WO2014122938A1 - Organic electroluminescence element and illumination device - Google Patents

Organic electroluminescence element and illumination device Download PDF

Info

Publication number
WO2014122938A1
WO2014122938A1 PCT/JP2014/000667 JP2014000667W WO2014122938A1 WO 2014122938 A1 WO2014122938 A1 WO 2014122938A1 JP 2014000667 W JP2014000667 W JP 2014000667W WO 2014122938 A1 WO2014122938 A1 WO 2014122938A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary electrode
electrode
wiring
light
pattern
Prior art date
Application number
PCT/JP2014/000667
Other languages
French (fr)
Japanese (ja)
Inventor
桐原 昌男
仁路 高野
浩史 久保田
和幸 山江
真 奥村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201480007886.0A priority Critical patent/CN104982092B/en
Priority to JP2014560687A priority patent/JP6249340B2/en
Publication of WO2014122938A1 publication Critical patent/WO2014122938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/88Terminals, e.g. bond pads

Definitions

  • the present invention relates to an organic electroluminescence element and a lighting device using the same.
  • organic electroluminescence device having a general structure (hereinafter also referred to as “organic EL device”), a light transmissive electrode, a functional layer including a light emitting layer, and a counter electrode are laminated on the surface of a light transmissive substrate. It has been known. It is known to obtain a planar light emitting element (illumination panel) using such an organic EL element. In the organic EL element, light emitted from the organic light emitting layer by applying a voltage between the anode and the cathode is extracted through the light transmissive electrode and the substrate.
  • a light transmissive electrode is formed of a light transmissive and conductive material (ITO or the like).
  • the material of the light transmissive electrode has high specific resistance and is not very conductive. Absent.
  • a grid-like auxiliary electrode is formed of a material having higher conductivity than the light transmissive electrode, and the electric conductivity of the light transmissive electrode is supplemented with this auxiliary electrode to increase the conductivity of the electrode. is there.
  • Patent Document 1 discloses an organic electroluminescence display device in which wiring is provided so as to be electrically connected to a light transmissive electrode.
  • the portion where the auxiliary electrode is formed is usually a portion that is not transparent and cannot extract light, a grid-like non-light emitting shape may be visually recognized corresponding to the auxiliary electrode. And if the non-light-emitting shape is confirmed, there exists a possibility that problems, such as reducing the designability in the illumination use etc., may occur.
  • the portion where the auxiliary electrode is formed cannot extract light, the light emitted in this portion cannot be extracted outside and is wasted, which may reduce the light emission efficiency.
  • the object of the present invention is to improve the electrical conductivity efficiently by the auxiliary electrode, to suppress the non-light-emitting shape of the auxiliary electrode from being visually recognized, and to provide organic electroluminescence with excellent light extraction properties. It is in providing an element and an illuminating device.
  • the organic electroluminescent element according to the present invention includes a substrate, an organic light emitting body having a functional layer including a light transmissive electrode and a light emitting layer, and a counter electrode, and a sealing material.
  • the organic light emitter is covered and sealed with the sealing material.
  • An auxiliary electrode having a grid pattern is provided by a wiring material in contact with the light transmissive electrode.
  • the organic electroluminescence element has a light transmissive portion where the wiring material is not provided at an intersection position of the grid-like pattern constituting the auxiliary electrode.
  • An insulating film is provided on the surface of the functional layer on the auxiliary electrode side at a position overlapping the auxiliary electrode in plan view.
  • the light transmissive portion is formed by the wiring material being separated at the intersecting position.
  • the auxiliary electrode preferably has a continuous wiring portion that is connected to the wiring material at the crossing position and passes through the crossing position, and the continuous wiring portion has a bent shape at the crossing position.
  • the auxiliary electrode has a wiring continuous portion that passes through the intersection position by connecting the wiring materials at the intersection position, and the wiring continuous portion has a substantially linear shape at the intersection position. is there.
  • the auxiliary electrode is preferably formed so as to be in contact with the surface of the light transmissive electrode opposite to the functional layer side, and the side surface is preferably an inclined surface.
  • connection wiring for connecting the wiring members is provided at the intersection or in the vicinity thereof.
  • the illumination device according to the present invention includes the organic electroluminescence element described above.
  • the electroconductivity can be efficiently improved by the auxiliary electrode, and the non-light-emitting shape of the auxiliary electrode can be suppressed from being visually recognized, and the organic electroluminescence excellent in light extraction property An element and a lighting device can be obtained.
  • FIG. 1 consists of FIG. 1A and FIG. 1B.
  • FIG. 1 shows an example of an embodiment of an organic electroluminescence element.
  • FIG. 1A is a cross-sectional view.
  • FIG. 1B is a partially exploded plan view.
  • FIG. 2 is composed of FIGS. 2A and 2B.
  • FIG. 2A is a plan view showing an example of the form of the auxiliary electrode.
  • FIG. 2B is an enlarged cross-sectional view of a portion where the auxiliary electrode is provided.
  • FIG. 3 is composed of FIGS. 3A and 3B.
  • FIG. 3 shows another example of the embodiment of the organic electroluminescence element.
  • FIG. 3A is a cross-sectional view.
  • FIG. 3B is an enlarged cross-sectional view of a portion where the auxiliary electrode is provided.
  • FIG. 4 is composed of FIGS. 4A and 4B.
  • FIG. 4 shows another example of the embodiment of the organic electroluminescence element.
  • FIG. 4A is a partially exploded plan view.
  • FIG. 4B is a plan view showing the auxiliary electrode.
  • FIG. 5 is a plan view illustrating a part of the organic electroluminescence element according to another embodiment and partially disassembled.
  • FIG. 6 is composed of FIGS. 6A to 6F.
  • FIG. 6A shows an example of the auxiliary electrode pattern.
  • FIG. 6B is an example of the auxiliary electrode pattern.
  • FIG. 6C is an example of the auxiliary electrode pattern.
  • FIG. 6D shows an example of the auxiliary electrode pattern.
  • FIG. 6E shows an example of the auxiliary electrode pattern.
  • FIG. 6F is an example of the auxiliary electrode pattern.
  • FIG. 7 is composed of FIGS. 7A, 7B and 7C.
  • FIG. 7A is an example of a pattern of auxiliary electrodes.
  • FIG. 7B is an example of the auxiliary electrode pattern.
  • FIG. 7C shows an example of the auxiliary electrode pattern.
  • FIG. 8 is composed of FIGS. 8A and 8B.
  • FIG. 8 is an explanatory diagram of a grid.
  • FIG. 8A is an example of a square lattice.
  • FIG. 8B is an example of a hexagonal lattice. It is a perspective view which shows an example of an illuminating device.
  • the organic electroluminescence element (organic EL element) of the present invention includes a substrate 1, an organic light-emitting body 5, and a sealing material 6.
  • the organic light emitter 5 includes a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4.
  • the organic light emitter 5 is covered and sealed with a sealing material 6.
  • An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2.
  • the organic EL element has a light transmissive portion 15 in which the wiring material 8 is not provided at the intersection position of the grid-like pattern constituting the auxiliary electrode 7.
  • an insulating film 10 is provided at a position overlapping the auxiliary electrode 7 in plan view.
  • FIG. 1 shows an example of an embodiment of an organic EL element.
  • FIG. 1 consists of FIG. 1A and FIG. 1B.
  • an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of a substrate 1.
  • the organic light emitter 5 is covered and sealed with a sealing material 6.
  • An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2.
  • the wiring member 8 is interrupted at the intersecting position of the grid-like pattern constituting the auxiliary electrode 7. Since the wiring material 8 is not provided at the intersection position, a light transmissive portion 15 is formed.
  • an insulating film 10 is provided on the surface of the functional layer 3 on the auxiliary electrode 7 side at a position overlapping the auxiliary electrode 7 in plan view.
  • the conductivity of the light transmissive electrode 2 can be enhanced by the auxiliary electrode 7.
  • the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do.
  • the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion without the auxiliary electrode 7 from which light can be extracted to the outside, and light can be emitted efficiently. . Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. It can be obtained. This will be further described below.
  • FIG. 1A shows a cross-sectional view of an organic EL element.
  • FIG. 1A for easy understanding of the element configuration, the end on the first electrode lead-out portion 12a side is shown on the left side, and the end on the second electrode lead-out portion 12b side is shown on the right side.
  • FIG. 1B shows a state in which the organic EL element of FIG. 1A is viewed in plan (when viewed from a direction perpendicular to the surface of the substrate 1).
  • the sealing material 6 is removed for easy understanding of the internal configuration of the element, and the sealing adhesive portion 14 provided in the region to which the sealing material 6 is bonded is indicated by hatching.
  • the hidden auxiliary electrode 7 (a plurality of wiring members 8 constituting the auxiliary electrode 7) is indicated by a broken line.
  • the substrate 1 is preferably a transparent substrate having optical transparency.
  • the substrate 1 can be composed of a glass substrate.
  • the glass has low moisture permeability, so that moisture can be prevented from entering from the substrate 1 side.
  • substrate 1 may be comprised with the composite material of glass and another material.
  • This resin layer may be provided on the surface of the substrate 1 on the organic light emitter 5 side. Examples of the light extraction resin layer include a layer having a scattering structure.
  • the resin layer may be provided by attaching a plastic material. As the plastic material, PET, PEN, or the like can be used.
  • the resin layer may be a layer having a multilayer structure of a high-refractive index layer and a low-refractive index layer, or a fine uneven structure provided at the interface of the multilayer structure.
  • the organic light-emitting body 5 is formed by a laminate of the light transmissive electrode 2, the functional layer 3 and the counter electrode 4.
  • the light transmissive property means that light can be transmitted, and includes a case where it is completely transparent and a case where it is translucent.
  • the light transmission includes light transmission.
  • the region where the organic light emitter 5 is provided is a central region of the substrate 1 in plan view (when viewed from a direction perpendicular to the substrate surface).
  • the organic light emitter 5 is covered and sealed with a sealing material 6 bonded to the substrate 1 at an outer peripheral position surrounding the organic light emitter 5, and the organic light emitter 5 is disposed inside the sealing region. Yes.
  • the light transmissive electrode 2, the functional layer 3, and the counter electrode 4 are provided in this order from the substrate 1 side.
  • the counter electrode 4 is provided from the substrate 1 side as a so-called reverse layer structure.
  • the element in which the functional layer 3 and the light transmissive electrode 2 are provided in this order may be used.
  • the light transmissive electrode 2 is a light transmissive electrode.
  • the counter electrode 4 is an electrode that is paired with the light transmissive electrode 2.
  • the light transmissive electrode 2 constitutes an anode and the counter electrode 4 constitutes a cathode, but the opposite may be possible.
  • the light transmissive electrode 2 is light transmissive, an electrode on the light extraction side can be formed.
  • the counter electrode 4 may have light reflectivity. In that case, the light from the light emitting layer emitted toward the counter electrode 4 side can be reflected by the counter electrode 4 and extracted from the light transmissive substrate 1 side.
  • the counter electrode 4 may be a light transmissive electrode.
  • the counter electrode 4 When the counter electrode 4 is light transmissive, it is possible to adopt a structure in which light is extracted from the surface (back surface) on the sealing material 6 side.
  • a light reflective layer is provided on the back surface (the surface opposite to the functional layer 3) of the counter electrode 4 to reflect the light traveling in the direction of the counter electrode 4. It is possible to take it out from the substrate 1 side.
  • the light reflective layer may be scattering reflective or specular reflective.
  • the light transmissive electrode 2 can be configured using a transparent electrode material.
  • a conductive metal oxide can be preferably used.
  • the transparent metal oxide include ITO, IZO, AZO and the like.
  • the light transmissive electrode 2 can be formed by sputtering or the like.
  • the thickness of the light transmissive electrode 2 is not particularly limited, but can be, for example, in the range of 10 nm to 1000 nm.
  • the counter electrode 4 can be configured using an appropriate electrode material.
  • the counter electrode 4 can be formed of Al, Ag, or the like.
  • the counter electrode 4 can be formed by vapor deposition or sputtering.
  • the thickness of the counter electrode 4 is not particularly limited, but can be, for example, in the range of 10 nm to 1000 nm.
  • the functional layer 3 is a layer having a function of causing light emission, and is usually composed of a plurality of layers appropriately selected from a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an intermediate layer, and the like. Is.
  • the thickness of the functional layer 3 is not particularly limited, but can be, for example, about 60 to 300 nm.
  • the laminated structure of the functional layer 3 is, in order from the light transmissive electrode 2 side, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection. It can be a layer.
  • the laminated structure is not limited to this, for example, a single layer of a light emitting layer, a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, or a hole transport layer and a light emitting layer.
  • a laminated structure or a laminated structure of a light emitting layer and an electron transport layer can be formed.
  • the light emitting layer may have a single layer structure or a multilayer structure.
  • the light emitting layer may be doped with three red, green, and blue dopant dyes, or red, green, and blue.
  • a light emitting layer may be laminated.
  • a laminated structure that emits light when a voltage is applied between two electrodes sandwiched between two electrodes is used as one light emitting unit, a plurality of light emitting units have a light transmitting property and a conductive property. It may be a multi-unit structure laminated through layers.
  • the multi-unit structure is a structure including a plurality of light emitting units that overlap in the thickness direction between a pair of electrodes (anode and cathode).
  • the sealing material 6 can be formed using a substrate material having low moisture permeability.
  • a glass substrate or the like can be used. Specific examples include soda lime glass and non-alkali glass. Since these are relatively inexpensive glass materials, the manufacturing cost of the element can be suppressed.
  • the sealing material 6 may have a recess for accommodating the organic light-emitting body 5, but may not have it.
  • the sealing material 6 of this embodiment the sealing material 6 has a recess, and a sealing sidewall 6a is formed on the outer periphery by the recess. In the case where the sealing material 6 has a recess, the side of the organic light-emitting body 5 can be covered and sealed, so that the intrusion of moisture can be further suppressed and the sealing performance can be improved.
  • the sealing material 6 having a recess for example, cap glass can be used.
  • cap glass can be used.
  • the sealing material 6 does not have a recess, it is possible to seal the sealing material 6 with the flat surface of the sealing material 6 facing the substrate 1, and the plate-like sealing material 6 is used as it is. Can do.
  • the thickness (height) of the sealing adhesive portion 14 is increased and the spacer for sealing the organic light emitter 5 by the sealing adhesive portion 14 is used. It is necessary to form a side wall.
  • the sealing material 6 is joined to the substrate 1 by a sealing adhesive portion 14 made of an adhesive material.
  • the sealing adhesive portion 14 is provided on the substrate 1 so as to surround the outer periphery of the organic light-emitting body 5.
  • the sealing adhesive portion 14 is formed on the surface of the conductive layer constituting the light transmissive electrode 2 and the surface of the substrate 1 in the gap where the conductive layer is divided. It is provided in contact.
  • the sealing material 6 is bonded to the substrate 1 by the sealing adhesive portion 14, whereby the organic light-emitting body 5 is blocked from the external space and sealed.
  • the material of the sealing adhesion part 14 is comprised by the appropriate material which functions as an adhesive agent, for example, a resinous adhesive material can be used.
  • the resinous adhesive material preferably has moisture resistance.
  • moisture resistance can be improved by containing a desiccant.
  • the resinous adhesive material may be mainly composed of a thermosetting resin or an ultraviolet curable resin.
  • a portion (sealed internal gap) where the organic light-emitting body 5 (and the functional layer 3) is sealed between the substrate 1 and the sealing material 6 may be filled with a filler, A sealed space may be formed.
  • the sealed internal gap is used as a sealed space, it can be easily sealed with the sealing material 6, and the device can be easily manufactured.
  • the sealing space is formed without filling the sealing internal gap with the filler, it is preferable to provide the desiccant 13 in the sealing space. Thereby, even if moisture enters the sealed space, the moisture that has entered can be absorbed.
  • the desiccant 13 can be provided in the sealing space by sticking to the surface of the sealing material 6 on the organic light emitter 5 side.
  • the desiccant 13 may be provided by application.
  • a filler can be comprised with the resin composition with which the desiccant and the hygroscopic agent were mix
  • the filler may be hardened or not hardened.
  • the organic EL element In the organic EL element, a voltage is applied to the light transmissive electrode 2 and the counter electrode 4, and holes and electrons are combined in the functional layer 3 to emit light. Therefore, it is necessary to provide an electrode terminal that is electrically connected to each of the light transmissive electrode 2 and the counter electrode 4 so as to be drawn outside the sealing region.
  • the electrode terminal is a terminal for electrically connecting to the external electrode.
  • the electrode lead portion 12 is formed by drawing the conductive layer constituting the light transmissive electrode 2 to the end portion of the substrate 1.
  • An electrode pad 11 that constitutes an electrode terminal is provided on the surface of the electrode lead-out portion 12.
  • the electrode lead-out portion 12 is provided on the end surface of the substrate 1.
  • the electrode lead-out part 12 is divided into a first electrode lead-out part 12 a that conducts with the light-transmissive electrode 2 and a second electrode lead-out part 12 b that conducts with the counter electrode 4.
  • the electrode lead portion 12 is formed by the conductive layer constituting the light transmissive electrode 2 being drawn to the end portion side of the substrate 1 and extending outside the region where the sealing material 6 is provided. ing. That is, the conductive layer constituting the light transmissive electrode 2 is formed on the surface of the substrate 1 so as to protrude from the sealing region by extending the conductive layer at the end where the first electrode lead portion 12a is provided. .
  • the first electrode lead portion 12 a is configured by an extension portion of the light transmissive electrode 2.
  • the conductive layer constituting the light transmissive electrode 2 protrudes from the sealed region by dividing the conductive layer and extending the divided conductive layer at the end where the second electrode lead portion 12b is provided. And formed on the surface of the substrate 1.
  • the second electrode lead portion 12 b is configured by an extended portion of the conductive layer separated from the light transmissive electrode 2.
  • the second electrode lead-out portion 12b is in contact with the stacked counter electrode 4 inside the sealing region, so that the second electrode lead-out portion 12b and the counter electrode 4 are electrically connected.
  • An electrode pad 11 is provided on the surface of the electrode lead portion 12. Since the electrode pad 11 is formed in the non-light emitting region, it does not have to have light transparency. By providing the electrode pad 11, connection with an external power source can be performed with the electrode pad 11, and electrical connectivity can be improved. Further, by providing the electrode pad 11, it is possible to improve the electrical conductivity of the conductive layers constituting the light transmissive electrode 2 and the electrode lead-out portion 12.
  • the electrode pad 11 may be a layer made of the same material as that of the wiring member 8 constituting the auxiliary electrode 7. Thereby, the electrode pad 11 with high electrical conductivity can be easily formed.
  • the structure of the electrode lead-out portion 12 (the structure in which the electrode is drawn out from the sealing region) is not limited to the structure in the form of FIG. 1, and for example, the first electrode lead-out portion 12a and the second electrode lead-out portion One or both of 12b may be formed using a conductive layer different from the conductive layer constituting the light transmissive electrode 2. Further, in the case of a structure in which the counter electrode 4 is disposed on the substrate 1 side and the light-transmissive electrode 2 is disposed on the sealing material 6 side (a structure in which light is extracted from the sealing material 6 side), The electrode lead portion 12 may be configured by the extended portion.
  • the auxiliary electrode 7 having a grid pattern is provided in contact with the light transmissive electrode 2.
  • the auxiliary electrode 7 is formed of a wiring material 8 made of a conductive material.
  • the auxiliary electrode 7 is formed on the surface of the light transmissive electrode 2 on the functional layer 3 side.
  • the wiring material 8 is formed of a material having a resistance lower than that of the light transmissive electrode 2, and the auxiliary electrode 7 is formed of the wiring material 8, thereby supplementing the electrical conductivity of the light transmissive electrode 2 and increasing the conductivity.
  • ITO formed on a glass substrate with a film thickness of about 50 nm has a sheet resistance of about 70 ⁇ and a relatively high sheet resistance.
  • the grid-like auxiliary electrode 7 is provided, the sheet resistance can be lowered. become. Since the auxiliary electrode 7 is formed in a grid shape, light can be extracted from between the meshes (holes) of the auxiliary electrode 7 to the substrate 1 side.
  • the auxiliary electrode 7 is formed of a plurality of strip-shaped wiring members 8.
  • the strip shape may be a rectangular shape whose long side is much longer (for example, 10 times or more) than the short side.
  • Each wiring member 8 may be a linear wiring.
  • the individual wiring members 8 are arranged on each side of the quadrangular shape of the grid constituting the grid pattern.
  • FIG. 2A is an enlarged view of the auxiliary electrode 7.
  • FIG. 2 is composed of FIGS. 2A and 2B.
  • the wiring member 8 is interrupted at the intersecting position of the grid pattern constituting the auxiliary electrode 7.
  • a portion where the wiring member 8 is not provided becomes a light transmissive portion 15. That is, as shown in FIG. 2A, in the present embodiment, the individual linear wiring members 8 are arranged so as not to overlap at the position of the intersection C where the grid pattern intersects. Is not provided with the material of the wiring member 8. It can be said that the auxiliary electrode 7 has an incomplete grid shape in which lines are divided at intersections of a plurality of grid lines.
  • the auxiliary electrode 7 When the auxiliary electrode 7 is provided at the crossing position (intersection C) of the grid pattern, the auxiliary electrode 7 blocks light and becomes a non-light-emitting portion. Therefore, when the organic EL element is driven, There is a possibility that the crossing position of the shape does not emit light, and the non-light emitting portion is easily noticeable.
  • the light transmissive portion 15 not provided with the wiring material 8 constituting the auxiliary electrode 7 is provided at the intersection position (intersection portion C), light is not blocked at the intersection position. Can be. Therefore, since light can be extracted from the grid pattern intersection position, the non-light-emitting shape can be made inconspicuous.
  • the light transmissive portion 15 is a portion that can transmit light generated from the light emitting layer.
  • the wiring member 8 does not have light transmission or has low light transmission. Therefore, in a portion where the wiring member 8 exists, light cannot be transmitted or light transmission is low. However, since the wiring member 8 does not exist, the light transmissive portion 15 can transmit light and transmit light from the light emitting layer to the substrate side.
  • intersection position means a portion (intersection C in FIG. 2A) and the vicinity thereof where the wiring material 8 intersects when it is assumed that the wiring material 8 is connected.
  • the range of the intersection position is illustrated as the intersection position 7a.
  • a light transmissive portion 15 is formed in the intersection position 7a. 2A can be said to be an example in which the wiring member 8 is not provided at the intersection C at all.
  • the light transmissive portion 15 is preferably formed by the wiring material 8 being separated at the intersection position. Thereby, the light emission at the intersection position can be improved efficiently, and the auxiliary electrode 7 can be made difficult to visually recognize.
  • the grid pattern of the auxiliary electrode 7 may be configured by arranging straight lines extending vertically and horizontally at equal intervals.
  • the grid pattern of the auxiliary electrode 7 may be such that the pattern shape when the wiring members 8 are connected without being divided is a grid pattern.
  • FIG. 8 is an explanatory diagram of the shape of the grid.
  • FIG. 8 is constituted by FIGS. 8A and 8B.
  • the grid may be a square grid or a hexagonal grid.
  • FIG. 8A is an explanatory diagram of a square lattice. In the grid of the square lattice, the overall shape is a square lattice (grid G4) as shown in FIG. 8A.
  • FIG. 8B is an explanatory diagram of a hexagonal lattice. In the hexagonal grid, the overall shape is a hexagonal grid (grid G6) as shown in FIG. 8B.
  • FIG. 8 shows a complete grid for the description of the grid. 8A and 8B, the intersection position of the grid pattern is indicated by the intersection position g.
  • the grid pattern may be a mesh pattern. The grid pattern of each form will be understood from the explanatory diagram of FIG.
  • the grid shape in FIG. 1B is a square lattice.
  • a square lattice may be easier to form than a hexagonal lattice.
  • 16 rectangular holes are provided by 5 vertical lines and 5 horizontal lines to form a grid mesh, but the number of meshes and the number of lines are limited to this. It is not something.
  • FIG. 1B shows an outline of the grid pattern.
  • the grid pattern may be configured more densely. For example, an appropriate number such as a range of 10 to 100 in the vertical and horizontal directions may be used.
  • the straight lines constituting the grid are 10 to 100 vertical lines ⁇ 10 to 100 horizontal lines.
  • the pattern can be as follows.
  • the insulating film 10 is provided on the surface of the functional layer 3 on the auxiliary electrode 7 side.
  • This insulating film 10 is provided partially, and is provided at a position overlapping with the auxiliary electrode 7 in plan view.
  • the auxiliary electrode 7 since the auxiliary electrode 7 usually does not have optical transparency, light cannot be extracted. Therefore, if light is emitted in this portion, a loss of light emission occurs. There is a risk that the luminous efficiency is lowered.
  • the insulating film 10 when the insulating film 10 is provided, light emission does not occur in the portion where the auxiliary electrode 7 is provided, and more current can flow in a region (lattice mesh) other than the auxiliary electrode 7 from which light can be extracted.
  • the light emission loss can be reduced and the light emission efficiency can be improved. Further, if electricity directly flows between the auxiliary electrode 7 and the counter electrode 4, excessive light emission occurs in the portion of the auxiliary electrode 7, and light emission between the light transmissive electrode 2 and the counter electrode 4 may not be obtained properly. There is. However, when the insulating film 10 is provided, it is possible to suppress excessive light emission in the portion where the auxiliary electrode 7 is provided, and electricity is supplied to the light transmissive electrode 2 and the counter electrode 4 to emit planar light. Can be obtained appropriately.
  • the auxiliary electrode 7 is formed so as to rise on the surface of the light transmissive electrode 2. For this reason, when the functional layer 3 and the counter electrode 4 are directly formed on the surface, the layers may be divided or thinned, which may easily cause an electrical short circuit.
  • the auxiliary electrode 7 is electrically insulated by the insulating film 10, even if the functional layer 3 is interrupted at the position of the auxiliary electrode 7 and the counter electrode 4 is laminated, the insulating film 10 The light transmissive electrode 2 and the counter electrode 4 are not in direct contact. Therefore, it is possible to prevent an electrical short circuit.
  • the insulating film 10 may be provided in a pattern having substantially the same shape as the auxiliary electrode 7. That is, it may be provided in a grid pattern. At this time, the insulating film 10 may or may not be provided at the crossing position of the grid pattern lines. When the insulating film 10 is provided at the intersection of the grid-like pattern lines, the pattern of the insulating film 10 is simplified and the formation is facilitated. When the insulating film 10 is provided at the intersection of the grid-like pattern lines, the insulating film 10 can be a complete grid pattern. In this case, since the insulating film 10 is provided at the intersecting position, no direct light emission occurs, but at the intersecting position, the wiring member 8 having no light transmission property is not provided, so that the light generated in the surroundings is transparent.
  • the insulating film 10 is not provided at the intersection of the lines of the grid pattern, like the auxiliary electrode 7. In that case, the insulating film 10 having an incomplete grid shape in which the lines are divided at the grid intersection positions. If the insulating film 10 is not provided at the intersecting position of the grid pattern lines, light can be emitted by passing an electric current at the intersecting position (intersecting portion C), and light can be extracted by emitting light at this portion. Therefore, it is possible to make the non-light emitting portion more difficult to visually recognize.
  • the wiring member 8 is arranged closer to the inside of the mesh of the grid, and the four wirings are the centers where they are arranged in a radial pattern.
  • the resistance of the electrode 2 can be further reduced. For this reason, it is possible to flow a larger amount of current at the intersection C, and the luminance of this portion can be improved, and the luminance can be improved by making it shine stronger than the inside of the grid mesh. Therefore, it is possible to make the non-light emitting shape more difficult to visually recognize.
  • the auxiliary electrode 7 is covered with an insulating film 10 at a portion not in contact with the light transmissive electrode 2. That is, the insulating film 10 is laminated on the auxiliary electrode 7 so as to cover the auxiliary electrode 7, and the auxiliary electrode 7 is covered not only on the surface but also on the side surface 7 s by the insulating film 10.
  • the auxiliary electrode 7 is covered with the insulating film 10 as described above, it is possible to make it difficult to divide the layers, and it is possible to secure insulation, thereby further suppressing short-circuit defects.
  • the luminous efficiency can be further increased.
  • the side surface 10s of the insulating film 10 is preferably inclined. Thereby, the division of the layer can be further suppressed.
  • the auxiliary electrode 7 is a layer made of an electrode material. It does not have to be transparent.
  • the auxiliary electrode 7 can be formed of, for example, a conductive metal material. Specifically, copper, silver, gold, aluminum, nickel, molybdenum, chromium and the like are exemplified.
  • auxiliary electrode 7 is a molybdenum / aluminum / molybdenum laminate (Mo / Al / Mo) called MAM.
  • MAM molybdenum / aluminum / molybdenum laminate
  • the conductivity of the light transmissive electrode 2 can be effectively assisted and improved.
  • the sheet resistance can be 0.07 ⁇ .
  • the auxiliary electrode 7 can be made of Cr / Al / Cr or the like. Even in that case, the resistance can be reduced.
  • auxiliary electrode 7 include metal particles.
  • the metal particles for example, silver particles and copper particles are preferable.
  • the metal particles can be suitably applied by, for example, a printing method.
  • the insulating film 10 is made of an insulating material.
  • it is formed of an insulating resin or an inorganic material.
  • the insulating resin include acrylic resin, novolac resin, and polyimide resin.
  • inorganic materials include Si-based materials.
  • the wiring material 8 constituting the auxiliary electrode 7 is separated at the grid pattern intersection position (intersection C). That is, as a structure in which the wiring member 8 is not provided at the intersection C, a structure in which the end of the wiring member 8 is located at the outer edge of the intersection C can be used, but in this embodiment, as shown in FIG. An end portion of the wiring member 8 is disposed outside the intersecting portion C. Therefore, the wiring members 8 extending in the vertical direction are not in contact with each other. As described above, if the wiring material 8 is not formed at the intersection C by separating the wiring material 8, a pattern in which the wiring material 8 is not formed can be easily formed at the intersection position.
  • the insulating film 10 can be easily applied when the insulating film 10 is applied and formed.
  • the insulating film 10 may be formed by applying an insulating material to the entire surface and then partially curing and removing unnecessary portions.
  • the insulating material is grid-off. It is suppressed that it accumulates in the mesh of a pattern and becomes difficult to spread. That is, if the wiring member 8 is separated, the wall of the wiring member 8 is interrupted, and the mesh of the grid communicates at the intersecting position, so that the coating liquid can be spread between the meshes through the intersecting position. Therefore, the insulating film 10 can be easily formed.
  • the pitch P of the lines constituting the grid pattern is expressed as the distance between the centers of adjacent lines.
  • This pitch P can be, for example, in the range of 200 to 4000 ⁇ m, and preferably in the range of 400 to 2000 ⁇ m.
  • the wiring width W of the wiring member 8 constituting the auxiliary electrode 7 can be set in the range of 10 to 50 ⁇ m, for example, and can be set to 30 ⁇ m, for example. It is preferable that the distance T between the ends of the two wiring members 8 adjacent to each other in the direction in which the grid line extends is larger than the width W of the wiring member 8. That is, T> W.
  • This distance T may be, for example, two times or more of the wiring width W, three times or more of the wiring width W, or five times or more of the wiring width W. However, if the distance T between the wiring members 8 becomes too large, the effect of assisting the electrodes may be reduced. Therefore, for example, the distance T may be 20 times or less of the wiring width W, or 10 times or less of the wiring width W, for example.
  • the film thickness of the wiring material 8 constituting the auxiliary electrode 7 can be set in the range of 100 to 1000 nm, for example.
  • a laminated structure of Mo having a thickness of 20 to 80 nm, Al having a thickness of 200 to 800 nm, and Mo having a thickness of 20 to 800 nm can be formed.
  • a stacked structure of Mo with a thickness of 50 nm, Al with a thickness of 500 nm, and Mo with a thickness of 50 nm can be formed.
  • the insulating film 10 is preferably provided so as to protrude from the wiring member 8 constituting the auxiliary electrode 7 in plan view.
  • the protruding amount S of the insulating film 10 is preferably not more than half of the wiring width W of the wiring material 8, and more preferably not more than one third.
  • the protrusion amount S can be set to less than 10 ⁇ m, for example.
  • the thickness of the insulating film 10 is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the thickness of the insulating film 10 can be 1 ⁇ m.
  • the side surface 10s of the insulating film 10 is preferably inclined with respect to the surface of the substrate 1 in the cross-sectional shape.
  • the side surface 10s of the insulating film 10 is an inclined surface. Since the side surface 10s of the insulating film 10 is an inclined surface, the layer breakage can be suppressed.
  • the auxiliary electrode 7 is formed so as to rise on the surface of the light transmissive electrode 2, when the functional layer 3 and the counter electrode 4 are laminated along the shape of the auxiliary electrode 7, the layers are divided. There is a risk that it may become thin and easily short-circuited electrically.
  • the functional layer 3 can be constituted by a thin film laminated structure, and there is a possibility that the layer is likely to be divided.
  • the inclination angle ⁇ of the side surface 10s of the insulating film 10 can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
  • the side surface 7s of the auxiliary electrode 7 is preferably inclined with respect to the surface of the substrate 1 in the cross-sectional shape.
  • the side surface of the wiring member 8 is an inclined surface.
  • the layer break can be easily suppressed.
  • the side surface 7s of the auxiliary electrode 7 is inclined, the side surface 10s of the insulating film 10 can be easily inclined. Thereby, since the functional layer 3 and the counter electrode 4 can be laminated
  • the inclination angle ⁇ of the side surface of the auxiliary electrode 7 (wiring member 8) can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
  • the side surface of the wiring member 8 is an inclined surface
  • the insulating film 10 is formed along the shape to form the inclined surface.
  • the formation of the inclined surface is limited to this. is not.
  • the side surface of the auxiliary electrode 7 may be a surface that is substantially perpendicular to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon may be an inclined surface.
  • the side surface of the auxiliary electrode 7 is a steeply inclined surface with respect to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon is an inclined surface having a gentler inclination than the inclination of the auxiliary electrode 7. It may be.
  • the inclination angle has a relationship of ⁇ ⁇ , but may of course have a relationship of ⁇ > ⁇ .
  • a light scattering structure may be provided on the surface of the substrate 1 (one or both of the surface on the light transmissive electrode 2 side and the surface opposite to the light transmissive electrode 2). . Since the portion of the wiring member 8 constituting the auxiliary electrode 7 usually does not have light transmittance, light cannot be extracted from this portion. However, if a light scattering structure is provided on the surface of the substrate 1, the light is scattered, so that the light can be diffused into a non-light emitting region formed by the auxiliary electrode 7. Therefore, non-light emission by the auxiliary electrode 7 is lost or made inconspicuous, and more natural light emission can be obtained.
  • the light scattering structure may be formed by providing a light scattering layer or providing the substrate 1 with an uneven structure. The specific configuration of the light scattering layer is as described above.
  • FIG. 3 shows another example of the embodiment of the organic EL element.
  • FIG. 3 is composed of FIGS. 3A and 3B. 3, the auxiliary electrode 7 is formed between the substrate 1 and the light transmissive electrode 2, and the insulating film 10 is formed between the light transmissive electrode 2 and the functional layer 3. It is different from the form.
  • the rest of the configuration is the same as that of FIG.
  • the plan view of the organic EL element of FIG. 3 may be considered as FIG. 1B.
  • 2A may be considered as an enlarged view of the auxiliary electrode 7 of the organic EL element of FIG.
  • an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of the substrate 1, as in the embodiment of FIG. Yes.
  • the organic light emitter 5 is covered and sealed with a sealing material 6.
  • An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2.
  • the pattern of the auxiliary electrode 7 is the same as the shape of FIG. 1B, and the wiring material 8 is interrupted at the intersection position of the grid-like pattern constituting the auxiliary electrode 7. And since the wiring material 8 is not provided, the light transmission possible part 15 is formed (refer FIG. 1B).
  • the auxiliary electrode 7 is formed in an incomplete grid shape.
  • an insulating film 10 is provided at a position overlapping the auxiliary electrode 7 in plan view.
  • the conductivity of the light transmissive electrode 2 can be enhanced by the auxiliary electrode 7.
  • the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do.
  • the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion where light can be extracted to the outside, and light can be emitted efficiently. Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. Obtainable.
  • the auxiliary electrode 7 is provided on the substrate 1 side of the light transmissive electrode 2.
  • the auxiliary electrode 7 may be formed of the same material and the same pattern shape as the auxiliary electrode 7 in the form of FIG. That is, the auxiliary electrode 7 may be an incomplete grid pattern as shown in FIGS. 1B and 2A.
  • the auxiliary electrode 7 it is possible to improve the electrical conductivity, improve the current distribution in the plane, and obtain an organic EL element in which the light emission in the plane is more uniform. Since the light transmissive electrode 2 is formed of a light transmissive material (transparent metal oxide or the like), the specific resistance is usually high and the conductivity is not so good.
  • the electrical conductivity of the light transmissive electrode 2 is supplemented to further increase the electrical conductivity.
  • the auxiliary electrode 7 and the light transmissive electrode 2 are provided in contact with each other. Thereby, the electrical conductivity of the light transmissive electrode 2 can be improved.
  • the auxiliary electrode 7 is provided in contact with the surface of the substrate 1.
  • the auxiliary electrode 7 can be directly formed on the surface of the substrate 1, the patterning of the auxiliary electrode 7 becomes simple, and the auxiliary electrode 7 can be efficiently and easily formed. Can be formed.
  • a light scattering structure may be provided on the surface of the substrate 1 on the side where the organic light emitter 5 is provided.
  • the light scattering structure may be constituted by a resin layer. Even in this case, the auxiliary electrode 7 can be easily formed.
  • the auxiliary electrode 7 has a grid pattern and a grid pattern.
  • a more uniform current distribution can be obtained by the grid-like auxiliary electrode 7.
  • This grid pattern is configured by arranging straight lines extending vertically and horizontally at equal intervals.
  • the arrangement of the plurality of wiring members 8 constituting the grid pattern may be the same as that described in the form of FIG. Further, the wiring width W, the wiring pitch P, and the distance T between the wirings may be the same as those described in FIG.
  • the auxiliary electrode 7 is a layer made of an electrode material. It does not have to be transparent. For example, it can be formed of a conductive metal material. Specifically, copper, silver, gold, aluminum, nickel, molybdenum, chromium and the like are exemplified.
  • the auxiliary electrode 7 may be made of the same material as the auxiliary electrode 7 in the form of FIG.
  • the surface of the auxiliary electrode 7 on the substrate 1 side has higher light reflectivity than the light reflectivity of the surface of the light transmissive electrode 2 on the substrate 1 side.
  • an Al / Mo laminated structure can be preferably used as the material of the auxiliary electrode 7.
  • This laminated structure is a structure in which Al and Mo are laminated in this order from the substrate 1 side.
  • the conductivity of the light transmissive electrode 2 can be effectively assisted and improved, the reflectivity can be increased, and more light reflected in the substrate 1 can be extracted to the outside.
  • Mo / Al / Mo is more advantageous. This is because the layer directly in contact with the transparent electrode layer, the resin layer, etc. is Al. This is because Mo tends to be deteriorated so that Mo is added as a surface layer to suppress it.
  • the auxiliary electrode 7 since the auxiliary electrode 7 is formed on the surface of the substrate 1 having high moisture resistance, it is not necessary to provide Mo as a surface layer (underlayer) on the surface on the substrate 1 side.
  • Mo a surface layer (underlayer)
  • the auxiliary electrode 7 having an Al / Mo laminated structure is preferable.
  • an Al / Cr laminated structure may be used. Even in that case, light reflectivity can be improved.
  • the insulating film 10 is formed on the surface of the functional layer 3 on the light transmissive electrode 2 side.
  • the insulating film 10 is formed on the surface of the light transmissive electrode 2 where the auxiliary electrode 7 is formed.
  • the light transmissive electrode 2 is formed on the auxiliary electrode 7 so that the position of the auxiliary electrode 7 is raised in the same pattern as the auxiliary electrode 7, and the light transmissive electrode 2 is raised.
  • An insulating film 10 is laminated so as to cover the surface.
  • the insulating film 10 has not only the surface of the raised portion of the light transmissive electrode 2 but also the side surfaces.
  • the insulating film 10 is provided at the position where the auxiliary electrode 7 is provided in this way, it is possible to make it difficult for the layers to be divided, and to ensure insulation, thereby further suppressing short-circuit defects.
  • the luminous efficiency can be further increased.
  • the side surface 7s of the auxiliary electrode 7 is preferably inclined. That is, as shown in FIG. 3B, it is preferable that the side surface of the wiring member 8 constituting the auxiliary electrode 7 is an inclined surface. Thereby, the division
  • the inclination angle ⁇ of the side surface 7s of the auxiliary electrode 7 can be set in the range of 15 to 75 ° or 30 to 60 °, for example.
  • the side surface 10s of the insulating film 10 is preferably inclined. Thereby, the division of the layer can be further suppressed. Since the auxiliary electrode 7 is formed so as to rise on the surface of the substrate 1, when the functional layer 3 and the counter electrode 4 are laminated along the shape of the auxiliary electrode 7, the layers are divided or thinned. As a result, there is a risk of electrical shorting. However, if the side surface 10s of the insulating film 10 provided at the position of the auxiliary electrode 7 is inclined, the functional layer 3 and the counter electrode 4 can be laminated on the inclined surface, so that the layer is hardly divided. Can do.
  • the insulating film 10 is formed at the position of the auxiliary electrode 7 and is electrically insulated, even if the functional layer 3 is interrupted at the position of the auxiliary electrode 7 and the counter electrode 4 is laminated, the insulating film 10 Therefore, the light transmitting electrode 2 and the counter electrode 4 are not in direct contact with each other. Therefore, it is possible to prevent an electrical short circuit.
  • the auxiliary electrode 7 since the auxiliary electrode 7 usually does not have optical transparency, light cannot be extracted. Therefore, if light is emitted in this portion, a loss of light emission occurs. There is a risk that the luminous efficiency is lowered.
  • the inclination angle ⁇ of the side surface 10s of the insulating film 10 can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
  • the side surface of the wiring member 8 is an inclined surface, and the light transmissive electrode 2 and the insulating film 10 are formed along the shape thereof to form the inclined surface.
  • the side surface of the auxiliary electrode 7 may be a surface that is substantially perpendicular to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon may be an inclined surface.
  • the side surface of the auxiliary electrode 7 is a steeply inclined surface with respect to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon is an inclined surface having a gentler inclination than the inclination of the auxiliary electrode 7. It may be.
  • the inclination angle has a relationship of ⁇ ⁇ , but may of course have a relationship of ⁇ > ⁇ .
  • the insulating film 10 can be formed using a material similar to the material described in the form of FIG. Further, the pattern of the insulating film 10 may be the same as that shown in FIG. That is, the insulating film 10 may have a complete grid shape, or may have an incomplete grid shape divided at the intersection of grid lines. Among these, it is preferable that the insulating film 10 has an incomplete grid shape divided at the intersections of the grid lines.
  • the inclination angle ⁇ of the side surface of the insulating film 10 can be set to 15 to 75 ° or 30 to 60 °, for example.
  • FIG. 4 shows another example of the embodiment of the organic EL element.
  • FIG. 4 is composed of FIGS. 4A and 4B.
  • the pattern shape of the auxiliary electrode 7 is different from the form of FIG.
  • the rest of the configuration is the same as that of FIG.
  • FIG. 1A may be considered as a cross-sectional view of the organic EL element of FIG.
  • an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of a substrate 1.
  • the organic light emitter 5 is covered and sealed with a sealing material 6.
  • An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2.
  • the wiring material 8 is interrupted at the intersection position (intersection C) of the grid-like pattern constituting the auxiliary electrode 7. And since the wiring material 8 is not provided, the light transmissive part 15 is formed.
  • the auxiliary electrode 7 is formed in an incomplete grid shape.
  • the wiring member 8 is formed in a portion along the grid pattern line.
  • an insulating film 10 is provided on the surface of the functional layer 3 on the auxiliary electrode 7 side.
  • the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do.
  • the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion where light can be extracted to the outside, and light can be emitted efficiently. Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. Obtainable.
  • connection wiring 9 for connecting between the wiring members 8 constituting the auxiliary electrode 7 is provided at or near the grid pattern intersection position (intersection C).
  • the connection wiring 9 By providing the connection wiring 9, more current can flow through the intersection C, and the intersection C can emit more light, so that the non-light-emitting shape can be made more difficult to visually recognize.
  • the connection wiring 9 since the several wiring material 8 is electrically connected by the connection wiring 9, the electrical conductivity of auxiliary electrode 7 itself can be improved more, and the auxiliary function of an electrode can be improved more.
  • the connection wiring 9 is provided in the vicinity of the intersection C.
  • the connection wiring 9 may be provided at the intersection position or may be provided near the intersection position.
  • the wiring width W1 of the connection wiring 9 is preferably smaller than the wiring width W of the wiring material 8.
  • the wiring width W ⁇ b> 1 of the connection wiring 9 can be less than half or less than one third of the wiring width W of the wiring material 8.
  • the wiring width W1 of the connection wiring 9 can be 5 to 20 ⁇ m.
  • connection wiring 9 is preferably provided so as to connect the ends of the four wiring members 8 in the vicinity of the intersection position of the grid pattern. Furthermore, it is preferable that the connection wiring 9 is provided in a frame shape so as to surround the intersection position (intersection portion C) of the grid pattern lines. As a result, the pattern can be simplified and the conductivity at the crossing position can be effectively enhanced.
  • the connection wiring 9 is provided as a frame-shaped wiring structure, and is arranged so that the grid intersection position is the center of the frame. A light transmissive portion 15 is formed in the frame-like connection wiring 9. The connection wiring 9 is connected to the end of the wiring material 8 constituting the auxiliary electrode 7.
  • the pattern shape of the frame-like connection wiring 9 may be a quadrangular shape (square or rectangular shape) or a circular shape.
  • the distance T between the ends of the wiring member 8 may be the length of one side of the square formed by the inner edge of the frame of the connection wiring 9.
  • the distance T between the ends of the wiring member 8 may be a length of a circular diameter constituted by the inner edge of the connection wiring 9.
  • the distance T between the end portions of the wiring member 8, that is, the distance between the opposing lines of the frame-like connection wiring 9, can be set to 20 to 300 ⁇ m, for example, and preferably 50 to 100 ⁇ m.
  • the thickness (height) of the connection wiring 9 may be the same as the thickness (height) of the wiring material 8 constituting the auxiliary electrode 7. Thereby, the connection wiring 9 can be easily formed. In addition, by providing the connection wiring 9 with the same thickness as the wiring material 8, it is possible to assist energization at a high position at the grid pattern crossing position. Of course, the height of the connection wiring 9 may be different from the height of the wiring material 8, and may be lower or higher than the height of the wiring material 8.
  • connection wiring 9 may be formed integrally with the auxiliary electrode 7. That is, a part of the wiring material 8 constituting the auxiliary electrode 7 may be protruded to form the connection wiring 9. Further, the connection wiring 9 and the wiring material 8 may be integrated to have a function as the auxiliary electrode 7.
  • connection wiring 9 is preferably formed of the same material as the wiring material 8 constituting the auxiliary electrode 7. Thereby, the connection wiring 9 can be easily formed.
  • the insulating film 10 is preferably provided also at the position of the connection wiring 9.
  • the connection wiring 9 is formed on the light transmissive electrode 2 and the insulating film 10 is formed thereon, the connection wiring 9 is covered with the insulating film 10.
  • the connection wiring 9 can be composed of a line thinner than the wiring material 8, and the insulating film 10 is provided at the position of the connection wiring 9 as long as the reduction in light emission efficiency due to light emission at this portion is not so great. It does not have to be.
  • the insulating film 10 is not provided at the position of the connection wiring 9, the pattern formation of the insulating film 10 is facilitated.
  • connection wiring 9 may be provided in a form in which the auxiliary electrode 7 is formed between the substrate 1 and the light transmissive electrode 2 as shown in FIG. In this case, the connection wiring 9 is provided between the substrate 1 and the light transmissive electrode 2.
  • This form may be considered as a cross-sectional view of FIG. 3A and a plan view of FIG. 4A. 4B may be considered as an enlarged view of the auxiliary electrode 7.
  • the insulating film 10 may or may not be provided on the surface of the light transmissive electrode 2 at the position where the connection wiring 9 is provided, as with the position of the wiring material 8. For improvement, it is preferable to be provided.
  • the connection wiring 9 demonstrated with the form of FIG. 4 is applicable also in a subsequent form.
  • FIG. 5 shows another example of the embodiment of the organic EL element.
  • the pattern shape of the auxiliary electrode 7 is different from the form of FIG.
  • the rest of the configuration is the same as that of FIG.
  • the cross-sectional view of the form of FIG. 5 may be considered as FIG. 1A.
  • FIG. 2B may be considered as an enlarged view of the auxiliary electrode 7 in the form of FIG.
  • the light transmissive portion 15 is preferably formed by the wiring material 8 being separated from each other at the intersection position.
  • the intersection position means a portion where the wiring material 8 intersects (intersection portion C) and the vicinity of the portion when it is assumed that the grid-like patterns are connected. Therefore, even if the wiring material 8 is connected at a portion where the lines of the grid pattern intersect (intersection portion C), there may be a portion where the wiring material 8 is not provided at the intersection position including the vicinity of the intersection portion C.
  • the light transmissive portion 15 can be configured by the portion.
  • the form of FIG. 5 is an example of a form having a portion where the wiring member 8 is connected at the intersection position. A portion where the wiring member 8 is connected at the intersection position becomes a wiring continuous portion 16.
  • the crossing position of the grid pattern can be understood at the crossing position 7a in FIG. 2A.
  • the auxiliary electrode 7 has a wiring continuous portion 16 that is connected to the wiring material 8 at the intersection position and passes through the intersection position.
  • the wiring continuous portion 16 it becomes easier for electricity to pass through the wiring material 8 constituting the auxiliary electrode 7, so that the auxiliary effect on the light transmissive electrode 2 can be further enhanced. Further, the in-plane light emission can be made more uniform.
  • the wiring continuous portion 16 has a bent shape at the intersection position.
  • the spread in the plane of the portion where the wiring member 8 is connected can be increased as compared with the case of the straight shape. Therefore, electricity can flow more uniformly in the plane.
  • the bent shape may be a shape in which the wiring member 8 is bent in the pattern shape in plan view.
  • the wiring member 8 has a zigzag shape. It may be said that the wiring member 8 has an angular wave shape.
  • One connected wiring member 8 extends in an oblique direction. Specifically, the portions 8a extending in the vertical direction and the portions 8b extending in the horizontal direction are alternately arranged.
  • the vertical direction and the horizontal direction express two directions orthogonal to each other for convenience, and the vertical and horizontal directions may be interchanged in an actual arrangement.
  • a boundary portion between the portion 8 a extending in the vertical direction and the portion 8 b extending in the horizontal direction is bent, and this portion becomes the wiring continuous portion 16. And in the crossing position, the wiring continuous parts 16 of the adjacent wiring members 8 are close to each other.
  • the auxiliary electrode 7 having the light transmissive portion 15 by separating the wiring member 8 at the intersection position while being a grid pattern as a whole.
  • the pattern example of the auxiliary electrode 7 in FIG. 5 may be a jagged shape. Alternatively, it may be a triangular wave shape.
  • the distance between the closest parts of the adjacent wiring members 8 may be the same as the distance T described in FIG. 2A.
  • a portion where one wiring member 8 is connected can be drawn with a single stroke. Thereby, pattern formation of the auxiliary electrode 7 can be facilitated. Details of the pattern forming method will be described later. It is more preferable that the wiring material 8 can be drawn with a single stroke from one end to the other end of the organic EL element. Thereby, pattern formation becomes easier.
  • the wiring member 8 since the wiring member 8 extends in an oblique direction, one stroke can be written at the upper and right end portions and at the left and lower end portions.
  • the insulating film 10 is preferably writable with a single stroke.
  • the insulating film 10 can have a shape corresponding to the wiring material 8.
  • the auxiliary electrode 7 has a grid pattern as a whole.
  • FIG. 5 shows the organic EL element in a simplified manner, and the actual number of wiring members 8 can be, for example, 100 or more.
  • FIG. 5 has been described on the assumption that the pattern shape of the auxiliary electrode 7 is changed in the form of FIG. 1, but the auxiliary electrode 7 is on the substrate 1 side of the light transmissive electrode 2 as in the form of FIG. 3. It may be formed.
  • FIG. 3A can be considered as a cross-sectional view of the form of FIG. 5, and
  • FIG. 3B can be considered an enlarged view of the form of FIG.
  • the auxiliary electrode 7 may be formed on either surface of the light transmissive electrode 2.
  • FIG. 6 is an explanatory diagram for explaining a pattern example of the auxiliary electrode 7.
  • FIG. 6 is configured from FIGS. 6A to 6F.
  • the form in which the auxiliary electrode 7 has the wiring continuous part 16 is not limited to the form in FIG.
  • the auxiliary electrode 7 can be formed in an appropriate pattern. Note that the vertical and horizontal directions in FIG. 6 are set for convenience in accordance with the arrangement in the drawing, and of course, the vertical and horizontal directions may be interchanged.
  • FIG. 6A is a modification of the pattern of the auxiliary electrode 7 in the form of FIG.
  • a lattice is formed by a plurality of parallelograms.
  • the portion 8a extending in the vertical direction of the wiring member 8 is inclined with respect to the vertical direction and extending in an oblique direction.
  • a wiring continuous portion 16 is constituted by a boundary portion between a portion 8 a extending in the vertical direction and a portion 8 b extending in the horizontal direction in the wiring member 8.
  • the wiring continuous portion 16 has a bent shape.
  • Adjacent wiring members 8 are spaced apart.
  • the light transmitting portion 15 is formed by the separated portion.
  • the boundary portion (wiring continuous portion 16) between the portion 8a extending in the vertical direction and the portion 8b extending in the horizontal direction is the horizontal direction when viewed along the vertical direction in the plurality of wiring members 8.
  • the arrangement of the wiring members 8 may be shifted in the horizontal direction, so that there is a possibility that the lattice pattern vertical lines as a whole are formed into a parallelogram lattice.
  • the portion 8a extending in the longitudinal direction extends in an oblique direction to absorb the shift. Therefore, it is easy to form a rectangular or square lattice pattern with no deviation as a whole.
  • FIG. 6B is a modification of the pattern of the auxiliary electrode 7 in the form of FIG.
  • the boundary portion (wiring continuous portion 16) between the portion 8a extending in the vertical direction and the portion 8b extending in the horizontal direction in the wiring member 8 extends in an oblique direction.
  • the corner of the boundary portion (wiring continuous portion 16) between the vertical portion 8a of the wiring member 8 and the horizontal portion 8b of the wiring member 8 is rounded so that the wiring continuous portion 16 advances in an oblique direction.
  • the wiring continuous part 16 is curved.
  • the wiring material 8 is curved and extended at the wiring continuous portion 16.
  • the wiring continuous portion 16 may be provided as a linear portion that proceeds in an oblique direction between the vertical portion 8 a of the wiring member 8 and the horizontal portion 8 b of the wiring member 8.
  • the wiring continuous part 16 may be formed in a W shape or a meandering shape.
  • the adjacent wiring members 8 are separated from each other, and a light transmissive portion 15 is formed by the separated portion.
  • the portions 8a extending in the vertical direction of the wiring member 8 are aligned in the vertical and horizontal positions at the plurality of portions 8a.
  • the portion 8b extending in the horizontal direction of the wiring member 8 has a plurality of portions 8b that are aligned vertically and horizontally. In the pattern of FIG.
  • each lattice may be a parallelogram, but in the pattern of FIG. Are arranged in an oblique direction to adjust the positions of the vertical and horizontal lines of the lattice shape. Therefore, it is easy to form a rectangular or square lattice pattern with no deviation as a whole.
  • the pattern in FIG. 6B can be said to be wavy. In the pattern of FIG. 6B, it is possible not to form the wiring material 8 at the intersection C (see FIG. 2A).
  • FIG. 6C shows a modification of the pattern of the auxiliary electrode 7.
  • the wiring member 8 has alternately arranged portions 8a extending in the vertical direction and portions 8b extending in the horizontal direction.
  • the adjacent portion 8a extends in the opposite direction. Therefore, one connected wiring member 8 extends in the horizontal direction as a whole while moving back and forth in the vertical direction.
  • a wiring continuous portion 16 is constituted by a boundary portion between a portion 8 a extending in the vertical direction and a portion 8 b extending in the horizontal direction in the wiring member 8.
  • the wiring continuous portion 16 has a bent shape.
  • Adjacent wiring members 8 are spaced apart.
  • the light transmitting portion 15 is formed by the separated portion.
  • one connected wiring member 8 is preferably writable with a single stroke.
  • a stroke can be written between the left and right ends.
  • the pattern example of FIG. 6C may be said to be uneven. Alternatively, it may be called a tooth shape. Alternatively, it may be a rectangular wave shape.
  • the wiring material 8 can be drawn with one stroke. 6A and 6B, since the wiring member 8 extends in an oblique direction, there is an advantage that the in-plane light emission uniformity can be further improved. In FIG. 6C, since the wiring member 8 extends in the lateral direction, there is an advantage that the pattern can be easily formed with high accuracy.
  • FIG. 6D illustrates a longitudinal extension between the portions 8b of the plurality of wiring members 8 extending in the lateral direction over the entire pattern of the auxiliary electrode 7 and the portions 8b of the plurality of wiring members 8 extending in the lateral direction.
  • the grid pattern of the auxiliary electrode 7 is configured by the portions 8a of the plurality of wiring members 8 that perform the above.
  • the portions 8a of the plurality of wiring members 8 in the vertical direction are arranged side by side at a predetermined interval in the horizontal direction.
  • the portions 8a of the plurality of vertical wiring members 8 are arranged side by side in the vertical direction so that the overall shape is along the vertical direction.
  • the portion 8b of the wiring member 8 extending in the horizontal direction is separated from the portion 8a of the wiring member 8 extending in the vertical direction.
  • the light transmitting portion 15 is formed by the separated portions.
  • the pattern in FIG. 6D may be called a ladder. Even in the pattern example of FIG. 6D, the light transmissive portion 15 is formed, so that the
  • one end of a plurality of portions 8 a of the wiring material 8 extending in the vertical direction is connected to the portion 8 b of the wiring material 8 extending in the horizontal direction over the entire pattern of the auxiliary electrode 7.
  • a grid pattern is configured.
  • the other end of the portion 8a of the wiring member 8 extending in the vertical direction is separated from the portion 8b of the wiring member 8 extending in the horizontal direction.
  • the light transmitting portion 15 is formed by the separated portions.
  • the pattern in FIG. 6E may be called a comb shape. Even in the pattern example of FIG. 6E, the light transmissive portion 15 is formed, so that the auxiliary electrode 7 can be made difficult to visually recognize.
  • one end of a plurality of portions 8 a of the wiring material 8 extending in the vertical direction is connected to the portion 8 b of the wiring material 8 extending in the horizontal direction over the entire pattern of the auxiliary electrode 7.
  • a grid pattern is configured.
  • end portions on the same side of the portions 8a of the plurality of wiring members 8 extending in the vertical direction are connected, whereas in FIG. 6F, the portions 8a of the wiring members 8 extending in the plurality of vertical directions. In, the one end and the other end are connected alternately.
  • the tip of the portion 8a of the wiring member 8 extending in the vertical direction is separated from the portion 8b extending in the horizontal direction of the adjacent wiring member 8.
  • the light transmitting portion 15 is formed by the separated portions. Even in the pattern example of FIG. 6F, the light transmissive portion 15 is formed, so that the auxiliary electrode 7 can be made difficult to visually recognize.
  • the wiring continuous portion 16 has a substantially linear shape at the intersection position. Therefore, pattern formation can be facilitated. In the patterns of FIGS. 6E and 6F, the wiring continuous portion 16 has a substantially linear shape at the intersection position and a bent shape. Therefore, the electrical auxiliary effect can be enhanced.
  • FIG. 7 shows another example of the grid-like auxiliary electrode 7 pattern.
  • FIG. 7 is constituted by FIGS. 7A to 7C.
  • a rectangular lattice-like shape has been described as a grid shape.
  • the grid shape (lattice shape) is not limited to a square lattice.
  • An example of another grid shape in a grid shape is a hexagonal lattice.
  • the hexagonal lattice is a shape in which hexagons are arranged in a plane.
  • the hexagonal lattice is also called a honeycomb shape.
  • the hexagonal lattice is also called a honeycomb.
  • the grid may include a square lattice and a hexagonal lattice.
  • Fig. 8 shows the grid shape.
  • the overall shape is a square lattice (grid G4) as shown in FIG. 8A.
  • the overall shape is a hexagonal lattice (grid G6) as shown in FIG. 8B.
  • the intersection position of the grid pattern is indicated by the intersection position g.
  • the 7A to 7C also have a portion where the wiring material 8 is not provided at the intersection of the grid pattern.
  • the light transmissive portion 15 is formed by this portion.
  • the light transmissive portion 15 is formed by the separation of the wiring member 8.
  • FIG. 7A is an example in which no wiring member 8 is provided at the intersection position (intersection C).
  • FIG. 7A has an advantage in that the light emitting property at the intersection position can be improved.
  • FIG. 7B and FIG. 7B are examples having the wiring continuous part 16 at the intersection position.
  • the wiring continuous part 16 has a bent shape.
  • the wiring member 8 extends in the lateral direction.
  • the wiring member 8 extends in an oblique direction.
  • auxiliary electrode 7 can be made difficult to visually recognize by having the light transmissive portion 15.
  • a square lattice is more advantageous for pattern formation than a hexagonal lattice.
  • the production of the organic EL element will be described.
  • a description will be given focusing on a form in which the light transmissive electrode 2 and the auxiliary electrode 7 are laminated in this order.
  • the manufacture of the form in which the auxiliary electrode 7 is formed on the substrate 1 side of the light transmissive electrode 2 can be understood by changing the stacking order of the light transmissive electrode 2 and the auxiliary electrode 7.
  • FIGS. 1, 4, 5 and 6 For the description of the manufacturing method, refer to FIGS. 1, 4, 5 and 6 as appropriate.
  • a transparent conductive layer is provided on the surface of the substrate 1, and this transparent conductive layer is patterned.
  • the central portion of the transparent conductive layer becomes the light transmissive electrode 2, and the end of the transparent conductive layer becomes the electrode lead-out portion 12.
  • the region of the light transmissive electrode 2 is a region where the organic light emitter 5 is formed.
  • a grid-like auxiliary electrode 7 is formed of a conductive material in a region of the transparent conductive layer where the organic light emitter 5 is formed.
  • the patterning of the auxiliary electrode 7 can be performed by an appropriate method.
  • the formation of the auxiliary electrode 7 is preferably performed by sputtering.
  • patterning can be performed by mask sputtering or photolithography.
  • this method in particular, it is possible to suitably form a pattern as shown in FIGS.
  • this method is applicable to other forms.
  • a pattern can be suitably formed in the auxiliary electrode 7 having a laminated structure such as MAM.
  • the patterning of the auxiliary electrode 7 may be performed, for example, by removing unnecessary portions after coating the entire surface. Unnecessary portions can be removed by etching. Etching can be performed by a wet method using an etchant.
  • the auxiliary electrode 7 is another embodiment that is preferably formed by a printing method.
  • the auxiliary electrode 7 can be easily patterned by the printing method.
  • Printing is a kind of application. Printing may be applied along a pattern. In this method, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms.
  • the auxiliary electrode 7 having the wiring continuous part 16 as shown in FIGS. 5 to 7 printing along the pattern can be continuously performed. Therefore, the auxiliary electrode 7 can be preferably patterned by coating. Particularly preferred is a coating method in which the ink nozzles are moved in a pattern.
  • the ink nozzle When the wiring member 8 has a shape that can be drawn with a single stroke, the ink nozzle can be moved and applied in accordance with the pattern, so that the pattern can be formed efficiently. If the portion where one wiring member 8 is connected can be drawn with a single stroke, printing can be performed by continuously discharging the coating liquid from the ink nozzles, so that the number of times of starting and stopping the discharging of the coating liquid can be reduced. Therefore, it is more preferable that the wiring material 8 can be written with one stroke from one end to the other end of the organic EL element.
  • the shape that can be drawn with a single stroke is particularly effective in direct drawing by electrostatic coating. In this method, it is preferable that the wiring member 8 does not intersect. When the wiring material 8 intersects, the intersected portion is likely to be raised and formed, so that it may be difficult to cover with the insulating film 10 or the layer may be easily cut off.
  • examples of the coating method include electrostatic coating and inkjet printing coating. Printing by electrostatic coating is more preferable.
  • a paste material in which conductive particles are dispersed in a solvent can be preferably used.
  • metal particles can be preferably used. By applying the metal particles, the pattern formation of the conductive layer becomes easy, and the auxiliary electrode 7 can be formed with high accuracy and efficiency.
  • Silver particles are particularly preferable as the metal particles. Among these, silver nanoparticles are suitable as a material for the auxiliary electrode 7. When a nano paste in which nano metal particles are dispersed in a solvent is used, a pattern can be formed efficiently and accurately.
  • the auxiliary electrode 7 In the formation of the auxiliary electrode 7 using a paste material, it is preferable to heat and fire after application. Thereby, the conductive particles are brought into close contact with each other, so that a conductive layer can be easily formed. Therefore, a metal wiring having a resistance lower than that of the light transmissive electrode 2 can be easily obtained.
  • the electrode pad 11 When the auxiliary electrode 7 is formed, it is preferable to form the electrode pad 11 by laminating the same conductive material as the auxiliary electrode 7 on the electrode lead-out portion 12. If the auxiliary electrode 7 and the electrode pad 11 are formed at the same time, the manufacturing efficiency is improved. Of course, the electrode pad 11 and the auxiliary electrode 7 may not be formed simultaneously.
  • the pattern of the connection wiring 9 is provided near the intersection of the grid pattern lines, and the auxiliary electrode 7 is provided. It can be manufactured by forming.
  • an insulating film 10 is formed.
  • the insulating film 10 is formed in a shape corresponding to the shape of the auxiliary electrode 7.
  • the patterning may be an appropriate method.
  • the formation of the insulating film 10 is a preferable embodiment in which an unnecessary portion is removed after coating.
  • this method in particular, it is possible to suitably form a pattern as shown in FIGS.
  • this method is applicable to other forms.
  • a material for forming the insulating film 10 is applied to the surface of the substrate 1 on which the auxiliary electrode 7 is provided.
  • the application may be a whole surface application.
  • the wiring material 8 is not provided at the intersection position (intersection portion C) of the grid pattern and the wiring material 8 is separated, a plurality of coating liquids pass through the intersection position without collecting in the grid of the grid. Can spread out in the grid mesh. Therefore, more uniform application is facilitated.
  • the insulating film 10 having a grid pattern is formed by hardening the same position as the position of the auxiliary electrode 7 and removing and patterning other portions by photolithography.
  • the insulating film 10 is provided in an incomplete grid shape, the insulating film 10 is not provided at the intersection of the grid patterns. If the insulating film 10 is provided in a complete grid shape, the insulating film 10 may have a complete grid pattern.
  • the pattern shape can be adjusted by the opening shape of the mask pattern.
  • the insulating film 10 is formed by coating and photolithography, the insulating film 10 can be formed with high accuracy.
  • the insulating film 10 can be composed of a resin film or the like. Note that the insulating film 10 may be formed by vapor deposition instead of application.
  • connection wiring 9 is provided rather than the configuration in which the connection wiring 9 is provided as shown in FIG.
  • the other forms than FIG. 4 are more advantageous. This is because if the connection wiring 9 is not provided, a wall composed of the connection wiring 9 cannot be formed between the grid intersection position and the grid mesh, so that the coating liquid easily spreads. Of course, it is more advantageous to provide the connection wiring 9 in order to improve the electrical conductivity at the intersection. In the embodiment shown in FIG. 4, even if the height of the connection wiring 9 is lower than the height of the wiring material 8, it is possible to improve the applicability of the material of the insulating film 10. This is because the wall formed by the connection wiring 9 is lowered and the coating liquid is easily spread.
  • the formation of the insulating film 10 is another aspect preferably performed by a printing method.
  • Patterning of the insulating film 10 can be easily performed by a printing method.
  • Printing is a kind of application. Printing may be applied along a pattern. In this method, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms.
  • the insulating film 10 can be preferably patterned by application. Particularly preferred is a coating method in which the ink nozzles are moved in a pattern.
  • the ink nozzle can be moved and applied in accordance with the pattern, so that the pattern can be formed efficiently. If the portion where one insulating film 10 is connected can be drawn with a single stroke, printing can be performed by continuously discharging the coating liquid from the ink nozzle, so that the number of times of starting and stopping the discharging of the coating liquid can be reduced. Therefore, it is more preferable that the insulating film 10 can be written with one stroke from one end portion to the other end portion of the organic EL element.
  • the shape that can be drawn with a single stroke is particularly effective in direct drawing by electrostatic coating. In this method, it is preferable that the insulating films 10 do not intersect. When the insulating films 10 cross each other, the crossed portion is likely to rise and be easily formed, so that the layers may be easily cut off.
  • the coating method include electrostatic coating and ink jet printing coating. Printing by electrostatic coating is more preferable.
  • a resin composition can be preferably used as a material.
  • the insulating film 10 may be formed by vapor deposition in a pattern.
  • each layer of the functional layer 3 and the counter electrode 4 are sequentially stacked to form the organic light-emitting body 5.
  • the lamination method for example, vapor deposition or the like can be used.
  • the sealing material 6 is bonded to the substrate 1 by the sealing bonding portion 14 while covering the organic light emitter 5 with the sealing material 6.
  • the sealing material 6 what was previously provided with the drying material 13 in the concave portion can be used.
  • the desiccant 13 can be provided by attaching a hygroscopic sheet or applying a hygroscopic material. Thereby, an organic EL element can be formed.
  • the above manufacturing method is changed as follows. First, the auxiliary electrode 7 is formed on the surface of the substrate 1.
  • the formation method may be the same as the formation method of the auxiliary electrode 7 in the above description.
  • the light transmissive electrode 2 and the electrode lead portion 12 are formed.
  • the insulating film 10 is formed on the portion where the light transmissive electrode 2 is raised by the auxiliary electrode 7.
  • the formation method of the insulating film 10 may be the same as the method described above.
  • the functional layer 3 and the counter electrode 4 are laminated and sealed with the sealing material 6. Thereby, the organic EL element of the form of FIG. 3 can be formed.
  • the organic EL element having the form shown in FIGS. 1 to 7 has excellent light emission characteristics, and can be used as an element having a particularly large light emitting area. Therefore, it is useful as a planar light emitting element, particularly a lighting panel.
  • a lighting device can be obtained by the above organic EL element.
  • the lighting device includes the organic EL element described above. Thereby, it is possible to obtain an illuminating device that is excellent in light extraction performance and power-saving.
  • the illuminating device may be one in which a plurality of organic EL elements are arranged in a planar shape.
  • the illumination device may be a planar illumination body composed of one organic EL element.
  • the illumination device may include a wiring structure for supplying power to the organic EL element.
  • the illumination device may include a housing that supports the organic EL element.
  • the illumination device may include a plug that electrically connects the organic EL element and the power source.
  • the lighting device can be configured in a panel shape. Since the lighting device can be made thin, it is possible to provide a space-saving lighting fixture.
  • FIG. 9 is an example of the lighting device 100.
  • This lighting device includes an organic EL element 101, a housing 102, a plug 103, and a wiring 104.
  • a plurality (four) of organic EL elements 101 are arranged in a planar shape.
  • the organic EL element 101 is accommodated in the housing 102. Electricity is supplied through the plug 103 and the wiring 104, the organic EL element 101 emits light, and light can be emitted from the lighting device 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescence element, provided with: a substrate (1); an organic light-emitting body (5) having a light-transmitting electrode (2), a functional layer (3) including a light-emitting layer, and a counter electrode (4); and a sealing material (6). The organic light-emitting body (5) is covered and sealed by the sealing material (6). An auxiliary electrode (7) having a grid-shaped pattern is provided by a wiring material (8) in contact with the light-transmitting electrode (2). The organic electroluminescence element has a light-transmittable part (15), at which the wiring material (8) is not provided, at the intersection positions of the grid-shaped pattern constituting the auxiliary electrode (7). The auxiliary electrode (7)-side surface of the functional layer (3) has an insulation film (10) provided at the position overlapping the auxiliary electrode (7) in plan view.

Description

有機エレクトロルミネッセンス素子及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子及びそれを用いた照明装置に関する。 The present invention relates to an organic electroluminescence element and a lighting device using the same.
 一般的な構造を有する有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう)として、光透過性の基板の表面に、光透過性電極、発光層を含む機能層、対電極が積層されたものが知られている。そして、このような有機EL素子を利用して面状発光素子(照明パネル)を得ることが知られている。有機EL素子では、陽極と陰極の間に電圧を印加することによって有機発光層で発した光は、光透過性電極、基板を通して取り出される。 As an organic electroluminescence device having a general structure (hereinafter also referred to as “organic EL device”), a light transmissive electrode, a functional layer including a light emitting layer, and a counter electrode are laminated on the surface of a light transmissive substrate. It has been known. It is known to obtain a planar light emitting element (illumination panel) using such an organic EL element. In the organic EL element, light emitted from the organic light emitting layer by applying a voltage between the anode and the cathode is extracted through the light transmissive electrode and the substrate.
特開2006-331920号公報JP 2006-331920 A
 有機EL素子では、光透過性と導電性とを有する材料(ITOなど)で光透過性電極を形成しているが、通常、光透過性電極の材料は比抵抗が高く、通電性があまりよくない。特に発光効率の向上のために電極層を薄膜化した場合や、素子の発光面積を大面積化した場合にはシート抵抗が大きくなる。そこで、光透過性電極よりも導電性の高い材料でグリッド状の補助電極を形成し、この補助電極で光透過性電極の電気伝導性を補って電極の通電性を高めることが行われる場合がある。例えば、特許文献1には、光透過性の電極と導通するように配線を設けた有機エレクトロルミネッセンス表示装置が開示されている。 In an organic EL element, a light transmissive electrode is formed of a light transmissive and conductive material (ITO or the like). Usually, the material of the light transmissive electrode has high specific resistance and is not very conductive. Absent. In particular, when the electrode layer is thinned in order to improve the light emission efficiency, or when the light emitting area of the element is increased, the sheet resistance increases. Therefore, there is a case where a grid-like auxiliary electrode is formed of a material having higher conductivity than the light transmissive electrode, and the electric conductivity of the light transmissive electrode is supplemented with this auxiliary electrode to increase the conductivity of the electrode. is there. For example, Patent Document 1 discloses an organic electroluminescence display device in which wiring is provided so as to be electrically connected to a light transmissive electrode.
 しかしながら、補助電極が形成された部分は、通常、透明ではなく光を取り出すことができない部分であるため、補助電極に対応してグリッド状の非発光形状が視認される場合がある。そして、非発光の形状が確認されると、照明用途などにおいて意匠性を低下させるなどの問題が発生するおそれがある。また、補助電極の形成された部分は光を取り出すことができないため、この部分で生じた発光は外部に取り出すことができず無駄になって、発光効率が低下するおそれがある。 However, since the portion where the auxiliary electrode is formed is usually a portion that is not transparent and cannot extract light, a grid-like non-light emitting shape may be visually recognized corresponding to the auxiliary electrode. And if the non-light-emitting shape is confirmed, there exists a possibility that problems, such as reducing the designability in the illumination use etc., may occur. In addition, since the portion where the auxiliary electrode is formed cannot extract light, the light emitted in this portion cannot be extracted outside and is wasted, which may reduce the light emission efficiency.
 本発明の目的は、補助電極によって効率よく電気伝導性を向上させることができるとともに、補助電極の非発光の形状が視認されることを抑制することができ、光取り出し性の優れた有機エレクトロルミネッセンス素子及び照明装置を提供することにある。 The object of the present invention is to improve the electrical conductivity efficiently by the auxiliary electrode, to suppress the non-light-emitting shape of the auxiliary electrode from being visually recognized, and to provide organic electroluminescence with excellent light extraction properties. It is in providing an element and an illuminating device.
 本発明に係る有機エレクトロルミネッセンス素子は、基板と、光透過性電極と発光層を含む機能層と対電極とを有する有機発光体と、封止材とを備えている。前記有機発光体は前記封止材によって覆われて封止されている。前記光透過性電極に接して配線材によりグリッド状のパターンの補助電極が設けられている。有機エレクトロルミネッセンス素子は、前記補助電極を構成する前記グリッド状のパターンの交差位置に、前記配線材が設けられていない光透過可能部を有している。前記機能層の前記補助電極側の表面には、平面視において前記補助電極と重複する位置に絶縁膜が設けられている。 The organic electroluminescent element according to the present invention includes a substrate, an organic light emitting body having a functional layer including a light transmissive electrode and a light emitting layer, and a counter electrode, and a sealing material. The organic light emitter is covered and sealed with the sealing material. An auxiliary electrode having a grid pattern is provided by a wiring material in contact with the light transmissive electrode. The organic electroluminescence element has a light transmissive portion where the wiring material is not provided at an intersection position of the grid-like pattern constituting the auxiliary electrode. An insulating film is provided on the surface of the functional layer on the auxiliary electrode side at a position overlapping the auxiliary electrode in plan view.
 前記光透過可能部は、前記交差位置において前記配線材が離間していることにより形成されていることが好ましい一態様である。 It is a preferable aspect that the light transmissive portion is formed by the wiring material being separated at the intersecting position.
 前記補助電極は、前記交差位置において、前記配線材が繋がって前記交差位置を通過する配線連続部を有し、前記配線連続部は、前記交差位置において屈曲形状を有することが好ましい一態様である。 In one aspect, the auxiliary electrode preferably has a continuous wiring portion that is connected to the wiring material at the crossing position and passes through the crossing position, and the continuous wiring portion has a bent shape at the crossing position. .
 前記補助電極は、前記交差位置において、前記配線材が繋がって前記交差位置を通過する配線連続部を有し、前記配線連続部は、前記交差位置において略直線形状を有することが好ましい一態様である。 In one preferred embodiment, the auxiliary electrode has a wiring continuous portion that passes through the intersection position by connecting the wiring materials at the intersection position, and the wiring continuous portion has a substantially linear shape at the intersection position. is there.
 前記補助電極は、前記光透過性電極の前記機能層側とは反対側の表面に接するように形成されており、側面が傾斜面となっていることが好ましい一態様である。 The auxiliary electrode is preferably formed so as to be in contact with the surface of the light transmissive electrode opposite to the functional layer side, and the side surface is preferably an inclined surface.
 前記交差位置又はその近傍において、前記配線材間を接続する接続配線が設けられていることが好ましい一態様である。 It is a preferable aspect that a connection wiring for connecting the wiring members is provided at the intersection or in the vicinity thereof.
 本発明に係る照明装置は、上記の有機エレクトロルミネッセンス素子を備える。 The illumination device according to the present invention includes the organic electroluminescence element described above.
 本発明によれば、補助電極によって効率よく電気伝導性を向上させることができるとともに、補助電極の非発光の形状が視認されることを抑制することができ、光取り出し性の優れた有機エレクトロルミネッセンス素子及び照明装置を得ることができる。 According to the present invention, the electroconductivity can be efficiently improved by the auxiliary electrode, and the non-light-emitting shape of the auxiliary electrode can be suppressed from being visually recognized, and the organic electroluminescence excellent in light extraction property An element and a lighting device can be obtained.
図1は図1A及び図1Bから構成される。図1は、有機エレクトロルミネッセンス素子の実施形態の一例を示す。図1Aは断面図である。図1Bは一部を分解した平面図である。FIG. 1 consists of FIG. 1A and FIG. 1B. FIG. 1 shows an example of an embodiment of an organic electroluminescence element. FIG. 1A is a cross-sectional view. FIG. 1B is a partially exploded plan view. 図2は図2A及び図2Bから構成される。図2Aは補助電極の形態の一例を示す平面図である。図2Bは補助電極が設けられた部分の拡大断面図である。FIG. 2 is composed of FIGS. 2A and 2B. FIG. 2A is a plan view showing an example of the form of the auxiliary electrode. FIG. 2B is an enlarged cross-sectional view of a portion where the auxiliary electrode is provided. 図3は図3A及び図3Bから構成される。図3は、有機エレクトロルミネッセンス素子の実施形態の他の一例を示す。図3Aは断面図である。図3Bは補助電極が設けられた部分の拡大断面図である。FIG. 3 is composed of FIGS. 3A and 3B. FIG. 3 shows another example of the embodiment of the organic electroluminescence element. FIG. 3A is a cross-sectional view. FIG. 3B is an enlarged cross-sectional view of a portion where the auxiliary electrode is provided. 図4は図4A及び図4Bから構成される。図4は、有機エレクトロルミネッセンス素子の実施形態の他の一例を示す。図4Aは一部を分解した平面図である。図4Bは補助電極を示す平面図である。FIG. 4 is composed of FIGS. 4A and 4B. FIG. 4 shows another example of the embodiment of the organic electroluminescence element. FIG. 4A is a partially exploded plan view. FIG. 4B is a plan view showing the auxiliary electrode. 図5は、有機エレクトロルミネッセンス素子の実施形態の他の一例を示し、一部を分解した平面図である。FIG. 5 is a plan view illustrating a part of the organic electroluminescence element according to another embodiment and partially disassembled. 図6は図6A~図6Fから構成される。図6Aは補助電極のパターンの一例である。図6Bは補助電極のパターンの一例である。図6Cは補助電極のパターンの一例である。図6Dは補助電極のパターンの一例である。図6Eは補助電極のパターンの一例である。図6Fは補助電極のパターンの一例である。FIG. 6 is composed of FIGS. 6A to 6F. FIG. 6A shows an example of the auxiliary electrode pattern. FIG. 6B is an example of the auxiliary electrode pattern. FIG. 6C is an example of the auxiliary electrode pattern. FIG. 6D shows an example of the auxiliary electrode pattern. FIG. 6E shows an example of the auxiliary electrode pattern. FIG. 6F is an example of the auxiliary electrode pattern. 図7は図7A、図7B及び図7Cから構成される。図7Aは補助電極のパターンの一例である。図7Bは補助電極のパターンの一例である。図7Cは補助電極のパターンの一例である。FIG. 7 is composed of FIGS. 7A, 7B and 7C. FIG. 7A is an example of a pattern of auxiliary electrodes. FIG. 7B is an example of the auxiliary electrode pattern. FIG. 7C shows an example of the auxiliary electrode pattern. 図8は図8A及び図8Bから構成される。図8はグリッドの説明図である。図8Aは四角格子の一例である。図8Bは六角格子の一例である。FIG. 8 is composed of FIGS. 8A and 8B. FIG. 8 is an explanatory diagram of a grid. FIG. 8A is an example of a square lattice. FIG. 8B is an example of a hexagonal lattice. 照明装置の一例を示す斜視図である。It is a perspective view which shows an example of an illuminating device.
 本発明の有機エレクトロルミネッセンス素子(有機EL素子)は、基板1と有機発光体5と封止材6とを備えている。有機発光体5は、光透過性電極2と、発光層を含む機能層3と、対電極4とを有する。有機発光体5は封止材6によって覆われて封止されている。光透過性電極2に接して配線材8によりグリッド状のパターンの補助電極7が設けられている。有機EL素子は、補助電極7を構成するグリッド状のパターンの交差位置に、配線材8が設けられていない光透過可能部15を有している。機能層3の補助電極7側の表面には、平面視において補助電極7と重複する位置に絶縁膜10が設けられている。 The organic electroluminescence element (organic EL element) of the present invention includes a substrate 1, an organic light-emitting body 5, and a sealing material 6. The organic light emitter 5 includes a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4. The organic light emitter 5 is covered and sealed with a sealing material 6. An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2. The organic EL element has a light transmissive portion 15 in which the wiring material 8 is not provided at the intersection position of the grid-like pattern constituting the auxiliary electrode 7. On the surface of the functional layer 3 on the auxiliary electrode 7 side, an insulating film 10 is provided at a position overlapping the auxiliary electrode 7 in plan view.
 図1は、有機EL素子の実施の形態の一例を示している。図1は図1A及び図1Bから構成される。この有機EL素子は、基板1の表面に、光透過性電極2と発光層を含む機能層3と対電極4とを有する有機発光体5が形成されている。有機発光体5は封止材6によって覆われて封止されている。光透過性電極2に接して配線材8によりグリッド状のパターンの補助電極7が設けられている。ただし、この配線材8は、補助電極7を構成するグリッド状のパターンの交差位置において途切れている。交差位置には、配線材8が設けられないことにより、光透過可能部15が形成されている。また、機能層3の補助電極7側の表面には、平面視において補助電極7と重複する位置に絶縁膜10が設けられている。このように、本形態の有機EL素子では、補助電極7が設けられているため、補助電極7によって光透過性電極2の通電性を高めることができる。また、補助電極7を構成する配線材8は、グリッド状のパターンの交差位置で途切れて、光を透過させる光透過可能部15が形成されているため、非発光の形状を視認させにくくすることができる。また、補助電極7の位置に絶縁膜10が形成されているため、外部に光を取り出せる補助電極7のない部分に電気をより供給して発光させることができ、効率よく発光を行うことができる。そのため、補助電極7によって効率よく電気伝導性を向上させることができるとともに、補助電極7の非発光の形状が視認されることを抑制することができ、光取り出し性の優れた有機エレクトロルミネッセンス素子を得ることができるものである。以下、さらに説明する。 FIG. 1 shows an example of an embodiment of an organic EL element. FIG. 1 consists of FIG. 1A and FIG. 1B. In this organic EL element, an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of a substrate 1. The organic light emitter 5 is covered and sealed with a sealing material 6. An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2. However, the wiring member 8 is interrupted at the intersecting position of the grid-like pattern constituting the auxiliary electrode 7. Since the wiring material 8 is not provided at the intersection position, a light transmissive portion 15 is formed. Further, an insulating film 10 is provided on the surface of the functional layer 3 on the auxiliary electrode 7 side at a position overlapping the auxiliary electrode 7 in plan view. Thus, in the organic EL element of this embodiment, since the auxiliary electrode 7 is provided, the conductivity of the light transmissive electrode 2 can be enhanced by the auxiliary electrode 7. Further, the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do. Further, since the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion without the auxiliary electrode 7 from which light can be extracted to the outside, and light can be emitted efficiently. . Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. It can be obtained. This will be further described below.
 図1Aは、有機EL素子の断面図を示している。図1Aでは素子の構成が分かりやすいように、左側に第1電極引き出し部12a側の端部を図示し、右側に第2電極引き出し部12b側の端部を図示している。図1Bは、図1Aの有機EL素子を平面視(基板1の表面に垂直な方向から見た場合)した様子を示している。図1Bでは、素子の内部構成が分かりやすいように、封止材6を取り除いて図示し、封止材6が接着される領域に設けられる封止接着部14を斜線で示している。また、図1Bでは、隠れている補助電極7(補助電極7を構成する複数の配線材8)を破線で示している。 FIG. 1A shows a cross-sectional view of an organic EL element. In FIG. 1A, for easy understanding of the element configuration, the end on the first electrode lead-out portion 12a side is shown on the left side, and the end on the second electrode lead-out portion 12b side is shown on the right side. FIG. 1B shows a state in which the organic EL element of FIG. 1A is viewed in plan (when viewed from a direction perpendicular to the surface of the substrate 1). In FIG. 1B, the sealing material 6 is removed for easy understanding of the internal configuration of the element, and the sealing adhesive portion 14 provided in the region to which the sealing material 6 is bonded is indicated by hatching. Further, in FIG. 1B, the hidden auxiliary electrode 7 (a plurality of wiring members 8 constituting the auxiliary electrode 7) is indicated by a broken line.
 基板1としては、光透過性を有する透明な基板であることが好ましい。本形態では、基板1は、ガラス基板で構成することができる。基板1がガラスで構成されることにより、ガラスは水分の透過性が低いので、基板1側からの水分の浸入を抑制することができる。また、基板1は、ガラスと他の材料との複合材によって構成されていてもよい。例えば、ガラス表面に光取り出し性の樹脂層を設けた基板1を用いた場合、光取り出し性を効果的に高めることができる。この樹脂層は基板1の有機発光体5側の面に設けられるものであってよい。光取り出し性の樹脂層としては、散乱構造を有する層などが例示される。樹脂層はプラスチック材の貼り付けにより設けてもよい。プラスチック材料としては、PET、PENなどを用いることができる。また、アクリル樹脂系、エポキシ樹脂系などの材料を用いてもよい。あるいは、樹脂層は、高屈折率層と低屈折率層の複層構造にしたり、さらにその複層構造の界面に微細な凹凸構造を設けたりした層であってもよい。 The substrate 1 is preferably a transparent substrate having optical transparency. In this embodiment, the substrate 1 can be composed of a glass substrate. When the substrate 1 is made of glass, the glass has low moisture permeability, so that moisture can be prevented from entering from the substrate 1 side. Moreover, the board | substrate 1 may be comprised with the composite material of glass and another material. For example, when the substrate 1 provided with a light extraction resin layer on the glass surface is used, the light extraction performance can be effectively improved. This resin layer may be provided on the surface of the substrate 1 on the organic light emitter 5 side. Examples of the light extraction resin layer include a layer having a scattering structure. The resin layer may be provided by attaching a plastic material. As the plastic material, PET, PEN, or the like can be used. Moreover, you may use materials, such as an acrylic resin type and an epoxy resin type. Alternatively, the resin layer may be a layer having a multilayer structure of a high-refractive index layer and a low-refractive index layer, or a fine uneven structure provided at the interface of the multilayer structure.
 有機発光体5は、光透過性電極2、機能層3及び対電極4の積層体によって形成されている。光透過性とは、光を透過させることが可能なことであり、完全に透明な場合及び半透明な場合を含む。光透過性は透光性を含む。有機発光体5の設けられる領域は、平面視(基板表面と垂直な方向から見た場合)において、基板1の中央部の領域である。有機発光体5は、有機発光体5を取り囲む外周の位置において基板1に接合される封止材6によって覆われて封止されており、有機発光体5は封止領域の内部に配置されている。本形態では、基板1側から、光透過性電極2、機能層3及び対電極4がこの順で設けられているが、その逆に、いわゆる逆層構造として、基板1側から、対電極4、機能層3及び光透過性電極2がこの順で設けられた素子であってもよい。 The organic light-emitting body 5 is formed by a laminate of the light transmissive electrode 2, the functional layer 3 and the counter electrode 4. The light transmissive property means that light can be transmitted, and includes a case where it is completely transparent and a case where it is translucent. The light transmission includes light transmission. The region where the organic light emitter 5 is provided is a central region of the substrate 1 in plan view (when viewed from a direction perpendicular to the substrate surface). The organic light emitter 5 is covered and sealed with a sealing material 6 bonded to the substrate 1 at an outer peripheral position surrounding the organic light emitter 5, and the organic light emitter 5 is disposed inside the sealing region. Yes. In this embodiment, the light transmissive electrode 2, the functional layer 3, and the counter electrode 4 are provided in this order from the substrate 1 side. Conversely, the counter electrode 4 is provided from the substrate 1 side as a so-called reverse layer structure. The element in which the functional layer 3 and the light transmissive electrode 2 are provided in this order may be used.
 光透過性電極2は光透過性を有する電極である。また、対電極4は、光透過性電極2と対となる電極である。通常、光透過性電極2は陽極を構成し、対電極4は陰極を構成するが、その逆であってもよい。光透過性電極2は、光透過性を有するため、光取り出し側の電極を構成することができる。また、対電極4は光反射性を有していてもよい。その場合、対電極4側に向って発せられる発光層からの光を、対電極4で反射させて光透過性の基板1側から取り出すことができる。また、対電極4は光透過性の電極であってもよい。対電極4が光透過性の場合、封止材6側の面(背面)から光を取り出す構造にすることが可能である。あるいは、対電極4が光透過性の場合、対電極4の背面(機能層3とは反対側の面)に光反射性の層を設けることによって、対電極4の方向に進行した光を反射させて、基板1側から取り出すことが可能である。その際、光反射性の層は、散乱反射性であってもよいし、鏡面反射性であってもよい。 The light transmissive electrode 2 is a light transmissive electrode. The counter electrode 4 is an electrode that is paired with the light transmissive electrode 2. Usually, the light transmissive electrode 2 constitutes an anode and the counter electrode 4 constitutes a cathode, but the opposite may be possible. Since the light transmissive electrode 2 is light transmissive, an electrode on the light extraction side can be formed. The counter electrode 4 may have light reflectivity. In that case, the light from the light emitting layer emitted toward the counter electrode 4 side can be reflected by the counter electrode 4 and extracted from the light transmissive substrate 1 side. The counter electrode 4 may be a light transmissive electrode. When the counter electrode 4 is light transmissive, it is possible to adopt a structure in which light is extracted from the surface (back surface) on the sealing material 6 side. Alternatively, when the counter electrode 4 is light transmissive, a light reflective layer is provided on the back surface (the surface opposite to the functional layer 3) of the counter electrode 4 to reflect the light traveling in the direction of the counter electrode 4. It is possible to take it out from the substrate 1 side. In that case, the light reflective layer may be scattering reflective or specular reflective.
 光透過性電極2は、透明な電極材料を用いて構成することができる。例えば、導電性の金属酸化物などを好ましく用いることができる。透明金属酸化物としては、ITO、IZO、AZOなどが例示される。光透過性電極2はスパッタ法などで形成され得る。光透過性電極2の厚みは、特に限定されるものではないが、例えば、10nm~1000nmの範囲にすることができる。 The light transmissive electrode 2 can be configured using a transparent electrode material. For example, a conductive metal oxide can be preferably used. Examples of the transparent metal oxide include ITO, IZO, AZO and the like. The light transmissive electrode 2 can be formed by sputtering or the like. The thickness of the light transmissive electrode 2 is not particularly limited, but can be, for example, in the range of 10 nm to 1000 nm.
 対電極4は、適宜の電極材料を用いて構成することができる。例えば、対電極4は、AlやAgなどにより形成することができる。対電極4は蒸着法やスパッタ法などで形成され得る。対電極4の厚みは、特に限定されるものではないが、例えば、10nm~1000nmの範囲にすることができる。 The counter electrode 4 can be configured using an appropriate electrode material. For example, the counter electrode 4 can be formed of Al, Ag, or the like. The counter electrode 4 can be formed by vapor deposition or sputtering. The thickness of the counter electrode 4 is not particularly limited, but can be, for example, in the range of 10 nm to 1000 nm.
 機能層3は、発光を生じさせる機能を有する層であり、通常、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層、中間層などから適宜選ばれる複数の層によって構成されるものである。機能層3の厚みは、特に限定されるものではないが、例えば、60~300nm程度にすることができる。 The functional layer 3 is a layer having a function of causing light emission, and is usually composed of a plurality of layers appropriately selected from a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an intermediate layer, and the like. Is. The thickness of the functional layer 3 is not particularly limited, but can be, for example, about 60 to 300 nm.
 機能層3の積層構造は、例えば、光透過性電極2を陽極とし、対電極4を陰極とした場合、光透過性電極2側から順に、ホール輸送層、発光層、電子輸送層、電子注入層とすることができる。なお、積層構造は、これに限定されるものではなく、例えば、発光層の単層としたり、ホール輸送層と発光層と電子輸送層との積層構造にしたり、ホール輸送層と発光層との積層構造にしたり、発光層と電子輸送層との積層構造にしたりすることができる。また、発光層は単層構造でも多層構造でもよく、例えば発光色が白色の場合には、発光層中に赤色、緑色、青色の3色のドーパント色素をドーピングしたり、赤、緑、青の発光層を積層させたりしてもよい。また、対となる二つの電極に挟んでこの電極間に電圧を印加した際に発光が生じる積層構造を1つの発光ユニットとした場合に、複数の発光ユニットが光透過性及び導電性を有する中間層を介して積層されたマルチユニット構造になっていてもよい。マルチユニット構造とは、対となる電極(陽極と陰極)の間に、厚み方向に重なる複数の発光ユニットを備えた構造である。 For example, when the light transmissive electrode 2 is an anode and the counter electrode 4 is a cathode, the laminated structure of the functional layer 3 is, in order from the light transmissive electrode 2 side, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection. It can be a layer. Note that the laminated structure is not limited to this, for example, a single layer of a light emitting layer, a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, or a hole transport layer and a light emitting layer. A laminated structure or a laminated structure of a light emitting layer and an electron transport layer can be formed. Further, the light emitting layer may have a single layer structure or a multilayer structure. For example, when the emission color is white, the light emitting layer may be doped with three red, green, and blue dopant dyes, or red, green, and blue. A light emitting layer may be laminated. In addition, when a laminated structure that emits light when a voltage is applied between two electrodes sandwiched between two electrodes is used as one light emitting unit, a plurality of light emitting units have a light transmitting property and a conductive property. It may be a multi-unit structure laminated through layers. The multi-unit structure is a structure including a plurality of light emitting units that overlap in the thickness direction between a pair of electrodes (anode and cathode).
 封止材6は、水分の透過性が低い基板材料を用いて形成することができる。例えば、ガラス基板などを用いることができる。具体的には、ソーダライムガラス、無アルカリガラスなどが挙げられる。これらは比較的安価なガラス材料であるため素子の製造コストを抑えることが可能になる。封止材6には、有機発光体5を収容するための凹部を有してもよいが、有していなくてもよい。本形態の封止材6では、封止材6は凹部を有しており、この凹部によって外周に封止側壁6aが形成されている。封止材6が凹部を有している場合、有機発光体5の側方を覆って封止することができるため、水分の浸入をより抑制することができ、封止性を高めることができる。凹部を有する封止材6としては、例えば、キャップガラスを用いることが可能である。封止材6が凹部を有していない場合、封止材6の平坦な面を基板1に対向させて封止することが可能になり、また、板状の封止材6をそのまま用いることができる。ただし、封止材6が凹部を有していない場合には、封止接着部14の厚み(高さ)を大きくして、封止接着部14によって有機発光体5を封止するためのスペーサとなる側壁が形成されることを要する。 The sealing material 6 can be formed using a substrate material having low moisture permeability. For example, a glass substrate or the like can be used. Specific examples include soda lime glass and non-alkali glass. Since these are relatively inexpensive glass materials, the manufacturing cost of the element can be suppressed. The sealing material 6 may have a recess for accommodating the organic light-emitting body 5, but may not have it. In the sealing material 6 of this embodiment, the sealing material 6 has a recess, and a sealing sidewall 6a is formed on the outer periphery by the recess. In the case where the sealing material 6 has a recess, the side of the organic light-emitting body 5 can be covered and sealed, so that the intrusion of moisture can be further suppressed and the sealing performance can be improved. . As the sealing material 6 having a recess, for example, cap glass can be used. When the sealing material 6 does not have a recess, it is possible to seal the sealing material 6 with the flat surface of the sealing material 6 facing the substrate 1, and the plate-like sealing material 6 is used as it is. Can do. However, when the sealing material 6 does not have a recess, the thickness (height) of the sealing adhesive portion 14 is increased and the spacer for sealing the organic light emitter 5 by the sealing adhesive portion 14 is used. It is necessary to form a side wall.
 封止材6は、接着材料により構成される封止接着部14により基板1に接合されている。封止接着部14は、有機発光体5の外周を取り囲んで基板1に設けられるものである。図1Bにおける斜線部分で示すように、本形態では、封止接着部14は、光透過性電極2を構成する導電層の表面と、その導電層が分断された隙間における基板1の表面とに接して設けられている。このように、封止材6が封止接着部14によって基板1に接着されることにより、有機発光体5は、外部空間から遮断されて封止されることになる。 The sealing material 6 is joined to the substrate 1 by a sealing adhesive portion 14 made of an adhesive material. The sealing adhesive portion 14 is provided on the substrate 1 so as to surround the outer periphery of the organic light-emitting body 5. As shown by the hatched portion in FIG. 1B, in this embodiment, the sealing adhesive portion 14 is formed on the surface of the conductive layer constituting the light transmissive electrode 2 and the surface of the substrate 1 in the gap where the conductive layer is divided. It is provided in contact. As described above, the sealing material 6 is bonded to the substrate 1 by the sealing adhesive portion 14, whereby the organic light-emitting body 5 is blocked from the external space and sealed.
 封止接着部14の材料は、接着剤として機能する適宜の材料により構成されるものであり、例えば、樹脂性の接着材料を用いることができる。樹脂性の接着材料は、防湿性を有していることが好ましい。例えば、乾燥剤を含有することにより防湿性を高めることができる。樹脂性の接着材料は、熱硬化性樹脂や紫外線硬化樹脂などを主成分とするものであってもよい。 The material of the sealing adhesion part 14 is comprised by the appropriate material which functions as an adhesive agent, for example, a resinous adhesive material can be used. The resinous adhesive material preferably has moisture resistance. For example, moisture resistance can be improved by containing a desiccant. The resinous adhesive material may be mainly composed of a thermosetting resin or an ultraviolet curable resin.
 基板1と封止材6とに挟まれて有機発光体5(及び機能層3)が封止された部分(封止内部間隙)には、充填剤が充填されていてもよいし、空洞となった封止空間が形成されていてもよい。封止内部間隙を封止空間にする場合、封止材6で簡単に封止することができ、素子を容易に作製することができる。また、封止内部間隙に充填剤が充填されずに封止空間が形成された場合、封止空間には乾燥材13を設けることが好ましい。それにより、封止空間に水分が浸入したとしても、浸入した水分を吸収することができる。例えば、封止材6の有機発光体5側の面に貼り付けることにより乾燥材13を封止空間内に設けることができる。あるいは、乾燥材13は塗布により設けられてもよい。 A portion (sealed internal gap) where the organic light-emitting body 5 (and the functional layer 3) is sealed between the substrate 1 and the sealing material 6 may be filled with a filler, A sealed space may be formed. When the sealed internal gap is used as a sealed space, it can be easily sealed with the sealing material 6, and the device can be easily manufactured. Moreover, when the sealing space is formed without filling the sealing internal gap with the filler, it is preferable to provide the desiccant 13 in the sealing space. Thereby, even if moisture enters the sealed space, the moisture that has entered can be absorbed. For example, the desiccant 13 can be provided in the sealing space by sticking to the surface of the sealing material 6 on the organic light emitter 5 side. Alternatively, the desiccant 13 may be provided by application.
 また、基板1と封止材6とに挟まれた封止領域の封止内部間隙を充填剤で満たした場合、封止材6で封止する際に、封止材6が内側に湾曲するなどしたとしても、有機発光体5に接触したりすることを低減でき、より安全に素子を製造することができる。充填剤は乾燥剤や吸湿剤が配合された樹脂組成物で構成することができる。また、流動性を有する樹脂組成物を用いることにより、封止内部間隙に充填剤を簡単に充填することができる。充填剤は硬化するものであっても、硬化しないものであってもよい。また、充填剤が乾燥剤や吸湿剤を含有することによって、内部に水分が浸入したとしても、充填剤で水分を吸収することができ、機能層3に水分が到達することを抑制することができる。 Further, when the sealing internal gap in the sealing region sandwiched between the substrate 1 and the sealing material 6 is filled with the filler, the sealing material 6 curves inward when sealing with the sealing material 6. Even if it does, it can reduce contacting with the organic light-emitting body 5, and an element can be manufactured more safely. A filler can be comprised with the resin composition with which the desiccant and the hygroscopic agent were mix | blended. Further, by using a resin composition having fluidity, the sealing internal gap can be easily filled with a filler. The filler may be hardened or not hardened. Moreover, even if water | moisture content penetrate | invades inside because a filler contains a desiccant and a hygroscopic agent, a water | moisture content can be absorbed with a filler and it suppresses that a water | moisture content reaches | attains the functional layer 3. it can.
 有機EL素子では、光透過性電極2と対電極4とに電圧を印加し、機能層3において正孔と電子を結合させて発光を生じさせる。そのため、光透過性電極2及び対電極4のそれぞれと導通する電極端子を封止領域よりも外部に引き出して設ける必要がある。電極端子は、外部電極と電気的に接続するための端子である。図1の形態では、光透過性電極2を構成する導電層を基板1の端部に引き出すことにより、電極引き出し部12を形成している。そして、この電極引き出し部12の表面に、電極端子を構成する電極パッド11が設けられている。 In the organic EL element, a voltage is applied to the light transmissive electrode 2 and the counter electrode 4, and holes and electrons are combined in the functional layer 3 to emit light. Therefore, it is necessary to provide an electrode terminal that is electrically connected to each of the light transmissive electrode 2 and the counter electrode 4 so as to be drawn outside the sealing region. The electrode terminal is a terminal for electrically connecting to the external electrode. In the form of FIG. 1, the electrode lead portion 12 is formed by drawing the conductive layer constituting the light transmissive electrode 2 to the end portion of the substrate 1. An electrode pad 11 that constitutes an electrode terminal is provided on the surface of the electrode lead-out portion 12.
 電極引き出し部12は、基板1の端部表面に設けられている。電極引き出し部12は、光透過性電極2と導通する第1電極引き出し部12aと、対電極4と導通する第2電極引き出し部12bとに区分される。本形態では、電極引き出し部12は、光透過性電極2を構成する導電層が基板1の端部側に引き出され、封止材6が設けられる領域よりも外側に延出されることによって形成されている。すなわち、光透過性電極2を構成する導電層は、第1電極引き出し部12aが設けられる端部では、この導電層が延伸することにより封止領域からはみ出して基板1の表面に形成されている。そして、第1電極引き出し部12aは、光透過性電極2の延長部分により構成されている。また、光透過性電極2を構成する導電層は、第2電極引き出し部12bが設けられる端部では、この導電層が分断されるとともに分断された導電層が延伸することにより封止領域からはみ出して基板1の表面に形成されている。そして、第2電極引き出し部12bは、光透過性電極2から分離した導電層の延長部分により構成されている。第2電極引き出し部12bは、封止領域の内部において、積層された対電極4と接触しており、それにより第2電極引き出し部12bと対電極4とが導通する構造となっている。 The electrode lead-out portion 12 is provided on the end surface of the substrate 1. The electrode lead-out part 12 is divided into a first electrode lead-out part 12 a that conducts with the light-transmissive electrode 2 and a second electrode lead-out part 12 b that conducts with the counter electrode 4. In this embodiment, the electrode lead portion 12 is formed by the conductive layer constituting the light transmissive electrode 2 being drawn to the end portion side of the substrate 1 and extending outside the region where the sealing material 6 is provided. ing. That is, the conductive layer constituting the light transmissive electrode 2 is formed on the surface of the substrate 1 so as to protrude from the sealing region by extending the conductive layer at the end where the first electrode lead portion 12a is provided. . The first electrode lead portion 12 a is configured by an extension portion of the light transmissive electrode 2. In addition, the conductive layer constituting the light transmissive electrode 2 protrudes from the sealed region by dividing the conductive layer and extending the divided conductive layer at the end where the second electrode lead portion 12b is provided. And formed on the surface of the substrate 1. The second electrode lead portion 12 b is configured by an extended portion of the conductive layer separated from the light transmissive electrode 2. The second electrode lead-out portion 12b is in contact with the stacked counter electrode 4 inside the sealing region, so that the second electrode lead-out portion 12b and the counter electrode 4 are electrically connected.
 電極引き出し部12の表面には、電極パッド11が設けられている。電極パッド11は、非発光領域に形成されるものであるため、光透過性を有さなくてもよい。電極パッド11を設けることにより、外部電源との接続を電極パッド11で行うことができ、電気接続性を高めることができる。また、電極パッド11を設けることにより、光透過性電極2及び電極引き出し部12を構成する導電層の通電性を高めることができる。電極パッド11は、補助電極7を構成する配線材8と同じ材料の層であってよい。それにより、簡単に導通性の高い電極パッド11を形成することができる。 An electrode pad 11 is provided on the surface of the electrode lead portion 12. Since the electrode pad 11 is formed in the non-light emitting region, it does not have to have light transparency. By providing the electrode pad 11, connection with an external power source can be performed with the electrode pad 11, and electrical connectivity can be improved. Further, by providing the electrode pad 11, it is possible to improve the electrical conductivity of the conductive layers constituting the light transmissive electrode 2 and the electrode lead-out portion 12. The electrode pad 11 may be a layer made of the same material as that of the wiring member 8 constituting the auxiliary electrode 7. Thereby, the electrode pad 11 with high electrical conductivity can be easily formed.
 なお、電極引き出し部12の構造(電極を封止領域よりも外部に引き出す構造)は、図1の形態の構造に限られるものではなく、例えば、第1電極引き出し部12a及び第2電極引き出し部12bの一方又は両方を、光透過性電極2を構成する導電層とは別の導電層を用いて形成してもよい。また、基板1側に対電極4が配設され、封止材6側に光透過性電極2が配設される構造(封止材6側から光を取り出す構造)の場合、対電極4の延長部分により、電極引き出し部12が構成されてもよい。 Note that the structure of the electrode lead-out portion 12 (the structure in which the electrode is drawn out from the sealing region) is not limited to the structure in the form of FIG. 1, and for example, the first electrode lead-out portion 12a and the second electrode lead-out portion One or both of 12b may be formed using a conductive layer different from the conductive layer constituting the light transmissive electrode 2. Further, in the case of a structure in which the counter electrode 4 is disposed on the substrate 1 side and the light-transmissive electrode 2 is disposed on the sealing material 6 side (a structure in which light is extracted from the sealing material 6 side), The electrode lead portion 12 may be configured by the extended portion.
 そして、本形態の有機EL素子では、グリッド状のパターンとなった補助電極7が光透過性電極2に接して設けられている。補助電極7は、導電材料で構成される配線材8により形成されている。補助電極7は光透過性電極2の機能層3側の表面に形成されている。補助電極7を設けることにより、光透過性電極2の通電性を高めることができ、発光面における電流分布を改善し、面内での発光がより均一になった有機EL素子を得ることができる。ここで、光透過性電極2は、光透過性を有する材料(透明金属酸化物など)で形成されるため、通常、比抵抗が高く、通電性があまりよくない。そこで、光透過性電極2よりも抵抗が低い材料で配線材8を形成し、この配線材8で補助電極7を構成することにより、光透過性電極2の電気伝導性を補って通電性をより高めることができる。例えば、ガラス基板上に膜厚50nm程度で形成されたITOにおいてはシート抵抗が70Ω程度となり、シート抵抗が比較的高くなるが、グリッド状の補助電極7を設けると、シート抵抗を下げることが可能になる。補助電極7がグリッド状に形成されていることにより、補助電極7の網目の間(穴)から光を基板1側に取り出すことが可能になる。 In the organic EL element of this embodiment, the auxiliary electrode 7 having a grid pattern is provided in contact with the light transmissive electrode 2. The auxiliary electrode 7 is formed of a wiring material 8 made of a conductive material. The auxiliary electrode 7 is formed on the surface of the light transmissive electrode 2 on the functional layer 3 side. By providing the auxiliary electrode 7, it is possible to improve the electrical conductivity of the light transmissive electrode 2, improve the current distribution on the light emitting surface, and obtain an organic EL element with more uniform light emission within the surface. . Here, since the light transmissive electrode 2 is formed of a light transmissive material (transparent metal oxide or the like), the specific resistance is usually high and the conductivity is not so good. Therefore, the wiring material 8 is formed of a material having a resistance lower than that of the light transmissive electrode 2, and the auxiliary electrode 7 is formed of the wiring material 8, thereby supplementing the electrical conductivity of the light transmissive electrode 2 and increasing the conductivity. Can be increased. For example, ITO formed on a glass substrate with a film thickness of about 50 nm has a sheet resistance of about 70Ω and a relatively high sheet resistance. However, if the grid-like auxiliary electrode 7 is provided, the sheet resistance can be lowered. become. Since the auxiliary electrode 7 is formed in a grid shape, light can be extracted from between the meshes (holes) of the auxiliary electrode 7 to the substrate 1 side.
 図1Bに示すように、本形態では、補助電極7は、複数の短冊状の配線材8により形成されている。短冊状とは、長辺が短辺に比べてはるかに長い(例えば10倍以上)ものとなった四角形形状であってよい。また、個々の配線材8は、直線状の配線であってよい。個々の配線材8はグリッドパターンを構成する格子の四角形形状の各辺に配置されている。 As shown in FIG. 1B, in this embodiment, the auxiliary electrode 7 is formed of a plurality of strip-shaped wiring members 8. The strip shape may be a rectangular shape whose long side is much longer (for example, 10 times or more) than the short side. Each wiring member 8 may be a linear wiring. The individual wiring members 8 are arranged on each side of the quadrangular shape of the grid constituting the grid pattern.
 図2Aは、補助電極7の拡大図である。図2は図2A及び図2Bから構成される。補助電極7においては、配線材8は、補助電極7を構成するグリッド状のパターンの交差位置において途切れている。配線材8が設けられていない部分は、光透過可能部15となる。すなわち、図2Aに示すように、本形態では、個々の線状の配線材8は、グリッドパターンの交差する位置である交差部Cの位置に重複しないように配置されており、この交差部Cには配線材8の材料は設けられていない。補助電極7は、いわば複数の格子線の交差点において線が分断されている不完全なグリッド形状となっていると言える。 FIG. 2A is an enlarged view of the auxiliary electrode 7. FIG. 2 is composed of FIGS. 2A and 2B. In the auxiliary electrode 7, the wiring member 8 is interrupted at the intersecting position of the grid pattern constituting the auxiliary electrode 7. A portion where the wiring member 8 is not provided becomes a light transmissive portion 15. That is, as shown in FIG. 2A, in the present embodiment, the individual linear wiring members 8 are arranged so as not to overlap at the position of the intersection C where the grid pattern intersects. Is not provided with the material of the wiring member 8. It can be said that the auxiliary electrode 7 has an incomplete grid shape in which lines are divided at intersections of a plurality of grid lines.
 グリッド状のパターンの交差位置(交差部C)に補助電極7が設けられた場合、補助電極7は、光を遮断し非発光の部分となるため、有機EL素子を駆動した際には、格子形状の交差位置が非発光となり、非発光の部分が目立ちやすくなるおそれがある。しかしながら、本形態では、交差位置(交差部C)に、補助電極7を構成する配線材8が設けられていない光透過可能部15を設けるようにしているため、交差位置において光が遮られないようにすることができる。そのため、グリッドパターンの交差位置から光を取り出すことができるので、非発光形状を目立ちにくくすることができる。 When the auxiliary electrode 7 is provided at the crossing position (intersection C) of the grid pattern, the auxiliary electrode 7 blocks light and becomes a non-light-emitting portion. Therefore, when the organic EL element is driven, There is a possibility that the crossing position of the shape does not emit light, and the non-light emitting portion is easily noticeable. However, in this embodiment, since the light transmissive portion 15 not provided with the wiring material 8 constituting the auxiliary electrode 7 is provided at the intersection position (intersection portion C), light is not blocked at the intersection position. Can be. Therefore, since light can be extracted from the grid pattern intersection position, the non-light-emitting shape can be made inconspicuous.
 光透過可能部15は発光層から生じた光を透過させることができる部分である。配線材8は光透過性を有さないことが多く、もしくは光透過性が低いため、配線材8が存在する部分においては、光が透過できないか、もしくは光透過性が低い。しかしながら、光透過可能部15は、配線材8が存在していないため、光を透過させることができ、発光層からの光を基板側に伝えることができる。 The light transmissive portion 15 is a portion that can transmit light generated from the light emitting layer. In many cases, the wiring member 8 does not have light transmission or has low light transmission. Therefore, in a portion where the wiring member 8 exists, light cannot be transmitted or light transmission is low. However, since the wiring member 8 does not exist, the light transmissive portion 15 can transmit light and transmit light from the light emitting layer to the substrate side.
 ここで、交差位置とは、配線材8が繋がっていると仮定したときに、配線材8が交差して通る部分(図2Aの交差部C)及びその近傍を意味する。図2Aには、交差位置の範囲を交差位置7aとして図示している。交差位置7aの中に、光透過可能部15が形成されている。図2Aの例は、交差部Cにおいて配線材8が全く設けられていない例であると言える。 Here, the intersection position means a portion (intersection C in FIG. 2A) and the vicinity thereof where the wiring material 8 intersects when it is assumed that the wiring material 8 is connected. In FIG. 2A, the range of the intersection position is illustrated as the intersection position 7a. A light transmissive portion 15 is formed in the intersection position 7a. 2A can be said to be an example in which the wiring member 8 is not provided at the intersection C at all.
 光透過可能部15は、交差位置において配線材8が離間していることにより形成されていることが好ましい。それにより、効率よく交差位置における発光性を高めることができ、補助電極7を視認しにくくすることができる。 The light transmissive portion 15 is preferably formed by the wiring material 8 being separated at the intersection position. Thereby, the light emission at the intersection position can be improved efficiently, and the auxiliary electrode 7 can be made difficult to visually recognize.
 図1Bに示されるように、補助電極7のグリッドパターンは、縦横に延伸する直線が等間隔で配置されて構成されているものであってよい。ここで、補助電極7のグリッドパターンとは、配線材8を分断しないで繋いだときのパターン形状がグリッドのパターンとなるものであってよい。 As shown in FIG. 1B, the grid pattern of the auxiliary electrode 7 may be configured by arranging straight lines extending vertically and horizontally at equal intervals. Here, the grid pattern of the auxiliary electrode 7 may be such that the pattern shape when the wiring members 8 are connected without being divided is a grid pattern.
 ここで、図8によりグリッドパターンを説明する。図8は、グリッドの形状の説明図である。図8は、図8A及び図8Bにより構成される。グリッドは四角格子又は六角格子であってよい。図8Aは、四角格子の説明図である。四角格子のグリッドでは、全体形状が、図8Aのような四角格子(グリッドG4)となる。図8Bは、六角格子の説明図である。六角格子のグリッドでは、全体形状が図8Bのような六角格子(グリッドG6)となる。図8は、グリッドの説明のために、完全なグリッド状を示している。図8A及び図8Bでは、グリッドパターンの交差位置が、交差位置gで示されている。グリッドパターンは網目状のパターンであってよい。図8の説明図により、各形態のグリッドパターンが理解されるであろう。 Here, the grid pattern will be described with reference to FIG. FIG. 8 is an explanatory diagram of the shape of the grid. FIG. 8 is constituted by FIGS. 8A and 8B. The grid may be a square grid or a hexagonal grid. FIG. 8A is an explanatory diagram of a square lattice. In the grid of the square lattice, the overall shape is a square lattice (grid G4) as shown in FIG. 8A. FIG. 8B is an explanatory diagram of a hexagonal lattice. In the hexagonal grid, the overall shape is a hexagonal grid (grid G6) as shown in FIG. 8B. FIG. 8 shows a complete grid for the description of the grid. 8A and 8B, the intersection position of the grid pattern is indicated by the intersection position g. The grid pattern may be a mesh pattern. The grid pattern of each form will be understood from the explanatory diagram of FIG.
 図1Bのグリッド形状は四角格子である。四角格子は六角格子よりも形成が容易であり得る。図1Bの形態では、縦5本、横5本の直線によって、16個の矩形の穴が設けられてグリッドの網目が形成されているが、網目の個数や線の本数は、これに限定されるものではない。図1Bではグリッドパターンの概略を示しており、実際には、より密にグリッドパターンが構成されていてよい。例えば、縦横それぞれ10~100本の範囲などの適宜の数であってもよい。具体的には、例えば、発光する領域の形状が、縦10~1000mm、横10~1000mmの長方形又は正方形である場合には、グリッドを構成する直線が縦10~100本×横10~100本のようなパターンにすることができる。 The grid shape in FIG. 1B is a square lattice. A square lattice may be easier to form than a hexagonal lattice. In the form of FIG. 1B, 16 rectangular holes are provided by 5 vertical lines and 5 horizontal lines to form a grid mesh, but the number of meshes and the number of lines are limited to this. It is not something. FIG. 1B shows an outline of the grid pattern. In practice, the grid pattern may be configured more densely. For example, an appropriate number such as a range of 10 to 100 in the vertical and horizontal directions may be used. Specifically, for example, when the shape of the light emitting region is a rectangle or square having a length of 10 to 1000 mm and a width of 10 to 1000 mm, the straight lines constituting the grid are 10 to 100 vertical lines × 10 to 100 horizontal lines. The pattern can be as follows.
 本形態の有機EL素子では、機能層3の補助電極7側の表面に絶縁膜10が設けられている。この絶縁膜10は、部分的に設けられており、平面視において補助電極7と重複する位置に設けられている。ここで、補助電極7が設けられた部分は、通常、補助電極7は光透過性を有していないため、光を取り出すことができないので、この部分で発光が生じると、発光のロスが生じ、発光効率が低下するおそれがある。しかしながら、絶縁膜10を設けると、補助電極7が設けられた部分では発光が生じないようし、光取り出し可能な補助電極7以外の領域(格子の網目)に電流をより多く流すことができるため、発光ロスを低減して発光効率を向上させることができる。また、補助電極7と対電極4との間で直接電気が流れると、補助電極7の部分で過剰発光が生じ、光透過性電極2と対電極4と間の発光が適切に得られなくなるおそれがある。しかしながら、絶縁膜10を設けると、補助電極7が設けられた部分で過剰発光が生じるのを抑制することができ、光透過性電極2と対電極4とに電気を流して、面状の発光を適切に得ることができる。 In the organic EL element of this embodiment, the insulating film 10 is provided on the surface of the functional layer 3 on the auxiliary electrode 7 side. This insulating film 10 is provided partially, and is provided at a position overlapping with the auxiliary electrode 7 in plan view. Here, in the portion where the auxiliary electrode 7 is provided, since the auxiliary electrode 7 usually does not have optical transparency, light cannot be extracted. Therefore, if light is emitted in this portion, a loss of light emission occurs. There is a risk that the luminous efficiency is lowered. However, when the insulating film 10 is provided, light emission does not occur in the portion where the auxiliary electrode 7 is provided, and more current can flow in a region (lattice mesh) other than the auxiliary electrode 7 from which light can be extracted. The light emission loss can be reduced and the light emission efficiency can be improved. Further, if electricity directly flows between the auxiliary electrode 7 and the counter electrode 4, excessive light emission occurs in the portion of the auxiliary electrode 7, and light emission between the light transmissive electrode 2 and the counter electrode 4 may not be obtained properly. There is. However, when the insulating film 10 is provided, it is possible to suppress excessive light emission in the portion where the auxiliary electrode 7 is provided, and electricity is supplied to the light transmissive electrode 2 and the counter electrode 4 to emit planar light. Can be obtained appropriately.
 また、図1の有機EL素子では、補助電極7は光透過性電極2の表面で盛り上がって形成されている。そのため、この表面に機能層3及び対電極4を直接形成した際には、層が分断されたり薄くなったりして、電気的にショートしやすくなるおそれがある。しかしながら、本形態では、補助電極7が絶縁膜10によって電気的に絶縁されているので、たとえ補助電極7の位置で機能層3が途切れて対電極4が積層されたとしても、絶縁膜10によって光透過性電極2と対電極4とが直接接することがない。そのため、電気的にショートすることを防ぐことができる。 Further, in the organic EL element of FIG. 1, the auxiliary electrode 7 is formed so as to rise on the surface of the light transmissive electrode 2. For this reason, when the functional layer 3 and the counter electrode 4 are directly formed on the surface, the layers may be divided or thinned, which may easily cause an electrical short circuit. However, in this embodiment, since the auxiliary electrode 7 is electrically insulated by the insulating film 10, even if the functional layer 3 is interrupted at the position of the auxiliary electrode 7 and the counter electrode 4 is laminated, the insulating film 10 The light transmissive electrode 2 and the counter electrode 4 are not in direct contact. Therefore, it is possible to prevent an electrical short circuit.
 絶縁膜10は補助電極7と略同じ形状のパターンで設けられるものであってよい。すなわち、グリッド状のパターンで設けられるものであってよい。このとき、グリッド状のパターンの線の交差位置には、絶縁膜10が設けられてもよいし、設けられていなくてもよい。グリッド状のパターンの線の交差位置に絶縁膜10が設けられる場合、絶縁膜10のパターンが簡単になって形成が容易になる。グリッド状のパターンの線の交差位置に絶縁膜10が設けられると、絶縁膜10は完全なグリッドパターンになり得る。この場合、交差位置では絶縁膜10が設けられているため直接発光は生じないが、交差位置では光透過性を有さない配線材8が設けられていないため、周囲で生じた光を透明な絶縁膜10を通して外部に取り出すことができる。しかし、より好ましくは、絶縁膜10は、補助電極7と同じように、グリッド状のパターンの線の交差位置に設けられていない形態である。その場合、グリッドの交差位置で線が分断した不完全なグリッド形状の絶縁膜10となる。グリッドパターンの線の交差位置に絶縁膜10が設けられていないと、この交差位置(交差部C)において、電流を流して発光することができ、この部分を発光させて光を取り出すことができるため、非発光部分をより視認させにくくすることができる。また、交差部Cにおいては、配線材8がグリッドの網目の内部よりも近くに配置されることになり、また、4本の配線が放射状になって配置された中心となるため、光透過性電極2の抵抗をより小さくすることができる。そのため、交差部Cにおいて電流をより多く流すことが可能になり、この部分の発光性を高め、グリッドの網目の内部よりも強く光らせて輝度を向上することができる。そのため、非発光形状をより視認させにくくすることができる。 The insulating film 10 may be provided in a pattern having substantially the same shape as the auxiliary electrode 7. That is, it may be provided in a grid pattern. At this time, the insulating film 10 may or may not be provided at the crossing position of the grid pattern lines. When the insulating film 10 is provided at the intersection of the grid-like pattern lines, the pattern of the insulating film 10 is simplified and the formation is facilitated. When the insulating film 10 is provided at the intersection of the grid-like pattern lines, the insulating film 10 can be a complete grid pattern. In this case, since the insulating film 10 is provided at the intersecting position, no direct light emission occurs, but at the intersecting position, the wiring member 8 having no light transmission property is not provided, so that the light generated in the surroundings is transparent. It can be taken out through the insulating film 10. However, more preferably, the insulating film 10 is not provided at the intersection of the lines of the grid pattern, like the auxiliary electrode 7. In that case, the insulating film 10 having an incomplete grid shape in which the lines are divided at the grid intersection positions. If the insulating film 10 is not provided at the intersecting position of the grid pattern lines, light can be emitted by passing an electric current at the intersecting position (intersecting portion C), and light can be extracted by emitting light at this portion. Therefore, it is possible to make the non-light emitting portion more difficult to visually recognize. Further, at the intersection C, the wiring member 8 is arranged closer to the inside of the mesh of the grid, and the four wirings are the centers where they are arranged in a radial pattern. The resistance of the electrode 2 can be further reduced. For this reason, it is possible to flow a larger amount of current at the intersection C, and the luminance of this portion can be improved, and the luminance can be improved by making it shine stronger than the inside of the grid mesh. Therefore, it is possible to make the non-light emitting shape more difficult to visually recognize.
 図2Bに示すように、本形態では、補助電極7は、光透過性電極2に接していない部分が、絶縁膜10によって被覆されている。すなわち、補助電極7の上には補助電極7を覆うように絶縁膜10が積層され、補助電極7は表面だけでなく側面7sも絶縁膜10に被覆されている。このように補助電極7が絶縁膜10によって被覆されていると、層の分断を生じにくくすることができるとともに、絶縁性を確保できるため、ショート不良をさらに抑制することができる。また、光をより取り出しやすい補助電極7以外の部分に電流を多く流すことができるため、発光効率をさらに高めることができる。絶縁膜10の側面10sは傾斜していることが好ましい。それにより、層の分断をより一層抑制することができる。 As shown in FIG. 2B, in this embodiment, the auxiliary electrode 7 is covered with an insulating film 10 at a portion not in contact with the light transmissive electrode 2. That is, the insulating film 10 is laminated on the auxiliary electrode 7 so as to cover the auxiliary electrode 7, and the auxiliary electrode 7 is covered not only on the surface but also on the side surface 7 s by the insulating film 10. When the auxiliary electrode 7 is covered with the insulating film 10 as described above, it is possible to make it difficult to divide the layers, and it is possible to secure insulation, thereby further suppressing short-circuit defects. In addition, since a large amount of current can flow through the portion other than the auxiliary electrode 7 where light can be easily extracted, the luminous efficiency can be further increased. The side surface 10s of the insulating film 10 is preferably inclined. Thereby, the division of the layer can be further suppressed.
 補助電極7は、電極材料で構成される層である。透明性は有さなくてもよい。補助電極7は、例えば、導電性の金属材料で形成することができる。具体的には、銅、銀、金、アルミ、ニッケル、モリブデン、クロムなどが例示される。 The auxiliary electrode 7 is a layer made of an electrode material. It does not have to be transparent. The auxiliary electrode 7 can be formed of, for example, a conductive metal material. Specifically, copper, silver, gold, aluminum, nickel, molybdenum, chromium and the like are exemplified.
 補助電極7の好ましい材料の一つは、MAMと称せられるモリブデン/アルミニウム/モリブデン積層体(Mo/Al/Mo)である。MAMを用いた場合、光透過性電極2の導電性を効果的に補助して向上することができる。MAMでは、例えばシート抵抗を0.07Ωにすることができる。また、補助電極7は、Cr/Al/Crなどで構成することもできる。その場合も、低抵抗化することが可能である。 One of the preferred materials for the auxiliary electrode 7 is a molybdenum / aluminum / molybdenum laminate (Mo / Al / Mo) called MAM. When MAM is used, the conductivity of the light transmissive electrode 2 can be effectively assisted and improved. In MAM, for example, the sheet resistance can be 0.07Ω. Further, the auxiliary electrode 7 can be made of Cr / Al / Cr or the like. Even in that case, the resistance can be reduced.
 補助電極7の好ましい他の材料としては、金属粒子が挙げられる。金属粒子としては、例えば、銀粒子、銅粒子などが好ましい。金属粒子は、後述するように、例えば、印刷法によって好適に塗布され得る。 Favorable other materials for the auxiliary electrode 7 include metal particles. As the metal particles, for example, silver particles and copper particles are preferable. As will be described later, the metal particles can be suitably applied by, for example, a printing method.
 絶縁膜10は、絶縁性を有する材料によって構成される。例えば、絶縁性樹脂又は無機材料により形成される。絶縁性の樹脂としては、アクリル樹脂、ノボラック樹脂、ポリイミド樹脂などが例示される。無機材料としては、Si系材料などが例示される。 The insulating film 10 is made of an insulating material. For example, it is formed of an insulating resin or an inorganic material. Examples of the insulating resin include acrylic resin, novolac resin, and polyimide resin. Examples of inorganic materials include Si-based materials.
 本形態では、グリッドパターンの交差位置(交差部C)において、補助電極7を構成する配線材8が離間している。すなわち、配線材8が交差部Cに設けられない構造としては、配線材8の端部が交差部Cの外縁に位置する構造も可能であるが、本形態では、図2Aに示すように、交差部Cよりも外側に配線材8の端部が配置されている。そのため、垂直な方向に延伸する配線材8同士は、互いに接触していない。このように、配線材8を離間させることにより交差部Cに配線材8が形成されないようにすると、簡単に交差位置に配線材8を形成しないパターンを形成することができる。また、配線材8が離間していると、絶縁膜10を塗布して形成する際に、絶縁膜10を塗布しやすくすることができる。例えば、絶縁膜10は、絶縁材料が全面に塗布された後に、部分的に硬化され不要部分が除去されて形成され得るが、その際に配線材8が離間していると、絶縁材料がグリッドパターンの網目に溜まって広がりにくくなることが抑制される。つまり、配線材8が離間していると、配線材8の壁が途切れて、交差位置においてグリッドの網目が連通し、そのため、交差位置を通して網目間で塗布液を広げることができるのである。したがって、絶縁膜10を容易に形成することができる。 In this embodiment, the wiring material 8 constituting the auxiliary electrode 7 is separated at the grid pattern intersection position (intersection C). That is, as a structure in which the wiring member 8 is not provided at the intersection C, a structure in which the end of the wiring member 8 is located at the outer edge of the intersection C can be used, but in this embodiment, as shown in FIG. An end portion of the wiring member 8 is disposed outside the intersecting portion C. Therefore, the wiring members 8 extending in the vertical direction are not in contact with each other. As described above, if the wiring material 8 is not formed at the intersection C by separating the wiring material 8, a pattern in which the wiring material 8 is not formed can be easily formed at the intersection position. Further, when the wiring member 8 is separated, the insulating film 10 can be easily applied when the insulating film 10 is applied and formed. For example, the insulating film 10 may be formed by applying an insulating material to the entire surface and then partially curing and removing unnecessary portions. However, if the wiring material 8 is separated at that time, the insulating material is grid-off. It is suppressed that it accumulates in the mesh of a pattern and becomes difficult to spread. That is, if the wiring member 8 is separated, the wall of the wiring member 8 is interrupted, and the mesh of the grid communicates at the intersecting position, so that the coating liquid can be spread between the meshes through the intersecting position. Therefore, the insulating film 10 can be easily formed.
 図2Aに示すように、グリッドパターンを構成する線のピッチPは、隣り合う線の中心間の距離として表される。このピッチPは、例えば、200~4000μmの範囲にすることができ、好ましくは400~2000μmの範囲にすることができる。補助電極7を構成する配線材8の配線幅Wは、例えば、10~50μmの範囲にすることができ、例えば、30μmにすることができる。グリッド線が延伸する方向で隣り合う二つの配線材8の端部間の距離Tは、配線材8の幅Wよりも大きいことが好ましい。すなわち、T>Wの関係になる。この距離Tは、例えば、配線幅Wの2倍以上であってよく、あるいは配線幅Wの3倍以上であってよく、もしくは配線幅Wの5倍以上であってもよい。ただし、配線材8間の距離Tが大きくなりすぎると、電極を補助する作用が小さくなるおそれがある。そのため、例えば、距離Tは、例えば、配線幅Wの20倍以下であってよく、または配線幅Wの10倍以下であってもよい。 As shown in FIG. 2A, the pitch P of the lines constituting the grid pattern is expressed as the distance between the centers of adjacent lines. This pitch P can be, for example, in the range of 200 to 4000 μm, and preferably in the range of 400 to 2000 μm. The wiring width W of the wiring member 8 constituting the auxiliary electrode 7 can be set in the range of 10 to 50 μm, for example, and can be set to 30 μm, for example. It is preferable that the distance T between the ends of the two wiring members 8 adjacent to each other in the direction in which the grid line extends is larger than the width W of the wiring member 8. That is, T> W. This distance T may be, for example, two times or more of the wiring width W, three times or more of the wiring width W, or five times or more of the wiring width W. However, if the distance T between the wiring members 8 becomes too large, the effect of assisting the electrodes may be reduced. Therefore, for example, the distance T may be 20 times or less of the wiring width W, or 10 times or less of the wiring width W, for example.
 補助電極7を構成する配線材8の膜厚は、例えば、100~1000nmの範囲にすることができる。例えば、MAMで補助電極7を構成する場合、膜厚20~80nmのMoと膜厚200~800nmのAlと膜厚20~800nmのMoとの積層構造にすることができる。具体的には、膜厚50nmのMoと膜厚500nmのAlと膜厚50nmのMoとの積層構造にすることができる。 The film thickness of the wiring material 8 constituting the auxiliary electrode 7 can be set in the range of 100 to 1000 nm, for example. For example, when the auxiliary electrode 7 is formed of MAM, a laminated structure of Mo having a thickness of 20 to 80 nm, Al having a thickness of 200 to 800 nm, and Mo having a thickness of 20 to 800 nm can be formed. Specifically, a stacked structure of Mo with a thickness of 50 nm, Al with a thickness of 500 nm, and Mo with a thickness of 50 nm can be formed.
 絶縁膜10は、補助電極7を構成する配線材8に対して平面視においてはみ出して設けられていることが好ましい。図2Bに示すように、絶縁膜10のはみ出し量Sは、配線材8の配線幅Wの半分以下が好ましく、3分の1以下がより好ましい。このはみ出し量Sは、例えば、10μm未満にすることができる。また、絶縁膜10の厚みは、0.1~10μmであることが好ましく、0.5~5μmであることがより好ましい。例えば、絶縁膜10の厚みは1μmにすることができる。 The insulating film 10 is preferably provided so as to protrude from the wiring member 8 constituting the auxiliary electrode 7 in plan view. As shown in FIG. 2B, the protruding amount S of the insulating film 10 is preferably not more than half of the wiring width W of the wiring material 8, and more preferably not more than one third. The protrusion amount S can be set to less than 10 μm, for example. The thickness of the insulating film 10 is preferably 0.1 to 10 μm, and more preferably 0.5 to 5 μm. For example, the thickness of the insulating film 10 can be 1 μm.
 図2Bに示すように、断面形状において絶縁膜10の側面10sは基板1の表面に対して傾斜していることが好ましい。この場合、絶縁膜10の側面10sは傾斜面となる。絶縁膜10の側面10sが傾斜面となることにより、層の段切れを抑制することができる。補助電極7は、光透過性電極2の表面に盛り上がって形成されるため、補助電極7の形状に沿って機能層3及び対電極4を積層して形成した際には、層が分断されたり薄くなったりして、電気的にショートしやすくなるおそれがある。特に機能層3は薄膜の積層構造で構成され得るものであり、層の分断が発生しやすくなるおそれがある。しかしながら、絶縁膜10の側面10sを傾斜するようにすると、傾斜面に機能層3及び対電極4を積層させることができるため、層の分断を生じにくくすることができる。絶縁膜10の側面10sの傾斜角θは、例えば、15~75°又は30~60°の範囲に設定することができる。 2B, the side surface 10s of the insulating film 10 is preferably inclined with respect to the surface of the substrate 1 in the cross-sectional shape. In this case, the side surface 10s of the insulating film 10 is an inclined surface. Since the side surface 10s of the insulating film 10 is an inclined surface, the layer breakage can be suppressed. Since the auxiliary electrode 7 is formed so as to rise on the surface of the light transmissive electrode 2, when the functional layer 3 and the counter electrode 4 are laminated along the shape of the auxiliary electrode 7, the layers are divided. There is a risk that it may become thin and easily short-circuited electrically. In particular, the functional layer 3 can be constituted by a thin film laminated structure, and there is a possibility that the layer is likely to be divided. However, if the side surface 10s of the insulating film 10 is inclined, the functional layer 3 and the counter electrode 4 can be laminated on the inclined surface, so that it is difficult to cause the layer to be divided. The inclination angle θ of the side surface 10s of the insulating film 10 can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
 本形態では、断面形状において補助電極7(配線材8)の側面7sは基板1の表面に対して傾斜していることが好ましい。この場合、配線材8の側面は傾斜面となる。配線材8の側面が傾斜面となることにより、層の段切れを簡単に抑制することができる。補助電極7の側面7sを傾斜するようにすると、簡単に絶縁膜10の側面10sを傾斜させることができる。それにより、傾斜面に機能層3及び対電極4を積層させることができるため、層の分断を生じにくくすることができる。補助電極7(配線材8)の側面の傾斜角φは、例えば、15~75°又は30~60°の範囲に設定することができる。 In this embodiment, the side surface 7s of the auxiliary electrode 7 (wiring member 8) is preferably inclined with respect to the surface of the substrate 1 in the cross-sectional shape. In this case, the side surface of the wiring member 8 is an inclined surface. When the side surface of the wiring member 8 is an inclined surface, the layer break can be easily suppressed. If the side surface 7s of the auxiliary electrode 7 is inclined, the side surface 10s of the insulating film 10 can be easily inclined. Thereby, since the functional layer 3 and the counter electrode 4 can be laminated | stacked on an inclined surface, it can make it difficult to produce a division | segmentation of a layer. The inclination angle φ of the side surface of the auxiliary electrode 7 (wiring member 8) can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
 本形態では、配線材8の側面が傾斜面となり、その形状に沿って絶縁膜10が形成されて傾斜面となった例を示しているが、傾斜面の形成は、これに限定されるものではない。例えば、補助電極7の側面が基板1の表面に対して略垂直な面となって、その上に形成される絶縁膜10の側面が傾斜面となっていてもよい。また、例えば、補助電極7の側面が基板1の表面に対して急傾斜の面となって、その上に形成される絶縁膜10の側面が補助電極7の傾斜よりも緩やかな傾斜の傾斜面となっていてもよい。例えば、傾斜角は、θ<φの関係になるが、もちろん、θ>φの関係になってもよい。 In this embodiment, the side surface of the wiring member 8 is an inclined surface, and the insulating film 10 is formed along the shape to form the inclined surface. However, the formation of the inclined surface is limited to this. is not. For example, the side surface of the auxiliary electrode 7 may be a surface that is substantially perpendicular to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon may be an inclined surface. In addition, for example, the side surface of the auxiliary electrode 7 is a steeply inclined surface with respect to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon is an inclined surface having a gentler inclination than the inclination of the auxiliary electrode 7. It may be. For example, the inclination angle has a relationship of θ <φ, but may of course have a relationship of θ> φ.
 図1の形態では、基板1の表面(光透過性電極2側の表面及び光透過性電極2とは反対側の表面のいずれか一方又は両方)に、光散乱構造が設けられていてもよい。補助電極7を構成する配線材8の部分は、通常、光透過性を有していないため、この部分からは光を取り出すことができない。しかしながら、基板1の表面に光散乱構造が設けられると、光が散乱されるため、補助電極7によって形成される非発光の領域に光を拡散することができる。そのため、補助電極7による非発光を失くしたり目立たなくしたりして、より自然な発光を得ることができる。光散乱構造は、光散乱層が設けられたり、基板1に凹凸構造が設けられたりして形成されていてよい。光散乱層の具体的な構成は、前述した通りである。 In the form of FIG. 1, a light scattering structure may be provided on the surface of the substrate 1 (one or both of the surface on the light transmissive electrode 2 side and the surface opposite to the light transmissive electrode 2). . Since the portion of the wiring member 8 constituting the auxiliary electrode 7 usually does not have light transmittance, light cannot be extracted from this portion. However, if a light scattering structure is provided on the surface of the substrate 1, the light is scattered, so that the light can be diffused into a non-light emitting region formed by the auxiliary electrode 7. Therefore, non-light emission by the auxiliary electrode 7 is lost or made inconspicuous, and more natural light emission can be obtained. The light scattering structure may be formed by providing a light scattering layer or providing the substrate 1 with an uneven structure. The specific configuration of the light scattering layer is as described above.
 図3は、有機EL素子の実施の形態の他の一例を示している。図3は図3A及び図3Bから構成される。図3の形態では、補助電極7が基板1光透過性電極2との間に形成され、絶縁膜10が光透過性電極2と機能層3との間に形成されている点で、図1の形態とは異なる。それ以外の構成は、図1の形態と同様である。図3の有機EL素子の平面図は、図1Bであると考えてよい。図2Aは、図3の有機EL素子の補助電極7の拡大図でもあると考えてよい。図1の形態と同様の構成には同じ符号を付して説明を省略する。 FIG. 3 shows another example of the embodiment of the organic EL element. FIG. 3 is composed of FIGS. 3A and 3B. 3, the auxiliary electrode 7 is formed between the substrate 1 and the light transmissive electrode 2, and the insulating film 10 is formed between the light transmissive electrode 2 and the functional layer 3. It is different from the form. The rest of the configuration is the same as that of FIG. The plan view of the organic EL element of FIG. 3 may be considered as FIG. 1B. 2A may be considered as an enlarged view of the auxiliary electrode 7 of the organic EL element of FIG. The same components as those in the embodiment of FIG.
 図3の有機EL素子は、図1の形態と同様に、基板1の表面に、光透過性電極2と発光層を含む機能層3と対電極4とを有する有機発光体5が形成されている。有機発光体5は封止材6によって覆われて封止されている。光透過性電極2に接して配線材8によりグリッド状のパターンの補助電極7が設けられている。補助電極7のパターンは、図1Bの形状と同様のパターンになっており、補助電極7を構成するグリッド状のパターンの交差位置において、配線材8が途切れている。そして、配線材8が設けられていないことにより、光透過可能部15が形成されている(図1B参照)。補助電極7はいわば不完全なグリッド状に形成されている。機能層3の補助電極7側の表面には、平面視において補助電極7と重複する位置に絶縁膜10が設けられている。このように、本形態の有機EL素子では、補助電極7が設けられているため、補助電極7によって光透過性電極2の通電性を高めることができる。また、補助電極7を構成する配線材8は、グリッド状のパターンの交差位置で途切れて、光を透過させる光透過可能部15が形成されているため、非発光の形状を視認させにくくすることができる。また、補助電極7の位置に絶縁膜10が形成されているため、外部に光を取り出せる部分に電気をより供給して発光させることができ、効率よく発光を行うことができる。そのため、補助電極7によって効率よく電気伝導性を向上させることができるとともに、補助電極7の非発光の形状が視認されることを抑制することができ、光取り出し性の優れた有機エレクトロルミネッセンス素子を得ることができる。 In the organic EL element of FIG. 3, an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of the substrate 1, as in the embodiment of FIG. Yes. The organic light emitter 5 is covered and sealed with a sealing material 6. An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2. The pattern of the auxiliary electrode 7 is the same as the shape of FIG. 1B, and the wiring material 8 is interrupted at the intersection position of the grid-like pattern constituting the auxiliary electrode 7. And since the wiring material 8 is not provided, the light transmission possible part 15 is formed (refer FIG. 1B). The auxiliary electrode 7 is formed in an incomplete grid shape. On the surface of the functional layer 3 on the auxiliary electrode 7 side, an insulating film 10 is provided at a position overlapping the auxiliary electrode 7 in plan view. Thus, in the organic EL element of this embodiment, since the auxiliary electrode 7 is provided, the conductivity of the light transmissive electrode 2 can be enhanced by the auxiliary electrode 7. Further, the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do. In addition, since the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion where light can be extracted to the outside, and light can be emitted efficiently. Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. Obtainable.
 本形態では、光透過性電極2の基板1側に、補助電極7が設けられている。補助電極7は、図1の形態の補助電極7と、同じ材料、同じパターン形状で形成されるものであってよい。すなわち、補助電極7は、図1B及び図2Aに示すような、不完全なグリッド状のパターンであってよい。補助電極7を設けることにより、通電性を高めることができ、面内において電流分布を改善し、面内での発光がより均一になった有機EL素子を得ることができる。光透過性電極2は、光透過性を有する材料(透明金属酸化物など)で形成されるため、通常、比抵抗が高く、通電性があまりよくない。そこで、光透過性電極2よりも通電性の高い材料で配線を構成し、この配線で補助電極7を形成することにより、光透過性電極2の電気伝導性を補って通電性をより高めることができる。補助電極7と光透過性電極2とは接触して設けられている。それにより、光透過性電極2の通電性を高めることができる。 In this embodiment, the auxiliary electrode 7 is provided on the substrate 1 side of the light transmissive electrode 2. The auxiliary electrode 7 may be formed of the same material and the same pattern shape as the auxiliary electrode 7 in the form of FIG. That is, the auxiliary electrode 7 may be an incomplete grid pattern as shown in FIGS. 1B and 2A. By providing the auxiliary electrode 7, it is possible to improve the electrical conductivity, improve the current distribution in the plane, and obtain an organic EL element in which the light emission in the plane is more uniform. Since the light transmissive electrode 2 is formed of a light transmissive material (transparent metal oxide or the like), the specific resistance is usually high and the conductivity is not so good. Therefore, by forming the wiring with a material having higher electrical conductivity than the light transmissive electrode 2 and forming the auxiliary electrode 7 with this wiring, the electrical conductivity of the light transmissive electrode 2 is supplemented to further increase the electrical conductivity. Can do. The auxiliary electrode 7 and the light transmissive electrode 2 are provided in contact with each other. Thereby, the electrical conductivity of the light transmissive electrode 2 can be improved.
 図3に示すように、本形態では、補助電極7は、基板1の表面に接して設けられている。このように、基板1の表面に補助電極7を設けると、補助電極7を基板1表面に直接形成することができ、補助電極7のパターニングが簡単になって、効率よく容易に補助電極7を形成することができる。もちろん、基板1の有機発光体5が設けられる側の表面には光散乱構造が設けられていてもよい。光散乱構造は、樹脂層により構成されてもよい。その場合も、容易に補助電極7を形成することができる。 As shown in FIG. 3, in this embodiment, the auxiliary electrode 7 is provided in contact with the surface of the substrate 1. Thus, when the auxiliary electrode 7 is provided on the surface of the substrate 1, the auxiliary electrode 7 can be directly formed on the surface of the substrate 1, the patterning of the auxiliary electrode 7 becomes simple, and the auxiliary electrode 7 can be efficiently and easily formed. Can be formed. Of course, a light scattering structure may be provided on the surface of the substrate 1 on the side where the organic light emitter 5 is provided. The light scattering structure may be constituted by a resin layer. Even in this case, the auxiliary electrode 7 can be easily formed.
 図1Bの形態と同様に、補助電極7は、グリッド状のパターンとなっており、格子状になっている。格子状の補助電極7によってより均一な電流分布が得られる。このグリッドパターンは、縦横に延伸する直線状の線が等間隔で配置されて構成されている。グリッドパターンを構成する複数の配線材8の配置は、図1の形態で説明したものと同様であってよい。また、配線幅W、配線ピッチP、配線間の距離Tについても、図2で説明したものと同じであってよい。 As in the embodiment shown in FIG. 1B, the auxiliary electrode 7 has a grid pattern and a grid pattern. A more uniform current distribution can be obtained by the grid-like auxiliary electrode 7. This grid pattern is configured by arranging straight lines extending vertically and horizontally at equal intervals. The arrangement of the plurality of wiring members 8 constituting the grid pattern may be the same as that described in the form of FIG. Further, the wiring width W, the wiring pitch P, and the distance T between the wirings may be the same as those described in FIG.
 補助電極7は、電極材料で構成される層である。透明性は有さなくてよい。例えば、導電性の金属材料で形成することができる。具体的には、銅、銀、金、アルミ、ニッケル、モリブデン、クロムなどが例示される。補助電極7は、図1の形態の補助電極7と同様の材料で構成されるものであってよい。 The auxiliary electrode 7 is a layer made of an electrode material. It does not have to be transparent. For example, it can be formed of a conductive metal material. Specifically, copper, silver, gold, aluminum, nickel, molybdenum, chromium and the like are exemplified. The auxiliary electrode 7 may be made of the same material as the auxiliary electrode 7 in the form of FIG.
 本形態では、補助電極7の基板1側の表面は、光反射性が、光透過性電極2の基板1側の面の光反射性よりも高いことが好ましい。それにより、基板1内で反射して素子内部側に戻ってきた光が光透過性電極2で吸収されるのを抑制することができるとともに、素子内部側に向かう光を補助電極7で反射させて外部側に向かう光に変換することができ、より多く外部に光を取り出すことができる。多重反射する光が光透過性電極2において減衰することを抑制することができるのである。 In this embodiment, it is preferable that the surface of the auxiliary electrode 7 on the substrate 1 side has higher light reflectivity than the light reflectivity of the surface of the light transmissive electrode 2 on the substrate 1 side. As a result, it is possible to suppress the light reflected in the substrate 1 and returning to the inside of the element from being absorbed by the light transmissive electrode 2, and to reflect the light traveling toward the inside of the element by the auxiliary electrode 7. Thus, the light can be converted to the light toward the outside, and more light can be extracted to the outside. It is possible to suppress the multiple reflected light from being attenuated at the light transmissive electrode 2.
 本形態においては、補助電極7の材料として、Al/Moの積層構造を好ましく用いることができる。この積層構造は、基板1側からAlとMoとを順に積層させた構造である。その場合、光透過性電極2の導電性を効果的に補助して向上することができるとともに、反射性を高めることができ、基板1内で反射する光をより多く外部に取り出すことができる。ここで、AlとMoとを用いた積層構造においては、図1の形態では、Mo/Al/Moの方が有利であるが、これは、透明電極層や樹脂層などに直接接する層がAlであると劣化しやすくなる傾向があるのでそれを抑制するため、Moを表面層として入れるからである。一方、本形態においては、補助電極7は防湿性の高い基板1の表面に形成されるため、基板1側の表面にMoを表面層(下地層)として設けなくてもよい。そして、Alを基板1側に直接設けた場合、Alは反射性が高いので、基板1内の光をより反射させて外部に取り出すことができる。そのため、本形態では、Al/Moの積層構造による補助電極7が好ましいのである。もちろん、Al/Crの積層構造であってもよい。その場合も、光反射性を高めることができる。 In this embodiment, an Al / Mo laminated structure can be preferably used as the material of the auxiliary electrode 7. This laminated structure is a structure in which Al and Mo are laminated in this order from the substrate 1 side. In that case, the conductivity of the light transmissive electrode 2 can be effectively assisted and improved, the reflectivity can be increased, and more light reflected in the substrate 1 can be extracted to the outside. Here, in the laminated structure using Al and Mo, in the form of FIG. 1, Mo / Al / Mo is more advantageous. This is because the layer directly in contact with the transparent electrode layer, the resin layer, etc. is Al. This is because Mo tends to be deteriorated so that Mo is added as a surface layer to suppress it. On the other hand, in this embodiment, since the auxiliary electrode 7 is formed on the surface of the substrate 1 having high moisture resistance, it is not necessary to provide Mo as a surface layer (underlayer) on the surface on the substrate 1 side. When Al is directly provided on the substrate 1 side, since Al is highly reflective, the light in the substrate 1 can be more reflected and taken out to the outside. Therefore, in this embodiment, the auxiliary electrode 7 having an Al / Mo laminated structure is preferable. Of course, an Al / Cr laminated structure may be used. Even in that case, light reflectivity can be improved.
 本形態では、絶縁膜10は、機能層3の光透過性電極2側の表面に形成されている。この絶縁膜10は、光透過性電極2における補助電極7が形成された位置の表面に形成されている。すなわち、光透過性電極2は、補助電極7の上に乗り上げて形成され、補助電極7と同じパターンで補助電極7の位置が盛り上がって形成されており、その光透過性電極2が盛り上がった部分を覆うように絶縁膜10が積層されている。絶縁膜10は、光透過性電極2の盛り上がった部分の表面だけでなく側面も形成されている。このように補助電極7が設けられた位置に絶縁膜10が設けられると、層の分断を生じにくくすることができるとともに、絶縁性を確保できるため、ショート不良をさらに抑制することができる。また、光をより取り出しやすい補助電極7以外の部分に電流を多く流すことができるため、発光効率をさらに高めることができる。 In this embodiment, the insulating film 10 is formed on the surface of the functional layer 3 on the light transmissive electrode 2 side. The insulating film 10 is formed on the surface of the light transmissive electrode 2 where the auxiliary electrode 7 is formed. In other words, the light transmissive electrode 2 is formed on the auxiliary electrode 7 so that the position of the auxiliary electrode 7 is raised in the same pattern as the auxiliary electrode 7, and the light transmissive electrode 2 is raised. An insulating film 10 is laminated so as to cover the surface. The insulating film 10 has not only the surface of the raised portion of the light transmissive electrode 2 but also the side surfaces. When the insulating film 10 is provided at the position where the auxiliary electrode 7 is provided in this way, it is possible to make it difficult for the layers to be divided, and to ensure insulation, thereby further suppressing short-circuit defects. In addition, since a large amount of current can flow through the portion other than the auxiliary electrode 7 where light can be easily extracted, the luminous efficiency can be further increased.
 補助電極7の側面7sは傾斜していることが好ましい。すなわち、図3Bに示すように、補助電極7を構成する配線材8の側面が傾斜面となっていることが好ましい。それにより、層の分断を抑制することができる。補助電極7は、基板1の表面に盛り上がって形成されるため、補助電極7の形状に沿って機能層3及び対電極4を積層して形成した際には、層が分断されたり薄くなったりして、電気的にショートしやすくなるおそれがある。特に機能層3は薄膜の積層構造で構成され得るものであり、層の分断が発生しやすくなるおそれがある。しかしながら、補助電極7の側面7sを傾斜するようにすると、傾斜面に機能層3及び対電極4を積層させることができるため、層の分断を生じにくくすることができる。補助電極7(配線材8)の側面7sの傾斜角φは、例えば、15~75°又は30~60°の範囲に設定することができる。 The side surface 7s of the auxiliary electrode 7 is preferably inclined. That is, as shown in FIG. 3B, it is preferable that the side surface of the wiring member 8 constituting the auxiliary electrode 7 is an inclined surface. Thereby, the division | segmentation of a layer can be suppressed. Since the auxiliary electrode 7 is formed so as to rise on the surface of the substrate 1, when the functional layer 3 and the counter electrode 4 are laminated along the shape of the auxiliary electrode 7, the layers are divided or thinned. As a result, there is a risk of electrical shorting. In particular, the functional layer 3 can be constituted by a thin film laminated structure, and there is a possibility that the layer is likely to be divided. However, if the side surface 7s of the auxiliary electrode 7 is inclined, the functional layer 3 and the counter electrode 4 can be laminated on the inclined surface, so that the division of the layers can be made difficult to occur. The inclination angle φ of the side surface 7s of the auxiliary electrode 7 (wiring member 8) can be set in the range of 15 to 75 ° or 30 to 60 °, for example.
 絶縁膜10の側面10sは傾斜していることが好ましい。それにより、層の分断をより一層抑制することができる。補助電極7は、基板1の表面に盛り上がって形成されるため、補助電極7の形状に沿って機能層3及び対電極4を積層して形成した際には、層が分断されたり薄くなったりして、電気的にショートしやすくなるおそれがある。しかしながら、補助電極7の位置に設けられた絶縁膜10の側面10sを傾斜するようにすると、傾斜面に機能層3及び対電極4を積層させることができるため、層の分断を生じにくくすることができる。また、補助電極7の位置は絶縁膜10が形成されて電気的に絶縁されているので、たとえ補助電極7の位置で機能層3が途切れて対電極4が積層されたとしても、絶縁膜10によって光透過性電極2と対電極4とが直接接することがない。そのため、電気的にショートすることを防ぐことができる。ここで、補助電極7が設けられた部分は、通常、補助電極7は光透過性を有していないため、光を取り出すことができないので、この部分で発光が生じると、発光のロスが生じ、発光効率が低下するおそれがある。しかしながら、本形態のように絶縁膜10を設けていると、補助電極7が設けられた部分では発光が生じないようし、光取り出し可能な補助電極7以外の領域(網目)に、電流をより多く流すことができるため、発光ロスを低減して発光効率を向上させることができる。絶縁膜10の側面10sの傾斜角θは、例えば、15~75°又は30~60°の範囲に設定することができる。 The side surface 10s of the insulating film 10 is preferably inclined. Thereby, the division of the layer can be further suppressed. Since the auxiliary electrode 7 is formed so as to rise on the surface of the substrate 1, when the functional layer 3 and the counter electrode 4 are laminated along the shape of the auxiliary electrode 7, the layers are divided or thinned. As a result, there is a risk of electrical shorting. However, if the side surface 10s of the insulating film 10 provided at the position of the auxiliary electrode 7 is inclined, the functional layer 3 and the counter electrode 4 can be laminated on the inclined surface, so that the layer is hardly divided. Can do. In addition, since the insulating film 10 is formed at the position of the auxiliary electrode 7 and is electrically insulated, even if the functional layer 3 is interrupted at the position of the auxiliary electrode 7 and the counter electrode 4 is laminated, the insulating film 10 Therefore, the light transmitting electrode 2 and the counter electrode 4 are not in direct contact with each other. Therefore, it is possible to prevent an electrical short circuit. Here, in the portion where the auxiliary electrode 7 is provided, since the auxiliary electrode 7 usually does not have optical transparency, light cannot be extracted. Therefore, if light is emitted in this portion, a loss of light emission occurs. There is a risk that the luminous efficiency is lowered. However, when the insulating film 10 is provided as in the present embodiment, light emission does not occur in the portion where the auxiliary electrode 7 is provided, and more current is supplied to a region (mesh) other than the auxiliary electrode 7 from which light can be extracted. Since a large amount can be flowed, the light emission loss can be reduced and the light emission efficiency can be improved. The inclination angle θ of the side surface 10s of the insulating film 10 can be set, for example, in the range of 15 to 75 ° or 30 to 60 °.
 本形態では、配線材8の側面が傾斜面となり、その形状に沿って光透過性電極2及び絶縁膜10が形成されて傾斜面となった例を示しているが、傾斜面の形成は、これに限定されるものではない。例えば、補助電極7の側面が基板1の表面に対して略垂直な面となって、その上に形成される絶縁膜10の側面が傾斜面となっていてもよい。また、例えば、補助電極7の側面が基板1の表面に対して急傾斜の面となって、その上に形成される絶縁膜10の側面が補助電極7の傾斜よりも緩やかな傾斜の傾斜面となっていてもよい。例えば、傾斜角は、θ<φの関係になるが、もちろん、θ>φの関係になってもよい。 In the present embodiment, the side surface of the wiring member 8 is an inclined surface, and the light transmissive electrode 2 and the insulating film 10 are formed along the shape thereof to form the inclined surface. It is not limited to this. For example, the side surface of the auxiliary electrode 7 may be a surface that is substantially perpendicular to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon may be an inclined surface. In addition, for example, the side surface of the auxiliary electrode 7 is a steeply inclined surface with respect to the surface of the substrate 1, and the side surface of the insulating film 10 formed thereon is an inclined surface having a gentler inclination than the inclination of the auxiliary electrode 7. It may be. For example, the inclination angle has a relationship of θ <φ, but may of course have a relationship of θ> φ.
 絶縁膜10は、図1の形態で説明した材料と同様の材料を用いて形成することができる。また、絶縁膜10のパターンも、図1の形態と同様であってよい。すなわち、絶縁膜10は、完全なグリッド形状であってもよく、あるいは、グリッド線の交差位置で分断した不完全なグリッド形状であってもよい。このうち、絶縁膜10は、グリッド線の交差位置で分断した不完全なグリッド形状である方が好ましい。絶縁膜10の側面の傾斜角θは、例えば、15~75°又は30~60°に設定することができる。 The insulating film 10 can be formed using a material similar to the material described in the form of FIG. Further, the pattern of the insulating film 10 may be the same as that shown in FIG. That is, the insulating film 10 may have a complete grid shape, or may have an incomplete grid shape divided at the intersection of grid lines. Among these, it is preferable that the insulating film 10 has an incomplete grid shape divided at the intersections of the grid lines. The inclination angle θ of the side surface of the insulating film 10 can be set to 15 to 75 ° or 30 to 60 °, for example.
 図4は、有機EL素子の実施の形態の他の一例を示している。図4は図4A及び図4Bから構成される。図4の形態では、補助電極7のパターン形状が、図1の形態とは異なる。それ以外の構成は、図1の形態と同様である。図1の形態と同様の構成には同じ符号を付して説明を省略する。 FIG. 4 shows another example of the embodiment of the organic EL element. FIG. 4 is composed of FIGS. 4A and 4B. In the form of FIG. 4, the pattern shape of the auxiliary electrode 7 is different from the form of FIG. The rest of the configuration is the same as that of FIG. The same components as those in the embodiment of FIG.
 図4の有機EL素子は、図1の形態と同様の断面形状を有する。したがって、図1Aは、図4の有機EL素子の断面図と考えてよい。図4の有機EL素子は、基板1の表面に、光透過性電極2と発光層を含む機能層3と対電極4とを有する有機発光体5が形成されている。有機発光体5は封止材6によって覆われて封止されている。光透過性電極2に接して配線材8によりグリッド状のパターンの補助電極7が設けられている。 4 has the same cross-sectional shape as the embodiment of FIG. Therefore, FIG. 1A may be considered as a cross-sectional view of the organic EL element of FIG. In the organic EL element of FIG. 4, an organic light emitting body 5 having a light transmissive electrode 2, a functional layer 3 including a light emitting layer, and a counter electrode 4 is formed on the surface of a substrate 1. The organic light emitter 5 is covered and sealed with a sealing material 6. An auxiliary electrode 7 having a grid pattern is provided by a wiring material 8 in contact with the light transmissive electrode 2.
 図4Bで示すように、補助電極7のパターンは、補助電極7を構成するグリッド状のパターンの交差位置(交差部C)において、配線材8が途切れている。そして、配線材8が設けられていないことにより、光透過可能部15が形成されている。補助電極7は不完全なグリッド状に形成されている。配線材8は、図4の例では、グリッドパターンの線に沿った部分に形成されている。機能層3の補助電極7側の表面には、平面視において補助電極7と重複する位置に絶縁膜10が設けられている。このように、本形態の有機EL素子では、補助電極7が設けられているため、補助電極7によって光透過性電極2の通電性を高めることができる。また、補助電極7を構成する配線材8は、グリッド状のパターンの交差位置で途切れて、光を透過させる光透過可能部15が形成されているため、非発光の形状を視認させにくくすることができる。また、補助電極7の位置に絶縁膜10が形成されているため、外部に光を取り出せる部分に電気をより供給して発光させることができ、効率よく発光を行うことができる。そのため、補助電極7によって効率よく電気伝導性を向上させることができるとともに、補助電極7の非発光の形状が視認されることを抑制することができ、光取り出し性の優れた有機エレクトロルミネッセンス素子を得ることができる。 As shown in FIG. 4B, in the pattern of the auxiliary electrode 7, the wiring material 8 is interrupted at the intersection position (intersection C) of the grid-like pattern constituting the auxiliary electrode 7. And since the wiring material 8 is not provided, the light transmissive part 15 is formed. The auxiliary electrode 7 is formed in an incomplete grid shape. In the example of FIG. 4, the wiring member 8 is formed in a portion along the grid pattern line. On the surface of the functional layer 3 on the auxiliary electrode 7 side, an insulating film 10 is provided at a position overlapping the auxiliary electrode 7 in plan view. Thus, in the organic EL element of this embodiment, since the auxiliary electrode 7 is provided, the conductivity of the light transmissive electrode 2 can be enhanced by the auxiliary electrode 7. Further, the wiring member 8 constituting the auxiliary electrode 7 is interrupted at the crossing position of the grid-like pattern, and the light transmissive portion 15 that transmits light is formed, so that it is difficult to visually recognize the non-light emitting shape. Can do. In addition, since the insulating film 10 is formed at the position of the auxiliary electrode 7, it is possible to emit light by supplying more electricity to a portion where light can be extracted to the outside, and light can be emitted efficiently. Therefore, the electrical conductivity can be improved efficiently by the auxiliary electrode 7, the non-light-emitting shape of the auxiliary electrode 7 can be suppressed from being visually recognized, and an organic electroluminescence element having excellent light extraction properties can be obtained. Obtainable.
 本形態では、グリッドパターンの交差位置(交差部C)又はその近傍において、補助電極7を構成する配線材8間を接続する接続配線9が設けられている。接続配線9が設けられることにより、交差部Cに電流をより多く流すことができ、交差部Cをより発光させることができるので、非発光の形状をより視認させにくくすることができる。また、複数の配線材8が接続配線9で電気的に接続されるため、補助電極7自体の通電性をより高めることができ、電極の補助機能をより高めることができる。図4の形態では、接続配線9は交差部Cの近傍に設けられていると考えてよい。接続配線9は、交差位置に設けられていてもよいし、交差位置の近傍に設けられていてもよい。 In this embodiment, connection wiring 9 for connecting between the wiring members 8 constituting the auxiliary electrode 7 is provided at or near the grid pattern intersection position (intersection C). By providing the connection wiring 9, more current can flow through the intersection C, and the intersection C can emit more light, so that the non-light-emitting shape can be made more difficult to visually recognize. Moreover, since the several wiring material 8 is electrically connected by the connection wiring 9, the electrical conductivity of auxiliary electrode 7 itself can be improved more, and the auxiliary function of an electrode can be improved more. In the form of FIG. 4, it may be considered that the connection wiring 9 is provided in the vicinity of the intersection C. The connection wiring 9 may be provided at the intersection position or may be provided near the intersection position.
 接続配線9の配線幅W1は、配線材8の配線幅Wよりも小さいことが好ましい。例えば、接続配線9の配線幅W1は、配線材8の配線幅Wの半分以下又は3分の1以下にすることができる。具体的には、接続配線9の配線幅W1は5~20μmにすることができる。 The wiring width W1 of the connection wiring 9 is preferably smaller than the wiring width W of the wiring material 8. For example, the wiring width W <b> 1 of the connection wiring 9 can be less than half or less than one third of the wiring width W of the wiring material 8. Specifically, the wiring width W1 of the connection wiring 9 can be 5 to 20 μm.
 接続配線9は、グリッドパターンの交差位置の近傍において、4本の配線材8の端部間を繋ぐように設けられることが好ましい。さらに、接続配線9は、グリッドパターンの線の交差位置(交差部C)を囲むように枠状に設けられることが好ましい。それにより、パターンが簡単になるとともに、交差位置における通電性を効果的に高めることができる。本形態では、接続配線9は、枠状の配線構造として設けられ、グリッドの交差位置が枠の中心となるように配置されている。枠状の接続配線9の中に、光透過可能部15が形成されている。接続配線9は、補助電極7を構成する配線材8の端部と連結されている。枠状の接続配線9のパターン形状は、四角形形状(正方形又は長方形の形状)であってもよく、円状であってもよい。接続配線9が正方形の場合、配線材8の端部間の距離Tは、接続配線9の枠の内縁で構成される正方形の一辺の長さであってよい。また、接続配線9が円形の場合、配線材8の端部間の距離Tは、接続配線9の内縁で構成される円形の直径の長さであってよい。配線材8の端部間距離T、すなわち、枠状の接続配線9の対向する線の距離は、例えば、20~300μmにすることができ、好ましくは50~100μmにすることができる。 The connection wiring 9 is preferably provided so as to connect the ends of the four wiring members 8 in the vicinity of the intersection position of the grid pattern. Furthermore, it is preferable that the connection wiring 9 is provided in a frame shape so as to surround the intersection position (intersection portion C) of the grid pattern lines. As a result, the pattern can be simplified and the conductivity at the crossing position can be effectively enhanced. In this embodiment, the connection wiring 9 is provided as a frame-shaped wiring structure, and is arranged so that the grid intersection position is the center of the frame. A light transmissive portion 15 is formed in the frame-like connection wiring 9. The connection wiring 9 is connected to the end of the wiring material 8 constituting the auxiliary electrode 7. The pattern shape of the frame-like connection wiring 9 may be a quadrangular shape (square or rectangular shape) or a circular shape. When the connection wiring 9 is a square, the distance T between the ends of the wiring member 8 may be the length of one side of the square formed by the inner edge of the frame of the connection wiring 9. When the connection wiring 9 is circular, the distance T between the ends of the wiring member 8 may be a length of a circular diameter constituted by the inner edge of the connection wiring 9. The distance T between the end portions of the wiring member 8, that is, the distance between the opposing lines of the frame-like connection wiring 9, can be set to 20 to 300 μm, for example, and preferably 50 to 100 μm.
 接続配線9の厚み(高さ)は、補助電極7を構成する配線材8の厚み(高さ)と同じであってよい。それにより、簡単に接続配線9を形成することができる。また、配線材8と同じ厚みで接続配線9を設けることにより、グリッドパターンの交差位置において高く通電を補助することができる。もちろん、接続配線9の高さは、配線材8の高さと異なっていてもよく、配線材8の高さよりも低くてもよいし、高くてもよい。 The thickness (height) of the connection wiring 9 may be the same as the thickness (height) of the wiring material 8 constituting the auxiliary electrode 7. Thereby, the connection wiring 9 can be easily formed. In addition, by providing the connection wiring 9 with the same thickness as the wiring material 8, it is possible to assist energization at a high position at the grid pattern crossing position. Of course, the height of the connection wiring 9 may be different from the height of the wiring material 8, and may be lower or higher than the height of the wiring material 8.
 接続配線9は補助電極7と一体に形成されていてよい。すなわち、補助電極7を構成する配線材8の一部が飛び出して接続配線9が形成されていてよい。また、接続配線9と配線材8とが一体になって補助電極7としての機能を有するものであってよい。 The connection wiring 9 may be formed integrally with the auxiliary electrode 7. That is, a part of the wiring material 8 constituting the auxiliary electrode 7 may be protruded to form the connection wiring 9. Further, the connection wiring 9 and the wiring material 8 may be integrated to have a function as the auxiliary electrode 7.
 接続配線9は、補助電極7を構成する配線材8と同じ材料で形成されていることが好ましい。それにより、簡単に接続配線9を形成することができる。 The connection wiring 9 is preferably formed of the same material as the wiring material 8 constituting the auxiliary electrode 7. Thereby, the connection wiring 9 can be easily formed.
 本形態では、絶縁膜10は、接続配線9の位置にも設けられることが好ましい。光透過性電極2の上に接続配線9を形成し、その上に絶縁膜10を形成した場合、接続配線9は絶縁膜10によって被覆される。それにより、電力効率をさらに高めることができる。ただし、接続配線9は、配線材8よりも細い線で構成され得るものであり、この部分の発光による発光効率の低下がそれほど多くなければ、接続配線9の位置に絶縁膜10が設けられていなくてもよい。接続配線9の位置に絶縁膜10を設けない場合、絶縁膜10のパターン形成が容易になる。 In this embodiment, the insulating film 10 is preferably provided also at the position of the connection wiring 9. When the connection wiring 9 is formed on the light transmissive electrode 2 and the insulating film 10 is formed thereon, the connection wiring 9 is covered with the insulating film 10. Thereby, power efficiency can further be improved. However, the connection wiring 9 can be composed of a line thinner than the wiring material 8, and the insulating film 10 is provided at the position of the connection wiring 9 as long as the reduction in light emission efficiency due to light emission at this portion is not so great. It does not have to be. When the insulating film 10 is not provided at the position of the connection wiring 9, the pattern formation of the insulating film 10 is facilitated.
 ところで、図4の形態では、図1の形態のように補助電極7が光透過性電極2と機能層3との間に形成された形態において、接続配線9が設けられた例を示したが、接続配線9を設ける形態はこれに限定されるものではない。接続配線9は、図3の形態のように補助電極7が基板1と光透過性電極2との間に形成された形態において設けられるようにしてもよい。この場合、接続配線9は基板1と光透過性電極2との間に設けられる。この形態は、断面図が図3Aであり、平面図が図4Aであると考えてよい。また、図4Bが補助電極7の拡大図と考えてよい。接続配線9が設けられた位置における光透過性電極2の表面には、配線材8の位置と同じように、絶縁膜10が設けられてもよいし、設けられなくてもよいが、電気効率向上のためには、設けられる方が好ましい。なお、図4の形態で説明した接続配線9は、以降の形態においても適用することができる。 By the way, although the form of FIG. 4 showed the example in which the connection wiring 9 was provided in the form in which the auxiliary electrode 7 was formed between the light transmissive electrode 2 and the functional layer 3 like the form of FIG. The form of providing the connection wiring 9 is not limited to this. The connection wiring 9 may be provided in a form in which the auxiliary electrode 7 is formed between the substrate 1 and the light transmissive electrode 2 as shown in FIG. In this case, the connection wiring 9 is provided between the substrate 1 and the light transmissive electrode 2. This form may be considered as a cross-sectional view of FIG. 3A and a plan view of FIG. 4A. 4B may be considered as an enlarged view of the auxiliary electrode 7. FIG. The insulating film 10 may or may not be provided on the surface of the light transmissive electrode 2 at the position where the connection wiring 9 is provided, as with the position of the wiring material 8. For improvement, it is preferable to be provided. In addition, the connection wiring 9 demonstrated with the form of FIG. 4 is applicable also in a subsequent form.
 図5は、有機EL素子の実施の形態の他の一例を示している。図5の形態では、補助電極7のパターン形状が、図1の形態とは異なる。それ以外の構成は、図1の形態と同様である。図1の形態と同様の構成には同じ符号を付して説明を省略する。図5の形態の断面図は、図1Aと考えてよい。図2Bは、図5の形態における補助電極7の拡大図と考えてよい。 FIG. 5 shows another example of the embodiment of the organic EL element. In the form of FIG. 5, the pattern shape of the auxiliary electrode 7 is different from the form of FIG. The rest of the configuration is the same as that of FIG. The same components as those in the embodiment of FIG. The cross-sectional view of the form of FIG. 5 may be considered as FIG. 1A. FIG. 2B may be considered as an enlarged view of the auxiliary electrode 7 in the form of FIG.
 有機EL素子においては、光透過可能部15は、交差位置において配線材8が離間していることにより形成されていることが好ましい。ここで、交差位置とは、グリッド状のパターンが繋がったと仮定した際に、配線材8が交差した部分(交差部C)とその部分の近傍を意味している。したがって、グリッドパターンの線が交差する部分(交差部C)において配線材8が繋がっていても、交差部Cの近傍を含めた交差位置において配線材8が設けられていない部分を有していれば、その部分により光透過可能部15を構成し得る。図5の形態は、交差位置において配線材8が繋がった部分を有する形態の一例である。交差位置において配線材8が繋がった部分は、配線連続部16となる。グリッド状のパターンの交差位置は、図2Aの交差位置7aで理解される。 In the organic EL element, the light transmissive portion 15 is preferably formed by the wiring material 8 being separated from each other at the intersection position. Here, the intersection position means a portion where the wiring material 8 intersects (intersection portion C) and the vicinity of the portion when it is assumed that the grid-like patterns are connected. Therefore, even if the wiring material 8 is connected at a portion where the lines of the grid pattern intersect (intersection portion C), there may be a portion where the wiring material 8 is not provided at the intersection position including the vicinity of the intersection portion C. For example, the light transmissive portion 15 can be configured by the portion. The form of FIG. 5 is an example of a form having a portion where the wiring member 8 is connected at the intersection position. A portion where the wiring member 8 is connected at the intersection position becomes a wiring continuous portion 16. The crossing position of the grid pattern can be understood at the crossing position 7a in FIG. 2A.
 図5の形態では、補助電極7は、交差位置において、配線材8が繋がって交差位置を通過する配線連続部16を有している。配線連続部16を有することにより、補助電極7を構成する配線材8に電気が通りやすくなるため、光透過性電極2に対する補助効果をより高めることができる。また、面内の発光をより均一にすることができる。 In the form of FIG. 5, the auxiliary electrode 7 has a wiring continuous portion 16 that is connected to the wiring material 8 at the intersection position and passes through the intersection position. By having the wiring continuous portion 16, it becomes easier for electricity to pass through the wiring material 8 constituting the auxiliary electrode 7, so that the auxiliary effect on the light transmissive electrode 2 can be further enhanced. Further, the in-plane light emission can be made more uniform.
 図5の形態では、配線連続部16は、交差位置において屈曲形状を有している。屈曲形状を有する場合、直線状の場合に比べて、配線材8が繋がった部分の面内での広がりを大きくすることができる。そのため、面内に電気をより均一に流すことができる。屈曲形状は、平面視におけるパターン形状において、配線材8が曲がる形状であってよい。 In the form of FIG. 5, the wiring continuous portion 16 has a bent shape at the intersection position. In the case of having a bent shape, the spread in the plane of the portion where the wiring member 8 is connected can be increased as compared with the case of the straight shape. Therefore, electricity can flow more uniformly in the plane. The bent shape may be a shape in which the wiring member 8 is bent in the pattern shape in plan view.
 図5では、配線材8は、ジグザグ状となっている。配線材8は、角張った波状であるといってもよい。一つの繋がった配線材8は、斜め方向に延伸している。具体的には、縦方向に延伸する部分8aと、横方向に延伸する部分8bとが交互に配置されている。縦方向及び横方向は、直交する二つの方向を図面に合わせて便宜的に表現したものであり、実際の配置においては、縦及び横が入れ替わってもよい。縦方向に延伸する部分8aと、横方向に延伸する部分8bとの境界部分は、屈曲しており、この部分が配線連続部16となっている。そして、交差位置においては、隣接する配線材8の配線連続部16同士が接近している。このようなパターン形状となることにより、全体としてはグリッド状のパターンとなりながら、交差位置においては配線材8を離間させて光透過可能部15を有する補助電極7を得ることができる。図5の補助電極7のパターン例はギザギザ状といってもよい。あるいは、三角波状といってもよい。 In FIG. 5, the wiring member 8 has a zigzag shape. It may be said that the wiring member 8 has an angular wave shape. One connected wiring member 8 extends in an oblique direction. Specifically, the portions 8a extending in the vertical direction and the portions 8b extending in the horizontal direction are alternately arranged. The vertical direction and the horizontal direction express two directions orthogonal to each other for convenience, and the vertical and horizontal directions may be interchanged in an actual arrangement. A boundary portion between the portion 8 a extending in the vertical direction and the portion 8 b extending in the horizontal direction is bent, and this portion becomes the wiring continuous portion 16. And in the crossing position, the wiring continuous parts 16 of the adjacent wiring members 8 are close to each other. By forming such a pattern shape, it is possible to obtain the auxiliary electrode 7 having the light transmissive portion 15 by separating the wiring member 8 at the intersection position while being a grid pattern as a whole. The pattern example of the auxiliary electrode 7 in FIG. 5 may be a jagged shape. Alternatively, it may be a triangular wave shape.
 隣り合う配線材8の最も接近した部分の距離は、図2Aで説明した距離Tと同じであってよい。 The distance between the closest parts of the adjacent wiring members 8 may be the same as the distance T described in FIG. 2A.
 一つの配線材8が繋がった部分は一筆書き可能であることが好ましい。それにより、補助電極7のパターン形成が容易になり得る。パターン形成方法の詳細については、後述する。配線材8は、有機EL素子における一の端部から他の端部まで一筆書き可能なことがより好ましい。それにより、パターン形成がより容易になる。図5では、配線材8が斜め方向に延伸するため、上側と右側との端部で、及び、左側と下側との端部で、一筆書き可能であり得る。配線材8が一筆書き可能である場合、絶縁膜10が一筆書き可能であることが好ましい。絶縁膜10は配線材8に対応した形状になり得る。 It is preferable that a portion where one wiring member 8 is connected can be drawn with a single stroke. Thereby, pattern formation of the auxiliary electrode 7 can be facilitated. Details of the pattern forming method will be described later. It is more preferable that the wiring material 8 can be drawn with a single stroke from one end to the other end of the organic EL element. Thereby, pattern formation becomes easier. In FIG. 5, since the wiring member 8 extends in an oblique direction, one stroke can be written at the upper and right end portions and at the left and lower end portions. When the wiring material 8 can be written with a single stroke, the insulating film 10 is preferably writable with a single stroke. The insulating film 10 can have a shape corresponding to the wiring material 8.
 なお、図5では、配線材8の縦方向に延伸する部分8aについて、複数の部分8aを縦方向に沿って見たときに、横方向にずれている様子が示されているが、実際の有機EL素子においては、隣り合う配線材8の間隔に比べて、配線材8の幅は小さい。そのため、このずれはほとんど無視できる。したがって、補助電極7は全体としてグリッド状のパターンとなる。また、図5は、有機EL素子を簡略化して記載しており、実際の配線材8の本数は、例えば、100本以上などにすることができる。 In addition, in FIG. 5, although the part 8a extended | stretched to the vertical direction of the wiring material 8 shows a mode that it shifted | deviated to the horizontal direction when the some part 8a is seen along the vertical direction, In the organic EL element, the width of the wiring member 8 is smaller than the interval between the adjacent wiring members 8. Therefore, this deviation can be almost ignored. Therefore, the auxiliary electrode 7 has a grid pattern as a whole. FIG. 5 shows the organic EL element in a simplified manner, and the actual number of wiring members 8 can be, for example, 100 or more.
 ここで、図5の形態は、図1の形態において補助電極7のパターン形状を変更したものとして説明したが、図3の形態のように、補助電極7が光透過性電極2の基板1側に形成されたものであってもよい。その場合、図3Aを図5の形態の断面図と考え、図3Bを図5の形態の拡大図と考えることができる。以降の形態においても、補助電極7は光透過性電極2のどちらの面に形成されていてもよい。 Here, the form of FIG. 5 has been described on the assumption that the pattern shape of the auxiliary electrode 7 is changed in the form of FIG. 1, but the auxiliary electrode 7 is on the substrate 1 side of the light transmissive electrode 2 as in the form of FIG. 3. It may be formed. In that case, FIG. 3A can be considered as a cross-sectional view of the form of FIG. 5, and FIG. 3B can be considered an enlarged view of the form of FIG. In the subsequent embodiments, the auxiliary electrode 7 may be formed on either surface of the light transmissive electrode 2.
 図6は、補助電極7のパターン例を説明する説明図である。図6は、図6A~図6Fから構成される。補助電極7が配線連続部16を有する形態は、図5の形態に限られない。補助電極7は、適宜のパターンで形成され得る。なお、図6の縦及び横は、図面での配置に合わせて便宜上設定したものであり、縦と横が入れ替わってももちろんよい。 FIG. 6 is an explanatory diagram for explaining a pattern example of the auxiliary electrode 7. FIG. 6 is configured from FIGS. 6A to 6F. The form in which the auxiliary electrode 7 has the wiring continuous part 16 is not limited to the form in FIG. The auxiliary electrode 7 can be formed in an appropriate pattern. Note that the vertical and horizontal directions in FIG. 6 are set for convenience in accordance with the arrangement in the drawing, and of course, the vertical and horizontal directions may be interchanged.
 図6Aは、図5の形態の補助電極7のパターンの変形例である。図6Aでは、複数の平行四辺形により格子が形成されている。この例では、配線材8の縦方向に延伸する部分8aは、縦方向に対して傾斜して斜め方向に延伸している。配線材8における縦方向に延伸する部分8aと横方向に延伸する部分8bとの境界部分により、配線連続部16が構成されている。配線連続部16は屈曲形状を有している。隣り合う配線材8は離間している。この離間部分により光透過可能部15が形成されている。このパターンでは、縦方向に延伸する部分8aと横方向に延伸する部分8bとの境界部分(配線連続部16)は、複数の配線材8において、縦方向に沿って見たときに、横方向の位置が揃っている。図5のパターンでは、配線材8が多くなると、配線材8の配置が横方向にずれて、全体として格子模様の縦線が斜めに延伸する平行四辺形の格子状になる可能性があるが、図6Aのパターンでは、縦方向に延伸する部分8aが斜め方向に延伸することによって、ずれを吸収している。そのため、全体としてずれのない長方形又は正方形の格子模様を形成することが容易である。 FIG. 6A is a modification of the pattern of the auxiliary electrode 7 in the form of FIG. In FIG. 6A, a lattice is formed by a plurality of parallelograms. In this example, the portion 8a extending in the vertical direction of the wiring member 8 is inclined with respect to the vertical direction and extending in an oblique direction. A wiring continuous portion 16 is constituted by a boundary portion between a portion 8 a extending in the vertical direction and a portion 8 b extending in the horizontal direction in the wiring member 8. The wiring continuous portion 16 has a bent shape. Adjacent wiring members 8 are spaced apart. The light transmitting portion 15 is formed by the separated portion. In this pattern, the boundary portion (wiring continuous portion 16) between the portion 8a extending in the vertical direction and the portion 8b extending in the horizontal direction is the horizontal direction when viewed along the vertical direction in the plurality of wiring members 8. Are aligned. In the pattern of FIG. 5, when the number of wiring members 8 increases, the arrangement of the wiring members 8 may be shifted in the horizontal direction, so that there is a possibility that the lattice pattern vertical lines as a whole are formed into a parallelogram lattice. In the pattern of FIG. 6A, the portion 8a extending in the longitudinal direction extends in an oblique direction to absorb the shift. Therefore, it is easy to form a rectangular or square lattice pattern with no deviation as a whole.
 図6Bは、図5の形態の補助電極7のパターンの変形例である。この例では、配線材8における縦方向に延伸する部分8aと横方向に延伸する部分8bとの境界部分(配線連続部16)が斜め方向に延伸している。図6Bでは、配線材8の縦の部分8aと配線材8の横の部分8bとの境界部分(配線連続部16)における角が丸まることで、配線連続部16が斜め方向に進行している。配線連続部16は曲線状となっている。配線材8は、配線連続部16の部分ではカーブして延伸している。もちろん、配線連続部16は、配線材8の縦の部分8aと配線材8の横の部分8bとの間に、斜め方向に進行する直線状の部分として設けられていてもよい。また、配線連続部16は、W状に形成されたり、蛇行した形状に形成されたりしてもよい。隣り合う配線材8は離間しており、この離間部分により光透過可能部15が形成されている。このパターンでは、配線材8の縦方向に延伸する部分8aは、複数の部分8aで縦横の位置が揃っている。また、配線材8の横方向に延伸する部分8bは、複数の部分8bで縦横の位置がそろっている。図5のパターンでは全体として平行四辺形の格子状になる可能性があり、図6Aのパターンでは個々の格子が平行四辺形になる可能性があるが、図6Bのパターンでは、配線連続部16が斜め方向に延伸することによって、格子形状の縦横の線の位置を整えている。そのため、全体としてずれのない長方形又は正方形の格子模様を形成することが容易である。図6Bのパターンは、波状と言ってよい。図6Bのパターンでは、交差部C(図2A参照)に配線材8を形成しないことが可能である。 FIG. 6B is a modification of the pattern of the auxiliary electrode 7 in the form of FIG. In this example, the boundary portion (wiring continuous portion 16) between the portion 8a extending in the vertical direction and the portion 8b extending in the horizontal direction in the wiring member 8 extends in an oblique direction. In FIG. 6B, the corner of the boundary portion (wiring continuous portion 16) between the vertical portion 8a of the wiring member 8 and the horizontal portion 8b of the wiring member 8 is rounded so that the wiring continuous portion 16 advances in an oblique direction. . The wiring continuous part 16 is curved. The wiring material 8 is curved and extended at the wiring continuous portion 16. Of course, the wiring continuous portion 16 may be provided as a linear portion that proceeds in an oblique direction between the vertical portion 8 a of the wiring member 8 and the horizontal portion 8 b of the wiring member 8. Moreover, the wiring continuous part 16 may be formed in a W shape or a meandering shape. The adjacent wiring members 8 are separated from each other, and a light transmissive portion 15 is formed by the separated portion. In this pattern, the portions 8a extending in the vertical direction of the wiring member 8 are aligned in the vertical and horizontal positions at the plurality of portions 8a. In addition, the portion 8b extending in the horizontal direction of the wiring member 8 has a plurality of portions 8b that are aligned vertically and horizontally. In the pattern of FIG. 5, there is a possibility of a parallelogram lattice as a whole, and in the pattern of FIG. 6A, each lattice may be a parallelogram, but in the pattern of FIG. Are arranged in an oblique direction to adjust the positions of the vertical and horizontal lines of the lattice shape. Therefore, it is easy to form a rectangular or square lattice pattern with no deviation as a whole. The pattern in FIG. 6B can be said to be wavy. In the pattern of FIG. 6B, it is possible not to form the wiring material 8 at the intersection C (see FIG. 2A).
 図6Cは、補助電極7のパターンの変形例である。図6Cでは、配線材8は、縦方向に延伸する部分8aと横方向に延伸する部分8bとが交互に配置されている。ただし、図6Cでは、縦方向に延伸する部分8aにおいて、隣り合う部分8aは逆方向に延伸している。そのため、一つの繋がった配線材8は、縦方向に行ったり来たりしながら全体として横方向に延伸している。配線材8における縦方向に延伸する部分8aと横方向に延伸する部分8bとの境界部分により、配線連続部16が構成されている。配線連続部16は屈曲形状を有している。隣り合う配線材8は離間している。この離間部分により光透過可能部15が形成されている。交差位置においては、配線連続部16が接近している。このようなパターンとなることにより、補助電極7は全体としてグリッド状のパターンとなる。図6Cでも、一つの繋がった配線材8は、好ましくは、一筆書き可能である。図6Cでは、左右の両端部の間で一筆書き可能であり得る。図6Cのパターン例は、凸凹状といってもよい。あるいは、歯状といってもよい。あるいは、矩形波状といってもよい。 FIG. 6C shows a modification of the pattern of the auxiliary electrode 7. In FIG. 6C, the wiring member 8 has alternately arranged portions 8a extending in the vertical direction and portions 8b extending in the horizontal direction. However, in FIG. 6C, in the portion 8a extending in the vertical direction, the adjacent portion 8a extends in the opposite direction. Therefore, one connected wiring member 8 extends in the horizontal direction as a whole while moving back and forth in the vertical direction. A wiring continuous portion 16 is constituted by a boundary portion between a portion 8 a extending in the vertical direction and a portion 8 b extending in the horizontal direction in the wiring member 8. The wiring continuous portion 16 has a bent shape. Adjacent wiring members 8 are spaced apart. The light transmitting portion 15 is formed by the separated portion. At the intersection position, the wiring continuous part 16 is approaching. By becoming such a pattern, the auxiliary electrode 7 becomes a grid-like pattern as a whole. Also in FIG. 6C, one connected wiring member 8 is preferably writable with a single stroke. In FIG. 6C, a stroke can be written between the left and right ends. The pattern example of FIG. 6C may be said to be uneven. Alternatively, it may be called a tooth shape. Alternatively, it may be a rectangular wave shape.
 ここで、図6A、図6B及び図6Cでは、配線材8が一筆書き可能である。図6A及び図6Bでは、配線材8が斜め方向に延伸するため、面内の発光の均一性をより高めることができる利点がある。図6Cでは、配線材8が横方向に延伸するため、精度よくパターン形成しやすいという利点がある。 Here, in FIG. 6A, FIG. 6B, and FIG. 6C, the wiring material 8 can be drawn with one stroke. 6A and 6B, since the wiring member 8 extends in an oblique direction, there is an advantage that the in-plane light emission uniformity can be further improved. In FIG. 6C, since the wiring member 8 extends in the lateral direction, there is an advantage that the pattern can be easily formed with high accuracy.
 図6Dは、補助電極7のパターン全体に亘って横方向に延伸する複数の配線材8の部分8bと、この横方向に延伸する複数の配線材8の部分8bの間で、縦方向に延伸する複数の配線材8の部分8aとにより、補助電極7のグリッドパターンが構成されている。縦方向の複数の配線材8の部分8aは、横方向に所定の間隔で並んで配置されている。複数の縦方向の配線材8の部分8aは、全体形状が、縦方向に沿うように、縦方向に並んで配置されている。横方向に延伸する配線材8の部分8bと、縦方向に延伸する配線材8の部分8aとは離間している。この離間した部分により、光透過可能部15が形成されている。図6Dのパターンは、はしご状といってもよい。図6Dのパターン例でも、光透過可能部15が形成されるため、補助電極7を視認させにくくすることができる。 FIG. 6D illustrates a longitudinal extension between the portions 8b of the plurality of wiring members 8 extending in the lateral direction over the entire pattern of the auxiliary electrode 7 and the portions 8b of the plurality of wiring members 8 extending in the lateral direction. The grid pattern of the auxiliary electrode 7 is configured by the portions 8a of the plurality of wiring members 8 that perform the above. The portions 8a of the plurality of wiring members 8 in the vertical direction are arranged side by side at a predetermined interval in the horizontal direction. The portions 8a of the plurality of vertical wiring members 8 are arranged side by side in the vertical direction so that the overall shape is along the vertical direction. The portion 8b of the wiring member 8 extending in the horizontal direction is separated from the portion 8a of the wiring member 8 extending in the vertical direction. The light transmitting portion 15 is formed by the separated portions. The pattern in FIG. 6D may be called a ladder. Even in the pattern example of FIG. 6D, the light transmissive portion 15 is formed, so that the auxiliary electrode 7 can be made difficult to visually recognize.
 図6Eは、補助電極7のパターン全体に亘って横方向に延伸する配線材8の部分8bに、複数の縦方向に延伸する配線材8の部分8aの一端が繋がることにより、補助電極7のグリッドパターンが構成されている。縦方向に延伸する配線材8の部分8aの他端は、横方向に延伸する配線材8の部分8bとは離間している。この離間した部分により、光透過可能部15が形成されている。図6Eのパターンは、櫛状といってもよい。図6Eのパターン例でも、光透過可能部15が形成されるため、補助電極7を視認させにくくすることができる。 In FIG. 6E, one end of a plurality of portions 8 a of the wiring material 8 extending in the vertical direction is connected to the portion 8 b of the wiring material 8 extending in the horizontal direction over the entire pattern of the auxiliary electrode 7. A grid pattern is configured. The other end of the portion 8a of the wiring member 8 extending in the vertical direction is separated from the portion 8b of the wiring member 8 extending in the horizontal direction. The light transmitting portion 15 is formed by the separated portions. The pattern in FIG. 6E may be called a comb shape. Even in the pattern example of FIG. 6E, the light transmissive portion 15 is formed, so that the auxiliary electrode 7 can be made difficult to visually recognize.
 図6Fは、補助電極7のパターン全体に亘って横方向に延伸する配線材8の部分8bに、複数の縦方向に延伸する配線材8の部分8aの一端が繋がることにより、補助電極7のグリッドパターンが構成されている。ただし、図6Eでは、縦方向に延伸する複数の配線材8の部分8aの同じ側の端部が繋がっているのに対し、図6Fでは、複数の縦方向に延伸する配線材8の部分8aにおいては、その一方の端部と他方の端部とが交互に繋がっている。縦方向に延伸する配線材8の部分8aの先端部は、隣り合う配線材8の横方向に延伸する部分8bとは離間している。この離間した部分により、光透過可能部15が形成されている。図6Fのパターン例でも、光透過可能部15が形成されるため、補助電極7を視認させにくくすることができる。 In FIG. 6F, one end of a plurality of portions 8 a of the wiring material 8 extending in the vertical direction is connected to the portion 8 b of the wiring material 8 extending in the horizontal direction over the entire pattern of the auxiliary electrode 7. A grid pattern is configured. However, in FIG. 6E, end portions on the same side of the portions 8a of the plurality of wiring members 8 extending in the vertical direction are connected, whereas in FIG. 6F, the portions 8a of the wiring members 8 extending in the plurality of vertical directions. In, the one end and the other end are connected alternately. The tip of the portion 8a of the wiring member 8 extending in the vertical direction is separated from the portion 8b extending in the horizontal direction of the adjacent wiring member 8. The light transmitting portion 15 is formed by the separated portions. Even in the pattern example of FIG. 6F, the light transmissive portion 15 is formed, so that the auxiliary electrode 7 can be made difficult to visually recognize.
 図6D~図6Fのパターンでは、配線連続部16は、交差位置において略直線形状を有している。そのため、パターン形成が容易になり得る。図6E及び図6Fのパターンでは、配線連続部16は、交差位置において略直線形状を有するとともに、屈曲形状を有している。そのため、電気的な補助効果を高めることができる。 6D to 6F, the wiring continuous portion 16 has a substantially linear shape at the intersection position. Therefore, pattern formation can be facilitated. In the patterns of FIGS. 6E and 6F, the wiring continuous portion 16 has a substantially linear shape at the intersection position and a bent shape. Therefore, the electrical auxiliary effect can be enhanced.
 図7は、グリッド状の補助電極7のパターンの他の例を示している。図7は、図7A~図7Cにより構成される。 FIG. 7 shows another example of the grid-like auxiliary electrode 7 pattern. FIG. 7 is constituted by FIGS. 7A to 7C.
 上記の各形態においては、グリッド状として四角格子状のものを説明した。グリッド状(格子状)は、四角格子には限られない。グリッド状の他の格子形状の例としては、六角格子が挙げられる。六角格子は、六角形が面状に配置された形状である。六角格子は、ハニカム状とも呼ばれる。六角格子は蜂の巣状とも呼ばれる。グリッドとは、四角格子及び六角格子を含むものであってよい。 In each of the above embodiments, a rectangular lattice-like shape has been described as a grid shape. The grid shape (lattice shape) is not limited to a square lattice. An example of another grid shape in a grid shape is a hexagonal lattice. The hexagonal lattice is a shape in which hexagons are arranged in a plane. The hexagonal lattice is also called a honeycomb shape. The hexagonal lattice is also called a honeycomb. The grid may include a square lattice and a hexagonal lattice.
 図8に、グリッド形状が示されている。上記で説明した四角格子のグリッド状では、全体形状が、図8Aのような四角格子(グリッドG4)となる。図7における六角格子のグリッド状では、全体形状が図8Bのような六角格子(グリッドG6)となる。図8では、グリッドパターンの交差位置が、交差位置gで示されている。 Fig. 8 shows the grid shape. In the grid shape of the square lattice described above, the overall shape is a square lattice (grid G4) as shown in FIG. 8A. In the grid shape of the hexagonal lattice in FIG. 7, the overall shape is a hexagonal lattice (grid G6) as shown in FIG. 8B. In FIG. 8, the intersection position of the grid pattern is indicated by the intersection position g.
 図7A~図7Cにおいても、グリッド状のパターンの交差位置には、配線材8が設けられていない部分を有する。この部分により、光透過可能部15が形成されている。光透過可能部15は、配線材8の離間により形成されている。 7A to 7C also have a portion where the wiring material 8 is not provided at the intersection of the grid pattern. The light transmissive portion 15 is formed by this portion. The light transmissive portion 15 is formed by the separation of the wiring member 8.
 図7Aは、交差位置(交差部C)において、配線材8が全く設けられていない例である。図7Aでは、交差位置における発光性を高めることができる点に利点がある。 FIG. 7A is an example in which no wiring member 8 is provided at the intersection position (intersection C). FIG. 7A has an advantage in that the light emitting property at the intersection position can be improved.
 図7B及び図7Bは、交差位置において、配線連続部16を有する例である。配線連続部16は屈曲形状を有する。図7Bでは、配線材8は横方向に延伸している。図7Cでは、配線材8は斜め方向に延伸している。 FIG. 7B and FIG. 7B are examples having the wiring continuous part 16 at the intersection position. The wiring continuous part 16 has a bent shape. In FIG. 7B, the wiring member 8 extends in the lateral direction. In FIG. 7C, the wiring member 8 extends in an oblique direction.
 図7A~図7Cのように、六角格子のグリッド状の場合も、光透過可能部15を有することにより、補助電極7を視認させにくくすることができる。ただし、六角格子よりも、四角格子の方がパターン形成には有利である。 7A to 7C, even in the case of a hexagonal grid, the auxiliary electrode 7 can be made difficult to visually recognize by having the light transmissive portion 15. However, a square lattice is more advantageous for pattern formation than a hexagonal lattice.
 以下、有機EL素子の製造について説明する。以下の説明では、光透過性電極2と補助電極7とがこの順で積層される形態を中心に説明する。図3のように、補助電極7が光透過性電極2の基板1側に形成された形態の製造は、光透過性電極2と補助電極7との積層順を入れ替えることで理解できる。製造方法の説明にあたっては、図1、図4、図5及び図6等を適宜参照されたい。 Hereinafter, the production of the organic EL element will be described. In the following description, a description will be given focusing on a form in which the light transmissive electrode 2 and the auxiliary electrode 7 are laminated in this order. As shown in FIG. 3, the manufacture of the form in which the auxiliary electrode 7 is formed on the substrate 1 side of the light transmissive electrode 2 can be understood by changing the stacking order of the light transmissive electrode 2 and the auxiliary electrode 7. For the description of the manufacturing method, refer to FIGS. 1, 4, 5 and 6 as appropriate.
 有機EL素子を製造するにあたっては、まず、基板1の表面に透明導電層を設け、この透明導電層をパターニングする。透明導電層の中央部分は光透過性電極2となり、透明導電層の端部は電極引き出し部12となる。光透過性電極2の領域は有機発光体5が形成される領域となる。 In manufacturing an organic EL element, first, a transparent conductive layer is provided on the surface of the substrate 1, and this transparent conductive layer is patterned. The central portion of the transparent conductive layer becomes the light transmissive electrode 2, and the end of the transparent conductive layer becomes the electrode lead-out portion 12. The region of the light transmissive electrode 2 is a region where the organic light emitter 5 is formed.
 そして、この透明導電層のうちの有機発光体5が形成される領域に、グリッド状の補助電極7を導電材料によって形成する。補助電極7のパターニングは適宜の方法により行うことができる。 Then, a grid-like auxiliary electrode 7 is formed of a conductive material in a region of the transparent conductive layer where the organic light emitter 5 is formed. The patterning of the auxiliary electrode 7 can be performed by an appropriate method.
 補助電極7の形成はスパッタで行うことが好ましい一態様である。その場合、パターニングは、マスクスパッタやフォトリソ法により行うことができる。この方法では、特に、図1~4のような形態を好適にパターン形成できる。もちろん、この方法は、その他の形態にも適用可能である。パターン形成では、例えば、グリッドの交差位置で途切れたパターンのマスクを用いれば、不完全なグリッドのパターニングを容易に行うことができる。スパッタでは、MAMなどの積層構造の補助電極7において、好適にパターン形成することができる。また、補助電極7のパターニングは、例えば、全面塗布した後、不要部分を除去して行ってもよい。不要部分の除去は、エッチングにより行うことができる。エッチングは、エッチング液を用いる湿式の方法などを用いることができる。 The formation of the auxiliary electrode 7 is preferably performed by sputtering. In that case, patterning can be performed by mask sputtering or photolithography. In this method, in particular, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms. In pattern formation, for example, if a mask having a pattern interrupted at the intersection of grids is used, imperfect grid patterning can be easily performed. In sputtering, a pattern can be suitably formed in the auxiliary electrode 7 having a laminated structure such as MAM. Further, the patterning of the auxiliary electrode 7 may be performed, for example, by removing unnecessary portions after coating the entire surface. Unnecessary portions can be removed by etching. Etching can be performed by a wet method using an etchant.
 補助電極7は、印刷法により形成することが好ましい他の一態様である。印刷法により、補助電極7のパターニングを容易に行うことができる。印刷は塗布の一種である。印刷はパターンに沿って塗布するものであってよい。この方法では、図5~7のような形態を好適にパターン形成できる。もちろん、この方法は、その他の形態にも適用可能である。図5~図7に示すような、配線連続部16を有する補助電極7においては、連続してパターンに沿った印刷をすることができる。そのため、補助電極7は、塗布によって好ましくパターン形成され得る。特に、インクノズルをパターン状に動かす塗布法が好ましい。配線材8が一筆書き可能な形状では、インクノズルをパターンに従って動かして塗布できるため、効率よくパターン形成が可能である。一つの配線材8が繋がった部分が、一筆書き可能であると、インクノズルから塗布液を連続して吐出して印刷できるため、塗布液の吐出の開始及び停止の回数を減らすことができる。そのため、配線材8は、有機EL素子における一の端部から他の端部まで一筆書き可能なことがより好ましい。一筆書き可能な形状は、静電塗布による直接描画において、特に効果的である。また、この方法では、配線材8は交差しないことが好ましい。配線材8が交差すると、交差した部分が盛り上がって形成されやすくなるため、絶縁膜10によって被覆しにくくなったり、層が段切れしやすくなったりするおそれがある。 The auxiliary electrode 7 is another embodiment that is preferably formed by a printing method. The auxiliary electrode 7 can be easily patterned by the printing method. Printing is a kind of application. Printing may be applied along a pattern. In this method, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms. In the auxiliary electrode 7 having the wiring continuous part 16 as shown in FIGS. 5 to 7, printing along the pattern can be continuously performed. Therefore, the auxiliary electrode 7 can be preferably patterned by coating. Particularly preferred is a coating method in which the ink nozzles are moved in a pattern. When the wiring member 8 has a shape that can be drawn with a single stroke, the ink nozzle can be moved and applied in accordance with the pattern, so that the pattern can be formed efficiently. If the portion where one wiring member 8 is connected can be drawn with a single stroke, printing can be performed by continuously discharging the coating liquid from the ink nozzles, so that the number of times of starting and stopping the discharging of the coating liquid can be reduced. Therefore, it is more preferable that the wiring material 8 can be written with one stroke from one end to the other end of the organic EL element. The shape that can be drawn with a single stroke is particularly effective in direct drawing by electrostatic coating. In this method, it is preferable that the wiring member 8 does not intersect. When the wiring material 8 intersects, the intersected portion is likely to be raised and formed, so that it may be difficult to cover with the insulating film 10 or the layer may be easily cut off.
 印刷法で補助電極7を形成する場合、塗布法としては、静電塗布、インクジェット印刷塗布などが例示される。静電塗布による印刷がより好ましい。塗布法では、導電性の粒子を溶剤に分散させたペースト材を好ましく用いることができる。導電性の粒子としては、金属粒子を好ましく用いることができる。金属粒子を塗布することにより、導電層のパターン形成が容易となり、補助電極7を精度高く効率よく形成することができる。金属粒子として、特に、銀粒子が好ましい。なかでも銀ナノ粒子は補助電極7の材料として好適である。ナノ金属粒子を溶剤に分散させたナノペーストを用いると、効率よく精度高くパターン形成ができる。ペースト材による補助電極7の形成では、塗布後に加熱焼成することが好ましい。それにより、導電性粒子が密着して導電層ができやすくなるため、光透過性電極2よりも抵抗の低い金属配線を容易に得ることができる。 When the auxiliary electrode 7 is formed by a printing method, examples of the coating method include electrostatic coating and inkjet printing coating. Printing by electrostatic coating is more preferable. In the coating method, a paste material in which conductive particles are dispersed in a solvent can be preferably used. As the conductive particles, metal particles can be preferably used. By applying the metal particles, the pattern formation of the conductive layer becomes easy, and the auxiliary electrode 7 can be formed with high accuracy and efficiency. Silver particles are particularly preferable as the metal particles. Among these, silver nanoparticles are suitable as a material for the auxiliary electrode 7. When a nano paste in which nano metal particles are dispersed in a solvent is used, a pattern can be formed efficiently and accurately. In the formation of the auxiliary electrode 7 using a paste material, it is preferable to heat and fire after application. Thereby, the conductive particles are brought into close contact with each other, so that a conductive layer can be easily formed. Therefore, a metal wiring having a resistance lower than that of the light transmissive electrode 2 can be easily obtained.
 補助電極7の形成の際には、電極引き出し部12の上に補助電極7と同じ導電材料を積層させて、電極パッド11を形成することが好ましい。補助電極7と電極パッド11とを同時に形成するようにすると、製造効率が向上する。もちろん、電極パッド11と補助電極7は、同時に形成されなくてもよい。 When the auxiliary electrode 7 is formed, it is preferable to form the electrode pad 11 by laminating the same conductive material as the auxiliary electrode 7 on the electrode lead-out portion 12. If the auxiliary electrode 7 and the electrode pad 11 are formed at the same time, the manufacturing efficiency is improved. Of course, the electrode pad 11 and the auxiliary electrode 7 may not be formed simultaneously.
 ここで、図4のように、接続配線9を有する有機EL素子では、補助電極7の形成の際に、グリッドパターンの線の交差位置近傍に接続配線9のパターンを設けて、補助電極7を形成することにより、製造することができる。 Here, as shown in FIG. 4, in the organic EL element having the connection wiring 9, when the auxiliary electrode 7 is formed, the pattern of the connection wiring 9 is provided near the intersection of the grid pattern lines, and the auxiliary electrode 7 is provided. It can be manufactured by forming.
 補助電極7の形成後、絶縁膜10を形成する。絶縁膜10は補助電極7の形状に対応した形状で形成される。そのパターニングは適宜の方法であってよい。 After the auxiliary electrode 7 is formed, an insulating film 10 is formed. The insulating film 10 is formed in a shape corresponding to the shape of the auxiliary electrode 7. The patterning may be an appropriate method.
 絶縁膜10の形成は、塗布後に不要な部分を除去する方法が好ましい一態様である。この方法では、特に、図1~4のような形態を好適にパターン形成できる。もちろん、この方法は、その他の形態にも適用可能である。この方法では、まず、絶縁膜10を形成する材料を基板1の補助電極7が設けられた面に塗布する。例えば、スピンコートにより塗布することができる。塗布は全面塗布であってよい。このとき、グリッドパターンの交差位置(交差部C)に配線材8が設けられず、配線材8が離間していると、塗布液は、グリッドの網目に溜らずに、交差位置を通って複数のグリッドの網目に広がることができる。そのため、より均一な塗布が容易になる。そして、フォトリソ法により、補助電極7の位置と同じ位置を硬化させるとともにそれ以外の部分を除去してパターニングすることにより、グリッドパターンとなった絶縁膜10を形成する。不完全なグリッド形状で絶縁膜10を設ける場合、絶縁膜10はグリッドパターンの交差位置には設けられないようにする。もし完全なグリッド形状で絶縁膜10を設ける場合には、絶縁膜10は完全なグリッドパターンであってよい。パターン形状は、マスクパターンの開口形状により調整することができる。塗布及びフォトリソ法により絶縁膜10を形成すると、精度よく絶縁膜10を形成することができる。絶縁膜10は樹脂膜などで構成され得る。なお、塗布に変えて蒸着によって絶縁膜10を形成してもよい。 The formation of the insulating film 10 is a preferable embodiment in which an unnecessary portion is removed after coating. In this method, in particular, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms. In this method, first, a material for forming the insulating film 10 is applied to the surface of the substrate 1 on which the auxiliary electrode 7 is provided. For example, it can be applied by spin coating. The application may be a whole surface application. At this time, if the wiring material 8 is not provided at the intersection position (intersection portion C) of the grid pattern and the wiring material 8 is separated, a plurality of coating liquids pass through the intersection position without collecting in the grid of the grid. Can spread out in the grid mesh. Therefore, more uniform application is facilitated. Then, the insulating film 10 having a grid pattern is formed by hardening the same position as the position of the auxiliary electrode 7 and removing and patterning other portions by photolithography. When the insulating film 10 is provided in an incomplete grid shape, the insulating film 10 is not provided at the intersection of the grid patterns. If the insulating film 10 is provided in a complete grid shape, the insulating film 10 may have a complete grid pattern. The pattern shape can be adjusted by the opening shape of the mask pattern. When the insulating film 10 is formed by coating and photolithography, the insulating film 10 can be formed with high accuracy. The insulating film 10 can be composed of a resin film or the like. Note that the insulating film 10 may be formed by vapor deposition instead of application.
 ここで、絶縁膜10を塗布で形成する場合、絶縁膜10の材料の塗布性を上げるためには、図4のように接続配線9が設けられた形態よりも、接続配線9が設けられていない図4以外の形態の方が有利である。接続配線9が設けられていないと、グリッドの交差位置とグリッドの網目との間に、接続配線9で構成される壁ができないので、塗布液が広がりやすくなるからである。もちろん、交差位置の通電性向上のためには、接続配線9を設けた方が有利である。なお、図4の形態において、接続配線9の高さを配線材8の高さよりも低くしても、絶縁膜10の材料の塗布性を高めることは可能である。接続配線9で構成される壁が低くなって、塗布液が広がりやすくなるからである。 Here, when the insulating film 10 is formed by coating, the connection wiring 9 is provided rather than the configuration in which the connection wiring 9 is provided as shown in FIG. The other forms than FIG. 4 are more advantageous. This is because if the connection wiring 9 is not provided, a wall composed of the connection wiring 9 cannot be formed between the grid intersection position and the grid mesh, so that the coating liquid easily spreads. Of course, it is more advantageous to provide the connection wiring 9 in order to improve the electrical conductivity at the intersection. In the embodiment shown in FIG. 4, even if the height of the connection wiring 9 is lower than the height of the wiring material 8, it is possible to improve the applicability of the material of the insulating film 10. This is because the wall formed by the connection wiring 9 is lowered and the coating liquid is easily spread.
 絶縁膜10の形成は、印刷法で行うことが好ましい他の一態様である。印刷法により、絶縁膜10のパターニングを容易に行うことができる。印刷は塗布の一種である。印刷はパターンに沿って塗布するものであってよい。この方法では、図5~7のような形態を好適にパターン形成できる。もちろん、この方法は、その他の形態にも適用可能である。図5~図7に示すような、配線連続部16を有する補助電極7においては、絶縁膜10も連続して形成されるため、パターンに沿った印刷をすることができる。そのため、絶縁膜10は、塗布によって好ましくパターン形成され得る。特に、インクノズルをパターン状に動かす塗布法が好ましい。絶縁膜10が一筆書き可能な形状では、インクノズルをパターンに従って動かして塗布できるため、効率よくパターン形成が可能である。一つの絶縁膜10が繋がった部分が、一筆書き可能であると、インクノズルから塗布液を連続して吐出して印刷できるため、塗布液の吐出の開始及び停止の回数を減らすことができる。そのため、絶縁膜10は、有機EL素子における一の端部から他の端部まで一筆書き可能なことがより好ましい。一筆書き可能な形状は、静電塗布による直接描画において、特に効果的である。また、この方法では、絶縁膜10は交差しないことが好ましい。絶縁膜10が交差すると、交差した部分が盛り上がって形成されやすくなるため、層が段切れしやすくなるおそれがある。 The formation of the insulating film 10 is another aspect preferably performed by a printing method. Patterning of the insulating film 10 can be easily performed by a printing method. Printing is a kind of application. Printing may be applied along a pattern. In this method, it is possible to suitably form a pattern as shown in FIGS. Of course, this method is applicable to other forms. In the auxiliary electrode 7 having the wiring continuous portion 16 as shown in FIGS. 5 to 7, since the insulating film 10 is also continuously formed, printing along the pattern can be performed. Therefore, the insulating film 10 can be preferably patterned by application. Particularly preferred is a coating method in which the ink nozzles are moved in a pattern. In the shape in which the insulating film 10 can be drawn with a single stroke, the ink nozzle can be moved and applied in accordance with the pattern, so that the pattern can be formed efficiently. If the portion where one insulating film 10 is connected can be drawn with a single stroke, printing can be performed by continuously discharging the coating liquid from the ink nozzle, so that the number of times of starting and stopping the discharging of the coating liquid can be reduced. Therefore, it is more preferable that the insulating film 10 can be written with one stroke from one end portion to the other end portion of the organic EL element. The shape that can be drawn with a single stroke is particularly effective in direct drawing by electrostatic coating. In this method, it is preferable that the insulating films 10 do not intersect. When the insulating films 10 cross each other, the crossed portion is likely to rise and be easily formed, so that the layers may be easily cut off.
 印刷法で絶縁膜10を形成する場合、塗布法としては、静電塗布、インクジェット印刷塗布などが例示される。静電塗布による印刷がより好ましい。塗布法では、材料として樹脂組成物を好ましく用いることができる。なお、絶縁膜10は、パターン状に蒸着されて形成されてもよい。 When the insulating film 10 is formed by a printing method, examples of the coating method include electrostatic coating and ink jet printing coating. Printing by electrostatic coating is more preferable. In the coating method, a resin composition can be preferably used as a material. The insulating film 10 may be formed by vapor deposition in a pattern.
 絶縁膜10の形成後、機能層3の各層、対電極4を順次に積層して有機発光体5を形成する。積層方法は、例えば、蒸着などを利用することができる。その後、封止材6で有機発光体5を覆いながら、封止接着部14で封止材6を基板1に接着する。封止材6としては、あらかじめ凹部に乾燥材13が設けられたものを用いることができる。乾燥材13は、吸湿性シートの貼り付けや、吸湿材料の塗布により設けることができる。これにより、有機EL素子を形成することができる。 After the formation of the insulating film 10, each layer of the functional layer 3 and the counter electrode 4 are sequentially stacked to form the organic light-emitting body 5. As the lamination method, for example, vapor deposition or the like can be used. Thereafter, the sealing material 6 is bonded to the substrate 1 by the sealing bonding portion 14 while covering the organic light emitter 5 with the sealing material 6. As the sealing material 6, what was previously provided with the drying material 13 in the concave portion can be used. The desiccant 13 can be provided by attaching a hygroscopic sheet or applying a hygroscopic material. Thereby, an organic EL element can be formed.
 ところで、図3の形態のように、補助電極7が光透過性電極2の基板1側に形成された有機EL素子の製造では、上記の製造方法を次のように変更する。まず、基板1の表面に補助電極7を形成する。形成方法は、上記の説明における補助電極7の形成方法と同じであってよい。補助電極7の形成後に、光透過性電極2及び電極引き出し部12を形成する。そして、光透過性電極2が補助電極7によって盛り上がった部分に絶縁膜10を形成する。絶縁膜10の形成方法は、上記の説明での方法と同じであってよい。その後は、上記と同様に、機能層3及び対電極4を積層形成し、封止材6により封止する。これにより、図3の形態の有機EL素子を形成することができる。 By the way, in the manufacture of the organic EL element in which the auxiliary electrode 7 is formed on the substrate 1 side of the light transmissive electrode 2 as shown in FIG. 3, the above manufacturing method is changed as follows. First, the auxiliary electrode 7 is formed on the surface of the substrate 1. The formation method may be the same as the formation method of the auxiliary electrode 7 in the above description. After the auxiliary electrode 7 is formed, the light transmissive electrode 2 and the electrode lead portion 12 are formed. Then, the insulating film 10 is formed on the portion where the light transmissive electrode 2 is raised by the auxiliary electrode 7. The formation method of the insulating film 10 may be the same as the method described above. Thereafter, similarly to the above, the functional layer 3 and the counter electrode 4 are laminated and sealed with the sealing material 6. Thereby, the organic EL element of the form of FIG. 3 can be formed.
 図1~図7で示す形態の有機EL素子は、発光特性に優れており、特に発光面積の大きい素子として利用することができる。そのため、面状の発光素子、特に照明パネルとして有用である。 The organic EL element having the form shown in FIGS. 1 to 7 has excellent light emission characteristics, and can be used as an element having a particularly large light emitting area. Therefore, it is useful as a planar light emitting element, particularly a lighting panel.
 上記の有機EL素子により、照明装置を得ることができる。照明装置は、上記の有機EL素子を備える。それにより、光取り出し性に優れ、省電力の照明装置を得ることができる。照明装置は、複数の有機EL素子が面状に配置されたものであってよい。照明装置は、一つの有機EL素子で構成される面状の照明体であってもよい。照明装置は、有機EL素子に給電するための配線構造を備えるものであってよい。照明装置は、有機EL素子を支持する筐体を備えるものであってよい。照明装置は、有機EL素子と電源とを電気的に接続するプラグを備えるものであってよい。照明装置は、パネル状に構成することができる。照明装置は、厚みを薄くすることができるため、省スペースの照明器具を提供することが可能である。 A lighting device can be obtained by the above organic EL element. The lighting device includes the organic EL element described above. Thereby, it is possible to obtain an illuminating device that is excellent in light extraction performance and power-saving. The illuminating device may be one in which a plurality of organic EL elements are arranged in a planar shape. The illumination device may be a planar illumination body composed of one organic EL element. The illumination device may include a wiring structure for supplying power to the organic EL element. The illumination device may include a housing that supports the organic EL element. The illumination device may include a plug that electrically connects the organic EL element and the power source. The lighting device can be configured in a panel shape. Since the lighting device can be made thin, it is possible to provide a space-saving lighting fixture.
 図9は、照明装置100の一例である。この照明装置は、有機EL素子101と、筐体102と、プラグ103と、配線104とを有する。図9では、複数(4つ)の有機EL素子101が面状に配設されている。有機EL素子101は、筐体102に収容されている。プラグ103及び配線104を通して電気が供給されて有機EL素子101が発光し、照明装置100から光を発することができる。 FIG. 9 is an example of the lighting device 100. This lighting device includes an organic EL element 101, a housing 102, a plug 103, and a wiring 104. In FIG. 9, a plurality (four) of organic EL elements 101 are arranged in a planar shape. The organic EL element 101 is accommodated in the housing 102. Electricity is supplied through the plug 103 and the wiring 104, the organic EL element 101 emits light, and light can be emitted from the lighting device 100.
 1   基板
 2   光透過性電極
 3   機能層
 4   対電極
 5   有機発光体
 6   封止材
 7   補助電極
 8   配線材
 9   接続配線
 10  絶縁膜
 11  電極パッド
 12  電極引き出し部
 14  封止接着部
 15  光透過可能部
 16  配線連続部
DESCRIPTION OF SYMBOLS 1 Substrate 2 Light transmissive electrode 3 Functional layer 4 Counter electrode 5 Organic light emitting body 6 Sealing material 7 Auxiliary electrode 8 Wiring material 9 Connection wiring 10 Insulating film 11 Electrode pad 12 Electrode extraction part 14 Sealing adhesion part 15 Light transmission possible part 16 Wiring continuous part

Claims (7)

  1.  基板と、光透過性電極と発光層を含む機能層と対電極とを有する有機発光体と、封止材とを備え、前記有機発光体は前記封止材によって覆われて封止されている有機エレクトロルミネッセンス素子であって、
     前記光透過性電極に接して配線材によりグリッド状のパターンの補助電極が設けられ、
     前記補助電極を構成する前記グリッド状のパターンの交差位置に、前記配線材が設けられていない光透過可能部を有し、
     前記機能層の前記補助電極側の表面には、平面視において前記補助電極と重複する位置に絶縁膜が設けられていることを特徴とする、有機エレクトロルミネッセンス素子。
    An organic light emitting body having a substrate, a functional layer including a light transmissive electrode and a light emitting layer, and a counter electrode, and a sealing material, the organic light emitting body being covered and sealed with the sealing material An organic electroluminescence device,
    An auxiliary electrode in a grid pattern is provided by a wiring material in contact with the light transmissive electrode,
    At the crossing position of the grid-like pattern constituting the auxiliary electrode, it has a light transmissive portion where the wiring material is not provided,
    An organic electroluminescence element, wherein an insulating film is provided on a surface of the functional layer on the auxiliary electrode side so as to overlap the auxiliary electrode in plan view.
  2.  前記光透過可能部は、前記交差位置において前記配線材が離間していることにより形成されていることを特徴とする、請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence element according to claim 1, wherein the light transmissive portion is formed by the wiring material being separated at the intersection position.
  3.  前記補助電極は、前記交差位置において、前記配線材が繋がって前記交差位置を通過する配線連続部を有し、
     前記配線連続部は、前記交差位置において屈曲形状を有することを特徴とする、請求項2に記載の有機エレクトロルミネッセンス素子。
    The auxiliary electrode has a wiring continuous portion that is connected to the wiring material and passes through the intersection position at the intersection position;
    The organic electroluminescence element according to claim 2, wherein the wiring continuous portion has a bent shape at the intersecting position.
  4.  前記補助電極は、前記交差位置において、前記配線材が繋がって前記交差位置を通過する配線連続部を有し、
     前記配線連続部は、前記交差位置において略直線形状を有することを特徴とする、請求項2又は3に記載の有機エレクトロルミネッセンス素子。
    The auxiliary electrode has a wiring continuous portion that is connected to the wiring material and passes through the intersection position at the intersection position;
    The organic electroluminescence element according to claim 2, wherein the wiring continuous portion has a substantially linear shape at the intersecting position.
  5.  前記補助電極は、前記光透過性電極の前記機能層側とは反対側の表面に接するように形成されており、側面が傾斜面となっていることを特徴とする、請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 5. The auxiliary electrode according to claim 1, wherein the auxiliary electrode is formed so as to be in contact with a surface opposite to the functional layer side of the light transmissive electrode, and a side surface is an inclined surface. The organic electroluminescent element of any one of Claims.
  6.  前記交差位置又はその近傍において、前記配線材間を接続する接続配線が設けられていることを特徴とする、請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。 6. The organic electroluminescence element according to claim 1, wherein connection wiring for connecting the wiring members is provided at or near the intersection.
  7.  請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えた照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 1 to 6.
PCT/JP2014/000667 2013-02-07 2014-02-07 Organic electroluminescence element and illumination device WO2014122938A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480007886.0A CN104982092B (en) 2013-02-07 2014-02-07 Organic electroluminescent device and illuminator
JP2014560687A JP6249340B2 (en) 2013-02-07 2014-02-07 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013022659 2013-02-07
JP2013-022659 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014122938A1 true WO2014122938A1 (en) 2014-08-14

Family

ID=51299537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000667 WO2014122938A1 (en) 2013-02-07 2014-02-07 Organic electroluminescence element and illumination device

Country Status (3)

Country Link
JP (1) JP6249340B2 (en)
CN (1) CN104982092B (en)
WO (1) WO2014122938A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067390A (en) * 2016-10-17 2018-04-26 住友化学株式会社 Organic EL element
EP3343661A1 (en) * 2016-12-29 2018-07-04 LG Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
US20180190947A1 (en) * 2016-12-29 2018-07-05 Lg Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
KR20190006837A (en) * 2017-07-11 2019-01-21 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode and method of fabricating thereof
KR20190037603A (en) * 2017-09-29 2019-04-08 엘지디스플레이 주식회사 Organic light emitting diode lighting apparatus
KR20190063311A (en) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 Oled panel for lighting device and method of manufacturing the same
EP3496175A1 (en) * 2017-12-05 2019-06-12 LG Display Co., Ltd. Oled panel for lighting device and method of manufacturing the same
JP2019102444A (en) * 2017-11-28 2019-06-24 エルジー ディスプレイ カンパニー リミテッド OLED lighting device
CN114981867A (en) * 2020-01-24 2022-08-30 京瓷株式会社 Light emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953026A (en) * 2017-03-21 2017-07-14 京东方科技集团股份有限公司 Display panel and its manufacture method, display device
JP7123692B2 (en) * 2018-08-13 2022-08-23 株式会社日本マイクロニクス Wiring board design support device, wiring board via placement method, and wiring board via placement program
CN110071155A (en) 2019-04-26 2019-07-30 深圳市华星光电半导体显示技术有限公司 Display panel and its packaging method, display device
CN113346032B (en) * 2021-06-01 2023-04-07 固安翌光科技有限公司 Organic electroluminescent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010244A (en) * 2006-06-28 2008-01-17 Harison Toshiba Lighting Corp Organic el element
WO2011155306A1 (en) * 2010-06-07 2011-12-15 Necライティング株式会社 Organic electroluminescent illumination device
WO2012133715A1 (en) * 2011-03-29 2012-10-04 Necライティング株式会社 Organic el light emitting device, manufacturing method therefor, and organic el illumination device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153070A (en) * 2008-12-24 2010-07-08 Seiko Epson Corp El device, manufacturing method of el device and electronic equipment
JP2012009420A (en) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd Light emitting device and illumination device
WO2012014759A1 (en) * 2010-07-26 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and manufacturing method of light-emitting device
JP2012049062A (en) * 2010-08-30 2012-03-08 Seiko Epson Corp Lighting apparatus
CN102034936B (en) * 2010-10-26 2012-11-07 四川虹视显示技术有限公司 Organic light emitting diode (OLED) illumination panel
JPWO2012102268A1 (en) * 2011-01-25 2014-06-30 出光興産株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE
CN102354730B (en) * 2011-08-29 2013-11-06 信利半导体有限公司 OLED (Optical Light Emitting Device) illuminating device and manufacture method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010244A (en) * 2006-06-28 2008-01-17 Harison Toshiba Lighting Corp Organic el element
WO2011155306A1 (en) * 2010-06-07 2011-12-15 Necライティング株式会社 Organic electroluminescent illumination device
WO2012133715A1 (en) * 2011-03-29 2012-10-04 Necライティング株式会社 Organic el light emitting device, manufacturing method therefor, and organic el illumination device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074044A1 (en) * 2016-10-17 2018-04-26 住友化学株式会社 Organic el element
JP2018067390A (en) * 2016-10-17 2018-04-26 住友化学株式会社 Organic EL element
US10418571B2 (en) 2016-12-29 2019-09-17 Lg Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
EP3343661A1 (en) * 2016-12-29 2018-07-04 LG Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
US20180190947A1 (en) * 2016-12-29 2018-07-05 Lg Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
US10553832B2 (en) * 2016-12-29 2020-02-04 Lg Display Co., Ltd. Lighting apparatus using organic light emitting device and method of fabricating thereof
KR20190006837A (en) * 2017-07-11 2019-01-21 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode and method of fabricating thereof
KR102321663B1 (en) 2017-07-11 2021-11-03 엘지디스플레이 주식회사 Lighting apparatus using organic light emitting diode and method of fabricating thereof
KR20190037603A (en) * 2017-09-29 2019-04-08 엘지디스플레이 주식회사 Organic light emitting diode lighting apparatus
KR102481170B1 (en) * 2017-09-29 2022-12-23 엘지디스플레이 주식회사 Organic light emitting diode lighting apparatus
US11133484B2 (en) 2017-11-28 2021-09-28 Lg Display Co., Ltd. OLED lighting apparatus
JP2019102444A (en) * 2017-11-28 2019-06-24 エルジー ディスプレイ カンパニー リミテッド OLED lighting device
JP2019102445A (en) * 2017-11-29 2019-06-24 エルジー ディスプレイ カンパニー リミテッド OLED panel for lighting device and method of manufacturing the same
US10608074B2 (en) 2017-11-29 2020-03-31 Lg Display Co., Ltd. OLED panel for lighting device and method of manufacturing the same
KR20190063311A (en) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 Oled panel for lighting device and method of manufacturing the same
KR102516699B1 (en) * 2017-11-29 2023-03-30 엘지디스플레이 주식회사 Oled panel for lighting device and method of manufacturing the same
JP2019102461A (en) * 2017-12-05 2019-06-24 エルジー ディスプレイ カンパニー リミテッド OLED panel for lighting device and method of manufacturing the same
KR20190066453A (en) * 2017-12-05 2019-06-13 엘지디스플레이 주식회사 Oled panel for lighting device and method of manufacturing the same
US11152446B2 (en) 2017-12-05 2021-10-19 Lg Display Co., Ltd. OLED panel for lighting device and method of manufacturing the same
EP3496175A1 (en) * 2017-12-05 2019-06-12 LG Display Co., Ltd. Oled panel for lighting device and method of manufacturing the same
KR102441681B1 (en) * 2017-12-05 2022-09-07 엘지디스플레이 주식회사 Oled panel for lighting device and method of manufacturing the same
CN114981867A (en) * 2020-01-24 2022-08-30 京瓷株式会社 Light emitting device

Also Published As

Publication number Publication date
JP6249340B2 (en) 2017-12-20
CN104982092A (en) 2015-10-14
CN104982092B (en) 2017-04-05
JPWO2014122938A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6249340B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP6226279B2 (en) Organic electroluminescence device
JP2015158981A (en) Organic electroluminescent element and illumination device
JP2014096334A (en) Organic electroluminescent element
JP2012138226A (en) Organic light-emitting device
WO2018061102A1 (en) Light-emitting device
JP6226312B2 (en) Organic EL device and manufacturing method thereof
JP6463354B2 (en) Light emitting device
JP2022173480A (en) Light-emitting device
JPWO2015079912A1 (en) Planar light emitting unit
JP2015115191A (en) Organic electroluminescent element, manufacturing method thereof and luminaire
JP2017068895A (en) Organic electroluminescent device and luminaire
KR102631177B1 (en) Electroluminance Lighting Device
WO2015151391A1 (en) Organic electroluminescent element, method for manufacturing same, and lighting apparatus
JP2014017204A (en) Organic electroluminescent element and planar light-emitting unit
WO2014091761A1 (en) Surface emitting light source and surface emitting light source assembly
JP6213940B2 (en) ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
JP6608055B2 (en) Light emitting device
WO2014162453A1 (en) Joint structure and light-emitting device
JP6259613B2 (en) Light emitting device
CN109373243B (en) OLED lamp sheet and lamp
JP2018037202A (en) Light-emitting device
JP2017097169A (en) Electrochromic element
JP2015018772A (en) Organic electroluminescent element and illuminating device
JP2024023850A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749392

Country of ref document: EP

Kind code of ref document: A1