WO2016121332A1 - Insulated glazing and optical device - Google Patents

Insulated glazing and optical device Download PDF

Info

Publication number
WO2016121332A1
WO2016121332A1 PCT/JP2016/000244 JP2016000244W WO2016121332A1 WO 2016121332 A1 WO2016121332 A1 WO 2016121332A1 JP 2016000244 W JP2016000244 W JP 2016000244W WO 2016121332 A1 WO2016121332 A1 WO 2016121332A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
optical device
metal plate
glass
electrode wiring
Prior art date
Application number
PCT/JP2016/000244
Other languages
French (fr)
Japanese (ja)
Inventor
真 白川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016121332A1 publication Critical patent/WO2016121332A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds

Definitions

  • the present invention relates to a multilayer glass and an optical device including the multilayer glass.
  • the multi-layer glass includes a plurality of glass plates and a spacer that keeps intervals between the plurality of glass plates (for example, see Patent Document 1).
  • smart windows have been developed that can realize functions such as light emission and light control by arranging optical elements in the internal space of the double-glazed glass.
  • a through hole for electric wiring is provided in the spacer of the multilayer glass. At this time, there is a problem that moisture easily enters the internal space from the outside through the through hole.
  • an object of the present invention is to provide a multilayer glass and an optical device that can suppress moisture from entering the internal space from the outside.
  • a multilayer glass in order to achieve the above object, includes a pair of glass plates arranged to face each other, a spacer that forms a gap between the pair of glass plates, and an inside of the spacer. And a metal layer interposed between the pair of glass plates and electrically connected to the electrode wiring through a part of the spacer, the metal layer including the spacer Is provided so as to cover the part.
  • moisture can be prevented from entering the internal space from the outside.
  • FIG. 1 is a perspective view showing an optical device according to an embodiment of the present invention.
  • FIG. 2 is a trihedral view showing the optical device according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a part of the optical device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the embodiment of the present invention.
  • FIG. 5A is a cross-sectional view showing the manufacturing process of the optical device according to the embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing the manufacturing process of the optical device according to the embodiment of the present invention.
  • FIG. 6A is a cross-sectional view for explaining the effect of the optical device according to the embodiment of the present invention.
  • FIG. 6B is a cross-sectional view for explaining the effect of the optical device according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a window including a plurality of optical devices according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the first modification of the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the second modification of the embodiment of the present invention.
  • FIG. 1 is a perspective view showing an optical device 100 (and multi-layer glass 1) according to the present embodiment.
  • FIG. 2 is a trihedral view showing the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, in FIG. 2, (a) to (c) show a front view, a top view, and a right side view of the optical device 100, respectively. In FIG. 2, the internal structure of the optical device 100 is schematically shown by shading. At this time, in FIG. 2, some of the components of the optical device 100 are not shown (for example, the primary sealing material 70 and the secondary sealing material 71).
  • FIG. 3 is a cross-sectional view showing a part of optical device 100 (and multi-layer glass 1) according to the present embodiment. Specifically, FIG. 3 shows a cross section taken along line III-III shown in FIG. More specifically, FIG. 3 shows a cross section passing through the spacer 20 and the metal plate 50 included in the optical device 100.
  • FIG. 4 is a cross-sectional view showing a connection portion between the electrode wiring 30 and the metal plate 50 provided in the optical device 100 (and the multilayer glass 1) according to the present embodiment. Specifically, FIG. 4 is an enlarged view of a region IV surrounded by an alternate long and short dash line shown in FIG.
  • the direction orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis.
  • Direction and Y-axis direction are the directions orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis.
  • Direction and Y-axis direction is the direction orthogonal to the main surface of the optical device 100.
  • the optical device 100 includes a multilayer glass 1 and an optical element 110.
  • the multi-layer glass 1 includes a pair of glass plates 10 and 11, a spacer 20, an electrode wiring 30, a terminal 40, a metal plate 50, a lead wiring 60, A primary sealing material 70 and a secondary sealing material 71 are provided.
  • the optical device 100 can be used for windows of buildings and vehicles, for example.
  • the optical device 100 includes the optical element 110, thereby realizing a function such as light emission or light control. That is, the optical device 100 can be used as a so-called smart window.
  • the glass plate 10 and the glass plate 11 have translucency and transmit at least part of visible light.
  • the glass plate 10 and the glass plate 11 are transparent flat plates formed from, for example, soda glass or non-alkali glass.
  • the glass plate 10 and the glass plate 11 are arranged to face each other as shown in FIGS. 1 and 2 (b) and (c). Specifically, the glass plate 10 and the glass plate 11 are arranged so that the mutual distance (that is, the distance between the glass plate 10 and the glass plate 11) is substantially constant, that is, in parallel.
  • interval of the glass plate 10 and the glass plate 11 is 6 mm, for example.
  • the glass plate 10 and the glass plate 11 have substantially the same shape and substantially the same size, and are arranged so as to overlap each other in plan view, as shown in FIGS.
  • the “plan view” means a case where the optical device 100 (and the multi-layer glass 1) is viewed from the front. Specifically, the “plan view” means a case where the main surfaces (surfaces having the largest areas) of the glass plate 10 and the glass plate 11 are viewed from the front, that is, when viewed in the Z-axis direction.
  • the planar shape of the glass plate 10 and the glass plate 11 is a rectangle, but may be a square or other polygons, or a circle or an ellipse.
  • the glass plate 10 and the glass plate 11 are not limited to flat plates but may be curved plates.
  • an internal space 12 (intermediate layer) is formed between the glass plate 10 and the glass plate 11.
  • the internal space 12 is filled with, for example, a gas having a low thermal permeability.
  • the gas having a low thermal permeability is, for example, dry air or an inert gas such as argon.
  • the optical element 110 is disposed in the internal space 12.
  • the spacer 20 forms an interval between the pair of glass plates 10 and the glass plate 11. That is, the spacer 20 is a member that maintains a constant distance between the glass plate 10 and the glass plate 11. The spacer 20 forms an internal space 12 between the glass plate 10 and the glass plate 11 by separating the glass plate 10 and the glass plate 11.
  • the spacer 20 is provided between the glass plate 10 and the glass plate 11. As shown in FIG. 2A, the spacer 20 is provided in an annular shape in plan view. In the present embodiment, the planar view shape of the spacer 20 is a shape along the circumference of the glass plate 10 (or the glass plate 11). Specifically, the spacer 20 is a substantially rectangular frame body along the circumference of the glass plate 10.
  • the spacer 20 may be formed by combining a plurality of members. For example, the spacer 20 may be formed by combining four substantially linear members (spacers) and four corner members.
  • the spacer 20 is electrically insulated from the electrode wiring 30 and the metal plate 50.
  • the spacer 20 is not in contact with the metal plate 50.
  • an insulating secondary seal material 71 is interposed between the spacer 20 and the metal plate 50.
  • the spacer 20 is not in contact with the conductor portion (metal wire) of the electrode wiring 30.
  • the spacer 20 may be in contact with, for example, an insulating coating material that covers the conductor portion of the electrode wiring 30.
  • the spacer 20 includes a hollow member 21 and a desiccant 22 as shown in FIG.
  • the hollow member 21 is made of a metal material such as aluminum, for example.
  • the hollow member 21 is, for example, a substantially rectangular tubular frame. Specifically, as shown in FIG. 3, the cross section of the hollow member 21 is a substantially rectangular shape in which two corners are slanted.
  • the desiccant 22 is filled in the hollow member 21 (hollow space).
  • a particulate material such as silica gel or zeolite can be used. Thereby, it is possible to suppress moisture from entering the internal space 12.
  • the spacer 20 has a recess 23 as shown in FIG.
  • the recess 23 is a part of the spacer 20 provided for electrically connecting the metal plate 50 and the electrode wiring 30.
  • the concave portion 23 is provided at a position facing the convex portion 51 of the metal plate 50. Specifically, the concave portion 23 is provided at a position overlapping the convex portion 51 in a side view.
  • the “side view” means that the optical device 100 (and the multi-layer glass 1) is viewed from the side surface direction, specifically, the Y-axis direction.
  • the recess 23 is a through hole provided in the hollow member 21. At least one of the terminal 40 and the convex portion 51 is inserted into the concave portion 23. In the present embodiment, as shown in FIG. 4, the terminal 40 and the convex portion 51 are connected in the concave portion 23.
  • the shape of the recess 23 is, for example, a funnel shape.
  • the opening of the recess 23 is gradually narrower along the direction from the internal space 12 toward the metal plate 50 (Y-axis negative direction). Thereby, it is possible to make it difficult for the truncated cone-shaped terminal 40 to come out of the recess 23.
  • the shape of the recessed part 23 is not restricted to a funnel shape, What kind of thing may be sufficient.
  • the hollow member 21 is provided with a through hole 24 on the inner space 12 side.
  • the recess 23 and the through hole 24 are provided near the center of the hollow member 21 (the center in the Z-axis direction), but the position where each of the recess 23 and the through hole 24 is provided is particularly It is not limited.
  • the electrode wiring 30 is inserted into the spacer 20. Specifically, the inside of the spacer 20 is a hollow space of the hollow member 21. In the present embodiment, the electrode wiring 30 is provided in the internal space 12 as shown in FIG. The electrode wiring 30 is inserted into the spacer 20 through the through hole 24 of the hollow member 21.
  • the electrode wiring 30 is a wiring for supplying power to the optical element 110.
  • the electrode wiring 30 is a conductive metal wire whose surface is covered with an insulating coating material such as vinyl.
  • the electrode wiring 30 is a lead wire such as a vinyl wire or an enamel wire. Since the surface of the metal wire is covered with an insulating coating material, even if the electrode wiring 30 and the hollow member 21 come into contact with each other when the electrode wiring 30 is inserted into the through hole 24, the electrode wiring 30 It is insulated from the hollow member 21 (spacer 20).
  • the electrode wiring 30 is connected to the optical element 110.
  • the electrode wiring 30 is electrically connected to the metal plate 50. Specifically, one end of the electrode wiring 30 is connected to an electrode provided in the optical element 110, and the other end is connected to the conductive terminal 40.
  • the electrode wiring 30 is electrically connected to the metal plate 50 by being connected to the terminal 40.
  • the optical device 100 includes two electrode wirings 30 as shown in FIG.
  • one of the two electrode wirings 30 is used for a positive electrode and the other is used for a negative electrode.
  • a plurality of electrode wirings for supplying a voltage having the same potential may be provided. The same applies to the terminal 40, the metal plate 50, and the lead-out wiring 60.
  • the terminal 40 is a conductive terminal connected to the metal plate 50.
  • the terminal 40 is made of a metal material such as copper, for example.
  • the terminal 40 is inserted into the recess 23 as shown in FIG.
  • the terminal 40 is physically and electrically connected to the metal plate 50 through the recess 23 by electric welding (for example, resistance welding).
  • the terminal 40 is physically and electrically connected to the electrode wiring 30 by electric welding.
  • the terminal 40 is fixed to the hollow member 21 via the secondary seal material 71 so as not to contact the hollow member 21. Thereby, the terminal 40 and the hollow member 21 (spacer 20) are electrically insulated.
  • the shape of the terminal 40 is, for example, a truncated cone.
  • the cross section of the terminal 40 in the XZ plane is gradually narrowed along the direction from the internal space 12 toward the metal plate 50 (Y-axis negative direction). Thereby, it is possible to make it difficult for the terminal 40 to come out of the recess 23.
  • the shape of the terminal 40 is not limited to a truncated cone shape, and may be any shape such as a columnar shape or a prismatic shape.
  • the metal plate 50 is an example of a metal layer that is interposed between the pair of glass plates 10 and 11 and is electrically connected to the electrode wiring 30. That is, the metal plate 50 is a part of wiring for supplying power to the optical element 110.
  • the metal plate 50 is provided so as to cover a part of the spacer 20. Specifically, the metal plate 50 is provided so as to cover a part of the spacer 20 in a side view.
  • the part of the spacer 20 is a part for electrically connecting the electrode wiring 30 and the metal plate 50.
  • the part of the spacer 20 is a recess 23.
  • the metal plate 50 is provided so as to completely cover the recess 23 in a side view.
  • the metal plate 50 is a plate body provided perpendicular to the main surfaces of the pair of glass plates 10 and 11. That is, the metal plate 50 is provided in parallel to the direction in which the glass plate 10 and the glass plate 11 are arranged (Z-axis direction).
  • the metal plate 50 is provided between the spacer 20 and the outside of the multilayer glass 1 (that is, on the side opposite to the internal space 12 with respect to the spacer 20).
  • the metal plate 50 is a substantially rectangular plate. More specifically, the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) is substantially rectangular. Each side of the metal plate 50 has substantially the same length as the interval between the pair of glass plates 10 and the glass plate 11 or a length greater than or equal to the interval. In this Embodiment, the shape of the metal plate 50 is a square which makes the space
  • the metal plate 50 is formed of a material having a moisture permeability lower than that of the secondary sealing material 71. Specifically, the metal plate 50 is formed from a metal material such as stainless steel. Moreover, as the metal plate 50, a material having a low coefficient of thermal expansion can be used.
  • the metal plate 50 has a convex portion 51 protruding toward the spacer 20.
  • the convex part 51 is provided in the center of the metal plate 50, for example.
  • the convex portion 51 is a portion for connecting the electrode wiring 30 and the metal plate 50. Specifically, the convex portion 51 is inserted into the concave portion 23 of the spacer 20. The convex portion 51 is physically and electrically connected to the terminal 40 to which the electrode wiring 30 is connected in the concave portion 23.
  • the lead wiring 60 is an electrical wiring for supplying power to the optical element 110.
  • the lead-out wiring 60 is a conductive metal wire whose surface is covered with an insulating coating material such as vinyl.
  • the lead wiring 60 is a lead wire such as a vinyl wire or an enamel wire.
  • the lead-out wiring 60 is covered with a secondary sealing material 71 and is drawn out to the outside of the optical device 100.
  • the lead wiring 60 is connected to the metal plate 50. Specifically, one end of the lead-out wiring 60 is connected to the metal plate 50, and the other end is connected to a drive circuit or a power supply circuit (not shown) for driving the optical element 110. Yes.
  • lead-out wiring 60 is connected near the center of the metal plate 50 as shown in FIG.
  • the position to which the lead wiring 60 is connected is not limited to this, and may be connected anywhere on the metal plate 50.
  • the primary sealing material 70 is an adhesive for bonding the spacer 20 to the glass plate 10 and the glass plate 11. As shown in FIG. 3, the primary sealing material 70 is provided between the spacer 20 and the glass plate 10 and between the spacer 20 and the glass plate 11. Further, the primary sealing material 70 is provided along the planar view shape of the spacer 20. Specifically, the primary sealing material 70 is provided in an annular shape.
  • the primary sealing material 70 for example, a sealing material mainly composed of butyl rubber or the like can be used.
  • the secondary sealing material 71 is a resin material used for improving the sealing performance of the internal space 12. As shown in FIG. 3, the secondary sealing material 71 is provided so as to cover the outer side of the spacer 20 (the side opposite to the internal space 12). The secondary sealing material 71 is provided along the planar view shape of the spacer 20. Specifically, the secondary sealing material 71 is provided in an annular shape.
  • a metal plate 50 is provided inside the secondary sealing material 71.
  • the lead-out wiring 60 is inserted through the secondary seal material 71.
  • the secondary sealing material 71 is provided between the glass plate 10 and the glass plate 11 so as to cover the lead wiring 60.
  • the secondary sealing material 71 for example, a polysulfide-based post-curing sealing material can be used.
  • the optical element 110 is sealed with a pair of glass plates 10 and 11 and a spacer 20. Specifically, the optical element 110 is disposed in the internal space 12.
  • the optical element 110 is connected to the electrode wiring 30.
  • the optical element 110 includes one or more electrodes (for example, an anode and a cathode).
  • An electrode wiring 30 is connected to each of the one or more electrodes.
  • the optical element 110 is an element that can change optical characteristics by supplying power. Specifically, the optical element 110 performs self-emission or dimming.
  • the dimming is, for example, changing light transmittance (visible light), reflectance, refractive index, scattering property, and the like.
  • the optical element 110 is an organic EL (Electroluminescence) element.
  • the optical element 110 may be a liquid crystal or an electrochromic element.
  • a plurality of optical elements 110 may be disposed in the internal space 12.
  • FIG. 5A and FIG. 5B are cross-sectional views showing manufacturing steps of the optical device 100 (and the multi-layer glass 1) according to the present embodiment.
  • the glass plate 10 in which the optical element 110 was provided is prepared.
  • the optical element 110 is formed on the glass plate 10, and the electrode wiring 30 is connected to the electrode provided in the optical element 110.
  • one end of the electrode wiring 30 is connected to the electrode of the optical element 110 by soldering or connector connection.
  • the electrode wiring 30 is connected to the terminal 40 as shown in FIG.
  • the electrode wiring 30 and the terminal 40 are connected by electric welding (resistance welding).
  • the other end of the electrode wiring 30 is inserted into the inside of the spacer 20 (the hollow space of the hollow member 21) through the through hole 24.
  • the terminal 40 and the electrode wiring 30 are welded by passing a current through the terminal 40 with the other end in contact with the terminal 40.
  • the terminal 40 is temporarily fixed to the recess 23 of the hollow member 21 of the spacer 20 with an adhesive, for example.
  • the terminal 40 may be connected in advance to the other end of the electrode wiring 30.
  • the terminal 40 is inserted into the spacer 20 through the through hole 24 and temporarily fixed to the recess 23 using an adhesive.
  • the adhesive used for temporary fixing can use the same material as the primary sealing material 70 or the secondary sealing material 71, for example.
  • the glass plate 10 and the glass plate 11 are bonded together. Specifically, the space between the glass plate 10 and the glass plate 11 is formed by sandwiching the spacer 20 therebetween. Thereafter, the resin material 70 a is applied between the spacer 20 and the glass plate 10 and between the spacer 20 and the glass plate 11 using a discharge device 90 such as a dispenser.
  • the resin material 70a is the primary sealing material 70 before curing, and is, for example, a thermosetting resin material.
  • the primary sealing material 70 is formed by curing the resin material 70a by applying heat.
  • a resin material 71a is applied to the outer side surface of the spacer 20 using a discharge device 91 such as a dispenser.
  • the resin material 71a is the secondary sealing material 71 before curing, and is, for example, a thermosetting resin material having adhesiveness.
  • the terminal 40 and the metal plate 50 are connected. Specifically, first, the metal plate 50 is arranged so that the convex portion 51 contacts the terminal 40. At this time, the metal plate 50 is fixed by the resin material 71a. And the convex part 51 and the terminal 40 are electrically welded. Specifically, the convex portion 51 and the terminal 40 are welded by passing a current through the metal plate 50 in a state where the convex portion 51 and the terminal 40 are in contact with each other.
  • the secondary sealant 71 is formed. Specifically, first, the lead wiring 60 and the metal plate 50 are connected. The connection may be electric welding or soldering. Then, similarly to (d) of FIG. 5B, the resin material 71 a is applied using the discharge device 91 so as to fill the lead-out wiring 60 and the metal plate 50. Thereafter, the secondary sealing material 71 is formed by curing the resin material 71a by applying heat.
  • the optical device 100 and the multilayer glass 1 according to the present embodiment can be manufactured.
  • FIG. 6A and 6B are cross-sectional views for explaining the effect of the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, FIG. 6A shows an optical device 100a (and a multi-layer glass 1a) that does not include the metal plate 50.
  • an electrode wire 30a is provided instead of the electrode wire 30, the terminal 40, the metal plate 50, and the lead-out wire 60.
  • the electrode wiring 30 a penetrates the spacer 20 and is drawn from the internal space 12 to the outside of the multilayer glass 1.
  • the multi-layer glass 1a there is a problem that moisture easily enters the internal space 12 from the outside because the electrode wiring 30a is provided. This is because a recess 23 and a through-hole 24 are formed in a part of the spacer 20 for drawing the electrode wiring 30a to the outside of the multilayer glass 1.
  • the shortest path through which moisture enters is a straight line as shown by a thick broken line in FIG. 6A.
  • the multi-layer glass 1 includes a pair of glass plates 10 and 11 arranged opposite to each other, and a spacer that forms a gap between the pair of glass plates 10 and the glass plate 11. 20, the electrode wiring 30 inserted into the spacer 20, and a pair of the glass plate 10 and the glass plate 11, and electrically connected to the electrode wiring 30 through a part of the spacer 20.
  • the metal plate 50 is provided so as to cover a part of the spacer 20.
  • the optical device 100 according to the present embodiment is an optical device including the multilayer glass 1, the spacer 20 is provided in an annular shape, and the optical device 100 includes a pair of glass plates 10, a glass plate 11, and a spacer. 20 and the optical element 110 connected to the electrode wiring 30.
  • the metal plate 50 is provided so as to cover a part of the spacer 20 (specifically, the recess 23), moisture is prevented from entering the internal space 12 through a part of the spacer 20. can do.
  • the shortest path through which moisture enters must pass between the metal plate 50 and the spacer 20 as shown by the thick broken line in FIG. 6B. . That is, in order for moisture to enter the internal space 12, the metal plate 50 must be bypassed. This is because the metal plate 50 has a lower moisture permeability than the secondary sealing material 71 formed of a resin material, and hardly allows moisture to pass through.
  • the ingress of moisture is suppressed compared to the multilayer glass 1 a not provided with the metal plate 50. can do.
  • a desiccant 22 is provided inside the spacer 20. For this reason, since moisture is absorbed by the desiccant 22, the penetration of moisture into the internal space 12 is more effectively suppressed.
  • the metal plate 50 is provided between the spacer 20 and the outside of the optical device 100 (and the multilayer glass 1). Therefore, since the distance until the moisture reaches the desiccant 22 can be increased, the penetration of moisture can be more effectively suppressed.
  • the optical device 100 (and the multi-layer glass 1) according to the present embodiment, for example, it is assumed that a plurality of electrode wirings 30 are provided as shown in FIG. At this time, when the spacer 20 and the plurality of electrode wirings 30 are not electrically insulated, the plurality of electrode wirings 30 are short-circuited via the spacer 20. Therefore, the optical element 110 does not operate normally, and the reliability of the optical device 100 decreases.
  • the optical device 100 (and the multi-layer glass 1) includes only one electrode wiring 30, there is a possibility that a voltage drop due to the spacer 20 may occur due to the current flowing through the spacer 20. Therefore, an appropriate voltage cannot be supplied to the optical element 110 due to the voltage drop caused by the spacer 20, and the reliability of the optical device 100 is lowered.
  • the spacer 20 is electrically insulated from the electrode wiring 30 and the metal plate 50.
  • the metal plate 50 has a convex portion 51 protruding toward the spacer 20, and a part of the spacer 20 is a concave portion 23 provided at a position facing the convex portion 51.
  • the convex portion 51 and the concave portion 23 are opposed to each other, when the convex portion 51 is inserted into the concave portion 23, the metal plate 50 and the spacer 20 can be prevented from contacting each other. Therefore, the electrode wiring 30 and the metal plate 50 can be easily electrically connected by using the convex portion 51 while ensuring electrical insulation between the metal plate 50 and the spacer 20.
  • the metal plate 50 is a plate body provided perpendicular to the main surfaces of the pair of glass plates 10 and 11.
  • the metal plate 50 is provided perpendicular to the glass plate 10 and the glass plate 11, so that the metal plate 50 is It can arrange
  • the metal plate 50 is a substantially rectangular plate body, and each side of the metal plate 50 has a length that is substantially the same as or longer than the distance between the pair of glass plates 10 and 11. .
  • each side of the metal plate 50 is substantially the same as the interval between the glass plate 10 and the glass plate 11 or longer than the interval, the moisture needs to bypass a route having at least the same length as the interval. Yes (see FIG. 6B). Therefore, the intrusion of moisture can be more effectively suppressed.
  • the recess 23 is provided near the center of the interval. For this reason, even if the metal plate 50 larger than necessary is provided, the shortest path through which moisture enters is a path along the glass plate 10 or the glass plate 11 (thick broken line in FIG. 6B). That is, even if the metal plate 50 larger than necessary is provided, the effect of suppressing the entry of moisture hardly improves.
  • the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) may be a square with the interval between the glass plate 10 and the glass plate 11 as one side. Thereby, the material of the metal plate 50 can be reduced, the optical device 100 can be reduced in weight, and the cost can be reduced.
  • the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) may be a circle whose diameter is the distance between the glass plate 10 and the glass plate 11.
  • the multilayer glass 1 further includes a conductive terminal 40 connected to the metal plate 50, and the electrode wiring 30 is electrically connected to the metal plate 50 by being connected to the terminal 40. ing.
  • the electrical connection between the metal plate 50 and the electrode wiring 30 can be easily performed by using the terminal 40.
  • the electrode wiring 30 and the terminal 40 can be firmly physically connected by electric welding (for example, resistance welding).
  • the terminal 40 and the metal plate 50 can be firmly physically connected. Accordingly, the electrode wiring 30 can be prevented from being detached from the metal plate 50, and the reliability of the optical device 100 (and the multilayer glass 1) can be improved.
  • the lead-out wiring 60 is connected to the vicinity of the center of the metal plate 50. Since moisture easily enters along the extraction wiring 60, the moisture bypass path can be lengthened by connecting the extraction wiring 60 near the center of the metal plate 50. Therefore, the intrusion of moisture can be more effectively suppressed.
  • the optical device 100 (and the multilayer glass 1) described above can be used as, for example, a window of a building or a vehicle. That is, the optical device 100 can be used as a so-called smart window.
  • a plurality of optical devices 100 can be stacked and used as a window.
  • FIG. 7 is a cross-sectional view showing a window 200 including a plurality of optical devices according to the present embodiment.
  • the window 200 includes an optical device 101, an optical device 102, an optical device 103, a sash 210, and a sash 220.
  • the optical device 101, the optical device 102, and the optical device 103 correspond to the optical device 100 described above.
  • Each of the optical device 101, the optical device 102, and the optical device 103 can change different optical characteristics. That is, the optical device 101, the optical device 102, and the optical device 103 each include a different optical element 110.
  • the optical device 101 includes, for example, an optical element 111 that can change the light scattering property.
  • the optical element 111 is a liquid crystal element whose light scattering property can be changed.
  • the optical device 101 switches between scattering and transmission of light according to application of a voltage.
  • the lead wiring 61 of the optical device 101 is connected to a drive circuit or a power supply circuit (not shown) through, for example, the sash 220.
  • the optical device 102 includes, for example, an optical element 112 that can change light reflectivity.
  • the optical element 112 is an electrochromic element whose light reflectivity can be changed.
  • the optical device 102 switches between reflection and transmission of light according to application of a voltage.
  • the lead wiring 62 of the optical device 102 is connected to, for example, a drive circuit or a power supply circuit (not shown) through the sash 220.
  • the optical device 103 includes, for example, an optical element 113 that can emit light.
  • the optical element 113 is an organic EL element.
  • the optical device 103 switches between lighting (light emission) and light extinction in accordance with voltage application.
  • the lead-out wiring 63 of the optical device 103 is connected to a drive circuit or a power supply circuit (not shown) through the sash 220, for example.
  • the sash 210 and the sash 220 correspond to a window frame that fixes the optical device 101, the optical device 102, and the optical device 103.
  • the sash 210 and the sash 220 are, for example, an aluminum sash.
  • each of the optical device 101, the optical device 102, and the optical device 103 independently, a combination of each state (mode) of transmission, scattering, reflection, lighting, or extinction is realized.
  • mode state of transmission
  • the opposite side becomes visible through the window 200, so that the window 200 can be used as a normal window.
  • the window 200 can be used as illumination.
  • the metal plate 50 has the convex portion 51
  • the present invention is not limited thereto.
  • the metal plate 50 may not have the convex portion 51.
  • FIG. 8 is a cross-sectional view showing a connection portion between the electrode wiring 30 and the metal plate 50A included in the optical device according to this modification. 8 corresponds to the region IV shown in FIG.
  • the optical device includes a terminal 40A and a metal plate 50A instead of the terminal 40 and the metal plate 50, as shown in FIG.
  • the metal plate 50 ⁇ / b> A is the same as the metal plate 50 except that the metal plate 50 ⁇ / b> A does not have the convex portion 51.
  • the terminal 40A protrudes to the metal plate 50A side through the recess 23.
  • the terminal 40A is connected to the metal plate 50A outside the recess 23.
  • the function and material of the terminal 40A are the same as those of the terminal 40.
  • the spacer 20 and the metal plate 50A are electrically insulated.
  • the electrode wiring 30 and the metal plate 50A are electrically connected while securing the electrical insulation between the spacer 20 and the metal plate 50A. Can be connected.
  • optical device and the multi-layer glass according to the above-described modification example 1 has been described with respect to the case where the terminal 40 is provided, the present invention is not limited thereto.
  • the optical device (and the multilayer glass) may not include the terminal 40.
  • FIG. 9 is a cross-sectional view showing a connection portion between the electrode wiring 30A and the metal plate 50A provided in the optical device according to this modification. 9 corresponds to the region IV shown in FIG.
  • the terminal 40 is not provided as shown in FIG.
  • the electrode wiring 30A penetrates the spacer 20 and is directly connected to the metal plate 50A.
  • the electrode wiring 30A and the metal plate 50A are connected by, for example, electric welding.
  • the electrode wiring 30 and the metal plate 50A are secured while ensuring the electrical insulation between the spacer 20 and the metal plate 50A. Can be electrically connected.
  • the metal plate 50 has been described as an example of the metal layer, but is not limited thereto.
  • a metal film laminated on the spacer 20 via an insulating layer may be used instead of the metal plate 50.
  • the spacer 20 and the metal plate 50 may be in contact with each other.
  • the spacer 20 is formed of an insulating material such as a resin material (having a lower moisture permeability than the sealing material), electrical insulation between the spacer 20 and the metal plate 50 can be ensured.
  • the spacer 20 and the metal plate 50 may be electrically connected. At this time, when a plurality of electrode wirings 30 and metal plates 50 are provided, for example, the spacers 20 may be separated so that the plurality of electrode wirings 30 are not short-circuited.
  • each side (or diameter) of the metal plate 50 may be shorter than the distance between the glass plate 10 and the glass plate 11. That is, the area may be smaller than that of the metal plate 50 according to the above embodiment. Even in the case of the metal plate 50 having a small area, moisture needs to bypass the metal plate 50, so that moisture can be prevented from entering.
  • the metal plate 50 may be provided in the internal space 12. Specifically, the metal plate 50 may be provided so as to cover the through hole 24 of the spacer 20.
  • the lead wiring 60 is inserted into the spacer 20 and is electrically connected to the metal plate 50. That is, the lead wiring 60 corresponds to an electrode wiring inserted into the spacer 20.
  • the pair of glass plates 10 and the glass plate 11 may have different shapes.
  • the glass plate 10 may be a rectangular plate, and the glass plate 11 may be a circular plate.
  • one of the glass plate 10 and the glass plate 11 is disposed inside the other so as not to protrude outside the other in plan view.
  • the optical element 110 may not be provided in the internal space 12.
  • the optical device 100 may include another device (for example, a heating element such as a heater) connected to the electrode wiring 30 instead of the optical element 110.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Abstract

This insulated glazing unit (1) comprises: a pair of glass sheets (10) and (11) which are disposed facing each other; a spacer (20) which forms a space between the pair of glass sheets (10) and (11); an electrode wire (30) which is inserted through the spacer (20); and a metal sheet (50) which is interposed between the pair of glass sheets (10) and (11) and which is electrically connected to the electrode wire (30) via a portion of the spacer (20). The metal sheet (50) is provided so as to cover said portion of the spacer (20).

Description

複層ガラス及び光学デバイスMulti-layer glass and optical device
 本発明は、複層ガラス、及び、当該複層ガラスを備える光学デバイスに関する。 The present invention relates to a multilayer glass and an optical device including the multilayer glass.
 従来、断熱性能の向上などを目的として、建造物及び車両などの窓に複層ガラスが利用されている。複層ガラスは、複数のガラス板と、当該複数のガラス板の間隔を保持するスペーサとを備える(例えば、特許文献1参照)。 Conventionally, double-glazed glass has been used for windows of buildings and vehicles for the purpose of improving heat insulation performance. The multi-layer glass includes a plurality of glass plates and a spacer that keeps intervals between the plurality of glass plates (for example, see Patent Document 1).
特許第4479690号公報Japanese Patent No. 4479690
 ところで、近年、複層ガラスの内部空間に光学素子を配置することで、発光及び調光などの機能を実現可能な、いわゆるスマートウィンドウの開発が進められている。スマートウィンドウでは、例えば、内部の光学素子に電力を供給するための電気配線を設けるために、複層ガラスのスペーサには、電気配線用の貫通孔が設けられる。このとき、当該貫通孔を介して、水分が外部から内部空間に容易に浸入するという課題がある。 By the way, in recent years, so-called smart windows have been developed that can realize functions such as light emission and light control by arranging optical elements in the internal space of the double-glazed glass. In the smart window, for example, in order to provide electric wiring for supplying electric power to an internal optical element, a through hole for electric wiring is provided in the spacer of the multilayer glass. At this time, there is a problem that moisture easily enters the internal space from the outside through the through hole.
 そこで、本発明は、水分が外部から内部空間に浸入するのを抑制することができる複層ガラス及び光学デバイスを提供することを目的とする。 Therefore, an object of the present invention is to provide a multilayer glass and an optical device that can suppress moisture from entering the internal space from the outside.
 上記目的を達成するため、本発明の一態様に係る複層ガラスは、互いに対向して配置された一対のガラス板と、前記一対のガラス板の間隔を形成するスペーサと、前記スペーサの内部に挿通された電極配線と、前記一対のガラス板の間に介在し、かつ、前記スペーサの一部を介して前記電極配線と電気的に接続されている金属層とを備え、前記金属層は、前記スペーサの前記一部を覆うように設けられている。 In order to achieve the above object, a multilayer glass according to one embodiment of the present invention includes a pair of glass plates arranged to face each other, a spacer that forms a gap between the pair of glass plates, and an inside of the spacer. And a metal layer interposed between the pair of glass plates and electrically connected to the electrode wiring through a part of the spacer, the metal layer including the spacer Is provided so as to cover the part.
 本発明によれば、水分が外部から内部空間に浸入するのを抑制することができる。 According to the present invention, moisture can be prevented from entering the internal space from the outside.
図1は、本発明の実施の形態に係る光学デバイスを示す斜視図である。FIG. 1 is a perspective view showing an optical device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る光学デバイスを示す三面図である。FIG. 2 is a trihedral view showing the optical device according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る光学デバイスの一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the optical device according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る光学デバイスが備える電極配線と金属板との接続部分を示す断面図である。FIG. 4 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the embodiment of the present invention. 図5Aは、本発明の実施の形態に係る光学デバイスの製造工程を示す断面図である。FIG. 5A is a cross-sectional view showing the manufacturing process of the optical device according to the embodiment of the present invention. 図5Bは、本発明の実施の形態に係る光学デバイスの製造工程を示す断面図である。FIG. 5B is a cross-sectional view showing the manufacturing process of the optical device according to the embodiment of the present invention. 図6Aは、本発明の実施の形態に係る光学デバイスの効果を説明するための断面図である。FIG. 6A is a cross-sectional view for explaining the effect of the optical device according to the embodiment of the present invention. 図6Bは、本発明の実施の形態に係る光学デバイスの効果を説明するための断面図である。FIG. 6B is a cross-sectional view for explaining the effect of the optical device according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る光学デバイスを複数備える窓を示す断面図である。FIG. 7 is a cross-sectional view showing a window including a plurality of optical devices according to the embodiment of the present invention. 図8は、本発明の実施の形態の変形例1に係る光学デバイスが備える電極配線と金属板との接続部分を示す断面図である。FIG. 8 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the first modification of the embodiment of the present invention. 図9は、本発明の実施の形態の変形例2に係る光学デバイスが備える電極配線と金属板との接続部分を示す断面図である。FIG. 9 is a cross-sectional view showing a connection portion between an electrode wiring and a metal plate provided in the optical device according to the second modification of the embodiment of the present invention.
 以下では、本発明の実施の形態に係る複層ガラス及び光学デバイスについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the multilayer glass and the optical device according to the embodiment of the present invention will be described in detail with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 (実施の形態)
 [光学デバイス]
 まず、本実施の形態に係る光学デバイス及び複層ガラスの構成について、図1~図4を用いて説明する。
(Embodiment)
[Optical device]
First, the structure of the optical device and the multilayer glass according to the present embodiment will be described with reference to FIGS.
 図1は、本実施の形態に係る光学デバイス100(及び複層ガラス1)を示す斜視図である。 FIG. 1 is a perspective view showing an optical device 100 (and multi-layer glass 1) according to the present embodiment.
 図2は、本実施の形態に係る光学デバイス100(及び複層ガラス1)を示す三面図である。具体的には、図2では、(a)~(c)がそれぞれ、光学デバイス100の正面図、上面図及び右側面図を示している。なお、図2では、光学デバイス100の内部構造を網掛けによって模式的に示している。このとき、図2には、光学デバイス100の構成要素のうち示していないもの(例えば、一次シール材70及び二次シール材71)がある。 FIG. 2 is a trihedral view showing the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, in FIG. 2, (a) to (c) show a front view, a top view, and a right side view of the optical device 100, respectively. In FIG. 2, the internal structure of the optical device 100 is schematically shown by shading. At this time, in FIG. 2, some of the components of the optical device 100 are not shown (for example, the primary sealing material 70 and the secondary sealing material 71).
 図3は、本実施の形態に係る光学デバイス100(及び複層ガラス1)の一部を示す断面図である。具体的には、図3は、図2の(b)に示すIII-III線における断面を示している。より具体的には、図3は、光学デバイス100が備えるスペーサ20及び金属板50を通る断面を示している。 FIG. 3 is a cross-sectional view showing a part of optical device 100 (and multi-layer glass 1) according to the present embodiment. Specifically, FIG. 3 shows a cross section taken along line III-III shown in FIG. More specifically, FIG. 3 shows a cross section passing through the spacer 20 and the metal plate 50 included in the optical device 100.
 図4は、本実施の形態に係る光学デバイス100(及び複層ガラス1)が備える電極配線30と金属板50との接続部分を示す断面図である。具体的には、図4は、図3に示す一点鎖線で囲まれた領域IVの拡大図である。 FIG. 4 is a cross-sectional view showing a connection portion between the electrode wiring 30 and the metal plate 50 provided in the optical device 100 (and the multilayer glass 1) according to the present embodiment. Specifically, FIG. 4 is an enlarged view of a region IV surrounded by an alternate long and short dash line shown in FIG.
 各図において、光学デバイス100の主面に直交する方向(すなわち、光学デバイス100の厚さ方向)をZ軸方向とし、光学デバイス100の主面に平行で、互いに直交する2つの方向をX軸方向及びY軸方向とする。 In each figure, the direction orthogonal to the main surface of the optical device 100 (that is, the thickness direction of the optical device 100) is the Z-axis direction, and two directions parallel to the main surface of the optical device 100 and orthogonal to each other are the X-axis. Direction and Y-axis direction.
 本実施の形態に係る光学デバイス100は、複層ガラス1と、光学素子110とを備える。複層ガラス1は、図1~図3に示すように、一対のガラス板10及びガラス板11と、スペーサ20と、電極配線30と、端子40と、金属板50と、引き出し配線60と、一次シール材70と、二次シール材71とを備える。 The optical device 100 according to the present embodiment includes a multilayer glass 1 and an optical element 110. As shown in FIGS. 1 to 3, the multi-layer glass 1 includes a pair of glass plates 10 and 11, a spacer 20, an electrode wiring 30, a terminal 40, a metal plate 50, a lead wiring 60, A primary sealing material 70 and a secondary sealing material 71 are provided.
 なお、光学デバイス100は、例えば、建造物及び車両などの窓に利用することができる。光学デバイス100は、光学素子110を備えることによって、発光又は調光などの機能を実現する。すなわち、光学デバイス100は、いわゆるスマートウィンドウとして利用することができる。 The optical device 100 can be used for windows of buildings and vehicles, for example. The optical device 100 includes the optical element 110, thereby realizing a function such as light emission or light control. That is, the optical device 100 can be used as a so-called smart window.
 以下では、光学デバイス100が備える構成要素の各々について、詳細に説明する。 Hereinafter, each of the components included in the optical device 100 will be described in detail.
 [ガラス板]
 ガラス板10及びガラス板11は、透光性を有し、可視光の少なくとも一部を透過させる。ガラス板10及びガラス板11は、例えば、ソーダガラス、無アルカリガラスなどから形成される透明な平板である。
[Glass plate]
The glass plate 10 and the glass plate 11 have translucency and transmit at least part of visible light. The glass plate 10 and the glass plate 11 are transparent flat plates formed from, for example, soda glass or non-alkali glass.
 ガラス板10及びガラス板11は、図1並びに図2の(b)及び(c)に示すように、互いに対向して配置されている。具体的には、ガラス板10及びガラス板11は、互いの距離(すなわち、ガラス板10及びガラス板11の間隔)が略一定になるように、すなわち、平行に配置されている。ガラス板10及びガラス板11の間隔は、例えば6mmである。 The glass plate 10 and the glass plate 11 are arranged to face each other as shown in FIGS. 1 and 2 (b) and (c). Specifically, the glass plate 10 and the glass plate 11 are arranged so that the mutual distance (that is, the distance between the glass plate 10 and the glass plate 11) is substantially constant, that is, in parallel. The space | interval of the glass plate 10 and the glass plate 11 is 6 mm, for example.
 ガラス板10及びガラス板11は、略同じ形状及び略同じ大きさを有し、図1及び図2の(a)に示すように、平面視において互いに重なるように配置されている。なお、「平面視」とは、光学デバイス100(及び複層ガラス1)を正面から見た場合を意味する。具体的には、「平面視」とは、ガラス板10及びガラス板11の主面(面積が最大の面)を正面から見た場合、すなわち、Z軸方向に見た場合を意味する。 The glass plate 10 and the glass plate 11 have substantially the same shape and substantially the same size, and are arranged so as to overlap each other in plan view, as shown in FIGS. The “plan view” means a case where the optical device 100 (and the multi-layer glass 1) is viewed from the front. Specifically, the “plan view” means a case where the main surfaces (surfaces having the largest areas) of the glass plate 10 and the glass plate 11 are viewed from the front, that is, when viewed in the Z-axis direction.
 ガラス板10及びガラス板11の平面視形状は、矩形であるが、正方形若しくはその他多角形、又は、円形若しくは楕円形などでもよい。あるいは、ガラス板10及びガラス板11は、平板に限らず、湾曲板でもよい。 The planar shape of the glass plate 10 and the glass plate 11 is a rectangle, but may be a square or other polygons, or a circle or an ellipse. Alternatively, the glass plate 10 and the glass plate 11 are not limited to flat plates but may be curved plates.
 本実施の形態では、ガラス板10とガラス板11との間に内部空間12(中間層)が形成されている。内部空間12には、例えば、熱貫流率が低い気体が充填されている。熱貫流率が低い気体は、例えば、乾燥空気、又は、アルゴンなどの不活性ガスである。本実施の形態では、図2に示すように、光学素子110が内部空間12に配置されている。 In this embodiment, an internal space 12 (intermediate layer) is formed between the glass plate 10 and the glass plate 11. The internal space 12 is filled with, for example, a gas having a low thermal permeability. The gas having a low thermal permeability is, for example, dry air or an inert gas such as argon. In the present embodiment, as shown in FIG. 2, the optical element 110 is disposed in the internal space 12.
 [スペーサ]
 スペーサ20は、一対のガラス板10及びガラス板11の間隔を形成する。つまり、スペーサ20は、ガラス板10とガラス板11との間を一定距離に保つ部材である。スペーサ20は、ガラス板10とガラス板11とを離間させることによって、ガラス板10とガラス板11との間に内部空間12を形成する。
[Spacer]
The spacer 20 forms an interval between the pair of glass plates 10 and the glass plate 11. That is, the spacer 20 is a member that maintains a constant distance between the glass plate 10 and the glass plate 11. The spacer 20 forms an internal space 12 between the glass plate 10 and the glass plate 11 by separating the glass plate 10 and the glass plate 11.
 スペーサ20は、ガラス板10とガラス板11との間に設けられている。スペーサ20は、図2の(a)に示すように、平面視において、環状に設けられている。本実施の形態では、スペーサ20の平面視形状は、ガラス板10(又はガラス板11)の周に沿った形状である。具体的には、スペーサ20は、ガラス板10の周に沿った略矩形の枠体である。なお、スペーサ20は、複数の部材を組み合わせて形成されてもよい。例えば、スペーサ20は、略直線状の4つの部材(スペーサ)と、4つのコーナー部材とを組み合わせて形成されてもよい。 The spacer 20 is provided between the glass plate 10 and the glass plate 11. As shown in FIG. 2A, the spacer 20 is provided in an annular shape in plan view. In the present embodiment, the planar view shape of the spacer 20 is a shape along the circumference of the glass plate 10 (or the glass plate 11). Specifically, the spacer 20 is a substantially rectangular frame body along the circumference of the glass plate 10. The spacer 20 may be formed by combining a plurality of members. For example, the spacer 20 may be formed by combining four substantially linear members (spacers) and four corner members.
 スペーサ20は、電極配線30及び金属板50と電気的に絶縁されている。 The spacer 20 is electrically insulated from the electrode wiring 30 and the metal plate 50.
 具体的には、スペーサ20は、金属板50とは接触していない。本実施の形態では、図3及び図4に示すように、スペーサ20と金属板50との間に、絶縁性を有する二次シール材71が介在している。 Specifically, the spacer 20 is not in contact with the metal plate 50. In the present embodiment, as shown in FIGS. 3 and 4, an insulating secondary seal material 71 is interposed between the spacer 20 and the metal plate 50.
 また、スペーサ20は、電極配線30の導体部分(金属線)とは接触していない。なお、スペーサ20は、例えば、電極配線30の導体部分を被覆する絶縁性の被覆材料には接触していてもよい。 In addition, the spacer 20 is not in contact with the conductor portion (metal wire) of the electrode wiring 30. The spacer 20 may be in contact with, for example, an insulating coating material that covers the conductor portion of the electrode wiring 30.
 スペーサ20は、図3に示すように、中空部材21と、乾燥剤22とを備える。 The spacer 20 includes a hollow member 21 and a desiccant 22 as shown in FIG.
 中空部材21は、例えば、アルミニウムなどの金属材料から形成される。中空部材21は、例えば、略角筒状の枠体である。具体的には、図3に示すように、中空部材21の断面は、2ヶ所の角が斜めになった略矩形である。 The hollow member 21 is made of a metal material such as aluminum, for example. The hollow member 21 is, for example, a substantially rectangular tubular frame. Specifically, as shown in FIG. 3, the cross section of the hollow member 21 is a substantially rectangular shape in which two corners are slanted.
 乾燥剤22は、中空部材21の内部(中空空間)に充填されている。乾燥剤22としては、例えば、シリカゲル、ゼオライトなどの粒状物質を用いることができる。これにより、内部空間12に水分が浸入するのを抑制することができる。 The desiccant 22 is filled in the hollow member 21 (hollow space). As the desiccant 22, for example, a particulate material such as silica gel or zeolite can be used. Thereby, it is possible to suppress moisture from entering the internal space 12.
 スペーサ20は、図4に示すように、凹部23を有する。 The spacer 20 has a recess 23 as shown in FIG.
 凹部23は、金属板50と電極配線30とを電気的に接続するために設けられたスペーサ20の一部である。凹部23は、金属板50の凸部51に対向する位置に設けられている。具体的には、凹部23は、側面視において凸部51と重なる位置に設けられている。なお、「側面視」とは、光学デバイス100(及び複層ガラス1)を側面方向から見た場合、具体的には、Y軸方向に見た場合を意味する。 The recess 23 is a part of the spacer 20 provided for electrically connecting the metal plate 50 and the electrode wiring 30. The concave portion 23 is provided at a position facing the convex portion 51 of the metal plate 50. Specifically, the concave portion 23 is provided at a position overlapping the convex portion 51 in a side view. The “side view” means that the optical device 100 (and the multi-layer glass 1) is viewed from the side surface direction, specifically, the Y-axis direction.
 本実施の形態では、凹部23は、中空部材21に設けられた貫通孔である。凹部23には、端子40及び凸部51の少なくとも一方が挿入されている。本実施の形態では、図4に示すように、凹部23内で端子40と凸部51とが接続されている。 In the present embodiment, the recess 23 is a through hole provided in the hollow member 21. At least one of the terminal 40 and the convex portion 51 is inserted into the concave portion 23. In the present embodiment, as shown in FIG. 4, the terminal 40 and the convex portion 51 are connected in the concave portion 23.
 凹部23の形状は、例えば、漏斗状である。凹部23の開口は、内部空間12から金属板50に向かう方向(Y軸負方向)に沿って漸次的に狭くなっている。これにより、円錐台状の端子40が凹部23から抜けにくくすることができる。なお、凹部23の形状は、漏斗状に限らず、いかなるものでもよい。 The shape of the recess 23 is, for example, a funnel shape. The opening of the recess 23 is gradually narrower along the direction from the internal space 12 toward the metal plate 50 (Y-axis negative direction). Thereby, it is possible to make it difficult for the truncated cone-shaped terminal 40 to come out of the recess 23. In addition, the shape of the recessed part 23 is not restricted to a funnel shape, What kind of thing may be sufficient.
 なお、図3に示すように、中空部材21には、内部空間12側に貫通孔24が設けられている。本実施の形態では、凹部23及び貫通孔24は、中空部材21の中央付近(Z軸方向における中央)に設けられているが、凹部23及び貫通孔24の各々が設けられる位置については、特に限定されない。 As shown in FIG. 3, the hollow member 21 is provided with a through hole 24 on the inner space 12 side. In the present embodiment, the recess 23 and the through hole 24 are provided near the center of the hollow member 21 (the center in the Z-axis direction), but the position where each of the recess 23 and the through hole 24 is provided is particularly It is not limited.
 [電極配線]
 電極配線30は、スペーサ20の内部に挿通されている。スペーサ20の内部は、具体的には、中空部材21の中空空間である。本実施の形態では、電極配線30は、図3に示すように、内部空間12に設けられている。電極配線30は、中空部材21の貫通孔24を介してスペーサ20の内部に挿通されている。
[Electrode wiring]
The electrode wiring 30 is inserted into the spacer 20. Specifically, the inside of the spacer 20 is a hollow space of the hollow member 21. In the present embodiment, the electrode wiring 30 is provided in the internal space 12 as shown in FIG. The electrode wiring 30 is inserted into the spacer 20 through the through hole 24 of the hollow member 21.
 電極配線30は、光学素子110に電力を供給するための配線である。本実施の形態では、電極配線30は、ビニールなどの絶縁性の被覆材料によって表面が覆われた導電性の金属線である。例えば、電極配線30は、ビニール線、エナメル線などのリード線である。なお、金属線の表面が絶縁性の被覆材料によって覆われているので、電極配線30が貫通孔24に挿通された場合において電極配線30と中空部材21とが接触したとしても、電極配線30と中空部材21(スペーサ20)とは絶縁されている。 The electrode wiring 30 is a wiring for supplying power to the optical element 110. In the present embodiment, the electrode wiring 30 is a conductive metal wire whose surface is covered with an insulating coating material such as vinyl. For example, the electrode wiring 30 is a lead wire such as a vinyl wire or an enamel wire. Since the surface of the metal wire is covered with an insulating coating material, even if the electrode wiring 30 and the hollow member 21 come into contact with each other when the electrode wiring 30 is inserted into the through hole 24, the electrode wiring 30 It is insulated from the hollow member 21 (spacer 20).
 電極配線30は、光学素子110に接続されている。また、電極配線30は、金属板50に電気的に接続されている。具体的には、電極配線30の一方の端部が、光学素子110が備える電極に接続され、他方の端部が導電性の端子40に接続されている。電極配線30は、端子40に接続されることで、金属板50に電気的に接続されている。 The electrode wiring 30 is connected to the optical element 110. The electrode wiring 30 is electrically connected to the metal plate 50. Specifically, one end of the electrode wiring 30 is connected to an electrode provided in the optical element 110, and the other end is connected to the conductive terminal 40. The electrode wiring 30 is electrically connected to the metal plate 50 by being connected to the terminal 40.
 なお、本実施の形態では、図2に示すように、光学デバイス100は、2つの電極配線30を備える。2つの電極配線30は、例えば、一方が正極用、他方が負極用として用いられる。あるいは、光学素子110の面内均一性を高めるために、同電位の電圧を供給する複数の電極配線が設けられていてもよい。端子40、金属板50及び引き出し配線60についても同様である。 In the present embodiment, the optical device 100 includes two electrode wirings 30 as shown in FIG. For example, one of the two electrode wirings 30 is used for a positive electrode and the other is used for a negative electrode. Alternatively, in order to improve the in-plane uniformity of the optical element 110, a plurality of electrode wirings for supplying a voltage having the same potential may be provided. The same applies to the terminal 40, the metal plate 50, and the lead-out wiring 60.
 [端子]
 端子40は、金属板50に接続された導電性の端子である。端子40は、例えば、銅などの金属材料から形成される。
[Terminal]
The terminal 40 is a conductive terminal connected to the metal plate 50. The terminal 40 is made of a metal material such as copper, for example.
 端子40は、図4に示すように、凹部23に挿入されている。端子40は、凹部23を介して、金属板50に電気溶接(例えば、抵抗溶接)によって物理的かつ電気的に接続されている。同様に、端子40は、電極配線30に電気溶接によって物理的かつ電気的に接続されている。 The terminal 40 is inserted into the recess 23 as shown in FIG. The terminal 40 is physically and electrically connected to the metal plate 50 through the recess 23 by electric welding (for example, resistance welding). Similarly, the terminal 40 is physically and electrically connected to the electrode wiring 30 by electric welding.
 端子40は、中空部材21に接触しないように、二次シール材71を介して中空部材21に固定されている。これにより、端子40と中空部材21(スペーサ20)とは電気的に絶縁されている。 The terminal 40 is fixed to the hollow member 21 via the secondary seal material 71 so as not to contact the hollow member 21. Thereby, the terminal 40 and the hollow member 21 (spacer 20) are electrically insulated.
 端子40の形状は、例えば、円錐台状である。XZ平面における端子40の断面は、内部空間12から金属板50に向かう方向(Y軸負方向)に沿って漸次的に狭くなっている。これにより、端子40が凹部23から抜けにくくすることができる。なお、端子40の形状は、円錐台状に限らず、円柱状又は角柱状などいかなるものでもよい。 The shape of the terminal 40 is, for example, a truncated cone. The cross section of the terminal 40 in the XZ plane is gradually narrowed along the direction from the internal space 12 toward the metal plate 50 (Y-axis negative direction). Thereby, it is possible to make it difficult for the terminal 40 to come out of the recess 23. In addition, the shape of the terminal 40 is not limited to a truncated cone shape, and may be any shape such as a columnar shape or a prismatic shape.
 [金属板]
 金属板50は、一対のガラス板10及びガラス板11の間に介在し、かつ、電極配線30と電気的に接続されている金属層の一例である。すなわち、金属板50は、光学素子110に電力を供給するための配線の一部である。金属板50は、スペーサ20の一部を覆うように設けられている。具体的には、金属板50は、側面視において、スペーサ20の一部を覆うように設けられている。
[Metal plate]
The metal plate 50 is an example of a metal layer that is interposed between the pair of glass plates 10 and 11 and is electrically connected to the electrode wiring 30. That is, the metal plate 50 is a part of wiring for supplying power to the optical element 110. The metal plate 50 is provided so as to cover a part of the spacer 20. Specifically, the metal plate 50 is provided so as to cover a part of the spacer 20 in a side view.
 スペーサ20の当該一部は、電極配線30と金属板50とを電気的に接続するための部分である。具体的には、スペーサ20の当該一部は、凹部23である。金属板50は、側面視において、凹部23を完全に覆うように設けられている。 The part of the spacer 20 is a part for electrically connecting the electrode wiring 30 and the metal plate 50. Specifically, the part of the spacer 20 is a recess 23. The metal plate 50 is provided so as to completely cover the recess 23 in a side view.
 本実施の形態では、金属板50は、一対のガラス板10及びガラス板11の主面に垂直に設けられた板体である。つまり、金属板50は、ガラス板10とガラス板11とが並ぶ方向(Z軸方向)に平行に設けられている。また、金属板50は、スペーサ20と複層ガラス1の外部との間(すなわち、スペーサ20を基準として内部空間12とは反対側)に設けられている。 In the present embodiment, the metal plate 50 is a plate body provided perpendicular to the main surfaces of the pair of glass plates 10 and 11. That is, the metal plate 50 is provided in parallel to the direction in which the glass plate 10 and the glass plate 11 are arranged (Z-axis direction). The metal plate 50 is provided between the spacer 20 and the outside of the multilayer glass 1 (that is, on the side opposite to the internal space 12 with respect to the spacer 20).
 具体的には、金属板50は、略矩形の板体である。より具体的には、金属板50の形状(Y軸方向に見た場合の形状)が略矩形である。金属板50の各辺は、一対のガラス板10及びガラス板11の間隔と略同じ長さ又は当該間隔以上の長さである。本実施の形態では、金属板50の形状は、ガラス板10及びガラス板11の間隔を一辺とする正方形である。なお、金属板50の厚さは、例えば、3mmであるが、いかなるものでもよい。 Specifically, the metal plate 50 is a substantially rectangular plate. More specifically, the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) is substantially rectangular. Each side of the metal plate 50 has substantially the same length as the interval between the pair of glass plates 10 and the glass plate 11 or a length greater than or equal to the interval. In this Embodiment, the shape of the metal plate 50 is a square which makes the space | interval of the glass plate 10 and the glass plate 11 one side. In addition, although the thickness of the metal plate 50 is 3 mm, for example, what kind of thing may be sufficient as it.
 金属板50は、二次シール材71より水分透過率が低い材料から形成される。具体的には、金属板50は、例えばステンレスなどの金属材料から形成される。また、金属板50としては、熱膨張率の低い材料を利用することができる。 The metal plate 50 is formed of a material having a moisture permeability lower than that of the secondary sealing material 71. Specifically, the metal plate 50 is formed from a metal material such as stainless steel. Moreover, as the metal plate 50, a material having a low coefficient of thermal expansion can be used.
 図4に示すように、金属板50は、スペーサ20に向かって突出した凸部51を有する。凸部51は、例えば、金属板50の中央に設けられている。 As shown in FIG. 4, the metal plate 50 has a convex portion 51 protruding toward the spacer 20. The convex part 51 is provided in the center of the metal plate 50, for example.
 凸部51は、電極配線30と金属板50とを接続するための部分である。具体的には、凸部51は、スペーサ20の凹部23に挿入されている。凸部51は、凹部23内で、電極配線30が接続された端子40と物理的かつ電気的に接続されている。 The convex portion 51 is a portion for connecting the electrode wiring 30 and the metal plate 50. Specifically, the convex portion 51 is inserted into the concave portion 23 of the spacer 20. The convex portion 51 is physically and electrically connected to the terminal 40 to which the electrode wiring 30 is connected in the concave portion 23.
 [引き出し配線]
 引き出し配線60は、光学素子110に電力を供給するための電気配線である。本実施の形態では、引き出し配線60は、例えば、ビニールなどの絶縁性の被覆材料によって表面が覆われた導電性の金属線である。例えば、引き出し配線60は、ビニール線、エナメル線などのリード線である。
[Drawer wiring]
The lead wiring 60 is an electrical wiring for supplying power to the optical element 110. In the present embodiment, the lead-out wiring 60 is a conductive metal wire whose surface is covered with an insulating coating material such as vinyl. For example, the lead wiring 60 is a lead wire such as a vinyl wire or an enamel wire.
 引き出し配線60は、二次シール材71に覆われており、光学デバイス100の外部にまで引き出されている。引き出し配線60は、金属板50に接続されている。具体的には、引き出し配線60の一方の端部が金属板50に接続され、他方の端部は、光学素子110を駆動するための駆動回路又は電源回路(図示せず)などに接続されている。 The lead-out wiring 60 is covered with a secondary sealing material 71 and is drawn out to the outside of the optical device 100. The lead wiring 60 is connected to the metal plate 50. Specifically, one end of the lead-out wiring 60 is connected to the metal plate 50, and the other end is connected to a drive circuit or a power supply circuit (not shown) for driving the optical element 110. Yes.
 なお、引き出し配線60は、図3に示すように、金属板50の中央近傍に接続されている。引き出し配線60が接続される位置は、これに限らず、金属板50のどこに接続されてもよい。 Note that the lead-out wiring 60 is connected near the center of the metal plate 50 as shown in FIG. The position to which the lead wiring 60 is connected is not limited to this, and may be connected anywhere on the metal plate 50.
 [一次シール材]
 一次シール材70は、スペーサ20をガラス板10及びガラス板11に接着するための接着剤である。一次シール材70は、図3に示すように、スペーサ20とガラス板10との間、及び、スペーサ20とガラス板11との間に設けられている。また、一次シール材70は、スペーサ20の平面視形状に沿って設けられている。具体的には、一次シール材70は、環状に設けられている。
[Primary sealing material]
The primary sealing material 70 is an adhesive for bonding the spacer 20 to the glass plate 10 and the glass plate 11. As shown in FIG. 3, the primary sealing material 70 is provided between the spacer 20 and the glass plate 10 and between the spacer 20 and the glass plate 11. Further, the primary sealing material 70 is provided along the planar view shape of the spacer 20. Specifically, the primary sealing material 70 is provided in an annular shape.
 一次シール材70としては、例えば、ブチルゴムなどを主成分としたシール材を用いることができる。 As the primary sealing material 70, for example, a sealing material mainly composed of butyl rubber or the like can be used.
 [二次シール材]
 二次シール材71は、内部空間12の封止性を高めるために用いられる樹脂材料である。二次シール材71は、図3に示すように、スペーサ20の外側(内部空間12とは反対側)を覆うように設けられている。二次シール材71は、スペーサ20の平面視形状に沿って設けられている。具体的には、二次シール材71は、環状に設けられている。
[Secondary sealing material]
The secondary sealing material 71 is a resin material used for improving the sealing performance of the internal space 12. As shown in FIG. 3, the secondary sealing material 71 is provided so as to cover the outer side of the spacer 20 (the side opposite to the internal space 12). The secondary sealing material 71 is provided along the planar view shape of the spacer 20. Specifically, the secondary sealing material 71 is provided in an annular shape.
 また、図3に示すように、二次シール材71の内部に金属板50が設けられている。また、引き出し配線60は、二次シール材71に挿通されている。言い換えると、二次シール材71は、引き出し配線60を覆うように、ガラス板10とガラス板11との間に設けられている。 Further, as shown in FIG. 3, a metal plate 50 is provided inside the secondary sealing material 71. The lead-out wiring 60 is inserted through the secondary seal material 71. In other words, the secondary sealing material 71 is provided between the glass plate 10 and the glass plate 11 so as to cover the lead wiring 60.
 二次シール材71としては、例えば、ポリサルファイド系の後硬化性のシール材を用いることができる。 As the secondary sealing material 71, for example, a polysulfide-based post-curing sealing material can be used.
 [光学素子]
 光学素子110は、一対のガラス板10及びガラス板11と、スペーサ20とによって封止されている。具体的には、光学素子110は、内部空間12に配置されている。
[Optical element]
The optical element 110 is sealed with a pair of glass plates 10 and 11 and a spacer 20. Specifically, the optical element 110 is disposed in the internal space 12.
 また、光学素子110は、電極配線30に接続されている。具体的には、光学素子110は、1以上の電極(例えば、陽極及び陰極)を備えている。1以上の電極の各々に電極配線30が接続されている。 The optical element 110 is connected to the electrode wiring 30. Specifically, the optical element 110 includes one or more electrodes (for example, an anode and a cathode). An electrode wiring 30 is connected to each of the one or more electrodes.
 光学素子110は、電力の供給によって、光学特性を変化させることができる素子である。具体的には、光学素子110は、自発光又は調光を行う。調光は、例えば、光(可視光)の透過率、反射率、屈折率、散乱性などを変化させることである。 The optical element 110 is an element that can change optical characteristics by supplying power. Specifically, the optical element 110 performs self-emission or dimming. The dimming is, for example, changing light transmittance (visible light), reflectance, refractive index, scattering property, and the like.
 例えば、光学素子110は、有機EL(Electroluminescence)素子である。あるいは、光学素子110は、液晶、又は、エレクトロクロミック素子でもよい。なお、複数の光学素子110が内部空間12に配置されていてもよい。 For example, the optical element 110 is an organic EL (Electroluminescence) element. Alternatively, the optical element 110 may be a liquid crystal or an electrochromic element. A plurality of optical elements 110 may be disposed in the internal space 12.
 [製造方法]
 続いて、本実施の形態に係る光学デバイス100(及び複層ガラス1)の製造方法について、図5A及び図5Bを用いて説明する。
[Production method]
Then, the manufacturing method of the optical device 100 (and multilayer glass 1) which concerns on this Embodiment is demonstrated using FIG. 5A and 5B.
 図5A及び図5Bは、本実施の形態に係る光学デバイス100(及び複層ガラス1)の製造工程を示す断面図である。 FIG. 5A and FIG. 5B are cross-sectional views showing manufacturing steps of the optical device 100 (and the multi-layer glass 1) according to the present embodiment.
 まず、図5Aの(a)に示すように、光学素子110が設けられたガラス板10を準備する。例えば、ガラス板10に光学素子110を形成し、光学素子110が備える電極に電極配線30を接続する。例えば、電極配線30の一方の端部を、光学素子110の電極に、半田付け又はコネクタ接続によって接続する。 First, as shown to (a) of FIG. 5A, the glass plate 10 in which the optical element 110 was provided is prepared. For example, the optical element 110 is formed on the glass plate 10, and the electrode wiring 30 is connected to the electrode provided in the optical element 110. For example, one end of the electrode wiring 30 is connected to the electrode of the optical element 110 by soldering or connector connection.
 次に、図5Aの(b)に示すように、電極配線30を端子40に接続する。例えば、電気溶接(抵抗溶接)によって、電極配線30と端子40とを接続する。具体的には、まず、電極配線30の他方の端部を、貫通孔24を介してスペーサ20の内部(中空部材21の中空空間)に挿入する。そして、他方の端部を端子40に接触させた状態で、端子40に電流を流すことにより、端子40と電極配線30とを溶接する。なお、端子40は、例えば、スペーサ20の中空部材21の凹部23に、接着剤によって仮止めされている。 Next, the electrode wiring 30 is connected to the terminal 40 as shown in FIG. For example, the electrode wiring 30 and the terminal 40 are connected by electric welding (resistance welding). Specifically, first, the other end of the electrode wiring 30 is inserted into the inside of the spacer 20 (the hollow space of the hollow member 21) through the through hole 24. The terminal 40 and the electrode wiring 30 are welded by passing a current through the terminal 40 with the other end in contact with the terminal 40. The terminal 40 is temporarily fixed to the recess 23 of the hollow member 21 of the spacer 20 with an adhesive, for example.
 あるいは、電極配線30の他方の端部には、端子40が予め接続されていてもよい。この場合、例えば、端子40を、貫通孔24を介してスペーサ20の内部に挿入し、凹部23に接着剤を用いて仮止めする。仮止めに用いる接着剤は、例えば、一次シール材70又は二次シール材71と同じ材料を用いることができる。 Alternatively, the terminal 40 may be connected in advance to the other end of the electrode wiring 30. In this case, for example, the terminal 40 is inserted into the spacer 20 through the through hole 24 and temporarily fixed to the recess 23 using an adhesive. The adhesive used for temporary fixing can use the same material as the primary sealing material 70 or the secondary sealing material 71, for example.
 次に、図5Aの(c)に示すように、中空部材21の中空空間に乾燥剤22を充填させた後、ガラス板10とガラス板11とを貼り合わせる。具体的には、スペーサ20を間に挟むことで、ガラス板10とガラス板11との間隔を形成する。その後、ディスペンサーなどの吐出装置90を用いて樹脂材料70aを、スペーサ20とガラス板10との間、及び、スペーサ20とガラス板11との間に塗布する。樹脂材料70aは、硬化前の一次シール材70であり、例えば、熱硬化性の樹脂材料である。樹脂材料70aに熱を加えて硬化させることにより、一次シール材70を形成する。 Next, as shown in FIG. 5A (c), after filling the hollow space of the hollow member 21 with the desiccant 22, the glass plate 10 and the glass plate 11 are bonded together. Specifically, the space between the glass plate 10 and the glass plate 11 is formed by sandwiching the spacer 20 therebetween. Thereafter, the resin material 70 a is applied between the spacer 20 and the glass plate 10 and between the spacer 20 and the glass plate 11 using a discharge device 90 such as a dispenser. The resin material 70a is the primary sealing material 70 before curing, and is, for example, a thermosetting resin material. The primary sealing material 70 is formed by curing the resin material 70a by applying heat.
 次に、図5Bの(d)に示すように、ディスペンサーなどの吐出装置91を用いて樹脂材料71aをスペーサ20の外側の側面に塗布する。樹脂材料71aは、硬化前の二次シール材71であり、例えば、粘着性を有する熱硬化性の樹脂材料である。 Next, as shown in FIG. 5B (d), a resin material 71a is applied to the outer side surface of the spacer 20 using a discharge device 91 such as a dispenser. The resin material 71a is the secondary sealing material 71 before curing, and is, for example, a thermosetting resin material having adhesiveness.
 次に、図5Bの(e)に示すように、端子40と金属板50とを接続する。具体的には、まず、凸部51が端子40に接触するように、金属板50を配置する。このとき、金属板50は、樹脂材料71aによって固定される。そして、凸部51と端子40とを電気溶接する。具体的には、凸部51と端子40とが接触した状態で、金属板50に電流を流すことにより、凸部51と端子40とを溶接する。 Next, as shown in FIG. 5B (e), the terminal 40 and the metal plate 50 are connected. Specifically, first, the metal plate 50 is arranged so that the convex portion 51 contacts the terminal 40. At this time, the metal plate 50 is fixed by the resin material 71a. And the convex part 51 and the terminal 40 are electrically welded. Specifically, the convex portion 51 and the terminal 40 are welded by passing a current through the metal plate 50 in a state where the convex portion 51 and the terminal 40 are in contact with each other.
 次に、図5Bの(f)に示すように、引き出し配線60を金属板50に接続した後、二次シール材71を形成する。具体的には、まず、引き出し配線60と金属板50とを接続する。当該接続は、電気溶接でもよく、あるいは、半田付けなどでもよい。そして、図5Bの(d)と同様に、吐出装置91を用いて樹脂材料71aを、引き出し配線60及び金属板50を埋めるように塗布する。その後、樹脂材料71aに熱を加えて硬化させることにより、二次シール材71を形成する。 Next, as shown in FIG. 5B (f), after the lead-out wiring 60 is connected to the metal plate 50, the secondary sealant 71 is formed. Specifically, first, the lead wiring 60 and the metal plate 50 are connected. The connection may be electric welding or soldering. Then, similarly to (d) of FIG. 5B, the resin material 71 a is applied using the discharge device 91 so as to fill the lead-out wiring 60 and the metal plate 50. Thereafter, the secondary sealing material 71 is formed by curing the resin material 71a by applying heat.
 以上のようにして、本実施の形態に係る光学デバイス100及び複層ガラス1を製造することができる。 As described above, the optical device 100 and the multilayer glass 1 according to the present embodiment can be manufactured.
 [効果など]
 以下では、本実施の形態に係る光学デバイス100及び複層ガラス1の効果について、図6A及び図6Bを用いて説明する。
[Effects, etc.]
Below, the effect of the optical device 100 which concerns on this Embodiment, and the multilayer glass 1 is demonstrated using FIG. 6A and FIG. 6B.
 図6A及び図6Bは、本実施の形態に係る光学デバイス100(及び複層ガラス1)の効果を説明するための断面図である。具体的には、図6Aは、金属板50を備えない光学デバイス100a(及び複層ガラス1a)を示している。 6A and 6B are cross-sectional views for explaining the effect of the optical device 100 (and the multi-layer glass 1) according to the present embodiment. Specifically, FIG. 6A shows an optical device 100a (and a multi-layer glass 1a) that does not include the metal plate 50.
 図6Aに示すように、複層ガラス1aでは、金属板50が設けられていないので、電極配線30、端子40、金属板50及び引き出し配線60の代わりに、電極配線30aが設けられている。電極配線30aは、スペーサ20を貫通し、内部空間12から複層ガラス1の外側まで引き出されている。 As shown in FIG. 6A, in the multilayer glass 1a, since the metal plate 50 is not provided, an electrode wire 30a is provided instead of the electrode wire 30, the terminal 40, the metal plate 50, and the lead-out wire 60. The electrode wiring 30 a penetrates the spacer 20 and is drawn from the internal space 12 to the outside of the multilayer glass 1.
 複層ガラス1aでは、電極配線30aが設けられていることで、外部から内部空間12に水分が浸入しやすくなるという問題がある。スペーサ20の一部には、電極配線30aを複層ガラス1の外側に引き出すための凹部23及び貫通孔24が形成されているためである。例えば、水分が浸入する最短経路は、図6Aの太破線で示すような直線になる。 In the multi-layer glass 1a, there is a problem that moisture easily enters the internal space 12 from the outside because the electrode wiring 30a is provided. This is because a recess 23 and a through-hole 24 are formed in a part of the spacer 20 for drawing the electrode wiring 30a to the outside of the multilayer glass 1. For example, the shortest path through which moisture enters is a straight line as shown by a thick broken line in FIG. 6A.
 これに対して、本実施の形態に係る複層ガラス1は、互いに対向して配置された一対のガラス板10及びガラス板11と、一対のガラス板10及びガラス板11の間隔を形成するスペーサ20と、スペーサ20の内部に挿通された電極配線30と、一対のガラス板10及びガラス板11の間に介在し、かつ、スペーサ20の一部を介して電極配線30と電気的に接続されている金属板50とを備え、金属板50は、スペーサ20の一部を覆うように設けられている。また、本実施の形態に係る光学デバイス100は、複層ガラス1を備える光学デバイスであって、スペーサ20は、環状に設けられ、光学デバイス100は、一対のガラス板10及びガラス板11とスペーサ20とによって封止され、電極配線30に接続された光学素子110を備える。 On the other hand, the multi-layer glass 1 according to the present embodiment includes a pair of glass plates 10 and 11 arranged opposite to each other, and a spacer that forms a gap between the pair of glass plates 10 and the glass plate 11. 20, the electrode wiring 30 inserted into the spacer 20, and a pair of the glass plate 10 and the glass plate 11, and electrically connected to the electrode wiring 30 through a part of the spacer 20. The metal plate 50 is provided so as to cover a part of the spacer 20. In addition, the optical device 100 according to the present embodiment is an optical device including the multilayer glass 1, the spacer 20 is provided in an annular shape, and the optical device 100 includes a pair of glass plates 10, a glass plate 11, and a spacer. 20 and the optical element 110 connected to the electrode wiring 30.
 これにより、金属板50がスペーサ20の一部(具体的には、凹部23)を覆うように設けられているので、水分がスペーサ20の一部を介して内部空間12に浸入するのを抑制することができる。 Accordingly, since the metal plate 50 is provided so as to cover a part of the spacer 20 (specifically, the recess 23), moisture is prevented from entering the internal space 12 through a part of the spacer 20. can do.
 具体的には、本実施の形態に係る複層ガラス1では、水分が浸入する最短経路は、図6Bの太破線で示すように、金属板50とスペーサ20との間を通過する必要がある。つまり、水分が内部空間12に浸入するためには、金属板50を迂回しなければならない。金属板50は、樹脂材料から形成される二次シール材71よりも水分透過率が低く、水分を通しにくいためである。 Specifically, in the multilayer glass 1 according to the present embodiment, the shortest path through which moisture enters must pass between the metal plate 50 and the spacer 20 as shown by the thick broken line in FIG. 6B. . That is, in order for moisture to enter the internal space 12, the metal plate 50 must be bypassed. This is because the metal plate 50 has a lower moisture permeability than the secondary sealing material 71 formed of a resin material, and hardly allows moisture to pass through.
 したがって、図6Aと図6Bとを比較して明らかなように、本実施の形態に係る複層ガラス1では、金属板50が設けられていない複層ガラス1aに比べて、水分の浸入を抑制することができる。 Therefore, as is clear by comparing FIG. 6A and FIG. 6B, in the multilayer glass 1 according to the present embodiment, the ingress of moisture is suppressed compared to the multilayer glass 1 a not provided with the metal plate 50. can do.
 なお、本実施の形態では、スペーサ20の内部に乾燥剤22が設けられている。このため、水分は、乾燥剤22によって吸収されるので、内部空間12への水分の浸入はより効果的に抑制される。 In this embodiment, a desiccant 22 is provided inside the spacer 20. For this reason, since moisture is absorbed by the desiccant 22, the penetration of moisture into the internal space 12 is more effectively suppressed.
 このとき、水分が乾燥剤22に至るまでの距離が長い程、乾燥剤22の寿命を長くすることができる。 At this time, the longer the distance until the moisture reaches the desiccant 22, the longer the life of the desiccant 22 can be.
 本実施の形態では、金属板50は、スペーサ20と光学デバイス100(及び複層ガラス1)の外部との間に設けられている。したがって、水分が乾燥剤22に至るまでの距離を長くすることができるので、より水分の浸入を効果的に抑制することができる。 In the present embodiment, the metal plate 50 is provided between the spacer 20 and the outside of the optical device 100 (and the multilayer glass 1). Therefore, since the distance until the moisture reaches the desiccant 22 can be increased, the penetration of moisture can be more effectively suppressed.
 また、本実施の形態に係る光学デバイス100(及び複層ガラス1)では、例えば、図2に示すように複数の電極配線30を設けて、それぞれで異なる電圧を供給する場合が想定される。このとき、スペーサ20と複数の電極配線30とが電気的に絶縁されていない場合、複数の電極配線30がスペーサ20を介して短絡してしまう。したがって、光学素子110が正常に動作しなくなり、光学デバイス100の信頼性が低下する。 Further, in the optical device 100 (and the multi-layer glass 1) according to the present embodiment, for example, it is assumed that a plurality of electrode wirings 30 are provided as shown in FIG. At this time, when the spacer 20 and the plurality of electrode wirings 30 are not electrically insulated, the plurality of electrode wirings 30 are short-circuited via the spacer 20. Therefore, the optical element 110 does not operate normally, and the reliability of the optical device 100 decreases.
 また、光学デバイス100(及び複層ガラス1)が一本のみの電極配線30を備える場合であっても、スペーサ20に電流が流れることにより、スペーサ20による電圧降下などが発生する恐れがある。したがって、スペーサ20による電圧降下によって光学素子110に適切な電圧が供給できなくなり、光学デバイス100の信頼性が低下する。 Further, even when the optical device 100 (and the multi-layer glass 1) includes only one electrode wiring 30, there is a possibility that a voltage drop due to the spacer 20 may occur due to the current flowing through the spacer 20. Therefore, an appropriate voltage cannot be supplied to the optical element 110 due to the voltage drop caused by the spacer 20, and the reliability of the optical device 100 is lowered.
 これに対して、本実施の形態に係る複層ガラス1では、例えば、スペーサ20は、電極配線30及び金属板50と電気的に絶縁されている。 In contrast, in the multilayer glass 1 according to the present embodiment, for example, the spacer 20 is electrically insulated from the electrode wiring 30 and the metal plate 50.
 これにより、スペーサ20を介して複数の電極配線30が短絡するのが抑制され、光学デバイス100の信頼性を高めることができる。また、スペーサ20による電圧降下も発生しないので、光学デバイス100(及び複層ガラス1)の信頼性を高めることができる。 Thus, short-circuiting of the plurality of electrode wirings 30 via the spacer 20 is suppressed, and the reliability of the optical device 100 can be improved. Moreover, since the voltage drop by the spacer 20 does not generate | occur | produce, the reliability of the optical device 100 (and multilayer glass 1) can be improved.
 また、例えば、金属板50は、スペーサ20に向かって突出した凸部51を有し、スペーサ20の一部は、凸部51に対向する位置に設けられた凹部23である。 Further, for example, the metal plate 50 has a convex portion 51 protruding toward the spacer 20, and a part of the spacer 20 is a concave portion 23 provided at a position facing the convex portion 51.
 これにより、凸部51と凹部23とが対向しているので、凹部23に凸部51を挿入させた場合に、金属板50とスペーサ20とを接触させないようにすることができる。したがって、金属板50とスペーサ20との電気的な絶縁を確保しつつ、凸部51を利用することで、電極配線30と金属板50とを容易に電気的に接続することができる。 Thereby, since the convex portion 51 and the concave portion 23 are opposed to each other, when the convex portion 51 is inserted into the concave portion 23, the metal plate 50 and the spacer 20 can be prevented from contacting each other. Therefore, the electrode wiring 30 and the metal plate 50 can be easily electrically connected by using the convex portion 51 while ensuring electrical insulation between the metal plate 50 and the spacer 20.
 また、例えば、金属板50は、一対のガラス板10及びガラス板11の主面に垂直に設けられた板体である。 Further, for example, the metal plate 50 is a plate body provided perpendicular to the main surfaces of the pair of glass plates 10 and 11.
 ここで、水分の浸入方向がガラス板10及びガラス板11の主面に沿った方向であるので、金属板50をガラス板10及びガラス板11に垂直に設けることで、金属板50を水分の浸入方向に交差するように配置することができる。したがって、水分の浸入をより効果的に抑制することができる。 Here, since the moisture intrusion direction is a direction along the main surfaces of the glass plate 10 and the glass plate 11, the metal plate 50 is provided perpendicular to the glass plate 10 and the glass plate 11, so that the metal plate 50 is It can arrange | position so that it may cross | intersect an intrusion direction. Therefore, the intrusion of moisture can be more effectively suppressed.
 また、例えば、金属板50は、略矩形の板体であり、金属板50の各辺は、一対のガラス板10及びガラス板11の間隔と略同じ長さ又は当該間隔以上の長さである。 Further, for example, the metal plate 50 is a substantially rectangular plate body, and each side of the metal plate 50 has a length that is substantially the same as or longer than the distance between the pair of glass plates 10 and 11. .
 これにより、金属板50の各辺がガラス板10及びガラス板11の間隔と略同じ又は当該間隔以上の長さであるので、水分は、少なくとも当該間隔と同じ長さの経路を迂回する必要がある(図6B参照)。したがって、水分の浸入をより効果的に抑制することができる。 Thereby, since each side of the metal plate 50 is substantially the same as the interval between the glass plate 10 and the glass plate 11 or longer than the interval, the moisture needs to bypass a route having at least the same length as the interval. Yes (see FIG. 6B). Therefore, the intrusion of moisture can be more effectively suppressed.
 なお、本実施の形態では、図6Bに示すように、凹部23が当該間隔の中央付近に設けられている。このため、必要以上に大きな金属板50を設けたとしても、水分が浸入する最短経路は、ガラス板10又はガラス板11に沿った経路(図6Bの太破線)になる。つまり、必要以上に大きな金属板50を設けたとしても、水分の浸入の抑制効果は、ほとんど向上しない。 In the present embodiment, as shown in FIG. 6B, the recess 23 is provided near the center of the interval. For this reason, even if the metal plate 50 larger than necessary is provided, the shortest path through which moisture enters is a path along the glass plate 10 or the glass plate 11 (thick broken line in FIG. 6B). That is, even if the metal plate 50 larger than necessary is provided, the effect of suppressing the entry of moisture hardly improves.
 したがって、本実施の形態のように、金属板50の形状(Y軸方向に見た場合の形状)は、ガラス板10及びガラス板11の間隔を一辺とする正方形でもよい。これにより、金属板50の材料を削減し、光学デバイス100を軽量化することができ、また、コストを削減することができる。あるいは、金属板50の形状(Y軸方向に見た場合の形状)は、ガラス板10及びガラス板11の間隔を直径とする円形でもよい。 Therefore, as in the present embodiment, the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) may be a square with the interval between the glass plate 10 and the glass plate 11 as one side. Thereby, the material of the metal plate 50 can be reduced, the optical device 100 can be reduced in weight, and the cost can be reduced. Alternatively, the shape of the metal plate 50 (the shape when viewed in the Y-axis direction) may be a circle whose diameter is the distance between the glass plate 10 and the glass plate 11.
 また、例えば、複層ガラス1は、さらに、金属板50に接続された導電性の端子40を備え、電極配線30は、端子40に接続されることで、金属板50に電気的に接続されている。 For example, the multilayer glass 1 further includes a conductive terminal 40 connected to the metal plate 50, and the electrode wiring 30 is electrically connected to the metal plate 50 by being connected to the terminal 40. ing.
 これにより、端子40を利用することで、金属板50と電極配線30との電気的な接続を容易に行うことができる。例えば、電気溶接(例えば、抵抗溶接)によって電極配線30と端子40とを強固に物理的に接続することができる。同様に、端子40と金属板50とを強固に物理的に接続することができる。したがって、電極配線30が金属板50から脱離することを抑制することができ、光学デバイス100(及び複層ガラス1)の信頼性を高めることができる。 Thereby, the electrical connection between the metal plate 50 and the electrode wiring 30 can be easily performed by using the terminal 40. For example, the electrode wiring 30 and the terminal 40 can be firmly physically connected by electric welding (for example, resistance welding). Similarly, the terminal 40 and the metal plate 50 can be firmly physically connected. Accordingly, the electrode wiring 30 can be prevented from being detached from the metal plate 50, and the reliability of the optical device 100 (and the multilayer glass 1) can be improved.
 なお、上述したように、本実施の形態では、引き出し配線60は、金属板50の中央近傍に接続されている。水分は、引き出し配線60に沿って浸入しやすいので、金属板50の中央近傍に引き出し配線60を接続することで、水分の迂回経路を長くすることができる。したがって、水分の浸入をより効果的に抑制することができる。 As described above, in the present embodiment, the lead-out wiring 60 is connected to the vicinity of the center of the metal plate 50. Since moisture easily enters along the extraction wiring 60, the moisture bypass path can be lengthened by connecting the extraction wiring 60 near the center of the metal plate 50. Therefore, the intrusion of moisture can be more effectively suppressed.
 [窓]
 上述した光学デバイス100(及び複層ガラス1)は、例えば、建造物又は車両などの窓として利用することができる。すなわち、光学デバイス100は、いわゆるスマートウィンドウとして利用することができる。
[window]
The optical device 100 (and the multilayer glass 1) described above can be used as, for example, a window of a building or a vehicle. That is, the optical device 100 can be used as a so-called smart window.
 このとき、複数の光学デバイス100を積層して窓として利用することができる。 At this time, a plurality of optical devices 100 can be stacked and used as a window.
 図7は、本実施の形態に係る光学デバイスを複数備える窓200を示す断面図である。 FIG. 7 is a cross-sectional view showing a window 200 including a plurality of optical devices according to the present embodiment.
 図7に示すように、窓200は、光学デバイス101と、光学デバイス102と、光学デバイス103と、サッシ210と、サッシ220とを備える。 As shown in FIG. 7, the window 200 includes an optical device 101, an optical device 102, an optical device 103, a sash 210, and a sash 220.
 光学デバイス101、光学デバイス102及び光学デバイス103は、上述した光学デバイス100に相当する。光学デバイス101、光学デバイス102及び光学デバイス103はそれぞれ、異なる光学特性を変化させることができる。つまり、光学デバイス101、光学デバイス102及び光学デバイス103はそれぞれ、異なる光学素子110を備える。 The optical device 101, the optical device 102, and the optical device 103 correspond to the optical device 100 described above. Each of the optical device 101, the optical device 102, and the optical device 103 can change different optical characteristics. That is, the optical device 101, the optical device 102, and the optical device 103 each include a different optical element 110.
 光学デバイス101は、例えば、光散乱性を変更可能な光学素子111を備える。例えば、光学素子111は、光散乱性を変更可能な液晶素子である。光学デバイス101は、電圧の印加に応じて、光の散乱及び透過を切り替える。光学デバイス101の引き出し配線61は、例えば、サッシ220を通って駆動回路又は電源回路(図示しない)に接続されている。 The optical device 101 includes, for example, an optical element 111 that can change the light scattering property. For example, the optical element 111 is a liquid crystal element whose light scattering property can be changed. The optical device 101 switches between scattering and transmission of light according to application of a voltage. The lead wiring 61 of the optical device 101 is connected to a drive circuit or a power supply circuit (not shown) through, for example, the sash 220.
 光学デバイス102は、例えば、光反射性を変更可能な光学素子112を備える。例えば、光学素子112は、光反射性を変更可能なエレクトロクロミック素子である。光学デバイス102は、電圧の印加に応じて、光の反射及び透過を切り替える。光学デバイス102の引き出し配線62は、例えば、サッシ220を通って駆動回路又は電源回路(図示しない)に接続されている。 The optical device 102 includes, for example, an optical element 112 that can change light reflectivity. For example, the optical element 112 is an electrochromic element whose light reflectivity can be changed. The optical device 102 switches between reflection and transmission of light according to application of a voltage. The lead wiring 62 of the optical device 102 is connected to, for example, a drive circuit or a power supply circuit (not shown) through the sash 220.
 光学デバイス103は、例えば、自発光可能な光学素子113を備える。例えば、光学素子113は、有機EL素子である。光学デバイス103は、電圧の印加に応じて、点灯(発光)及び消灯を切り替える。光学デバイス103の引き出し配線63は、例えば、サッシ220を通って駆動回路又は電源回路(図示しない)に接続されている。 The optical device 103 includes, for example, an optical element 113 that can emit light. For example, the optical element 113 is an organic EL element. The optical device 103 switches between lighting (light emission) and light extinction in accordance with voltage application. The lead-out wiring 63 of the optical device 103 is connected to a drive circuit or a power supply circuit (not shown) through the sash 220, for example.
 サッシ210及びサッシ220は、光学デバイス101、光学デバイス102及び光学デバイス103を固定する窓枠に相当する。サッシ210及びサッシ220は、例えば、アルミサッシである。 The sash 210 and the sash 220 correspond to a window frame that fixes the optical device 101, the optical device 102, and the optical device 103. The sash 210 and the sash 220 are, for example, an aluminum sash.
 以上の構成により、例えば、光学デバイス101、光学デバイス102及び光学デバイス103の各々を独立して駆動することで、透過、散乱、反射、点灯又は消灯の各状態(モード)の組み合わせを実現することができる。例えば、透過かつ消灯の場合、窓200を介して反対側が視認可能になるので、窓200を通常の窓として利用することができる。また、例えば、反射かつ点灯の場合、窓200を照明として利用することができる。 With the above configuration, for example, by combining each of the optical device 101, the optical device 102, and the optical device 103 independently, a combination of each state (mode) of transmission, scattering, reflection, lighting, or extinction is realized. Can do. For example, in the case of transmission and light extinction, the opposite side becomes visible through the window 200, so that the window 200 can be used as a normal window. For example, in the case of reflection and lighting, the window 200 can be used as illumination.
 (変形例1)
 以下では、上記の実施の形態に係る光学デバイス及び複層ガラスの変形例1について説明する。
(Modification 1)
Below, the optical device which concerns on said embodiment, and the modification 1 of multilayer glass are demonstrated.
 例えば、上記の実施の形態に係る光学デバイス100(及び複層ガラス1)では、金属板50が凸部51を有する場合について示したが、これに限らない。金属板50は、凸部51を有しなくてもよい。 For example, in the optical device 100 (and the multi-layer glass 1) according to the above-described embodiment, the case where the metal plate 50 has the convex portion 51 is shown, but the present invention is not limited thereto. The metal plate 50 may not have the convex portion 51.
 図8は、本変形例に係る光学デバイスが備える電極配線30と金属板50Aとの接続部分を示す断面図である。なお、図8は、図3に示す領域IVに相当する。 FIG. 8 is a cross-sectional view showing a connection portion between the electrode wiring 30 and the metal plate 50A included in the optical device according to this modification. 8 corresponds to the region IV shown in FIG.
 本変形例に係る光学デバイスは、図8に示すように、端子40及び金属板50の代わりに端子40A及び金属板50Aを備える。なお、金属板50Aは、凸部51を有しない点を除いて、金属板50と同じである。 The optical device according to this modification includes a terminal 40A and a metal plate 50A instead of the terminal 40 and the metal plate 50, as shown in FIG. The metal plate 50 </ b> A is the same as the metal plate 50 except that the metal plate 50 </ b> A does not have the convex portion 51.
 端子40Aは、凹部23を介して金属板50A側に突出している。端子40Aは、凹部23の外側で金属板50Aに接続されている。なお、端子40Aの機能及び材料などは、端子40と同様である。 The terminal 40A protrudes to the metal plate 50A side through the recess 23. The terminal 40A is connected to the metal plate 50A outside the recess 23. The function and material of the terminal 40A are the same as those of the terminal 40.
 これにより、中空部材21と金属板50Aとは、互いに接触しないように離間されているので、スペーサ20と金属板50Aとは、電気的に絶縁されている。 Thereby, since the hollow member 21 and the metal plate 50A are separated from each other so as not to contact each other, the spacer 20 and the metal plate 50A are electrically insulated.
 以上のように、金属板50Aが凸部51を有しない場合であっても、スペーサ20と金属板50Aとの電気的な絶縁を確保しつつ、電極配線30と金属板50Aとを電気的に接続することができる。 As described above, even when the metal plate 50A does not have the convex portion 51, the electrode wiring 30 and the metal plate 50A are electrically connected while securing the electrical insulation between the spacer 20 and the metal plate 50A. Can be connected.
 (変形例2)
 続いて、上記の実施の形態に係る光学デバイス及び複層ガラスの変形例2について説明する。
(Modification 2)
Then, the optical device which concerns on said embodiment, and the modification 2 of a multilayer glass are demonstrated.
 例えば、上記の変形例1に係る光学デバイス(及び複層ガラス)は、端子40を備える場合について示したが、これに限らない。光学デバイス(及び複層ガラス)は、端子40を備えなくてもよい。 For example, although the optical device (and the multi-layer glass) according to the above-described modification example 1 has been described with respect to the case where the terminal 40 is provided, the present invention is not limited thereto. The optical device (and the multilayer glass) may not include the terminal 40.
 図9は、本変形例に係る光学デバイスが備える電極配線30Aと金属板50Aとの接続部分を示す断面図である。なお、図9は、図3に示す領域IVに相当する。 FIG. 9 is a cross-sectional view showing a connection portion between the electrode wiring 30A and the metal plate 50A provided in the optical device according to this modification. 9 corresponds to the region IV shown in FIG.
 本変形例に係る光学デバイスでは、図9に示すように、端子40が設けられていない。電極配線30Aは、スペーサ20を貫通し、金属板50Aに直接接続されている。電極配線30Aと金属板50Aとは、例えば、電気溶接によって接続されている。 In the optical device according to this modification, the terminal 40 is not provided as shown in FIG. The electrode wiring 30A penetrates the spacer 20 and is directly connected to the metal plate 50A. The electrode wiring 30A and the metal plate 50A are connected by, for example, electric welding.
 以上のように、光学デバイス(及び複層ガラス)が端子40を備えない場合であっても、スペーサ20と金属板50Aとの電気的な絶縁を確保しつつ、電極配線30と金属板50Aとを電気的に接続することができる。 As described above, even when the optical device (and the multi-layer glass) does not include the terminal 40, the electrode wiring 30 and the metal plate 50A are secured while ensuring the electrical insulation between the spacer 20 and the metal plate 50A. Can be electrically connected.
 (その他)
 以上、本発明に係る複層ガラス及び光学デバイスについて、上記実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
(Other)
As described above, the multilayer glass and the optical device according to the present invention have been described based on the above embodiment and the modifications thereof, but the present invention is not limited to the above embodiment.
 例えば、上記の実施の形態では、金属層の一例として金属板50を説明したが、これに限らない。例えば、スペーサ20に絶縁層を介して積層された金属膜などを金属板50の代わりに用いてもよい。 For example, in the above-described embodiment, the metal plate 50 has been described as an example of the metal layer, but is not limited thereto. For example, a metal film laminated on the spacer 20 via an insulating layer may be used instead of the metal plate 50.
 また、例えば、スペーサ20と金属板50とが接触していてもよい。この場合、スペーサ20が、例えば樹脂材料(シール材より水分透過率の低い)などの絶縁材料から形成されていれば、スペーサ20と金属板50との電気的な絶縁を確保することができる。 Further, for example, the spacer 20 and the metal plate 50 may be in contact with each other. In this case, if the spacer 20 is formed of an insulating material such as a resin material (having a lower moisture permeability than the sealing material), electrical insulation between the spacer 20 and the metal plate 50 can be ensured.
 また、例えば、スペーサ20と金属板50とが導通していてもよい。このとき、電極配線30及び金属板50が複数設けられている場合は、例えば、スペーサ20を分離することにより、複数の電極配線30が短絡しないようにすればよい。 Further, for example, the spacer 20 and the metal plate 50 may be electrically connected. At this time, when a plurality of electrode wirings 30 and metal plates 50 are provided, for example, the spacers 20 may be separated so that the plurality of electrode wirings 30 are not short-circuited.
 また、例えば、金属板50の各辺(又は直径)は、ガラス板10及びガラス板11の間隔より短くてもよい。すなわち、上記の実施の形態に係る金属板50より面積が小さくてもよい。面積が小さい金属板50であっても、水分は金属板50を迂回する必要があるので、水分の浸入を抑制することができる。 Also, for example, each side (or diameter) of the metal plate 50 may be shorter than the distance between the glass plate 10 and the glass plate 11. That is, the area may be smaller than that of the metal plate 50 according to the above embodiment. Even in the case of the metal plate 50 having a small area, moisture needs to bypass the metal plate 50, so that moisture can be prevented from entering.
 また、例えば、金属板50は、内部空間12に設けられていてもよい。具体的には、金属板50は、スペーサ20の貫通孔24を覆うように設けられていてもよい。 For example, the metal plate 50 may be provided in the internal space 12. Specifically, the metal plate 50 may be provided so as to cover the through hole 24 of the spacer 20.
 このとき、金属板50とスペーサ20との間には、樹脂材料などが充填されている。また、引き出し配線60がスペーサ20の内部に挿通されて、金属板50に電気的に接続される。つまり、引き出し配線60は、スペーサ20の内部に挿通された電極配線に相当する。 At this time, a resin material or the like is filled between the metal plate 50 and the spacer 20. In addition, the lead wiring 60 is inserted into the spacer 20 and is electrically connected to the metal plate 50. That is, the lead wiring 60 corresponds to an electrode wiring inserted into the spacer 20.
 この場合においても、水分は、スペーサ20を通った後、金属板50を迂回する必要がある。したがって、金属板50が設けられていない場合に比べて、水分の浸入経路が長くなるので、水分が内部空間12に浸入するのを抑制することができる。 In this case as well, it is necessary for the moisture to bypass the metal plate 50 after passing through the spacer 20. Therefore, compared with the case where the metal plate 50 is not provided, the moisture intrusion path becomes longer, so that the moisture can be prevented from entering the internal space 12.
 また、例えば、上記の実施の形態では、一対のガラス板10及びガラス板11は、異なる形状を有してもよい。例えば、ガラス板10が矩形の板体であり、ガラス板11が円形の板体でもよい。この場合、ガラス板10及びガラス板11の一方は、平面視において、他方の外側にはみ出ないように当該他方の内側に配置されている。 Also, for example, in the above-described embodiment, the pair of glass plates 10 and the glass plate 11 may have different shapes. For example, the glass plate 10 may be a rectangular plate, and the glass plate 11 may be a circular plate. In this case, one of the glass plate 10 and the glass plate 11 is disposed inside the other so as not to protrude outside the other in plan view.
 また、例えば、上記の実施の形態では、内部空間12に光学素子110が設けられた例について示したが、これに限らない。内部空間12には、光学素子110は設けられていなくてもよい。例えば、光学デバイス100は、光学素子110ではなく、電極配線30に接続された別のデバイス(例えば、ヒータなどの発熱素子)を備えてもよい。 For example, in the above-described embodiment, the example in which the optical element 110 is provided in the internal space 12 has been described, but the present invention is not limited thereto. The optical element 110 may not be provided in the internal space 12. For example, the optical device 100 may include another device (for example, a heating element such as a heater) connected to the electrode wiring 30 instead of the optical element 110.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1、1a 複層ガラス
10、11 ガラス板
20 スペーサ
23 凹部
30、30a、30A 電極配線
40、40A 端子
50、50A 金属板(金属層)
51 凸部
100、100a、101、102、103 光学デバイス
110、111、112、113 光学素子
1, 1a Multi-layer glass 10, 11 Glass plate 20 Spacer 23 Recess 30, 30a, 30A Electrode wiring 40, 40A Terminal 50, 50A Metal plate (metal layer)
51 Convex parts 100, 100a, 101, 102, 103 Optical devices 110, 111, 112, 113 Optical elements

Claims (7)

  1.  互いに対向して配置された一対のガラス板と、
     前記一対のガラス板の間隔を形成するスペーサと、
     前記スペーサの内部に挿通された電極配線と、
     前記一対のガラス板の間に介在し、かつ、前記スペーサの一部を介して前記電極配線と電気的に接続されている金属層とを備え、
     前記金属層は、前記スペーサの前記一部を覆うように設けられている
     複層ガラス。
    A pair of glass plates arranged opposite to each other;
    A spacer that forms an interval between the pair of glass plates;
    Electrode wiring inserted into the spacer;
    A metal layer interposed between the pair of glass plates and electrically connected to the electrode wiring through a part of the spacer;
    The metal layer is provided so as to cover the part of the spacer.
  2.  前記スペーサは、前記電極配線及び前記金属層と電気的に絶縁されている
     請求項1に記載の複層ガラス。
    The multilayer glass according to claim 1, wherein the spacer is electrically insulated from the electrode wiring and the metal layer.
  3.  前記金属層は、前記スペーサに向かって突出した凸部を有し、
     前記スペーサの前記一部は、前記凸部に対向する位置に設けられた凹部である
     請求項1又は2に記載の複層ガラス。
    The metal layer has a protrusion protruding toward the spacer,
    The multilayer glass according to claim 1, wherein the part of the spacer is a concave portion provided at a position facing the convex portion.
  4.  前記金属層は、前記一対のガラス板の主面に垂直に設けられた板体である
     請求項1~3のいずれか1項に記載の複層ガラス。
    The multi-layer glass according to any one of claims 1 to 3, wherein the metal layer is a plate body provided perpendicular to a main surface of the pair of glass plates.
  5.  前記金属層は、略矩形の板体であり、
     前記金属層の各辺は、前記一対のガラス板の間隔と略同じ長さ又は当該間隔以上の長さである
     請求項4に記載の複層ガラス。
    The metal layer is a substantially rectangular plate,
    5. The multilayer glass according to claim 4, wherein each side of the metal layer has substantially the same length as the interval between the pair of glass plates or a length equal to or longer than the interval.
  6.  前記複層ガラスは、さらに、前記金属層に接続された導電性の端子を備え、
     前記電極配線は、前記端子に接続されることで、前記金属層に電気的に接続されている
     請求項1~5のいずれか1項に記載の複層ガラス。
    The multilayer glass further includes a conductive terminal connected to the metal layer,
    The multilayer glass according to any one of claims 1 to 5, wherein the electrode wiring is electrically connected to the metal layer by being connected to the terminal.
  7.  請求項1~6のいずれか1項に記載の複層ガラスを備える光学デバイスであって、
     前記スペーサは、環状に設けられ、
     前記光学デバイスは、
     前記一対のガラス板と前記スペーサとによって封止され、前記電極配線に接続された光学素子を備える
     光学デバイス。
    An optical device comprising the multilayer glass according to any one of claims 1 to 6,
    The spacer is provided in an annular shape,
    The optical device is
    An optical device comprising an optical element sealed by the pair of glass plates and the spacer and connected to the electrode wiring.
PCT/JP2016/000244 2015-01-29 2016-01-19 Insulated glazing and optical device WO2016121332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015894A JP2016141573A (en) 2015-01-29 2015-01-29 Double glazing and optical device
JP2015-015894 2015-07-16

Publications (1)

Publication Number Publication Date
WO2016121332A1 true WO2016121332A1 (en) 2016-08-04

Family

ID=56542957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000244 WO2016121332A1 (en) 2015-01-29 2016-01-19 Insulated glazing and optical device

Country Status (2)

Country Link
JP (1) JP2016141573A (en)
WO (1) WO2016121332A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897888B2 (en) 2010-12-08 2018-02-20 View, Inc. Spacers for insulated glass units
US9910336B2 (en) 2010-12-08 2018-03-06 View, Inc. Spacers and connectors for insulated glass units
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
WO2019141749A1 (en) 2018-01-22 2019-07-25 Saint-Gobain Glass France Spacer for insulating glazings, comprising an integrated ribbon cable
US10975612B2 (en) 2014-12-15 2021-04-13 View, Inc. Seals for electrochromic windows
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US20220154522A1 (en) * 2019-03-29 2022-05-19 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit
US11346149B2 (en) * 2018-01-22 2022-05-31 Saint-Gobain Glass France Insulating glazing, window and production method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015384B2 (en) 2017-06-08 2021-05-25 Apple Inc. Light transmitting panel with active components
EP3669042A1 (en) * 2017-10-12 2020-06-24 Apple Inc. Light transmitting panel with active components
EP3743583B1 (en) * 2018-01-22 2022-01-26 Saint-Gobain Glass France Spacer for insulated glazing units with electrical wire integrated in hollow chamber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098856A (en) * 1999-09-30 2001-04-10 Matsushita Seiko Co Ltd Double glazing
US20130319756A1 (en) * 2012-06-05 2013-12-05 Sage Electrochromics, Inc. Electrical feed-through spacer and connectivity
JP2014527502A (en) * 2011-07-20 2014-10-16 エージーシー グラス ユーロップ Insulated flat glass panel including at least one internal space including a layer of insulating gas, and method for manufacturing such flat glass panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098856A (en) * 1999-09-30 2001-04-10 Matsushita Seiko Co Ltd Double glazing
JP2014527502A (en) * 2011-07-20 2014-10-16 エージーシー グラス ユーロップ Insulated flat glass panel including at least one internal space including a layer of insulating gas, and method for manufacturing such flat glass panel
US20130319756A1 (en) * 2012-06-05 2013-12-05 Sage Electrochromics, Inc. Electrical feed-through spacer and connectivity

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11927866B2 (en) 2009-12-22 2024-03-12 View, Inc. Self-contained EC IGU
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
US9910336B2 (en) 2010-12-08 2018-03-06 View, Inc. Spacers and connectors for insulated glass units
US11960189B2 (en) 2010-12-08 2024-04-16 View, Inc. Spacers for insulated glass units
US10444589B2 (en) 2010-12-08 2019-10-15 View, Inc. Spacers and connectors for insulated glass units
US10782583B2 (en) 2010-12-08 2020-09-22 View, Inc. Spacers for insulated glass units
US10901286B2 (en) 2010-12-08 2021-01-26 View, Inc. Spacers and connectors for insulated glass units
US9897888B2 (en) 2010-12-08 2018-02-20 View, Inc. Spacers for insulated glass units
US11740528B2 (en) 2010-12-08 2023-08-29 View, Inc. Spacers for insulated glass units
US10975612B2 (en) 2014-12-15 2021-04-13 View, Inc. Seals for electrochromic windows
US11555346B2 (en) 2014-12-15 2023-01-17 View, Inc. Seals for electrochromic windows
US11346149B2 (en) * 2018-01-22 2022-05-31 Saint-Gobain Glass France Insulating glazing, window and production method
US11168514B2 (en) 2018-01-22 2021-11-09 Saint-Gobain Glass France Spacer for insulating glazings comprising an integrated ribbon cable
CN111655960A (en) * 2018-01-22 2020-09-11 法国圣戈班玻璃厂 Spacer for insulating glass windows comprising an integrated ribbon cable
WO2019141749A1 (en) 2018-01-22 2019-07-25 Saint-Gobain Glass France Spacer for insulating glazings, comprising an integrated ribbon cable
US20220154522A1 (en) * 2019-03-29 2022-05-19 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit
EP3950625A4 (en) * 2019-03-29 2022-06-08 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit

Also Published As

Publication number Publication date
JP2016141573A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
WO2016121332A1 (en) Insulated glazing and optical device
CN108027542B (en) Electrochromic device assembly
WO2016121331A1 (en) Double glazed glass and optical device
US7719751B2 (en) Electrical contact technique for electrochromic windows
US8742526B2 (en) Photoelectric conversion device
US20170122028A1 (en) Light control element and building material provided with same
JP2017105664A (en) Multiple glass
JP2012524291A (en) Transparency controlled electrochromic device
KR102471390B1 (en) Insulation glazing with electrical connectors
US20210115726A1 (en) Corner connector for insulating glazing units with an electrical supply line
TW201924498A (en) Integrated glazing unit with electronic device
JP2005078906A (en) Organic electroluminescence panel
US9691306B2 (en) Transparent display board with structure of double layer type and manufacturing method thereof
CN116500831A (en) Photoelectric functional film, light-transmitting component, preparation method of light-transmitting component and vehicle
JP6403067B2 (en) Multi-layer glass and optical device
WO2017187913A1 (en) Light emitting system
US10566503B2 (en) Multilayer glass
JP2015115191A (en) Organic electroluminescent element, manufacturing method thereof and luminaire
JPWO2016017061A1 (en) Organic EL device and manufacturing method thereof
WO2016006171A1 (en) Organic el element and lighting device
CN220569048U (en) Electrochromic diaphragm, electrochromic device and terminal product
WO2023011045A1 (en) Conductive base structure, electrochromic device, and electrochromic apparatus
WO2005057986A1 (en) Surface luminance and manufacturing method thereof
US20220154522A1 (en) Glass panel unit
JP4333086B2 (en) Plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742937

Country of ref document: EP

Kind code of ref document: A1