WO2016120091A1 - Capteur radiologique avec detection de rayons x - Google Patents

Capteur radiologique avec detection de rayons x Download PDF

Info

Publication number
WO2016120091A1
WO2016120091A1 PCT/EP2016/050730 EP2016050730W WO2016120091A1 WO 2016120091 A1 WO2016120091 A1 WO 2016120091A1 EP 2016050730 W EP2016050730 W EP 2016050730W WO 2016120091 A1 WO2016120091 A1 WO 2016120091A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
photodiodes
detection
series
column
Prior art date
Application number
PCT/EP2016/050730
Other languages
English (en)
Inventor
Caroline Papaix
Florian Julien
Nathalie Pascal
Stéphane CRESPIN
Original Assignee
E2V Semiconductors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E2V Semiconductors filed Critical E2V Semiconductors
Priority to US15/547,095 priority Critical patent/US9907521B2/en
Priority to JP2017538207A priority patent/JP6752801B2/ja
Priority to CN201680007883.6A priority patent/CN107257661B/zh
Publication of WO2016120091A1 publication Critical patent/WO2016120091A1/fr

Links

Classifications

    • A61B6/512
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the invention relates to medical imaging and more particularly to intra-oral dental radiology.
  • Recent dental radiology systems utilize silicon-based MOS technology image sensors coated with a layer of scintillator material that converts X-rays into visible light in a wavelength spectrum to which silicon is sensitive.
  • the image sensor integrates electrical charges generated by the light which itself is generated by the scintillator.
  • the sensor comprises a matrix of active pixels, each pixel comprising a photosensitive element (most often a photodiode) and some transistors for collecting the charges generated by the light in the pixel to convert them into voltage.
  • a sequencing circuit ensures the operation of the whole of the sensor to ensure the reinitialization of the pixels, then the integration of charges from an integration start time and for a certain duration, and finally the reading of the voltages representing the electrical charges accumulated in the pixels. The reading of these voltages is done by a reading circuit placed at the foot of each of the columns of pixels of the matrix.
  • the reading of a line of pixels is done by simultaneously addressing all the pixels of this line using a line decoder; for this, the pixels each comprise a line selection transistor which is made conductive under the control of the line decoder, and this simultaneously for all the pixels of the same line.
  • the line selection transistor then connects the pixel to a respective column conductor, common to all the pixels of the same column of pixels, to transfer on this column conductor a useful signal representing the charges generated in the pixel at the intersection of the selected line and the column in question.
  • the transfer is done simultaneously for all the pixels of the line, each to its respective column driver.
  • the X-ray sensor is placed behind the human body part to be observed: for an intra-oral dental X-ray sensor, it is placed in the patient's mouth near the dental region to be observed.
  • An X-ray source is placed outside the mouth of the patient, in front of the sensor and exposes it with a short X-ray flash, through the biological tissue or other material to be observed.
  • One solution is to use a wired connection between the sensor and the X-ray source to trigger the integration of an electronic image at the same time as starting the X-ray source.
  • the wired connection requires a common protocol between the sensor and the source, which is hardly compatible with the fact that the sensor should be able to be exposed by any source, or vice versa that the source should be able to illuminate any sensor.
  • the resulting voltage level is continuously monitored; it represents a dark current noise before the start of an X-ray flash; if this level increases significantly, it means that a flash X has started and can trigger a complete image.
  • This solution can not be transposed to CMOS sensors that do not have a read charge transfer register; in addition, it disrupts the operation of the sensor by making the central photosensitive register while it reads the charges generated in the matrix, which deteriorates the image.
  • pixels distributed in the matrix are used as reference pixels and are monitored to trigger the image taking if the level of a certain number of these reference pixels exceeds a threshold. This requires specific addressing means to read the reference pixels. This is also the case if reference areas of several pixels are used to make this detection.
  • a detection cell larger than one pixel and able to surround the entire matrix is provided to detect the arrival of a flash X. This solution is cumbersome and the detection may be done in a place where little X-rays arrive because of the obstacles they have to cross.
  • the overall image read by the pixels is compared to an image taken in the dark before exposure to X-rays.
  • the image read becomes sharply different from the image taken in the dark, it is concluded that the flash has started. This requires reading the entire matrix to have this information abrupt change of brightness level of the complete image.
  • the pixel array is read with subsampling, i.e. all pixels are not read; only rows of pixels located at the periphery are actually read to detect the arrival of X-rays. This complicates the internal organization of the sensor and its sequencing circuits.
  • the detection threshold is scalable and depends on the previous image, to take into account that the dark current of the pixels that detect the arrival of the flash X depends on the ambient temperature conditions, which can vary a lot.
  • the invention proposes to modify the detection means present on the sensor.
  • An intraoral oral radiological image sensor comprises a matrix of lines and columns of photosensitive pixels each comprising a photodiode and a transistor circuit for collecting the charges generated by the light in the pixel and converting them into voltage, with for each column of pixels a column driver common to all pixels of the column, the column driver being connected to a respective reading circuit for the column, and with an addressing circuit of lines for addressing the pixels of a selected line and reporting on the column conductors useful signals from the pixels of the selected line and representing the illumination of these pixels.
  • the sensor according to the invention is characterized in that it comprises, in the middle of the matrix and in the place of a central column or a central line of pixels, a series of photodiodes all electrically connected in parallel with a side to a reference potential and on the other side to the same detection conductor extending along the series of photodiodes, this detection conductor being connected to a detection circuit providing a trigger signal for imaging when the detected current or the variation of this current exceeds a threshold showing that an X-ray flash has started.
  • the senor has a generally rectangular shape
  • the series of photodiodes is put in the place of a column or a line oriented in the direction of the length.
  • the columns in the direction of the collection of signals
  • the series of photodiodes used to detect an X-ray flash and the detection conductor then extend in the direction of the column conductors which collect the useful signals.
  • the photodiodes are preferably distributed at the same pitch as the pixels in the columns or rows of pixels that surround it. These photodiodes are preferably technologically identical to the photodiodes of the pixels and they preferably have the same dimensions.
  • FIG. 1 represents a general view of a dental radiological sensor of the prior art
  • FIG. 2 represents the general organization of the matrix of pixels in an embodiment of the prior art
  • FIG. 3 represents the general organization of the matrix of pixels in a dental radiological sensor according to the invention
  • FIG. 4 represents an electrical diagram corresponding to the architecture of the sensor according to the invention.
  • FIG. 5 represents an example of organization of the matrix with several series of column detection photodiodes
  • FIG. 6 represents an example of organization with a column and a line of detection photodiodes
  • FIG. 7 represents an example of organization with a series of columnar central photodiodes and sets of photodiodes on three different lines, each occupying only a portion of a line.
  • FIG. 1 shows at scale 1 an intraoral dental radiological sensor 10 comprising a visible image sensor covered with a scintillator emitting visible light under the effect of X-rays, all enclosed in a housing whose dimensions (a few centimeters of side, a few millimeters thick) allow the introduction into the mouth of a patient.
  • the sensor has an output cable 20 but wireless communication would also be possible between the sensor and a computer for collecting the electronic image.
  • the visible image sensor is made of monocrystalline silicon, which is sensitive to the visible light emitted by the scintillator. It is constituted by a matrix of photosensitive pixels and control and read circuits, capable of triggering the acquisition of an electronic image and extracting from each pixel a useful signal representing the illumination of this pixel.
  • the sensor housing may have a rectangular shape with cut corners as shown in Figure 1, and the integrated circuit chip on which are formed the matrix of pixels and the control circuits and
  • the reading plate preferably has itself a rectangular shape with cut corners.
  • Such an integrated circuit chip is shown in FIG. 2 and is designated by the reference CPT.
  • the matrix of photosensitive pixels is designated by MPIX; it is composed of a regular arrangement with constant steps of columns of pixels and rows of pixels.
  • the reference CPIX designates a column of pixels taken as example and hatched; similarly, the reference LPIX designates a line of pixels, taken by way of example and also hatched.
  • the sequencing circuits which include control and reading circuits, are symbolized here in a very simplified manner by the representation:
  • a line decoder LDEC on an elongated lateral edge of the chip or even on both edges, which serves to successively address the different lines of pixels by means of line conductors which each connect all the pixels of the same line,
  • a reading circuit RD which serves to extract the useful signal from the pixels of an addressed line; this signal is collected by column conductors which connect all the pixels of the same column of pixels and it is directed by these conductors to the read circuit RD placed at the foot of the matrix.
  • PLT output pads of the integrated circuit chip make it possible to provide on the outside of the chip analog or digital electronic signals representing the electronic image resulting from exposure to X-rays.
  • the columns are generally oriented in the direction of the length while the lines are oriented in the direction of the width, but it is not obligatory.
  • Figure 3 shows the organization of a sensor according to the invention.
  • a column of pixels has been replaced by a series SPHx of detection photodiodes, all connected to the same detection conductor CD which extends along the replaced column which is connected to a DX detection circuit located at the foot of the matrix.
  • FIG. 1 shows the organization of a sensor according to the invention.
  • the matrix is composed of pixels distributed regularly with a certain pitch along the lines and each represented by a hatched square, each pixel comprising a photodiode and a few transistors; a central column of the matrix is replaced by simple photodiodes, each represented by a circle, and these photodiodes are all directly connected to the common detection conductor CD, itself connected to the detection circuit DX.
  • the pitch of the matrix is preserved, in that the series of photodiodes occupies a maximum width equal to the pitch of the pixels.
  • the detection photodiodes of this series are distributed in the direction of the columns with the same column step as the pixels.
  • the steps in line and in column are in principle identical.
  • the series of photodiodes extends over all or almost all of the height of the pixel array.
  • the photodiodes are identical in all points (technology and dimensions) to the photodiodes that are present in the active pixels.
  • FIG. 4 represents the electrical diagram corresponding to this organization, in an example in which each pixel comprises a photodiode PH and three MOS transistors which are a transistor Trs of periodic reset of the photodiode at the beginning of integration, a read transistor TL mounted voltage follower for copying on its source the potential present on its gate, and a line selection transistor TS controlled by a line driver (not shown) connected to all TS transistors of a line controlled by the decoder of line.
  • the selection transistor connects, when made conductive, the read transistor to a DC column conductor.
  • the sequencing circuits for acquiring an electronic image at the time of an X-ray flash are not shown in FIG. 4; they control the reset transistors and the line select transistors.
  • the pixel could comprise a fourth transistor or transfer transistor when the pixel is constituted with a node of intermediate storage isolated from the photodiode by this transistor.
  • the reset transistor then serves to reset the storage node.
  • a fifth transistor may be provided to separately reset the photodiode and the intermediate storage node.
  • the detection photodiodes of the SPHx series are each housed in the space reserved for a pixel, but this space does not include transistors (or, if it has them for reasons of simplification of the patterning patterns of the matrix, these transistors are not controlled like those of the pixels of the matrix and in particular they are not connected to the line decoder).
  • These photodiodes PHx are all connected to the ground, that is to say to a reference potential to which are connected all the photodiodes PH of the pixels, and they are all directly connected (that is to say without interposition of a controllable transistor) to the column conductor CD.
  • the line decoder is therefore not used for addressing the PHx photodiodes since they are systematically connected to the conductor CD and continuously supply the latter with the current they generate under the effect of light in the presence of an X-ray flash or the inevitable dark current that they generate in the absence of X-rays.
  • the detection circuit DX has an input connected to the detection conductor CD.
  • This circuit can have a very simple threshold comparator function and it provides an output signal to the general sequencer of the pixel matrix to allow the triggering of a full image capture when the current received by the detector exceeds a threshold determined.
  • the current threshold can be a fixed threshold or a threshold adapted automatically according to the conditions of the environment (in particular according to the temperature conditions).
  • the threshold is chosen with a value sufficient not to cause tripping under the effect of the dark current of the series of photodiodes when the latter increases as a result of an increase in temperature.
  • an automatically adapted threshold several solutions can be provided. For example, it can be provided that a variable threshold is generated by a temperature sensitive circuit, the threshold increasing with temperature.
  • the threshold may be set to a certain value above an average of the dark current received on the conductor prior to X-ray exposure; thus, only a sudden jump in current, due to an X-ray flash, will cause the threshold to be exceeded and will trigger image capture.
  • the threshold is defined as a differential between two successive instants, the threshold being a slope threshold of growth of the current received.
  • the current is converted into voltage by a simple current-voltage conversion circuit such as a capacitive transimpedance amplifier (CTIA), and it is this voltage that is observed, in absolute value. or in variation, to produce the electronic imaging authorization signal.
  • CTIA capacitive transimpedance amplifier
  • a simple threshold voltage comparator will be used in the simplest case.
  • the series of detection photodiodes PHx placed in the middle of the matrix and in the meaning of the greater length of the rectangular sensor has the very important advantage of generally receiving a larger dose of X-rays (ie light generated by X-rays but we will speak more simply and for convenience of X-ray dose) than photodiodes that would be placed on the side of the pixel array, because when the sensor is in the mouth, it is placed so that its center line in the direction of the length is very little masked by the patient's teeth or jaw.
  • the sensor when the desired image is an image taken with the mouth almost closed, while the patient bites a sensor support, the sensor is placed on the support so that the median line in the direction of the length is arranged along the support. Since the support is X-ray transparent, it passes a dose of X-rays directly on the series of photodiodes aligned along the median line of the X-ray. sensor. Therefore, even in this particular case of the closed mouth, the series of photodiodes is particularly well exposed to X-rays.
  • the series of photodiodes occupies only the width of a column of pixels, it does not interfere very little with the final electronic image.
  • the pixels may have a size of 20 micrometers by 20 micrometers, while the details useful to the practitioner for his diagnosis rarely have a dimension less than 100 micrometers per 100 micrometers.
  • the luminance value of the missing pixel in each line is reconstructed by interpolation between the two neighboring pixels of the same line and this is very easy since all the missing pixels are located at the same median position in the different lines.
  • the large number (several hundred) of PHx detection photodiodes present in the series makes it possible to obtain a sufficient detection current without it being necessary to provide that the detection photodiodes have a surface greater than one pixel.
  • the detection circuit DX will in principle be placed at the bottom of the matrix of pixels, with the read circuits RD of the matrix. It has been shown in FIG. 3 as being located below the RD readout circuits, but it is not mandatory. Its location depends in particular on its size, which is greater or smaller depending on the embodiment envisaged, and according to the desired functionalities (detection of occurrence of flash X, detection of dose received for stopping the shooting of image, triggering d 'flash stop).
  • the production of the photodiode series is very easy since the photodiodes are technologically identical to the photodiodes of the useful pixels of the matrix.
  • the series of detection photodiodes and the detection conductor are crucially identical to the photodiodes of the useful pixels of the matrix.
  • CDs can also be used to determine the end of the picture. Indeed, it is possible to integrate a signal representing the current received on the conductor CD; the integral of the current then represents an X-ray dose received by the series of photodiodes. This dose is representative of the dose received by the patient.
  • An end of integration control circuit can therefore be connected to the CD conductor as the DX circuit to perform received dose detection and control the sequencing circuitry to complete the integration of electrical charges into the pixels.
  • the series of photodiodes and the detection conductor can be used to stop the X-ray flash when the received dose has reached a predetermined value.
  • An X flash stop control circuit must then be connected to the detection conductor CD, and this circuit transmits a stop signal to the X-ray source (for example by wire) when the received dose is sufficient.
  • the flash stop control circuit X may be the same as the integration stop control circuit.
  • the series of photodiodes placed in the middle of the matrix in the direction of the greatest length would replace a line of pixels. by occupying the width of this line.
  • one or two other secondary series of photodiodes can be provided. aligned in the direction of the greatest length of the sensor parallel to the first series and each replacing a respective column (or row) of pixels.
  • These other series of photodiodes are each connected to a conductor extending parallel to the series and connected to the detection conductor CD. The currents of these other series add to the current generated in the first series of photodiodes.
  • FIG. 5 represents an example with two other series of photodiodes SPHx1 and SPHx2 replacing two other columns of pixels, respectively on either side of the central column SPHx.
  • the image information is also reconstructed by interpolation of the signals provided by two pixels located on a line on either side of a detection photodiode.
  • Figure 6 shows an example with a main series SPHx and a secondary series SPHy, perpendicular.
  • the secondary series is placed on a median line of the matrix, but it could be placed on either side of this line; one can also have two series or three secondary series of photodiodes aligned in this direction.
  • the luminance received by a missing pixel is interpolated by interpolation, but this time by interpolating the signals of two pixels placed in columns on either side of a given photodiode.
  • This solution can be combined with that of FIG. 5 in which there are several series in columns in the direction of the length of the sensor. In all cases, the conductors of all the series are connected directly to the CD conductor of the main series SPHx which is oriented in the direction of the greatest length.
  • Figure 7 shows that the series of photodiodes do not necessarily extend over the entire length or width of the pixel array.
  • the series preferably depart from the central series to facilitate the connection between the different conductors corresponding to each series, but this is not mandatory, the connection can also be made from outside the matrix.

Abstract

L'invention concerne l'imagerie médicale et plus particulièrement la radiologie dentaire intra-orale. Le capteur selon l'invention comporte une série (SPHx) de photodiodes de détection d'arrivée d'un flash de rayons X. La série de photodiodes occupe l'emplacement d'une colonne centrale de la matrice de pixels. Le signal du pixel manquant dans chaque ligne peut être reconstitué par interpolation des signaux fournis par les pixels voisins de la ligne. Les photodiodes de détection sont identiques aux photodiodes des pixels actifs CMOS. Elles sont toutes reliées électriquement d'un côté à un potentiel de référence et de l'autre côté à un conducteur de détection (CD) s'étendant le long de la série de photodiodes. Ce conducteur de détection est relié à un circuit de détection (DX) fournissant un signal de déclenchement de prise d'image lorsque le courant détecté ou la variation de ce courant dépasse un seuil montrant qu'un flash de rayons X a commencé.

Description

CAPTEUR RADIOLOGIQUE AVEC DETECTION DE RAYONS X
L'invention concerne l'imagerie médicale et plus particulièrement la radiologie dentaire intra-orale. Les systèmes de radiologie dentaire récents utilisent des capteurs d'image en technologie MOS à base de silicium, recouverts d'une couche de matériau scintillateur convertissant les rayons X en lumière visible dans un spectre de longueurs d'onde auxquelles le silicium est sensible. Le capteur d'image intègre des charges électriques engendrées par la lumière qui elle-même est engendrée par le scintillateur.
Le capteur comprend une matrice de pixels actifs, chaque pixel comportant un élément photosensible (le plus souvent une photodiode) et quelques transistors permettant de recueillir les charges générées par la lumière dans le pixel pour les convertir en tension. Un circuit de séquencement assure le fonctionnement de l'ensemble du capteur pour assurer la réinitialisation des pixels, puis l'intégration de charges à partir d'un instant de début d'intégration et pendant une certaine durée, et enfin la lecture des tensions représentant les charges électriques accumulées dans les pixels. La lecture de ces tensions se fait par un circuit de lecture placé au pied de chacune des colonnes de pixels de la matrice. La lecture d'une ligne de pixels se fait en adressant simultanément tous les pixels de cette ligne à l'aide d'un décodeur de ligne ; pour cela, les pixels comprennent chacun un transistor de sélection de ligne qui est rendu conducteur sous la commande du décodeur de ligne, et cela simultanément pour tous les pixels d'une même ligne. Le transistor de sélection de ligne relie alors le pixel à un conducteur de colonne respectif, commun à tous les pixels de la même colonne de pixels, pour transférer sur ce conducteur de colonne un signal utile représentant les charges générées dans le pixel situé au croisement de la ligne sélectionnée et de la colonne considérée. Le transfert se fait simultanément pour tous les pixels de la ligne, chacun vers son conducteur de colonne respectif.
Le capteur radiologique est placé derrière la partie de corps humain à observer : pour un capteur radiologique dentaire intra-oral il est donc placé dans la bouche du patient, à proximité de la région dentaire à observer. Une source de rayons X est placée à l'extérieur de la bouche du patient, en face du capteur et expose celui-ci avec un court flash de rayons X, à travers les tissus biologiques ou autres matières à observer.
Parmi les contraintes importantes de l'utilisation d'un tel système, il faut considérer tout particulièrement le risque d'exposition du patient et de son entourage aux rayons X. Il est nécessaire de minimiser la dose de rayons X envoyée, tout en faisant en sorte d'obtenir une bonne image de la région observée. C'est pourquoi la source de rayons X émet un flash bref correspondant à une dose limitée de rayons.
Cela nécessite que le capteur soit prêt à enregistrer une image dès le départ du flash, faute de quoi une partie de la dose envoyée ne servirait à rien. Mais il faut aussi éviter que la prise d'image commence avant le début de l'illumination car même en l'absence de rayons X les pixels accumulent des charges électriques, en raison de l'existence de courants d'obscurité dans les photodiodes, c'est-à-dire des courants engendrés même en l'absence de lumière donc en l'absence de rayons X. Ces charges doivent être évacuées avant le début de l'image.
On essaie donc de synchroniser le départ de l'intégration de charges utiles dans les photodiodes avec le départ du flash de rayons X. De la même façon, on essaie de synchroniser l'arrêt de l'intégration de charges utiles avec l'arrêt du flash de rayons X.
Dans l'art antérieur on a utilisé plusieurs solutions pour effectuer cette synchronisation.
Une solution consiste à utiliser une connexion filaire entre le capteur et la source de rayons X pour déclencher l'intégration d'une image électronique en même temps qu'on démarre la source de rayons X. Il est cependant préférable d'éviter une connexion filaire dans l'environnement médical encombré où se fait la prise d'image radiologique. Par ailleurs la connexion filaire nécessite un protocole commun entre le capteur et la source, ce qui est difficilement compatible avec le fait que le capteur devrait pouvoir être exposé par n'importe quelle source, ou réciproquement que la source devrait pouvoir illuminer n'importe quel capteur.
On a aussi proposé de placer un détecteur de rayons X à côté du capteur d'image, dans la bouche ou en dehors de la bouche ; cela exige un composant supplémentaire et une liaison entre ce composant et le capteur. Dans une situation particulière concernant exclusivement un capteur de technologie CCD et pas un capteur de technologie MOS, le capteur ayant un registre à transfert de charges central CCD dans lequel se déversent les charges produites par les deux moitiés d'un capteur avant d'être décalées pas-à-pas vers un circuit de conversion charge-tension extérieur à la matrice, on a déjà proposé (brevet US 5 510 623) de ne pas masquer le registre central contre la lumière, alors qu'il devrait l'être. Le registre est à base de silicium et il est donc photosensible par nature. Il accumule des charges s'il reçoit de la lumière et il déverse ses charges pas- à-pas dans le circuit de conversion charge-tension. Le niveau de tension résultant est surveillé en permanence ; il représente un bruit de courant d'obscurité avant le début d'un flash de rayons X ; si ce niveau augmente significativement, cela veut dire qu'un flash X a commencé et on peut déclencher une prise d'image complète. Cette solution n'est pas transposable à des capteurs CMOS qui n'ont pas de registre à transfert de charges de lecture ; de plus, elle perturbe le fonctionnement du capteur en rendant le registre central photosensible pendant qu'il lit les charges engendrées dans la matrice, ce qui détériore l'image.
Dans une autre solution encore, en technologie CCD, trois diodes de détection de rayons X sont placées derrière la matrice de pixels. La technologie qui en résulte nécessite plus d'étapes de fabrication.
Dans une autre solution, des pixels répartis dans la matrice sont utilisés comme pixels de référence et sont surveillés pour déclencher la prise d'image si le niveau d'un certain nombre de ces pixels de référence dépasse un seuil. Cela exige des moyens d'adressage spécifiques pour lire les pixels de référence. C'est le cas aussi si on utilise des zones de référence de plusieurs pixels pour faire cette détection.
Dans une autre solution, une cellule de détection plus grande qu'un pixel et pouvant entourer toute la matrice est prévue pour détecter l'arrivée d'un flash X. Cette solution est encombrante et la détection risque de se faire dans un endroit où peu de rayons X arrivent en raison des obstacles qu'ils doivent traverser.
Dans une solution particulière, l'image globale lue par les pixels est comparée à une image prise dans l'obscurité avant exposition aux rayons X. Lorsque l'image lue devient brusquement significativement différente de l'image prise dans l'obscurité, on conclut que le flash a commencé. Cela oblige à lire toute la matrice pour avoir cette information de changement brusque de niveau de luminosité de l'image complète.
La publication de brevet US 2007/0176109 rappelle ces différentes solutions, qui sont tirées de différentes publications de brevet, et elle propose une autre solution avec des pixels de détection d'arrivée de rayons X, à réponse plus rapide que les pixels ordinaires de la matrice. Ces pixels sont situés à la périphérie de la matrice et sont adressables par les mêmes moyens d'adressage que les pixels de la matrice. Ils sont de préférence plus gros, donc plus encombrants, que les pixels de la matrice.
Dans la publication WO201 1 /008421 , la matrice de pixels est lue avec un sous-échantillonnage, c'est-à-dire que tous les pixels ne sont pas lus ; seules des lignes de pixels situées à la périphérie sont effectivement lues pour détecter l'arrivée de rayons X. Ceci complique l'organisation interne du capteur et de ses circuits de séquencement.
Dans le brevet EP0757474, on précise que le seuil de détection est évolutif et dépend de l'image précédente, pour tenir compte du fait que le courant d'obscurité des pixels qui détectent l'arrivée du flash X dépend des conditions de température ambiante, lesquelles peuvent varier beaucoup.
Pour éviter les inconvénients des dispositifs de l'art antérieur et au moins aboutir à un meilleur compromis entre les contraintes qu'imposent chacun de ces dispositifs, l'invention propose de modifier les moyens de détection présents sur le capteur.
On propose un capteur d'image radiologique intra-oral en technologie MOS constitué de la manière suivante : il comprend une matrice de lignes et de colonnes de pixels photosensibles comprenant chacun une photodiode et un circuit à transistors permettant de recueillir les charges générées par la lumière dans le pixel et les convertir en tension, avec pour chaque colonne de pixels un conducteur de colonne commun à tous pixels de la colonne, le conducteur de colonne étant relié à un circuit de lecture respectif pour la colonne, et avec un circuit d'adressage de lignes pour adresser les pixels d'une ligne sélectionnée et reporter sur les conducteurs de colonne des signaux utiles issus des pixels de la ligne sélectionnée et représentant l'éclairement de ces pixels. Le capteur selon l'invention est caractérisé en ce qu'il comporte, au milieu de la matrice et à la place d'une colonne centrale ou d'une ligne centrale de pixels, une série de photodiodes toutes reliées électriquement en parallèle d'un côté à un potentiel de référence et de l'autre côté à un même conducteur de détection s'étendant le long de la série de photodiodes, ce conducteur de détection étant relié à un circuit de détection fournissant un signal de déclenchement de prise d'image lorsque le courant détecté ou la variation de ce courant dépasse un seuil montrant qu'un flash de rayons X a commencé.
Si le capteur a une forme généralement rectangulaire
(éventuellement avec des coins coupés) ayant donc une longueur et une largeur où la longueur est supérieure à la largeur, on prévoit que la série de photodiodes est mise à la place d'une colonne ou d'une ligne orientée dans le sens de la longueur. Dans la plupart des cas, ce sont les colonnes (dans le sens du recueil des signaux) qui sont orientées dans le sens de la longueur, mais ce n'est pas obligatoire ; la série de photodiodes qui sert à la détection d'un flash X et le conducteur de détection s'étendent alors dans le sens des conducteurs de colonne qui recueillent les signaux utiles.
Les photodiodes sont de préférence réparties au même pas que les pixels dans les colonnes ou lignes de pixels qui l'encadrent. Ces photodiodes sont de préférence technologiquement identiques aux photodiodes des pixels et elles ont de préférence les mêmes dimensions.
Dans des réalisations particulières, on prévoit qu'il y a en outre une ou plusieurs autres séries de photodiodes, soit en colonne soit en ligne, soit les deux, occupant chacune tout ou partie de la colonne ou la ligne de pixels qu'elles remplacent.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente une vue générale d'un capteur radiologique dentaire de l'art antérieur ;
- la figure 2 représente l'organisation générale de la matrice de pixels dans une réalisation de l'art antérieur ; - la figure 3 représente l'organisation générale de la matrice de pixels dans un capteur radiologique dentaire selon l'invention ;
- la figure 4 représente un schéma électrique correspondant à l'architecture du capteur selon l'invention ;
- la figure 5 représente un exemple d'organisation de la matrice avec plusieurs séries de photodiodes de détection en colonne ;
- la figure 6 représente un exemple d'organisation avec une colonne et une ligne de photodiodes de détection ;
- la figure 7 représente un exemple d'organisation avec une série de photodiodes centrales en colonne et des séries de photodiodes sur trois lignes différentes, occupant chacune une portion seulement d'une ligne.
Sur la figure 1 , on voit à l'échelle 1 un capteur radiologique dentaire intra-oral 10 comprenant un capteur d'image visible recouvert d'un scintillateur émettant de la lumière visible sous l'effet des rayons X, le tout enfermé dans un boîtier dont les dimensions (quelques centimètres de côté, quelques millimètres d'épaisseur) permettent l'introduction dans la bouche d'un patient. Le capteur comporte un câble de sortie 20 mais une communication sans fil serait également possible entre le capteur et un ordinateur servant à recueillir l'image électronique.
Le capteur d'image visible est en silicium monocristallin, qui est sensible à la lumière visible émise par le scintillateur. Il est constitué par une matrice de pixels photosensibles et des circuits de commande et de lecture, capables de déclencher l'acquisition d'une image électronique et d'extraire de chaque pixel un signal utile représentant l'éclairement de ce pixel.
Pour des raisons de confort du patient, le boîtier du capteur peut avoir une forme rectangulaire à coins coupés comme c'est visible sur la figure 1 , et la puce de circuit intégré sur laquelle sont formés la matrice de pixels et les circuits de commande et de lecture a de préférence elle-même une forme rectangulaire à coins coupés. Une telle puce de circuit intégré est représentée sur la figure 2 et est désignée par la référence CPT. La matrice de pixels photosensibles est désignée par MPIX ; elle est composée d'un arrangement régulier à pas constant de colonnes de pixels et de lignes de pixels. La référence CPIX désigne une colonne de pixels prise à titre d'exemple et hachurée ; de même, la référence LPIX désigne une ligne de pixels, prise à titre d'exemple et également hachurée. Les circuits de séquencement, qui comprennent des circuits de commande et de lecture, sont symbolisés ici de manière très simplifiée par la représentation :
- d'un décodeur de ligne LDEC, sur un bord latéral allongé de la puce ou même sur les deux bords, qui sert à adresser successivement les différentes lignes de pixels grâce à des conducteurs de lignes qui relient chacun tous les pixels d'une même ligne,
- et d'un circuit de lecture RD qui sert à extraire le signal utile des pixels d'une ligne adressée ; ce signal est recueilli par des conducteurs de colonne qui relient tous les pixels d'une même colonne de pixels et il est dirigé par ces conducteurs vers le circuit de lecture RD placé au pied de la matrice.
Des plots de sortie PLT de la puce de circuit-intégré permettent de fournir à l'extérieur de la puce des signaux électroniques analogiques ou numériques représentant l'image électronique résultant de l'exposition aux rayons X.
Dans ce qui suit, étant donné que les appellations de "lignes" et de "colonnes" sont des appellations qui peuvent être arbitraires, on considérera par convention que le mot "ligne" s'applique à des lignes de pixels s'étendant dans le sens des conducteurs de ligne adressés par le décodeur de ligne, et que le mot "colonne" s'applique à des colonnes de pixels s'étendant dans le sens des conducteurs de colonne qui recueillent les signaux utiles des pixels. En d'autres mots, on adresse les pixels ligne par ligne et on recueille le signal utile au pied des différentes colonnes.
Lorsque le capteur a une forme rectangulaire (éventuellement à coins coupés) plutôt que carrée, ce qui est souvent le cas), les colonnes sont en général orientées dans le sens de la longueur alors que les lignes sont orientées dans le sens de la largeur, mais ce n'est pas obligatoire.
La figure 3 représente l'organisation d'un capteur selon l'invention. Dans le sens de la longueur du capteur, et au milieu de la matrice MPIX, on a remplacé une colonne de pixels par une série SPHx de photodiodes de détection, toutes reliées à un même conducteur de détection CD qui s'étend le long de la colonne remplacée et qui est relié à un circuit de détection DX situé au pied de la matrice. On voit sur la figure 3 une vue locale agrandie expliquant mieux cela, sous une forme symbolique : la matrice est composée de pixels distribués régulièrement avec un certain pas le long des lignes et représentés chacun par un carré hachuré, chaque pixel comprenant une photodiode et quelques transistors ; une colonne centrale de la matrice est remplacée par de simples photodiodes, représentées chacune par un cercle, et ces photodiodes sont toutes directement reliées au conducteur de détection commun CD, lui-même relié au circuit de détection DX. Le pas de la matrice est conservé, en ce sens que la série de photodiodes occupe une largeur maximale égale au pas en ligne des pixels.
De préférence, les photodiodes de détection de cette série sont réparties dans le sens des colonnes avec le même pas en colonne que les pixels. Les pas en ligne et en colonne sont en principe identiques.
De préférence aussi, sans que ce soit obligatoire, la série de photodiodes s'étend sur la totalité ou presque la totalité de la hauteur de la matrice de pixels.
Enfin, de préférence, les photodiodes sont identiques en tous points (technologie et dimensions) aux photodiodes qui sont présentes dans les pixels actifs.
La figure 4 représente le schéma électrique correspondant à cette organisation, dans un exemple dans lequel chaque pixel comprend une photodiode PH et trois transistors MOS qui sont un transistor Trs de réinitialisation périodique de la photodiode en début d'intégration, un transistor de lecture TL monté en suiveur de tension permettant de recopier sur sa source le potentiel présent sur sa grille, et un transistor de sélection de ligne TS commandé par un conducteur de ligne (non représenté) relié à tous les transistors TS d'une ligne commandée par le décodeur de ligne. Le transistor de sélection relie, lorsqu'il est rendu conducteur, le transistor de lecture à un conducteur de colonne CC. Les circuits de séquencement permettant d'acquérir une image électronique au moment d'un flash de rayons X (incluant le décodeur de ligne) ne sont pas représentés sur la figure 4 ; ils contrôlent les transistors de réinitialisation et les transistors de sélection de ligne. Le pixel pourrait comporter un quatrième transistor ou transistor de transfert lorsque le pixel est constitué avec un nœud de stockage intermédiaire isolé de la photodiode par ce transistor. Le transistor de réinitialisation sert alors à réinitialiser le nœud de stockage. Enfin, un cinquième transistor peut être prévu pour réinitialiser séparément la photodiode et le nœud de stockage intermédiaire.
Les photodiodes de détection de la série SPHx sont logées chacune dans l'espace réservé à un pixel mais cet espace ne comporte pas de transistors (ou, s'il en comporte pour des raisons de simplification des motifs de dessin de la matrice, ces transistors ne sont pas commandés comme ceux des pixels de la matrice et en particulier ils ne sont pas reliés au décodeur de ligne). Ces photodiodes PHx sont toutes reliées à la masse, c'est-à-dire à un potentiel de référence auquel sont reliées toutes les photodiodes PH des pixels, et elles sont toutes reliées par ailleurs directement (c'est-à-dire sans interposition d'un transistor commandable) au conducteur de colonne CD. Le décodeur de ligne ne sert donc pas à l'adressage des photodiodes PHx puisque celles-ci sont systématiquement connectées au conducteur CD et fournissent en continu à celui-ci le courant qu'elles génèrent sous l'effet de la lumière en présence d'un flash de rayons X ou le courant d'obscurité inévitable qu'elles génèrent en l'absence de rayons X.
Le circuit de détection DX a une entrée reliée au conducteur de détection CD. Ce circuit peut avoir une fonction très simple de comparateur à seuil et il fournit un signal de sortie à destination du séquenceur général de la matrice de pixels pour autoriser le déclenchement d'une prise d'image complète lorsque le courant reçu par le détecteur dépasse un seuil déterminé.
Le seuil de courant peut être un seuil fixe ou un seuil adapté automatiquement en fonction des conditions de l'environnement (notamment en fonction des conditions de température). Dans le cas d'un seuil fixe, le seuil est choisi avec une valeur suffisante pour ne pas causer de déclenchement sous l'effet du courant d'obscurité de la série de photodiodes lorsque celui-ci augmente suite à une augmentation de température. Dans le cas d'un seuil adapté automatiquement, on peut prévoir plusieurs solutions. Par exemple, on peut prévoir qu'un seuil variable est engendré par un circuit sensible à la température, le seuil augmentant avec la température. Ou encore, on peut prévoir que le seuil est défini à une certaine valeur au- dessus d'une moyenne du courant d'obscurité reçu sur le conducteur avant l'exposition aux rayons X ; ainsi, seul un saut brusque de courant, dû à un flash X, engendrera un dépassement de seuil et déclenchera la prise d'image. Ou encore, on peut prévoir que le seuil est défini en différentiel entre deux instants successifs, le seuil étant un seuil de pente de croissance du courant reçu.
En pratique le courant est converti en tension par un simple circuit de conversion courant-tension tel qu'un amplificateur à transimpédance capacitive (CTIA, de l'anglais "Capacitor Transimpedance Amplifier) et c'est cette tension qui est observée, en valeur absolue ou en variation, pour produire le signal d'autorisation de prise d'image électronique. Un simple comparateur de tensions à seuil sera utilisé dans le cas le plus simple. La série de photodiodes de détection PHx placée au milieu de la matrice et dans le sens de la plus grande longueur du capteur rectangulaire a l'avantage très important de recevoir en général une plus grande dose de rayons X (c'est-à-dire de lumière engendrée par les rayons X mais on parlera plus simplement et par commodité de dose de rayons X) que des photodiodes qui seraient placés sur le côté de la matrice de pixels. En effet, lorsque le capteur est dans la bouche, il se trouve placé de telle sorte que sa ligne médiane dans le sens de la longueur est très peu masquée par les dents ou la mâchoire du patient. Inversement, si une série de photodiodes était placée sur le côté de la matrice, elle serait souvent masquée par la mâchoire ou les dents et recevrait beaucoup moins de rayons X. Or il est important que l'intégration soit déclenchée dès le début de la réception du flash X et il est donc important que la série de photodiodes soit la moins masquée possible pour réagir plus vite. L'invention permet d'optimiser la probabilité d'une détection rapide de l'apparition du flash de rayons X.
Par exemple, lorsque l'image souhaitée est une image prise avec la bouche presque fermée, alors que le patient mord un support de capteur, le capteur est placé sur le support de telle manière que la ligne médiane dans le sens de la longueur soit disposée le long du support. Comme le support est transparent aux rayons X, il laisse passer une dose de rayons X directement sur la série de photodiodes alignées selon la ligne médiane du capteur. Par conséquent, même dans ce cas particulier de la bouche fermée, la série de photodiodes est particulièrement bien exposée aux rayons X.
Comme la série de photodiodes n'occupe que la largeur d'une colonne de pixels, elle ne gêne que très peu l'image électronique finale. Typiquement, les pixels peuvent avoir une dimension de 20 micromètres par 20 micromètres, alors que les détails utiles au praticien pour son diagnostic ont rarement une dimension inférieure à 100 micromètres par 100 micromètres. La valeur de luminance du pixel manquant dans chaque ligne est reconstituée par interpolation entre les deux pixels voisins de la même ligne et cela est très facile puisque tous les pixels manquants sont situés à la même position médiane dans les différentes lignes.
Le grand nombre (plusieurs centaines) de photodiodes de détection PHx présentes dans la série permet d'obtenir un courant de détection suffisant sans qu'il soit nécessaire de prévoir que les photodiodes de détection aient une surface plus grande qu'un pixel.
Le circuit de détection DX sera en principe placé en bas de la matrice de pixels, avec les circuits de lecture RD de la matrice. Il a été représenté sur la figure 3 comme étant situé au-dessous des circuits de lecture RD mais ce n'est pas obligatoire. Son emplacement dépend notamment de son encombrement, qui est plus ou moins grand selon la réalisation envisagée, et selon les fonctionnalités souhaitées (détection d'apparition de flash X, détection de dose reçue pour l'arrêt de la prise d'image, déclenchement d'arrêt du flash).
La fabrication de la série de photodiodes est très facile puisque les photodiodes sont technologiquement identiques aux photodiodes des pixels utiles de la matrice. La série de photodiodes de détection et le conducteur de détection
CD peuvent être utilisés aussi pour déterminer la fin de la prise d'image. En effet, on peut intégrer un signal représentant le courant reçu sur le conducteur CD ; l'intégrale du courant représente alors une dose de rayons X reçue par la série de photodiodes. Cette dose est représentative de la dose reçue par le patient. Un circuit de commande de fin d'intégration peut donc être connecté au conducteur CD comme le circuit DX pour effectuer une détection de dose reçue et commander les circuits de séquencement pour terminer l'intégration de charges électriques dans les pixels. Enfin, on peut utiliser la série de photodiodes et le conducteur de détection pour arrêter le flash de rayons X lorsque la dose reçue a atteint une valeur prédéterminée. Un circuit de commande d'arrêt de flash X doit alors être connecté au conducteur de détection CD, et ce circuit transmet un signal d'arrêt à la source de rayons X (par voie filaire par exemple) lorsque la dose reçue est suffisante. Le circuit de commande d'arrêt de flash X peut être le même que le circuit de commande d'arrêt d'intégration.
Dans le cas où les lignes de pixels décodées par le décodeur de lignes seraient orientées dans le sens de la plus grande longueur du capteur, la série de photodiodes placée au milieu de la matrice dans le sens de la plus grande longueur remplacerait une ligne de pixels en occupant la largeur de cette ligne.
Pour assurer une détection efficace même dans des cas où le capteur serait placé dans la bouche d'une manière telle que la ligne médiane du capteur serait en partie masquée par la mâchoire ou la dentition, on peut prévoir une ou deux autres séries secondaires de photodiodes alignées dans le sens de la plus grande longueur du capteur parallèlement à la première série et remplaçant chacune une colonne (ou ligne) respective de pixels. Ces autres séries de photodiodes sont toutes reliées chacune à un conducteur s'étendant parallèlement à la série et relié au conducteur de détection CD. Les courants de ces autres séries s'ajoutent au courant généré dans la première série de photodiodes.
La figure 5 en représente un exemple avec deux autres séries de photodiodes SPHxl et SPHx2 remplaçant deux autres colonnes de pixels, respectivement de part et d'autre de la colonne centrale SPHx. L'information d'image est là aussi reconstituée par interpolation des signaux fournis par deux pixels situés sur une ligne de part et d'autre d'une photodiode de détection.
On peut également, toujours dans le même but, ajouter une série de photodiodes alignées selon une direction perpendiculaire à la plus grande longueur du capteur. Le conducteur commun qui relie les photodiodes de cette série supplémentaire est relié au conducteur CD de la première série SPHx de sorte que les courants des photodiodes des deux séries s'ajoutent.
La figure 6 en représente un exemple avec une série principale SPHx et une série secondaire SPHy, perpendiculaire. Dans cet exemple la série secondaire est placée sur une ligne médiane de la matrice, mais elle pourrait être placée d'un côté ou de l'autre de cette ligne ; on peut aussi avoir deux séries ou trois séries secondaires de photodiodes alignées dans cette direction. Là encore, pour chaque série secondaire, on reconstitue par interpolation la luminance reçue par un pixel manquant, mais cette fois en interpolant les signaux de deux pixels placés en colonne de part et d'autre d'une photodiode donnée. Cette solution peut se combiner avec celui de la figure 5 dans lequel il y a plusieurs séries en colonne dans le sens de la longueur du capteur. Dans tous les cas, les conducteurs de toutes les séries sont reliés directement au conducteur CD de la série principale centrale SPHx qui est orientée dans le sens de la plus grande longueur.
Enfin, la figure 7 montre que les séries de photodiodes ne s'étendent pas nécessairement sur toute la longueur ou toute la largeur de la matrice de pixels. Sur la figure 7, on a une série principale centrale SPHx en colonne, s'étendant sur toute la hauteur de la matrice dans le sens de la plus grande longueur, et plusieurs séries SPHy s'étendant dans le sens de la largeur chacune sur une partie de la largeur. Les séries partent de préférence de la série centrale pour faciliter la liaison entre les différents conducteurs correspondant à chaque série, mais ce n'est pas obligatoire, la connexion pouvant aussi se faire par l'extérieur de la matrice.

Claims

REVENDICATIONS
1 . Capteur d'image radiologique intra-oral en technologie MOS comprenant une matrice (MPIX) de lignes et de colonnes de pixels photosensibles comprenant chacun une photodiode (PH) et un circuit à transistors (Trs, TL, TS) permettant de recueillir les charges générées par la lumière dans le pixel et les convertir en tension, et :
- pour chaque colonne de pixels un conducteur de colonne (CC) commun à tous pixels de la colonne, le conducteur de colonne étant relié à un circuit de lecture respectif pour la colonne (RD),
- un circuit d'adressage de lignes (LDEC) pour adresser les pixels d'une ligne sélectionnée, et reporter sur les conducteurs de colonne des signaux utiles issus des pixels de la ligne sélectionnée et représentant l'éclairement de ces pixels,
capteur caractérisé en ce qu'il comporte, au milieu de la matrice et à la place d'une colonne centrale ou d'une ligne centrale de pixels, une série (SPHx) de photodiodes (PHx) de détection toutes reliées électriquement d'un côté à un potentiel de référence et de l'autre côté à un même conducteur de détection (CD) s'étendant le long de la série de photodiodes, ce conducteur de détection étant relié à un circuit de détection (DX) fournissant un signal de déclenchement de prise d'image lorsque le courant détecté ou la variation de ce courant dépasse un seuil montrant qu'un flash de rayons X a commencé.
2. Capteur d'image radiologique selon la revendication 1 ayant une forme généralement rectangulaire, éventuellement avec des coins coupés, et ayant donc une longueur et une largeur où la longueur est supérieure à la largeur, caractérisé en ce que la série de photodiodes de détection est mise à la place d'une colonne ou d'une ligne centrale orientée dans le sens de la longueur, le conducteur de détection s'étendant dans le sens de la longueur.
3. Capteur d'image radiologique selon la revendication 2, caractérisé en ce que le conducteur de détection s'étend dans le sens des conducteurs de colonne.
4. Capteur d'image selon l'une des revendications 1 à 3, caractérisé en ce que les photodiodes de détection sont réparties au même pas que les pixels dans les colonnes ou lignes de pixels qui l'encadrent.
5. Capteur d'image selon l'une des revendications 1 à 4, caractérisé en ce que les photodiodes de détection sont technologiquement identiques aux photodiodes des pixels et elles ont de préférence les mêmes dimensions.
6. Capteur d'image selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte au moins une autre série de photodiodes parallèle (SPHx2, SPHx3) ou perpendiculaire (SPHy) à la première série, toutes les photodiodes de l'autre série étant reliées directement à un conducteur commun lui-même relié au conducteur de détection (CD).
7. Capteur d'image selon la revendication 6, caractérisé en ce qu'une ou plusieurs des séries de photodiodes occupe une partie seulement de la longueur d'une ligne ou d'une colonne de pixels de la matrice.
PCT/EP2016/050730 2015-01-30 2016-01-15 Capteur radiologique avec detection de rayons x WO2016120091A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/547,095 US9907521B2 (en) 2015-01-30 2016-01-15 Radiation sensor with X-ray detection
JP2017538207A JP6752801B2 (ja) 2015-01-30 2016-01-15 X線検出による放射線センサ
CN201680007883.6A CN107257661B (zh) 2015-01-30 2016-01-15 利用x射线检测的放射传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550738A FR3032105B1 (fr) 2015-01-30 2015-01-30 Capteur radiologique avec detection de rayons x
FR1550738 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016120091A1 true WO2016120091A1 (fr) 2016-08-04

Family

ID=53269655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/050730 WO2016120091A1 (fr) 2015-01-30 2016-01-15 Capteur radiologique avec detection de rayons x

Country Status (5)

Country Link
US (1) US9907521B2 (fr)
JP (1) JP6752801B2 (fr)
CN (1) CN107257661B (fr)
FR (1) FR3032105B1 (fr)
WO (1) WO2016120091A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134903B2 (en) * 2018-10-16 2021-10-05 Shayda Cullen Digital dental x-ray sensor device having a rounded housing
US10506992B1 (en) * 2018-10-16 2019-12-17 Shayda Cullen Digital dental x-ray sensor device having a rounded housing
US11191497B2 (en) * 2018-10-16 2021-12-07 Shayda Cullen Digital dental x-ray sensor device having a rounded housing including a radio transceiver
FR3094593B1 (fr) * 2019-03-29 2021-02-19 Teledyne E2V Semiconductors Sas Procédé de synchronisation de données numériques envoyées en série
FR3101768A1 (fr) * 2019-10-10 2021-04-16 Teledyne E2V Semiconductors Sas Capteur d’image radiologique intra-oral a pixels actifs et procede de prise d’image associe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193436A1 (en) * 2002-10-03 2006-08-31 Schick Technologies, Inc. Intraoral image sensor
US20070223649A1 (en) * 2004-07-22 2007-09-27 Christian De Godzinsky Arrangement for intra-oral x-ray imaging
FR2930841A1 (fr) * 2008-04-30 2009-11-06 E2V Semiconductors Soc Par Act Capteur d'image a coins coupes avec un multiplexeur entre deux lignes adjacentes de pixels.
FR2943179A1 (fr) * 2009-03-13 2010-09-17 E2V Semiconductors Capteur d'image mos et procede de lecture avec transistor en regime de faible inversion.
US20110013746A1 (en) * 2008-10-27 2011-01-20 Imaging Sciences International Llc Triggering of intraoral x-ray sensor using pixel array sub-sampling

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510623A (en) * 1995-02-24 1996-04-23 Loral Fairchild Corp. Center readout intra-oral image sensor
GB9515762D0 (en) * 1995-08-01 1995-10-04 Eev Ltd Imaging apparatus
GB0514998D0 (en) * 2005-07-21 2005-08-31 E2V Tech Uk Ltd Sensor with trigger pixels for imaging of pulsed radiation
FR2959901B1 (fr) * 2010-05-04 2015-07-24 E2V Semiconductors Capteur d'image a matrice d'echantillonneurs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060193436A1 (en) * 2002-10-03 2006-08-31 Schick Technologies, Inc. Intraoral image sensor
US20070223649A1 (en) * 2004-07-22 2007-09-27 Christian De Godzinsky Arrangement for intra-oral x-ray imaging
FR2930841A1 (fr) * 2008-04-30 2009-11-06 E2V Semiconductors Soc Par Act Capteur d'image a coins coupes avec un multiplexeur entre deux lignes adjacentes de pixels.
US20110013746A1 (en) * 2008-10-27 2011-01-20 Imaging Sciences International Llc Triggering of intraoral x-ray sensor using pixel array sub-sampling
FR2943179A1 (fr) * 2009-03-13 2010-09-17 E2V Semiconductors Capteur d'image mos et procede de lecture avec transistor en regime de faible inversion.

Also Published As

Publication number Publication date
JP6752801B2 (ja) 2020-09-09
US20180008214A1 (en) 2018-01-11
FR3032105A1 (fr) 2016-08-05
FR3032105B1 (fr) 2017-01-27
JP2018510671A (ja) 2018-04-19
US9907521B2 (en) 2018-03-06
CN107257661A (zh) 2017-10-17
CN107257661B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2016120091A1 (fr) Capteur radiologique avec detection de rayons x
JP4457134B2 (ja) Cmosを基礎とするピクセル構造の高ダイナミックレンジの読み出し信号を得る方法及びそのcmosを基礎とするピクセル構造
EP2564239B1 (fr) Detecteur de rayonnement electromagnetique a selection de gamme de gain
KR20090086074A (ko) 이미지 센서 및 카메라
US7592577B1 (en) Self-triggering CMOS imaging array utilizing guard region structures as light detectors
EP1532927A1 (fr) Appareil de radiologie dentaire et procédé de traitement de signal dans un tel appareil
FR3042912A1 (fr) Capteur d'images a grande gamme dynamique
WO2009133154A1 (fr) Capteur d'image a coins coupes avec un multiplexeur entre deux lignes adjacentes de pixels
TW200904165A (en) Extended dynamic range using variable sensitivity pixels
EP3193724B1 (fr) Procede et systeme de prise d'images radiologiques medicales avec commande d'arret de la source de rayonnement x
TWI474031B (zh) Solid-state imaging device
EP0331546B1 (fr) Matrice photosensible à deux diodes par point, sans conducteur spécifique de remise à niveau
EP3420592B1 (fr) Architecture améliorée de pixels à gamme dynamique ultra-élevée
WO2008034677A1 (fr) Capteur d'image lineaire cmos a fonctionnement de type transfert de charges
EP0060752B1 (fr) Dispositif photosensible solide à deux dimensions, et dispositif d'analyse d'image, utilisant le transfert de charges électriques, comportant un tel dispositif
EP3155662B1 (fr) Structure de circuit de lecture à injection de charge
EP1627432B1 (fr) Capteur d image matriciel en technologie cmos
US10827139B2 (en) Multiple window, multiple mode image sensor
WO2009068526A1 (fr) Capteur d'image a pixel a quatre ou cinq transistors avec reduction de bruit de reinitialisation
WO2015028672A1 (fr) Capteur d'image avec bruit ktc reduit
EP2936800A1 (fr) Procédé de lecture d'un dispositif d'imagerie
TW200840336A (en) Dim row suppression system and method for active pixel sensor arrays
FR3101768A1 (fr) Capteur d’image radiologique intra-oral a pixels actifs et procede de prise d’image associe
EP3058718A1 (fr) Capteur d'image a multiplication d'electrons et a lecture regroupee de pixels
FR2815502A1 (fr) Dispositif de detection d'un flux photonique a balayage autoadaptatif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538207

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16701732

Country of ref document: EP

Kind code of ref document: A1