WO2016136163A1 - Electrochromic element - Google Patents

Electrochromic element Download PDF

Info

Publication number
WO2016136163A1
WO2016136163A1 PCT/JP2016/000657 JP2016000657W WO2016136163A1 WO 2016136163 A1 WO2016136163 A1 WO 2016136163A1 JP 2016000657 W JP2016000657 W JP 2016000657W WO 2016136163 A1 WO2016136163 A1 WO 2016136163A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
terminal
reaction
substrate
electrochromic element
Prior art date
Application number
PCT/JP2016/000657
Other languages
French (fr)
Japanese (ja)
Inventor
義和 葛岡
知典 山田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016136163A1 publication Critical patent/WO2016136163A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to an electrochromic element.
  • Patent Document 1 discloses a light control element having an electrolyte layer sandwiched between a pair of electrodes.
  • the electrolyte layer in the light control element includes an electrochromic material containing silver ions.
  • the above-described conventional electrochromic device has a problem that the optical state cannot be changed smoothly.
  • an object of the present invention is to provide an electrochromic element capable of causing a change in optical state smoothly.
  • an electrochromic device includes a first electrode and a second electrode having translucency, which are disposed to face each other, the first electrode, and the second electrode.
  • An electrochromic element including an electrolyte-containing functional layer, wherein the functional layer includes: (i) ions contained in the electrolyte cause a first electrode reaction with respect to the first electrode. In the first optical state, and (ii) when the ions contained in the electrolyte cause a second electrode reaction having a reaction resistance higher than that of the first electrode reaction with respect to the first electrode, The average temperature of the electrochromic element when the second electrode state is different from the first optical state and the second electrode reaction occurs is the electrochromic element when the first electrode reaction occurs. Higher than the average temperature of the click device.
  • the electrochromic device according to the present invention can smoothly change the optical state.
  • FIG. 1 is a schematic plan view of an electrochromic device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the electrochromic device according to the embodiment of the present invention.
  • FIG. 3 is a schematic plan view showing the connection between each terminal of the electrochromic device and the power supply unit according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view for explaining the operation of the electrochromic element according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing the relationship between the average temperature of the electrochromic device and the magnitude of reaction resistance according to the embodiment of the present invention.
  • FIG. 1 is a schematic plan view of an electrochromic element 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the electrochromic element 1 according to the present embodiment, and specifically shows a cross section taken along line II-II in FIG.
  • the electrochromic device 1 is a flat polyhedron. 1 and 2, the direction along one side of the main surface of the electrochromic element 1 is the X-axis direction, the direction along the other side orthogonal to the one side is the Y-axis direction, and the main surface is The direction orthogonal to the Z axis direction.
  • the optical state of the electrochromic element 1 changes when power is supplied.
  • the electrochromic element 1 realizes a light transmission state (light transmission mode) and a light reflection state (light reflection mode).
  • the electrochromic element 1 may realize a light scattering state (light scattering mode) instead of or in addition to the light transmission state or the light reflection state.
  • the light transmission state is a state (mode) in which light (for example, visible light) incident on the electrochromic element 1 is transmitted.
  • the light transmittance at this time is sufficiently high, for example, and the electrochromic element 1 is transparent.
  • the electrochromic element 1 may have light reflectivity and light scattering properties even in a light transmission state. That is, the light transmission state is a state where light transmission is dominant compared to light reflection and scattering.
  • the light reflection state is a state (mode) in which light (for example, visible light) incident on the electrochromic element 1 is reflected.
  • the reflection of visible light may be either specular reflection or scattering reflection.
  • the electrochromic element 1 may have a light transmitting property and a light scattering property even in a light reflecting state. That is, the light reflection state is a state in which light reflection is dominant as compared with light transmission and scattering.
  • the light scattering state is a state (mode) in which light incident on the electrochromic element 1 (for example, visible light) is scattered.
  • the electrochromic element 1 may have light transmissivity and light reflectivity even in a light scattering state. That is, the light scattering state is a state in which light scattering is dominant compared to light transmission and reflection.
  • the electrochromic element 1 can be used for a window of a building or a vehicle, for example.
  • the electrochromic element 1 is sealed in the internal space of the multilayer glass.
  • a light emitting element such as an organic EL element may be sealed in the multilayer glass.
  • a multilayer glass can be utilized as what is called a smart window which can be utilized for uses, such as illumination, a mirror, and an information display, for example.
  • the electrochromic element 1 includes a first substrate 10, a second substrate 11, an optical adjustment layer 20, a first terminal 30, a heating terminal 31, and a second terminal 40. And a sealing material 50. Further, the electrochromic element 1 includes a heating mechanism. The heating mechanism includes a first terminal 30 and a heat generating terminal 31.
  • the first substrate 10 and the second substrate 11 are translucent and transmit at least part of visible light. Specifically, the first substrate 10 and the second substrate 11 are transparent (light transmittance is sufficiently high) flat plates.
  • the first substrate 10 and the second substrate 11 are provided to face each other with the optical adjustment layer 20 interposed therebetween. Specifically, the first substrate 10 and the second substrate 11 are arranged so that the distance between them is substantially constant, that is, in parallel.
  • the first substrate 10 and the second substrate 11 have, for example, substantially the same shape and substantially the same size.
  • the planar view shapes of the first substrate 10 and the second substrate 11 are rectangular.
  • the planar view shapes of the first substrate 10 and the second substrate 11 may be other polygons such as a square, or any shape such as a circle or an ellipse.
  • the thickness of each of the first substrate 10 and the second substrate 11 is, for example, 1 mm.
  • the first substrate 10 and the second substrate 11 may have different shapes and different sizes.
  • the plan view means a direction perpendicular to the main surface (specifically, the surface having the largest area) of the first substrate 10 or the second substrate 11, that is, the thickness direction of the electrochromic element 1 (Z-axis direction). Means when seen.
  • the first terminal 30 and the heat generating terminal 31 are provided at the end of the first substrate 10.
  • the end portion of the first substrate 10 is an outer portion of the first substrate 10 that is not surrounded by the sealing material 50.
  • a second terminal 40 is provided at the end of the second substrate 11.
  • the end portion of the second substrate 11 is an outer portion of the second substrate 11 that is not surrounded by the sealing material 50.
  • the first substrate 10 and the second substrate 11 are arranged so as to be shifted in a diagonal direction. Specifically, the first substrate 10 and the second substrate 11 are arranged such that the end portion of the first substrate 10 does not overlap the second substrate 11 in plan view, and the end portion of the second substrate 11 is first. It arrange
  • the first substrate 10 and the second substrate 11 are made of the same material, for example.
  • the first substrate 10 and the second substrate 11 include glass substrates such as soda glass, alkali-free glass, and high refractive index glass, or polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN).
  • the resin substrate can be used.
  • the glass substrate has the advantage of being excellent in transparency and moisture resistance.
  • the resin substrate has an advantage of less scattering at the time of destruction.
  • flexible flexible substrates may be used as the first substrate 10 and the second substrate 11.
  • the flexible substrate is formed from, for example, a resin substrate or a thin film glass.
  • substrate 11 may be formed from a mutually different material.
  • the optical adjustment layer 20 includes a first electrode 21, a second electrode 22, and a functional layer 23.
  • the optical state of the optical adjustment layer 20 changes according to the voltage applied between the first electrode 21 and the second electrode 22.
  • the optical adjustment layer 20 switches between a light transmission state and a light reflection state, for example.
  • the first electrode 21 and the second electrode 22 are translucent and transmit at least part of visible light. Specifically, the first electrode 21 and the second electrode 22 are transparent flat conductive films. When a predetermined voltage is applied between the first electrode 21 and the second electrode 22, the optical state of the functional layer 23 changes.
  • the first electrode 21 and the second electrode 22 are arranged to face each other as shown in FIG. Specifically, the first electrode 21 is formed on the first substrate 10, and the second electrode 22 is formed on the second substrate 11.
  • each of the first electrode 21 and the second electrode 22 is formed by forming a conductive film on the first substrate 10 and the second substrate 11 by sputtering, vapor deposition, or the like, and patterning the formed conductive film.
  • the first electrode 21 and the second electrode 22 may be respectively formed on the first substrate 10 and the second substrate 11 through a light-transmitting undercoat layer.
  • the first electrode 21 and the second electrode 22 are made of the same material, for example.
  • transparent metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum dope zinc oxide (AZO), fluorine dope tin oxide (FTO), are mentioned, for example. Can be used.
  • the planar view shapes of the first electrode 21 and the second electrode 22 are substantially rectangular as shown in FIG. Specifically, the shape of the first electrode 21 and the second electrode 22 in plan view is substantially the same as the shape of the overlapping portion between the first substrate 10 and the second substrate 11.
  • the first electrode 21 extends to the outside of the sealing material 50 and is electrically and physically connected to the first terminal 30. Although not shown, the first electrode 21 extends to the outside of the sealing material 50 and is electrically and physically connected to the heat generating terminal 31.
  • the first electrode 21, the first terminal 30, and the heat generating terminal 31 are integrally formed of the same material, for example. More specifically, the first electrode 21, the first terminal 30, and the heat generating terminal 31 are formed by patterning a conductive film formed on the first substrate 10.
  • the second electrode 22 extends to the outside of the sealing material 50 and is electrically and physically connected to the second terminal 40.
  • the second electrode 22 and the second terminal 40 are integrally formed of the same material, for example. More specifically, the second electrode 22 and the second terminal 40 are formed by patterning a conductive film formed on the second substrate 11.
  • the first electrode 21 and the second electrode 22 are made of a material having a refractive index difference between the first substrate 10 and the second substrate 11 in a visible light band smaller than a predetermined value, respectively.
  • the difference in refractive index between the first electrode 21 and the first substrate 10 is 0.2 or less, and preferably 0.1 or less.
  • reflection and refraction of light at the interface between the first electrode 21 and the first substrate 10 can be suppressed, and light can be transmitted effectively.
  • the first electrode 21 and the second electrode 22 may be formed of different materials, and in this case, a material whose refractive index difference between the first electrode 21 and the second electrode 22 is smaller than a predetermined value is used. It is preferable.
  • the thickness of each of the first electrode 21 and the second electrode 22 is, for example, 200 nm.
  • At least one of the first electrode 21 and the second electrode 22 may have an uneven structure on the surface. Thereby, light can be scattered or distributed.
  • the surface roughness of the first electrode 21 is smaller than the surface roughness of the second electrode 22. Therefore, when the metal film is deposited on the first electrode 21, the surface roughness of the metal film can be made smaller than when the metal film is deposited on the second electrode 22. That is, the surface of the metal film deposited on the first electrode 21 can be brought closer to the mirror surface. Therefore, the light incident on the electrochromic element 1 can be specularly reflected.
  • the functional layer 23 is a layer that changes the optical state of the optical adjustment layer 20.
  • the functional layer 23 is provided between the first electrode 21 and the second electrode 22.
  • the functional layer 23 contains an electrolyte.
  • the functional layer 23 enters the first optical state when ions contained in the electrolyte cause a first electrode reaction with respect to the first electrode 21.
  • the functional layer 23 has a second optical state different from the first optical state when ions contained in the electrolyte cause a second electrode reaction having a reaction resistance higher than that of the first electrode reaction with respect to the first electrode 21. It becomes a state.
  • the reaction resistance is a degree indicating the difficulty of the reaction. That is, the second electrode reaction is less likely to proceed than the first electrode reaction.
  • the first electrode reaction is a reaction in which metal ions contained in the electrolyte are deposited as a metal film.
  • the functional layer 23 is in a light reflecting state when the first electrode reaction occurs.
  • the second electrode reaction is a reaction in which the metal film dissolves as metal ions. When the second electrode reaction occurs, the functional layer 23 enters a light transmission state.
  • the functional layer 23 is formed of a polymer material in which an electrolyte containing metal ions is dissolved.
  • metal ions for example, silver ions or copper ions can be used.
  • electrolyte containing metal ions for example, silver nitrate, silver acetate, copper chloride, or the like can be used.
  • polymer material for example, polyvinyl alcohol, polybutyl alcohol or the like can be used.
  • a solvent such as dimethyl sulfoxide (DMSO) may be used.
  • the functional layer 23 enters a light transmission state. Further, when the metal element is deposited on the first electrode 21 or the second electrode 22 as a metal film, the functional layer 23 is in a light reflecting state.
  • the thickness of the functional layer 23 is, for example, 1 ⁇ m or more and 1 mm or less, preferably 10 ⁇ m or more and 500 ⁇ m or less. Thereby, suppression of the fall of the transmittance
  • the functional layer 23 may be, for example, any of liquid, solid, and gel.
  • the first terminal 30 is one of two terminals that are electrically connected to the first electrode 21.
  • the first terminal 30 is provided on the first substrate 10.
  • the first terminal 30 is integrally formed of the same material as the first electrode 21.
  • the first terminal 30 is used for changing the optical state of the functional layer 23. Furthermore, the first terminal 30 is used to cause the first electrode 21 to generate heat by passing a current through the first electrode 21. That is, the 1st terminal 30 is a part of heating mechanism with which the electrochromic element 1 concerning this Embodiment is provided.
  • the heat generating terminal 31 is the other of the two terminals electrically connected to the first electrode 21.
  • the heat generating terminal 31 is connected to the first electrode 21 at a position different from the first terminal 30.
  • the heat generating terminal 31 is provided on the first substrate 10.
  • the heating terminal 31 is integrally formed of the same material as the first electrode 21.
  • the heating terminal 31 is used to cause the first electrode 21 to generate heat by passing a current through the first electrode 21. That is, the heat generating terminal 31 is a part of the heating mechanism provided in the electrochromic element 1 according to the present embodiment.
  • the heating terminal 31 is provided, for example, at a position away from the first terminal 30. Specifically, the heat generating terminal 31 is provided so as to sandwich the first electrode 21 between the first terminal 30. For example, the heat generating terminal 31 and the first terminal 30 are respectively provided at opposite ends of the first electrode 21 (first substrate 10) as shown in FIG.
  • the first electrode 21 can efficiently generate heat, and the generated heat can be efficiently transmitted to the entire first electrode 21.
  • the second terminal 40 is a terminal electrically connected to the second electrode 22.
  • the second terminal 40 is provided on the second substrate 11.
  • the second terminal 40 is integrally formed of the same material as the second electrode 22.
  • the second terminal 40 is used for changing the optical state of the functional layer 23.
  • a potential difference is generated between the first electrode 21 and the second electrode 22 by connecting a power source between the first terminal 30 and the second terminal 40. Due to the potential difference, the first electrode reaction or the second electrode reaction is caused to occur in ions contained in the electrolyte included in the functional layer 23. Thereby, the optical state of the functional layer 23 can be changed.
  • the first electrode 21, the second electrode 22, the first terminal 30, the heat generating terminal 31, and the second terminal 40 are each made of, for example, ITO, but are not limited thereto. Each of the first electrode 21, the second electrode 22, the first terminal 30, the heat generating terminal 31, and the second terminal 40 may be formed of different materials.
  • each of the first terminal 30, the heat generating terminal 31, and the second terminal 40 may not have translucency.
  • Each of the first terminal 30, the heat generating terminal 31, and the second terminal 40 may have a light shielding property, and may be formed of a metal material such as copper or aluminum, for example.
  • the sealing material 50 seals the optical adjustment layer 20 by connecting the first substrate 10 and the second substrate 11 so as to surround the optical adjustment layer 20.
  • the sealing material 50 is formed in a predetermined shape along the circumference of the optical adjustment layer 20.
  • the sealing material 50 is formed in a frame shape along the shape of the overlapping portion between the first substrate 10 and the second substrate 11 in plan view.
  • the sealing material 50 is formed in a rectangular frame shape.
  • sealing material 50 for example, a photo-curing, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
  • a thermoplastic adhesive resin made of an acid-modified product such as polyethylene or polypropylene may be used.
  • the sealing material 50 may include a granular spacer for ensuring the thickness of the optical adjustment layer 20 (distance between the first substrate 10 and the second substrate 11).
  • a granular spacer for example, glass beads, resin beads, silica particles and the like can be used.
  • the heating mechanism heats the functional layer 23 when the second electrode reaction occurs.
  • the heating mechanism includes the first terminal 30 and the heat generating terminal 31. Further, the heating mechanism includes a power supply unit 60 as shown in FIG.
  • FIG. 3 is a schematic plan view showing the connection between each terminal of the electrochromic element 1 and the power supply unit 60 according to the present embodiment.
  • the power supply unit 60 causes the first electrode 21 to generate heat by passing a current through the first electrode 21 via the first terminal 30 and the heat generating terminal 31.
  • the power supply unit 60 includes a first power supply 61, a second power supply 62, a heat generating power supply 63, a first switch 64, and a second switch 65.
  • the first power supply 61 is a DC power supply connected between the first terminal 30 and the second terminal 40 via the first switch 64.
  • the first power supply 61 is a power supply for causing the first electrode reaction.
  • the first power supply 61 sets the first terminal 30 to a lower potential than the second terminal 40 when the first switch 64 is turned on. That is, the first power supply 61 applies a negative bias voltage between the first terminal 30 and the second terminal 40.
  • FIG. 4 is a schematic cross-sectional view for explaining the operation of the electrochromic element 1 according to the present embodiment.
  • the metal film 23a reflects light incident on the electrochromic element 1 (see the broken arrow in FIG. 4A). That is, when the first power supply 61 applies a negative bias voltage, the functional layer 23 enters a light reflecting state.
  • the second power source 62 is a DC power source connected between the first terminal 30 and the second terminal 40 via the second switch 65.
  • the second power source 62 is a power source for causing the second electrode reaction.
  • the second power supply 62 sets the first terminal 30 to a higher potential than the second terminal 40 when the second switch 65 is turned on. That is, the second power source 62 applies a positive bias voltage between the first terminal 30 and the second terminal 40.
  • the metal ions in the functional layer 23 are attracted to the second electrode 22 having a negative potential.
  • the metal element deposited as the metal film 23 a is changed into metal ions by taking the electrons into the first electrode 21. That is, as shown in FIG. 4B, the metal film 23a is dissolved, and the functional layer 23 enters a light transmission state.
  • a layer that occludes metal ions may be provided on the second electrode 22 side of the functional layer 23.
  • tungsten oxide WO 3
  • the heat generating power source 63 is a DC power source connected via the second switch 65 between the first terminal 30 and the heat generating terminal 31.
  • the heat generating power supply 63 sets the first terminal 30 to a higher potential than the heat generating terminal 31 when the second switch 65 is turned on. That is, the heat generating power source 63 applies a positive bias voltage between the first terminal 30 and the heat generating terminal 31.
  • the connecting direction of the heat generating power supply 63 may be reversed. That is, the heating power source 63 may apply a negative bias voltage between the first terminal 30 and the heating terminal 31.
  • the heat generating power source 63 may be an AC power source.
  • the second switch 65 When the second switch 65 is turned on, a potential difference is generated between the first terminal 30 and the heat generating terminal 31. Therefore, a current flows between the first terminal 30 and the heat generating terminal 31 via the first electrode 21 (for example, an arrow 70 in FIG. 4B). The first electrode 21 generates heat when a current flows. The generated heat is conducted to the functional layer 23 and the functional layer 23 is heated.
  • the first switch 64 is connected between the first terminal 30 and the second terminal 40.
  • the first switch 64 switches whether to supply power from the first power supply 61 between the first terminal 30 and the second terminal 40. Specifically, when the first switch 64 is turned on, a negative bias voltage is applied between the first terminal 30 and the second terminal 40 by the first power supply 61. That is, the first switch 64 is a switch for causing the first electrode reaction (precipitation reaction) with respect to the first electrode 21.
  • the second switch 65 is connected between the first terminal 30, the second terminal 40 and the heat generating terminal 31.
  • the second switch 65 is connected between the first terminal 30 and the second power source 62 and the heat generating power source 63.
  • the second switch 65 when the second switch 65 is turned on, a positive bias voltage is applied between the first terminal 30 and the second terminal 40 by the second power source 62, and the first terminal is generated by the heating power source 63. A positive bias voltage is applied between 30 and the heating terminal 31. That is, the second switch 65 is a switch for causing a second electrode reaction (dissolution reaction) and for causing the first electrode 21 to generate heat. In this way, by switching between conduction and non-conduction of the second switch 65, when the second electrode reaction occurs, the first electrode 21 can generate heat.
  • the temperature at the time of heating is, for example, 40 ° C. to 50 ° C.
  • circuit configuration of the power supply unit 60 is not limited to the example shown in FIG. Any circuit configuration that allows a current to flow through the first electrode 21 when the second electrode reaction occurs may be used.
  • one power supply may be able to output by switching the positive bias voltage and the negative bias voltage in time series.
  • the present invention is not limited to this means, and a normal heater or the like may be provided.
  • FIG. 5 is a diagram showing the relationship between the average temperature of the electrochromic device 1 according to the present embodiment and the magnitude of the reaction resistance.
  • the vertical axis indicates the direction of ion movement, and the horizontal axis indicates time.
  • the positive direction of the vertical axis is the direction in which ions move from the second electrode 22 to the first electrode 21.
  • the negative direction of the vertical axis is the direction in which ions move from the first electrode 21 to the second electrode 22.
  • the graph when the graph is above the horizontal axis, it means that ions are directed from the second electrode 22 to the first electrode 21, that is, a precipitation reaction (first electrode reaction having a low reaction resistance) is occurring.
  • a dissolution reaction second electrode reaction having a large reaction resistance
  • the vertical axis in FIG. 5B indicates the average temperature of the electrochromic element 1
  • the horizontal axis indicates time.
  • the average temperature of the electrochromic element 1 corresponds to the time average temperature of the first electrode 21, the second electrode 22, or the functional layer 23.
  • the average temperature of the electrochromic element 1 in the case where the first electrode reaction (precipitation reaction in the example of FIG. 5) occurs is the time average temperature of the electrode in the time during which the first electrode reaction occurs.
  • the average temperature of the electrochromic element 1 when the second electrode reaction (dissolution reaction in the example of FIG. 5) occurs is the time average temperature of the electrode during the time during which the second electrode reaction occurs.
  • the average temperature when the dissolution reaction occurs can be made higher than the average temperature when the precipitation reaction occurs. Thereby, progress of a dissolution reaction can be promoted. That is, when the second electrode reaction having a large reaction resistance occurs, the progress of the second electrode reaction can be promoted by increasing the average temperature of the functional layer 23.
  • the average temperature during the dissolution reaction is 40 ° C. to 50 ° C.
  • the average temperature during the precipitation reaction is, for example, room temperature or outside temperature.
  • the period during which a positive bias voltage is applied between the first terminal 30 and the second terminal 40 coincides with the period during which a current flows through the first electrode 21. . That is, the dissolution reaction and the exotherm are started at the same time and are ended at the same time.
  • the timing to start and end the heat generation is not limited to this.
  • heat generation may be started before starting the dissolution reaction. Specifically, after a current is passed through the first electrode 21 to start heat generation, that is, after application of a voltage is started between the first terminal 30 and the heat generation terminal 31, the first terminal 30 and the second electrode A positive bias voltage may be applied between the terminal 40 and the terminal 40.
  • the electrochromic element 1 includes the first electrode 21 and the second electrode 22 having translucency, which are disposed to face each other, the first electrode 21, the second electrode 22, and the like.
  • the electrochromic device 1 is provided with a functional layer 23 including an electrolyte, and the functional layer 23 includes: (i) ions contained in the electrolyte react with the first electrode 21 in a first electrode reaction.
  • the first optical state When it occurs, it enters the first optical state, and (ii) when the ions contained in the electrolyte cause a second electrode reaction with a higher reaction resistance than the first electrode reaction to the first electrode 21, the first When the second optical state is different from the optical state and the second electrode reaction occurs, the average temperature of the electrochromic element 1 is higher than the average temperature of the electrochromic element 1 when the first electrode reaction occurs
  • the average temperature when the second electrode reaction is difficult to proceed is higher than the average temperature when the first electrode reaction is initiated, the progress of the second electrode reaction can be promoted. Therefore, the change in the optical state of the electrochromic element 1 can be performed more smoothly.
  • the electrochromic element 1 further includes a heating mechanism for heating the functional layer 23.
  • the first electrode reaction is a reaction in which metal ions contained in the electrolyte are deposited as the metal film 23a
  • the second electrode reaction is a reaction in which the metal film 23a is dissolved as metal ions.
  • the surface roughness of the first electrode 21 may be smaller than the surface roughness of the second electrode 22.
  • the surface roughness of the metal film 23 a can be made smaller than when the metal film 23 a is deposited on the second electrode 22. That is, the surface of the metal film 23a deposited on the first electrode 21 can be brought closer to a mirror surface. Therefore, the light incident on the electrochromic element 1 can be specularly reflected.
  • the heating mechanism passes through the two terminals.
  • the first electrode reaction eg, precipitation reaction
  • the first electrode reaction is caused to have an average temperature higher than the average temperature when the first electrode reaction (eg, dissolution reaction) is caused.
  • the functional layer 23 is heated when a two-electrode reaction occurs
  • the present invention is not limited to this.
  • the heating mechanism may always heat the functional layer 23.
  • the first electrode reaction is a precipitation reaction and the second electrode reaction is a dissolution reaction
  • the present invention is not limited thereto.
  • the first electrode reaction may be an adsorption reaction or intercalation
  • the second electrode reaction may be an elimination reaction or deintercalation.
  • the heating mechanism includes the first terminal 30 and the heat generating terminal 31 and the first electrode 21 generates heat.
  • a heat generating terminal electrically connected to the second electrode 22 may be provided on the second substrate 11. Thereby, the second electrode 22 may generate heat.
  • both the first electrode 21 and the second electrode 22 may generate heat.
  • the heating mechanism may be a heater.
  • the heater is a heating member such as a heating wire or a conductive substrate.
  • a heater may be provided on the surface of at least one of the first substrate 10 and the second substrate 11 opposite to the optical adjustment layer 20.
  • the functional layer 23 can be heated by heating the first substrate 10 or the second substrate 11 with a heater.
  • the electrochromic element 1 may not include the heat generating terminal 31.
  • the functional layer 23 is a polymer material in which an electrolyte containing metal ions is dissolved has been described, but the present invention is not limited to this.
  • the functional layer 23 may have a stacked structure of an electrochromic layer, an electrolyte layer, and a counter electrode layer.
  • the electrochromic layer is made of an electrochromic material whose optical state changes when ions are occluded or released.
  • the electrochromic material is a metal oxide such as tungsten oxide or molybdenum oxide.
  • the metal oxide may be doped with a metal such as lithium or sodium as a dopant.
  • the electrolyte layer is a layer that can move ions between the electrochromic layer and the counter electrode layer.
  • the electrolyte layer is made of, for example, silicate, silicon oxide, tantalum oxide, or the like.
  • the counter electrode layer is a layer for storing ions for changing the optical state of the electrochromic layer.
  • a metal oxide such as nickel oxide or tungsten oxide can be used.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • Electrochromic element 10 1st board
  • substrate 20 Optical adjustment layer 21 1st electrode 22 2nd electrode 23 Functional layer 23a Metal film 30 1st terminal 31 Heating terminal (heating mechanism) 40 Second terminal 50 Sealing material 60 Power supply unit

Abstract

An electrochromic element (1) is provided with the following: a first electrode (21) and a second electrode (22) which are transparent and are disposed facing each other; and a functional layer (23) which contains an electrolyte and which is interposed between the first electrode (21) and second electrode (22). The functional layer (23) (i) enters into a first optical state if a first electrode reaction occurs between the ions contained in the electrolyte and the first electrode (21), and (ii) enters into a second optical state different from the first optical state if the ions contained in the electrolyte go through a second electrode reaction with the first electrode (21) under a greater reaction resistance than the first electrode reaction. The average temperature of the electrochromic element (1) when the second electrode reaction occurs is greater than the average temperature of the electrochromic element (1) when the first electrode reaction occurs.

Description

エレクトロクロミック素子Electrochromic element
 本発明は、エレクトロクロミック素子に関する。 The present invention relates to an electrochromic element.
 従来、電力の供給状態に応じて、光の透過及び反射などの光学的な状態を変更することができるエレクトロクロミック素子が知られている。例えば、特許文献1には、一対の電極間に挟持された電解質層を有する調光素子が開示されている。当該調光素子における電解質層は、銀イオンを含むエレクトロクロミック材料を含んでいる。一対の電極間に印加する電圧を調整することにより、当該調光素子は、光透過状態と鏡面状態とを実現することができる。 Conventionally, an electrochromic element that can change an optical state such as transmission and reflection of light according to a power supply state is known. For example, Patent Document 1 discloses a light control element having an electrolyte layer sandwiched between a pair of electrodes. The electrolyte layer in the light control element includes an electrochromic material containing silver ions. By adjusting the voltage applied between the pair of electrodes, the light control element can realize a light transmission state and a mirror surface state.
国際公開第2012/118188号International Publication No. 2012/118188
 しかしながら、上記従来のエレクトロクロミック素子では、光学状態の変化をスムーズに起こすことができないという課題がある。 However, the above-described conventional electrochromic device has a problem that the optical state cannot be changed smoothly.
 そこで、本発明は、光学状態の変化をスムーズに起こすことができるエレクトロクロミック素子を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrochromic element capable of causing a change in optical state smoothly.
 上記目的を達成するため、本発明の一態様に係るエレクトロクロミック素子は、互いに対向して配置された透光性を有する第1電極及び第2電極と、前記第1電極と前記第2電極との間に設けられた、電解質を含む機能層とを備えるエレクトロクロミック素子であって、前記機能層は、(i)前記電解質に含まれるイオンが前記第1電極に対して第1電極反応を起こした場合に、第1光学状態になり、(ii)前記電解質に含まれるイオンが前記第1電極に対して、前記第1電極反応より反応抵抗が大きい第2電極反応を起こした場合に、前記第1光学状態とは異なる第2光学状態になり、前記第2電極反応が起きる場合における前記エレクトロクロミック素子の平均温度は、前記第1電極反応が起きる場合における前記エレクトロクロミック素子の平均温度より高い。 In order to achieve the above object, an electrochromic device according to one embodiment of the present invention includes a first electrode and a second electrode having translucency, which are disposed to face each other, the first electrode, and the second electrode. An electrochromic element including an electrolyte-containing functional layer, wherein the functional layer includes: (i) ions contained in the electrolyte cause a first electrode reaction with respect to the first electrode. In the first optical state, and (ii) when the ions contained in the electrolyte cause a second electrode reaction having a reaction resistance higher than that of the first electrode reaction with respect to the first electrode, The average temperature of the electrochromic element when the second electrode state is different from the first optical state and the second electrode reaction occurs is the electrochromic element when the first electrode reaction occurs. Higher than the average temperature of the click device.
 本発明に係るエレクトロクロミック素子によれば、光学状態の変化をスムーズに起こすことができる。 The electrochromic device according to the present invention can smoothly change the optical state.
図1は、本発明の実施の形態に係るエレクトロクロミック素子の概略平面図である。FIG. 1 is a schematic plan view of an electrochromic device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るエレクトロクロミック素子の概略断面図である。FIG. 2 is a schematic cross-sectional view of the electrochromic device according to the embodiment of the present invention. 図3は、本発明の実施の形態に係るエレクトロクロミック素子の各端子と電源部との接続を示す概略平面図である。FIG. 3 is a schematic plan view showing the connection between each terminal of the electrochromic device and the power supply unit according to the embodiment of the present invention. 図4は、本発明の実施の形態に係るエレクトロクロミック素子の動作を説明するための概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining the operation of the electrochromic element according to the embodiment of the present invention. 図5は、本発明の実施の形態に係るエレクトロクロミック素子の平均温度と反応抵抗の大小との関係を示す図である。FIG. 5 is a diagram showing the relationship between the average temperature of the electrochromic device and the magnitude of reaction resistance according to the embodiment of the present invention.
 以下では、本発明の実施の形態に係るエレクトロクロミック素子について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the electrochromic device according to the embodiment of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態)
 [エレクトロクロミック素子の概要]
 まず、本実施の形態に係るエレクトロクロミック素子について、図1及び図2を用いて説明する。図1は、本実施の形態に係るエレクトロクロミック素子1の概略平面図である。図2は、本実施の形態に係るエレクトロクロミック素子1の概略断面図であり、具体的には、図1のII-II線における断面を示している。
(Embodiment)
[Outline of electrochromic device]
First, the electrochromic device according to the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic plan view of an electrochromic element 1 according to the present embodiment. FIG. 2 is a schematic cross-sectional view of the electrochromic element 1 according to the present embodiment, and specifically shows a cross section taken along line II-II in FIG.
 図1及び図2に示すように、本実施の形態に係るエレクトロクロミック素子1は、扁平な多面体である。なお、図1及び図2に示すように、エレクトロクロミック素子1の主面の一辺に沿った方向をX軸方向、当該一辺に直交する他辺に沿った方向をY軸方向、当該主面に直交する方向をZ軸方向とする。 As shown in FIGS. 1 and 2, the electrochromic device 1 according to the present embodiment is a flat polyhedron. 1 and 2, the direction along one side of the main surface of the electrochromic element 1 is the X-axis direction, the direction along the other side orthogonal to the one side is the Y-axis direction, and the main surface is The direction orthogonal to the Z axis direction.
 エレクトロクロミック素子1は、電力が供給された場合に、光学状態が変化する。本実施の形態では、エレクトロクロミック素子1は、光透過状態(光透過モード)と、光反射状態(光反射モード)とを実現する。なお、エレクトロクロミック素子1は、光透過状態若しくは光反射状態に代えて、又は、これらに加えて、光散乱状態(光散乱モード)を実現してもよい。 The optical state of the electrochromic element 1 changes when power is supplied. In the present embodiment, the electrochromic element 1 realizes a light transmission state (light transmission mode) and a light reflection state (light reflection mode). Note that the electrochromic element 1 may realize a light scattering state (light scattering mode) instead of or in addition to the light transmission state or the light reflection state.
 光透過状態(光透過モード)は、エレクトロクロミック素子1に入射する光(例えば、可視光)を透過させる状態(モード)である。このときの光透過率は、例えば、充分に高く、エレクトロクロミック素子1は、透明である。なお、エレクトロクロミック素子1は、光透過状態の場合であっても、光反射性及び光散乱性を有してもよい。すなわち、光透過状態とは、光の反射及び散乱に比べて、光の透過が支配的な状態である。 The light transmission state (light transmission mode) is a state (mode) in which light (for example, visible light) incident on the electrochromic element 1 is transmitted. The light transmittance at this time is sufficiently high, for example, and the electrochromic element 1 is transparent. Note that the electrochromic element 1 may have light reflectivity and light scattering properties even in a light transmission state. That is, the light transmission state is a state where light transmission is dominant compared to light reflection and scattering.
 光反射状態(光反射モード)は、エレクトロクロミック素子1に入射する光(例えば、可視光)を反射させる状態(モード)である。可視光の反射は、鏡面反射及び散乱反射のいずれでもよい。なお、エレクトロクロミック素子1は、光反射状態の場合であっても、光透過性及び光散乱性を有してもよい。すなわち、光反射状態とは、光の透過及び散乱に比べて、光の反射が支配的な状態である。 The light reflection state (light reflection mode) is a state (mode) in which light (for example, visible light) incident on the electrochromic element 1 is reflected. The reflection of visible light may be either specular reflection or scattering reflection. Note that the electrochromic element 1 may have a light transmitting property and a light scattering property even in a light reflecting state. That is, the light reflection state is a state in which light reflection is dominant as compared with light transmission and scattering.
 光散乱状態(光散乱モード)は、エレクトロクロミック素子1に入射する光(例えば、可視光)を散乱させる状態(モード)である。なお、エレクトロクロミック素子1は、光散乱状態の場合であっても、光透過性及び光反射性を有してもよい。すなわち、光散乱状態とは、光の透過及び反射に比べて、光の散乱が支配的な状態である。 The light scattering state (light scattering mode) is a state (mode) in which light incident on the electrochromic element 1 (for example, visible light) is scattered. Note that the electrochromic element 1 may have light transmissivity and light reflectivity even in a light scattering state. That is, the light scattering state is a state in which light scattering is dominant compared to light transmission and reflection.
 なお、本実施の形態に係るエレクトロクロミック素子1は、例えば、建造物又は車両などの窓に利用することができる。具体的には、エレクトロクロミック素子1は、複層ガラスの内部空間に封止される。このとき、複層ガラスには、エレクトロクロミック素子1だけではなく、有機EL素子などの発光素子を封止してもよい。これにより、複層ガラスは、例えば、照明、鏡、情報表示などの用途に利用可能な、いわゆるスマートウィンドウとして利用することができる。 Note that the electrochromic element 1 according to the present embodiment can be used for a window of a building or a vehicle, for example. Specifically, the electrochromic element 1 is sealed in the internal space of the multilayer glass. At this time, not only the electrochromic element 1 but also a light emitting element such as an organic EL element may be sealed in the multilayer glass. Thereby, a multilayer glass can be utilized as what is called a smart window which can be utilized for uses, such as illumination, a mirror, and an information display, for example.
 エレクトロクロミック素子1は、図1及び図2に示すように、第1基板10と、第2基板11と、光学調整層20と、第1端子30と、発熱用端子31と、第2端子40と、封止材50とを備える。また、エレクトロクロミック素子1は、加熱機構を備える。加熱機構は、第1端子30及び発熱用端子31を含んでいる。 As shown in FIGS. 1 and 2, the electrochromic element 1 includes a first substrate 10, a second substrate 11, an optical adjustment layer 20, a first terminal 30, a heating terminal 31, and a second terminal 40. And a sealing material 50. Further, the electrochromic element 1 includes a heating mechanism. The heating mechanism includes a first terminal 30 and a heat generating terminal 31.
 以下では、エレクトロクロミック素子1の各構成要素について、図1及び図2を用いて詳細に説明する。 Hereinafter, each component of the electrochromic element 1 will be described in detail with reference to FIGS. 1 and 2.
 [基板]
 第1基板10及び第2基板11は、透光性を有し、可視光の少なくとも一部を透過させる。具体的には、第1基板10及び第2基板11は、透明(光透過率が充分に高い)な平板である。
[substrate]
The first substrate 10 and the second substrate 11 are translucent and transmit at least part of visible light. Specifically, the first substrate 10 and the second substrate 11 are transparent (light transmittance is sufficiently high) flat plates.
 第1基板10及び第2基板11は、図1及び図2に示すように、間に光学調整層20を挟むように対向して設けられている。具体的には、第1基板10及び第2基板11は、互いの距離が略一定になるように、すなわち、平行に配置されている。 As shown in FIGS. 1 and 2, the first substrate 10 and the second substrate 11 are provided to face each other with the optical adjustment layer 20 interposed therebetween. Specifically, the first substrate 10 and the second substrate 11 are arranged so that the distance between them is substantially constant, that is, in parallel.
 第1基板10及び第2基板11は、例えば、略同じ形状及び略同じ大きさを有する。具体的には、第1基板10及び第2基板11の平面視形状は、矩形である。あるいは、第1基板10及び第2基板11の平面視形状は、正方形などのその他多角形、又は、円形若しくは楕円形などのいかなる形状でもよい。第1基板10及び第2基板11の各々の厚さは、例えば、1mmである。なお、第1基板10及び第2基板11は、互いに異なる形状及び異なる大きさを有してもよい。 The first substrate 10 and the second substrate 11 have, for example, substantially the same shape and substantially the same size. Specifically, the planar view shapes of the first substrate 10 and the second substrate 11 are rectangular. Alternatively, the planar view shapes of the first substrate 10 and the second substrate 11 may be other polygons such as a square, or any shape such as a circle or an ellipse. The thickness of each of the first substrate 10 and the second substrate 11 is, for example, 1 mm. The first substrate 10 and the second substrate 11 may have different shapes and different sizes.
 なお、平面視とは、第1基板10又は第2基板11の主面(具体的には、面積が最大の面)に直交する方向、すなわち、エレクトロクロミック素子1の厚み方向(Z軸方向)に見た場合を意味する。 The plan view means a direction perpendicular to the main surface (specifically, the surface having the largest area) of the first substrate 10 or the second substrate 11, that is, the thickness direction of the electrochromic element 1 (Z-axis direction). Means when seen.
 第1基板10の端部には、第1端子30及び発熱用端子31が設けられている。なお、第1基板10の端部は、第1基板10のうち、封止材50に囲まれていない外側の部分である。第2基板11の端部には、第2端子40が設けられている。なお、第2基板11の端部は、第2基板11のうち、封止材50に囲まれていない外側の部分である。 The first terminal 30 and the heat generating terminal 31 are provided at the end of the first substrate 10. The end portion of the first substrate 10 is an outer portion of the first substrate 10 that is not surrounded by the sealing material 50. A second terminal 40 is provided at the end of the second substrate 11. The end portion of the second substrate 11 is an outer portion of the second substrate 11 that is not surrounded by the sealing material 50.
 本実施の形態では、図1及び図2に示すように、第1基板10及び第2基板11は、対角方向にずれて配置されている。具体的には、第1基板10及び第2基板11は、平面視において、第1基板10の端部が第2基板11に重複しないように、かつ、第2基板11の端部が第1基板10に重複しないように、配置されている。これにより、第1端子30、発熱用端子31及び第2端子40への配線の接続を容易に行うことができる。 In the present embodiment, as shown in FIGS. 1 and 2, the first substrate 10 and the second substrate 11 are arranged so as to be shifted in a diagonal direction. Specifically, the first substrate 10 and the second substrate 11 are arranged such that the end portion of the first substrate 10 does not overlap the second substrate 11 in plan view, and the end portion of the second substrate 11 is first. It arrange | positions so that it may not overlap with the board | substrate 10. FIG. Thereby, the connection of the wiring to the 1st terminal 30, the terminal 31 for heat_generation | fever, and the 2nd terminal 40 can be performed easily.
 第1基板10及び第2基板11は、例えば、同じ材料から形成される。第1基板10及び第2基板11としては、例えば、ソーダガラス、無アルカリガラス、高屈折率ガラスなどのガラス基板、又は、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などの樹脂基板を利用することができる。ガラス基板は、透明性及び防湿性に優れているという利点がある。樹脂基板は、破壊時の飛散が少ないという利点がある。また、第1基板10及び第2基板11としては、可撓性を有するフレキシブル基板を用いてもよい。フレキシブル基板は、例えば、樹脂基板又は薄膜ガラスなどから形成される。なお、第1基板10及び第2基板11は、互いに異なる材料から形成されてもよい。 The first substrate 10 and the second substrate 11 are made of the same material, for example. Examples of the first substrate 10 and the second substrate 11 include glass substrates such as soda glass, alkali-free glass, and high refractive index glass, or polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN). The resin substrate can be used. The glass substrate has the advantage of being excellent in transparency and moisture resistance. The resin substrate has an advantage of less scattering at the time of destruction. Further, as the first substrate 10 and the second substrate 11, flexible flexible substrates may be used. The flexible substrate is formed from, for example, a resin substrate or a thin film glass. In addition, the 1st board | substrate 10 and the 2nd board | substrate 11 may be formed from a mutually different material.
 [光学調整層]
 光学調整層20は、図2に示すように、第1電極21と、第2電極22と、機能層23とを有する。光学調整層20は、第1電極21と第2電極22との間に印加される電圧に応じて光学状態が変化する。本実施の形態では、光学調整層20は、例えば、光透過状態と光反射状態とを切り替える。
[Optical adjustment layer]
As illustrated in FIG. 2, the optical adjustment layer 20 includes a first electrode 21, a second electrode 22, and a functional layer 23. The optical state of the optical adjustment layer 20 changes according to the voltage applied between the first electrode 21 and the second electrode 22. In the present embodiment, the optical adjustment layer 20 switches between a light transmission state and a light reflection state, for example.
 第1電極21及び第2電極22は、透光性を有し、可視光の少なくとも一部を透過させる。具体的には、第1電極21及び第2電極22は、透明な平板状の導電膜である。第1電極21及び第2電極22間に所定の電圧が印加された場合に、機能層23の光学状態が変化する。 The first electrode 21 and the second electrode 22 are translucent and transmit at least part of visible light. Specifically, the first electrode 21 and the second electrode 22 are transparent flat conductive films. When a predetermined voltage is applied between the first electrode 21 and the second electrode 22, the optical state of the functional layer 23 changes.
 第1電極21及び第2電極22は、図2に示すように、互いに対向して配置されている。具体的には、第1電極21は、第1基板10上に形成され、第2電極22は、第2基板11上に形成されている。例えば、第1電極21及び第2電極22はそれぞれ、スパッタリング法、蒸着法などによって第1基板10上及び第2基板11上に導電膜を形成し、形成した導電膜をパターニングすることで形成される。このとき、第1電極21及び第2電極22はそれぞれ、透光性を有するアンダーコート層を介して、第1基板10上及び第2基板11上に形成されてもよい。 The first electrode 21 and the second electrode 22 are arranged to face each other as shown in FIG. Specifically, the first electrode 21 is formed on the first substrate 10, and the second electrode 22 is formed on the second substrate 11. For example, each of the first electrode 21 and the second electrode 22 is formed by forming a conductive film on the first substrate 10 and the second substrate 11 by sputtering, vapor deposition, or the like, and patterning the formed conductive film. The At this time, the first electrode 21 and the second electrode 22 may be respectively formed on the first substrate 10 and the second substrate 11 through a light-transmitting undercoat layer.
 第1電極21及び第2電極22は、例えば、同じ材料から形成される。第1電極21及び第2電極22としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、アルミニウムドープ酸化亜鉛(AZO)、フッ素ドープ酸化スズ(FTO)などの透明金属酸化物を用いることができる。 The first electrode 21 and the second electrode 22 are made of the same material, for example. As the 1st electrode 21 and the 2nd electrode 22, transparent metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), aluminum dope zinc oxide (AZO), fluorine dope tin oxide (FTO), are mentioned, for example. Can be used.
 第1電極21及び第2電極22の平面視形状は、図1に示すように、略矩形である。具体的には、第1電極21及び第2電極22の平面視形状は、第1基板10と第2基板11との重複部分の形状と略同じである。 The planar view shapes of the first electrode 21 and the second electrode 22 are substantially rectangular as shown in FIG. Specifically, the shape of the first electrode 21 and the second electrode 22 in plan view is substantially the same as the shape of the overlapping portion between the first substrate 10 and the second substrate 11.
 図2に示すように、第1電極21は、封止材50の外側まで延伸されて第1端子30に電気的及び物理的に接続されている。また、図示しないが、第1電極21は、封止材50の外側まで延伸されて発熱用端子31に電気的及び物理的に接続されている。 As shown in FIG. 2, the first electrode 21 extends to the outside of the sealing material 50 and is electrically and physically connected to the first terminal 30. Although not shown, the first electrode 21 extends to the outside of the sealing material 50 and is electrically and physically connected to the heat generating terminal 31.
 第1電極21と第1端子30と発熱用端子31とは、例えば、同じ材料で一体に形成されている。より具体的には、第1電極21と第1端子30と発熱用端子31とは、第1基板10上に形成された導電膜をパターニングすることで形成される。 The first electrode 21, the first terminal 30, and the heat generating terminal 31 are integrally formed of the same material, for example. More specifically, the first electrode 21, the first terminal 30, and the heat generating terminal 31 are formed by patterning a conductive film formed on the first substrate 10.
 同様に、第2電極22は、封止材50の外側まで延伸されて第2端子40に電気的及び物理的に接続されている。第2電極22と第2端子40とは、例えば、同じ材料で一体に形成されている。より具体的には、第2電極22と第2端子40とは、第2基板11上に形成された導電膜をパターニングすることで形成される。 Similarly, the second electrode 22 extends to the outside of the sealing material 50 and is electrically and physically connected to the second terminal 40. The second electrode 22 and the second terminal 40 are integrally formed of the same material, for example. More specifically, the second electrode 22 and the second terminal 40 are formed by patterning a conductive film formed on the second substrate 11.
 第1電極21及び第2電極22はそれぞれ、第1基板10及び第2基板11との可視光帯域における屈折率の差が所定の値より小さい材料から形成される。例えば、第1電極21と第1基板10との屈折率の差は、0.2以下であり、好ましくは、0.1以下である。これにより、第1電極21と第1基板10との界面での光の反射及び屈折を抑制し、光を効果的に透過させることができる。第2電極22と第2基板11とについても、同様である。また、第1電極21及び第2電極22は、互いに異なる材料から形成されてもよく、この場合、第1電極21及び第2電極22の屈折率の差も、所定の値より小さい材料を用いることが好ましい。第1電極21及び第2電極22の各々の厚さは、例えば、200nmである。 The first electrode 21 and the second electrode 22 are made of a material having a refractive index difference between the first substrate 10 and the second substrate 11 in a visible light band smaller than a predetermined value, respectively. For example, the difference in refractive index between the first electrode 21 and the first substrate 10 is 0.2 or less, and preferably 0.1 or less. Thereby, reflection and refraction of light at the interface between the first electrode 21 and the first substrate 10 can be suppressed, and light can be transmitted effectively. The same applies to the second electrode 22 and the second substrate 11. In addition, the first electrode 21 and the second electrode 22 may be formed of different materials, and in this case, a material whose refractive index difference between the first electrode 21 and the second electrode 22 is smaller than a predetermined value is used. It is preferable. The thickness of each of the first electrode 21 and the second electrode 22 is, for example, 200 nm.
 なお、第1電極21及び第2電極22の少なくとも一方は、表面に凹凸構造を有してもよい。これにより、光を散乱、又は、配光させることができる。 Note that at least one of the first electrode 21 and the second electrode 22 may have an uneven structure on the surface. Thereby, light can be scattered or distributed.
 このとき、第1電極21の面粗度は、第2電極22の面粗度より小さい。これにより、第1電極21に金属膜が析出した場合に、第2電極22に金属膜が析出する場合よりも、当該金属膜の面粗度を小さくすることができる。つまり、第1電極21に析出する金属膜の表面をより鏡面に近付けることができる。したがって、エレクトロクロミック素子1に入射する光を鏡面反射させることができる。 At this time, the surface roughness of the first electrode 21 is smaller than the surface roughness of the second electrode 22. Thereby, when the metal film is deposited on the first electrode 21, the surface roughness of the metal film can be made smaller than when the metal film is deposited on the second electrode 22. That is, the surface of the metal film deposited on the first electrode 21 can be brought closer to the mirror surface. Therefore, the light incident on the electrochromic element 1 can be specularly reflected.
 機能層23は、光学調整層20の光学状態を変化させる層である。機能層23は、第1電極21と第2電極22との間に設けられている。 The functional layer 23 is a layer that changes the optical state of the optical adjustment layer 20. The functional layer 23 is provided between the first electrode 21 and the second electrode 22.
 機能層23は、電解質を含んでいる。機能層23は、電解質に含まれるイオンが第1電極21に対して第1電極反応を起こした場合に第1光学状態になる。また、機能層23は、電解質に含まれるイオンが第1電極21に対して、第1電極反応より反応抵抗が大きい第2電極反応を起こした場合に、第1光学状態とは異なる第2光学状態になる。 The functional layer 23 contains an electrolyte. The functional layer 23 enters the first optical state when ions contained in the electrolyte cause a first electrode reaction with respect to the first electrode 21. In addition, the functional layer 23 has a second optical state different from the first optical state when ions contained in the electrolyte cause a second electrode reaction having a reaction resistance higher than that of the first electrode reaction with respect to the first electrode 21. It becomes a state.
 反応抵抗は、反応の進みにくさを示す度合いである。すなわち、第2電極反応は、第1電極反応よりも反応が進みにくい。例えば、第1電極反応は、電解質に含まれる金属イオンが金属膜として析出する反応である。機能層23は、第1電極反応を起きた場合に、光反射状態になる。また、第2電極反応は、金属膜が金属イオンとして溶解する反応である。第2電極反応を起きた場合に、機能層23は、光透過状態になる。 The reaction resistance is a degree indicating the difficulty of the reaction. That is, the second electrode reaction is less likely to proceed than the first electrode reaction. For example, the first electrode reaction is a reaction in which metal ions contained in the electrolyte are deposited as a metal film. The functional layer 23 is in a light reflecting state when the first electrode reaction occurs. The second electrode reaction is a reaction in which the metal film dissolves as metal ions. When the second electrode reaction occurs, the functional layer 23 enters a light transmission state.
 本実施の形態では、機能層23は、金属イオンを含有する電解質が溶解した高分子材料などから形成される。 In the present embodiment, the functional layer 23 is formed of a polymer material in which an electrolyte containing metal ions is dissolved.
 金属イオンとしては、例えば、銀イオン又は銅イオンなどを用いることができる。金属イオンを含む電解質としては、例えば、硝酸銀、酢酸銀又は塩化銅などを用いることができる。高分子材料としては、例えば、ポリビニルアルコール、ポリブチルアルコールなどを用いることができる。なお、電解質を溶解させるために、ジメチルスルホキシド(DMSO)などの溶剤を用いてもよい。 As the metal ions, for example, silver ions or copper ions can be used. As an electrolyte containing metal ions, for example, silver nitrate, silver acetate, copper chloride, or the like can be used. As the polymer material, for example, polyvinyl alcohol, polybutyl alcohol or the like can be used. In order to dissolve the electrolyte, a solvent such as dimethyl sulfoxide (DMSO) may be used.
 これにより、金属元素がイオンとして機能層23中に存在している場合に、機能層23は、光透過状態になる。また、金属元素が金属膜として第1電極21又は第2電極22に析出した場合に、機能層23は、光反射状態になる。 Thereby, when the metal element is present in the functional layer 23 as ions, the functional layer 23 enters a light transmission state. Further, when the metal element is deposited on the first electrode 21 or the second electrode 22 as a metal film, the functional layer 23 is in a light reflecting state.
 機能層23の厚さは、例えば、1μm以上1mm以下、好ましくは、10μm以上500μm以下である。これにより、透過率の低下の抑制、及び、材料コストの削減を実現することができる。なお、機能層23は、例えば、液体、固体及びゲル状のいずれでもよい。 The thickness of the functional layer 23 is, for example, 1 μm or more and 1 mm or less, preferably 10 μm or more and 500 μm or less. Thereby, suppression of the fall of the transmittance | permeability and reduction of material cost are realizable. The functional layer 23 may be, for example, any of liquid, solid, and gel.
 [端子]
 第1端子30は、第1電極21に電気的に接続された2つの端子の一方である。本実施の形態では、第1端子30は、第1基板10上に設けられている。例えば、第1端子30は、第1電極21と同じ材料で一体に形成されている。
[Terminal]
The first terminal 30 is one of two terminals that are electrically connected to the first electrode 21. In the present embodiment, the first terminal 30 is provided on the first substrate 10. For example, the first terminal 30 is integrally formed of the same material as the first electrode 21.
 第1端子30は、機能層23の光学状態を変化させるために用いられる。さらに、第1端子30は、第1電極21に電流を流すことで第1電極21を発熱させるために用いられる。すなわち、第1端子30は、本実施の形態に係るエレクトロクロミック素子1が備える加熱機構の一部である。 The first terminal 30 is used for changing the optical state of the functional layer 23. Furthermore, the first terminal 30 is used to cause the first electrode 21 to generate heat by passing a current through the first electrode 21. That is, the 1st terminal 30 is a part of heating mechanism with which the electrochromic element 1 concerning this Embodiment is provided.
 発熱用端子31は、第1電極21に電気的に接続された2つの端子の他方である。発熱用端子31は、第1端子30とは異なる位置で第1電極21に接続される。本実施の形態では、発熱用端子31は、第1基板10上に設けられている。例えば、発熱用端子31は、第1電極21と同じ材料で一体に形成されている。 The heat generating terminal 31 is the other of the two terminals electrically connected to the first electrode 21. The heat generating terminal 31 is connected to the first electrode 21 at a position different from the first terminal 30. In the present embodiment, the heat generating terminal 31 is provided on the first substrate 10. For example, the heating terminal 31 is integrally formed of the same material as the first electrode 21.
 発熱用端子31は、第1電極21に電流を流すことで第1電極21を発熱させるために用いられる。すなわち、発熱用端子31は、本実施の形態に係るエレクトロクロミック素子1が備える加熱機構の一部である。 The heating terminal 31 is used to cause the first electrode 21 to generate heat by passing a current through the first electrode 21. That is, the heat generating terminal 31 is a part of the heating mechanism provided in the electrochromic element 1 according to the present embodiment.
 発熱用端子31は、例えば、第1端子30から離れた位置に設けられる。具体的には、発熱用端子31は、第1端子30との間に第1電極21を挟むように設けられる。例えば、発熱用端子31と第1端子30とはそれぞれ、図1に示すように、第1電極21(第1基板10)の対角方向の両端に設けられる。 The heating terminal 31 is provided, for example, at a position away from the first terminal 30. Specifically, the heat generating terminal 31 is provided so as to sandwich the first electrode 21 between the first terminal 30. For example, the heat generating terminal 31 and the first terminal 30 are respectively provided at opposite ends of the first electrode 21 (first substrate 10) as shown in FIG.
 これにより、発熱用端子31と第1端子30との間に電源を接続することで、第1電極21の中央部分を含む領域に電流を流すことができる。したがって、第1電極21を効率良く発熱させることができ、さらに、発熱した熱を第1電極21の全体に効率良く伝えることができる。 Thus, by connecting a power source between the heat generating terminal 31 and the first terminal 30, a current can be passed through the region including the central portion of the first electrode 21. Accordingly, the first electrode 21 can efficiently generate heat, and the generated heat can be efficiently transmitted to the entire first electrode 21.
 第2端子40は、第2電極22に電気的に接続された端子である。本実施の形態では、第2端子40は、第2基板11上に設けられている。例えば、第2端子40は、第2電極22と同じ材料で一体に形成されている。 The second terminal 40 is a terminal electrically connected to the second electrode 22. In the present embodiment, the second terminal 40 is provided on the second substrate 11. For example, the second terminal 40 is integrally formed of the same material as the second electrode 22.
 第2端子40は、機能層23の光学状態を変化させるために用いられる。本実施の形態では、第1端子30と第2端子40との間に電源を接続することで、第1電極21と第2電極22との間に電位差を発生させる。当該電位差によって、機能層23が備える電解質に含まれるイオンに第1電極反応又は第2電極反応を起こさせる。これにより、機能層23の光学状態を変化させることができる。 The second terminal 40 is used for changing the optical state of the functional layer 23. In the present embodiment, a potential difference is generated between the first electrode 21 and the second electrode 22 by connecting a power source between the first terminal 30 and the second terminal 40. Due to the potential difference, the first electrode reaction or the second electrode reaction is caused to occur in ions contained in the electrolyte included in the functional layer 23. Thereby, the optical state of the functional layer 23 can be changed.
 なお、第1電極21、第2電極22、第1端子30、発熱用端子31及び第2端子40はそれぞれ、例えば、ITOから形成されるが、これに限らない。第1電極21、第2電極22、第1端子30、発熱用端子31及び第2端子40の各々が異なる材料から形成されてもよい。 The first electrode 21, the second electrode 22, the first terminal 30, the heat generating terminal 31, and the second terminal 40 are each made of, for example, ITO, but are not limited thereto. Each of the first electrode 21, the second electrode 22, the first terminal 30, the heat generating terminal 31, and the second terminal 40 may be formed of different materials.
 また、第1端子30、発熱用端子31及び第2端子40の各々は、透光性を有していなくてもよい。第1端子30、発熱用端子31及び第2端子40の各々は、遮光性を有してもよく、例えば、銅、アルミニウムなどの金属材料から形成されてもよい。 Further, each of the first terminal 30, the heat generating terminal 31, and the second terminal 40 may not have translucency. Each of the first terminal 30, the heat generating terminal 31, and the second terminal 40 may have a light shielding property, and may be formed of a metal material such as copper or aluminum, for example.
 [封止材]
 封止材50は、光学調整層20を囲むように第1基板10と第2基板11とを接続することで、光学調整層20を封止する。封止材50は、光学調整層20の周に沿って、所定形状に形成される。具体的には、封止材50は、平面視において、第1基板10と第2基板11との重複部分の形状に沿って枠状に形成される。本実施の形態では、第1基板10と第2基板11との重複部分の平面視形状が矩形であるので、封止材50は、矩形の枠状に形成される。
[Encapsulant]
The sealing material 50 seals the optical adjustment layer 20 by connecting the first substrate 10 and the second substrate 11 so as to surround the optical adjustment layer 20. The sealing material 50 is formed in a predetermined shape along the circumference of the optical adjustment layer 20. Specifically, the sealing material 50 is formed in a frame shape along the shape of the overlapping portion between the first substrate 10 and the second substrate 11 in plan view. In the present embodiment, since the shape in plan view of the overlapping portion between the first substrate 10 and the second substrate 11 is rectangular, the sealing material 50 is formed in a rectangular frame shape.
 封止材50としては、例えば、エポキシ系樹脂、アクリル系樹脂、又は、シリコーン樹脂などの光硬化性、熱硬化性又は二液硬化性の接着性樹脂を用いることができる。あるいは、封止材50としては、ポリエチレン、ポリプロピレンなどの酸変性物からなる熱可塑性の接着性樹脂などを用いてもよい。 As the sealing material 50, for example, a photo-curing, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used. Alternatively, as the sealing material 50, a thermoplastic adhesive resin made of an acid-modified product such as polyethylene or polypropylene may be used.
 なお、封止材50は、光学調整層20の厚さ(第1基板10と第2基板11との距離)を確保するための粒状のスペーサを含んでもよい。粒状のスペーサとしては、例えば、ガラスビーズ、樹脂ビーズ、シリカ粒子などを用いることができる。 The sealing material 50 may include a granular spacer for ensuring the thickness of the optical adjustment layer 20 (distance between the first substrate 10 and the second substrate 11). As the granular spacer, for example, glass beads, resin beads, silica particles and the like can be used.
 [加熱機構]
 加熱機構は、第2電極反応が起きる場合に、機能層23を加熱する。加熱機構は、上述したように、第1端子30と発熱用端子31とを備える。さらに、加熱機構は、図3に示すように、電源部60を備える。なお、図3は、本実施の形態に係るエレクトロクロミック素子1の各端子と電源部60との接続を示す概略平面図である。
[Heating mechanism]
The heating mechanism heats the functional layer 23 when the second electrode reaction occurs. As described above, the heating mechanism includes the first terminal 30 and the heat generating terminal 31. Further, the heating mechanism includes a power supply unit 60 as shown in FIG. FIG. 3 is a schematic plan view showing the connection between each terminal of the electrochromic element 1 and the power supply unit 60 according to the present embodiment.
 電源部60は、第2電極反応が起きる場合に、第1端子30及び発熱用端子31を介して第1電極21に電流を流すことで、第1電極21を発熱させる。電源部60は、第1電源61と、第2電源62と、発熱用電源63と、第1スイッチ64と、第2スイッチ65とを備える。 When the second electrode reaction occurs, the power supply unit 60 causes the first electrode 21 to generate heat by passing a current through the first electrode 21 via the first terminal 30 and the heat generating terminal 31. The power supply unit 60 includes a first power supply 61, a second power supply 62, a heat generating power supply 63, a first switch 64, and a second switch 65.
 第1電源61は、第1端子30と第2端子40との間に第1スイッチ64を介して接続される直流電源である。第1電源61は、第1電極反応を起こすための電源である。第1電源61は、第1スイッチ64が導通した場合、第1端子30を第2端子40よりも低い電位に設定する。すなわち、第1電源61は、第1端子30と第2端子40との間に負バイアス電圧を印加する。 The first power supply 61 is a DC power supply connected between the first terminal 30 and the second terminal 40 via the first switch 64. The first power supply 61 is a power supply for causing the first electrode reaction. The first power supply 61 sets the first terminal 30 to a lower potential than the second terminal 40 when the first switch 64 is turned on. That is, the first power supply 61 applies a negative bias voltage between the first terminal 30 and the second terminal 40.
 これにより、機能層23中の金属イオン(例えば、銀イオン(Ag))は、負の電位である第1電極21に引き寄せられる。金属イオンは、第1電極21から電子を受け取ることで、図4の(a)に示すように、金属膜23aとして析出する。なお、図4は、本実施の形態に係るエレクトロクロミック素子1の動作を説明するための概略断面図である。 Thereby, metal ions (for example, silver ions (Ag + )) in the functional layer 23 are attracted to the first electrode 21 having a negative potential. By receiving electrons from the first electrode 21, the metal ions are deposited as a metal film 23a as shown in FIG. FIG. 4 is a schematic cross-sectional view for explaining the operation of the electrochromic element 1 according to the present embodiment.
 金属膜23aは、エレクトロクロミック素子1に入射する光を反射する(図4の(a)の破線の矢印参照)。つまり、第1電源61が負バイアス電圧を印加することで、機能層23は、光反射状態になる。 The metal film 23a reflects light incident on the electrochromic element 1 (see the broken arrow in FIG. 4A). That is, when the first power supply 61 applies a negative bias voltage, the functional layer 23 enters a light reflecting state.
 第2電源62は、第1端子30と第2端子40との間に第2スイッチ65を介して接続される直流電源である。第2電源62は、第2電極反応を起こすための電源である。第2電源62は、第2スイッチ65が導通した場合、第1端子30を第2端子40よりも高い電位に設定する。すなわち、第2電源62は、第1端子30と第2端子40との間に正バイアス電圧を印加する。 The second power source 62 is a DC power source connected between the first terminal 30 and the second terminal 40 via the second switch 65. The second power source 62 is a power source for causing the second electrode reaction. The second power supply 62 sets the first terminal 30 to a higher potential than the second terminal 40 when the second switch 65 is turned on. That is, the second power source 62 applies a positive bias voltage between the first terminal 30 and the second terminal 40.
 これにより、機能層23中の金属イオンは、負の電位である第2電極22に引き寄せられる。具体的には、金属膜23aとして析出した金属元素は、第1電極21に電子を奪われることで、金属イオンに変化する。すなわち、図4の(b)に示すように、金属膜23aが溶解し、機能層23は、光透過状態になる。 Thereby, the metal ions in the functional layer 23 are attracted to the second electrode 22 having a negative potential. Specifically, the metal element deposited as the metal film 23 a is changed into metal ions by taking the electrons into the first electrode 21. That is, as shown in FIG. 4B, the metal film 23a is dissolved, and the functional layer 23 enters a light transmission state.
 なお、このとき、機能層23の第2電極22側には、金属イオンを吸蔵する層を備えてもよい。例えば、酸化タングステン(WO)などを備えることで、正バイアス電圧を印加した場合であっても、第2電極22に金属膜23aが析出するのを抑制することができる。 At this time, a layer that occludes metal ions may be provided on the second electrode 22 side of the functional layer 23. For example, by providing tungsten oxide (WO 3 ) or the like, it is possible to suppress the metal film 23a from being deposited on the second electrode 22 even when a positive bias voltage is applied.
 発熱用電源63は、第1端子30と発熱用端子31との間に第2スイッチ65を介して接続される直流電源である。発熱用電源63は、第2スイッチ65が導通した場合、第1端子30を発熱用端子31よりも高い電位に設定する。すなわち、発熱用電源63は、第1端子30と発熱用端子31との間に正バイアス電圧を印加する。 The heat generating power source 63 is a DC power source connected via the second switch 65 between the first terminal 30 and the heat generating terminal 31. The heat generating power supply 63 sets the first terminal 30 to a higher potential than the heat generating terminal 31 when the second switch 65 is turned on. That is, the heat generating power source 63 applies a positive bias voltage between the first terminal 30 and the heat generating terminal 31.
 なお、発熱用電源63の接続方向は、逆でもよい。すなわち、発熱用電源63は、第1端子30と発熱用端子31との間に負バイアス電圧を印加してもよい。あるいは、発熱用電源63は、交流電源でもよい。 It should be noted that the connecting direction of the heat generating power supply 63 may be reversed. That is, the heating power source 63 may apply a negative bias voltage between the first terminal 30 and the heating terminal 31. Alternatively, the heat generating power source 63 may be an AC power source.
 第2スイッチ65が導通した場合、第1端子30と発熱用端子31との間に電位差が生じる。したがって、第1端子30と発熱用端子31との間に、第1電極21を介して電流が流れる(例えば、図4の(b)の矢印70)。第1電極21は、電流が流れることにより発熱する。発生した熱は、機能層23に伝導されて機能層23が加熱される。 When the second switch 65 is turned on, a potential difference is generated between the first terminal 30 and the heat generating terminal 31. Therefore, a current flows between the first terminal 30 and the heat generating terminal 31 via the first electrode 21 (for example, an arrow 70 in FIG. 4B). The first electrode 21 generates heat when a current flows. The generated heat is conducted to the functional layer 23 and the functional layer 23 is heated.
 第1スイッチ64は、第1端子30と第2端子40との間に接続されている。第1スイッチ64は、第1電源61からの電力を第1端子30と第2端子40との間に供給するか否かを切り替える。具体的には、第1スイッチ64が導通した場合に、第1電源61によって第1端子30と第2端子40との間に負バイアス電圧が印加される。つまり、第1スイッチ64は、第1電極21に対して第1電極反応(析出反応)を起こさせるためのスイッチである。 The first switch 64 is connected between the first terminal 30 and the second terminal 40. The first switch 64 switches whether to supply power from the first power supply 61 between the first terminal 30 and the second terminal 40. Specifically, when the first switch 64 is turned on, a negative bias voltage is applied between the first terminal 30 and the second terminal 40 by the first power supply 61. That is, the first switch 64 is a switch for causing the first electrode reaction (precipitation reaction) with respect to the first electrode 21.
 第2スイッチ65は、第1端子30と第2端子40及び発熱用端子31との間に接続されている。本実施の形態では、第2スイッチ65は、第1端子30と第2電源62及び発熱用電源63との間に接続されている。 The second switch 65 is connected between the first terminal 30, the second terminal 40 and the heat generating terminal 31. In the present embodiment, the second switch 65 is connected between the first terminal 30 and the second power source 62 and the heat generating power source 63.
 具体的には、第2スイッチ65が導通した場合に、第2電源62によって第1端子30と第2端子40との間に正バイアス電圧が印加され、かつ、発熱用電源63によって第1端子30と発熱用端子31との間に正バイアス電圧が印加される。つまり、第2スイッチ65は、第2電極反応(溶解反応)を起こさせるためのスイッチであり、かつ、第1電極21を発熱させるためのスイッチである。このように、第2スイッチ65の導通及び非導通を切り替えることで、第2電極反応が起きる場合には、第1電極21を発熱させることができる。加熱時の温度は、例えば、40℃~50℃である。 Specifically, when the second switch 65 is turned on, a positive bias voltage is applied between the first terminal 30 and the second terminal 40 by the second power source 62, and the first terminal is generated by the heating power source 63. A positive bias voltage is applied between 30 and the heating terminal 31. That is, the second switch 65 is a switch for causing a second electrode reaction (dissolution reaction) and for causing the first electrode 21 to generate heat. In this way, by switching between conduction and non-conduction of the second switch 65, when the second electrode reaction occurs, the first electrode 21 can generate heat. The temperature at the time of heating is, for example, 40 ° C. to 50 ° C.
 なお、電源部60の回路構成は、図3に示す例には限らない。第2電極反応が起きる場合に、第1電極21に電流を流すことができる回路構成であればよい。例えば、1つの電源が正バイアス電圧及び負バイアス電圧を時系列で切り替えて出力可能でもよい。 Note that the circuit configuration of the power supply unit 60 is not limited to the example shown in FIG. Any circuit configuration that allows a current to flow through the first electrode 21 when the second electrode reaction occurs may be used. For example, one power supply may be able to output by switching the positive bias voltage and the negative bias voltage in time series.
 以上、加熱機構がエレクトロクロミック素子1の第1電極21上に設けている例を説明したが、別段この手段に限らず、通常のヒーター等を設けてもよい。 Although the example in which the heating mechanism is provided on the first electrode 21 of the electrochromic element 1 has been described above, the present invention is not limited to this means, and a normal heater or the like may be provided.
 [平均温度と反応抵抗の大小との関係]
 図5は、本実施の形態に係るエレクトロクロミック素子1の平均温度と反応抵抗の大小との関係を示す図である。
[Relationship between average temperature and reaction resistance]
FIG. 5 is a diagram showing the relationship between the average temperature of the electrochromic device 1 according to the present embodiment and the magnitude of the reaction resistance.
 図5の(a)の縦軸は、イオンの移動方向を示しており、横軸は、時間を示している。なお、縦軸の正方向が第2電極22から第1電極21にイオンが移動する方向である。縦軸の負方向が第1電極21から第2電極22にイオンが移動する方向である。 5 (a), the vertical axis indicates the direction of ion movement, and the horizontal axis indicates time. The positive direction of the vertical axis is the direction in which ions move from the second electrode 22 to the first electrode 21. The negative direction of the vertical axis is the direction in which ions move from the first electrode 21 to the second electrode 22.
 したがって、グラフが横軸より上にある場合、イオンが第2電極22から第1電極21に向かう、すなわち、析出反応(反応抵抗が小さい第1電極反応)が起こっていることを意味する。グラフが横軸より下にある場合、イオンが第1電極21から第2電極22に向かう、すなわち、溶解反応(反応抵抗が大きい第2電極反応)が起こっていることを意味する。 Therefore, when the graph is above the horizontal axis, it means that ions are directed from the second electrode 22 to the first electrode 21, that is, a precipitation reaction (first electrode reaction having a low reaction resistance) is occurring. When the graph is below the horizontal axis, it means that ions are directed from the first electrode 21 to the second electrode 22, that is, a dissolution reaction (second electrode reaction having a large reaction resistance) is occurring.
 また、図5の(b)の縦軸は、エレクトロクロミック素子1の平均温度を示しており、横軸は、時間を示している。エレクトロクロミック素子1の平均温度は、第1電極21、第2電極22又は機能層23の時間平均温度に相当する。 Further, the vertical axis in FIG. 5B indicates the average temperature of the electrochromic element 1, and the horizontal axis indicates time. The average temperature of the electrochromic element 1 corresponds to the time average temperature of the first electrode 21, the second electrode 22, or the functional layer 23.
 例えば、第1電極反応(図5の例では、析出反応)が起きる場合におけるエレクトロクロミック素子1の平均温度とは、第1電極反応を生じさせている時間における電極の時間平均温度である。第2電極反応(図5の例では、溶解反応)が起きる場合におけるエレクトロクロミック素子1の平均温度とは、第2電極反応を生じさせている時間における電極の時間平均温度である。 For example, the average temperature of the electrochromic element 1 in the case where the first electrode reaction (precipitation reaction in the example of FIG. 5) occurs is the time average temperature of the electrode in the time during which the first electrode reaction occurs. The average temperature of the electrochromic element 1 when the second electrode reaction (dissolution reaction in the example of FIG. 5) occurs is the time average temperature of the electrode during the time during which the second electrode reaction occurs.
 図5に示すように、加熱機構を用いることで溶解反応が起きている場合の平均温度を、析出反応が起きている場合の平均温度より高くすることができる。これにより、溶解反応の進行を促進することができる。つまり、反応抵抗が大きい第2電極反応が起きる場合に、機能層23の平均温度を高くすることで、第2電極反応の進行を促進することができる。例えば、溶解反応時の平均温度は、40℃~50℃である。析出反応時の平均温度は、例えば、室温又は外気温などである。 As shown in FIG. 5, by using a heating mechanism, the average temperature when the dissolution reaction occurs can be made higher than the average temperature when the precipitation reaction occurs. Thereby, progress of a dissolution reaction can be promoted. That is, when the second electrode reaction having a large reaction resistance occurs, the progress of the second electrode reaction can be promoted by increasing the average temperature of the functional layer 23. For example, the average temperature during the dissolution reaction is 40 ° C. to 50 ° C. The average temperature during the precipitation reaction is, for example, room temperature or outside temperature.
 なお、本実施の形態では、図5に示すように、第1端子30と第2端子40との間に正バイアス電圧を印加する期間と、第1電極21に電流を流す期間とが一致する。つまり、溶解反応と発熱とを同時に開始し、同時に終了させている。 In the present embodiment, as shown in FIG. 5, the period during which a positive bias voltage is applied between the first terminal 30 and the second terminal 40 coincides with the period during which a current flows through the first electrode 21. . That is, the dissolution reaction and the exotherm are started at the same time and are ended at the same time.
 しかしながら、発熱の開始及び終了させるタイミングは、これに限らない。例えば、溶解反応を開始する前に、発熱を開始してもよい。具体的には、第1電極21に電流を流して発熱を開始した後、すなわち、第1端子30と発熱用端子31との間に電圧の印加を開始した後に、第1端子30と第2端子40との間に正バイアス電圧を印加してもよい。 However, the timing to start and end the heat generation is not limited to this. For example, heat generation may be started before starting the dissolution reaction. Specifically, after a current is passed through the first electrode 21 to start heat generation, that is, after application of a voltage is started between the first terminal 30 and the heat generation terminal 31, the first terminal 30 and the second electrode A positive bias voltage may be applied between the terminal 40 and the terminal 40.
 [効果など]
 以上のように、本実施の形態に係るエレクトロクロミック素子1は、互いに対向して配置された透光性を有する第1電極21及び第2電極22と、第1電極21と第2電極22との間に設けられた、電解質を含む機能層23とを備えるエレクトロクロミック素子1であって、機能層23は、(i)電解質に含まれるイオンが第1電極21に対して第1電極反応を起こした場合に、第1光学状態になり、(ii)電解質に含まれるイオンが第1電極21に対して、第1電極反応より反応抵抗が大きい第2電極反応を起こした場合に、第1光学状態とは異なる第2光学状態になり、第2電極反応が起きる場合におけるエレクトロクロミック素子1の平均温度が、第1電極反応が起きる場合におけるエレクトロクロミック素子1の平均温度より高い。
[Effects, etc.]
As described above, the electrochromic element 1 according to the present embodiment includes the first electrode 21 and the second electrode 22 having translucency, which are disposed to face each other, the first electrode 21, the second electrode 22, and the like. The electrochromic device 1 is provided with a functional layer 23 including an electrolyte, and the functional layer 23 includes: (i) ions contained in the electrolyte react with the first electrode 21 in a first electrode reaction. When it occurs, it enters the first optical state, and (ii) when the ions contained in the electrolyte cause a second electrode reaction with a higher reaction resistance than the first electrode reaction to the first electrode 21, the first When the second optical state is different from the optical state and the second electrode reaction occurs, the average temperature of the electrochromic element 1 is higher than the average temperature of the electrochromic element 1 when the first electrode reaction occurs
 これにより、反応が進みにくい第2電極反応を起こす場合の平均温度が第1電極反応を起こす場合の平均温度より高いので、第2電極反応の進行を促進することができる。したがって、エレクトロクロミック素子1の光学状態の変化をよりスムーズに行うことができる。 Thereby, since the average temperature when the second electrode reaction is difficult to proceed is higher than the average temperature when the first electrode reaction is initiated, the progress of the second electrode reaction can be promoted. Therefore, the change in the optical state of the electrochromic element 1 can be performed more smoothly.
 また、例えば、エレクトロクロミック素子1は、さらに、機能層23を加熱する加熱機構を備える。 For example, the electrochromic element 1 further includes a heating mechanism for heating the functional layer 23.
 これにより、反応が進みにくい第2電極反応を起こす場合に、機能層23を加熱するので、第2電極反応の進行を促進することができる。したがって、エレクトロクロミック素子1の光学状態の変化をよりスムーズに行うことができる。 Thereby, since the functional layer 23 is heated when the second electrode reaction is difficult to proceed, the progress of the second electrode reaction can be promoted. Therefore, the change in the optical state of the electrochromic element 1 can be performed more smoothly.
 また、例えば、第1電極反応は、電解質に含まれる金属イオンが金属膜23aとして析出する反応であり、第2電極反応は、金属膜23aが金属イオンとして溶解する反応である。 For example, the first electrode reaction is a reaction in which metal ions contained in the electrolyte are deposited as the metal film 23a, and the second electrode reaction is a reaction in which the metal film 23a is dissolved as metal ions.
 これにより、反応が進みにくい溶解反応を起こす場合に、機能層23を加熱するので、金属膜23aの溶解の進行を促進することができる。したがって、エレクトロクロミック素子1の光学状態の変化をよりスムーズに行うことができる。 Thereby, when the dissolution reaction is difficult to proceed, the functional layer 23 is heated, so that the progress of the dissolution of the metal film 23a can be promoted. Therefore, the change in the optical state of the electrochromic element 1 can be performed more smoothly.
 また、例えば、第1電極21の面粗度は、第2電極22の面粗度より小さくてもよい。 For example, the surface roughness of the first electrode 21 may be smaller than the surface roughness of the second electrode 22.
 これにより、第1電極21に金属膜23aが析出した場合に、第2電極22に金属膜23aが析出する場合よりも、金属膜23aの面粗度を小さくすることができる。つまり、第1電極21に析出する金属膜23aの表面をより鏡面に近付けることができる。したがって、エレクトロクロミック素子1に入射する光を鏡面反射させることができる。 Thereby, when the metal film 23 a is deposited on the first electrode 21, the surface roughness of the metal film 23 a can be made smaller than when the metal film 23 a is deposited on the second electrode 22. That is, the surface of the metal film 23a deposited on the first electrode 21 can be brought closer to a mirror surface. Therefore, the light incident on the electrochromic element 1 can be specularly reflected.
 また、例えば、加熱機構は、第1電極21及び第2電極22のいずれか一方の電極に電気的に接続された2つの端子と、第2電極反応が起きる場合に、2つの端子を介して当該一方の電極に電流を流すことで、当該一方の電極を発熱させる電源部60とを備えてもよい。 In addition, for example, when the second electrode reaction occurs between the two terminals electrically connected to one of the first electrode 21 and the second electrode 22, the heating mechanism passes through the two terminals. You may provide with the power supply part 60 which heats the said one electrode by sending an electric current through the said one electrode.
 これにより、第1電極21及び第2電極22のいずれか一方を発熱させることができるので、機能層23を加熱するための別部材が必要ではなくなる。したがって、部品点数を削減することができ、エレクトロクロミック素子1の軽量化及び低コスト化を実現することができる。 Thereby, since one of the first electrode 21 and the second electrode 22 can generate heat, a separate member for heating the functional layer 23 is not necessary. Therefore, the number of parts can be reduced, and the weight reduction and cost reduction of the electrochromic element 1 can be realized.
 (その他)
 以上、本発明に係るエレクトロクロミック素子について、上記実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As mentioned above, although the electrochromic element which concerns on this invention was demonstrated based on the said embodiment and its modification, this invention is not limited to said embodiment.
 例えば、上記の実施の形態では、第2電極反応(例えば、析出反応)を起こす場合の平均温度が、第1電極反応(例えば、溶解反応)を起こす場合の平均温度より高くなるように、第2電極反応を起こす場合に機能層23を加熱する例について示したが、これに限らない。例えば、第2電極反応を起こす場合に機能層23を加熱したとしても、例えば外気温の影響などによって、結果として、第2電極反応を起こす場合の平均温度が第1電極反応を起こす場合の平均温度と同じ、又は、より低くなってもよい。また、例えば、加熱機構は、常に機能層23を加熱してもよい。 For example, in the above-described embodiment, the first electrode reaction (eg, precipitation reaction) is caused to have an average temperature higher than the average temperature when the first electrode reaction (eg, dissolution reaction) is caused. Although an example in which the functional layer 23 is heated when a two-electrode reaction occurs is shown, the present invention is not limited to this. For example, even if the functional layer 23 is heated when the second electrode reaction is caused, the average temperature when the second electrode reaction is caused as a result of, for example, the influence of the outside air temperature is the average when the first electrode reaction is caused. It may be the same as or lower than the temperature. For example, the heating mechanism may always heat the functional layer 23.
 また、例えば、上記の実施の形態では、第1電極反応が析出反応であり、第2電極反応が溶解反応である例について示したが、これに限らない。例えば、第1電極反応は、吸着反応若しくはインターカレーションであってもよいし、第2電極反応は、脱離反応若しくはデインターカレーションであってもよい。 Also, for example, in the above-described embodiment, an example in which the first electrode reaction is a precipitation reaction and the second electrode reaction is a dissolution reaction has been described, but the present invention is not limited thereto. For example, the first electrode reaction may be an adsorption reaction or intercalation, and the second electrode reaction may be an elimination reaction or deintercalation.
 また、例えば、上記の実施の形態では、加熱機構は、第1端子30及び発熱用端子31を含み、第1電極21を発熱させる例について示したが、これに限らない。例えば、第2電極22に電気的に接続された発熱用端子を第2基板11上に設けてもよい。これにより、第2電極22を発熱させてもよい。あるいは、第1電極21及び第2電極22の両方を発熱させてもよい。 For example, in the above embodiment, the heating mechanism includes the first terminal 30 and the heat generating terminal 31 and the first electrode 21 generates heat. However, the present invention is not limited thereto. For example, a heat generating terminal electrically connected to the second electrode 22 may be provided on the second substrate 11. Thereby, the second electrode 22 may generate heat. Alternatively, both the first electrode 21 and the second electrode 22 may generate heat.
 あるいは、第1電極21及び第2電極22とのいずれも発熱させなくてもよい。例えば、加熱機構は、ヒーターでもよい。ヒーターは、例えば、電熱線又は導電性の基板などの発熱部材である。例えば、第1基板10及び第2基板11の少なくとも一方の光学調整層20とは反対側の面にヒーターを設けてもよい。ヒーターによって、第1基板10又は第2基板11を加熱することで、機能層23を加熱することができる。なお、この場合、エレクトロクロミック素子1は、発熱用端子31を備えなくてもよい。 Alternatively, neither the first electrode 21 nor the second electrode 22 needs to generate heat. For example, the heating mechanism may be a heater. The heater is a heating member such as a heating wire or a conductive substrate. For example, a heater may be provided on the surface of at least one of the first substrate 10 and the second substrate 11 opposite to the optical adjustment layer 20. The functional layer 23 can be heated by heating the first substrate 10 or the second substrate 11 with a heater. In this case, the electrochromic element 1 may not include the heat generating terminal 31.
 なお、上記の実施の形態では、機能層23が、金属イオンを含有する電解質が溶解した高分子材料である例について説明したが、これに限らない。例えば、機能層23は、エレクトロクロミック層、電解質層及び対向電極層の積層構造を有してもよい。 In the above embodiment, the example in which the functional layer 23 is a polymer material in which an electrolyte containing metal ions is dissolved has been described, but the present invention is not limited to this. For example, the functional layer 23 may have a stacked structure of an electrochromic layer, an electrolyte layer, and a counter electrode layer.
 例えば、エレクトロクロミック層は、イオンを吸蔵又は放出した場合に光学状態が変化するエレクトロクロミック材料から構成される。例えば、エレクトロクロミック材料は、酸化タングステン、酸化モリブデンなどの金属酸化物である。金属酸化物には、リチウム、ナトリウムなどの金属などがドーパントとしてドーピングされていてもよい。 For example, the electrochromic layer is made of an electrochromic material whose optical state changes when ions are occluded or released. For example, the electrochromic material is a metal oxide such as tungsten oxide or molybdenum oxide. The metal oxide may be doped with a metal such as lithium or sodium as a dopant.
 電解質層は、エレクトロクロミック層と対向電極層との間でイオンを移動させることができる層である。電解質層は、例えば、ケイ酸塩、酸化シリコン、酸化タンタルなどから形成される。 The electrolyte layer is a layer that can move ions between the electrochromic layer and the counter electrode layer. The electrolyte layer is made of, for example, silicate, silicon oxide, tantalum oxide, or the like.
 対向電極層は、エレクトロクロミック層の光学状態を変化させるためのイオンを貯蔵するための層である。対向電極層としては、例えば、酸化ニッケル、酸化タングステンなどの金属酸化物を用いることができる。 The counter electrode layer is a layer for storing ions for changing the optical state of the electrochromic layer. As the counter electrode layer, for example, a metal oxide such as nickel oxide or tungsten oxide can be used.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1 エレクトロクロミック素子
10 第1基板
11 第2基板
20 光学調整層
21 第1電極
22 第2電極
23 機能層
23a 金属膜
30 第1端子
31 発熱用端子(加熱機構)
40 第2端子
50 封止材
60 電源部
DESCRIPTION OF SYMBOLS 1 Electrochromic element 10 1st board | substrate 11 2nd board | substrate 20 Optical adjustment layer 21 1st electrode 22 2nd electrode 23 Functional layer 23a Metal film 30 1st terminal 31 Heating terminal (heating mechanism)
40 Second terminal 50 Sealing material 60 Power supply unit

Claims (5)

  1.  互いに対向して配置された透光性を有する第1電極及び第2電極と、
     前記第1電極と前記第2電極との間に設けられた、電解質を含む機能層とを備えるエレクトロクロミック素子であって、
     前記機能層は、
     (i)前記電解質に含まれるイオンが前記第1電極に対して第1電極反応を起こした場合に、第1光学状態になり、(ii)前記電解質に含まれるイオンが前記第1電極に対して、前記第1電極反応より反応抵抗が大きい第2電極反応を起こした場合に、前記第1光学状態とは異なる第2光学状態になり、
     前記第2電極反応が起きる場合における前記エレクトロクロミック素子の平均温度は、前記第1電極反応が起きる場合における前記エレクトロクロミック素子の平均温度より高い
     エレクトロクロミック素子。
    A first electrode and a second electrode having translucency arranged opposite to each other;
    An electrochromic device comprising a functional layer including an electrolyte provided between the first electrode and the second electrode,
    The functional layer is
    (I) when ions contained in the electrolyte cause a first electrode reaction with respect to the first electrode, the first optical state is established; (ii) ions contained in the electrolyte with respect to the first electrode; When a second electrode reaction having a reaction resistance higher than that of the first electrode reaction is caused, the second optical state is different from the first optical state,
    The electrochromic element, wherein an average temperature of the electrochromic element when the second electrode reaction occurs is higher than an average temperature of the electrochromic element when the first electrode reaction occurs.
  2.  前記エレクトロクロミック素子は、さらに、前記機能層を加熱する加熱機構を備える
     請求項1に記載のエレクトロクロミック素子。
    The electrochromic device according to claim 1, wherein the electrochromic device further includes a heating mechanism that heats the functional layer.
  3.  前記加熱機構は、
     前記第1電極及び前記第2電極のいずれか一方の電極に電気的に接続された2つの端子と、
     前記第2電極反応が起きる場合に、前記2つの端子を介して前記一方の電極に電流を流すことで、前記一方の電極を発熱させる電源部とを備える
     請求項2に記載のエレクトロクロミック素子。
    The heating mechanism is
    Two terminals electrically connected to one of the first electrode and the second electrode;
    The electrochromic element according to claim 2, further comprising: a power supply unit that generates heat by flowing current to the one electrode through the two terminals when the second electrode reaction occurs.
  4.  前記第1電極反応は、前記電解質に含まれる金属イオンが金属膜として析出する反応であり、
     前記第2電極反応は、前記金属膜が前記金属イオンとして溶解する反応である
     請求項1~3のいずれか1項に記載のエレクトロクロミック素子。
    The first electrode reaction is a reaction in which metal ions contained in the electrolyte are deposited as a metal film,
    The electrochromic device according to any one of claims 1 to 3, wherein the second electrode reaction is a reaction in which the metal film is dissolved as the metal ions.
  5.  前記第1電極の面粗度は、前記第2電極の面粗度より小さい
     請求項1~4のいずれか1項に記載のエレクトロクロミック素子。
    The electrochromic element according to claim 1, wherein the surface roughness of the first electrode is smaller than the surface roughness of the second electrode.
PCT/JP2016/000657 2015-02-25 2016-02-09 Electrochromic element WO2016136163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035828A JP2016157020A (en) 2015-02-25 2015-02-25 Electrochromic element
JP2015-035828 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136163A1 true WO2016136163A1 (en) 2016-09-01

Family

ID=56789329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000657 WO2016136163A1 (en) 2015-02-25 2016-02-09 Electrochromic element

Country Status (2)

Country Link
JP (1) JP2016157020A (en)
WO (1) WO2016136163A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732844A (en) * 2017-04-17 2018-11-02 斯坦雷电气株式会社 Electro-optical device, display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978220B2 (en) * 2017-04-20 2021-12-08 スタンレー電気株式会社 Electro-optics, projection screen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781235A (en) * 1993-09-13 1995-03-28 Toray Ind Inc Rewritable handy color display
JPH09160511A (en) * 1995-12-11 1997-06-20 Toppan Printing Co Ltd Magnetic recording medium and its recording method
JP2000155345A (en) * 1998-11-24 2000-06-06 Affinity Kk Window using light controlling glass
JP2001059979A (en) * 1999-06-17 2001-03-06 Sony Corp Optical device, driving method therefor and image pickup device
JP2015212719A (en) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 Electro-optic device and electronic equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781235A (en) * 1993-09-13 1995-03-28 Toray Ind Inc Rewritable handy color display
JPH09160511A (en) * 1995-12-11 1997-06-20 Toppan Printing Co Ltd Magnetic recording medium and its recording method
JP2000155345A (en) * 1998-11-24 2000-06-06 Affinity Kk Window using light controlling glass
JP2001059979A (en) * 1999-06-17 2001-03-06 Sony Corp Optical device, driving method therefor and image pickup device
JP2015212719A (en) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 Electro-optic device and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732844A (en) * 2017-04-17 2018-11-02 斯坦雷电气株式会社 Electro-optical device, display device

Also Published As

Publication number Publication date
JP2016157020A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
KR102175577B1 (en) Electrode Plate and Electrochomic Mirror Using the Same
US9623800B2 (en) Touch sensing mirror structure
JP6425080B2 (en) Optical device
WO2015141740A1 (en) Light-modulating element and smart glass
TWI576751B (en) A display device for a touch panel input device with an electrolytic capacitance coupling method
JPWO2016013154A1 (en) Dimmer element and building material including the same
TWI551932B (en) Display apparatus
US10095333B2 (en) Touch apparatus
KR20180019111A (en) Touch sensor with circular polarization plate and image display device
CN105242801A (en) Touch sensor and display apparatus
WO2016136163A1 (en) Electrochromic element
KR102108828B1 (en) Electrode Plate and Electrochomic Mirror Using the Same
JP2019158938A (en) Light control film having heat reflection function
TWM504528U (en) Touch sensing mirror structure
JP2017097169A (en) Electrochromic element
US11493809B2 (en) Electronic curtain and electronic device
TWI747646B (en) Electronic curtain and electronic device
WO2016121330A1 (en) Charge storage device
JP2005216221A (en) Touch panel
TWI539224B (en) Mirror structure
WO2022138719A1 (en) Metal-salt precipitation-type element
TWM507702U (en) Mirror structure
WO2016009621A1 (en) Optical device
JP2013131480A (en) Conductive film and method for manufacturing the same
CN117425853A (en) Electrochromic device and spectacle lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754919

Country of ref document: EP

Kind code of ref document: A1