WO2016119656A1 - 心血管健康监测装置及方法 - Google Patents

心血管健康监测装置及方法 Download PDF

Info

Publication number
WO2016119656A1
WO2016119656A1 PCT/CN2016/071991 CN2016071991W WO2016119656A1 WO 2016119656 A1 WO2016119656 A1 WO 2016119656A1 CN 2016071991 W CN2016071991 W CN 2016071991W WO 2016119656 A1 WO2016119656 A1 WO 2016119656A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
housing
cuff
user
skin
Prior art date
Application number
PCT/CN2016/071991
Other languages
English (en)
French (fr)
Inventor
周常安
Original Assignee
周常安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510037439.6A external-priority patent/CN104665786A/zh
Priority claimed from CN201510038040.XA external-priority patent/CN104665791A/zh
Priority claimed from CN201510037858.XA external-priority patent/CN104665821A/zh
Application filed by 周常安 filed Critical 周常安
Priority to US15/546,013 priority Critical patent/US20180333056A1/en
Priority to JP2017600126U priority patent/JP3214887U/ja
Publication of WO2016119656A1 publication Critical patent/WO2016119656A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/26Bioelectric electrodes therefor maintaining contact between the body and the electrodes by the action of the subjects, e.g. by placing the body on the electrodes or by grasping the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • A61B5/7415Sound rendering of measured values, e.g. by pitch or volume variation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation

Definitions

  • the invention relates to a cardiovascular health monitoring device and method, in particular to a cardiovascular health monitoring device with blood pressure and ECG signal measuring functions, and a method for monitoring cardiovascular health by the device.
  • the operation procedure is to first fix the pressure belt, then press the start button and wait for the blood pressure measurement to be completed automatically. This simple operation process makes it easy for the user to easily Regularly record changes in blood pressure values daily to effectively control your cardiovascular health.
  • the basis for judging arrhythmia is the electrocardiogram, and the electrocardiogram is currently the most accurate response to cardiac activity.
  • the P wave represents atrial depolarization.
  • the QRS wave reflects the rapid depolarization process of the left and right ventricles
  • the T wave represents the rapid repolarization process of the ventricle
  • the PR interval refers to the time from the start of the P wave to the start of the QRS wave, which reflects the electrical signal of the heart from the sinus
  • the ST segment represents the process of slow repolarization of the ventricle. Therefore, by observing the shape change of the waveform, information about the activity of various parts of the heart can be known, and the symptom is determined by the heart. Caused by the part.
  • a common symptom of arrhythmia is divided into premature atrial contractions (PAC) that occur in the atria and early onset of the ventricles.
  • Premature ventricular contractions PVC.
  • PVC premature atrial contractions
  • the ventricular contraction since the ventricular contraction is responsible for pumping blood out of the heart and transporting it to the body, when the ventricular contraction is abnormal, the blood will not be pumped normally, resulting in the body being unable to obtain. Normal blood supply, therefore, abnormalities in ventricular contraction compared to atrial contraction are more serious symptoms.
  • the sphygmomanometer provides information on arrhythmia
  • the heart rate is obtained based on the arterial pulse and then the arrhythmia is determined
  • the waveform of the arterial pulse is often difficult to distinguish.
  • the occurrence of early-onset contractions as described above is derived from the atria or ventricle, and does not correctly inform the user of the severity of the symptoms detected; in addition, since the arterial pulse is transmitted through the bloodstream through the bloodstream As a result of the measurement on the limb, there is also a problem that the accuracy cannot be compared with the electrocardiogram. Therefore, even if the sphygmomanometer can easily screen out a part of the arrhythmia symptoms, it is inevitable that the heart rhythm is not The final judgment of Qi still needs to be confirmed by observing the electrocardiogram.
  • the sphygmomanometer is one of the most common and highly popular cardiovascular health monitoring devices in the family. Compared with the sphygmomanometer, the ECG signal measuring device used at home is less familiar, so if you can The combination of electrical measurement and sphygmomanometer allows the ECG to be measured more deeply into everyday life through the familiarity of the average user with the blood pressure measurement procedure, which helps home users better understand and master their cardiovascular health. It is also possible to make these two physiological signals related to each other more efficient.
  • the home-use ECG signal measuring device is mostly a hand-held ECG detecting device, which allows the user to measure by means of holding the detecting device by hand, using a conductive paste without direct contact with the skin.
  • a dry electrode that can be measured and reusable, so it is quite convenient for home use.
  • One of the common methods of operation is that when the measurement is taken, the user holds the device in one hand and simultaneously contacts the electrode on the surface of the device, and then touches the other electrode to the other hand or the torso, as shown in FIG. 2 and FIG. Get an electrocardiogram.
  • the biggest problem faced by such a method is also caused by the use of hands.
  • the problem is that the operation stability is low, because the measurement by the two hands is easy to cause unstable phenomena such as hand shaking during measurement, resulting in the measurement.
  • the ECG has a baseline drift, waveform distortion, etc., as shown in Figure 4A, and therefore, compared to the normal ECG waveform, It will lead to incorrect analysis results; in addition, when the user wants the hand to maintain stability and muscle tension, or deliberately force to ensure contact with the electrodes, it is also easy to generate EMG signals by force, as shown in Figure 4B. It also causes a drop in signal quality, which in turn leads to incorrect ECG analysis results.
  • the type and arrangement of the electrodes must be considered to provide a natural and easy-to-implement operation mode for the user, and further help to obtain good signal quality, which affects signal quality.
  • the factors mainly include external environmental interference, skin-to-electrode contact, and user operation.
  • electromagnetic waves in the measurement environment may generate noise in the acquired ECG signals, and during measurement.
  • Unstable contact movements and EMG signals generated by excessive muscle tension may become artifacts, etc., which affect signal quality.
  • Another advantage of combining blood pressure measurement and ECG measurement is that when a stable and clear ECG signal is obtained, information about the Heart Rate Variability (HRV) can be obtained, and then the autonomic nerve can be learned. Activity, therefore, based on self-discipline
  • HRV Heart Rate Variability
  • the system is also one of the factors affecting blood pressure. It can be observed whether the cause of hypertension is related to autonomic nerve by observing the relationship between autonomic nerve activity and changes in blood pressure.
  • Another object of the present invention is to provide a cardiovascular health monitoring device that naturally incorporates electrode contact behavior required for ECG signal measurement in a well-known blood pressure measurement operation flow to enhance use by reducing the complexity of use. Acceptance.
  • Another object of the present invention is to provide a cardiovascular health monitoring device that detects an arterial pulse by an inflatable cuff to determine whether there is a possible arrhythmia event, and accordingly informs the user to perform ECG measurement.
  • the user can obtain the electrocardiogram in real time to facilitate further confirmation of the occurrence and type of arrhythmia.
  • Another object of the present invention is to provide a cardiovascular health monitoring device which realizes contact between an electrode and a skin by wearing a structure, and is suitable for obtaining a high-quality measurement ECG signal for a long time, which is advantageous for performing HRV analysis and further understanding of autonomic nerves.
  • Figure 1 shows the standard ECG waveform
  • Figure 2 shows an operation mode of the existing hand-held ECG detecting device
  • FIG. 3 shows another mode of operation of the prior art handheld electrocardiograph
  • Figure 4A shows the ECG waveform with baseline drift
  • Figure 4B shows an electrocardiogram waveform affected by the myoelectric signal
  • FIG. 5 shows a block diagram of a cardiovascular health monitoring device in accordance with the present invention
  • FIGS. 6A-6C show an illustrative example of an earwear structure in accordance with the present invention
  • Figure 7 shows a schematic view of the skin near the ear that can be contacted by the ear-wearing structure in accordance with the present invention
  • FIGS. 8A-8B show an illustrative example of a finger-wearing structure in accordance with the present invention
  • Figure 9 shows an exemplary combination of an electrode and a cuff according to the present invention.
  • Figure 10 shows an exemplary embodiment of a cardiovascular health device having another housing for carrying a start button in accordance with the present invention
  • FIGS. 11A-11H are diagrams showing an exemplary embodiment of the electrode of the present invention in combination with a housing
  • FIGS. 12-15 show an exemplary embodiment in which an electrode is embodied in an ear-worn structure and in combination with a cuff, in accordance with the cardiovascular health monitoring device of the present invention
  • Figure 16 shows an exemplary embodiment of an electrode implemented as an ear-wearing structure and a wrist-worn structure in accordance with the cardiovascular health monitoring device of the present invention
  • FIG. 17-19 show an exemplary embodiment of an electrode implemented as an ear-worn structure and a finger-worn structure in accordance with the cardiovascular health monitoring device of the present invention
  • Figure 20 shows an exemplary embodiment of an electrode implemented in a finger-wearing structure and in combination with a cuff, in accordance with the cardiovascular health monitoring device of the present invention
  • FIG. 21 shows an exemplary embodiment in which an electrode is embodied on a finger-worn structure and in combination with a surface of a housing in accordance with the cardiovascular health monitoring device of the present invention
  • Figure 22 shows an exemplary embodiment of an electrode implemented as a cardiovascular health monitoring device according to the present invention, respectively, on two finger-wearing structures;
  • 23-24 illustrate an exemplary embodiment in which an electrode is implemented on an earwear structure and in combination with a surface of a housing in accordance with the cardiovascular health monitoring device of the present invention
  • 25-27 show an exemplary embodiment in which an electrode is implemented as an electrode in combination with a surface of a housing and in combination with a cuff according to the cardiovascular health monitoring device of the present invention
  • FIG. 28 shows an exemplary embodiment in which an electrode is implemented on an ear worn structure and in combination with a surface of a housing in accordance with the cardiovascular health monitoring device of the present invention
  • Figure 29 shows an illustrative example of a cardiovascular health monitoring device in accordance with the present invention, the electrodes being located on the surface of the housing;
  • FIGS. 30A-30B show an exemplary embodiment of a cardiovascular health monitoring device according to the present invention, with one electrode on the surface of the housing and the other electrode on the earwear or on the fingering structure;
  • Figure 31 is a flow chart showing the operation of the cardiovascular health monitoring device according to the present invention.
  • 32-34 show an exemplary example of notification information of a cardiovascular health monitoring device in accordance with the present invention.
  • the invention relates to a cardiovascular health monitoring device with two functions of blood pressure measurement and electrocardiographic signal measurement, which allows a user to naturally record an electrocardiogram under the condition of observing the operation habit of blood pressure measurement, and therefore, through operation A single device can get a variety of important information about cardiovascular health.
  • FIG. 5 is a schematic diagram of a cardiovascular health monitoring device according to the present invention.
  • the cardiovascular health monitoring device includes a control circuit 10, a cuff 12, a pump, and a gas valve. a pressure sensor, and at least two electrodes 14, wherein the control circuit 10 is implemented to perform blood pressure measurement and electrocardiographic signal measurement via the connected cuff 12 and the electrode 14, and therefore, the control circuit 10 also includes , but not limited to, some common electronic components used to implement measurements, such as processors, at least one A/D converter, filters, amplifiers, etc., as these are common to those skilled in the art, Let me repeat.
  • the cardiovascular health monitoring device also has a housing for housing the control circuit and the pump, etc., wherein the housing can be implemented in combination with a cuff and placed during measurement during measurement.
  • the housing can be implemented in combination with a cuff and placed during measurement during measurement.
  • the user or, can also be implemented to separate from the cuff, and
  • the surface of the housing may be implemented to have an operation interface, such as a display element, a start button, an input button, etc., not on the user's body during measurement.
  • the cardiovascular health monitoring device adds the function of measuring the electrocardiographic signal by using the electrocardiographic electrode on the basis of measuring the blood pressure
  • the device of the present invention has no specific limitation on the overall appearance structure, as long as it is A common electronic sphygmomanometer is a structure that can be used as a basis of the present invention.
  • a common electronic sphygmomanometer is a structure that can be used as a basis of the present invention.
  • an arm sphygmomanometer as shown in FIG. 12 and a wrist sphygmomanometer as shown in FIG. 13 are applicable, and such a method is also The user can perform ECG signal measurements in accordance with the concepts of the present invention in a familiar operational behavior.
  • the measurement of the electrocardiographic signal is mainly a dry electrode in which an electrocardiographic signal can be obtained by directly contacting the skin, and when using a dry electrode, the user is compared with a conventional reusable wet electrode.
  • the electrocardiographic signal measurement can be performed by directly contacting the electrodes through the skin without the need for a conductive paste, so the measurement can be easily and conveniently performed at any time, and in addition, compared to the disposable electrode patch, since the dry electrode is not It is easy to damage and easy to maintain, and can be reused, thus reducing the inconvenience of replacing the electrode and increasing the cost.
  • the dry electrode can be implemented as, but not limited to, an electrode made of stainless steel, an electrode made of a conductive fiber cloth, a conductive rubber electrode, or the like without any limitation.
  • it can also be implemented as an electrode that does not need to directly contact the skin, for example, an electrode that obtains an electrocardiographic signal by means of a capacitive method, an induction method, or an electromagnetic method, and does not need to pass through a medium such as a conductive paste. Electrical signal measurement, easy to use.
  • the present invention starts from the operation flow of blood pressure measurement, thereby improving the convenience of use, and further considering how to implement a simple and ergonomic operation mode when setting the electrocardiographic electrodes. To ensure stable contact between the electrode and the user's skin.
  • the operation procedure of the general electronic sphygmomanometer is: after the pressure pulse band surrounds the arm or the wrist, in the case where the horizontal position is kept at the same height as the heart, the start button is pressed and the posture is stabilized, and the machine automatically completes the measurement.
  • the concept of the present invention is to integrate the action of contacting the electrocardiographic electrode necessary for measuring the electrocardiographic signal into the blood pressure measurement.
  • the operation steps are avoided as much as possible, so that the user does not need to relearn the operation flow.
  • the present invention mainly adopts two concepts in the selection of the electrode placement position and the contact mode.
  • First by selecting the contact position and designing the electrode structure, the electrode actively exerts force to contact the user's skin. In this way, the contact between the electrode and the skin is no longer dependent on the user's force, not only can improve the stability of the contact, but also avoid the myoelectric signal and the artifact.
  • the electrode contact surface is implemented as an ergonomic surface, the contact stability can be further ensured and the signal quality can be improved more effectively.
  • the present invention is based on the above concept in determining the position and embodiment of the electrode.
  • One of the possibilities that has been proposed is the idea of placing the electrodes on the ears.
  • the ear is not the part of the body that will be involved in the measurement of blood pressure, there is an advantage in using the ear as the position of the contact electrode.
  • the ear and its vicinity are areas where the myoelectric signal is extremely small, plus between the head and the head. A fairly stable relative positional relationship, so even if the user moves during the measurement, for example, slightly turning the body or turning the neck, the contact between the electrodes and the skin can be maintained stably without causing too much interference affecting the measurement results.
  • the ear is less affected than other body parts.
  • To the area covered by the clothing it is easier to directly contact when necessary, to avoid the trouble of measuring the clothes, and the skin around the ear and the skin has less hair characteristics, and the contact between the electrodes and the skin can be easily performed.
  • the realization of barrier-free, therefore, is a very convenient choice for the user.
  • various fixing methods that can be provided due to the ear structure, for example, earplugs, ear clips, ear hooks, etc., as shown in FIGS. 6A-6C, are common fixing methods in daily life, and the user does not need to relearn. It can be configured naturally, so the user can simply complete the electrode setting by simply wearing the earphone or clamping the electrode on the earlobe; and, when the electrode is set by the above fixing method, When it is placed on the ear, the contact between the electrode and the skin can be achieved without the user's application of force, so that muscle tension is hardly generated, and the interference of the EMG signal can be minimized, and good signal quality can be obtained.
  • the position on the ear to obtain the ECG signal there is no limitation, and it can be any position of the ear itself, for example, in the ear canal, the earlobe, the inner surface of the auricle, for example, the ear cavity, the area near the ear canal, etc., the ear wheel And the back of the auricle, as shown in Figure 7, the area near the ear, for example, the skin near the junction of the ear and the head, etc. These locations are the locations where the electrodes can be contacted and the ECG signal is obtained.
  • both ears are selectable wearing positions.
  • the position of the other electrode has a considerable influence on the signal quality, wherein when the other electrode is disposed on the left upper limb, The quality of the obtained ECG signal is much better than that obtained by the right upper limb. Therefore, when the ECG signal is measured in contact with the ear, it is preferable to contact the other electrode to the skin of the left upper limb to avoid The signal quality is poor due to contact with the right upper limb, which leads to misjudgment in the analysis.
  • the contact between the electrode and the ear is achieved by an ear-wearing structure that can be combined with the ear, wherein the electrode is placed in contact with the skin when the ear-wearing structure is combined with the ear, therefore,
  • the ear-wearing structure is fixed to the ear, the contact of the electrode with the skin of the ear or its vicinity is completed simultaneously.
  • the ear-wearing structure can have various forms.
  • the electrode when the ear-wearing structure is implemented in the form of an earplug, the electrode can be disposed on the earplug to naturally achieve contact with the skin in the ear canal, as shown in FIG. 6A.
  • the structure of the earplug can also be extended to further conform to the curve of the inner surface of the auricle, providing another choice of electrode contact position;
  • the electrode when implemented in the form of an ear clip, for example, on the auricle or on the earlobe ( 6B), the electrode may be disposed on the inner side of the ear clip to complete the contact with the auricle or the earlobe while being clamped; when implemented in the earloop form, as shown in FIG.
  • the electrode may be implemented as a hook member extending to the back of the ear, contacting the skin on the back of the auricle or the skin at the junction of the back of the ear and the head, where the hook member may, for example, be made of its own material.
  • Elastic or through structural design, has a force applied in the direction of the skin and produces stable contact with the skin.
  • the above description of the ear-wearing structure is for example only, and is not intended to be limiting.
  • it may be implemented to combine two forms of structure, for example, the earplug is implemented in combination with the ear-hook form, and therefore, It can be changed according to actual needs, and there is no limit.
  • the two components can be embodied as magnetic, for example, by means of a magnetic substance inside, or by itself as a magnetic substance, or by a material that can be attracted by magnetic or internal.
  • a substance that can be magnetically attracted is provided.
  • one part may be implemented to have a magnetic force, and the other part may be magnetically attracted, or both parts may be implemented to have a magnetic force, and various implementation possibilities may be possible. no limit.
  • the ear-worn structure and the electrodes thereon can also be implemented to be connected to the cuff or the housing through the connection port, so that when the user does not need to perform electrocardiographic measurement The earwear structure can be removed.
  • circuit processing such as amplification, buffering, filtering, digitization, etc.
  • the required circuitry can be further implemented to be housed in the earwear structure without limitation.
  • the electrode can also be embodied as being carried by a finger-wearing structure, such as a ring-like structure, or a band around a finger.
  • a finger-wearing structure such as a ring-like structure, or a band around a finger.
  • the wearing structure has the same advantages as the ear-wearing structure, because the finger-wearing form is familiar to the average user and does not need to be re-learned. It is only necessary to directly attach the finger-wearing structure to the finger when the measurement is to be performed. The contact between the electrode and the skin can be completed, and the operation process is naturally convenient. Moreover, the contact force between the electrode and the skin is achieved by the finger-applying structure applying force to the finger, as long as the user relaxes the hand wearing the electrode, the muscle tension is The impact can also be minimized.
  • the position of the finger-wearing structure according to the present invention on the finger is preferably a knuckle in which the proximal phalanx or the middle phalanx is located to avoid the situation in which the hand movement is detached due to the position approaching the end of the finger.
  • the finger-wearing structure may be in the form of a general ring as shown in FIG. 8A, or as a flexible band around the finger as shown in FIG.
  • Forms may further have a structure that adjusts the diameter of the circumference to further ensure contact stability between the electrodes and the skin, for example, the ring may be implemented as a mechanism with a variable ring to accommodate different wearer's fingers, and The body can be implemented to have an adjustable fixed position, for example, by providing a fastening tape, so that the user can select the tightness during the wrapping, etc., and the embodiment can be changed according to the actual situation, without limitation.
  • the form of a clip can also be used.
  • the structure of the clip can be designed to clamp the fingertip or other knuckles, such as the proximal phalanx or the middle phalanx, so that the elasticity of the clip itself can be fixed. The effect is also a good choice.
  • the signal when the ECG signal is extracted by touching the finger, the signal can be processed in the vicinity of the position where the signal is acquired, to ensure the quality of the signal, and, similarly, the circuit can be further It is placed in the finger-wearing structure.
  • the position of the other set electrode is selected as the cuff. Since the installation of the cuff is a necessary behavior for measuring blood pressure, when the electrode is placed on the cuff, the action of contacting the electrode to the skin can be accomplished by installing the cuff, simplifying the procedure.
  • the electrode can be bonded to any part of the cuff, and only needs to be in contact with the skin when the cuff is wrapped around the arm or wrist.
  • the electrode can be coupled to the cuff. There is no limit to the inside, or the edge of the cuff.
  • the electrode when the electrode is bonded to the inside of the cuff, in addition to the usual metal electrode sheets, in a preferred embodiment, in order to improve the contact with the skin, the electrode may also be made of a flexible material, such as , conductive fiber cloth, conductive rubber, etc., or can also be implemented as a layer of conductive coating on the inner side of the cuff tape, so that the electrode can be bent with the cuff, thereby achieving contact with the skin.
  • a flexible material such as , conductive fiber cloth, conductive rubber, etc.
  • the ECG signal can be set to be measured when the inflation of the cuff is above a certain pressure value (that is, after the contact force with the skin reaches a certain level). Make the contact between the electrode and the skin more stable.
  • an additional structure can be provided to ensure the contact between the electrode and the skin, so as to avoid unstable contact between the electrode and the skin caused by the inflation and deflation of the cuff during blood pressure measurement.
  • a support structure can be provided at the position of the corresponding electrode on the cuff, so that when the cuff is wrapped around the arm or wrist, by the surrounding force, or by the volume expansion caused by inflation during inflation, The support structure generates a force, causing the support structure to apply a force toward the skin to the electrode, thereby ensuring contact between the electrode and the skin.
  • the support structure can be implemented to have a certain thickness and hardness to achieve the wrapping of the cuff or The effect of the inflated force transmitted to the electrode, and further
  • the support structure may have compressive elasticity so that the implementation of the force application does not cause an uncomfortable feeling of pressure on the user; in addition, in a preferred embodiment, the support structure is implemented to conform to the skin contacted.
  • the ergonomics of the position for example, the curvature of the arm, further ensure the stability of the contact.
  • the electrode 90 can also be implemented to be bonded to the edge of the cuff, sandwiched between the upper edge of the cuff, and the contact between the electrode and the skin is also present.
  • the electrode can be biased toward the skin by selecting an elastic electrode material, so that the electrode can naturally adhere to the skin after wrapping the upper venous band, or can be structurally designed.
  • the shape of the electrode conforms to the ergonomics of the arm or wrist, thereby ensuring contact between the electrode and the skin. Therefore, there is no limitation and it can be changed according to actual needs.
  • the electrocardiographic signal measurement can be performed simultaneously during the blood pressure measurement, or alternatively, separately from the blood pressure measurement, the user can Choose the actual situation.
  • the position of the other set electrode is selected to be the surface of the housing for the user to make contact with the finger.
  • pressing the start button on the housing is an indispensable step in order to initiate the inflation and measurement procedure after the cuff is installed. Therefore, if the electrode can be placed on the start button, this way As long as the user does not move after pressing the start button, the electrode contact can be completed at the same time, simplifying the operation steps of the electrocardiogram measurement.
  • the action of pressing the start button by the finger can also be implemented to simultaneously start the measurement of the electrocardiogram signal and the blood pressure measurement, so that a single pressing operation can simultaneously complete three procedures, contact the ECG electrode, and start. Blood pressure measurement, as well as the activation of ECG signal measurement, can minimize the complexity of the procedure.
  • the start button can be implemented as a button with a pressing stroke or a touch button, and the like, and the surface shape of the start button can be further implemented to conform to the ergonomics of the finger.
  • the curvature of the finger makes the contact more stable.
  • the user may choose to perform blood pressure measurement or ECG signal measurement separately, or both, for example, by pressing the start button to achieve different pressing strokes or different pressing times, for example,
  • the button is pressed shortly, it means that no electrode contact is required, that is, only the blood pressure measurement is started.
  • the button is pressed for a long time, the ECG signal measurement is started, and when the short press is followed by the long press, the two measurements are started at the same time, so the actual measurement can be implemented. The situation changes and there is no limit.
  • the activation key 100 is further implemented to be carried by another housing 101 other than the housing, for example, a pressing activation structure.
  • the activation key will be It can be moved to a suitable different position according to the user's operating habits, so that the user can make electrode contact in a more relaxed posture, which also helps to obtain a good quality signal.
  • the position of the electrode on the housing may be selected differently, and may be implemented when the cuff is wrapped around the limb.
  • the body can be in contact with the skin.
  • the housing When the housing is carried by the cuff and surrounds the upper arm or the forearm (as in the case of the operation shown in Figures 13 and 14), there may be further a carrying structure 112 disposed on the housing, for example, located
  • the surface 111 as shown in FIGS. 11A-11C, contacts the skin of the upper arm or the forearm when the cuff is wrapped around the limb, so that when the electrode 113 is placed on the carrier structure 112, the electrode contact is equally This is done in the action of installing the cuff.
  • the load-bearing structure 112 can be implemented to be located near the edge of the cuff, and the cuff is implemented to have an opening 114 at a position corresponding to the load-bearing structure, and thus, through the vein Simultaneous electrode with action around the upper arm or forearm 113, the contact between the skin, or as shown in FIG. 11B, the opening 114 can also be implemented in the cuff, and the bearing structure 112 is located at a position corresponding thereto, and further, as shown in FIG.
  • the bearing structure 112 can also be implemented on the outer edges of both sides of the cuff, so that contact with the skin can be achieved without changing the structure of the cuff, although the two sides are shown in the figure.
  • the rim has the load-bearing structure, but it is not limited to be disposed only on one side of the outer edge.
  • the load-bearing structure can be implemented to be elastic to accommodate changes that may occur during inflation, and also to ensure stability of contact between the electrodes and the skin, for example, a resilient material such as rubber, Silica gel or the like; or a retractable mechanism, for example, a button structure that can be pressed to generate a moving stroke, and thus, various possibilities are possible.
  • a resilient material such as rubber, Silica gel or the like
  • a retractable mechanism for example, a button structure that can be pressed to generate a moving stroke
  • bearing structure can be implemented as a convex form as shown in the figure, it is not limited thereto, and the combination between the visible housing and the cuff is different.
  • the change may be, for example, a load-bearing structure of the same height as the surface of the casing, and the contact between the electrode and the skin may be achieved only when the cuff is wrapped around the arm, without limitation.
  • the carrying structure 112 can also be implemented on a further housing 20 and disposed on the housing by mechanical coupling between the other housing and the housing. Upper, so that the electrode 113 can contact the skin thereon when the cuff is wrapped around the upper arm or the forearm.
  • the electrical connection can be implemented by a pair of connectors respectively located on the other housing and the housing, for example, a USB connector, a mini USB connector, etc., and in this case, the mechanical combination This can be achieved directly by the pair of electrical connectors; or, alternatively, the mechanical coupling can be achieved by the hardware structure of the other housing and the housing corresponding to each other, and thus, without limitation.
  • the other electrode may be any of the above-mentioned types of electrodes, and it is only necessary to confirm that the contact position is the skin other than the limb surrounded by the cuff, for example, an ear-worn electrode or a finger-worn type. Electrode, or an electrode located on the start button.
  • the other electrode may be connected to the housing or to the other housing by a connecting wire, in addition to being connectable to or on the housing. That is, both electrodes for performing ECG measurement are provided by the other housing, for example, in addition to the electrode 113 on the carrier structure, the other housing can be reconnected to an ear-worn The electrode (as shown in FIG. 11E) is connected to a finger-worn electrode.
  • the other electrode may be disposed on the other surface of the other casing other than the surface on which the electrode 113 is located, as shown in FIG. 11F. It is shown that the electrocardiographic signal is measured by pressing the other hand, and further, the position at which the other electrode is located can also be implemented as the start button as described above to facilitate the user's operation.
  • the other housing 20 can also be implemented to have a groove structure 115, for example, in the form of a ring or a recess for the fingers to protrude into contact with therein.
  • At least a portion of the circuitry for extracting the ECG signal can be implemented to be housed in the other housing, such as amplifying, buffering, filtering, and/or digitizing circuitry, and The other housing and the housing may be separated from each other by mechanical release. Therefore, when both ECG electrodes are disposed through the other housing, the user only needs to combine the other shell.
  • the function of the electrocardiogram detection can be added to the original blood pressure detecting device, which is quite convenient.
  • the cardiovascular health monitoring device may also employ other forms of electrodes, with an emphasis on reducing the generation of myoelectric signals and increasing the stability at the time of contact, for example,
  • the manner in which the wrist is worn by the wrist-worn structure to contact the wrist is also an ideal choice, and the user does not need to apply force to maintain contact with the wrist skin, so the user only needs to relax the surrounded limb during the measurement. A good quality signal can be obtained.
  • two electrodes for electrocardiographic signal measurement are respectively disposed on the inner side of the cuff and on the ear wearing structure. Therefore, when performing blood pressure measurement, the user is After wrapping around the venous belt, all the installation procedures for obtaining blood pressure readings and electrocardiograms are completed by simply wearing the ear-wearing structure. This is almost the same as the general blood pressure measurement procedure, and only increases the general wearing method. The same ear-wearing action is available, so the user can complete the operation easily and without burden.
  • the ear-wearing structure can be connected to the cuff or the housing without limitation.
  • FIG. 14 and FIG. 15 show a configuration in which an external device is used as an information display interface.
  • an external device for example, a smart phone, a tablet computer, or a smart watch can be used for display externally, and thus the housing carried on the cuff is performed.
  • the volume can be minimized to provide a more comfortable user experience, where the connection between the housing on the cuff and the external device can be implemented as a wired or wireless connection, for example, USB or Bluetooth, WIFI connection Wait, there is no limit.
  • FIG. 14 shows an example in which the external device is a wirelessly connected smartphone
  • FIG. 15 shows an example in which the external device is a wired smart watch
  • the external device receives functions such as data, display, and the like in real time, for example.
  • guiding the operation process and displaying the measurement result can be further implemented to have other functions, such as operation of the control device, starting blood pressure and/or ECG signal measurement, analyzing the received data, storing, and outputting data to Another device or the like can provide further convenience.
  • Such a configuration is particularly advantageous in the case where the housing is carried by the cuff, and the user can easily initiate measurement, understand the operation flow, and view the measurement result through the external device, which is quite convenient.
  • FIG. 16 is a view showing an example of using an ear-wearing structure and a wrist-worn structure to respectively carry an electrode.
  • the wrist-worn structure may be implemented in the form of a bracelet, or may be implemented in the form of a belt, or an electrode. It can also be implemented as the inside of the wristband of the smart watch as shown in FIG. 15, and therefore, there is no limitation, and in this case, the user only needs to wear the ear wearing structure and the wrist wearing structure and achieve electrode contact, and then can be performed.
  • the measurement of the ECG signal is equally easy to operate, and a good quality signal can be obtained.
  • the implementation of the contact between the electrode and the skin does not involve the user's active force application, and the interference of the EMG signal can be avoided, which is quite helpful.
  • Get a good quality signal the ear-worn electrode is selectively worn on the left or right ear, and there is no limitation, but as described above, the position of the other electrode is considerably equivalent to the signal quality. The effect, therefore, the cuff should be chosen to surround the left upper limb for better signal strength.
  • the two electrodes may be respectively carried by the ear-wearing structure and the finger-wearing structure, and the user only needs to wear the heart-wound signal when performing the measurement.
  • the contact between the electrode and the skin can be easily performed on the ear and the finger, and the contact between the ear wearing structure and the finger-wearing structure and the skin does not involve the user's force, and the interference of the EMG signal can be reduced to The lowest, in addition, because the wearing action is very convenient, plus the need to use the cuff, it is also quite suitable for ECG signal measurement.
  • the finger-bearing structure carrying electrode it can also be used together with electrodes at other positions, for example, with electrodes in the cuff (Fig. 20), or with the electrode 201 of the housing surface (Fig. 21).
  • the ECG signal measurement is performed in cooperation, so that the user only needs to increase the action of wearing the finger-wearing structure on the finger in the operation flow for measuring blood pressure, which is quite convenient.
  • the two electrodes can also be implemented to be carried by the finger-wearing structure. As shown in Fig. 22, it is also a very convenient way for the user to use, and since it is not necessary to use a cuff, it is also suitable for performing only electrocardiographic signal measurement.
  • two electrodes for ECG signal measurement are respectively implemented as an electrode 201 combined with an activation key on a surface of the housing operation interface and combined with an ear-wearing structure.
  • an electrode 201 combined with an activation key on a surface of the housing operation interface and combined with an ear-wearing structure.
  • the electrode 201 combined with the activation key may be disposed on the housing of the upper arm to be implemented by pressing.
  • Contacting and activating the electrocardiographic measurement, or alternatively, the act of initiating the measurement can also be implemented by the external device, such as a smart phone, while the electrodes on the surface of the housing are only implemented for electrocardiographic measurements, Therefore, there is no limit.
  • the two electrodes for the measurement of the electrocardiographic signal are respectively implemented as an electrode combined with the activation key and an electrode combined with the cuff, as shown in FIG.
  • the sphygmomanometer is measured, sitting at the table, the left hand arm is wrapped around the cuff and placed on the table to relax, and then the right hand presses the sphygmomanometer start button 201 to start blood pressure measurement, and by the design of the present invention, in such blood pressure
  • at least two electrodes required for measuring the electrocardiogram that is, the electrodes in the cuff and the electrode on the activation key on the surface of the housing
  • the electrodes in the cuff and the electrode on the activation key on the surface of the housing are simultaneously contacted with different parts of the skin, and no additional need is required.
  • one measurement can obtain two physiological signals at the same time; or, as shown in Fig. 26, when the sphygmomanometer is implemented as a wrist blood pressure timer, the housing is carried by the cuff and is located above the wrist. At this time, the user Similarly, when the start button 201 is pressed, the electrode on the surface of the housing is contacted, and the electrode inside the pulsation band is matched, and two kinds of raw materials are simultaneously obtained in one measurement. a signal; or, as shown in FIG.
  • an electrode 201 combined with a start key may be disposed on the casing carried by the strap, and then Fitted on the inside of the strap With the electrodes, the contact can be achieved by pressing and the ECG measurement can be initiated.
  • the user only needs to increase the contact time between the finger and the start button when the ECG signal is to be measured, and the user can easily and without the additional action. Completed with burden.
  • the user can choose to perform only blood pressure measurement or ECG signal measurement, for example, determining the measurement to be performed by the length of the contact time. Therefore, there is no limit.
  • the electrode may be implemented on the surface of the casing other than the start key, in addition to being located on the start key as described above.
  • the housing has a structure as shown in FIG. 11C, and the electrode is located on the bearing structure of the surface of the housing combined with the cuff, so that the action of the strap can realize the upper electrode and the upper arm of the housing.
  • the contact between the skin and the wearing of the ear wearing structure can also complete all the electrode contact without the user's force, and compared with the general blood pressure measurement operation process, only wearing the ear wear The action of the structure is therefore quite convenient.
  • the two electrodes can also be located on the same housing at the same time, as shown in FIG. 29, wherein the housing adopts the structure as shown in FIG. 11B, so when the cuff is wrapped around the upper arm, the electrode facing the upper arm The skin of the upper arm can be naturally passed through the cuff, and the other electrode 202 located on the surface of the housing can contact the other hand to measure the electrocardiographic signal.
  • the electrode 202 is shown in the figure as being opposite to the surface facing the upper arm, in practice, it may be located on any one surface as long as it is different from the other surface facing the upper arm and convenient for the user. It is sufficient to make contact, for example, a side adjacent to the surface facing the upper arm, and therefore, there is no limitation.
  • the electrode facing the upper arm can be replaced by a switch (not shown) or other electrodes, for example, an ear having an electrode.
  • Wear structure as shown in Figure 30A
  • FIG. 30B The pole finger wearing structure
  • the third electrode is used as a ground or reference electrode to suppress common mode noise, for example, noise from a power source, can be implemented in the above various electrode designs. Pick out the right way.
  • (partial or all) electrodes may be implemented to be connected to a sensor to detect and notify the user whether the contact with the electrodes is appropriate, for example, a pressure detector may be used Detecting the magnitude of the force applied to the electrode, or knowing whether the electrode has been contacted by the impedance check and whether the contact condition is good, or alternatively, simply using a switch to sense the application
  • the force on the electrode can, according to this, be further implemented when the control circuit senses that the contact on the electrode reaches a predetermined condition, for example, when the force is large enough, has been contacted, and/or the contact state is good, The electrocardiogram measurement starts automatically, or even can be implemented as the device is thus activated.
  • the electrode in order to provide a smoother and more convenient operation procedure for the user, it is also possible to detect whether the electrode has been set at a preset position by means of providing a sensor near the electrode, for example, whether the ear wearing structure has been worn on the ear. Upper, whether the wearing structure has been worn on the finger, whether the electrode on the supporting structure has been placed on the arm, and whether the pressure pulse band has been wrapped around the arm or the like.
  • the sensor can be capacitive, resistive, and light.
  • the form of induction or the like is not limited, and can be further implemented to notify the user that the electrode has been set at the preset position by means such as sound or screen display, and also helps the user to operate more easily.
  • the sensing or detecting for detecting whether the electrode contact is good can be further implemented after the sensing of the electrode has been set at the preset position, and can also be performed by means such as sound or screen display. The user is again notified that the electrode contact has been completed, making the overall operation flow smoother.
  • the user can easily and conveniently perform the electrode setting required for performing the electrocardiographic signal measurement in the process of using the sphygmomanometer, thereby naturally recording the electrocardiogram, and Also, since the electrocardiogram can provide detailed cardiac electrical activity, the cardiovascular health related information that the device of the present invention can provide can be more detailed and accurate, for example, by performing a preload by a processor in the control circuit.
  • the procedure or by transmitting an electrocardiogram to an external device, by performing a procedure that it has, can determine the type of arrhythmia, for example, distinguishing between PAC and PVC, and other symptoms of arrhythmia, for example, AF (atrial) Atrial Fibrillation, slow heartbeat, fast heartbeat, heartbeat pause, etc., also know whether there are symptoms other than arrhythmia, for example, by observing ST value (ST level), you can know whether there is myocardial infarction, Or observe the amplitude of the QRS wave to see if there is ventricular hypertrophy.
  • ST value ST level
  • the two signals can be cross-referenced to obtain information representative of other physiological conditions, such as PTT (pulse transit time, pulse wave propagation through a segment of the artery)
  • PTT pulse transit time, pulse wave propagation through a segment of the artery
  • the comparison between arterial pulse and ECG signal also helps to remove noise/human interference sources to obtain correct interpretation of various cardiovascular information.
  • the cardiovascular health monitoring device can also provide information about the heart rate variability (HRV) according to the obtained ECG signal, so that the user can understand the autonomic nerve activity.
  • HRV heart rate variability
  • the autonomic nervous system is one of the factors that affect blood pressure.
  • the vasoconstriction causes the blood pressure to rise, while the increase in the activity of the parasympathetic nerve causes the blood pressure to decrease.
  • the device can obtain the HRV by obtaining a precise RRI (RR Interval, RR interval) sequence, that is, a heart rate change, and perform HRV analysis to provide Information about the autonomic nervous activity, so that when combined with blood pressure measurement, the user can know the relationship between blood pressure and autonomic nerve in real time. For example, the user can know whether the cause of hypertension is related to Autonomic nerves, and if known, can understand physiological and psychological adjustments, such as relaxation, breathing guidance training, etc., whether it correctly affects the autonomic nervous system, and thus achieves the impact on blood pressure.
  • RRI RR Interval, RR interval
  • the HRV analysis performed may be selected according to requirements. For example, a frequency domain may be performed to obtain total power (TP) that can be used to evaluate the overall heart rate variability, and the reaction may be reflected in the parasympathetic sense.
  • TP total power
  • High-frequency power (HF) which can reflect sympathetic nerve activity
  • LF low-frequency power
  • LF/HF low-frequency power ratio
  • the degree of harmony of the operation of the autonomic nervous system can be known by observing the state of the frequency distribution; or, time domain analysis can also be performed (Time Domain And obtain an SDNN that can be used as an indicator of overall heart rate variability, SDANN, which can be used as an indicator of long-term overall heart rate variability, RMSSD, which can be used as an indicator of short-term overall heart rate variability, and can be used to estimate high-frequency variation in heart rate variability.
  • SDANN which can be used as an indicator of long-term overall heart rate variability
  • RMSSD which can be used as an indicator of short-term overall heart rate variability, and can be used to estimate high-frequency variation in heart rate variability.
  • R-MSSD, NN50, and PNN50 can be used to estimate high-frequency variation in heart rate variability.
  • the procedure for obtaining the RRI sequence by the electrocardiographic signal can be performed before or after the blood pressure measurement, and only needs to be able to reflect the relationship between the current blood pressure value and the autonomic nerve in real time, and there is no limitation; Since the sampling time required for performing the HRV analysis is long, for example, it takes about 5 minutes in general, and the user is required to be in a relaxed state, the contact between the electrode and the skin can be further selected without the user. In the case of applying force, for example, when the electrode is carried by the ear-wearing structure or the finger-wearing structure, or when the electrode is in contact with the skin by surrounding the venous belt, it is also possible to select according to the user's habit. no limit.
  • the cardiovascular health monitoring device After performing the measurement, the cardiovascular health monitoring device according to the present invention can let the user know the measurement result through the display element, for example, the blood pressure reading value, the average heart rate, the arrhythmia indication, the heart rate variability rate parameter, and the like; Further, the apparatus according to the present invention may also include a memory for storing signals, analyzing results, and/or related information, and In a preferred embodiment, the memory is implemented in the form of a removable memory for convenient data transfer by the user, or can be carried to the clinic with a removable memory storing measurement/analysis results.
  • the device according to the invention may further comprise a communication module for performing a wired communication, such as a USB connection, or a wireless communication, such as Bluetooth or WIFI, to obtain the acquired signal, measurement/analysis results, etc.
  • the data is transmitted to an external device, such as a personal computer, a smart phone, a tablet computer, a smart watch, etc., for display and/or performing further calculations and analysis, wherein the transmission with the external device can be further implemented as Real-time transmission, no limit.
  • the user can naturally and conveniently record the electrocardiogram while measuring the blood pressure.
  • the blood pressure value is There is a need for a physiological signal that is recorded on a regular and long-term basis. Therefore, in the concept of another aspect of the present invention, a mechanism for screening for whether an arrhythmia event is first performed in the case of only blood pressure measurement is provided, and thus, The user can choose to measure the ECG signal after screening for a possible arrhythmia event.
  • the basis for such prior screening is that during the measurement of blood pressure, the inflation of the venous zone can detect the arterial pulse in addition to the blood pressure value. Therefore, by analyzing the continuous arterial pulse, it can be known The pulse-corresponding heart beats, and then screens for possible arrhythmia events, such as Premature Beats, Atrial Fibrillation, Tachycardia, and Slow Heartbeat (Tachycardia) Bradycardia), Pause and other symptoms.
  • arrhythmia events such as Premature Beats, Atrial Fibrillation, Tachycardia, and Slow Heartbeat (Tachycardia) Bradycardia
  • the cardiovascular health monitoring apparatus is further embodied to have an arrhythmia detecting unit, a notification information generating unit, and an electrocardiogram analyzing unit.
  • the arrhythmia detecting unit can determine whether there is an arrhythmia possible event according to the continuous arterial pulse obtained by the cuff during the blood pressure measurement; the notification information
  • the generating unit may be configured to generate notification information during and/or after the blood pressure measurement, for the user to understand that an arrhythmia may have occurred, and to remind the user to perform ECG measurement; the ECG analysis unit may obtain the analysis by the analysis
  • the electrocardiogram provides more information about the heart. For example, by analyzing the waveform, you can find out the type of arrhythmia and whether there are other heart symptoms.
  • the inflatable strap when the user performs blood pressure measurement, the inflatable strap can be placed on the limb, for example, the upper arm or the wrist, and the inflation procedure is started.
  • the arterial pulse is also acquired. Therefore, the arrhythmia detecting unit can use the obtained pulse to determine whether or not an arrhythmia event may occur, and then, if the judgment result is that no arrhythmia is found.
  • the user can know the measured blood pressure value and the average heart rate, and if the judgment result shows that there is a possible event of arrhythmia, the blood pressure is measured in addition to the blood pressure reading and the average heart rate.
  • the notification information generating unit may cause the user to know in real time that the arrhythmia may have been detected by generating the notification information, and remind the user that the ECG signal measurement is required, and at the same time, according to the present invention.
  • the cardiovascular health monitoring device enters a state in which the ECG signal can be measured, so that the user can record the electrocardiogram.
  • the ECG analysis unit can further provide users with more information about the heart by analyzing the ECG.
  • the user can perform blood pressure measurement by using the same operation mode as measuring blood pressure without changing the usage habit, and only need to contact the electrode integrated with the sphygmomanometer for ECG in the event of arrhythmia.
  • the analysis results based on the ECG can be immediately known, so it is not only convenient to use, but also helps to obtain more accurate information about the related arrhythmia.
  • the detection of the arterial pulse can be carried out only under a specific cuff inflation condition, for example, can be set using the process control in the case of a fixed inflation pressure Performing, or, can also be set to pulse measurement after the inflation reaches a certain pressure value (that is, the contact force reaches a certain level).
  • the arrhythmia detecting unit analyzes the continuous arterial pulse by first calculating the time interval between each pulse to obtain the time series characteristic of the pulse, and then This time series feature is compared with the time series features of various arrhythmia types, such as the time series features of various arrhythmia symptoms such as early onset contraction, AF, slow heartbeat, fast heartbeat, and heartbeat pause, and When there is a match, it is judged to have an arrhythmia possible event.
  • the present invention can appropriately improve the sensitivity of the detection by adjusting the parameter values of the program when detecting whether there is a possible event of arrhythmia, because only the analysis of the subsequent ECG measurement is performed.
  • the electrocardiogram can immediately confirm the correctness of the arrhythmia event, so that even if the sensitivity is improved, it is not easy to cause misjudgment. Therefore, the concept of the present invention can naturally achieve a high-accuracy judgment result. And effectively improve the judgment errors that may occur in the prior art.
  • the notification information generating unit When the arrhythmia detecting unit determines that there is an arrhythmia possible event, the notification information generating unit generates the notification information to let the user know that the arrhythmia possible event has been detected, and reminds the user to perform the ECG signal measurement.
  • the notification information may be generated during the pulse measurement period and/or after the measurement is completed, and the content of the notification information and the notification manner may also be changed according to the actual implementation manner. For example, in a preferred embodiment. In an embodiment, after the blood pressure measurement is completed, as shown in FIG.
  • the ECG measurement prompt symbol is illuminated on the screen to let the user know that further measurement of the ECG signal is needed, and further In one step, the ECG measurement prompt symbol can be blinked at the same time except for being lit, and is extinguished after the user starts measuring the ECG signal to enhance the effect of reminding the user; in another preferred embodiment, Another symbol can be used to indicate that an arrhythmia possible event is detected, and the user is made aware of the occurrence of an arrhythmia event, and an ECG signal measurement is required.
  • FIG. 33 shows that RHYTHM is used to detect the heart rate. Problems such as AF, fast heartbeat, slow heartbeat, heartbeat pause, etc.
  • ECG measurement cue symbols and RHYTHM symbols As shown, the user is reminded to measure the ECG signal. Therefore, there is no limit, and there are various possibilities. It is only necessary to clearly let the user know that the arrhythmia has been detected, and to remind the user to perform the electrocardiogram. The effect of signal measurement can be.
  • the presentation of the notification information may be through an audible signal, a visual signal, and/or a haptic signal, without limitation.
  • the manner of screen display may be adopted as described above, for example, by a change of symbols or characters, and It can also be presented to the user by other means, for example, by changing the signal, voice or sound, or vibrating, etc., without limitation, mainly because the user can clearly know the content of the information;
  • the notification information is also It can be presented by an external device, for example, can be wirelessly transmitted to a smartphone, a tablet, a smart watch, etc. for display to further facilitate the user to know the information.
  • the cardiovascular health monitoring device After the notification information is generated, the cardiovascular health monitoring device according to the present invention then enters a state in which the ECG signal can be measured, so that the user can perform ECG measurement by contacting the electrodes.
  • the operating procedure may be slightly different. For example, if an existing electrode is attached to the strap, the user only needs to touch another electrode, for example, wearing an ear.
  • the other two Electrocardiographic signal measurement by electrodes for example, wearing an ear-wearing structure and a finger-wearing structure, wearing a finger-worn structure on both hands, wearing an ear-wearing structure, pressing a finger on the surface of the casing, or wearing a finger-worn structure on one hand
  • the other hand presses the electrode or the like on the surface of the casing; or alternatively, when the two electrodes are simultaneously located on the surface of the casing,
  • the electrocardiographic signal measurement can also be performed by directly passing the hand-held housing and contacting one of the electrodes, and then contacting the other electrode to the other hand or the torso; or alternatively, when the two electrodes are simultaneously connected to the housing
  • the ECG signal measurement can also be performed by holding the handleable housing and contacting one of the electrodes, and then
  • the start of the ECG signal measurement may also have different choices.
  • the start time may be pressed by the user to determine the start time, or the contact between the electrode and the skin may be known by impedance detection, and After determining that the electrode contact has been measured, the measurement is automatically started.
  • the impedance detection is started, waiting for the user to wear and/or contact the electrode, and in the impedance detection.
  • the result shows that when the electrode contact can be used to measure the ECG signal, the measurement is automatically started.
  • the screen display or sound notifies the user that the electrode contact has been achieved, the ECG signal measurement is about to start; or, the device can enter the measurable ECG.
  • the sensor After the signal state, as described above, the sensor is first sensed whether the electrode is at the proper contact position, and then the impedance detection is started, and when the impedance detection result shows that the contact between the electrode and the skin has been completed, the measurement is automatically started. . Therefore, there are no restrictions and there are various options.
  • the electrocardiogram analysis unit analyzes the acquired electrocardiogram to provide further information about the heart. Since the electrocardiogram can provide detailed cardiac electrical activity, by analyzing the electrocardiogram, firstly, the accuracy of the arrhythmia possible event measured by the arrhythmia detecting unit can be confirmed, and then the arrhythmia can be known. Types, for example, distinguish between PAC and PVC, and accurately determine symptoms such as slow heartbeat, fast heartbeat, AF, and heartbeat pause. Further, you can also know if there are other heart diseases, for example, by observing the ST value.
  • the present invention provides a cardiovascular health monitoring device having two functions of blood pressure measurement and electrocardiographic signal measurement, and performing ECG signal measurement under the principle of following the operation behavior of the existing sphygmomanometer
  • the required ECG electrode installation step is integrated into the blood pressure measurement process to achieve the effect of not increasing the complexity of the operation.
  • the popularity of the sphygmomanometer in the general household can make the ECG signal measurement more acceptable at home.
  • the present invention can also provide more relevant cardiovascular information as a reference for home health management and clinical judgment.
  • the present invention further provides a special ECG electrode structure design and setting position selection, so as to improve the quality of the obtained ECG signal, and is more conducive to obtaining more accurate analysis results, wherein by actively applying force to the skin.
  • Wearing structure for example, ear-wearing structure, finger-wearing structure, wrist-worn structure, and structural design that can be simultaneously achieved by wrapping around the cuff, for example, a bearing structure on the surface of the casing, and an electrode combined with the cuff
  • the structure according to the present invention provides stable electrode-to-skin contact and minimizes the effects of myoelectric signals and artifacts.
  • the present invention also provides a mechanism for screening whether or not there is an arrhythmia possible event and then measuring the electrocardiogram for confirmation. Therefore, the user can naturally know whether there is a heart rhythm without changing the operation flow of the blood pressure measurement. If there is a possibility of an event, and as long as it is found that a signal indicating that the ECG signal is to be measured when the measurement result is observed, and further performing the ECG signal measurement, the correct related arrhythmia information can be immediately known, and The electrodes required for ECG signal measurement have been integrated into the sphygmomanometer, and measurement can be performed by direct contact, which avoids the inconvenience of using other devices, and also saves the cost of purchase. It is indeed a user concerned with cardiovascular health. Provides a more natural and convenient choice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Neurology (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种心血管健康监测装置及方法。该心血管健康监测装置包括壳体;控制电路(10),包括处理器;充气式压脉带(12),用以环绕使用者的上肢体;泵,容置于该壳体内;至少一第一电极(14)以及一第二电极(14);以及耳戴结构,具有第一电极(14)设置于其上。当执行血压测量时,处理器控制泵对该压脉带(12)进行充气及放气,以检测使用者的血压。当执行心电信号测量时,通过将耳戴结构配戴于使用者的一耳朵上,以使第一电极(14)接触该耳朵的皮肤或该耳朵附近的皮肤,以及通过将该压脉带(12)环绕于该上肢体上,以使第二电极(14)接触该上肢体的皮肤,该处理器可经由第一电极(14)以及第二电极(14)而撷取心电信号。

Description

心血管健康监测装置及方法 技术领域
本发明涉及一种心血管健康监测装置及方法,特别涉及一种具有血压以及心电信号测量功能的心血管健康监测装置,以及通过该装置而监测心血管健康的方法。
背景技术
现代人越来越注重自已的健康,尤其是心血管方面的健康,而血压计则是日常生活中最常用来监测心血管健康的居家使用监测装置之一,不仅是因为其使用方便,也由于高血压是相关于如心脏病及糖尿病等各种慢性疾病的危险因素之一。
目前居家最常见的其中一种血压计是电子式血压计,其操作流程为先固定压脉带,之后再按下启动键并等待血压测量自动完成,这样的简单操作流程让使用者可方便地每日定期纪录血压值变化,有效掌控自身心血管的健康状况。
最近,由于使用者需求及技术上的发展,除了测量血压的功能之外,部分血压计也开始提供更多相关于心血管系统的信息,例如,由动脉脉搏衍生而得的相关心律不齐的信息,如申请号为US702514的美国专利申请中即提出了可提供有关心房颤动(AF,Atrial Fibrillation)信息的血压计。
一般而言,用以判断心律不齐的基础是心电图,且心电图亦是目前最能准确反应心脏活动的信息,在如图1所示的正常心电波形中,P波表示心房去极化的过程,QRS波反应了左右心室的快速去极化过程,T波表示心室的快速复极化过程,PR区间是指从P波开始至QRS波开始的时间,其反应了心脏的电信号自窦房结发出后,通过房室结 传入心室所需的时间,ST段则表示心室缓慢复极化的过程,因此,通过观察波形的形状变化,就可得知相关心脏各个部位活动的信息,并藉以区分症状是由心脏的那个部位所引起。
举例而言,常见的一种心律不齐症状--早发性收缩(Premature Beats),即分为发生于心房的早发性心房收缩(Premature atrial contractions,PAC),以及发生在心室的早发性心室收缩(Premature ventricular contractions,PVC)两种,在区分两者时,通常可以通过观察P波及/或QRS波的形状是否出现异常而判断收缩是来自心房或心室。而就此两种早发性收缩而言,由于心室收缩是负责将血液泵出心脏并输送至身体各处,故当心室收缩出现不正常时,将使得血液无法正常地泵出,造成身体无法获得正常的血液供给,因此相较于心房收缩出现异常,心室收缩异常是更为严重的症状。
然而,血压计在提供心律不齐相关信息时,由于是以动脉脉搏为基础取得心率后再进行心律不齐的判定,一般而言,观察到心率出现异常时,经由动脉脉搏的波形往往难以区分如前所述的早发性收缩的发生是源自心房或心室,亦无法正确地让使用者了解所检测到的症状的严重性;另外,由于动脉脉搏是心搏经由血液在血管中传递后于肢体上测得的结果,因此其亦存在着准确度无法与心电图相比拟的问题,所以,即使血压计确实能方便地先筛选出一部分的心律不齐症状,但无可避免地,心律不齐的最终判断仍需通过观察心电图而进行确认。
此外,测量血压期间,压脉带的充放气过程中,会对手臂的血管产生不同的压力,当压力过大时,将可能因为压迫到血管而造成动脉脉搏的振幅变小,而在此时所进行的脉搏测量就可能因此而出现遗漏,造成误判,故由此可知,当利用血压计的压脉带获取动脉脉搏时,在使用上有较多的限制,必须考虑压脉带的压力变化对于血管的影响,而且,当用以判断心律不齐时,还需考虑是否造成不正确的诊 断结果。
所以,根据前述可知,在讨论心血管健康时,较佳是将血压测量以及心电图检测同时列入考量。
因此,若能有一装置可同时提供血压测量及心电信号测量两种功能,相信将可为心血管健康监测领域,尤其是有关心律不齐的筛选及判断方面,带来很大的改进,也可为临床诊断提供相当的方便性。
血压计是目前家庭中最常见且具高普及度的心血管健康监测装置之一,而相较于血压计,居家使用的心电信号测量装置则较不为人所熟悉,因此,若可将心电测量与血压计结合在一起,就可通过一般使用者对于血压测量操作流程的熟悉度而让心电信号测量更深入日常生活,有助于居家使用者更了解及掌握自身的心血管健康,也让此两种彼此相关的生理信号可更有效地被利用。
一般常见的可居家使用心电信号测量装置多为手持式心电检测装置,其可让使用者以手握持检测装置的方式进行测量,所使用的是不需使用导电膏、直接接触皮肤就可进行测量、且可重复使用的干式电极,故对居家使用而言相当方便。
其中一种常见的操作方式是,在进行测量时,使用者一手握持装置并同时接触装置表面的电极,再将另一个电极接触另一手或是躯干,如图2以及图3所示,以取得心电图。
然而,这样的方式所面临的最大问题却也是因利用手进行操作所造成。当采用接触双手形式时,如图2所示,会面临的问题是操作稳定度低,因以双手进行测量的方式很容易在测量时发生如手部晃动等不稳定的现象,造成所测得的心电图出现基线漂移、波形变形等情形,如图4A中所标示的部分,因此,相较于正常的心电信号波形,其 将导致不正确的分析结果;另外,当使用者希望手部维持稳定而肌肉紧张、或是特意用力以确保与电极间接触时,也很容易因用力而产生肌电信号,如图4B所示,同样会造成信号品质下降,进而导致不正确的心电图分析结果。
当采用一手握持装置另一边接触胸膛的方式时,如图3所示,相较于双手操作,可较为稳定,所取得的信号也较强,只是这样的操作方式有一个最大缺点,就是必须掀开衣服来接触胸膛才能进行测量,会让使用者有所顾忌,另外,胸腔因呼吸所产生的起伏,也会造成接触胸膛的电极与接触手的电极间产生相对移动,同样容易造成基线漂移而影响所测得的心电图。
因此,在将心电测量与血压计相结合时,必须考虑电极的种类及配置方式,以提供使用者自然且容易实现的操作方式,也进一步帮助获得良好的信号品质,其中,影响信号品质的因素主要包括,外在环境干扰、皮肤与电极间接触情形、以及使用者操作动作等,举例而言,测量环境中的电磁波可能在所取得的心电信号中产生噪声(noises),以及测量期间不稳定的接触动作与过度肌肉紧张度所产生的肌电信号可能成为人为干扰源(artifacts)等,这些都会影响信号品质;再者,还需考虑的是接触电极的动作是否可自然融入血压计操作流程中,如此才能避免重新学习的麻烦,也提升操作的流畅度,更进一步增加使用意愿。
所以,在考虑将心电信号测量与血压计相结合时,确实有需要将上述的这些因素皆列入考虑,以得出最适合居家使用的心血管健康监测装置。
此外,结合血压测量及心电信号测量的另一优势则是,当可取得稳定且清晰的心电信号时,就可获得相关心率变异率(HRV,Heart Rate Variability)的信息,进而了解自律神经活动,因此,基于自律神 经系统亦是影响血压的因素之一,就可通过观察自律神经活动与血压值变化的关系而得知高血压的成因是否与自律神经相关。
发明内容
本发明的目的即在于提供一种心血管健康监测装置,其可提供血压测量以及心电信号测量两种功能。
本发明的另一目的在于提供一种心血管健康监测装置,其在已熟知的血压测量操作流程中,自然地带入心电信号测量所需的电极接触行为,以通过降低使用复杂性而提升使用者接受度。
本发明的再一目的在于提供一种心血管健康监测装置,其可有效且准确地提供有关判断心律不齐的信息。
本发明的另一目的在于提供一种心血管健康监测装置,其通过充气式压脉带检测动脉脉搏,以判断是否具有心律不齐可能事件,并据以通知使用者进行心电信号测量,而让使用者可实时取得心电图,以有利于进一步确认心律不齐的发生及类型。
本发明的又一目的在于提供一种心血管健康监测装置,其采用可主动对使用者耳朵及耳朵附近皮肤进行施力的耳戴结构,以提供位于其上的电极与皮肤间的稳定接触。
本发明的又一目的在于提供一种心血管健康监测装置,其采用可主动对使用者手指皮肤进行施力的指戴结构,以提供位于其上的电极与皮肤间的稳定接触。
本发明的又一目的在于提供一种心血管健康监测装置,其将电极与血压测量时所需的压脉带相结合,以在压脉带环绕手臂的同时完成电极与皮肤间的接触。
本发明的又一目的在于提供一种心血管健康监测装置,其将电极设置于壳体的表面,以让使用者可在环绕压脉带的同时完成电极与皮肤间的接触。
本发明的又一目的在于提供一种心血管健康监测装置,其将电极设置于壳体的表面,以让使用者可在按压操作装置的同时完成电极与皮肤间的接触。
本发明的又一目的在于提供一种心血管健康监测装置,其通过穿戴结构而实现电极与皮肤间的接触,适合长时间取得高品质测量心电信号,有利于进行HRV分析,进而了解自律神经活动与血压的关系。
附图说明
图1显示标准心电波形;
图2显示现有手持式心电检测装置的一种操作方式;
图3显示现有手持式心电检测装置的另一种操作方式;
图4A显示出现基线漂移的心电波形;
图4B显示受肌电信号影响的心电波形;
图5显示根据本发明的心血管健康监测装置的方块示意图;
图6A-6C显示根据本发明的耳戴结构的示范性实例;
图7显示根据本发明的耳戴结构可接触的耳朵附近皮肤的示意图;
图8A-8B显示根据本发明的指戴结构的示范性实例;
图9显示根据本发明的电极与压脉带的示范性结合实例;
图10显示根据本发明心血管健康装置具有用以承载启动键的另一壳体的示范性实例;
图11A-11H图显示本发明的电极与壳体结合的示范性实例;
图12-15显示根据本发明心血管健康监测装置,电极实施为位于耳戴结构上以及与压脉带相结合的示范性实例;
图16显示根据本发明心血管健康监测装置,电极实施为位于耳戴结构以及腕戴结构上的示范性实例;
图17-19显示根据本发明心血管健康监测装置,电极实施为位于耳戴结构以及指戴结构上的示范性实例;
图20显示根据本发明心血管健康监测装置,电极实施为位于指戴结构上以及与压脉带相结合的示范性实例;
图21显示根据本发明心血管健康监测装置,电极实施为位于指戴式结构上以及与壳体表面相结合的示范性实例;
图22显示根据本发明心血管健康监测装置,电极实施为分别位于两个指戴结构上的示范性实例;
图23-24显示根据本发明心血管健康监测装置,电极实施为位于耳戴结构上以及与壳体表面相结合的示范性实例;
图25-27显示根据本发明心血管健康监测装置,电极实施为与壳体表面相结合的电极以及与压脉带相结合的示范性实例;
图28显示根据本发明心血管健康监测装置,电极实施为位于耳戴结构上以及与壳体表面相结合的示范性实例;
图29显示根据本发明心血管健康监测装置,电极皆位于壳体表面的示范性实例;
图30A-30B显示根据本发明心血管健康监测装置,一电极位于壳体表面,以及另一电极位于耳戴结构上、或在指戴结构上的示范性实例;
图31显示根据本发明心血管健康监测装置的一操作流程图;以及
图32-34显示根据本发明心血管健康监测装置的通知信息的示范性实例。
其中,附图标记说明如下:
10   控制电路
12   压脉带
14   电极
100  启动键
101   另一壳体
111   表面
112   承载结构
113   电极
114   开口
115   凹槽结构
116   另一电极
20    另一壳体
201   启动键
202   电极
90    电极
具体实施方式
本发明相关于一种具有血压测量及心电信号测量两种功能的心血管健康监测装置,其可在遵从血压测量的操作习惯的情形下,让使用者自然地记录下心电图,因此,通过操作单一个装置就可获得相关于心血管健康的多种重要信息。
首先,请参阅图5,其为根据本发明心血管健康监测装置的一示意图,如图所示,该心血管健康监测装置包括一控制电路10,一压脉带12,一泵,一气阀,一压力传感器,以及至少二电极14,在此,该控制电路10实施为可经由所连接的压脉带12以及电极14而执行血压测量与心电信号测量,因此,该控制电路10亦会包括,但不限于,一些用来实现测量的常见电子元件,例如,处理器,至少一A/D转换器,滤波器,放大器等,由于这些对本领域技术人员而言皆为常见的内容,故不再赘述。
根据本发明的心血管健康监测装置亦具有一壳体,以将该控制电路以及该泵等容置于其中,在此,该壳体可实施为与压脉带相结合而于测量期间设置于使用者身上,或者,也可实施为与压脉带分离,而 不在测量时设置于使用者身上,另外,该壳体表面可实施为具有操作界面,例如,显示元件、启动键、输入按键等。
由于根据本发明的心血管健康监测装置是在测量血压的基础上添加利用心电电极进行心电信号测量的功能,因此,本发明装置在实施时,整体外观结构上没有特定的限制,只要是一般常见的电子血压计皆是可作为本发明基础的结构,例如,如图12所示的臂式血压计以及如图13所示的腕式血压计等都适用,而这样的作法也在于让使用者可在熟悉的操作行为中进行根据本发明概念的心电信号测量。
在本发明中,心电信号的测量主要是采用通过直接接触皮肤的方式就可取得心电信号的干式电极,当使用干式电极时,相较于传统的可重复使用湿式电极,使用者可在不需要导电膏的情形下,通过皮肤直接接触电极而进行心电信号测量,因此测量可以在任何时间轻易方便地执行,另外,相较于抛弃式的电极贴片,由于干式电极不容易损坏且保养简易,可重复使用,因此也减少了更换电极的不方便性及所增加的成本。在本发明中,干式电极可实施为,但不限于,不锈钢材质的电极,导电纤维布所制成的电极,导电橡胶电极等,没有任何限制。再者,替代地,也可实施为不需直接接触皮肤的电极,例如,利用电容方式、感应方式、或电磁方式而取得心电信号的电极,同样无须通过如导电膏的媒介就可进行心电信号测量,具有使用方便性。
至于如何将电极整合于血压计中,本发明则是由血压测量的操作流程着手,藉以提升使用方便性,且在设置心电电极时,亦进一步考量如何实现简单且符合人体工学的操作方式,以确保电极与使用者皮肤间的稳定接触。
一般电子式血压计的操作程序是:压脉带环绕于手臂或手腕后,在保持水平位置与心脏等高的情形下,按下启动键并维持姿势稳定而让机器自动完成测量。
由上述可知,设置压脉带及按下启动键为不可或缺的操作流程,而本发明的概念即在于将测量心电信号所必须的接触心电电极的动作,融入于进行血压测量时一定会执行的操作动作中,以尽量避免操作步骤的增加,如此一来,使用者也就不需重新学习操作流程。
再者,另一个考虑的重点是电极于血压计上的结合位置。为了获得良好的信号品质,本发明在电极的设置位置及接触方式的选择上,主要采用了两种概念,第一,通过选择接触位置以及设计电极结构,让电极主动施力接触使用者的皮肤,如此一来,电极与皮肤间的接触即不再仰赖使用者施力,不但可提高接触稳定性,也可避免肌电信号以及人为干扰源(artifact);第二,当需要使用者施力接触电极时,通过将电极设置在可容易且自然实现接触的位置,而让使用者能以轻松的姿势进行电极接触,以增加接触时的稳定性,让人为干扰源的影响降至最低,亦可降低肌肉紧张度,减少产生肌电信号,另外,若再加上将电极接触面实施为具有人体工学的表面,接触稳定性还可进一步获得确保,更有效提升信号品质。
因此,本发明在决定电极位置及实施形式时即是以上述的概念作为基础。而据以提出的其中一个可能即是将电极设置于耳朵上的构想。
虽然,耳朵并非一般血压测量时会参与的身体部位,然而,利用耳朵作为接触电极的位置有一个优势是,耳朵及其附近是肌电信号极小的区域,再加上其与头部之间相当稳定的相对位置关系,因此即使使用者在测量期间身体出现移动,例如,稍微转动身体、或转动脖子,电极与皮肤间的接触仍可维持稳定,不会产生太多影响测量结果的干扰。
另外,在一般日常生活中,相较于其他身体部位,耳朵是较少受 到衣物覆盖的部位,可以较容易地在有需要时直接接触,避免掀衣服进行测量的困扰,再者,耳朵及其周围的皮肤还具有毛发较少的特性,电极与皮肤间的接触可轻松无障碍的实现,因此,对使用者而言是相当方便的选择。
此外,因耳朵构造而可提供的各种固定方式,例如,耳塞、耳夹、耳挂等,如图6A-6C所示,皆为一般日常生活中常见的固定方式,使用者不需要重新学习,可以很自然的进行配置,因此,使用者只需简单地如平时戴耳机、或是将电极夹于耳垂上的动作,即可完成电极设置;而且,当通过上述的固定方式而将电极设置于耳朵上时,电极与皮肤的接触不需使用者施力即可实现,因此几乎不会出现肌肉紧张,肌电信号的干扰可被降至最低,可获得良好的信号品质。
至于要在耳朵上的哪个位置取得心电信号,则是没有限制,可以是耳朵本身的任何位置,例如,耳道内、耳垂、耳廓内面,例如,耳甲腔、耳道口附近区域等,耳轮及耳廓背面,以及如图7所示,耳朵附近的区域,例如,耳朵与头壳交界处附近的皮肤等,这些位置都是可用以接触电极并取得心电信号的位置。
因此,只需从主机或通过与压脉带的结构结合而延伸出可与耳朵相接触的电极,让使用者在设置完压脉带后戴上,就能够很自然的完成电极设置,并得到良好的心电信号。
在此,两个耳朵都是可以选择的配戴位置,然而,经实验后得知,另一电极的设置位置对于信号品质有相当程度的影响,其中,当另一电极设置于左上肢时,所获得的心电信号的品质远优于右上肢所取得的信号,因此,在以接触耳朵的方式而进行心电信号测量时,较佳地是将另一电极接触左上肢的皮肤,以避免因接触右上肢而造成信号品质不良,进而导致分析产生误判。
在实际实施时,电极与耳朵间的接触是通过一可与耳朵相结合的耳戴结构而实现,其中,电极被设置在该耳戴结构与耳朵相结合时会接触到皮肤的位置,因此,当耳戴结构被固定于耳朵上时,电极与耳朵或其附近皮肤的接触即同时完成。
该耳戴结构可以有各种形式,举例而言,当该耳戴结构实施为耳塞形式时,电极可设置于耳塞上,以自然实现与耳道内皮肤的接触,如图6A所示,另外,若经特殊设计,耳塞的构造亦可延伸而进一步符合耳廓的内面的曲线,提供另一种电极接触位置选择;当实施为耳夹形式时,例如,夹设于耳廓上或耳垂上(图6B),电极可设置于耳夹的内侧,以在夹设的同时完成与耳廓或耳垂间的接触;当实施为耳挂形式时,如6C图所示,在一较佳实施例中,电极可实施为位于延伸至耳朵背面的挂钩件上,而接触耳廓背面的皮肤或是耳朵后方与头部交接处的皮肤,在此,该挂钩件可,举例而言,通过本身材质的弹性、或是通过结构上的设计,而具有朝向皮肤方向的施力,并与皮肤间产生稳定接触。
在此,需注意地是,上述有关耳戴结构的叙述仅作为举例之用,并非作为限制,例如,也可实施为结合两种形式的结构,例如,耳塞与耳挂形式结合实施,因此,可以依实际需求而变化,没有限制。
或者,也可实施为利用磁力的方式而附着于耳朵上,举例而言,可利用隔着耳朵彼此磁性相吸的两个部件,并将电极设置于两个部件或其中一部件上的方式而达成,在此,两个部件可实施为具有磁性,例如,透过内部具有磁性物质、或本身即为磁性物质的方式,或是实施为由可受磁性吸引的材质所制成、或于内部设置可受磁性吸引的物质,举例而言,可以一个部件实施为具有磁力,而另一个部件可被磁力吸引,或者,也可以是二个部件皆实施为具有磁力,可以有各种实施可能,没有限制。
另外,在一较佳实施例中,该耳戴结构与其上的电极还可实施为通过连接端口而与压脉带或壳体相连接,如此一来,当使用者不需进行心电测量时,就可将耳戴结构移除。
在此,为了避免所取得的心电信号经由连接线感应环境噪声,可在取得信号时于电极附近先行进行处理,例如,放大、缓冲、滤波、数字化等电路处理,以确保信号的清晰度,并且,所需的电路还可进一步地实施为容置在该耳戴结构中,没有限制。
再者,根据本发明另一方面的构想,电极亦可实施为由指戴结构所承载,例如,戒指式结构、或是环绕手指的带体。指戴结构与耳戴结构具有同样的优势,因为指戴形式对一般使用者而言,亦是熟悉而无须重新学习的使用方式,只需在欲进行测量时直接将指戴结构结合于手指上即可完成电极与皮肤间的接触,操作流程自然方便,而且,电极与皮肤间的接触力是由指戴结构对手指施力而实现,只要使用者放松戴有电极的手,肌肉紧张度的影响同样可被降至最低。
在此,根据本发明的指戴结构于手指上的设置位置,较佳为近节指骨或中节指骨所在的指节,以避免因位置接近手指末端而发生因手部动作脱落的情形,在实际实施时,该指戴结构可如图8A所示,采用如一般戒指的形式,或者如图8B所示,实施为环绕手指的可挠曲带体,没有限制;在此,无论采用何种形式,都可进一步具有可调整环绕直径的结构,以进一步确保电极与皮肤间的接触稳定性,例如,戒指可实施为具有可变化戒围的机构,以适应不同配戴者的手指,以及带体可实施为具有可调整的固定位置,例如,通过设置粘扣带,以让使用者选择环绕时的紧度等,同样可依实际情形而变化实施方式,没有限制。另外,亦可采用夹子的形式,例如,可将夹子的结构设计为可夹住指尖或其他的指节,如近节指骨或中节指骨,如此就可通过夹子本身的弹性而达到固定的效果,同样是很好的选择。
在此,与接触耳朵相同,当通过接触手指而进行心电信号提取时,亦可于信号取得的位置附近即先行对信号进行处理,以确保信号的品质,而且,同样地,电路可进一步地容置于该指戴结构中。
另外,根据本发明再一方面的构想,另一个设置电极的位置选择是该压脉带。由于安装压脉带是测量血压的必要行为,因此,当电极位于压脉带上时,让电极接触皮肤的动作就可通过安装压脉带而一起完成,简化操作步骤。在此,电极可结合于压脉带的任何部位,只需在压脉带被环绕至手臂或手腕上时可实现电极与皮肤间接触的位置即可,例如,电极可结合于压脉带的内侧,或是压脉带的边缘等位置,没有限制。
当电极结合于压脉带内侧时,除了可采用常见的金属电极片外,在一较佳实施例中,为了增进与皮肤间的接触,电极亦可选择采用具可挠曲性的材质,例如,导电纤维布、导电橡胶等,或者也可实施为压脉带内侧表面上的一层导电涂层,以使电极可随着压脉带而弯曲,进而实现与皮肤间的接触。
其中,为了确保电极与皮肤间的接触,可设定为心电信号测量在压脉带的充气达一特定压力值以上(也就是,与皮肤间的接触力达一定程度后)才进行,以让电极与皮肤间的接触更为稳定。
在此,进一步地,亦可通过设置额外的结构来确保电极与皮肤间的接触,以避免压脉带于血压测量期间进行充气及放气所可能造成的电极与皮肤间的接触不稳定,举例而言,可在压脉带上对应电极的位置处设置一支持结构,因而可在压脉带环绕手臂或手腕时,通过环绕的力量、或通过充气时因充气所产生的体积膨胀,而对该支持结构产生施力,造成支持结构对电极施加朝向皮肤的力,进而确保电极与皮肤间的接触,例如,该支持结构可实施为具有一定的厚度及硬度,以实现将压脉带环绕或充气膨胀的力量传递至电极的效果,且进一步 地,该支持结构可具有压缩弹性,以让施力的实现不会对使用者造成不舒适的压迫感;另外,在一较佳实施例中,该支持结构则是实施为符合所接触的皮肤位置的人体工学,例如,手臂的弧度,进一步确保接触的稳定性。
在另一较佳实施例中,如图9所示,电极90也可实施为结合于压脉带边缘,夹设于压脉带的上缘,此时,电极与皮肤间的接触方式亦有多种选择,举例而言,可通过选择具弹性的电极材质而使电极有朝向皮肤方向的施力,因此当环绕上压脉带后,电极可自然紧贴皮肤,或者,可通过结构设计而使电极形状符合手臂或手腕的人体工学,进而确保电极与皮肤间的接触,因此,没有限制,可依实际需求而改变。
在此,需要注意的是,当电极实施为与该压脉带相结合时,心电信号测量可实施为在血压测量期间同时进行,或者,亦可选择与血压测量分开进行,使用者可依实际情形而进行选择。
再者,根据本发明又一方面的构想,另一个设置电极的位置选择是该壳体的表面,以让使用者利用手指进行接触。
当进行血压测量时,在压脉带安装完后,为了起始充气及测量程序,按压壳体上的启动键是不可或缺的步骤,因此,若电极可设置于启动键上,如此一来,只要使用者在按下启动键后维持不动,就可同时间完成电极接触,简化了心电测量的操作步骤。
而且,进一步地,手指按压该启动键的动作,还可实施为同时起始心电信号测量以及血压测量,如此一来,单一个按压动作就可同时完成三个程序,接触心电电极,启动血压测量,以及启动心电信号测量,操作步骤复杂度可降至最低。
在此,该启动键可以实施为是具按压行程的按键、或是触控式按键等各种形式,没有限制,并且,启动键的表面形状亦可进一步实施为符合手指的人体工学,提供符合手指的弧度,让接触更稳定。
此外,使用者亦可选择单独进行血压测量或心电信号测量,或是同时进行两者,举例而言,可通过按压该启动键时实现不同的按压行程、或不同的按压时间的方式,例如,当短按时,表示无须电极接触,即仅启动血压测量,当长按时,即启动心电信号测量,以及当短按后紧接长按时,即同时启动两种测量,因此,可依实际实施状况而改变,没有限制。
在一较佳实施例中,如图10所示,该启动键100进一步实施为由该壳体以外的另一壳体101所承载,例如,一按压启动结构,通过这样的方式,启动键将可依照使用者的操作习惯而被移动到适合的不同位置,如此一来,使用者就能以更轻松的姿势而进行电极接触,同样有助于取得品质良好的信号。
此外,根据本发明再一方面的构想,当壳体是由压脉带承载时,电极于壳体上的位置亦可有不同的选择,可实施为位于当压脉带环绕于肢体上时壳体可接触至皮肤的位置上。
当壳体是由压脉带承载而环绕于上臂或前臂的情形时(如图13以及图14所示的操作情形),可更具有一承载结构112,设置于该壳体上,例如,位于该表面111上,如图11A-11C所示,以在压脉带环绕于肢体上时接触上臂或前臂的皮肤,因此,当电极113被设置于该承载结构112上时,电极接触就同样可在安装压脉带的动作中完成。
举例而言,如图11A所示,该承载结构112可实施为位于接近压脉带的边缘,且该压脉带在相对应该承载结构的位置处实施为具有一开口114,因此,通过压脉带环绕上臂或前臂动作就能同时实现电极 113于皮肤间的接触,或者如图11B所示,该开口114也可实施为在压脉带之中,而该承载结构112则位于与其相对应的位置,再者,如图11C所示,该承载结构112亦可实施为位于压脉带的两侧外缘,如此一来就可在不改变压脉带的结构的情形下实现与皮肤的接触,在此,虽然图中显示两侧外缘皆具有该承载结构,但不受限地,亦可实施为仅设置于单侧外缘。
另外,更进一步,该承载结构可实施为具弹性,以适应充气期间所可能出现的变化,也确保电极与皮肤间接触的稳定性,举例而言,可采用具弹性的材质,例如,橡胶,硅胶等;或是采用可伸缩机构,例如,可受压而产生移动行程的按键结构,因此,可以有各种可能。
在此,需要注意地是,虽然该承载结构可如图所示的实施为凸起的形式,但并不受限于此,可视壳体与压脉带之间的结合方式不同而有所改变,例如,亦可以是与壳体表面同等高度的承载结构,只需可在压脉带环绕于手臂上时实现电极与皮肤间的接触即可,没有限制。
另外,替代地,如图11D所示,该承载结构112亦可实施为位于一另一壳体20上,并通过该另一壳体与该壳体间的机械结合而被设置于该壳体上,以使该电极113可在压脉带环绕于上臂或前臂时接触其上的皮肤。
在此,该另一壳体与该壳体间除了进行机械结合外,很重要地是,亦会实现一电连接,以使该电极113可与另一电极共同合作而进行心电信号测量,其中,该电连接可实施为通过分别位于该另一壳体以及该壳体上的一对连接器而实现,例如,USB连接器,mini USB连接器等,而在此情形下,该机械结合就可直接通过该对电连接器而实现;或者,替代地,也可通过该另一壳体与该壳体彼此相对应的硬件结构而实现该机械结合,因此,没有限制。
该另一电极则可以是上述的各种形式的电极,只需确认其所接触的位置是该压脉带所环绕的肢体以外的皮肤即可,例如,可以是耳戴式电极、指戴式电极、或是位于启动键上的电极等。
且特别地是,该另一电极除了可连接至该壳体或位于该壳体上外,还可实施为通过连接线而连接至该另一壳体、或直接位于该另一壳体上,也就是,用以进行心电信号测量的两个电极皆由该另一壳体提供,举例而言,除了位于该承载结构上的电极113外,该另一壳体可再连接一耳戴式电极(如图11E所示),或是连接一指戴式电极,另外,也可在该另一壳体上该电极113所在表面以外的另一表面上设置该另一电极,如图11F所示,以让另一手按压而进行心电信号测量,而且,更进一步地,该另一电极所在的位置亦可实施为如上所述的该启动键,以方便使用者的操作。
再者,如图11G-11H所示,还可将该另一壳体20实施为具有一凹槽结构115,例如,环状或凹洞的形式,以供手指伸入而接触设置于其内表面上的该另一电极116,其中,该内表面是实施为符合手指的表面,以在手指伸入时实现电极与手指皮肤间的接触,在此,该凹槽结构可由具弹性的材质所制成,例如,橡胶或硅胶,以实现电极与皮肤间的接触,或者,也可形成为具有塑胶壳体,并于内部设置弹性材质而包覆手指,或是采用可提供向内施力的结构设计等方式,以确保内部电极与指尖皮肤间的良好接触,因此,没有限制。
在此,较佳地是,至少一部分的用以提取心电信号的电路可实施为容置于该另一壳体中,例如,放大、缓冲、滤波、及/或数字化电路,而且,由于该另一壳体与该壳体可因机械结合的解除而彼此分离,因此,当两个心电电极皆是通过该另一壳体而进行设置时,使用者只需通过结合上该另一壳体,就可在原本的血压检测装置上再增加心电检测的功能,相当方便。
除了上述所提及的电极设置位置及方式以外,根据本发明的心血管健康监测装置亦可采用其他形式的电极,重点在于减少肌电信号的产生以及增加接触时的稳定度,举例而言,通过腕戴结构承载电极而接触手腕的方式亦是相当理想的选择,其同样不需要使用者施力即可维持与手腕皮肤间的接触,因此,使用者只需在测量期间放松被环绕的肢体即可获得良好品质的信号。
上述各种电极设置方式在实施上并无限制,可根据需求的不同而选择地实施于任一个心电电极上。以下即利用一些实施例进行说明。
请参阅图12以及图13,根据本发明的一实施例,用于心电信号测量的两个电极分别设置在压脉带内侧以及耳戴结构上,因此,当进行血压测量时,使用者在环绕压脉带后,只需再将耳戴结构戴上,就完成了取得血压读值及心电图的所有安装程序,这几乎与一般的血压测量流程无异,只增加了与一般配戴耳机方式一样的耳戴动作而已,因此,使用者可轻易且无负担地完成操作。在此,该耳戴结构可连接至压脉带或是壳体,没有限制。
另外,图14以及图15则显示了利用外部装置作为信息显示界面的配置,例如,可利用智能手机、平板电脑、智能手表等于外部进行显示,如此一来,压脉带上所承载的壳体的体积将可被减至最小,提供使用者更舒适的使用体验,在此,压脉带上的壳体与外部装置间的连接可实施为有线或无线连接,例如,USB或蓝牙、WIFI连接等,没有限制。
在此,图14显示了外部装置为无线连接的智能手机的例子,以及图15显示了外部装置为有线连接的智能手表的例子,在此,该外部装置除了实时接收数据、显示等功能,例如,引导操作流程以及显示测量结果,还可进一步实施为具有其他功能,例如,控制装置的运作,启动血压及/或心电信号测量,分析所接收的数据,储存,输出数据至 另一装置等,可提供进一步的方便性。而这样的配置则尤其有利于壳体是由压脉带承载的情况,使用者可通过该外部装置轻松地启动测量、了解操作流程、及观看测量结果,相当方便。
图16则是显示了分别利用耳戴结构以及腕戴结构承载电极的实例,如图所示,腕戴结构可实施为如手镯的形式,或者,亦可实施为带体的形式,或者,电极也可实施为位于如图15所显示的智能手表的表带内侧,因此,没有限制,而在此情形下,使用者只需戴上耳戴结构及腕戴结构并实现电极接触,即可进行心电信号的测量,同样操作简易,且可取得品质良好的信号。
在上述所举的实施例中,有利地是,在整个心电信号测量过程中,电极与皮肤间接触的实现皆不涉及使用者主动施力,可避免肌电信号的干扰,相当有助于获得具品质良好的信号。在此,需要注意地是,如此的配置中,耳戴式电极可选择地配戴于左耳或右耳,没有限制,但如前所述,另一电极的设置位置对于信号品质有相当程度的影响,因此,压脉带应选择环绕左上肢,可获得较好的信号强度。
根据本发明一另一实施例,如图17-19所示,也可将两个电极分别实施由耳戴结构以及指戴结构所承载,使用者只需于欲进行心电信号测量时分别戴于耳朵及手指上,就可轻松地完成电极与皮肤间的接触,而且,耳戴结构及指戴结构与皮肤间的接触同样亦不涉及使用者施力,可让肌电信号的干扰减至最低,另外,由于配戴的动作非常方便,加上无须使用压脉带,故也相当适合于仅进行心电信号测量。
另外,在使用指戴结构承载电极的情形下,亦可以搭配其他位置的电极一起使用,例如,与压脉带内的电极(图20),或与壳体表面的电极201(图21)一起配合而进行心电信号测量,因此,使用者就只需要在测量血压的操作流程中多增加将指戴结构戴于手指上的动作即可,相当方便。另外,两个电极也可实施为皆由指戴结构所承载, 如图22所示,对使用者而言同样是相当方便的使用方式,而且因为无须使用压脉带,同样适合仅进行心电信号测量。
根据本发明一另一实施例,如图23所示,用于心电信号测量的两个电极分别实施为位于壳体操作接口所在表面上与启动键相结合的电极201以及与耳戴结构结合的电极,而通过这样的方式,使用者在环绕压脉带后,只需再将耳戴结构戴上,按下启动键,并维持手指与启动键间的接触,就可取得血压读值及心电图。
另外,如图24所示,即使实施为通过无线连接的方式而将数据传输至外部装置的情形,亦可在上臂的壳体上设置与启动键相结合的电极201,以通过按压的方式实现接触并启动心电测量,或者,替代地,启动测量的操作亦可实施为由该外部装置,如智能手机,进行控制,而位于壳体表面上的电极则仅实施用以进行心电测量,因此,没有限制。
根据本发明一再一实施例,用于心电信号测量的两个电极分别实施为与启动键相结合的电极以及与压脉带相结合的电极,如图25所示,使用者如一般利用臂式血压计进行测量一样,坐在桌前,左手上臂环绕压脉带并置于桌面上放松,再以右手按压血压计的启动键201开始血压测量,而通过本发明的设计,在这样的血压测量动作中,测量心电图所需要的至少两个电极(也就是,压脉带内的电极以及位于壳体表面的启动键上的电极)与不同部位皮肤接触亦已同时完成,完全不需要额外的动作,一次的测量就可同时取得两种生理信号;或者,如图26所示,当血压计实施为腕式血压计时,壳体受到压脉带的承载而位于手腕上方,此时,使用者同样可以在按下启动键201的同时,接触位于壳体表面上的电极,配合上压脉带内部的电极,在一次的测量中同时取得两种生理信号;又或者,如图27所示,在通过无线连接的方式而将数据传输至外部装置的情形下,亦可在由绑带承载的壳体上设置与启动键相结合的电极201,再配合上结合于绑带内侧的 电极,就可通过按压的方式实现接触并启动心电测量。
在这样的方式中,相较于单纯进行血压测量的程序,使用者只需在欲测量心电信号时,增加手指与启动键之间的接触时间即可,无须额外的动作,可轻易且无负担地完成。
在此,需要注意地是,虽然接触启动键的动作同时会接触电极,但使用者仍可选择仅进行血压测量或心电信号测量,例如,通过接触时间的长短而决定选择要进行的测量等,因此,没有限制。
另外,电极除了如上所述地位于启动键上外,亦可实施为位于启动键以外的壳体表面上。如图28所示,其壳体具有如图11C所显示的结构,电极位于壳体与压脉带结合的表面的承载结构上,因此,环绕绑带的动作就可实现壳体上电极与上臂皮肤间的接触,再配合戴上耳戴结构,同样可在不需使用者施力的情形下完成所有的电极接触,而且,相较于一般血压测量的操作流程,仅多了配戴耳戴结构的动作,因此,相当方便。
此外,二电极亦可同时位于同一个壳体上,如图29所示,其中,壳体是采用如图11B所示的结构,因此,当压脉带环绕于上臂时,面对上臂的电极可自然地穿过压脉带而接触上臂的皮肤,而另一个位于该壳体表面的电极202则是可接触另一只手,以实现心电信号的测量,在此,需要注意地是,虽然电极202在图中显示为位于与面对该上臂的表面相对,但于实际实施时,其可位于任何一个表面,只要不同于面对该上臂的表面、且方便使用者的另一只手进行接触即可,例如,与面对该上臂的表面相邻的侧面,因此,没有限制。
更进一步地,还可实施为让使用者自行选择欲使用的电极,举例而言,面对上臂的电极可通过切换开关(未显示)或接上其他电极而被取代,例如,具有电极的耳戴结构(如图30A所示),或是具有电 极的指戴结构(如图30B所示),因此,通过这样的方式,使用者就可依需求的不同而选择适合自己的使用方式,更增加使用方便性。
进一步地,当有需要多于两个电极时,例如,将第三个电极作为接地或参考电极,以抑制共模噪声,例如,来自电源的噪声,则可实施为由上述各种电极设计中挑选出适合的多种方式。
此外,在本发明中,为了帮助心电图测量,(部分或所有的)电极可实施为连接至一传感器,以检测及通知使用者与电极间接触是否恰当,举例而言,一压力检测器可用来检测施加于电极上的力量的大小,或者通过阻抗检测(impedance check)而得知电极是否已被接触以及接触状况是否良好等,或者,作为替代,也可以简单地利用一开关来感测施加在电极上的力,据此,还可进一步实施为,当控制电路感测到电极上的接触达到预设条件时,例如,施力够大、已被接触、及/或接触状态良好时,让心电图测量自动开始,或甚至可实施为装置因此而被启动。
另一方面,为了提供使用者更流畅且方便的操作流程,还可通过于电极附近设置感应器的方式而检测电极是否已设置于预设的位置,例如,耳戴结构是否已配戴于耳朵上,指戴结构是否已配戴于手指上,承载结构上的电极是否已设置于手臂,以及压脉带是否已环绕于手臂等,在此,该感应器可为电容式、电阻式、光感应等形式,没有限制,并且,还可进一步实施为利用如声音或屏幕显示等方式而通知使用者电极已设置于预设位置,亦有助于让使用者更轻松地进行操作。
如此一来,上述用以检测电极接触是否良好的感测或检测,就可进一步实施为在感应到电极已设置于预设位置上后再执行,并且,同样可通过如声音或屏幕显示的方式再次通知使用者电极接触已完成,让整体操作流程更为顺畅。
因此,通过本发明上述与血压计相结合的电极位置,使用者可轻松且方便地在使用血压计的过程中完成进行心电信号测量所需的电极设置,因而可自然地纪录下心电图,而也由于心电图可提供详细的心脏电性活动,因此,本发明装置所能提供的相关于心血管健康的信息可更为详细且精准,举例而言,通过控制电路中的处理器执行一预载的程序,或是将心电图传送至外部装置后通过执行其所具备的一程序,可判断心律不齐的种类为何,例如,分辨PAC与PVC,以及其他的心律不齐症状,例如,AF(心房颤动,Atrial Fibrillation)、心跳过慢、心跳过快、心跳暂停等,另外也可知道是否具有心律不齐以外的症状,例如,通过观察ST值(ST level)可得知是否具有心肌梗塞症状,或观察QRS波的振幅而得知是否有心室肥大等。
进一步地,通过血压读值与心电图间彼此的相关性,两种信号间将可进行相互参照,以获得代表其他生理状况的信息,例如,PTT(脉波传递时间,脉波传播通过一段动脉所花的时间),另外,动脉脉搏与心电信号间的比较也有助于移除噪声/人为干扰源,以取得正确的各式心血管信息的判读。
此外,再进一步,根据本发明的心血管健康监测装置亦可根据所取得的心电信号而提供相关心率变异率(HRV,Heart rate variability)的信息,以让使用者藉此而了解自律神经活动,这是因为,自律神经系统是影响血压的因素之一,当交感神经的活性增加时,血管收缩会使得血压上升,而副交感神经的活性增加则相反地可让血压下降。
所以,基于所具备的心电信号测量功能,根据本发明的装置可通过取得精准的RRI(R-R Interval,R-R间隔)序列,亦即,心率变化,进而计算获得HRV,并进行HRV分析,以提供相关自律神经活动的信息,如此一来,当配合上血压测量时,使用者就能实时了解血压与自律神经之间的关系,举例而言,可让使用者知道高血压的成因是否与 自律神经有关,以及若已知有关,则可了解生理及心理上的调整,例如,放松,呼吸导引训练等,是否正确地影响了自律神经,进而实现对血压的影响。
其中,所进行的该HRV分析可依需求而有不同选择,例如,可进行频域分析(Frequency domain),以获得可用来评估整体心率变异度的总功率(Total Power,TP),可反应副交感神经活性的高频功率(High Frequency Power,HF),可反应交感神经活性、或交感神经与副交感神经同时调控结果的低频功率(Low Frequency Power,LF),以及可反应交感/副交感神经的活性平衡的LF/HF(低高频功率比)等,另外,亦可在进行频率分析后,通过观察频率分布的状态而得知自律神经运作的和谐度;或者,也可进行时域分析(Time Domain),而获得可作为整体心率变异度的指标的SDNN,可作为长期整体心率变异度的指标的SDANN,可作为短期整体心率变异度的指标的RMSSD,以及可用来评估心率变异度之中高频变异的R-MSSD、NN50、及PNN50等。
在此,需要注意地是,通过心电信号而取得RRI序列的程序可在血压测量之前或之后进行,只需能实时反应当下的血压值与自律神经间的关系即可,没有限制;另外,由于进行HRV分析所需的取样时间较长,例如,一般而言约需5分钟的时间,且需要使用者处于放松的状态,因此,可进一步选择在电极与皮肤间的接触不需使用者自行施力的情形下进行,例如,采用耳戴结构或指戴结构而承载电极时,或者在电极通过环绕压脉带而接触皮肤的情形下进行,因此,同样可依使用者使用习惯而选择,没有限制。
当执行完测量后,根据本发明的心血管健康监测装置可通过显示元件而让使用者得知测量结果,例如,血压读值、平均心率、心律不齐指示、心率变异率参数等;另外,进一步地,根据本发明的装置亦可包括一存储器,以用来储存信号、分析结果、及/或相关的信息,而 在一较佳实施例中,该存储器则实施为可移除式存储器的形式,以让使用者可方便地进行数据传输、或可带着储存有测量/分析结果的可移除式存储器至门诊咨询医生;此外,根据本发明装置亦可进一步包括一通信模块,以执行一有线通信,例如,USB连接,或无线通信,例如,蓝牙或WIFI,而将所取得的信号、测量/分析结果等数据传送至一外部装置,例如,个人电脑,智能手机,平板电脑,智能手表等,以进行显示及/或执行进一步的计算及分析,在此,与该外部装置间的传输亦可进一步实施为实时传输,没有限制。
因此,由上述可知,通过本发明电极位置的设计,使用者可自然且方便地于测量血压期间同时记录下心电图,然而,由于心律不齐并非每次测量血压时都会发生,但血压值却是需要每日定时且长期进行记录的生理信号,因此,在本发明另一方面的构想中,亦提供了在仅进行血压测量的情况下先行筛选是否具有心律不齐事件的机制,如此一来,使用者就可选择在筛选出有心律不齐可能事件后再进行心电信号的测量即可。
而可进行如此的先行筛选的基础则在于,测量血压的过程中,压脉带的充气除了可测得血压值外,亦可检测到动脉脉搏,因此,通过分析连续动脉脉搏就可得知与脉搏相对应的心脏跳动情形,进而筛选出是否有心律不齐可能事件,例如,早发性收缩(Premature Beats),心室颤动(AF,Atrial Fibrillation),心跳过快(Tachycardia)、心跳过慢(Bradycardia)、心跳暂停(Pause)等各种症状。
所以,为了达到上述的目的,根据本发明的心血管健康监测装置,进一步实施为具有心律不齐检测单元,通知信息产生单元,以及心电图分析单元。
其中,该心律不齐检测单元可根据血压测量期间通过压脉带所取得的连续动脉脉搏而判断是否具有一心律不齐可能事件;该通知信息 产生单元可用以在血压测量期间及/或结束后产生通知信息,以供使用者了解已出现心律不齐可能事件,并提醒使用者进行心电信号测量;该心电图分析单元则可通过分析所取得的心电图,而提供更多相关心脏的信息,例如,通过分析波形可得知心律不齐的种类以及是否有其他心脏症状等信息。
所以,如图31所示,当使用者进行血压测量时,其可如一般进行血压量测一样,将充气式绑带设置于肢体上,例如,上臂或手腕,并开始充气程序,此时,除了取得血压读值外,亦同时会取得动脉脉搏,因此该心律不齐检测单元即可利用所取得的脉搏而判定是否出现心律不齐可能事件,之后,若判断结果发现并未出现心律不齐可能事件,则如一般的血压测量一样,使用者可得知所测得的血压值以及平均心率,而若判断结果显示具有心律不齐可能事件时,则除了血压读值及平均心率等测量血压时可获得的信息外,该通知信息产生单元会通过产生通知信息而让使用者实时得知已检测到心律不齐可能事件,并提醒使用者需进行心电信号测量,同时间,根据本发明的心血管健康监测装置即进入一可测量心电信号的状态,以让使用者可因此而记录下心电图,之后,该心电图分析单元即可通过分析心电图而进一步提供使用者更多有关心脏的信息。
因此,通过这样的方式,使用者无须改变使用习惯,可利用与测量血压相同的操作方式进行血压测量,只需在出现心律不齐可能事件时通过接触与血压计整合在一起的电极进行心电信号测量而记录下心电图,就可立即得知根据心电图的分析结果,故不仅操作使用上方便,亦有助于获得更具正确性的相关心律不齐的信息。
在此,需要注意地是,由于判断心律不齐可能事件的基础在于分析动脉脉搏,因此,也可在不测量血压的情形下,仅通过压脉带的充气而取得动脉脉搏,亦可达到同样的效果,因此可依使用者的实际需求而变化,没有限制。
另外,亦需要注意地是,当于血压测量期间、压脉带充气状态下取得动脉脉搏时,考虑到充气不足时可能无法测得脉搏,以及充气压力过大时亦会对血管造成压迫而影响测量的正确性,因此,在实际实施时,动脉脉搏的检测可实施为仅在特定的压脉带充气条件下才进行,举例而言,可利用过程控制而设定在充气压力固定的情形下进行,或者,也可设定于充气达一定压力值(也就是,接触力达一定程度)以上才进行脉搏测量。
取得连续动脉脉搏后,该心律不齐检测单元在分析该连续动脉脉搏时,采用的方式是,先分别计算出每个脉搏间的时间间隔,以得出脉搏的时间序列特征,之后,再将此时间序列特征与各种心律不齐种类的时间序列特征,例如,早发性收缩、AF、心跳过慢、心跳过快、心跳暂停等各种心律不齐症状的时间序列特征进行比较,并在出现相符时,判断为具有心律不齐可能事件。
在此,具优势地,本发明在检测是否具有心律不齐可能事件时,可适度地通过调整程序的参数值而提高检测的灵敏度,因为只需通过分析随后进行的心电信号测量所获得的心电图,就可立即确认该心律不齐可能事件的正确与否,如此一来,即使灵敏度提高亦不容易产生误判,因此,通过本发明的概念,就可自然地达到高准确率的判断结果,并有效改善现有技术所可能出现的判断误差。
当该心律不齐检测单元判断为具有心律不齐可能事件时,该通知信息产生单元即产生通知信息,以让使用者得知已检测到心律不齐可能事件,并提醒使用者进行心电信号测量,在此,该通知信息可于脉搏测量期间及/或测量结束后产生,没有限制,并且,通知信息的内容及通知方式亦可依实际实施方式不同而改变,举例而言,在一较佳实施例中,可在血压测量完成后,如图32所示,于屏幕上亮起ECG测量提示符号,以让使用者知道需要进一步进行心电信号测量,且更进 一步地,该ECG测量提示符号除了亮起外,亦可同时闪烁,并在使用者开始进行心电信号测量后才熄灭,以加强提醒使用者的效果;在一另一较佳实施例中,可通过另一种符号来表示检测到心律不齐可能事件,而让使用者知道出现了心律不齐可能事件,需要进行心电信号测量,例如,图33显示利用RHYTHM表示检测到有关心率方面的问题,例如,AF,心跳过快,心跳过慢,心跳暂停等;更进一步地,于再一较佳实施例中,则是可以通过同时显示ECG测量提示符号以及RHYTHM符号的方式,如图34所示,而提醒使用者进行心电信号测量,因此,没有限制,可以有各种可能,只需能够清楚的让使用者得知已测得心律不齐可能事件,并达到提醒使用者进行心电信号测量的效果即可。
在此,该通知信息的呈现可以通过听觉信号、视觉信号、及/或触觉信号,没有限制,举例而言,可以如上所述地采用屏幕显示的方式,例如,通过符号或文字的变化,另外,也可通过其他方式呈现予使用者,例如,通过灯号变化,语音或声音,或振动等方式,没有限制,主要在于让使用者可清楚地得知信息的内容;另外,该通知信息亦可通过外部装置而呈现,例如,可无线传送至智能手机、平板电脑、智能手表等进行显示,以进一步方便使用者得知信息。
而在产生通知信息后,根据本发明的心血管健康监测装置随即进入可测量心电信号的状态,以让使用者可通过接触电极而进行心电信号测量。在此,基于电极设置位置的不同,操作程序会有些许差异,举例而言,若已有电极结合于绑带上,则使用者只需再接触另一个电极即可,例如,戴上耳戴结构、指戴结构、腕戴结构、按压在壳体表面的电极、或是按压在绑带外侧的电极等;或者替代地,当绑带上未结合有电极时,则可通过另外的两个电极而进行心电信号测量,例如,同时戴上耳戴结构及指戴结构,两手戴上指戴结构,戴上耳戴结构后手指按压壳体表面上的电极,或一手戴上指戴结构后另一手按压壳体表面的电极等;或者替代地,当二电极同时位于壳体表面上时, 也可通过直接通过手持壳体并接触其中一个电极,再将另一电极接触另一手或躯干的方式而进行心电信号测量;又或者替代地,当两个电极实施为同时位于连接至壳体的另一个可握持壳体上时,同样可通过手持该可握持壳体并接触其中一电极,再将另一电极接触另一手或躯干的方式而执行心电信号测量,因此,可依实际实施的情形而选用不同的电极设计及配置,没有限制。
此外,心电信号测量的起始亦可有不同的选择,举例而言,可由使用者自行决定开始的时间而按下启动键,或者可由阻抗检测得知电极与皮肤间的接触情形,并在确定电极接触已可进行测量后,自动开始测量,举例而言,当装置进入可测量心电信号状态后,即开始进行阻抗检测,等待使用者配戴及/或接触电极,并在阻抗检测的结果显示电极接触已可进行心电信号测量时,自动开始测量,例如,通过屏幕显示或声音通知使用者电极接触已实现,心电信号测量即将开始;或者,亦可在装置进入可测量心电信号状态后,如前所述地,先通过感应器感应电极是否已位于适当的接触位置,之后再开始进行阻抗检测,并于阻抗检测结果显示电极与皮肤间的接触已完成时,自动开始测量。因此,没有限制,可以有各种选择。
在取得心电图后,该心电图分析单元即针对所取得的心电图而进行分析,以提供相关心脏的进一步信息。由于心电图可提供详细的心脏电性活动,因此,通过分析心电图,首先,可确认该心律不齐检测单元所测得的心律不齐可能事件的准确度,之后,还可得知心律不齐的种类,例如,分辨PAC以及PVC,以及准确地判断心跳过慢、心跳过快、AF、心跳暂停等症状,再者,亦可得知是否有其他的心脏疾病,例如,通过观察ST值可得知是否具有心肌梗塞的症状,以及观察QRS波的振幅可得知是否有心室肥大等,如此一来,使用者在筛选出有心律不齐可能的当下,就可立即通过得自心电图的进一步完整信息而立即掌握心脏的状况,以作为是否需要咨询医生的参考。
综上所述,本发明提供了一种心血管健康监测装置,其具有血压测量及心电信号测量两种功能,且在遵从现有血压计操作行为的原则下,将进行心电信号测量所需的心电电极安装步骤融入测量血压的流程中,实现不增加操作复杂度的效果,再者,通过血压计于一般家庭中的普及性,可使心电信号测量于居家有更高的接受度,而且,基于血压及心电图之间的关联性,本发明还可据以提供更多相关心血管的信息,以作为居家健康管理及临床判断的参考。
再者,本发明亦进一步提供特殊的心电电极结构设计及设置位置选择,以提高所取得的心电信号的品质,更有利于获得更准确的分析结果,其中,通过主动对皮肤施力的配戴结构,例如,耳戴结构,指戴结构,腕戴结构,以及通过环绕压脉带时可同时实现的结构设计,例如,壳体表面的承载结构,及与压脉带相结合的电极结构,根据本发明可提供稳定的电极与皮肤间的接触,且可将肌电信号与人为干扰源的影响降至最小。
此外,本发明亦提供了先行筛选是否具有心律不齐可能事件后再测量心电图进行确认的机制,因此,使用者同样可以在不改变血压测量的操作流程的情形下,自然地得知是否有心律不齐可能事件,且只要在察看测量结果时发现出现了提醒需进行心电信号测量的信号时,再进一步执行心电信号测量,就可立即得知正确的相关心律不齐信息,而且,由于心电信号测量所需的电极已整合于血压计上,只需直接接触即可进行测量,避免了使用其他装置的不方便性,也节省了购置成本,确实为关心自身心血管健康的使用者提供了更自然且方便的选择。

Claims (45)

  1. 一种心血管健康监测装置,包括:
    一壳体;
    一控制电路,包括一处理器,并容置于该壳体内;
    一充气式压脉带,用以环绕一使用者的一上肢体;
    一泵,容置于该壳体内;
    至少一第一电极以及一第二电极;
    一耳戴结构,具有该第一电极设置于其上,
    其中,
    当执行血压测量时,该处理器控制该泵对该压脉带进行充气及放气,以检测使用者的血压;以及
    当执行心电信号测量时,通过将该耳戴结构配戴于使用者的一耳朵上,以使该第一电极接触该耳朵的皮肤或该耳朵附近的皮肤,以及通过将该压脉带环绕于该上肢体上,以使该第二电极接触该上肢体的皮肤,该处理器可经由该第一电极以及该第二电极而撷取心电信号。
  2. 如权利要求1所述的装置,其中,该耳戴结构实施为下列形式的其中之一,包括:耳夹,耳塞,以及耳挂。
  3. 如权利要求1所述的装置,其中,该第二电极实施为位于该压脉带的一内侧表面,以接触受环绕的该上肢体的皮肤;或者,该第二电极实施为与该压脉带的一边缘相结合,以接触受环绕的该上肢体的皮肤。
  4. 如权利要求1所述的装置,其中,该第二电极实施为位于该壳体的一表面,且该壳体由该压脉带所承载。
  5. 如权利要求4所述的装置,其中,该第二电极实施为位于一承 载结构上,且该承载结构位于该壳体上,以使该第二电极在该压脉带环绕于该上肢体时接触该上肢体的皮肤。
  6. 如权利要求4所述的装置,其中,该第二电极实施为位于一承载结构上,且该承载结构位于与该壳体相结合的一另一壳体上,以使该第二电极在该压脉带环绕于该上肢体时接触该上肢体的皮肤。
  7. 如权利要求6所述的装置,其中,该另一壳体以及该壳体通过一对连接器而实现机械结合以及电连接。
  8. 如权利要求6所述的装置,其中,该第一电极实施为通过一连接线而连接至该另一壳体。
  9. 如权利要求1所述的装置,其中,进一步包括一通信模块,以执行与一外部装置间的有线或无线通信,以及其中,该外部装置实施为提供下列功能的其中之一或多个功能,包括:控制,显示,储存,以及分析。
  10. 如权利要求1项所述的装置,其中,该处理器进一步执行该心电信号的一HRV分析,以产生表示使用者自律神经活动的信息。
  11. 一种心血管健康监测装置,包括:
    一壳体;
    一控制电路,包括一处理器,并容置于该壳体内;
    一充气式压脉带,用以环绕一使用者的一上肢体;
    一泵,容置于该壳体内;
    至少一第一电极以及一第二电极;
    一指戴结构,具有该第一电极设置于其上,
    其中,
    当执行血压测量时,该处理器控制该泵对该压脉带进行充气及放 气,以检测使用者的血压;以及
    当执行心电信号测量时,通过将该指戴结构配戴于使用者的一手指上,以使该第一电极接触该手指的皮肤,以及将该第二电极接触该手指所在之上肢体以外的皮肤,该处理器可经由该第一电极以及该第二电极而撷取心电信号。
  12. 如权利要求11所述的装置,其中,该指戴结构实施为下列型式的其中之一,包括:戒指,指夹,以及环绕手指的带体。
  13. 如权利要求11所述的装置,其中,该第二电极实施为位在该压脉带的一内侧表面,以接触受环绕的该上肢体的皮肤;或者,该第二电极实施为与该压脉带的一边缘相结合,以接触受环绕的该上肢体的皮肤。
  14. 如权利要求11所述的装置,其中,该第二电极实施为位于该壳体的一表面,且该壳体由该压脉带所承载。
  15. 如权利要求14所述的装置,其中,该第二电极实施为位于一承载结构上,且该承载结构位于该壳体上,以使该第二电极在该压脉带环绕于该上肢体时接触该上肢体的皮肤。
  16. 如权利要求14所述的装置,其中,该第二电极实施为位于一承载结构上,且该承载结构位于与该壳体相结合的一另一壳体上,以使该第二电极在该压脉带环绕于该上肢体时接触该上肢体的皮肤。
  17. 如权利要求16所述的装置,其中,该另一壳体以及该壳体通过一对连接器而实现机械结合以及电连接。
  18. 如权利要求16所述的装置,其中,该第一电极实施为通过一连接线而连接至该另一壳体。
  19. 如权利要求11所述的装置,其中,进一步包括一通信模块,以执行与一外部装置间的有线或无线通信,以及其中,该外部装置实施为提供下列功能的其中之一或多个功能,包括:控制,显示,储存,以及分析。
  20. 如权利要求11所述的装置,其中,该处理器进一步执行该心电信号的一HRV分析,以产生表示使用者自律神经活动的信息。
  21. 一种心血管健康监测装置,包括:
    一壳体;
    一控制电路,包括一处理器,并容置于该壳体内;
    一充气式压脉带,用以环绕一使用者的一上肢体;
    一泵,容置于该壳体内;
    至少一第一电极以及一第二电极;
    一启动键,具有该第一电极结合于其上,
    其中,
    当执行血压测量时,该处理器控制该泵对该压脉带进行充气及放气,以检测使用者的血压;以及
    当执行心电信号测量时,该第一电极接触另一上肢体的手部的皮肤,以及该第二电极接触受环绕的该上肢体的皮肤;以及
    其中,
    通过接触与该启动键相结合的该第一电极,该使用者可具选择地启动该血压测量及/或该心电信号测量。
  22. 如权利要求21所述的装置,其中,该启动键位于该壳体的一表面上。
  23. 如权利要求21所述的装置,其中,该壳体由该压脉带所承载,以及该第二电极实施为位于一承载结构上,且该承载结构位于该壳体上,以使该第二电极在该压脉带环绕于该上肢体时接触该上肢体的皮 肤。
  24. 如权利要求23所述的装置,其中,该压脉带实施为具有一开口,位于对应于该承载结构的位置处,以利于该第二电极在该压脉带环绕该上肢体时通过该开口而接触该上肢体的皮肤。
  25. 如权利要求24所述的装置,其中,该开口实施为位于该压脉带的边缘。
  26. 如权利要求24所述的装置,其中,该开口实施为位于该压脉带内部。
  27. 如权利要求21所述的装置,其中,该第二电极实施为位于该压脉带的一内侧表面,以接触受环绕的该上肢体的皮肤。
  28. 如权利要求21所述的装置,其中,该第二电极实施为与该压脉带的一边缘相结合,以接触受环绕的该上肢体的皮肤。
  29. 如权利要求21所述的装置,其进一步包括一通信模块,以执行与一外部装置间的有线或无线通信,以及其中,该外部装置实施为提供下列功能的其中之一或多个功能,包括:控制,显示,储存,以及分析。
  30. 一种心血管健康监测装置,包括:
    一壳体;
    一控制电路,包括一处理器,并至少部分容置于该壳体内;
    一充气式压脉带,用以承载该壳体,并环绕于一使用者的一上肢体;
    一泵,容置于该壳体内;
    一承载结构,设置于与该壳体相连接的一另一壳体上,其中,该 另一壳体具有一凹槽结构;
    至少一第一电极以及一第二电极,其中,该第一电极实施为位于该承载结构上,以及该第二电极实施为位于该凹槽结构的内部;
    其中,
    当执行血压测量时,该处理器控制该泵对该压脉带进行充气及放气,以检测使用者的血压;以及
    当执行心电信号测量时:
    该壳体以及该另一壳体通过一对连接器而实现机械结合以及电连接;以及
    通过将该压脉带环绕于该上肢体上,以使该第一电极通过该承载结构而接触该上肢体的皮肤,以及通过使用者另一上肢体的一手指伸入该凹槽结构中接触该第二电极,该处理器可经由该第一电极以及该第二电极而撷取心电信号。
  31. 一种通过测量动脉脉搏以及心电信号而检测心律不齐的方法,其中,由一心血管健康监测装置所执行,包括下列步骤:
    通过该心血管健康监测装置的一血压监测单元以及一压脉带,测量一使用者的血压以及多个连续动脉脉搏;
    计算每两个连续动脉脉搏间的一时间间隔,以得出一时间序列特征,以及将该时间序列特征与默认心律不齐时间序列特征的至少其中之一进行比较;
    在两者相符时,决定一心律不齐可能事件;
    产生一通知信息,以让使用者得知已出现该心律不齐可能事件并提醒使用者进行心电信号测量;
    该心血管健康监测装置进入一可测量心电信号的状态;
    使用者经由该心血管健康监测装置的二心电电极而执行心电信号测量,以获得一心电图;
    储存该心电图;以及
    分析该心电图,以提供相关心律不齐的信息以及可由心电图获得的其他信息。
  32. 如权利要求31所述的方法,其中,该预设心律不齐时间序列特征包括下列特征:早发性收缩,心房颤动,心跳过慢,心跳过快,以及心跳暂停。
  33. 如权利要求31所述的方法,其中,该相关心律不齐的信息包括心律不齐的种类。
  34. 如权利要求31所述的方法,其中,该通知信息通过听觉信号而呈现。
  35. 如权利要求34所述的方法,其中,该听觉信号实施为声音变化及/或语音。
  36. 如权利要求31所述的方法,其中,该通知信息通过视觉信号而呈现。
  37. 如权利要求36所述的方法,其中,该视觉信号实施为下列的其中之一或多,包括:文字,图形,以及灯光。
  38. 如权利要求31所述的方法,其中,该通知信息通过触觉信号而提供。
  39. 一种心血管健康监测装置,用以测量血压以及通过检测动脉脉搏以及心电信号而检测心律不齐,其中,该装置包括:
    一血压监测单元;
    一充气式绑带,连接至该血压监测单元,用以环绕一使用者的一肢体,以测量该使用者的血压以及多个连续动脉脉搏;
    一心律不齐检测单元,用以计算每二连续动脉脉搏间的一时间间隔,以得出一时间序列特征,将该时间序列特征与默认心律不齐时间序 列特征的至少其中之一进行比较,以及在两者相符时,决定一心律不齐可能事件,其中,当决定该心律不齐可能事件后,该心血管健康监测装置进入一可测量心电信号的状态;
    一通知产生单元,用以产生一通知信息,以让使用者得知已出现该心律不齐可能事件并提醒使用者进行心电信号测量;
    一心电信号测量单元,包括至少二电极,用以经由该至少二电极而执行一心电信号测量,进而获得一心电图;
    一储存单元,用以储存所获得的该心电图;以及
    一分析单元,用以分析该心电图,进而提供相关心律不齐的信息以及可由心电图获得的其他信息。
  40. 如权利要求39所述的装置,其中,该预设心律不齐时间序列特征包括下列特征:早发性收缩,心房颤动,心跳过慢,心跳过快,以及心跳暂停。
  41. 如权利要求39所述的装置,其中,该相关心律不齐的信息包括心律不齐的种类。
  42. 如权利要求39所述的装置,其中,该通知信息通过下列的其中之一或多而呈现,包括听觉信号,视觉信号,触觉信号。
  43. 如权利要求39所述的装置,其中,该二电极的至少其中之一实施为位于下列结构的其中之一上,包括:耳戴结构,指戴结构,以及腕戴结构。
  44. 如权利要求39所述的装置,其中,进一步包括一壳体,以及该至少二电极的至少其中之一实施为位于该壳体的一表面上。
  45. 如权利要求39所述的装置,其中,该二电极的至少其中之一实施为位于该压脉带上。
PCT/CN2016/071991 2015-01-26 2016-01-25 心血管健康监测装置及方法 WO2016119656A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/546,013 US20180333056A1 (en) 2015-01-26 2016-01-25 Apparatus for monitoring cardiovascular health
JP2017600126U JP3214887U (ja) 2015-01-26 2016-01-25 心血管の健康モニタリング装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510037439.6 2015-01-26
CN201510037439.6A CN104665786A (zh) 2015-01-26 2015-01-26 心血管健康监测装置及方法
CN201510038040.X 2015-01-26
CN201510037858.X 2015-01-26
CN201510038040.XA CN104665791A (zh) 2015-01-26 2015-01-26 心血管健康监测装置及方法
CN201510037858.XA CN104665821A (zh) 2015-01-26 2015-01-26 心血管健康监测装置及方法

Publications (1)

Publication Number Publication Date
WO2016119656A1 true WO2016119656A1 (zh) 2016-08-04

Family

ID=56542413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071991 WO2016119656A1 (zh) 2015-01-26 2016-01-25 心血管健康监测装置及方法

Country Status (3)

Country Link
US (1) US20180333056A1 (zh)
JP (1) JP3214887U (zh)
WO (1) WO2016119656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028421A (ja) * 2018-08-22 2020-02-27 オムロンヘルスケア株式会社 測定装置、測定方法及び測定プログラム
US12127821B2 (en) 2018-08-22 2024-10-29 Omron Healthcare Co., Ltd. Blood pressure and electrocardiograph measurement device and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427652B1 (en) 2016-04-15 2021-06-09 Omron Corporation Biological information analysis device, system, and program
TWI598073B (zh) * 2016-12-15 2017-09-11 財團法人工業技術研究院 生理訊號量測方法及生理訊號量測裝置
DE102016015631B4 (de) * 2016-12-29 2019-01-17 Ait Austrian Institute Of Technology Gmbh Vorrichtung, System und Verfahren zur Erzeugung von Biofeedback
US20180235540A1 (en) 2017-02-21 2018-08-23 Bose Corporation Collecting biologically-relevant information using an earpiece
US11600365B2 (en) 2017-12-12 2023-03-07 Vyaire Medical, Inc. Nasal and oral respiration sensor
KR20200001823A (ko) * 2018-06-28 2020-01-07 웰빙소프트 주식회사 웨어러블 디바이스를 이용하는 심전도 측정 방법 및 시스템
JP7124552B2 (ja) * 2018-08-21 2022-08-24 オムロンヘルスケア株式会社 測定装置
EP3648470A1 (en) * 2018-11-05 2020-05-06 GN Hearing A/S Hearing system with heart condition alert and related methods
CN111184507B (zh) * 2019-03-12 2024-04-26 深圳碳云智能数字生命健康管理有限公司 微型心电采集设备、采集器及主机
CN114206213A (zh) * 2019-06-11 2022-03-18 维亚埃尔医疗股份有限公司 鼻部和口部的呼吸传感器
CN117136029A (zh) * 2021-05-28 2023-11-28 欧姆龙健康医疗事业株式会社 生物体信息测定装置以及生物体信息测定装置的控制方法
JP2024002184A (ja) * 2022-06-23 2024-01-11 オムロンヘルスケア株式会社 生体情報測定装置、生体情報測定装置の制御方法及びプログラム
JP2024109480A (ja) * 2023-02-01 2024-08-14 オムロンヘルスケア株式会社 血圧測定装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249919A (zh) * 1998-05-28 2000-04-12 百略系统有限公司 非侵入式血压测量及探测心律不整的方法及装置
US20010012916A1 (en) * 1999-12-23 2001-08-09 Klaus Deuter Blood pressure measuring device
US20030220577A1 (en) * 2002-04-19 2003-11-27 Southwest Research Institute Methods and systems for distal recording of phonocardiographic signals
CN202168819U (zh) * 2011-07-22 2012-03-21 无锡市中健科仪有限公司 一种动态心电血压二合一记录仪电路
CN203436321U (zh) * 2012-07-26 2014-02-19 经络动力医学股份有限公司 心血管检测装置
CN103596492A (zh) * 2011-02-09 2014-02-19 麻省理工学院 耳戴式生命体征监视器
CN104665786A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN104665791A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN104665799A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665800A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665798A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665821A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN204765611U (zh) * 2015-01-26 2015-11-18 周常安 血压管理装置及系统
CN204813866U (zh) * 2015-01-26 2015-12-02 周常安 心血管健康监测装置
CN204813838U (zh) * 2015-01-26 2015-12-02 周常安 心血管健康监测装置
CN204839492U (zh) * 2015-01-26 2015-12-09 周常安 血压管理装置
CN204863139U (zh) * 2015-01-26 2015-12-16 周常安 心血管健康监测装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249919A (zh) * 1998-05-28 2000-04-12 百略系统有限公司 非侵入式血压测量及探测心律不整的方法及装置
US20010012916A1 (en) * 1999-12-23 2001-08-09 Klaus Deuter Blood pressure measuring device
US20030220577A1 (en) * 2002-04-19 2003-11-27 Southwest Research Institute Methods and systems for distal recording of phonocardiographic signals
CN103596492A (zh) * 2011-02-09 2014-02-19 麻省理工学院 耳戴式生命体征监视器
CN202168819U (zh) * 2011-07-22 2012-03-21 无锡市中健科仪有限公司 一种动态心电血压二合一记录仪电路
CN203436321U (zh) * 2012-07-26 2014-02-19 经络动力医学股份有限公司 心血管检测装置
CN104665799A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665791A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN104665786A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN104665800A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665798A (zh) * 2015-01-26 2015-06-03 周常安 血压管理装置及方法
CN104665821A (zh) * 2015-01-26 2015-06-03 周常安 心血管健康监测装置及方法
CN204765611U (zh) * 2015-01-26 2015-11-18 周常安 血压管理装置及系统
CN204813866U (zh) * 2015-01-26 2015-12-02 周常安 心血管健康监测装置
CN204813838U (zh) * 2015-01-26 2015-12-02 周常安 心血管健康监测装置
CN204839492U (zh) * 2015-01-26 2015-12-09 周常安 血压管理装置
CN204863139U (zh) * 2015-01-26 2015-12-16 周常安 心血管健康监测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028421A (ja) * 2018-08-22 2020-02-27 オムロンヘルスケア株式会社 測定装置、測定方法及び測定プログラム
JP7230369B2 (ja) 2018-08-22 2023-03-01 オムロンヘルスケア株式会社 測定装置、測定方法及び測定プログラム
US12127821B2 (en) 2018-08-22 2024-10-29 Omron Healthcare Co., Ltd. Blood pressure and electrocardiograph measurement device and method

Also Published As

Publication number Publication date
JP3214887U (ja) 2018-02-15
US20180333056A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2016119656A1 (zh) 心血管健康监测装置及方法
CN205493807U (zh) 穿戴式心电检测装置
CN203436321U (zh) 心血管检测装置
US9782098B2 (en) Cardiovascular monitoring device
EP3278724A1 (en) Wearable electrocardiographic detection device and wearable physiological detection device
CN105011927B (zh) 颈戴式心电检测装置
CN204813838U (zh) 心血管健康监测装置
CN104665821A (zh) 心血管健康监测装置及方法
WO2016119664A1 (zh) 穿戴式心电检测装置及穿戴式生理检测装置
US11147499B2 (en) Method and apparatus for detecting atrial fibrillation
CN106974629A (zh) 动态心血管活动监测方法及使用该方法的系统
KR101990383B1 (ko) 심전도가 측정가능한 혈압 측정 장치
CN104665786A (zh) 心血管健康监测装置及方法
TWI624246B (zh) 血壓量測裝置及其方法
CN104665791A (zh) 心血管健康监测装置及方法
TWI586319B (zh) Cardiovascular health monitoring device and method
WO2017124946A1 (zh) 动态心血管活动监测方法、系统以及穿戴式监测装置
CN204863139U (zh) 心血管健康监测装置
TWI603709B (zh) Dynamic cardiovascular activity monitoring method and apparatus and system using the same
TWI586320B (zh) Cardiovascular health monitoring device and method
TWI586321B (zh) Cardiovascular health monitoring device and method
US20160235307A1 (en) Cardiovascular monitoring device
CN204813866U (zh) 心血管健康监测装置
TW201626941A (zh) 穿戴式心電檢測裝置
TWI610658B (zh) 穿戴式生理檢測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017600126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15546013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742718

Country of ref document: EP

Kind code of ref document: A1