WO2022138719A1 - Metal-salt precipitation-type element - Google Patents

Metal-salt precipitation-type element Download PDF

Info

Publication number
WO2022138719A1
WO2022138719A1 PCT/JP2021/047575 JP2021047575W WO2022138719A1 WO 2022138719 A1 WO2022138719 A1 WO 2022138719A1 JP 2021047575 W JP2021047575 W JP 2021047575W WO 2022138719 A1 WO2022138719 A1 WO 2022138719A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal salt
salt precipitation
type element
transparent
Prior art date
Application number
PCT/JP2021/047575
Other languages
French (fr)
Japanese (ja)
Inventor
多久男 持塚
Original Assignee
株式会社村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村上開明堂 filed Critical 株式会社村上開明堂
Publication of WO2022138719A1 publication Critical patent/WO2022138719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells

Definitions

  • the present disclosure relates to a metal salt precipitation type device.
  • This application claims priority based on Japanese Application No. 2020-213611 of December 23, 2020, and incorporates all the contents described in the Japanese application.
  • Japanese Unexamined Patent Publication No. 2012-181389 describes an electrochromic display device having a mirror surface display mode.
  • the electrochromic display device has a pair of transparent substrates, a pair of transparent electrodes, and an electrolyte layer.
  • the pair of transparent electrodes are formed on the opposite surfaces of the pair of substrates.
  • the electrolyte layer is sandwiched between a pair of transparent electrodes.
  • the electrolyte layer has an electrochromic material containing silver and a mediator.
  • the electrolyte layer contains an electrolyte as a supporting salt, an electrochromic material containing silver ions, and a mediator.
  • the electrochromic material precipitates or eliminates silver fine particles by a redox reaction.
  • the electrochromic material makes a display that causes a color change. The indication that causes this color change is based on the precipitation or disappearance of silver fine particles.
  • Examples of the electrochromic material containing silver include AgNO 3 , AgClO 4 , or AgBr.
  • the pair of transparent electrodes are connected to the power supply via wiring having conductivity respectively. By turning the power on and off, the application of voltage to the electrolyte layer and the release of the voltage are controlled.
  • the electrochromic display device realizes a reflection state or a black state, for example, in a state where a voltage is applied.
  • the electrochromic display device realizes a transmission state in a state where the application of voltage is released.
  • the electrolyte layer is formed between a pair of transparent electrodes. The distance between the pair of transparent electrodes is set to 500 ⁇ m by the spacer.
  • the electrochromic display device has sufficient reflection characteristics. That is, the electromic display device is in a mirror state.
  • + 2.5V is applied to the transparent electrode, the electrochromic display device shows very low reflectance. That is, the electrochromic display device is in a black state. If no voltage is applied to the transparent electrode, the electrochromic display device will be discolored. That is, the electrochromic display device becomes transparent.
  • the distance between the pair of transparent electrodes is determined by a spacer arranged so as to surround the electrolyte layer.
  • the frame of the colored spacer surrounding the electrolyte layer is visually recognizable.
  • Metal salt precipitation type devices such as the above-mentioned electrochromic display device are required to have good visibility when visually recognized. Recently, a frameless structure is required.
  • the metal salt precipitation type element includes a film-shaped first electrode, a film-shaped second electrode facing the first electrode, a pair of transparent substrates, a spacer, and an electrolytic solution. ..
  • the pair of transparent substrates sandwiches the first electrode and the second electrode along the stacking direction in which the first electrode and the second electrode face each other.
  • the spacer is sandwiched between the first electrode and the second electrode.
  • the spacer defines a space between the first electrode and the second electrode.
  • the electrolytic solution is housed in the space defined by the first electrode, the second electrode and the spacer.
  • the first electrode, the second electrode and the spacer are transparent.
  • the electrolytic solution is housed in a space defined by a transparent first electrode, a transparent second electrode, and a transparent spacer.
  • the first electrode and the second electrode face each other.
  • the first electrode and the second electrode are sandwiched between a pair of transparent substrates along the opposite stacking directions.
  • the pair of transparent substrates, the electrolytic solution, the first electrode, the second electrode and the spacer are transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be improved.
  • an opaque electrolytic solution is formed in the space defined by the transparent first electrode, the transparent second electrode and the transparent spacer. It will be in a housed state. In this case, the perimeter of the opaque electrolyte is transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be improved.
  • the spacer may be adhered to each of the first electrode and the second electrode via an adhesive.
  • the adhesive may be transparent. When the adhesive is transparent, the spacer can be adhered to each of the first electrode and the second electrode by the adhesive, and the spacer can be fixed to the first electrode and the second electrode. Since the adhesive is transparent, it is possible to make the adhesive less visible than when the adhesive is not transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
  • the first electrode and the second electrode may be connected to an external electrode.
  • the metal salt precipitation type element may include a linear electrode that connects the second electrode and the external electrode to each other.
  • the linear electrode may extend from the external electrode beyond the electrolytic solution and the spacer to the second electrode. Since the electrode connecting the second electrode and the external electrode to each other is linear, it is possible to make it difficult to visually recognize the electrode as compared with the case where the electrode is not linear. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
  • the thickness of the linear electrode may be 1.0 mm or less. Since the thickness of the electrode is 1.0 mm or less, the linear electrode can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
  • the visibility can be improved.
  • the metal salt precipitation type element 1 includes a film-shaped first electrode 11, a film-shaped second electrode 12 facing the first electrode 11, and a pair of transparent substrates. 20 and.
  • the pair of transparent substrates 20 sandwich the first electrode 11 and the second electrode 12 along the stacking direction in which the first electrode 11 and the second electrode 12 face each other.
  • the stacking direction in which the first electrode 11 and the second electrode 12 face each other may be referred to as the Y direction.
  • Each of the first electrode 11 and the second electrode 12 is, for example, a transparent electrode and constitutes an electrode pair.
  • each of the first electrode 11 and the second electrode 12 is a transparent electrode film formed on the respective surfaces of the pair of transparent substrates 20 facing each other.
  • Each of the first electrode 11 and the second electrode 12 is, for example, at least one of ITO (Indium Tin Oxide: indium tin oxide), FTO (F-doped Tin Oxide: fluorinated tin oxide), tin oxide and zinc oxide. It is composed of.
  • the first electrode 11 and the second electrode 12 are ITO transparent electrode films, for example, the surface resistance values of the first electrode 11 and the second electrode 12 are 10 ⁇ / ⁇ .
  • the pair of transparent substrates 20 has, for example, a rectangular plate shape.
  • the transparent substrate 20 may be made of transparent glass or a transparent resin.
  • the pair of transparent substrates 20 is composed of, for example, a first substrate 21 and a second substrate 22.
  • the first substrate 21 has a first inner surface 21a with which the first electrode 11 contacts, and a first outer surface 21b facing the opposite side of the first inner surface 21a in the Y direction.
  • the second substrate 22 has a second inner surface 22a with which the second electrode 12 contacts, and a second outer surface 22b facing the opposite side of the second inner surface 22a in the Y direction.
  • the first inner surface 21a and the second inner surface 22a are the respective surfaces of the pair of transparent substrates 20 facing each other.
  • first inner surface 21a, the second inner surface 22a, the first outer surface 21b, and the second outer surface 22b are smooth surfaces.
  • the smooth surface is a smooth surface without unevenness.
  • the smooth surface may include a flat surface and a curved surface.
  • the first inner surface 21a, the second inner surface 22a, the first outer surface 21b, and the second outer surface 22b may be flat surfaces.
  • a flat surface is a flat surface.
  • An antireflection film may be provided on at least one of the first outer surface 21b and the second outer surface 22b.
  • the positions of the first substrate 21 and the second substrate 22 are offset from each other.
  • the direction in which the positions of the first substrate 21 and the second substrate 22 are deviated from each other may be referred to as the Z direction.
  • the Z direction and the Y direction are orthogonal to each other.
  • the first substrate 21 has a first end portion 21c protruding to one side in the Z direction.
  • the second substrate 22 has a second end portion 22c protruding from the other in the Z direction.
  • the portion of the first electrode 11 that comes into contact with the first inner surface 21a of the first end portion 21c may be referred to as the first electrode exposed portion 11a.
  • the portion of the second electrode 12 in contact with the second inner surface 22a of the second end portion 22c is visually recognized.
  • the portion of the second electrode 12 that comes into contact with the second inner surface 22a of the second end portion 22c may be referred to as a second electrode exposed portion 12a.
  • the first electrode exposed portion 11a does not face the second electrode 12 in the Y direction.
  • the second electrode exposed portion 12a does not face the first electrode 11 in the Y direction.
  • the first electrode exposed portion 11a and the second electrode exposed portion 12a are obliquely opposed to each other with the electrolytic solution 40 and the spacer 30, which will be described later, interposed therebetween.
  • the first electrode exposed portion 11a faces the second electrode exposed portion 12a along a direction inclined in both the Z direction and the Y direction.
  • the metal salt precipitation type element 1 includes a spacer 30 and an electrolytic solution 40.
  • the spacer 30 defines a space S between the first electrode 11 and the second electrode 12.
  • the electrolytic solution 40 is housed in the space S.
  • the spacer 30 is sandwiched between the first electrode 11 and the second electrode 12.
  • the space S is defined by the first electrode 11, the second electrode 12, and the spacer 30.
  • FIG. 2 is a front view of the metal salt precipitation type element 1 according to the embodiment.
  • the spacer 30 is arranged so as to define a space S in a region including the center of the transparent substrate 20 when viewed from the Y direction. Seen from the Y direction, for example, the space S has a rectangular shape.
  • the shape of the spacer 30 seen from the Y direction is a frame shape extending along both the X direction and the Z direction.
  • the X direction is a direction orthogonal to both the Y direction and the Z direction.
  • the shape of the spacer 30 is a frame shape extending along the XY plane.
  • the spacer 30 may be composed of a single component. It may be composed of a plurality of parts. As an example, the spacer 30 may be composed of a plurality of rectangular parallelepiped glass members. In this case, the spacer 30 is composed of a glass member 31, a glass member 32, a glass member 33, and a glass member 34.
  • the glass member 31 and the glass member 32 face each other with the space S in the Z direction.
  • the glass member 33 and the glass member 34 face each other with the space S in the X direction.
  • the glass member 31, the glass member 32, the glass member 33, and the glass member 34 define a space S having a rectangular shape when viewed from the Y direction.
  • the glass member 31, the glass member 32, the glass member 33, and the glass member 34 form a frame in which rectangular holes are defined in a region including the center when viewed from the Y direction.
  • the edge of the metal salt precipitation type element 1 is transparent when viewed from the Y direction.
  • the edge of the metal salt precipitation type element 1 surrounds the rectangular space S in the central portion of the metal salt precipitation type element 1.
  • the edge of the metal salt precipitation type element 1 is a position where the spacer 30 is provided. Therefore, the metal salt precipitation type element 1 constitutes a frameless metal salt precipitation type element 1.
  • the spacer 30 defines a space S between the first electrode 11 and the second electrode 12.
  • the electrolytic solution 40 is housed in the space S defined between the spacer 30, the first electrode 11, and the second electrode 12.
  • the electrolytic solution 40 constitutes the change region 1a of the metal salt precipitation type element 1.
  • the change region 1a indicates a region of the metal salt precipitation type element 1 that changes to any of a transparent state, a colored state, and a mirror state.
  • the change region 1a of the metal salt precipitation type element 1 is provided in the space S in which the electrolytic solution 40 is housed.
  • the metal salt precipitation type element 1 constitutes a frameless metal salt precipitation type element in which a change region 1a is provided in a region including the center when viewed from the Y direction. Details of the transparent state, the colored state and the mirror state will be described later.
  • the electrolytic solution 40 is, for example, a liquid in which at least one of silver ions and copper ions is contained in a solvent containing methanol.
  • the electrolytic solution 40 is an electrolytic solution 40 containing propylene carbonate and methanol as solvents and AgNO 3 (silver nitrate), CuCl 2 (copper chloride) and LiBr (lithium bromide) as solutes.
  • the electrolytic solution 40 may contain a non-aqueous solvent having a boiling point higher than that of methanol and methanol containing a smaller weight than the non-aqueous solvent.
  • the non-aqueous solvent having a boiling point higher than that of methanol in the electrolytic solution 40 may contain propylene carbonate as the component having the highest weight.
  • the weight of silver nitrate contained in the electrolytic solution 40 is larger than the weight of the cupric chloride contained in the electrolytic solution 40.
  • a thickener may be added to the electrolytic solution 40.
  • the thickener may be composed of a polymer such as polypropylene, polyvinyl butyral or polymethylmethacrylate, for example.
  • the first electrode 11 and the second electrode 12 are connected to the external electrode E.
  • the metal salt precipitation type element 1 includes a linear electrode 50 that connects the second electrode 12 and the external electrode E to each other.
  • the external electrode E is, for example, a DC power source that generates a potential difference between the first electrode 11 and the second electrode 12.
  • Each of the first electrode 11 and the second electrode 12 is electrically connected to the external electrode E.
  • the external electrode E includes a positive electrode E1 in which a positive voltage is generated and a negative electrode E2 in which a negative voltage is generated.
  • the positive electrode E1 of the external electrode E is connected to the first electrode exposed portion 11a.
  • the positive electrode E1 extends in the X direction along the first electrode exposed portion 11a and is connected to the first electrode exposed portion 11a.
  • the length of the positive electrode E1 in the X direction and the length of the first electrode exposed portion 11a in the X direction are equal to or greater than the length of the space S in the X direction.
  • the negative electrode E2 is connected to the linear electrode 50.
  • the linear electrode 50 is connected to the second electrode exposed portion 12a.
  • the linear electrode 50 extends in the X direction along the second electrode exposed portion 12a.
  • the length of the electrode 50 in the X direction and the length of the second electrode exposed portion 12a in the X direction are equal to or greater than the length of the space S in the X direction.
  • the linear electrode 50 extends from the external electrode E beyond the electrolytic solution 40 and the spacer 30 to the second electrode 12.
  • the linear electrode 50 bypasses the spacer 30 and the electrolytic solution 40 and extends to the second electrode 12.
  • the linear electrode 50 is composed of, for example, a conductive silver paste applied to the surface of the metal salt precipitation type element 1.
  • the linear electrode 50 may include a bridge portion 50a extending along a surface located at the end of the metal salt precipitation type element 1 in the X direction.
  • the surface of the metal salt precipitation type element 1 located at the end in the X direction may be referred to as a side surface 1b.
  • the side surface 1b is composed of, for example, a spacer 30 and a pair of transparent substrates 20 sandwiching the spacer 30.
  • the bridge portion 50a extends in the Z direction along the side surface 1b.
  • the linear electrode 50 may exceed the electrolytic solution 40 and the spacer 30 at the bridge portion 50a.
  • the bridge portion 50a extends from the negative electrode E2 toward the second electrode exposed portion 12a so as to exceed the electrolytic solution 40 and the spacer 30.
  • the bridge portion 50a is composed of, for example, a silver paste applied to the insulated side surface 1b.
  • the thickness of the linear electrode 50 is, for example, 0.5 mm or more and 1.0 mm or less.
  • the first electrode 11 When a voltage is applied from the external electrode E, a potential difference occurs between the first electrode 11 and the second electrode 12.
  • a potential difference occurs between the first electrode 11 and the second electrode 12
  • one of the first electrode 11 and the second electrode 12 is set as the positive electrode, and the other is set as the negative electrode.
  • the first electrode 11 is set to the positive electrode and the second electrode 12 is set to the negative electrode.
  • An electric field is generated from the first electrode 11 set on the positive electrode toward the second electrode 12 set on the negative electrode.
  • the direction of the electric field is substantially the same as the Y direction.
  • the metal cations for example, Ag + and Cu 2+
  • the electrolytic solution 40 are transferred to the second electrode 12 set on the negative electrode and reduced.
  • a precipitation layer containing, for example, silver and copper is formed on the second electrode 12. Therefore, a reflective surface having a high reflectance of light is formed in the change region 1a.
  • the change region 1a of the metal salt precipitation type element 1 is changed to a mirror state that reflects light.
  • the electrolytic solution 40 is almost colorless and transparent.
  • the entire metal salt precipitation type element 1 is covered from the first substrate 21 and the first electrode 11 to the second electrode 12 and the second substrate 22 including the electrolytic solution 40. It is almost colorless and transparent.
  • the change region 1a of the metal salt precipitation type element 1 is in a transparent state through which light is transmitted.
  • the reflectance of light gradually increases according to the magnitude of the applied voltage.
  • the change region 1a of the metal salt precipitation type element 1 gradually changes from a transparent state to a mirror state according to the magnitude of the applied voltage.
  • the spacer 30 is adhered to each of the first electrode 11 and the second electrode 12 via the adhesive 35.
  • the adhesive 35 is applied between the first electrode 11 and the spacer 30, and between the second electrode 12 and the spacer 30, respectively.
  • the adhesive 35 is transparent.
  • the adhesive 35 is, for example, a transparent epoxy-based adhesive.
  • the thickness of each of the adhesives 35 in the Y direction is, for example, 50 ⁇ m.
  • the thickness of the adhesive 35 in the Y direction is 100 ⁇ m including the adhesive 35 between the first electrode 11 and the spacer 30 and the adhesive 35 between the second electrode 12 and the spacer 30.
  • the thickness of the spacer 30 is, for example, 300 ⁇ m or more and 400 ⁇ m or less. Therefore, the distance between the first electrode 11 and the second electrode 12 is 400 ⁇ m or more and 500 ⁇ m or less.
  • FIGS. 4A, 4B and 4C are schematic views showing an example in which the metal salt precipitation type element 1 is applied as an in-vehicle inner mirror 2.
  • the spacer 30 surrounding the change region 1a of the metal salt precipitation type element 1 is transparent when viewed from the thickness direction of the metal salt precipitation type element 1. Is.
  • the thickness direction of the metal salt precipitation type element 1 is the Y direction.
  • the inner mirror 2 constitutes a frameless mirror having a transparent frame.
  • FIG. 4A shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a transparent state. In the case of FIG.
  • both the change region 1a of the metal salt precipitation type element 1 and the spacer 30 surrounding the change region 1a are transparent when viewed from the Y direction. In other words, substantially the entire metal salt precipitation type element 1 is transparent. Therefore, the front view can be improved through the metal salt precipitation type element 1.
  • FIG. 4B shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a colored state.
  • the change region 1a of the metal salt precipitation type element 1 is in a translucent state when viewed from the Y direction.
  • the transmittance of light is lower than in the changed region 1a in the transparent state.
  • FIG. 4C shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a mirror state.
  • the change region 1a of the metal salt precipitation type element 1 reflects light when viewed from the Y direction. Therefore, the rear can be visually recognized through the change region 1a of the metal salt precipitation type element 1. Since the spacer 30 surrounding the change region 1a is transparent, visibility can be secured through the periphery of the change region 1a.
  • the case where the metal salt precipitation type element 1 is applied to eyeglasses can be considered.
  • the spectacles to which the metal salt precipitation type element 1 is applied for example, only the upper part of the spectacles in the state of being worn by the wearer may have a frame, and the side portions and the lower portion may be frameless.
  • Eyeglasses to which the metal salt precipitation type element 1 is applied can protect the wearer's eyes from light rays by changing the change region 1a of the metal salt precipitation type element 1 into a colored state.
  • the side portions and the lower portion other than the upper portion of the spectacles in the state of being worn by the wearer are frameless. As a result, the spectacles to which the metal salt precipitation type element 1 is applied can improve the field of vision of the wearer.
  • the electrolytic solution 40 is housed in the space S defined by the transparent first electrode 11, the transparent second electrode 12, and the transparent spacer 30.
  • the first electrode 11 and the second electrode 12 face each other.
  • the first electrode 11 and the second electrode 12 are sandwiched between a pair of transparent substrates 20 along the opposite stacking directions.
  • the pair of transparent substrates 20, the electrolytic solution 40, the first electrode 11, the second electrode 12, and the spacer 30 are used. It is transparent. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be improved.
  • the electrolytic solution 40 When a voltage is applied to the first electrode 11 and the second electrode 12, and the electrolytic solution 40 is not transparent, the space defined by the transparent first electrode 11, the transparent second electrode 12, and the transparent spacer 30.
  • the opaque electrolytic solution 40 is contained in S.
  • the periphery of the opaque electrolytic solution 40 is transparent, the visibility when the metal salt precipitation type element 1 is visually recognized can be improved.
  • the metal salt precipitation type element 1 has a rectangular shape, the other three sides can be made transparent except for one side serving as a fulcrum.
  • the adhesive 35 is transparent, it is possible to make it difficult to visually recognize the adhesive 35 as compared with the case where the adhesive 35 is not transparent. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
  • the electrode 50 connecting the second electrode 12 and the external electrode E to each other is linear, as compared with the case where the electrode 50 is not linear, The electrode 50 can be made difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
  • the thickness of the linear electrode 50 is 1.0 mm or less, the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
  • the linear electrode 50 exceeds the electrolytic solution 40 and the spacer 30 at the bridge portion 50a along the side surface 1b of the metal salt precipitation type element 1.
  • the side surface 1b and the bridge portion 50a form a contour on one side, so that the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
  • the bridge portion 50a of the linear electrode 50 is composed of a silver paste applied to the side surface 1b of the metal salt precipitation type element 1.
  • the bridge portion 50a constitutes a film-shaped electrode extending linearly along the side surface 1b of the metal salt precipitation type element 1.
  • the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
  • the external electrode E is connected to the first electrode exposed portion 11a, and the linear electrode 50 is connected to the second electrode exposed portion 12a.
  • the first electrode exposed portion 11a does not face the second electrode 12 in the Y direction. Therefore, the external electrode E can be easily connected to the first electrode exposed portion 11a.
  • the second electrode exposed portion 12a does not face the first electrode 11. Therefore, the electrode 50 can be easily connected to the second electrode exposed portion 12a.
  • the spacer 30 sandwiched between the first electrode 11 and the second electrode 12 is composed of a glass member provided in a frame shape. In this case, a wider space between the first electrode 11 and the second electrode 12 can be secured as compared with the case where an adhesive or the like mixed with glass beads or the like is applied as a spacer.
  • the metal salt precipitation type element 1 according to the present disclosure has been described above.
  • the metal salt precipitation type device according to the present disclosure is not limited to the above-described embodiment.
  • the metal salt precipitation type device according to the present disclosure may be modified or applied to other devices without changing the gist described in each claim.
  • the configuration of each part of the metal salt precipitation type device can be appropriately changed without changing the above gist.
  • the spacer 30 is adhered to each of the first electrode 11 and the second electrode 12 via the adhesive 35, and the adhesive 35 is a transparent epoxy-based adhesive 35.
  • the adhesive 35 may be a transparent adhesive 35 other than the epoxy-based adhesive, such as an acrylic-based adhesive.
  • the adhesive 35 may be mixed with glass beads. In this case, the thickness of the adhesive 35 in the Y direction can be accurately secured as compared with the case where the glass beads are not mixed.
  • the spacer 30 does not have to be adhered to each of the first electrode 11 and the second electrode 12.
  • the spacer 30 may be fixed to each of the first electrode 11 and the second electrode 12.
  • the spacer 30 may be fitted to the uneven portion provided on each of the first electrode 11 and the second electrode 12.
  • the electrode 50 is a linear electrode and the linear electrode 50 is composed of silver paste has been described.
  • the electrode may be composed of a thin film such as a metal foil.
  • the electrode may be made of a wire material such as a lead wire.
  • the metal salt precipitation type element 1 may be applied as an in-vehicle inner mirror 2 as an in-vehicle inner mirror 2 .
  • the metal salt precipitation type element may be applied as a part of a member that transmits light such as a window.
  • the metal salt precipitation type device may be applied to the upper part of the front window. Since the metal salt precipitation type element is frameless, the visibility can be improved even if it is used as a part of a window or the like.
  • the metal salt precipitation type element can adjust the light transmittance in a part such as a window.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A metal-salt precipitation-type element according to an embodiment of the present invention includes: a film-like first electrode; a film-like second electrode that faces the first electrode; a pair of transparent substrates; spacers; and an electrolyte. The pair of transparent substrates sandwich the first electrode and the second electrode in a lamination direction in which the first electrode and the second electrode face each other. The spacers are sandwiched between the first electrode and the second electrode. The spacers define a space between the first electrode and the second electrode. The electrolyte is stored in the space defined by the first electrode, the second electrode, and the spacers. The first electrode, the second electrode, and the spacers are transparent.

Description

金属塩析出型素子Metal salt precipitation type device
 本開示は、金属塩析出型素子に関する。
 本出願は、2020年12月23日の日本出願第2020-213611号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a metal salt precipitation type device.
This application claims priority based on Japanese Application No. 2020-213611 of December 23, 2020, and incorporates all the contents described in the Japanese application.
 特開2012-181389号公報には、鏡面表示モードを有するエレクトロクロミック表示装置が記載されている。エレクトロクロミック表示装置は、一対の透明な基板と、一対の透明電極と電解質層とを有する。一対の透明電極は、一対の基板の互いに対向する面に形成される。電解質層は、一対の透明電極の間に挟持される。電解質層は、銀を含むエレクトロクロミック材料と、メディエータとを有する。 Japanese Unexamined Patent Publication No. 2012-181389 describes an electrochromic display device having a mirror surface display mode. The electrochromic display device has a pair of transparent substrates, a pair of transparent electrodes, and an electrolyte layer. The pair of transparent electrodes are formed on the opposite surfaces of the pair of substrates. The electrolyte layer is sandwiched between a pair of transparent electrodes. The electrolyte layer has an electrochromic material containing silver and a mediator.
 電解質層は、支持塩としての電解質と、銀イオンを含むエレクトロクロミック材料と、メディエータとを含む。エレクトロクロミック材料は酸化還元反応によって銀微粒子を析出、又は消失させる。エレクトロクロミック材料は、色の変化を生じさせる表示を行う。この色の変化を生じさせる表示は、銀微粒子の析出又は消失に基づく。銀を含むエレクトロクロミック材料としては、AgNO、AgClO、又はAgBr、が例示される。一対の透明電極は、それぞれ導電性を有する配線を介して電源に接続される。この電源のON、OFFにより電解質層への電圧の印加、及び印加の解除が制御される。 The electrolyte layer contains an electrolyte as a supporting salt, an electrochromic material containing silver ions, and a mediator. The electrochromic material precipitates or eliminates silver fine particles by a redox reaction. The electrochromic material makes a display that causes a color change. The indication that causes this color change is based on the precipitation or disappearance of silver fine particles. Examples of the electrochromic material containing silver include AgNO 3 , AgClO 4 , or AgBr. The pair of transparent electrodes are connected to the power supply via wiring having conductivity respectively. By turning the power on and off, the application of voltage to the electrolyte layer and the release of the voltage are controlled.
 エレクトロクロミック表示装置は、例えば電圧が印加された状態で反射状態又は黒状態を実現する。エレクトロクロミック表示装置は、電圧の印加が解除された状態で透過状態を実現する。エレクトロクロミック表示装置では、電解質層は一対の透明電極間に形成されている。一対の透明電極間の距離は、スペーサによって500μmにされる。透明電極に-2.5Vが印加された場合では、エレクトロクロミック表示装置は十分な反射特性を有する。すなわちエレクトロミック表示装置は、鏡状態となる。透明電極に+2.5Vが印加された場合では、エレクトロクロミック表示装置は非常に低い反射率を示す。すなわち、エレクトロクロミック表示装置は、黒状態となる。透明電極に電圧が印加されない場合では、エレクトロクロミック表示装置は消色する。すなわち、エレクトロクロミック表示装置は、透明状態となる。 The electrochromic display device realizes a reflection state or a black state, for example, in a state where a voltage is applied. The electrochromic display device realizes a transmission state in a state where the application of voltage is released. In an electrochromic display device, the electrolyte layer is formed between a pair of transparent electrodes. The distance between the pair of transparent electrodes is set to 500 μm by the spacer. When -2.5V is applied to the transparent electrode, the electrochromic display device has sufficient reflection characteristics. That is, the electromic display device is in a mirror state. When + 2.5V is applied to the transparent electrode, the electrochromic display device shows very low reflectance. That is, the electrochromic display device is in a black state. If no voltage is applied to the transparent electrode, the electrochromic display device will be discolored. That is, the electrochromic display device becomes transparent.
特開2012-181389号公報Japanese Unexamined Patent Publication No. 2012-181389
 前述したエレクトロクロミック表示装置では、一対の透明電極間の距離は電解質層を囲むように配置されるスペーサによって定められる。一対の透明電極が向かい合う方向から見ると、電解質層を囲む有色のスペーサの枠が視認される。前述したエレクトロクロミック表示装置などの金属塩析出型素子では、視認されたときの視界を良好にすることが求められている。最近では、フレームレス構造が要求されている。 In the above-mentioned electrochromic display device, the distance between the pair of transparent electrodes is determined by a spacer arranged so as to surround the electrolyte layer. When viewed from the direction in which the pair of transparent electrodes face each other, the frame of the colored spacer surrounding the electrolyte layer is visually recognizable. Metal salt precipitation type devices such as the above-mentioned electrochromic display device are required to have good visibility when visually recognized. Recently, a frameless structure is required.
 本開示は、視界を良好にできる金属塩析出型素子を提供することを目的とする。 It is an object of the present disclosure to provide a metal salt precipitation type device capable of improving visibility.
 本開示の一側面に係る金属塩析出型素子は、膜状の第1電極と、第1電極に対向する膜状の第2電極と、一対の透明基板と、スペーサと、電解液とを備える。一対の透明基板は、第1電極及び第2電極が互いに対向する積層方向に沿って、第1電極及び第2電極を挟む。スペーサは、第1電極及び第2電極に挟まれる。スペーサは、第1電極と第2電極との間に空間を画成する。電解液は、第1電極、第2電極及びスペーサによって画成される空間に収容される。第1電極、第2電極及びスペーサは透明である。 The metal salt precipitation type element according to one aspect of the present disclosure includes a film-shaped first electrode, a film-shaped second electrode facing the first electrode, a pair of transparent substrates, a spacer, and an electrolytic solution. .. The pair of transparent substrates sandwiches the first electrode and the second electrode along the stacking direction in which the first electrode and the second electrode face each other. The spacer is sandwiched between the first electrode and the second electrode. The spacer defines a space between the first electrode and the second electrode. The electrolytic solution is housed in the space defined by the first electrode, the second electrode and the spacer. The first electrode, the second electrode and the spacer are transparent.
 金属塩析出型素子では、透明な第1電極、透明な第2電極及び透明なスペーサによって画成される空間に電解液が収容されている。第1電極及び第2電極は、互いに対向している。第1電極及び第2電極は、対向する積層方向に沿って一対の透明基板に挟まれている。第1電極及び第2電極に電圧が印加されず、電解液が透明である場合には、一対の透明基板、電解液、第1電極、第2電極及びスペーサが透明である。よって、金属塩析出型素子が視認されたときの視界を良好にできる。第1電極及び第2電極に電圧が印加され、電解液が透明ではない場合には、透明な第1電極、透明な第2電極及び透明なスペーサによって画成される空間に不透明な電解液が収容された状態となる。この場合、不透明な電解液の周囲は、透明である。よって、金属塩析出型素子が視認されたときの視界を良好にできる。 In the metal salt precipitation type element, the electrolytic solution is housed in a space defined by a transparent first electrode, a transparent second electrode, and a transparent spacer. The first electrode and the second electrode face each other. The first electrode and the second electrode are sandwiched between a pair of transparent substrates along the opposite stacking directions. When no voltage is applied to the first electrode and the second electrode and the electrolytic solution is transparent, the pair of transparent substrates, the electrolytic solution, the first electrode, the second electrode and the spacer are transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be improved. When a voltage is applied to the first electrode and the second electrode and the electrolytic solution is not transparent, an opaque electrolytic solution is formed in the space defined by the transparent first electrode, the transparent second electrode and the transparent spacer. It will be in a housed state. In this case, the perimeter of the opaque electrolyte is transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be improved.
 スペーサは、接着剤を介して第1電極及び第2電極のそれぞれに接着されていてもよい。接着剤は透明であってもよい。接着剤が透明な場合、接着剤によってスペーサが第1電極及び第2電極のそれぞれに接着して第1電極及び第2電極にスペーサを固定できる。接着剤が透明であるため、接着剤が透明でない場合と比較して、接着剤を視認し難くできる。従って、金属塩析出型素子が視認されたときの視界を更に良好にできる。 The spacer may be adhered to each of the first electrode and the second electrode via an adhesive. The adhesive may be transparent. When the adhesive is transparent, the spacer can be adhered to each of the first electrode and the second electrode by the adhesive, and the spacer can be fixed to the first electrode and the second electrode. Since the adhesive is transparent, it is possible to make the adhesive less visible than when the adhesive is not transparent. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
 第1電極及び第2電極は外部電極に接続されてもよい。金属塩析出型素子は、第2電極と外部電極とを互いに接続する線状の電極を備えてもよい。線状の電極は、外部電極から電解液及びスペーサを越えて第2電極まで延びていてもよい。第2電極と外部電極とを互いに接続する電極が線状であるため、電極が線状でない場合と比較して、電極を視認し難くできる。従って、金属塩析出型素子が視認されたときの視界を更に良好にできる。 The first electrode and the second electrode may be connected to an external electrode. The metal salt precipitation type element may include a linear electrode that connects the second electrode and the external electrode to each other. The linear electrode may extend from the external electrode beyond the electrolytic solution and the spacer to the second electrode. Since the electrode connecting the second electrode and the external electrode to each other is linear, it is possible to make it difficult to visually recognize the electrode as compared with the case where the electrode is not linear. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
 線状の電極の太さは1.0mm以下であってもよい。電極の太さが1.0mm以下であるため、線状の電極を更に視認し難くできる。従って、金属塩析出型素子が視認されたときの視界を更に良好にできる。 The thickness of the linear electrode may be 1.0 mm or less. Since the thickness of the electrode is 1.0 mm or less, the linear electrode can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element is visually recognized can be further improved.
 本開示によれば、視界を良好にできる。 According to this disclosure, the visibility can be improved.
実施形態に係る金属塩析出型素子を模式的に示す断面図である。It is sectional drawing which shows typically the metal salt precipitation type element which concerns on embodiment. 実施形態に係る金属塩析出型素子を模式的に示す正面図である。It is a front view which shows typically the metal salt precipitation type element which concerns on embodiment. 実施形態に係る金属塩析出型素子においてスペーサ及び接着剤を拡大して示す断面図である。It is sectional drawing which shows the spacer and the adhesive enlarged in the metal salt precipitation type element which concerns on embodiment. (a)は金属塩析出型素子を適用したインナーミラーが透明状態であるときの模式図である。(b)は金属塩析出型素子を適用したインナーミラーが着色状態であるときの模式図である。(c)は金属塩析出型素子を適用したインナーミラーが反射状態であるときの模式図である。(A) is a schematic diagram when the inner mirror to which the metal salt precipitation type element is applied is in a transparent state. (B) is a schematic diagram when the inner mirror to which the metal salt precipitation type element is applied is in a colored state. (C) is a schematic diagram when the inner mirror to which the metal salt precipitation type element is applied is in a reflective state.
 以下では、図面を参照しながら本開示に係る金属塩析出型素子の実施形態について説明する。図面の説明では、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、理解の容易化のため、一部を簡略化又は誇張して描いている場合がある。寸法比率などは図面に記載のものに限定されない。 Hereinafter, embodiments of the metal salt precipitation type device according to the present disclosure will be described with reference to the drawings. In the description of the drawings, the same or corresponding elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate. The drawings may be partially simplified or exaggerated for ease of understanding. The dimensional ratio and the like are not limited to those described in the drawings.
 図1に示されるように、本実施形態に係る金属塩析出型素子1は、膜状の第1電極11と、第1電極11に対向する膜状の第2電極12と、一対の透明基板20とを備える。一対の透明基板20は、第1電極11及び第2電極12が互いに対向する積層方向に沿って第1電極11及び第2電極12を挟む。以下では、第1電極11及び第2電極12が互いに対向する積層方向をY方向と称する場合がある。 As shown in FIG. 1, the metal salt precipitation type element 1 according to the present embodiment includes a film-shaped first electrode 11, a film-shaped second electrode 12 facing the first electrode 11, and a pair of transparent substrates. 20 and. The pair of transparent substrates 20 sandwich the first electrode 11 and the second electrode 12 along the stacking direction in which the first electrode 11 and the second electrode 12 face each other. Hereinafter, the stacking direction in which the first electrode 11 and the second electrode 12 face each other may be referred to as the Y direction.
 第1電極11及び第2電極12のそれぞれは、例えば、透明な電極であって電極対を構成する。この場合、第1電極11及び第2電極12のそれぞれは、一対の透明基板20の互いに向かい合うそれぞれの面に形成された透明電極膜である。第1電極11及び第2電極12のそれぞれは、例えば、ITO(Indium Tin Oxide:酸化インジウムスズ)、FTO(F-doped Tin Oxide:フッ化ドープ酸化スズ)、酸化スズ及び酸化亜鉛の少なくとも何れかによって構成されている。第1電極11及び第2電極12がITO透明電極膜である場合、例えば、第1電極11及び第2電極12の表面抵抗値は10Ω/□である。 Each of the first electrode 11 and the second electrode 12 is, for example, a transparent electrode and constitutes an electrode pair. In this case, each of the first electrode 11 and the second electrode 12 is a transparent electrode film formed on the respective surfaces of the pair of transparent substrates 20 facing each other. Each of the first electrode 11 and the second electrode 12 is, for example, at least one of ITO (Indium Tin Oxide: indium tin oxide), FTO (F-doped Tin Oxide: fluorinated tin oxide), tin oxide and zinc oxide. It is composed of. When the first electrode 11 and the second electrode 12 are ITO transparent electrode films, for example, the surface resistance values of the first electrode 11 and the second electrode 12 are 10 Ω / □.
 一対の透明基板20は、例えば、矩形板状とされている。透明基板20は、透明なガラス製であってもよいし、透明な樹脂製であってもよい。一対の透明基板20は、例えば、第1基板21及び第2基板22によって構成される。第1基板21は、第1電極11が接触する第1内面21aと、Y方向において第1内面21aの反対側を向く第1外面21bとを有する。第2基板22は、第2電極12が接触する第2内面22aと、Y方向において第2内面22aの反対側を向く第2外面22bとを有する。この場合、第1内面21a及び第2内面22aは、一対の透明基板20の互いに向かい合うそれぞれの面である。例えば、第1内面21a、第2内面22a、第1外面21b及び第2外面22bは平滑面とされている。平滑面とは、凹凸が無く滑らかな面である。平滑面は、平面及び曲面を含んでもよい。第1内面21a、第2内面22a、第1外面21b及び第2外面22bは、平坦面であってもよい。平坦面とは、平面である。第1外面21b及び第2外面22bの少なくとも何れかには、反射防止膜が設けられていてもよい。 The pair of transparent substrates 20 has, for example, a rectangular plate shape. The transparent substrate 20 may be made of transparent glass or a transparent resin. The pair of transparent substrates 20 is composed of, for example, a first substrate 21 and a second substrate 22. The first substrate 21 has a first inner surface 21a with which the first electrode 11 contacts, and a first outer surface 21b facing the opposite side of the first inner surface 21a in the Y direction. The second substrate 22 has a second inner surface 22a with which the second electrode 12 contacts, and a second outer surface 22b facing the opposite side of the second inner surface 22a in the Y direction. In this case, the first inner surface 21a and the second inner surface 22a are the respective surfaces of the pair of transparent substrates 20 facing each other. For example, the first inner surface 21a, the second inner surface 22a, the first outer surface 21b, and the second outer surface 22b are smooth surfaces. The smooth surface is a smooth surface without unevenness. The smooth surface may include a flat surface and a curved surface. The first inner surface 21a, the second inner surface 22a, the first outer surface 21b, and the second outer surface 22b may be flat surfaces. A flat surface is a flat surface. An antireflection film may be provided on at least one of the first outer surface 21b and the second outer surface 22b.
 Y方向から見たときに、第1基板21及び第2基板22の位置は互いにずれている。以下では、第1基板21及び第2基板22の位置が互いにずれている方向をZ方向と称する場合がある。Z方向とY方向とは互いに直交している。第1基板21は、Z方向の一方にはみ出した第1端部21cを有する。第2基板22は、Z方向の他方にはみ出した第2端部22cを有する。Y方向の一方から見ると、第1端部21cの第1内面21aに接触する第1電極11の部分が視認される。以下では、第1端部21cの第1内面21aに接触する第1電極11の部分を第1電極露出部11aと称する場合がある。Y方向の他方から見ると、第2端部22cの第2内面22aに接触する第2電極12の部分が視認される。以下では、第2端部22cの第2内面22aに接触する第2電極12の部分を、第2電極露出部12aと称する場合がある。第1電極露出部11aは、Y方向において、第2電極12と向かい合わない。第2電極露出部12aは、Y方向において、第1電極11と向かい合わない。第1電極露出部11aと第2電極露出部12aとは、後述される電解液40及びスペーサ30を挟んで互いに斜向かいになる。第1電極露出部11aは、Z方向及びY方向の双方に傾斜する方向に沿って第2電極露出部12aに対向している。 When viewed from the Y direction, the positions of the first substrate 21 and the second substrate 22 are offset from each other. Hereinafter, the direction in which the positions of the first substrate 21 and the second substrate 22 are deviated from each other may be referred to as the Z direction. The Z direction and the Y direction are orthogonal to each other. The first substrate 21 has a first end portion 21c protruding to one side in the Z direction. The second substrate 22 has a second end portion 22c protruding from the other in the Z direction. When viewed from one side in the Y direction, the portion of the first electrode 11 in contact with the first inner surface 21a of the first end portion 21c is visually recognized. Hereinafter, the portion of the first electrode 11 that comes into contact with the first inner surface 21a of the first end portion 21c may be referred to as the first electrode exposed portion 11a. When viewed from the other side in the Y direction, the portion of the second electrode 12 in contact with the second inner surface 22a of the second end portion 22c is visually recognized. Hereinafter, the portion of the second electrode 12 that comes into contact with the second inner surface 22a of the second end portion 22c may be referred to as a second electrode exposed portion 12a. The first electrode exposed portion 11a does not face the second electrode 12 in the Y direction. The second electrode exposed portion 12a does not face the first electrode 11 in the Y direction. The first electrode exposed portion 11a and the second electrode exposed portion 12a are obliquely opposed to each other with the electrolytic solution 40 and the spacer 30, which will be described later, interposed therebetween. The first electrode exposed portion 11a faces the second electrode exposed portion 12a along a direction inclined in both the Z direction and the Y direction.
 金属塩析出型素子1は、スペーサ30と、電解液40とを備える。スペーサ30は、第1電極11と第2電極12との間に空間Sを画成する。電解液40は、空間Sに収容される。スペーサ30は、第1電極11及び第2電極12に挟まれる。空間Sは、第1電極11、第2電極12及びスペーサ30によって画成される。 The metal salt precipitation type element 1 includes a spacer 30 and an electrolytic solution 40. The spacer 30 defines a space S between the first electrode 11 and the second electrode 12. The electrolytic solution 40 is housed in the space S. The spacer 30 is sandwiched between the first electrode 11 and the second electrode 12. The space S is defined by the first electrode 11, the second electrode 12, and the spacer 30.
 第1電極11及び第2電極12に挟まれるスペーサ30は、透明である。スペーサ30は、透明なガラス製であってもよいし、透明な樹脂製であってもよい。図2は、実施形態に係る金属塩析出型素子1の正面図である。図2に示される金属塩析出型素子1では、スペーサ30は、Y方向から見て、透明基板20の中央を含む領域に空間Sを画成するように配置される。Y方向から見て、例えば、空間Sは矩形状を呈する。一例として、Y方向から見たスペーサ30の形状は、X方向及びZ方向の双方に沿って広がる枠状である。X方向はY方向及びZ方向の双方に直交する方向である。例えば、スペーサ30の形状は、XY平面に沿って広がる枠状である。 The spacer 30 sandwiched between the first electrode 11 and the second electrode 12 is transparent. The spacer 30 may be made of transparent glass or a transparent resin. FIG. 2 is a front view of the metal salt precipitation type element 1 according to the embodiment. In the metal salt precipitation type element 1 shown in FIG. 2, the spacer 30 is arranged so as to define a space S in a region including the center of the transparent substrate 20 when viewed from the Y direction. Seen from the Y direction, for example, the space S has a rectangular shape. As an example, the shape of the spacer 30 seen from the Y direction is a frame shape extending along both the X direction and the Z direction. The X direction is a direction orthogonal to both the Y direction and the Z direction. For example, the shape of the spacer 30 is a frame shape extending along the XY plane.
 スペーサ30は、単一の部品によって構成されていてもよい。複数の部品によって構成されていてもよい。一例として、スペーサ30は、複数の直方体状のガラス部材によって構成されてもよい。この場合、スペーサ30は、ガラス部材31、ガラス部材32、ガラス部材33及びガラス部材34によって構成される。ガラス部材31及びガラス部材32は、Z方向において空間Sを挟んで互いに対向する。ガラス部材33及びガラス部材34は、X方向において空間Sを挟んで互いに対向する。ガラス部材31、ガラス部材32、ガラス部材33及びガラス部材34は、Y方向から見て矩形状を呈する空間Sを画成する。ガラス部材31、ガラス部材32、ガラス部材33及びガラス部材34は、Y方向から見て中央を含む領域に矩形状の孔が画成された枠を構成する。 The spacer 30 may be composed of a single component. It may be composed of a plurality of parts. As an example, the spacer 30 may be composed of a plurality of rectangular parallelepiped glass members. In this case, the spacer 30 is composed of a glass member 31, a glass member 32, a glass member 33, and a glass member 34. The glass member 31 and the glass member 32 face each other with the space S in the Z direction. The glass member 33 and the glass member 34 face each other with the space S in the X direction. The glass member 31, the glass member 32, the glass member 33, and the glass member 34 define a space S having a rectangular shape when viewed from the Y direction. The glass member 31, the glass member 32, the glass member 33, and the glass member 34 form a frame in which rectangular holes are defined in a region including the center when viewed from the Y direction.
 実施形態に係る金属塩析出型素子1の縁は、Y方向から見て透明である。金属塩析出型素子1の縁は、金属塩析出型素子1の中央部の矩形状の空間Sを囲む。金属塩析出型素子1の縁は、スペーサ30が設けられる位置である。よって、金属塩析出型素子1は、フレームレスの金属塩析出型素子1を構成する。 The edge of the metal salt precipitation type element 1 according to the embodiment is transparent when viewed from the Y direction. The edge of the metal salt precipitation type element 1 surrounds the rectangular space S in the central portion of the metal salt precipitation type element 1. The edge of the metal salt precipitation type element 1 is a position where the spacer 30 is provided. Therefore, the metal salt precipitation type element 1 constitutes a frameless metal salt precipitation type element 1.
 図1及び図2に示されるように、スペーサ30は、第1電極11と第2電極12との間に空間Sを画成する。スペーサ30と、第1電極11と、第2電極12との間に画成される空間Sには、電解液40が収容される。透明状態から鏡状態に変化する金属塩析出型素子1では、電解液40は、金属塩析出型素子1の変化領域1aを構成する。変化領域1aとは、透明状態、着色状態及び鏡状態の何れかに変化する金属塩析出型素子1の領域を示している。金属塩析出型素子1の変化領域1aは、電解液40が収容された空間Sに設けられる。金属塩析出型素子1は、Y方向から見て、中央を含む領域に変化領域1aが設けられたフレームレスの金属塩析出型素子を構成する。透明状態、着色状態及び鏡状態の詳細については後述する。 As shown in FIGS. 1 and 2, the spacer 30 defines a space S between the first electrode 11 and the second electrode 12. The electrolytic solution 40 is housed in the space S defined between the spacer 30, the first electrode 11, and the second electrode 12. In the metal salt precipitation type element 1 that changes from the transparent state to the mirror state, the electrolytic solution 40 constitutes the change region 1a of the metal salt precipitation type element 1. The change region 1a indicates a region of the metal salt precipitation type element 1 that changes to any of a transparent state, a colored state, and a mirror state. The change region 1a of the metal salt precipitation type element 1 is provided in the space S in which the electrolytic solution 40 is housed. The metal salt precipitation type element 1 constitutes a frameless metal salt precipitation type element in which a change region 1a is provided in a region including the center when viewed from the Y direction. Details of the transparent state, the colored state and the mirror state will be described later.
 電解液40は、例えば、メタノールを含む溶媒に銀イオン及び銅イオンの少なくとも何れかが含まれた液体である。一例として、電解液40は、炭酸プロピレン及びメタノールを溶媒として含むと共に、AgNO(硝酸銀)、CuCl(塩化第2銅)及びLiBr(臭化リチウム)を溶質として含む電解液40である。例えば、電解液40は、メタノールよりも高沸点の非水溶媒、及び当該非水溶媒よりも含有重量が少ないメタノールを含有していてもよい。電解液40のメタノールよりも高沸点の当該非水溶媒は、炭酸プロピレンを最も含有重量が多い成分とするものであってもよい。 The electrolytic solution 40 is, for example, a liquid in which at least one of silver ions and copper ions is contained in a solvent containing methanol. As an example, the electrolytic solution 40 is an electrolytic solution 40 containing propylene carbonate and methanol as solvents and AgNO 3 (silver nitrate), CuCl 2 (copper chloride) and LiBr (lithium bromide) as solutes. For example, the electrolytic solution 40 may contain a non-aqueous solvent having a boiling point higher than that of methanol and methanol containing a smaller weight than the non-aqueous solvent. The non-aqueous solvent having a boiling point higher than that of methanol in the electrolytic solution 40 may contain propylene carbonate as the component having the highest weight.
 例えば、電解液40に含まれる硝酸銀の重量は、電解液40に含まれる塩化第2銅の重量よりも大きい。電解液40には増粘剤が添加されていてもよい。増粘剤は、例えば、ポリプロピレン、ポリビニルブチラール又はポリメチルメタアクリレートなどのポリマーによって構成されていてもよい。 For example, the weight of silver nitrate contained in the electrolytic solution 40 is larger than the weight of the cupric chloride contained in the electrolytic solution 40. A thickener may be added to the electrolytic solution 40. The thickener may be composed of a polymer such as polypropylene, polyvinyl butyral or polymethylmethacrylate, for example.
 第1電極11及び第2電極12は、外部電極Eに接続される。金属塩析出型素子1は、第2電極12と外部電極Eとを互いに接続する線状の電極50を備える。外部電極Eは、例えば、第1電極11及び第2電極12に電位差を発生させる直流電源である。第1電極11及び第2電極12のそれぞれは、外部電極Eと電気的に接続される。外部電極Eは、正電圧が生じる正電極E1と、負電圧が生じる負電極E2とを備える。例えば、外部電極Eの正電極E1は第1電極露出部11aに接続される。正電極E1は、第1電極露出部11aに沿ってX方向に延在すると共に第1電極露出部11aに接続される。例えば、正電極E1のX方向への長さ、及び第1電極露出部11aのX方向への長さは、空間SのX方向への長さ以上である。負電極E2は線状の電極50に接続される。線状の電極50は第2電極露出部12aに接続される。線状の電極50は、第2電極露出部12aに沿ってX方向に延在している。例えば、電極50のX方向への長さ、及び第2電極露出部12aのX方向への長さは、空間SのX方向への長さ以上である。 The first electrode 11 and the second electrode 12 are connected to the external electrode E. The metal salt precipitation type element 1 includes a linear electrode 50 that connects the second electrode 12 and the external electrode E to each other. The external electrode E is, for example, a DC power source that generates a potential difference between the first electrode 11 and the second electrode 12. Each of the first electrode 11 and the second electrode 12 is electrically connected to the external electrode E. The external electrode E includes a positive electrode E1 in which a positive voltage is generated and a negative electrode E2 in which a negative voltage is generated. For example, the positive electrode E1 of the external electrode E is connected to the first electrode exposed portion 11a. The positive electrode E1 extends in the X direction along the first electrode exposed portion 11a and is connected to the first electrode exposed portion 11a. For example, the length of the positive electrode E1 in the X direction and the length of the first electrode exposed portion 11a in the X direction are equal to or greater than the length of the space S in the X direction. The negative electrode E2 is connected to the linear electrode 50. The linear electrode 50 is connected to the second electrode exposed portion 12a. The linear electrode 50 extends in the X direction along the second electrode exposed portion 12a. For example, the length of the electrode 50 in the X direction and the length of the second electrode exposed portion 12a in the X direction are equal to or greater than the length of the space S in the X direction.
 線状の電極50は、外部電極Eから電解液40及びスペーサ30を越えて第2電極12まで延びている。線状の電極50は、スペーサ30及び電解液40を迂回して第2電極12まで延びている。線状の電極50は、例えば、金属塩析出型素子1の表面に塗布される導電性の銀ペーストによって構成される。線状の電極50は、金属塩析出型素子1のX方向の端部に位置する面に沿って延在するブリッジ部分50aを含んでいてもよい。以下では、金属塩析出型素子1のX方向の端部に位置する面を、側面1bと称する場合がある。側面1bは、例えば、スペーサ30とスペーサ30を挟む一対の透明基板20とによって構成される。ブリッジ部分50aは、側面1bに沿ってZ方向に延在している。線状の電極50は、ブリッジ部分50aにおいて電解液40及びスペーサ30を越えてもよい。ブリッジ部分50aは、負電極E2から第2電極露出部12aに向かって、電解液40及びスペーサ30を越えるように延びている。ブリッジ部分50aは、例えば、絶縁された側面1bに塗布される銀ペーストによって構成される。線状の電極50の太さは、例えば、0.5mm以上且つ1.0mm以下である。 The linear electrode 50 extends from the external electrode E beyond the electrolytic solution 40 and the spacer 30 to the second electrode 12. The linear electrode 50 bypasses the spacer 30 and the electrolytic solution 40 and extends to the second electrode 12. The linear electrode 50 is composed of, for example, a conductive silver paste applied to the surface of the metal salt precipitation type element 1. The linear electrode 50 may include a bridge portion 50a extending along a surface located at the end of the metal salt precipitation type element 1 in the X direction. Hereinafter, the surface of the metal salt precipitation type element 1 located at the end in the X direction may be referred to as a side surface 1b. The side surface 1b is composed of, for example, a spacer 30 and a pair of transparent substrates 20 sandwiching the spacer 30. The bridge portion 50a extends in the Z direction along the side surface 1b. The linear electrode 50 may exceed the electrolytic solution 40 and the spacer 30 at the bridge portion 50a. The bridge portion 50a extends from the negative electrode E2 toward the second electrode exposed portion 12a so as to exceed the electrolytic solution 40 and the spacer 30. The bridge portion 50a is composed of, for example, a silver paste applied to the insulated side surface 1b. The thickness of the linear electrode 50 is, for example, 0.5 mm or more and 1.0 mm or less.
 外部電極Eから電圧が印加される場合、第1電極11及び第2電極12の間には電位差が生じる。第1電極11及び第2電極12の間には電位差が生じるとき、第1電極11及び第2電極12の一方が正極に設定され、他方が負極に設定される。本実施形態では、一例として、第1電極11が正極に設定され、第2電極12が負極に設定される。 When a voltage is applied from the external electrode E, a potential difference occurs between the first electrode 11 and the second electrode 12. When a potential difference occurs between the first electrode 11 and the second electrode 12, one of the first electrode 11 and the second electrode 12 is set as the positive electrode, and the other is set as the negative electrode. In the present embodiment, as an example, the first electrode 11 is set to the positive electrode and the second electrode 12 is set to the negative electrode.
 正極に設定された第1電極11から負極に設定された第2電極12に向かって電場が生じる。電場の向きは、Y方向に略一致する。電場によって、電解液40の金属陽イオン(例えばAg、Cu2+)が負極に設定された第2電極12に移動して還元される。 An electric field is generated from the first electrode 11 set on the positive electrode toward the second electrode 12 set on the negative electrode. The direction of the electric field is substantially the same as the Y direction. By the electric field, the metal cations (for example, Ag + and Cu 2+ ) of the electrolytic solution 40 are transferred to the second electrode 12 set on the negative electrode and reduced.
 その結果、第2電極12に、例えば、銀及び銅を含む析出層が形成される。よって、変化領域1aに光の反射率が高い反射面が形成される。第1電極11及び第2電極12の間に電圧が印加されるときは、金属塩析出型素子1の変化領域1aは、光を反射する鏡状態に変化している。 As a result, a precipitation layer containing, for example, silver and copper is formed on the second electrode 12. Therefore, a reflective surface having a high reflectance of light is formed in the change region 1a. When a voltage is applied between the first electrode 11 and the second electrode 12, the change region 1a of the metal salt precipitation type element 1 is changed to a mirror state that reflects light.
 外部電極Eから電圧が印加されない場合、第1電極11及び第2電極12の間には電位差が生じない。第1電極11及び第2電極12の間は無電位である。無電位とは、フローティング電位である。第1電極11及び第2電極12の間は無電位の場合、電解液40における金属陽イオン(例えばAg、Cu2+)及び陰イオン(例えばNO 、Cl)は分散した状態となっている。 When no voltage is applied from the external electrode E, no potential difference occurs between the first electrode 11 and the second electrode 12. There is no potential between the first electrode 11 and the second electrode 12. The non-potential is a floating potential. When there is no potential between the first electrode 11 and the second electrode 12, metal cations (for example, Ag + , Cu 2+ ) and anions (for example, NO 3- , Cl- ) in the electrolytic solution 40 are dispersed. ing.
 その結果、電解液40はほぼ無色透明である。金属塩析出型素子1の変化領域1aでは、第1基板21及び第1電極11から電解液40を含めて第2電極12及び第2基板22に至るまで、金属塩析出型素子1の全体がほぼ無色透明である。第1電極11及び第2電極12の間に電圧が印加されないときは、金属塩析出型素子1の変化領域1aは、光を透過する透明状態である。 As a result, the electrolytic solution 40 is almost colorless and transparent. In the change region 1a of the metal salt precipitation type element 1, the entire metal salt precipitation type element 1 is covered from the first substrate 21 and the first electrode 11 to the second electrode 12 and the second substrate 22 including the electrolytic solution 40. It is almost colorless and transparent. When no voltage is applied between the first electrode 11 and the second electrode 12, the change region 1a of the metal salt precipitation type element 1 is in a transparent state through which light is transmitted.
 金属塩析出型素子1の変化領域1aは、印加される電圧の大きさに応じて光の反射率が徐々に高くなる。例えば、金属塩析出型素子1の変化領域1aは、印加される電圧の大きさに応じて透明状態から鏡状態に徐々に変化する。 In the change region 1a of the metal salt precipitation type element 1, the reflectance of light gradually increases according to the magnitude of the applied voltage. For example, the change region 1a of the metal salt precipitation type element 1 gradually changes from a transparent state to a mirror state according to the magnitude of the applied voltage.
 図3に示されるように、スペーサ30は、接着剤35を介して第1電極11及び第2電極12のそれぞれに接着されている。接着剤35は、第1電極11とスペーサ30との間、及び第2電極12とスペーサ30との間、のそれぞれに塗布されている。本実施形態において、接着剤35は透明である。接着剤35は、例えば、透明なエポキシ系の接着剤である。Y方向における接着剤35のそれぞれの厚さは、例えば、50μmである。Y方向における接着剤35の厚さは、第1電極11とスペーサ30との間の接着剤35と、第2電極12とスペーサ30との間の接着剤35とを合わせて、100μmである。スペーサ30の厚さは、例えば、300μm以上且つ400μm以下である。従って、第1電極11及び第2電極12の間の距離は、400μm以上且つ500μm以下である。 As shown in FIG. 3, the spacer 30 is adhered to each of the first electrode 11 and the second electrode 12 via the adhesive 35. The adhesive 35 is applied between the first electrode 11 and the spacer 30, and between the second electrode 12 and the spacer 30, respectively. In this embodiment, the adhesive 35 is transparent. The adhesive 35 is, for example, a transparent epoxy-based adhesive. The thickness of each of the adhesives 35 in the Y direction is, for example, 50 μm. The thickness of the adhesive 35 in the Y direction is 100 μm including the adhesive 35 between the first electrode 11 and the spacer 30 and the adhesive 35 between the second electrode 12 and the spacer 30. The thickness of the spacer 30 is, for example, 300 μm or more and 400 μm or less. Therefore, the distance between the first electrode 11 and the second electrode 12 is 400 μm or more and 500 μm or less.
 図4(a)、図4(b)及び図4(c)は、金属塩析出型素子1を車載用のインナーミラー2として適用した例を示す模式図である。図4(a)、図4(b)及び図4(c)の場合、金属塩析出型素子1の厚さ方向から見て、金属塩析出型素子1の変化領域1aを囲むスペーサ30が透明である。金属塩析出型素子1の厚さ方向は、Y方向である。インナーミラー2は、フレームが透明なフレームレスのミラーを構成する。図4(a)は、金属塩析出型素子1を適用したインナーミラー2の変化領域1aが透明状態であるときの模式図を示す。図4(a)の場合、Y方向から見て、金属塩析出型素子1の変化領域1a、及び変化領域1aを囲むスペーサ30の両方が透明である。換言すれば、金属塩析出型素子1の略全体が透明である。よって、金属塩析出型素子1を介して、前方の視界を良好にすることができる。 4 (a), 4 (b) and 4 (c) are schematic views showing an example in which the metal salt precipitation type element 1 is applied as an in-vehicle inner mirror 2. In the case of FIGS. 4A, 4B and 4C, the spacer 30 surrounding the change region 1a of the metal salt precipitation type element 1 is transparent when viewed from the thickness direction of the metal salt precipitation type element 1. Is. The thickness direction of the metal salt precipitation type element 1 is the Y direction. The inner mirror 2 constitutes a frameless mirror having a transparent frame. FIG. 4A shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a transparent state. In the case of FIG. 4A, both the change region 1a of the metal salt precipitation type element 1 and the spacer 30 surrounding the change region 1a are transparent when viewed from the Y direction. In other words, substantially the entire metal salt precipitation type element 1 is transparent. Therefore, the front view can be improved through the metal salt precipitation type element 1.
 図4(b)は、金属塩析出型素子1を適用したインナーミラー2の変化領域1aが着色状態であるときの模式図を示す。図4(b)の場合、Y方向から見て、金属塩析出型素子1の変化領域1aは、半透明な状態である。換言すれば、着色状態の変化領域1aでは、透明状態の変化領域1aと比べて、光の透過率が下げられている。これにより、例えば、太陽の西日などが自動車の内部に入る場合においても、金属塩析出型素子1の変化領域1aを介して信号を視認することで、信号などの点灯を確認することができる。変化領域1aを囲むスペーサ30が透明であるため、変化領域1aの周囲を介して視界を確保することができる。 FIG. 4B shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a colored state. In the case of FIG. 4B, the change region 1a of the metal salt precipitation type element 1 is in a translucent state when viewed from the Y direction. In other words, in the changed region 1a in the colored state, the transmittance of light is lower than in the changed region 1a in the transparent state. Thereby, for example, even when the west sun of the sun enters the inside of the automobile, the lighting of the signal or the like can be confirmed by visually recognizing the signal through the change region 1a of the metal salt precipitation type element 1. .. Since the spacer 30 surrounding the change region 1a is transparent, visibility can be secured through the periphery of the change region 1a.
 図4(c)は、金属塩析出型素子1を適用したインナーミラー2の変化領域1aが鏡状態であるときの模式図を示す。図4(c)の場合、Y方向から見て、金属塩析出型素子1の変化領域1aは光を反射する。よって、金属塩析出型素子1の変化領域1aを介して、後方を視認することができる。変化領域1aを囲むスペーサ30が透明であるため、変化領域1aの周囲を介して視界を確保することができる。 FIG. 4C shows a schematic diagram when the change region 1a of the inner mirror 2 to which the metal salt precipitation type element 1 is applied is in a mirror state. In the case of FIG. 4C, the change region 1a of the metal salt precipitation type element 1 reflects light when viewed from the Y direction. Therefore, the rear can be visually recognized through the change region 1a of the metal salt precipitation type element 1. Since the spacer 30 surrounding the change region 1a is transparent, visibility can be secured through the periphery of the change region 1a.
 金属塩析出型素子1の他の適用例として、金属塩析出型素子1を眼鏡に適用する場合が考えられる。金属塩析出型素子1を適用した眼鏡では、例えば、装着者に装着された状態における眼鏡の上部のみをフレーム有りにして、側部及び下部をフレームレスにすることができる。金属塩析出型素子1を適用した眼鏡は、金属塩析出型素子1の変化領域1aが着色状態に変化することで装着者の目を光線から保護することができる。金属塩析出型素子1を適用した眼鏡は、装着者に装着された状態における眼鏡の上部以外の側部及び下部がフレームレスである。結果として、金属塩析出型素子1を適用した眼鏡は、装着者の視界を良好にすることができる。 As another application example of the metal salt precipitation type element 1, the case where the metal salt precipitation type element 1 is applied to eyeglasses can be considered. In the spectacles to which the metal salt precipitation type element 1 is applied, for example, only the upper part of the spectacles in the state of being worn by the wearer may have a frame, and the side portions and the lower portion may be frameless. Eyeglasses to which the metal salt precipitation type element 1 is applied can protect the wearer's eyes from light rays by changing the change region 1a of the metal salt precipitation type element 1 into a colored state. In the spectacles to which the metal salt precipitation type element 1 is applied, the side portions and the lower portion other than the upper portion of the spectacles in the state of being worn by the wearer are frameless. As a result, the spectacles to which the metal salt precipitation type element 1 is applied can improve the field of vision of the wearer.
 次に、本実施形態に係る金属塩析出型素子1から得られる作用効果について説明する。金属塩析出型素子1では、透明な第1電極11、透明な第2電極12及び透明なスペーサ30によって画成される空間Sに電解液40が収容されている。第1電極11及び第2電極12は、互いに対向している。第1電極11及び第2電極12は、対向する積層方向に沿って一対の透明基板20に挟まれている。第1電極11及び第2電極12に電圧が印加されず、電解液40が透明である場合には、一対の透明基板20、電解液40、第1電極11、第2電極12及びスペーサ30が透明である。よって、金属塩析出型素子1が視認されたときの視界を良好にできる。第1電極11及び第2電極12に電圧が印加され、電解液40が透明ではない場合には、透明な第1電極11、透明な第2電極12及び透明なスペーサ30に画成される空間Sに不透明な電解液40が収容された状態となる。この場合、不透明な電解液40の周囲が透明であるため、金属塩析出型素子1が視認されたときの視界を良好にできる。例えば、金属塩析出型素子1が長方形状を呈する場合には、支点となる1つの辺を除いて、他の3つの辺を透明にできる。 Next, the action and effect obtained from the metal salt precipitation type element 1 according to the present embodiment will be described. In the metal salt precipitation type element 1, the electrolytic solution 40 is housed in the space S defined by the transparent first electrode 11, the transparent second electrode 12, and the transparent spacer 30. The first electrode 11 and the second electrode 12 face each other. The first electrode 11 and the second electrode 12 are sandwiched between a pair of transparent substrates 20 along the opposite stacking directions. When no voltage is applied to the first electrode 11 and the second electrode 12 and the electrolytic solution 40 is transparent, the pair of transparent substrates 20, the electrolytic solution 40, the first electrode 11, the second electrode 12, and the spacer 30 are used. It is transparent. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be improved. When a voltage is applied to the first electrode 11 and the second electrode 12, and the electrolytic solution 40 is not transparent, the space defined by the transparent first electrode 11, the transparent second electrode 12, and the transparent spacer 30. The opaque electrolytic solution 40 is contained in S. In this case, since the periphery of the opaque electrolytic solution 40 is transparent, the visibility when the metal salt precipitation type element 1 is visually recognized can be improved. For example, when the metal salt precipitation type element 1 has a rectangular shape, the other three sides can be made transparent except for one side serving as a fulcrum.
 金属塩析出型素子1では、接着剤35が透明であるため、接着剤35が透明でない場合と比較して、接着剤35を視認し難くできる。従って、金属塩析出型素子1が視認されたときの視界を更に良好にできる。 In the metal salt precipitation type element 1, since the adhesive 35 is transparent, it is possible to make it difficult to visually recognize the adhesive 35 as compared with the case where the adhesive 35 is not transparent. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
 金属塩析出型素子1では、図2に示されるように、第2電極12と外部電極Eとを互いに接続する電極50が線状であるため、電極50が線状でない場合と比較して、電極50を視認し難くできる。よって、金属塩析出型素子1が視認されたときの視界を更に良好にできる。金属塩析出型素子1では、線状の電極50の太さが1.0mm以下であるため、線状の電極50を更に視認し難くできる。よって、金属塩析出型素子1が視認されたときの視界を更に良好にできる。 In the metal salt precipitation type element 1, as shown in FIG. 2, since the electrode 50 connecting the second electrode 12 and the external electrode E to each other is linear, as compared with the case where the electrode 50 is not linear, The electrode 50 can be made difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved. In the metal salt precipitation type element 1, since the thickness of the linear electrode 50 is 1.0 mm or less, the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
 金属塩析出型素子1では、線状の電極50は、金属塩析出型素子1の側面1bに沿うブリッジ部分50aにおいて、電解液40及びスペーサ30を越える。これにより、Y方向から見て、側面1bとブリッジ部分50aとが一つの辺における輪郭を形成することで、線状の電極50を更に視認し難くできる。よって、金属塩析出型素子1が視認されたときの視界を更に良好にできる。 In the metal salt precipitation type element 1, the linear electrode 50 exceeds the electrolytic solution 40 and the spacer 30 at the bridge portion 50a along the side surface 1b of the metal salt precipitation type element 1. As a result, when viewed from the Y direction, the side surface 1b and the bridge portion 50a form a contour on one side, so that the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
 金属塩析出型素子1では、線状の電極50のブリッジ部分50aが金属塩析出型素子1の側面1bに塗布された銀ペーストによって構成される。この場合、ブリッジ部分50aは金属塩析出型素子1の側面1bに沿って線状に延在する膜状の電極を構成する。この例において、ブリッジ部分50aは側面1bに沿う銀ペーストの薄膜であるため、線状の電極50を更に視認し難くできる。よって、金属塩析出型素子1が視認されたときの視界を更に良好にできる。 In the metal salt precipitation type element 1, the bridge portion 50a of the linear electrode 50 is composed of a silver paste applied to the side surface 1b of the metal salt precipitation type element 1. In this case, the bridge portion 50a constitutes a film-shaped electrode extending linearly along the side surface 1b of the metal salt precipitation type element 1. In this example, since the bridge portion 50a is a thin film of silver paste along the side surface 1b, the linear electrode 50 can be made more difficult to see. Therefore, the visibility when the metal salt precipitation type element 1 is visually recognized can be further improved.
 金属塩析出型素子1では、第1電極露出部11aに外部電極Eが接続され、第2電極露出部12aに線状の電極50が接続される。この場合、Y方向において、第1電極露出部11aは第2電極12と向かい合わない。従って、第1電極露出部11aへの外部電極Eの接続を容易に行える。Y方向において、第2電極露出部12aは第1電極11と向かい合わない。従って、第2電極露出部12aへの電極50の接続を容易に行える。 In the metal salt precipitation type element 1, the external electrode E is connected to the first electrode exposed portion 11a, and the linear electrode 50 is connected to the second electrode exposed portion 12a. In this case, the first electrode exposed portion 11a does not face the second electrode 12 in the Y direction. Therefore, the external electrode E can be easily connected to the first electrode exposed portion 11a. In the Y direction, the second electrode exposed portion 12a does not face the first electrode 11. Therefore, the electrode 50 can be easily connected to the second electrode exposed portion 12a.
 金属塩析出型素子1では、第1電極11及び第2電極12に挟まれるスペーサ30は、枠状に設けられたガラス部材によって構成される。この場合、ガラスビーズなどが混入された接着剤などをスペーサとして適用する場合と比べて、第1電極11と第2電極12との間の間隔を広く確保できる。 In the metal salt precipitation type element 1, the spacer 30 sandwiched between the first electrode 11 and the second electrode 12 is composed of a glass member provided in a frame shape. In this case, a wider space between the first electrode 11 and the second electrode 12 can be secured as compared with the case where an adhesive or the like mixed with glass beads or the like is applied as a spacer.
 以上、本開示に係る金属塩析出型素子1の実施形態について説明した。しかしながら、本開示に係る金属塩析出型素子は、前述した実施形態に限定されるものではない。本開示に係る金属塩析出型素子は、各請求項に記載した要旨を変更しない範囲において変形し、又は他のものに適用したものであってもよい。金属塩析出型素子の各部の構成は、上記の要旨を変更しない範囲において適宜変更可能である。 The embodiment of the metal salt precipitation type element 1 according to the present disclosure has been described above. However, the metal salt precipitation type device according to the present disclosure is not limited to the above-described embodiment. The metal salt precipitation type device according to the present disclosure may be modified or applied to other devices without changing the gist described in each claim. The configuration of each part of the metal salt precipitation type device can be appropriately changed without changing the above gist.
 例えば、前述した実施形態では、スペーサ30は、接着剤35を介して第1電極11及び第2電極12のそれぞれに接着され、接着剤35は、透明なエポキシ系の接着剤35である例について説明した。しかしながら、接着剤35は、例えばアクリル系など、エポキシ系以外の透明な接着剤35であってもよい。例えば、接着剤35は、ガラスビーズが混入されたものであってもよい。この場合、ガラスビーズを混入しない場合と比べて、Y方向における接着剤35の厚さを正確に確保することができる。 For example, in the above-described embodiment, the spacer 30 is adhered to each of the first electrode 11 and the second electrode 12 via the adhesive 35, and the adhesive 35 is a transparent epoxy-based adhesive 35. explained. However, the adhesive 35 may be a transparent adhesive 35 other than the epoxy-based adhesive, such as an acrylic-based adhesive. For example, the adhesive 35 may be mixed with glass beads. In this case, the thickness of the adhesive 35 in the Y direction can be accurately secured as compared with the case where the glass beads are not mixed.
 スペーサ30は、第1電極11及び第2電極12のそれぞれに接着されていなくてもよい。スペーサ30は、第1電極11及び第2電極12のそれぞれに固定されていればよい。例えば、スペーサ30は、第1電極11及び第2電極12のそれぞれに設けられる凹凸部に嵌合されていてもよい。 The spacer 30 does not have to be adhered to each of the first electrode 11 and the second electrode 12. The spacer 30 may be fixed to each of the first electrode 11 and the second electrode 12. For example, the spacer 30 may be fitted to the uneven portion provided on each of the first electrode 11 and the second electrode 12.
 前述した実施形態では、電極50が線状の電極であって、線状の電極50が銀ペーストによって構成される例について説明した。しかしながら、電極は、例えば金属箔などの薄膜によって構成されていてもよい。電極は、リード線などの線材によって構成されていてもよい。 In the above-described embodiment, an example in which the electrode 50 is a linear electrode and the linear electrode 50 is composed of silver paste has been described. However, the electrode may be composed of a thin film such as a metal foil. The electrode may be made of a wire material such as a lead wire.
 前述した実施形態では、金属塩析出型素子1が車載用のインナーミラー2として適用される例について説明した。しかしながら、金属塩析出型素子は、窓などの光を透過する部材の一部分として適用されてもよい。例えば、金属塩析出型素子は、フロントウィンドウの上部に適用されてもよい。金属塩析出型素子はフレームレスであるため、窓などの一部分として用いられても、視界を良好にできる。金属塩析出型素子は、窓などの一部分において、光の透過率を調整することが可能である。 In the above-described embodiment, an example in which the metal salt precipitation type element 1 is applied as an in-vehicle inner mirror 2 has been described. However, the metal salt precipitation type element may be applied as a part of a member that transmits light such as a window. For example, the metal salt precipitation type device may be applied to the upper part of the front window. Since the metal salt precipitation type element is frameless, the visibility can be improved even if it is used as a part of a window or the like. The metal salt precipitation type element can adjust the light transmittance in a part such as a window.
 1…金属塩析出型素子、1a…変化領域、2…インナーミラー、11…第1電極、11a…第1電極露出部、12…第2電極、12a…第2電極露出部、20…透明基板、21…第1基板、21a…第1内面、21b…第1外面、21c…第1端部、22…第2基板、22a…第2内面、22b…第2外面、22c…第2端部、30…スペーサ、31,32,33,34…ガラス部材、35…接着剤、40…電解液、50…電極、50a…ブリッジ部分、S…空間、E…外部電極。 1 ... Metal salt precipitation type element, 1a ... Change region, 2 ... Inner mirror, 11 ... First electrode, 11a ... First electrode exposed part, 12 ... Second electrode, 12a ... Second electrode exposed part, 20 ... Transparent substrate , 21 ... 1st substrate, 21a ... 1st inner surface, 21b ... 1st outer surface, 21c ... 1st end, 22 ... 2nd substrate, 22a ... 2nd inner surface, 22b ... 2nd outer surface, 22c ... 2nd end , 30 ... Spacer, 31, 32, 33, 34 ... Glass member, 35 ... Adhesive, 40 ... Electrolyte, 50 ... Electrode, 50a ... Bridge part, S ... Space, E ... External electrode.

Claims (4)

  1.  膜状の第1電極と、
     前記第1電極に対向する膜状の第2電極と、
     前記第1電極及び前記第2電極が互いに対向する積層方向に沿って、前記第1電極及び前記第2電極を挟む一対の透明基板と、
     前記第1電極及び前記第2電極に挟まれて、前記第1電極と前記第2電極との間に空間を画成するスペーサと、
     前記第1電極、前記第2電極及び前記スペーサによって画成される前記空間に収容される電解液と、
    を備え、
     前記第1電極、前記第2電極及び前記スペーサは透明である、
    金属塩析出型素子。
    Membrane-like first electrode and
    A film-like second electrode facing the first electrode and
    A pair of transparent substrates sandwiching the first electrode and the second electrode along the stacking direction in which the first electrode and the second electrode face each other.
    A spacer sandwiched between the first electrode and the second electrode and defining a space between the first electrode and the second electrode.
    An electrolytic solution housed in the space defined by the first electrode, the second electrode, and the spacer,
    Equipped with
    The first electrode, the second electrode and the spacer are transparent.
    Metal salt precipitation type element.
  2.  前記スペーサは、接着剤を介して前記第1電極及び前記第2電極のそれぞれに接着されており、
     前記接着剤は透明である、
    請求項1に記載の金属塩析出型素子。
    The spacer is adhered to each of the first electrode and the second electrode via an adhesive.
    The adhesive is transparent,
    The metal salt precipitation type device according to claim 1.
  3.  前記第1電極及び前記第2電極は外部電極に接続され、
     前記第2電極と前記外部電極とを互いに接続する線状の電極を備え、
     前記線状の電極は、前記外部電極から前記電解液及び前記スペーサを越えて前記第2電極まで延びている、
    請求項1又は2に記載の金属塩析出型素子。
    The first electrode and the second electrode are connected to an external electrode, and the first electrode and the second electrode are connected to an external electrode.
    A linear electrode for connecting the second electrode and the external electrode to each other is provided.
    The linear electrode extends from the external electrode beyond the electrolytic solution and the spacer to the second electrode.
    The metal salt precipitation type device according to claim 1 or 2.
  4.  前記線状の電極の太さは1.0mm以下である、
    請求項3に記載の金属塩析出型素子。
    The thickness of the linear electrode is 1.0 mm or less.
    The metal salt precipitation type device according to claim 3.
PCT/JP2021/047575 2020-12-23 2021-12-22 Metal-salt precipitation-type element WO2022138719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213611 2020-12-23
JP2020213611A JP2024020668A (en) 2020-12-23 2020-12-23 Metal salt precipitation type element

Publications (1)

Publication Number Publication Date
WO2022138719A1 true WO2022138719A1 (en) 2022-06-30

Family

ID=82157011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047575 WO2022138719A1 (en) 2020-12-23 2021-12-22 Metal-salt precipitation-type element

Country Status (2)

Country Link
JP (1) JP2024020668A (en)
WO (1) WO2022138719A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167724A (en) * 1992-11-27 1994-06-14 Nikon Corp Production of light control glass
JPH11316396A (en) * 1998-05-01 1999-11-16 Sony Corp Optical device and driving method thereof
JP2015055820A (en) * 2013-09-13 2015-03-23 スタンレー電気株式会社 Portable device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167724A (en) * 1992-11-27 1994-06-14 Nikon Corp Production of light control glass
JPH11316396A (en) * 1998-05-01 1999-11-16 Sony Corp Optical device and driving method thereof
JP2015055820A (en) * 2013-09-13 2015-03-23 スタンレー電気株式会社 Portable device

Also Published As

Publication number Publication date
JP2024020668A (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US9709868B2 (en) Electrochromic device
JP2020154175A (en) Electronic device and manufacturing method of the same, and lighting control lens unit
JP4060249B2 (en) Dimmer and laminated glass
US20160170277A1 (en) Electrochromic Device
JP4100510B2 (en) Dimmer and laminated glass
JP7705876B2 (en) Electrochromic element and eyeglass lens
US11966106B2 (en) Optical path control member and display device comprising same
WO2013132904A1 (en) Electronic device and spacer with metal thin film
EP4006619A1 (en) Optical path control member and display device including same
WO2022138719A1 (en) Metal-salt precipitation-type element
JP2020160442A (en) Electrochromic device and method for manufacturing the same, light control lens unit, and electrochromic element
KR20180082213A (en) Electrochromism element
JP7248185B1 (en) Electrochromic sheets, laminates, spectacle lenses and spectacles
JP7705932B2 (en) Electrochromic element and eyeglass lens
JP2017191201A (en) Display device
EP4174563A1 (en) Electrochemical device and substrate with electrode
WO2021220583A1 (en) Variable nd filter
KR20210042610A (en) Light route control member and display having the same
US20250133943A1 (en) Light path control member and display device comprising same
JP7588262B1 (en) Electrochromic sheet, laminate, eyeglass lens and eyeglasses
US20240192526A1 (en) Electronic element for electronic light control spectacles
KR20230100410A (en) Light route control member and display having the same
WO2018163710A1 (en) Touch sensor
CN118946848A (en) Light path control component and display device including the light path control component
KR20230048956A (en) Light route control member and display having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP