessary to provide the spacer 30a on the electrode wiring 40. That is, as in the case of FIG. 8C, the electrode wiring 40 is provided in the separation space 33c of the spacer 30a.
 このとき、図12に示すように、分離空間33cを封止材430によって充填する。これにより、電極配線40の断線の発生を抑制することができ、かつ、水分が内部空間12に浸入するのを抑制することができる。なお、封止材430としては、例えば、接着剤32aと同じ材料を用いることができる。 At this time, as shown in FIG. 12, the separation space 33 c is filled with the sealing material 430. Thereby, generation | occurrence | production of the disconnection of the electrode wiring 40 can be suppressed, and it can suppress that a water | moisture content permeates into the internal space 12. FIG. In addition, as the sealing material 430, the same material as the adhesive agent 32a can be used, for example.
 また、図12に示すように、封止材430は、分離空間33cだけでなく、電極配線40に沿って離間材30aの幅以上の長さで設けてもよい。これにより、電極配線40に沿って水分が浸入する経路を長くすることができるので、水分の浸入を抑制することができる。 Further, as shown in FIG. 12, the sealing material 430 may be provided not only in the separation space 33c but also in a length longer than the width of the spacing material 30a along the electrode wiring 40. Thereby, since the path | route into which water | moisture content permeates along the electrode wiring 40 can be lengthened, permeation of a water | moisture content can be suppressed.
 なお、電極配線40を覆う保護膜50を設ける場合は、封止材430の代わりに離間材30aを設けてもよい。つまり、電極配線40の近傍の離間材30aを太くしてもよい。これにより、電極配線40の断線の発生を抑制することができ、かつ、水分の浸入を抑制することができる。 In addition, when providing the protective film 50 which covers the electrode wiring 40, you may provide the spacing material 30a instead of the sealing material 430. FIG. That is, the spacing material 30a in the vicinity of the electrode wiring 40 may be thickened. Thereby, generation | occurrence | production of the disconnection of the electrode wiring 40 can be suppressed, and the penetration | invasion of a water | moisture content can be suppressed.
 (その他)
 以上、本発明に係る複層ガラス及び光学デバイスについて、上記の実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As described above, the multilayer glass and the optical device according to the present invention have been described based on the above-described embodiment and the modifications thereof, but the present invention is not limited to the above-described embodiment.
 例えば、上記の実施の形態では、電極配線40が配線層である例について示したが、これに限らない。例えば、電極配線40は、ビニールなどの絶縁性の被覆材料によって表面が覆われた導電性の金属線でもよい。具体的には、電極配線40は、ビニール線、エナメル線などのリード線でもよい。 For example, in the above-described embodiment, an example in which the electrode wiring 40 is a wiring layer has been described, but the present invention is not limited thereto. For example, the electrode wiring 40 may be a conductive metal wire whose surface is covered with an insulating coating material such as vinyl. Specifically, the electrode wiring 40 may be a lead wire such as a vinyl wire or an enameled wire.
 また、例えば、上記の実施の形態では、一対のガラス板10及びガラス板11は、異なる形状を有してもよい。例えば、ガラス板10が矩形の板体であり、ガラス板11が円形の板体でもよい。この場合、ガラス板10及びガラス板11の一方は、平面視において、他方の外側にはみ出ないように当該他方の内側に配置されている。 Also, for example, in the above-described embodiment, the pair of glass plates 10 and the glass plate 11 may have different shapes. For example, the glass plate 10 may be a rectangular plate, and the glass plate 11 may be a circular plate. In this case, one of the glass plate 10 and the glass plate 11 is disposed inside the other so as not to protrude outside the other in plan view.
 また、例えば、上記の実施の形態では、内部空間12に光学素子20が設けられた例について示したが、これに限らない。例えば、光学デバイス100は、光学素子20ではなく、電極配線40に接続された別のデバイス(例えば、ヒータなどの発熱素子)を備えてもよい。 For example, in the above-described embodiment, an example in which the optical element 20 is provided in the internal space 12 has been described, but the present invention is not limited thereto. For example, the optical device 100 may include another device (for example, a heating element such as a heater) connected to the electrode wiring 40 instead of the optical element 20.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1、2、2a、2b、2c、3 複層ガラス
10、11 ガラス板
20 光学素子
30、30a、230、230c、330 離間材
31、231 中空部材
31a 粒状のスペーサ
32a 接着剤
33c、233c 分離空間
40、340 電極配線
50、350 保護膜
100、200、200a、200b、200c、300 光学デバイス
233、333 凹部
1, 2, 2a, 2b, 2c, 3 Multi-layer glass 10, 11 Glass plate 20 Optical element 30, 30a, 230, 230c, 330 Spacing material 31, 231 Hollow member 31a Granular spacer 32a Adhesive 33c, 233c Separation space 40, 340 Electrode wiring 50, 350 Protective film 100, 200, 200a, 200b, 200c, 300 Optical device 233, 333 Recess

Claims (9)

  1.  互いに対向して配置された一対のガラス板と、
     環状に設けられた、前記一対のガラス板の間隔を形成する離間材と、
     前記一対のガラス板の少なくとも一方に、前記環の一部に重なるように設けられた電極配線と、
     前記電極配線を覆うことで、前記電極配線を前記離間材から保護する保護部とを備える
     複層ガラス。
    A pair of glass plates arranged opposite to each other;
    A spacing member that forms an interval between the pair of glass plates provided in an annular shape;
    An electrode wiring provided on at least one of the pair of glass plates so as to overlap a part of the ring;
    A multilayer glass comprising a protective part that covers the electrode wiring to protect the electrode wiring from the spacing material.
  2.  前記電極配線は、前記離間材の一部に重なるように設けられ、
     前記保護部は、前記電極配線と前記離間材とが重なる部分において、前記電極配線を接触して覆うように設けられた保護膜である
     請求項1に記載の複層ガラス。
    The electrode wiring is provided so as to overlap a part of the spacing material,
    The multilayer glass according to claim 1, wherein the protective part is a protective film provided so as to contact and cover the electrode wiring at a portion where the electrode wiring and the spacing material overlap.
  3.  前記電極配線は、前記離間材の一部に重なるように設けられ、
     前記保護部は、前記電極配線と前記離間材とが重なる部分において、前記離間材に設けられた凹部である
     請求項1に記載の複層ガラス。
    The electrode wiring is provided so as to overlap a part of the spacing material,
    The multi-layer glass according to claim 1, wherein the protection part is a recess provided in the spacing material in a portion where the electrode wiring and the spacing material overlap.
  4.  前記電極配線は、一部が前記環に沿って設けられ、
     前記凹部は、前記環の一部に沿った線状の凹部である
     請求項3に記載の複層ガラス。
    A part of the electrode wiring is provided along the ring,
    The multilayer glass according to claim 3, wherein the concave portion is a linear concave portion along a part of the ring.
  5.  前記保護部は、前記離間材が分離した分離空間である
     請求項1に記載の複層ガラス。
    The multi-layer glass according to claim 1, wherein the protection part is a separation space in which the spacer is separated.
  6.  前記離間材は、筒状のスペーサである
     請求項1~5のいずれか1項に記載の複層ガラス。
    The multilayer glass according to any one of claims 1 to 5, wherein the spacer is a cylindrical spacer.
  7.  前記離間材は、粒状のスペーサを含有する接着剤である
     請求項1~5のいずれか1項に記載の複層ガラス。
    The multilayer glass according to any one of claims 1 to 5, wherein the spacer is an adhesive containing a granular spacer.
  8.  前記電極配線は、前記一対のガラス板の少なくとも一方に形成された配線層である
     請求項1~7のいずれか1項に記載の複層ガラス。
    The multilayer glass according to any one of claims 1 to 7, wherein the electrode wiring is a wiring layer formed on at least one of the pair of glass plates.
  9.  請求項1~8のいずれか1項に記載の複層ガラスと、
     前記一対のガラス板と前記離間材とによって封止され、前記電極配線に接続された光学素子とを備える
     光学デバイス。
    The double-glazed glass according to any one of claims 1 to 8,
    An optical device comprising: an optical element sealed with the pair of glass plates and the spacing material and connected to the electrode wiring.
PCT/JP2016/000243 2015-01-28 2016-01-19 Double glazed glass and optical device WO2016121331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-014671 2015-01-28
JP2015014671A JP2016138022A (en) 2015-01-28 2015-01-28 Double glazing and optical device

Publications (1)

Publication Number Publication Date
WO2016121331A1 true WO2016121331A1 (en) 2016-08-04

Family

ID=56542956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000243 WO2016121331A1 (en) 2015-01-28 2016-01-19 Double glazed glass and optical device

Country Status (2)

Country Link
JP (1) JP2016138022A (en)
WO (1) WO2016121331A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897888B2 (en) 2010-12-08 2018-02-20 View, Inc. Spacers for insulated glass units
US9910336B2 (en) 2010-12-08 2018-03-06 View, Inc. Spacers and connectors for insulated glass units
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US10975612B2 (en) 2014-12-15 2021-04-13 View, Inc. Seals for electrochromic windows
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696025B1 (en) * 2019-04-22 2020-05-20 信越エンジニアリング株式会社 Laminating apparatus for laminating device, laminating method and laminating device
WO2021100325A1 (en) * 2019-11-20 2021-05-27 Agc株式会社 Cable-fixing member, multi-layer glass, and production method for multi-layer glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181489U (en) * 1985-05-02 1986-11-12
JPH08218742A (en) * 1995-02-09 1996-08-27 Sanyo Electric Co Ltd Multi-layer glass
JPH101334A (en) * 1996-06-10 1998-01-06 Figura Kk Double layer glass sealed in with solar battery
JPH11343150A (en) * 1998-05-29 1999-12-14 Central Glass Co Ltd Multiple glass
JP2006273682A (en) * 2005-03-30 2006-10-12 Kaneka Corp Double-glazed unit
JP2014214041A (en) * 2013-04-24 2014-11-17 旭硝子株式会社 Multi-layered glass structure, display instrument for vehicle, and display instrument for freezing/refrigerating device
JP2014240333A (en) * 2013-06-11 2014-12-25 旭硝子株式会社 Spacer-fitted glass plate, and method for assembling multiple glass window

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181489U (en) * 1985-05-02 1986-11-12
JPH08218742A (en) * 1995-02-09 1996-08-27 Sanyo Electric Co Ltd Multi-layer glass
JPH101334A (en) * 1996-06-10 1998-01-06 Figura Kk Double layer glass sealed in with solar battery
JPH11343150A (en) * 1998-05-29 1999-12-14 Central Glass Co Ltd Multiple glass
JP2006273682A (en) * 2005-03-30 2006-10-12 Kaneka Corp Double-glazed unit
JP2014214041A (en) * 2013-04-24 2014-11-17 旭硝子株式会社 Multi-layered glass structure, display instrument for vehicle, and display instrument for freezing/refrigerating device
JP2014240333A (en) * 2013-06-11 2014-12-25 旭硝子株式会社 Spacer-fitted glass plate, and method for assembling multiple glass window

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927866B2 (en) 2009-12-22 2024-03-12 View, Inc. Self-contained EC IGU
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US9910336B2 (en) 2010-12-08 2018-03-06 View, Inc. Spacers and connectors for insulated glass units
US10444589B2 (en) 2010-12-08 2019-10-15 View, Inc. Spacers and connectors for insulated glass units
US10782583B2 (en) 2010-12-08 2020-09-22 View, Inc. Spacers for insulated glass units
US10901286B2 (en) 2010-12-08 2021-01-26 View, Inc. Spacers and connectors for insulated glass units
US9897888B2 (en) 2010-12-08 2018-02-20 View, Inc. Spacers for insulated glass units
US11960189B2 (en) 2010-12-08 2024-04-16 View, Inc. Spacers for insulated glass units
US11740528B2 (en) 2010-12-08 2023-08-29 View, Inc. Spacers for insulated glass units
US10975612B2 (en) 2014-12-15 2021-04-13 View, Inc. Seals for electrochromic windows
US11555346B2 (en) 2014-12-15 2023-01-17 View, Inc. Seals for electrochromic windows

Also Published As

Publication number Publication date
JP2016138022A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
WO2016121331A1 (en) Double glazed glass and optical device
WO2016121332A1 (en) Insulated glazing and optical device
CN110289289B (en) Display panel and display device
TWI540474B (en) Organic light emitting diode touch display device
US20170122028A1 (en) Light control element and building material provided with same
WO2014122938A1 (en) Organic electroluminescence element and illumination device
TWI576751B (en) A display device for a touch panel input device with an electrolytic capacitance coupling method
JP2013500579A5 (en)
TWI523218B (en) Organic light emitting diode display panel and method for manufacturing the same
WO2013089231A1 (en) Organic electroluminescent lighting device and method for manufacturing same
JP2019082685A (en) Display device with touch screen
JP7377422B2 (en) Light control device, light control window, and manufacturing method of light control device
JP2017105664A (en) Multiple glass
TW201714066A (en) Touch panel and manufacturing method thereof
KR20160113463A (en) Display device
JP2011123150A (en) Method of fabricating electro-optical apparatus
US20200238437A1 (en) Laser sealed housing for electronic device
JP2007273254A (en) Organic el display device and its manufacturing method
JP6403067B2 (en) Multi-layer glass and optical device
KR20050122302A (en) Encapsulation film for oled, encapsulating method thereof
TW201513332A (en) Organic light emitting package structure and manufacturing method thereof
WO2016136163A1 (en) Electrochromic element
JPWO2016017061A1 (en) Organic EL device and manufacturing method thereof
US11822172B2 (en) Light control sheet and light control device
JP2015115191A (en) Organic electroluminescent element, manufacturing method thereof and luminaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742936

Country of ref document: EP

Kind code of ref document: A1