WO2017124946A1 - 动态心血管活动监测方法、系统以及穿戴式监测装置 - Google Patents

动态心血管活动监测方法、系统以及穿戴式监测装置 Download PDF

Info

Publication number
WO2017124946A1
WO2017124946A1 PCT/CN2017/070855 CN2017070855W WO2017124946A1 WO 2017124946 A1 WO2017124946 A1 WO 2017124946A1 CN 2017070855 W CN2017070855 W CN 2017070855W WO 2017124946 A1 WO2017124946 A1 WO 2017124946A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
physiological
information
signal quality
user
Prior art date
Application number
PCT/CN2017/070855
Other languages
English (en)
French (fr)
Inventor
周常安
Original Assignee
周常安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610044353.0A external-priority patent/CN106974629A/zh
Application filed by 周常安 filed Critical 周常安
Publication of WO2017124946A1 publication Critical patent/WO2017124946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the invention relates to a dynamic cardiovascular activity monitoring method and a wearable cardiovascular activity monitoring system and device using the same, in particular to a method and system for changing calculation, operation and data processing manner according to signal quality of a physiological signal And equipment.
  • cardiovascular health Modern people are paying more and more attention to their health, especially cardiovascular health.
  • the most relevant to cardiovascular health is the heart.
  • detailed ECG examination in the hospital is the most traditional way to check. It can observe most of the heart diseases by examining the waveform of the electrocardiogram, for example, arrhythmia, myocardial infarction, ventricular hypertrophy, etc., and even distinguish the type of heart disease, for example, ventricular or atrial arrhythmia, Or left ventricle or right ventricular hypertrophy, etc., but this way, not only limited by time, place, but also more troublesome for patients, in addition, because some heart diseases, such as arrhythmia, need to be detected in the current episode A useful ECG can be obtained, so there are limits.
  • one of the tests that the doctor usually makes for the patient is a sports electrocardiogram, that is, the concept of arrhythmia is easily induced by the increase in cardiac load during exercise, and the patient is allowed to be in the hospital.
  • Direct exercise for example, running on a treadmill and simultaneously detecting the electrocardiogram, hopefully catching the moment of arrhythmia, and the doctor often allows the patient to take a Holter test for at least 24 hours. I hope that I can grasp the symptoms of arrhythmia that may occur at any time in a long-term measurement.
  • the 24-hour Hotter ECG can record the ECG at full time, but the result cannot be known in real time, and must be completed at the end of the measurement. After returning to the hospital to download and analyze the data recorded in the device, it is necessary to know whether symptoms have been recorded. Therefore, it is often the case that the patient can see the analysis results and find that wearing 24 hours or more. No heart appears in the record Irregular symptoms are equivalent to wasting time and energy for testing.
  • electrocardiogram detection must be set up with the assistance of professional medical staff, and it takes a long time to stick the electrodes on the body, which is prone to skin discomfort;
  • the detection will generate a large amount of data, whether it is in the storage device or uploaded to the cloud, it will consume a lot of storage space, as for the post-analysis and interpretation, it is traditionally manually analyzed and interpreted by the medical staff, or It is a way of adopting cloud computing today, which requires a lot of computing resources to complete.
  • electrocardiogram detecting device that can be used at any time, so that the user can perform short-time detection at any time when it is necessary, for example, when the heart is uncomfortable, for example, 30 seconds to several minutes to record
  • An electrocardiogram is given to the physician for diagnosis.
  • it is also limited. For example, since the movement of the body has a great influence on the quality of the electrocardiogram when measuring with such a device, the user must perform the detection at rest. In order to obtain a useful electrocardiogram, and because the recording time is short, it is only suitable for occasional detection, and it is not possible to provide information about the heart in a long-term and continuous manner.
  • a heart rate monitoring device that derives heart rate by detecting changes in pulse waves.
  • Such a device has the advantage of being suitable for long-term wear because it typically employs an optical sensor. It can be measured by touching the skin, and it is easy to install and does not cause skin discomfort.
  • the commonly used heart rate monitoring device is a wearable exercise heart rate monitoring device, which is usually worn on the wristband, the armband, or the chest strap, and can be worn by the user during exercise and provided in a mobile situation.
  • the wearer's heart rate changes to help the user grasp the intensity of their exercise, but also because of the purpose of such use, limiting the content of its information.
  • Such devices generally only have the function of providing an average heart rate, for example, the average heart rate obtained by continuously averaging the heart rate within 10 seconds before and after, and the user's heart rate cannot be reflected in real time.
  • one of the most common problems encountered in long-term physiological monitoring is excessive power consumption, for example, continuous electrocardiograms that require at least 24 hours of detection, or light sensor detection that requires continuous illumination and large power consumption.
  • power consumption for example, continuous electrocardiograms that require at least 24 hours of detection, or light sensor detection that requires continuous illumination and large power consumption.
  • the required battery volume is relatively large, which is an increase in burden for the user.
  • a wearable cardiovascular activity monitoring device that can solve the above-mentioned shortcomings, can provide cardiovascular information for the user, and can allow the user to monitor his or her cardiovascular condition for a long time under convenient and comfortable use conditions.
  • the object of the present invention is to provide a dynamic cardiovascular activity monitoring method, which can adopt different expressions according to the quality of the obtained physiological signals, thereby dynamically providing different cardiovascular activity related information.
  • Another object of the present invention is to provide a dynamic cardiovascular activity monitoring method that maximizes the correctness of the physiological information content provided to the user by providing different algorithms.
  • Another object of the present invention is to provide a wearable dynamic cardiovascular activity monitoring device, which provides a basis for continuously obtaining a physiological signal by wearing, and then cooperates with various calculation formulas corresponding to different physiological signal qualities to obtain dynamic Physiological information.
  • the prior art can only provide an average Heart rate and shortcomings of display delay.
  • a further object of the present invention is to provide a wearable dynamic cardiovascular activity monitoring device that can provide long-term cardiovascular activity information of a user through daily continuous wear detection, and is suitable for use in the field of home care.
  • FIG. 1 shows a flow chart of a method for monitoring dynamic cardiovascular activity in accordance with a preferred embodiment of the present invention
  • Figure 2 shows a schematic view of the inner surface of the auricle
  • 3a-3b illustrate possible implementations of an ear-worn device in accordance with a preferred embodiment of the present invention
  • FIG. 4 shows a possible manner of implementation of a neck-worn device in accordance with a preferred embodiment of the present invention
  • FIGS. 5a-5b illustrate possible implementations of a spectacles-type device in accordance with a preferred embodiment of the present invention
  • FIG. 6a-6b show schematic views of a finger-wearing device in accordance with a preferred embodiment of the present invention
  • FIG. 7a-7c show possible implementations of a finger-wearing device in accordance with a preferred embodiment of the present invention.
  • Figure 8 is a schematic view showing the position of an electrode contacting a standard twelve-electrode electrocardiogram
  • FIG. 9a-9b show schematic views of a finger-wearing device in accordance with a preferred embodiment of the present invention.
  • Figure 10 shows an illustrative example of an external electrode through a port in accordance with a preferred embodiment of the present invention.
  • the wearable dynamic cardiovascular activity monitoring device adopts a design having at least two expressions at the same time,
  • the device that is worn on the body can adapt to different activities in daily life, and selectively provides the most suitable information content.
  • the wearable dynamic cardiovascular activity monitoring device can be obtained by being able to be worn on the user and obtaining physiological signals related to cardiovascular activities through at least one physiological sensing element. After the physiological signal, the signal quality of the physiological signal is determined, and according to the quality of the signal, it is determined whether the physiological signal is to be calculated, and the calculation formula to be executed is performed, and after the calculation is performed by using the selected calculation formula, The information content corresponding to the user is provided through an information providing interface. Therefore, the processor of the wearable dynamic cardiovascular activity monitoring device according to the present invention preloads at least two calculation formulas, a first calculation formula and a second calculation formula to selectively adapt to different signal qualities. carried out.
  • the reason why the present invention adopts the signal quality judgment information is that it is desirable to provide correct cardiovascular information to the user.
  • the existing heart rate monitoring device can easily raise the signal quality based on the poor quality signal without considering the signal quality.
  • the cardiovascular information supplied to the user is incorrect.
  • the wrong heart rate information causes confusion for the user. Therefore, if the quality of the signal can be understood first, the situation can be avoided and the user can obtain real-time and Correct cardiovascular information.
  • the quality of the signal is judged by obtaining a signal quality related information while obtaining the physiological signal, and when the signal quality related information meets a predetermined condition, for example, stability, resolution, and signal to noise ratio (S/N ratio (Signal to Noise Ratio) is higher than a preset value, the signal quality is high, and when the signal quality related information does not meet the preset condition, for example, stability, resolution, S/N ratio When the value is lower than a preset value, the signal quality is low; and the selection of the calculation formula is determined according to the judgment result of the signal quality, and the first calculation formula is executed when the signal quality does not meet the preset condition, and the The second calculus is executed when the signal quality meets the preset condition.
  • a predetermined condition for example, stability, resolution, and signal to noise ratio
  • the preset condition may be implemented in multiples to classify the signal quality more finely, and is more conducive to generating more correct physiological information, and may also be implemented as having multiple calculation formulas.
  • the appropriate calculation formula is selected for calculation.
  • the manner of expressing the signal quality may also have different choices, for example, may be represented by a quality index, or may be Expressed by quality level, there is no limit.
  • the processor when determining the quality of the signal, it is also determined whether the obtained signal is suitable for performing calculations. For example, if the user's body movement is too intense and the signal quality is too poor, the processor may choose not to execute. The calculus selection is performed any calculations and when the signal quality is restored enough to perform the calculation.
  • the artificial artifacts and/or noise of the physiological signal the stability of the physiological sensing component, the device itself.
  • the interference caused by the surrounding environment and the interference caused by the surrounding environment are all possible factors.
  • the human physiological interference signal and/or noise is a common situation, especially when the user is moving or exercising.
  • the device according to the present invention is intended to allow the user to wear the body for continuous detection, the user's body movement is a natural and expected situation; in addition, the physiological sensing element is not fully set.
  • insufficient or insufficient stability with the skin is one of the most common situations, but can be avoided by special attention; in addition, interference from the outside, for example, the swing of the connection line of the device itself, or external environmental Electromagnetic interference, etc. may bring noise to the obtained physiological signals, so it is also a factor to be considered. Therefore, there are many possibilities for affecting the quality of the signal, and there are no certain restrictions.
  • the signal quality is displayed as a basis for deciding which algorithm to use, or as another type of information, for example, when the user is at rest, the quality index / If the level is displayed as low, the user may know that the quality may be poor due to the incomplete setting of the physiological sensing component, and the adjustment may be performed in real time; or the quality of the signal may be used as a user.
  • the signal quality information can be used to determine whether the device has been correctly installed, or the signal quality can be provided in real time when it is necessary to perform the measurement manually. The information knows whether the current operation is correct, so no matter what the situation, it will reduce the error caused by improper operation.
  • the physiological signals obtained by the physiological sensing component can be directly analyzed, for example, by using a frequency domain analysis, such as Fourier transform (FFT, Fast Fourier). Transform) to determine whether there are artifacts and/or noises, or to analyze the volume or pressure changes of the blood vessels, or to analyze the electrocardiogram, etc., to obtain the wearer's body movements.
  • FFT Fourier transform
  • FFT Fast Fourier transform
  • Transform Transform
  • the signal quality related information in another preferred embodiment, the movement of the wearer may be detected by adding a motion sensing component, and as the signal quality related information, for example, may have an active mode Preset conditions, for example, activity intensity, and/or activity amount per unit time, etc., when the motion sensing element detects that the device/physiological sensing element activity mode caused by the body motion does not meet the preset condition, The signal quality of the physiological signal obtained at the time is regarded as low.
  • the signal quality is considered to be high, and, without limitation, the preset condition may be It can be implemented as multiple, and since the body movement may be only a short time, it can also be set that the above-mentioned non-conformity exceeds a certain number of times per unit time, which is regarded as low signal quality, so as to facilitate more correct physiological information.
  • the setting of the physiological sensing element can be detected by adding a contact sensing element between the physiological sensing element and the skin, for example, whether the contact between the two is sufficient, It can also be used as information about the quality of the signal, and it can also be judged by setting preset conditions.
  • the quality-related information can be obtained by setting electrodes, for example, detecting the muscle electrical signal (EMG) to know the muscle tension, or detecting the skin impedance (impedance) ) or skin conductivity to know the skin contact situation, etc., combined with setting different preset conditions, the signal quality judgment is more effective. Therefore, depending on the signal obtained, the signal quality related information may also be changed, and the preset conditions according to the adjustment may be adjusted, so there is no restriction, and it should be noted that the above examples are not It is limited to use alone or in combination.
  • the motion sensing element and the pressure sensing element can be set at the same time to make the judgment of the signal quality easier, and there is no limitation at all.
  • the motion sensing component may be, for example, a sensor commonly used for detecting motion, such as a motion sensor, an accelerometer, etc.
  • the contact sensing component may also have many options, such as a pressure sensor and a touch switch. , touch sensors, etc., so there is no limit.
  • physiological sensing components that can be obtained with respect to cardiovascular information include, but are not limited to, photoplethysmography (PPG) sensors, pressure sensors, and electrocardiographic electrodes.
  • PPG sensors and pressure sensors can be used.
  • Obtaining heart rate related information wherein the PPG sensor is a sensor that acquires an optical signal by utilizing the principle of light volume change, which can detect a heart rate sequence by detecting a continuous change of the pulse, and the pressure sensor can be generated by detecting a heart beat.
  • Heart rate information is obtained by vibration of an artery or body (such as the chest), for example, by setting it at the pulse.
  • the PPG sensor can also obtain information about blood oxygen, for example, when there are infrared rays (Infrared) and red light (Red).
  • the blood oxygen concentration (SPO 2 ) can be obtained, and the electrocardiogram can obtain the electrocardiogram to provide various information about the cardiac activity, and further, the heart rate information can be obtained (from the pulse signal and/or Based on EKV (Heart Rate Variability) and autonomic nervous activity And other information, and therefore, when the physiological sensing elements used are not the same, the calculating formula applied is also different.
  • EKV Heart Rate Variability
  • the physiological sensing element used may be stably set by wearing behavior, and is not limited. In a specific form.
  • the calculation formulas used when the signal quality is low will be collectively referred to as the first calculation formula, and the physiological information provided is collectively referred to as the first physiological information, and when the signal quality is high,
  • the calculus used is collectively referred to as the second calculus, and the physiological information provided is collectively referred to as the second physiological information.
  • FIG. 1 is a flowchart of a signal processing according to a preferred embodiment of the present invention, which mainly uses heart rate information that can be obtained by a PPG sensor and/or an electrocardiographic electrode.
  • the physiological signal when determining the signal quality, it is first determined whether the signal quality is insufficient to perform the calculation. For example, one of the conditions is that the signal quality is poor according to the signal quality related information due to the sensor/electrode falling off or contacting. Poor, for example, the discovery of signal interruption, loss of physiological characteristics, etc. In this case, no calculation/analysis will be performed, and the information is provided to provide an interface to remind the user of the phenomenon, and on the other hand, the sensor/electrode is continuously detected. Whether the setting situation is improved and the calculation/analysis is restarted upon recovery.
  • the motion sensing component detects a large amount of long-term movement. In this case, if the movement has been caused If the physiological signal cannot be analyzed, the calculation/analysis is not performed, and the user is notified that the movement is too large to be calculated/analyzed.
  • the user-related motion sensing element for example, Activity intensity and/or activity amount as a reference for the user, and similarly, in this case, the user's movement situation can be continuously monitored, and when the signal quality is restored, for example, when the movement is slowed/stopped, Start calculation/analysis; on the other hand, if the noise and/or human interference caused by the movement can be removed by executing the program, and the physiological signal after the removal process is still physiologically significant, then in this case
  • the user is provided with the average data for a period of time, for example, an average heart rate, wherein the average data is obtained.
  • the first calculus adopted due to poor signal quality may be differently selected according to actual situations, and may be single or any combination as described above, and is not limited thereto. Specific treatment.
  • This mode of operation can also save power, save storage space, and reduce post-processing computing resources, such as cloud storage space and cloud computing resources.
  • the power saving effect can be achieved by the judgment of the signal quality. Since the main purpose of the device according to the invention is to carry out continuous physiological monitoring, for example 8 hours and 24 hours of continuous monitoring, one of the key points is whether the power is sufficient to provide long-term operation, and since most cases The size of the wearable device is determined by the size of the battery. Therefore, if the power consumption can be reduced, it is also advantageous to reduce the burden on the user when wearing the device.
  • the power saving effect can be further achieved by reducing and stopping the power consumption of the physiological sensing element, for example, in an implementation.
  • the luminous intensity of the PPG sensor directly affects the amplitude of the obtained physiological signal, so the interference caused by the ambient light source can usually be overcome by enhancing the luminous intensity, but when the signal quality is poor for other reasons, For example, if the sensor setting is loose or the body moves too much, it is not easy to improve by changing the luminous intensity. Therefore, in this case, before the signal quality can not be improved, the luminous intensity can be lowered or even stopped.
  • the power consumption can be saved while It also continuously monitors whether the signal quality has been improved, and then restores the luminous intensity after improvement.
  • the PPG sensor can be activated periodically to monitor whether the signal quality has been improved, and the physiological sensing is restarted after being restored.
  • the signal quality can also be When low, by changing the sampling rate of the physiological sensing component, for example, reducing the sampling rate of the ECG signal and/or the pulse signal to achieve power saving effect, in general, the high sampling rate is advantageous for obtaining accurate The results of the analysis, but when the signal quality is not good, the sampling rate is not too high, so the rough heart rate information can be obtained only by reducing the sampling rate, and/or used as the judgment of the signal quality to reduce the power consumption. Moreover, it is also a very efficient way to reduce the amount of data and the required storage space, as well as to save computing time and resources.
  • the storage operation for post-mortem analysis can also be temporarily found when the signal quality is insufficient for analysis (whether the physiological sensing element changes the luminous intensity, stops sampling, or reduces the sampling rate). Stop, for example, when the sensor/electrode has fallen off, stop recording the signal and mark this phenomenon, which not only saves storage space, greatly reduces invalid signals, but also reduces the computational resources required for post-calculation/analysis. For example, the computing resources in the cloud, and also reduce the labor costs that need to be intervened, are quite advantageous.
  • one of the motion physiological monitoring devices aims to generate heart rate information continuously and without interruption, and therefore, when found When there is a violent movement, the intensity of the illuminance will be enhanced, so that the heart rate characteristic can be distinguished as much as possible by increasing the S/N ratio. Therefore, there is no limitation on how to change the illuminance when the signal quality is low, and depending on the purpose, There are different options.
  • the signal quality is high, it means that the physiological characteristics of the acquired physiological signal are clear and the S/N ratio is high, so it is naturally possible to analyze it more and no longer be restricted, and therefore, it can be provided. More detailed physiological information content.
  • each heartbeat can be distinguished, and the time interval between each heartbeat can be accurately calculated to obtain a beat-to-beat hear rate, thereby obtaining a heart rate change. (Heart Rate variation), therefore, first, the straightest The availability of real-time heart rate values allows the user to control real-time changes in cardiac activity.
  • arrhythmia By analyzing heart rate changes, it is possible to screen for possible arrhythmia events, such as Premature Beats, Atrial Fibrillation, and Tachycardia. ), Bradycardia, Pause, and other symptoms.
  • arrhythmia events such as Premature Beats, Atrial Fibrillation, and Tachycardia.
  • Bradycardia a senor heartbeat
  • Pause a senor heartbeat
  • Atrial fibrillation is a rapid and irregular beat of the heart, which may be a short period of time, or it may be It is a very important indicator for a long period of time, and it is known that atrial fibrillation increases the risk of diseases such as heart failure and stroke.
  • early-onset contractions include premature atrial contractions (PAC) that occur in the atria, and early-onset ventricles that occur in the palpitations.
  • PAC premature atrial contractions
  • PVC premature ventricular contractions
  • the user knows that the doctor needs to consult the doctor further for more detailed examination. For example, the user can be informed by displaying the cumulative number of possible arrhythmia events.
  • the device according to the present invention can provide a notification message to notify the user in real time when a serious arrhythmia possible event occurs, however, since some of the sporadic arrhythmias of the episode are normal physiological phenomena, In order not to cause user confusion, it may be implemented to reach the preset number of times, for example, the specific time is accumulated more than a certain number of times, the user is notified, and the notification is provided only before the preset number of times is reached. For example, only the number of times accumulated on the screen today is displayed, and the preset number of times can be implemented by the program built in, or set by the user, etc., without limitation.
  • HRV and autonomic nervous activity can be obtained, and these two pieces of information are closely related to many cardiovascular diseases and human body states, for example, before myocardial infarction occurs. For a period of time, for example, 2-3 days, the autonomic nerve activity will become very low. Therefore, if this situation is known in advance, there is an opportunity to avoid the occurrence of myocardial infarction; in addition, by analyzing the heart rate, the relevant RSA can also be obtained. (Respiratory Sinus Arrhythmia, respiratory sinus arrhythmia) information, and further Knowing the user's breathing changes, and by consciously adjusting the breathing can affect the autonomic nerves, this information can help the user to improve the autonomic nervous activity. In addition, when the PPG sensor used has a plurality of light sources, information on blood oxygen concentration will be obtained.
  • HRV heart rate variability
  • the information that can be provided by analyzing the PPG signal to obtain the heart rate is also the content that can be provided by analyzing the ECG signal, for example. , real-time heart rate, related arrhythmia information, HRV and autonomic nervous activity information, and related RSA information, so it will not be described here.
  • the biggest feature of the ECG is that it can provide the heartbeat waveform. Therefore, when the heart rhythm is determined, the contraction is judged by observing whether the shape of the P wave and/or the QRS wave in the ECG waveform is abnormal. From the ventricle or atrium, and clearly distinguish between PAC and PVC, in addition, you can also know whether there are symptoms other than arrhythmia, for example, by observing the ST value (ST level) to know whether there is myocardial infarction, or to observe QRS The amplitude of the wave is used to know if there is ventricular hypertrophy or the like.
  • ST value ST level
  • the selection of the second calculus is also not limited, and may be any combination of the above, in particular, since the physiological information provided by the second calculus is more detailed, the user may have more There is no limit to the amount of space to choose the physiological information content that you need.
  • the second calculus when the second calculus has been selected because the signal quality is high, in addition to the various analyses described above, it may be implemented when there is more than one type of physiological signal input, for example, when the PPG signal and the electrocardiogram are included. Provides the option to analyze only one of the physiological signals, for example, to analyze only the PPG signal, or to analyze the ECG, etc. Information on demand.
  • the first physiological information is provided mainly when the signal quality is low, preferably, the first physiological information may also be provided when the physiological signal quality is high, and the user is provided. More information can be obtained.
  • the first and second physiological information are respectively provided, it can be implemented by the user, or can be manually started at any time, etc., depending on the usage requirements, there is no limit. .
  • the basis for choosing to use the first calculus (low signal quality) and the second calculus (high signal quality) is based on real-time, that is, completely based on the quality of the obtained signal, no Specific time limit.
  • the device of the present invention is implemented in a form to be worn on a user
  • one of the preferred methods is to wear the information providing interface to the user, for example, by combining with the device or wearing The manner in which the structures are combined, so that the user only needs a single wearing action to complete all settings, wherein the optional information providing manner includes tactile, audible, and/or visually perceptible forms, for example, vibration.
  • vibration is one of the most suitable means of providing information for such a condition.
  • the information may also be provided to the user via an external device, for example, the device according to the present invention may transmit the information to be provided to the external device by wire or wirelessly, and through the external device Providing an information providing interface to the user, for example, the external device may be a portable electronic device such as a smart phone, a tablet computer, a smart watch, and the like, and the device according to the present invention passes through the earphone jack, or Bluetooth and other methods are connected to each other. In this way, vibration, sound, voice, illumination, color change, text display, etc. can be used to let the user know their physiological state in real time, which is also quite convenient.
  • the external device may be a portable electronic device such as a smart phone, a tablet computer, a smart watch, and the like, and the device according to the present invention passes through the earphone jack, or Bluetooth and other methods are connected to each other. In this way, vibration, sound, voice, illumination, color change, text display, etc. can be used to let the user know their physiological state in real time
  • the device according to the invention can further provide a trigger button
  • the key is used to allow the user to actively initiate the provision of information by pressing or touching when he or she wants to know his or her physiological condition, rather than passively waiting.
  • calculations, analysis, and information may be provided by devices worn on the body; or, in another preferred embodiment, when implemented to interface with external devices (may be wired Or wirelessly connected, the device can be calculated and analyzed by the device worn by the device, and the information can be provided by the external device, or the acquired physiological signal, signal quality related information, etc. can be transmitted to the external device in real time, and the external device performs the external device.
  • Computation, analysis, and information provision or, in another preferred embodiment, the signal is first stored and left for later calculation and analysis. For example, the detection during sleep is usually stored first.
  • the physiological signal can be directly stored in the device, for example, can be stored in the memory, and then transmitted to the external device through wired or wireless transmission, or can be stored in the SD card, and then read by the external device.
  • the stored data can be obtained by means of the SD card, or can be transmitted to an external device for storage.
  • the signal quality related information it can also be used first. Deposit, to be decided only after the analysis of the signal quality index / level, etc. Alternatively, you can decide in advance the signal quality index / grade and marked on the physiological signals acquired, there is no limit.
  • the obtained physiological signal and signal quality related information is transmitted to the cloud storage system, and then the big data operation is performed by the cloud, for example, directly by the wearable device, or through the external device.
  • the network server can also perform physiological signals and/or signals according to physiological signals and/or signals A report is generated for quality information so that the user can have a clearer understanding of the test results. Accordingly, there are various possible implementations that can vary depending on actual needs.
  • the object of the present invention is to provide continuous physiological monitoring, for example, 8 hours, 24 hours of long-term monitoring, it is inevitable that a large amount of data will be generated and stored in the device, and when data transmission as described above is required In particular, when the wireless transmission method is used, the amount of data directly affects the transmission time. In this case, the signal quality judging program according to the present invention can bring the advantage of shortening the transmission time.
  • the signal quality judging process of the present invention if the signal quality is found to be poor, as described above, it may take, for example, reduce the sampling rate, stop sampling, stop recording/storing physiological signals, And / or the use of reduced sampling to process physiological signals and other means, so on the one hand can save power, on the other hand can also reduce the amount of data, and reduce the amount of data in addition to affecting storage space and computing resources, it is also important to shorten the data Transmission time, because, in addition to long-term monitoring, the inevitable amount of data is large, when there are multiple physiological sensing components, the amount of data will be multiplied, so effectively reducing the amount of data will help to greatly reduce the transmission. Time, in particular, today's wearable devices mostly use wireless transmission methods, such as Bluetooth, to reduce the complexity of wiring, so it is limited by its data transmission bandwidth. If the data volume cannot be effectively reduced, a lot of time will be wasted. On the data transmission.
  • wireless transmission methods such as Bluetooth
  • whether to perform transmission may be determined. For example, if the judgment result indicates that the physiological signal quality is too poor, it may be implemented not to transmit the data to an external device or a network server for calculation ( Regardless of whether the amount of data has been reduced, it is also possible to save computing resources in this way.
  • the present invention enables the physiological signal processing program to dynamically adapt to the signal quality by obtaining the quality-related information while obtaining the physiological signal, so as to maximize the correctness of the physiological information provided to the user.
  • the sampling procedure of the physiological signal can be changed according to the signal quality, and the operation mode of the physiological monitoring device can be further changed in real time to save power, reduce data volume and storage space, shorten data transmission time, and save computing resources. The effect.
  • the device according to the invention can be worn on the user by a wearing structure, for example, through a head-mounted structure, glasses, ear-wearing structure, chest strap, patch, clothing, neck Wearing structure, wrist-worn structure, arm-worn structure, finger-wearing structure, etc., and placed on the head, ears, chest, neck, wrist, arm, finger, or fingertip, etc., without limitation, can obtain physiological signals according to The type of physiological sensing element and the location to be set, as well as the actual needs of the user, vary.
  • the device according to the present invention may have a housing for housing circuitry (e.g., analog signal processors, analog to digital converters, filters, amplifiers, etc., typically used for physiological signal capture devices, omitted herein)
  • the wearing structure is carried on the user, or alternatively, the circuit can be directly disposed in the wearing structure without separately providing a housing.
  • the physiological sensing component can be disposed on the housing. There is no limitation on the wearing structure, or extending through a connecting line.
  • the cardiovascular activity monitoring device can be set at a location including, but not limited to, a head, an ear, a neck, a wrist, an arm, a finger, a chest, etc., which is measured by light.
  • the transmitting element emits light of a specific wavelength into the blood vessel below the skin, and the light is received by a photodetector after penetrating the blood or reflected by the blood, and the change of the blood flow due to the heart beat is known by analyzing the change of the absorbance value. To push the heart rate to change. Therefore, as long as the position at which the blood physiological signal can be obtained by the PPG sensor is within the scope of application of the present invention, there is no limitation.
  • an electrocardiogram electrode may be used to obtain an electrocardiogram.
  • the setting position of the cardiovascular activity monitoring device according to the present invention includes, but is not limited to, a head, an ear, a neck, an arm, a wrist, a finger, As well as the chest, etc., for example, a conventional patch electrode can be used, or two electrodes can be placed on the chest by a chest strap, or two electrodes can be placed on the user by adapting various wearing structures of various parts of the human body. In order to achieve the purpose of continuously obtaining ECG signals. Therefore, any embodiment that does not hinder the user is an application area of the present invention, and is not limited.
  • a PPG sensor and an electrocardiographic electrode can be simultaneously provided, or a plurality of PPG sensors (for example, an arm and a wrist, or a wrist and a finger) respectively disposed at different positions.
  • a plurality of PPG sensors for example, an arm and a wrist, or a wrist and a finger
  • the information can be provided more flexibly by comparison and/or correction between the two signals. For example, when only one of the signals is abnormal, the information can be discarded after comparison. An abnormal signal appears, so that the quality index will not be reduced, and the calculation of the second calculus will not be initiated, and the user can still obtain more information content.
  • the wearable dynamic cardiovascular activity monitoring device can have both a PPG sensor and an electrocardiographic electrode, and is implemented by using an electrocardiographic electrode when normally worn on the body.
  • the PPG sensor has contacted the skin, but only continuously obtains heart rate information through the PPG sensor, for example, providing an average heart rate when the quality index is low, and providing real-time heart rate, arrhythmia possible events, and autonomic nervous activity information when the quality index is high, and
  • the ECG electrode is only enabled when the mass index is high, that is, the ECG is only measured in a stable state to allow more information to be provided in steady state.
  • the measurement of the electrocardiogram can be implemented as an automatic start, or the timing of setting the enablement by the user, or manually starting by the user, etc., without limitation.
  • At least one of the electrocardiographic electrodes is implemented as being non-contacting the skin when the device according to the present invention is worn on the body, Instead, the user can decide to manually measure the electrocardiogram when needed.
  • an electrode can be placed in contact with the skin.
  • the inside of the wear structure is located, and the other electrode is located at a position that can be contacted by the outside. Therefore, when it is necessary to perform the detection, the user can touch the external electrode by hand pressing or move the device to make the external electrode contact other parts of the body. Wait for the action to achieve the measurement of the ECG.
  • the PPG sensor can be used to monitor and screen for the occurrence of arrhythmia possible events, and thus, through such a configuration, the pulse signal is continuously acquired in the PPG sensor.
  • the PPG sensor can be used to monitor and screen for the occurrence of arrhythmia possible events, and thus, through such a configuration, the pulse signal is continuously acquired in the PPG sensor.
  • the second expression it can be known whether arrhythmia may occur.
  • the user can be reminded to perform the ECG detection in real time by notifying the user of the arrhythmia possible event through the information providing interface.
  • the user may be notified of arrhythmia possible event by vibration, sound, or on-screen display, and after receiving the notification, the user may start to receive the ECG signal by simply raising the hand to contact the exposed electrode.
  • a specific type of arrhythmia may be implemented to give a notification, for example, after a preset number of times, for example, If the cumulative time occurs more than a certain number of times in a certain period of time, the user is notified that it is only provided without notification before the preset number of times is reached, for example, only the number of times accumulated on the screen today, and the preset number of times can be There are no restrictions on the implementation of the program built in, or by the user.
  • the notification message according to the device of the present invention may also be implemented to notify the user to manually perform the electrocardiogram measurement, and the timing of the generation of the notification message may have various possibilities, for example, when the quality index is displayed as When the time is high, the user is notified that it is suitable for the ECG signal acquisition, or when the heartbeat is abnormal after analyzing the signal obtained by the PPG sensor, for example, when a heart rhythm irregularity event occurs, the user is notified to manually provide the signal. More information on the measurement of ECG signals, etc., are possible situations and are not restricted.
  • the pulse wave propagation velocity can be obtained by calculating the time difference between the two pulse waves (Pulse Wave)
  • Velocity, PWV The information of Velocity, PWV
  • the user wears the device on the body and completes the setting of the physiological sensing component to start capturing the physiological signal and the quality related information; and then, when receiving the physiological signal and the quality
  • the processor immediately determines whether the signal quality is high or low, and uses this as a basis to determine the calculus to be used, and immediately provides the information obtained by the current signal quality to the user after the operation.
  • the processor automatically re-determines the available calculation formula and provides corresponding physiological information to the user in real time. Therefore, through such a process, the user only needs to wear the device, place the physiological sensing component, and start monitoring, without paying special attention to his own actions, and need not rush to use another one because of symptoms. The device is tested.
  • the user can engage in exercise, for example, jogging, while wearing the wearable dynamic cardiovascular activity monitoring device according to the present invention, and during the exercise, the processor will determine according to the quality index.
  • the calculation formula for example, when running, it may cause the vibration amplitude of the device to be too large, resulting in a decrease in signal quality. Therefore, the information that the user can see may be limited to the number of non-real-time reaction physiological conditions such as the average heart rate.
  • the user can wear the wearable dynamic cardiovascular activity monitoring device according to the present invention, for example, on the head, on the wrist or on the finger during sleep, to continuously perform signals during sleep. Collection.
  • the wearable dynamic cardiovascular activity monitoring device for example, on the head, on the wrist or on the finger during sleep, to continuously perform signals during sleep. Collection.
  • the user since the user is in the sleep period, it is more necessary to record the whole night signal compared to the real-time display, so that the user or the medical staff can make a diagnosis after waking up, for example, for example.
  • the electrocardiogram and/or the heart rate information obtained by the PPG sensor it is possible to know whether or not arrhythmia occurs, and the HRV can be obtained to know the autonomic nervous activity, thereby determining the sleep stage, the depth of sleep, and the like.
  • the wearable dynamic cardiovascular activity monitoring device of the present invention can be applied to the detection of a sleep breathing stop event by increasing the obtained blood oxygen concentration change, thereby increasing its Practicality.
  • the mattress pressure sensor can also obtain the vibration caused by the heart beat, or the electromagnetic induction device at the bedside can measure the cause. Changes in the electromagnetic field generated by the electrocardiogram.
  • the content of the quality-related information can also be used to know the sleep situation of the user, for example, by analyzing the heart rate signal or by using the motion sensing element to obtain the body movement indirectly or directly.
  • Information for example, the frequency of turning over, to determine the quality of sleep, etc., therefore, in addition to the original function of providing cardiovascular-related information, only need to analyze the original signal, you can further provide Information about sleep quality and sleep depth.
  • the medical staff When interpreting/analysing the signal afterwards, the time for viewing the poor quality signal can be reduced. For example, the user may loosen the physiological sensing element due to the movement during sleep, which can be clearly reflected in the signal quality record, so The medical staff only need to understand the overall condition of the signal quality before reading/analysis, or observe the signal quality marked in each signal segment, and select the segment with sufficient signal quality for analysis, which can save a lot of time and resources.
  • the user can wear the wearable dynamic cardiovascular activity monitoring device according to the present invention during relaxation, physiological feedback, or breathing training, in which case the body is mostly at rest. Therefore, it can be expected that the quality of the heart rate signal obtained is relatively high, and thus more physiological information can be obtained, for example, real-time heart rate, HRV change, autonomic nerve activity, and breathing situation can be obtained, and these are Physiological information that changes during relaxation, physiological feedback, and/or breathing training procedures is therefore well suited for use in these procedures to understand the effects achieved.
  • the wearable dynamic cardiovascular activity monitoring device can be worn by a user in daily life, except that long-term recording can be used for health management, by connecting to a network, for example.
  • the network-related information obtained can be transmitted directly to the device worn by the device or connected through an external device, for example, a telehealth center or a medical staff member, for example, can periodically upload data.
  • an external device for example, a telehealth center or a medical staff member, for example, can periodically upload data.
  • the emergency button can be added to the device to allow the user to press Emergency calls are not restricted.
  • the device according to the present invention can provide different information under different operating conditions, so that the user can obtain the maximum use benefit through the same device.
  • the cardiovascular activity monitoring device can also be implemented in an ear-wearing form, while the physiological sensing element is implemented with both a PPG sensor and an electrocardiographic electrode.
  • the use of earphones is more and more common, especially when taking public transportation and walking, it is often used to listen to music. Therefore, the use of ear-wearing form is not only inconspicuous, but also naturally integrated into daily life. And, more advantageously, it is implemented directly in the form of a combination with headphones, for example, with headphones for listening to music, or for receiving
  • the combination of the earphone microphone and the like and is not limited to the bilateral earwear or the one-side earwear form, or the earplug or the earloop form, so that the earphone can be directly used as the information providing interface to physiologically Information, notification messages, etc. are provided to the user, which is quite convenient.
  • the position of the PPG sensor and the electrocardiographic electrode has many options depending on the structure of the earwear, and the position to be specifically described here is, please refer to the auricle shown in FIG. 2.
  • the concha floor i.e., parallel to the skull
  • a vertical area that is connected upwards to the antihelix and to the antitragus known as the concha wall, the natural physiological structure of which provides a continuous plane perpendicular to the bottom of the ear.
  • the intertragic notch between the tragus and the tragus, and the adjacent tragus also provide a contact area perpendicular to the bottom of the ear. .
  • the force required to fix the electrode will be the force parallel to the bottom of the ear (ie, the force perpendicular to the direction of the arm wall), especially when implemented as an earplug.
  • the earplug and the abutting force between the protrusion and the recess on the inner surface of the auricle the stable contact between the physiological sensing element and the vertical region can be naturally achieved at the same time, which is quite convenient in use.
  • the contact position on the back of the auricle has the same advantages.
  • the common ear hook structure is usually provided with a component in front of and behind the auricle, and is fixed by the interaction force between the two. The effect on the auricle, therefore, when the contact position of the physiological sensing element is selected on the back of the auricle, it will exactly conform to the direction of the force of the interaction force, and the stable contact between the electrode and the skin on the back of the auricle can be naturally achieved.
  • the position of the PPG sensor may be changed depending on the actual implementation of the ear-worn structure, for example, when the ear wearing structure is implemented in the form of an earplug, it can be placed in the ear canal, the ear canal, the ear cavity, the ear canal, the ear arm wall, the bottom of the ear, the tragus, the tragus, the tragus, etc.
  • the position where the earplug is accessible when the earplug is placed on the inner surface of the auricle, or the PPG sensor can be placed behind the ear when the earwear structure is implemented in the earloop form.
  • the signal is obtained from the back of the auricle, the V-shaped depression between the auricle and the skull, or the skull near the auricle, or can be implemented as a structure with an earplug and an ear hook, or alternatively, can be implemented as an ear clip.
  • the form is placed on the earlobe, so there is no limit.
  • the electrocardiographic electrode in two cases, one of the electrocardiographic electrodes is located at a position where the ear-wearing structure is in contact with the skin of the head near the ear or the ear when the ear-wearing structure is placed on the ear, so that by wearing
  • the action of the ear-wearing structure can complete the contact of the electrodes, and the position can be set as the above PPG sensor, for example, the earlobe, the ear canal, the ear canal, the ear cavity, the ear canal, the ear arm wall, the bottom of the ear , the tragus, the tragus between the tragus, the tragus, the back of the auricle, the V-shaped depression between the auricle and the skull, and/or the skull near the auricle, etc., therefore, the electrocardiographic electrode can be implemented as a PPG sensor Combine.
  • the other ECG electrode arrangement has a variety of options, for example, it can be placed on the earwear structure, but not in contact with the skin near the ear or ear, so that the electrode is exposed.
  • the user can make contact with the upper limb, for example, a finger touch, as shown in FIG. 3a. In this case, the user can obtain the ECG signal in real time by raising the hand and touching the electrode 10 when the measurement is needed.
  • the PPG sensor performs continuous detection and continuously provides real-time physiological information to the user according to the signal quality information, so that the user can present, for example, When the symptoms of arrhythmia are abnormal, the ECG signal is detected and recorded in real time, which not only helps to understand the actual physiological condition, but also helps the physician to diagnose afterwards.
  • another electrocardiographic electrode may be placed to other parts of the body through a connecting line, for example, a shoulder neck, a chest, an arm, a wrist, a finger, etc., in this case, if another wearable structure is used, Then, the two electrocardiographic electrodes maintain contact with the skin through the wearing structure, for example, a neck wearing structure, an arm wearing structure, a wrist wearing structure, a finger wearing structure (as shown in FIG. 3b), a chest strap, etc.
  • the continuous ECG signal acquisition can be realized, and the physiological information to be provided to the user can be determined according to the signal quality information, and whether the obtained ECG signal is to be stored, so as to reduce the amount of data and the required storage space.
  • the ability to mark the signal quality on the ECG signal can also reduce the computational and time resources required for post-mortem analysis.
  • both ears are selectable to set the position of the electrocardiographic electrode.
  • the contact position of the exposed electrode or the extended electrode is related to the signal.
  • the quality has a considerable degree of influence.
  • the left upper limb touches the exposed electrode or the extension electrode is placed on the left upper limb, the quality of the obtained ECG signal is much better than the signal obtained by contacting the right upper limb, especially the electrode respectively.
  • the left ear and the left upper limb have the best signal quality. Therefore, when the ECG measurement is performed in contact with the ear, it is preferable to use the left upper limb to contact the exposed electrode or the extension electrode to avoid contact with the right upper limb.
  • the signal quality is poor, which leads to misjudgment in the analysis.
  • the device according to the invention is embodied in a neck-wearing form, the physiological sensing element being employed being a PPG sensor.
  • a PPG sensor is coupled to the neck-worn structure and passes through the The neck wear structure is placed behind the neck for continuous pulse signal acquisition.
  • the most important consideration is the strength and quality of the signal that can be obtained at that location. Because it has a great influence on the analysis result, it is learned through experimental tests.
  • the neck wear form is adopted, the physiological position that the neck wear structure can touch, and the characteristics of the neck wear structure and the human body contact, the position of the PPG signal with high strength and good quality can be obtained after the neck, therefore, the present invention adopts This new and effective measurement position behind the neck serves as the setting position for the PPG sensor.
  • the necklace is an accessory that can be worn by ordinary people in daily life, the user can naturally use it in daily life through the form of neck wear, and it is not obvious, and even if it is used for a long time, it does not increase the burden, so it is quite suitable. Used for continuous detection of physiological signals.
  • the PPG sensor can be disposed behind the neck by directly bonding to the neck-wearing structure, or as shown in FIG. 4, by being coupled to a casing carried by the neck-wearing structure.
  • the neck-wearing structure can be implemented to have a shorter length, just around the neck, to reduce displacement, or
  • the portion of the neck-wearing structure contacting the back of the neck may also be made to conform to the curvature of the neck and/or made of an elastic material such as silicone, rubber, foam, memory metal, flexible plastic material, etc. To increase the conformability and reduce the displacement.
  • the shape of the casing is implemented to conform to the curvature of the neck, and/or the casing is made of an elastic material. Made, therefore, Without being limited, it is within the scope of the present invention to increase the stability of the PPG sensor disposed behind the neck.
  • a housing may be placed under the collarbone, the chest, or the front of the abdomen by the neck-wearing structure, so that the PPG behind the neck is pulled by the weight of the housing and its contents.
  • the sensor can obtain a stable force.
  • the PPG sensor can still be disposed behind the neck through the casing, and the casing is formed before and after, so that it is not limited.
  • the vibration module, the sounding element, the light-emitting element, the display element, and the like are provided, the relevant physiological information can be provided to the user in real time, for example, by vibration, sounding, color change, text display, etc., which is quite convenient.
  • the neck-wearing device is also suitable for providing an electrocardiographic electrode for obtaining an electrocardiographic signal, which can be embodied as a separate electrocardiographic electrode or can be implemented together with the PPG sensor, limit.
  • cardiovascular activity monitoring device can also be embodied in the form of glasses, wherein the physiological sensing element is embodied with both a PPG sensor and an electrocardiographic electrode.
  • the spectacles structure described herein refers to a wearing structure that is placed on the head through the auricle and the nose as a support point and that comes into contact with the skin of the head and/or the ear, and thus is not limited to a general spectacles structure. Also included is a deformation thereof, for example, a structure having a clamping force on both sides of the skull, or an asymmetrical form of the temples on both sides, for example, one side of the temple has a curved portion behind the auricle, and the other side has a temple.
  • the non-curved portion is only placed above the auricle, and may or may not have a lens. Therefore, there are various possibilities and no limitation.
  • the PPG sensor can be placed on the lens structure close to the head and/or the ear, for example, the bridge of the nose, the root of the mountain, the area between the eyes, the temple, the back of the auricle, the V-shaped depression between the auricle and the skull, and the skull near the auricle.
  • an electrocardiographic electrode can be placed at a position where the lens structure is in contact with the skull and/or the ear skin, for example, the bridge of the nose, the root of the mountain, the area between the eyes, the temple, the back of the auricle , the V-shaped depression between the auricle and the skull, and the skull near the auricle, therefore, further implemented as a PPG sensor
  • the other electrode 10 can be disposed on the exposed surface of the spectacles structure for the user's hand to touch, as shown in FIG. 5a, or extended by the connecting wire to contact other parts of the body, for example, the shoulder and neck. , chest, arms, wrists, fingers, etc., and can further cooperate with another wearing structure to achieve the possibility of setting the electrodes for a long time.
  • the electrode, the PPG sensor, and the required circuit can be directly embedded in In the eyeglass structure, for example, in the temple, the eyeglass frame; or the configuration of the electrode, the PPG sensor, and the circuit may be achieved by an additional structure, for example, as shown in FIG.
  • the additional structure 14 may be implemented to extend from a single side
  • the temples are such that the PPG sensor 12, one electrode 10 contacts the contact point near the one-sided auricle, and the other electrode is provided on the exposed surface of the additional structure for touch, and the required circuit can be required Part or all of being disposed in the spectacles structure or the additional structure, and further, the additional structure may be implemented in a removable form to allow the user to selectively attach the additional structure to the spectacles structure when needed Detect on. Therefore, there are various possibilities and no restrictions.
  • the eyeglass structure has the function of an earphone and/or a microphone, or
  • a sounding element and/or a sounding element for example, a microphone
  • the sounding elements and earphones used can be in the form of bone conduction, for example, directly in the mirror.
  • the bone conduction speaker is arranged at the position where the foot is in contact with the skull, or the bone conduction earphone is extended from the temple foot, and there is no limitation.
  • the structure serves as an information providing interface for providing physiological information, notification messages, and the like to the user, and is quite convenient. As for the provision of the information, there are various restrictions such as sound, vibration, illumination, and lens display.
  • the glasses when it is implemented to be able to communicate with an external device, for example, by wired or wireless communication with a headphone jack, Bluetooth, etc., with a smart phone, a tablet computer, a smart watch, etc., through the sound pickup element and the sound emitting element (air conduction or bone conduction type), the glasses can be further used as a hands-free earpiece for talking, and further, by providing a vibration module, a sounding element (air conduction or bone conduction type), a display element, a light emitting element, and the like, The glasses can also serve as a message providing interface for the external device, for example, to provide an incoming call reminder, a message notification, etc., as for the provision of the message, the sound can be transmitted through various modes such as sound, vibration, illumination, and lens display without limitation.
  • the eyeglass structure and the earwear structure may be further combined to provide an electrode and/or a light sensor, for example, an earplug or an ear clip may be extended from the eyeglass structure, or the eyeglass structure has a port to Electrically connecting an earplug or ear clip, or the ear wearing structure can be sleeved on the structure of the eyeglass, etc., so that there are more implementation possibilities, for example, the position of contact with the skin on the structure of the eyeglass and An electrode is disposed on each of the outer surfaces for the user to obtain an electrocardiographic signal by touching the exposed electrode with the upper limb when necessary, and then, further, the user can connect an earplug/ear clip through the port when necessary.
  • an electrode and/or a light sensor for example, an earplug or an ear clip may be extended from the eyeglass structure, or the eyeglass structure has a port to Electrically connecting an earplug or ear clip, or the ear wearing structure can be sleeved on the structure of the
  • the electrode/PPG sensor may be disposed only on the earwear structure, and the earwear structure is disposed on the ear by means of combining with the eyeglass structure. In the vicinity, in such a manner, it is equivalent to providing a way for a general eyeglass user to set a physiological sensing element using his or her own frame. Therefore, it can be implemented in various forms without limitation.
  • cardiovascular activity monitoring device can also be embodied in a finger-wearing form, wherein the physiological sensing element is embodied with both a PPG sensor and an electrocardiographic electrode.
  • the main reason for selecting a finger as the position for setting the cardiovascular monitoring device is that the wearing form is like a wearing ring for a general user, and is not only familiar and does not require re-learning, and is used for a long time. Dai will not feel the burden.
  • the finger can obtain a fairly good PPG signal due to the physiological structure, so it is particularly suitable for continuous measurement of heart rate and SPO 2 , and the detection of SPO 2 can be used to understand breathing during sleep. The blood oxygen concentration caused by the stop is reduced, so it can be further used to detect sleep breathing suspension events.
  • the embodiment of the wearing form for example, as shown in FIG. 6a, it can be implemented as a simple wearing structure, or can be implemented as shown in FIG. 6b, and a housing is coupled to the finger wearing structure.
  • the position of the wearing structure on the finger may also be different according to requirements, and may be a fingertip or other knuckle, wherein the knuckle of the proximal phalanx or the middle phalanx is preferably In order to avoid the situation in which the hand movement is detached due to the position approaching the end of the finger, there is no limitation depending on the actual implementation.
  • the PPG sensor 12 and an electrocardiographic electrode 16 are disposed on a surface that is in contact with the skin of the finger when the device is placed on the finger through the finger-wearing structure, such that In one case, the setting of the PPG sensor and the contact between the electrode and the skin can be completed by directly attaching the finger-wearing structure to the finger.
  • the other electrode 10 it is located on the other surface of the device other than the above surface, for example, it may be a surface opposite to the surface or a surface adjacent thereto, and it is only necessary to note that the finger is not touched. The location of the skin is fine. Therefore, when it is necessary to record the electrocardiogram at any time, it is only necessary to perform contact with the exposed part of the electrode other than the limb of the finger on which the finger is placed, so that the ECG signal can be taken immediately, and the operation flow and the action are simple. Natural and convenient.
  • the exposed electrode 10 on the surface can be touched by another hand, as shown in Fig. 7a, or the other parts of the skin can be touched by moving the hand wearing the device, such as Figure 7b shows the operation of touching the ring to the cheek, and Figure 7c shows the way the ECG signal is taken to contact the torso. Therefore, there is no limitation. According to the experimental results, when measuring with the hand touching the head, Particularly good physiological signals can be obtained by touching the left-side head skin with the left-handed wearing structure.
  • the finger-wearing form since the finger-wearing form is adopted, the user can realize the ECG signal capture circuit by moving the hand wearing the device to contact other parts of the body, which brings more operation possibilities.
  • Sexuality also allows users to choose the appropriate contact location according to the environment and needs, which is more convenient.
  • FIG. 8 shows that the standard twelve-pole is generally obtained.
  • the contact position of the electrocardiogram, by the finger-worn cardiovascular monitoring device according to the present invention the user can conveniently wear the device on the left-hand finger and obtain different angles by contacting the respective measurement points of V1 to V6. Electrocardiogram projection of the heart.
  • an electrocardiogram of one angle can be obtained for each two electrodes, that is, the position of the electrode determines the projection angle of the electrical activity of the heart reflected by the electrocardiogram, and the heart is stereoscopic and produces a diseased heart.
  • the site may be located at any heart position. For example, the examination of myocardial infarction needs to see if there is a myocardial damage in the ECG waveform. The ST drifts when it dies, but it may not be noticeable at certain angles because of its positional relationship. At this time, it is necessary to check through different angles of the ECG. Therefore, ECGs with different angles are obtained. It is very helpful for judging heart disease.
  • the exposed surface electrode can also be implemented to extend through the connecting line to contact other parts of the body, such as the head, ears, shoulders, neck, chest, etc., and can further cooperate with another wearing structure to achieve long-term electrode setting. Possible, therefore, no limit.
  • cardiovascular activity monitoring device can also be implemented in a wrist-worn form, as shown in Figures 9a-9b, and the physiological sensing element is implemented as a PPG sensor and an electrocardiographic electrode.
  • the wrist-worn form is used because, for the average user, the wrist-worn monitoring device is like a watch, which is familiar and does not require re-learning. The acceptance is quite high and can be implemented directly with the watch.
  • the watch is further provided as an information providing interface, for example, providing physiological information, notification information, and the like by means of screen display, illumination, and generation of sound/speech, and is easily integrated into the daily life of the user.
  • the wrist-worn form When the wrist-worn form is used, it can be implemented in the form of a wrist-worn structure combined with a housing (Fig. 9a) or in the form of a simple wrist-worn structure (Fig. 9b), regardless of the form, the device operation
  • the required circuitry is provided in the housing and/or wrist-worn structure.
  • the PPG sensor 12 is disposed on a surface of the wrist when the housing and/or the wrist-worn structure is disposed on the wrist, so as to be obtained from the vicinity of the wrist when the device is disposed on the wrist through the wrist-worn structure.
  • one of the electrocardiographic electrodes 16 is also disposed on the surface, which may be implemented in combination with or separately from the PPG sensor, without limitation; the other electrode 10 may be located in addition to the surface of the device.
  • On the other surface for example, it may be a surface opposite to the surface, or a surface adjacent thereto, wherein it is preferably implemented in combination with a button of a watch to naturally integrate into the general operation of the watch, here only It should be noted that it is not possible to touch the position of the skin of the wrist where the wrist is located. Therefore, when the user feels it is necessary, the user can touch with the other hand, or can be implemented to extend through the connecting line to contact other parts of the body. For example, the shoulder and neck, the chest, the arms, the wrists, the fingers, and the like, and may further cooperate with another wearing structure to achieve the possibility of setting the electrodes for a long time.
  • the user can obtain an electrocardiographic signal by moving the wrist wearing the wrist-worn structure to contact other parts of the body, for example, by moving the wrist. Touch other places such as chest, head, etc. Easy to use.
  • the exposed electrode for the hand touch or the connection is selectively used.
  • the wire-connected extension electrodes it is also preferred to have both, for example, a wrist-worn structure as shown in FIG. 10 having a port 18 for powering the extension electrode, thus, in practice
  • the exposed electrode may be automatically disabled when the extended electrode is connected to the port, or the switch may be used to allow the user to decide which electrode to activate, and the embodiment is not limited.
  • the extension electrodes can be placed at other contact locations compared to the electrodes located on the surface of the device, the possibility of projecting an electrocardiogram at different angles of the heart is provided, for example, the exposure of the left ear can be worn by the left hand.
  • the electrode obtains a cardiac angle projection electrocardiogram, and the extension electrode can be placed on the chest or the right hand to obtain two different cardiac angle projections of the electrocardiogram; or, the right hand can be used to touch the electrode on the left wrist wearing structure.
  • Obtaining a cardiac angle projection ECG you can also set the extension electrode on the left ear to obtain another heart angle projection ECG, and the heart part due to the lesion may be located in any heart position. For example, the examination of myocardial infarction needs to check the ECG. Whether there is ST drift in the waveform due to myocardial necrosis, but when the location of the lesion cannot be detected at certain angles, the ECG at different angles is necessary.
  • the wearable dynamic cardiovascular activity monitoring device obtains a signal quality related information as a basis for selecting a calculation formula when analyzing a physiological signal, and thus can be used for different usage states, for example, The person moves or stands still, or the setting of the physiological sensing component, etc., and provides different physiological information to maximize the information content available to the user, thereby achieving the purpose of multi-purpose.
  • the user when used in daily life, the user can obtain information and notifications in real time while measuring any cardiovascular condition, and can download and analyze without waiting for returning home or going to the hospital. , the degree of mastery of cardiovascular health will be more real-time, and therefore can be reminded to further consult a doctor; and, through such a design, whether in the form of glasses, ear-wear, finger-wearing, or wrist wear The form can also record the physiological changes of the wearer in the long-term life, which is quite suitable for the field of home care.

Abstract

一种动态心血管活动监测方法、系统以及穿戴式监测装置;其中,动态心血管活动监测方法会取得心血管活动相关生理讯号以及一讯号质量相关信息,并比较该讯号质量相关信息与一预设条件,以决定一讯号质量,而根据比较结果,会执行多个演算式中的不同演算式,据以自该生理讯号产生不同的生理信息,因此,随着该讯号质量的改变,生理信息提供也出现相应的改变。

Description

动态心血管活动监测方法、系统以及穿戴式监测装置 技术领域
本发明涉及一种动态心血管活动监测方法及使用该方法的穿戴式心血管活动监测系统及装置,尤其涉及一种根据生理讯号的讯号质量而改变演算、操作、及数据处理方式的方法、系统及装置。
背景技术
现代人越来越注重自己的健康,尤其是心血管方面的健康,而与心血管健康最相关的就是心脏,为了了解心脏的状况,于医院中进行详细的心电图检查是最为传统的检查方式,其可通过检视心电波形的方式而观察出大部分的心脏疾病,例如,心律不整、心肌梗塞、心室肥大等,甚至可分辨出心脏疾病的型态,例如,心室型或心房型心律不整、或左心室或右心室肥大等,只是,这样的方式,不但受限于时间、地点,对患者而言也较为麻烦,此外,因为有些心脏疾病,例如,心律不整,需要在发作的当下进行检测才可取得有用的心电图,因此,反而有其限制。
而为了能够取得发生心律不整时的心电图,医师一般会让患者进行的其中一种检测是运动心电图,也就是,利用运动时心脏负荷会增加而容易诱发出心律不整的概念,让患者于医院中直接进行运动,例如,于跑步机上跑步,并同时间检测心电图,希望可以抓到心律不整发作的瞬间,另外,医师也常让患者进行至少24小时配戴霍特式心电图机(Holter)的检测,希望能以长时间测量的方式抓住可能随时出现的心律不整症状。
但这些方式对使用者而言,仍有其不便之处,举例而言,24小时的霍特式心电图机虽可全时的记录下心电图,但却无法实时得知结果,必须在整个测量结束后,回到医院将装置中所记录的数据下载并分析后,才能知道是否有记录到症状,所以常常有的情形是,等到患者可以察看分析结果时发现,24小时或更多时间的配戴记录中并未出现心 律不整症状,等于浪费了时间与精力进行检测,而且,这样的心电图检测,必须通过专业医护人员的协助才能设置,并需要长时间黏贴电极于身上,容易产生皮肤不适;再者,长时间的检测将产生大量的数据,无论是储存装置内、或是上传至云端,皆会消耗大量的储存空间,至于事后分析与解读的进行,则无论是传统上由医护人员人工进行分析解读,或是现今采用云端计算的方式,都是需要耗费大量计算资源才能完成。
另外,运动心电图的检测也同样很有可能因在医院中运动期间没有出现心律不整的症状而徒劳无功。
近年来出现的是可随身使用的心电图检测装置,其让使用者可在平时有需要时,例如,觉得心脏不舒服时,随时进行短时间的检测,例如,30秒至数分钟,以记录下心电图,而让医师可进行诊断。只是其也有所限制,举例而言,由于在使用此种型态的装置进行测量时,身体移动对心电讯号的良好与否有很大的影响,所以,使用者必须在静止状态下进行检测才能取得有用的心电图,而且由于记录时间很短,故只适合偶尔进行检测,无法长期且连续地提供相关心脏的信息。
另一种可连续取得心脏信息的选择是心率监测装置,其通过检测脉波变化而得出心率,这样的装置的优点是适合长时间配戴,因为其通常采用的是光传感器(optical sensor),只需接触皮肤即可进行测量,安装容易,也不会造成皮肤不适。
现在,一般常见的心率监测装置是穿戴式运动心率监测装置,其通常利用腕带、臂带、或胸带而配戴于身上,可让使用者在运动期间配戴,在移动情形下提供配戴者的心率变化,以帮助使用者掌握自身的运动强度,只是,也由于这样的使用目的,限制了其信息提供的内容。首先,为了克服移动可能性极高的测量环境,这样的装置一般仅具有提供平均心率的功能,例如,不断平均前后10秒内的心率所得出的平均心率,并无法实时反应使用者的心率,而且,由于需要经过平均后才能提供数值,故也一直存在着显示延迟的问题,也就是,即使使用者未处于运动或移动状态,上述的问题依然存在,因此,这样的装置显然仅适合在运动期间使用,若是要用于日常生活中连续取得心 率信息,以长期观察心脏状态,则不适合。
由上述可知,在欲取得心血管相关信息的情形下,若采用Holter以取得连续心电图,就必须面临长期黏贴电极的不方便及不舒适,例如,无法自行安装,可能出现皮肤不适,但短时间的心电图取得却又必须受限于较高的操作环境限制,例如,身体移动对讯号清晰度的影响大,需于静止情形下测量,无法用于长期讯号取得;另外,若想利用穿戴式运动心率监测装置来监测平日自身的心脏情形,则只能获得受限的信息,例如,仅平均心率,无法取得用以进一步分析的足够信息,例如,实时心率。
此外,长时间生理监测最常遇到的问题之一就是电量消耗过大,例如,需要至少24小时以上进行侦测的连续心电图,或是需要持续发光、电量消耗较大的光传感器侦测,而当电量需求大时,所需配备的电池体积也相对的需要变大,对使用者而言将是负担的增加。
因此,确实有需要一种能够解决上述缺点的穿戴式心血管活动监测装置,可提供使用者心血管信息,且可让使用者在方便、舒适的使用情形下,长期监控自身的心血管情形。
发明内容
本发明的目的即在于提供一种动态心血管活动监测方法,其可根据所取得的生理讯号的质量不同而采用不同的表达式,进而动态地提供不同的心血管活动相关信息。
本发明的另一目的在于提供一种动态心血管活动监测方法,其通过提供不同的演算式而最大化保证提供给使用者的生理信息内容的正确性。
本发明的另一目的在于提供一种穿戴式动态心血管活动监测装置,其通过穿戴方式提供连续取得生理讯号的基础,再配合可对应于不同生理讯号质量的多种演算式,进而获得动态的生理信息。
本发明的再一目的在于提供一种穿戴式动态心血管活动监测装置,其可于运动期间配戴使用,且可在讯号质量足够高时提供实时心率以及其他进一步的心血管相关信息,以改善现有技术仅能提供平均 心率以及显示延迟的缺点。
本发明的再一目的在于提供一种穿戴式动态心血管活动监测装置,其可通过日常连续配戴的检测方式,提供使用者长时间的心血管活动信息,适合用于居家看护领域。
本发明的又一目的在于提供一种颈戴形式的动态心血管活动监测装置,其以一颈戴结构作为穿戴于一使用者的肩颈部上的媒介,以利于生理讯号的连续取得。
本发明的又一目的在于提供一种眼镜形式的动态心血管活动监测装置,其以通过一使用者的二耳廓以及一鼻子而支撑的一眼镜结构作为穿戴于头上的媒介,以利于生理讯号的连续取得。
本发明的又一目的在于提供一种耳戴形式的动态心血管活动监测装置,其以一耳戴结构作为穿戴于一使用者的至少一耳廓上的媒介,以利于生理讯号的连续取得。
本发明的又一目的在于提供一种指戴形式的动态心血管活动监测装置,其以一指戴结构作为穿戴于一使用者的一手指上的媒介,以利于生理讯号的连续取得。
本发明的又一目的在于提供一种腕戴形式的动态心血管活动监测装置,其以一腕戴结构作为穿戴于一使用者的一手腕上的媒介,以利于生理讯号的连续取得。
附图说明
图1显示根据本发明一较佳实施例的动态心血管活动监测方法的流程图;
图2显示耳廓内面构造示意图;
图3a-3b显示根据本发明较佳实施例,耳戴形式装置的实施可能方式;
图4显示根据本发明一较佳实施例,颈戴形式装置的实施可能方式;
图5a-5b显示根据本发明较佳实施例,眼镜形式装置的实施可能方式;
图6a-6b显示根据本发明较佳实施例,指戴形式装置的示意图;
图7a-7c显示根据本发明较佳实施例,指戴形式装置的实施可能方式;
图8显示取得标准十二导极心电图的电极接触位置示意图;
图9a-9b显示根据本发明较佳实施例,指戴形式装置的示意图;以及
图10显示根据本发明一较佳实施例,通过端口外接电极的示范性实例。
图中符号说明
10心电电极    12PPG传感器
14附加结构    16心电电极
18端口
具体实施方式
为了能以最方便且有效的方式提供使用者在日常生活中监控自身的心血管活动,根据本发明的穿戴式动态心血管活动监测装置,采用的是同时具有至少两种表达式的设计,以让穿戴于身上的装置可适应日常生活的不同活动,而具选择性提供最合适的信息内容。
因此,在本发明中,该穿戴式动态心血管活动监测装置除了实施为可配戴于使用者身上,通过至少一生理感测元件而取得相关于心血管活动的生理讯号外,尚可在取得生理讯号后,判断得出该生理讯号的讯号质量,并根据该讯号质量而决定是否要对生理讯号执行计算,以及要执行的演算式为何,而在利用所选择的演算式进行计算之后,再通过一信息提供接口而提供使用者相对应的信息内容。因此,根据本发明的该穿戴式动态心血管活动监测装置的处理器中预载了至少二个演算式,一第一演算式以及一第二演算式,以适应不同的讯号质量而选择性地执行。
在此,本发明采用讯号质量判断信息的原因在于,希望可以提供正确的心血管信息给使用者。一般现有的心率监测装置在不考虑讯号质量的情形下,很容易因是以质量不佳的讯号作为分析基础而导致提 供给使用者的心血管信息不正确,例如,错误的心率信息,反而造成使用者的困扰,因此,若能先了解讯号质量的高低,就可避免这样的情形,也让使用者可获得实时且正确的心血管信息。
该讯号质量的判断方式是,在取得生理讯号的同时,也会取得一讯号质量相关信息,而当该讯号质量相关信息符合一预设条件时,例如,稳定度、清晰度、讯号噪声比(S/N比,Signal to noise ratio)等高于一预设值时,表示讯号质量高,而当该讯号质量相关信息不符该预设条件时,例如,稳定度、清晰度、S/N比等低于一预设值时,则表示讯号质量低;至于演算式的选择则是根据讯号质量的判断结果而决定,该第一演算式在讯号质量不符合该预设条件时执行,以及该第二演算式在讯号质量符合该预设条件时执行。在此,不受限地是,该预设条件可实施为多个,以将讯号质量分类的更细,更有利于产生更正确的生理信息,而且,也可实施为有多个演算式,而在实施为不同预设条件时,从中选择适合的演算式进行计算,另外,表示讯号质量的方式也可有不同的选择,例如,可利用一质量指数(quality index)来表示,或者也可通过质量等级(quality level)来表示,没有限制。
此外,进一步地,在决定该讯号质量时,还会判断所取得的讯号是否适合执行计算,例如,使用者身体移动过于激烈而造成讯号质量太差,此时,该处理器就可选择不执行任何计算,并待讯号质量恢复至足以执行演算式时,才执行演算式的选择。
影响讯号质量的因素有很多,而不同的因素对讯号产生的影响也不同,例如,生理讯号的人为干扰源(artifacts)及/或噪声(noises),生理感测元件设置的稳定度,装置本身所带来的干扰,周围环境所带来的干扰等都是可能的因素,其中,使用者的生理讯号出现人为干扰源及/或噪声是很常见的情形,尤其当使用者正在移动或运动时,不过,由于根据本发明的装置本意就在于让使用者穿戴于身上持续进行检测,因此,使用者出现身体移动是自然且被预期的情形;另外,生理感测元件出现设置未完全的情形,例如,与皮肤间的接触不足或不够稳定,也是很常见的情形之一,但只要特别注意就可以被避免;此外,来自外部的干扰,例如,装置本身的连接线的摆动、或是外在环境的 电磁波干扰等都可能为所取得的生理讯号带来噪声,故也都是需要考虑到的因素,因此,影响讯号质量的因素有许多可能,没有一定的限制。
而且,较佳地是,该讯号质量除了作为决定要采用哪一种算法的基础外,也可作为另一种信息而显示给使用者,举例而言,当使用者处于静止时,质量指数/等级却显示为低,则使用者就可因为这样的提醒而知道可能是因生理感测元件设置未完全所造成的质量不佳,进而实时进行调整;或者,该讯号质量也可作为使用者于安装或测量期间的操作指引,例如,当使用者将装置安装到身上时,可通过讯号质量信息判断是否已正确安装,或是,当有需要手动进行测量时,也可通过实时提供的讯号质量信息而得知当下的操作是否正确,因此,无论何种状况,都将可减少因为不当操作而产生的误差。
再者,有关该讯号质量相关信息的选择也有许多可能。举例而言,在一较佳实施例中,可直接通过分析由该生理感测元件所取得的生理讯号,例如,可利用频率分析(Frequency Domain Analysis)的方式,如傅立叶变换(FFT,Fast Fourier Transform)而决定是否含有人为干扰源(artifact)及/或噪声(Noises),或者,通过分析血管的容积或压力变化、或是分析心电图等,而得出配戴者的身体移动情形,以作为该讯号质量相关信息;在一另一较佳实施例中,可通过增设一动作感测元件来侦测配戴者的身体移动情形,而作为该讯号质量相关信息,例如,可具有一活动模式预设条件,例如,活动强度、及/或单位时间的活动量等,当动作感测元件侦测到身体动作所造成的装置/生理感测元件活动模式不符合该预设条件时,即将此时所取得的生理讯号的讯号质量视为低,另一方面,若符合,则视为讯号质量高,且不受限地是,预设条件可实施为多个,并且,由于身体移动可能仅是短暂的时间,故也可设置为,单位时间内上述的不符合情形超过一定次数才视为讯号质量低,以有利于产生更正确的生理信息;在又一较佳实施例中,可通过在生理感测元件与皮肤之间,增设一接触感测元件而侦测生理感测元件的设置情形,例如,两者间的接触是否足够,这同样可作为该讯号质量相关信息,且也可通过设置预设条件的方式而让判断 结果更完善;在一再一实施例中,则可通过设置电极的方式取得质量相关信息,例如,可侦测肌电讯号(EMG)而得知肌肉的紧张度,或可侦测皮肤阻抗(impedance)或皮肤导电度而得知皮肤接触的情形等,再配合设置不同的预设条件,就让讯号质量的判断更为有效。因此,根据所取得的讯号的不同,该讯号质量相关信息也可有所变化,所根据的预设条件也会有所调整,故不受限制,并且,需注意地是,上述的举例并不限于单独使用,也可合并使用,例如,可同时设置动作感测元件及压力感测元件,以让讯号质量的判断更容易,完全没有限制。在此,该动作感测元件可以是,例如,动作传感器、加速度器等一般常见的用于侦测移动的传感器,另外,该接触感测元件也可以有许多选择,例如,压力传感器、触动开关、触控传感器等,因此没有限制。
此外,所提供的生理信息内容,除了依讯号质量、所使用的演算式而决定外,也相关于所使用的生理感测元件。一般而言,可取得相关于心血管信息的生理感测元件包括,但不限于,光容积变化(PPG,photoplethysmography)传感器,压力传感器,以及心电电极,举例而言,PPG传感器及压力传感器可取得心率相关信息,其中,PPG传感器是利用光容积变化原理而取得光信号的传感器,其可通过侦测脉搏的连续变化而得知心率序列,而压力传感器则是可通过侦测心脏跳动所产生动脉或身体(如胸腔)的振动而取得心率信息,例如,通过设置于脉搏处,另外,PPG传感器也可取得相关血氧的信息,例如,当具有红外线(Infrared)以及红色光线(Red)两种光源时,可取得血氧浓度(SPO2),而心电电极则可取得心电图,以提供相关心脏活动的各种信息,且进一步地,可以所获得的心率信息(来自脉波讯号及/或心电图者)为基础,而提供有关HRV(Heart Rate Variability,心跳变异率)及自律神经活动情形等信息,也因此,当所使用的生理感测元件不同时,所适用的演算式也有所不同。
在此,需注意地是,由于根据本发明的装置是实施为穿戴于使用者身上的形式,因此,所使用的生理感测元件只要是能通过穿戴行为而稳定设置即可,并不受限于特定的形式。
接下来即叙述在本发明概念中,如何根据不同的讯号质量而提供 不同的演算式,以提供使用者各种相应的生理讯息。在此,需先行说明的是,由于无论是所撷取生理讯号的种类、使用者于穿戴生理检测装置期间的行为、或是所采用的演算式的选择,都会因各种状况而有所不同,因此,在接下来的叙述中,为避免混淆,于讯号质量低时所采用的演算式将统称为第一演算式,所提供的生理信息统称为第一生理信息,而于讯号质量高时所采用的演算式则统称为第二演算式,所提供的生理信息则统称为第二生理信息。
请参阅图1,其为根据本发明一较佳实施例的讯号处理流程图,其以PPG传感器及/或心电电极所能取得的心率信息为主。当取得生理讯号后,在决定讯号质量时,会先决定讯号质量是否不足以执行计算,例如,其中一种状况是,根据讯号质量相关信息得出讯号质量不良是由于传感器/电极发生脱落或接触不良,例如,发现讯号中断、失去生理特征等,在此情形下,将不执行计算/分析,并通过该信息提供接口而提醒使用者此现象,另一方面,也会持续侦测传感器/电极的设置情形是否改善,并于恢复时重新开始计算/分析。
另一种情状况是,根据讯号质量相关信息得出讯号质量不良是由于使用者移动所致,例如,动作感测元件侦测到大量、长时间的移动,在此情形下,若移动已造成生理讯号无法进行分析,则不进行计算/分析,并通知使用者是因移动太大而无法计算/分析,此时,较佳地是,进一步提供使用者相关动作感测元件的信息,例如,活动强度及/或活动量,以作为使用者的参考,且同样地,在此情形下,也可持续监测使用者的移动情形,并于讯号质量恢复时,例如,移动减缓/停止时,重新开始计算/分析;另一方面,若移动所造成的噪声及/或人为干扰源等可通过执行程序而被移除,且经移除程序后的生理讯号仍具生理意义,则在此情形下,较佳地是,于执行移除程序后,以一段时间的平均数据的方式提供给使用者,例如,平均心率,其中,取得平均数据的方法有多种选择,例如,可利用频域分析的方式,或者,也可利用移动平均(moving average),或取去头尾平均数(trimmed mean)等方式而取得平均数据,而让使用者仍能了解生理状态的大致变化趋势,或者,替代地,也可在讯号质量不良时,利用缩减取样(down sampling) 的方式处理所取得的生理讯号,除了达到数据压缩的目的外,也可节省计算资源及电力消耗,故同样是可行的方法,另外,较佳地是,在提供平均数据的同时,也提供讯号质量指数,让使用者也了解据以计算此平均数据的生理讯号质量为何。再者,在进行讯号处理时,也可使用常见的数字信号处理程序(Digital Signal Processing),例如,拉普拉斯(Laplace)转换,傅立叶(Fourier)转换,以及希尔伯特(Hilbert)转换,Z转换等,因此,没有限制。
在此,需要注意地是,如上所述,因讯号质量不佳而采用的第一演算式将可根据实际情形的不同而有不同的选择,可以是上述的单一或任意组合,不受限于特定的处理方式。
因此,通过上述的方式,即使是在讯号质量不佳的状况下,也可让使用者获得正确且实时的生理信息,并了解装置实际运作的情形为何,而且,更进一步,很重要地是,这样的运作模式还可达到省电、节省储存空间、减少事后计算资源等效益,例如,云端储存空间以及云端计算资源。
进一步地,通过讯号质量的判断,而可达到省电的效果。由于根据本发明装置的主要目的在于进行连续生理监测,例如,8小时、24小时的连续监测,因此,其中一个相当关键的重点即是电力是否足以提供长时间的运作,且由于大部分情况下,穿戴式装置的体积多决定于电池的大小,因此,若可减少电力的消耗,也有利于减少使用者穿戴装置时的负担。
据此,通过上述的方式,当判断出当前生理讯号的质量不足以进行分析时,就可进一步通过降低、停止生理感测元件的电量消耗而达到省电的效果,举例而言,在一实施例中,PPG传感器的发光强度直接影响的是所取得的生理讯号的振幅大小,故通常可通过加强发光强度而克服环境光源所造成的干扰,但当造成讯号质量不佳的是其他原因时,例如,传感器设置出现松脱、身体移动过大等情形,则不容易通过改变发光强度而获得改善,因此,在此情形下,在讯号质量无法获得改善前,就可降低发光强度、甚至停止发光而达到降低电量消耗,其中,若采用的是降低发光强度的方式,将可在节省电力消耗的同时 也持续监测讯号质量是否已改善,待改善后再恢复发光强度,而在停止发光的情形下,则可通过定期地启动PPG传感器来监测讯号质量是否已改善,待恢复后再重新启动生理感测元件的侦测动作,而且,PPG传感器暂停发光即表示讯号的取样已停止,故还可减少数据量与所需储存空间;再者,在另一较佳实施例中,也可在讯号质量为低时,通过改变生理感测元件的取样率的方式,例如,降低心电讯号及/或脉波讯号的取样率,而达到省电的效果,一般而言,高取样率有利于取得精准的分析结果,但当讯号质量不佳时,则不需要太高的取样率,故可通过降低取样率的方式仅取得粗略心率信息、及/或用来作为讯号质量的判断,以降低电力消耗,并且,也可减少数据量及所需储存空间、以及节省计算时间及资源,是相当具效率的方式。
再者,也具优势地是,为了事后分析而进行的储存动作,也可在发现讯号质量不足以进行分析时(无论生理感测元件是否改变发光强度、停止取样、或降低取样率)被暂时停止,例如,发现传感器/电极已脱落时,可停止记录讯号,并标记此现象,如此一来,不但可节省储存空间,大幅减少无效的讯号,也减少事后计算/分析所需的计算资源,例如,云端的计算资源,并且,也减少需要介入的人力成本,相当具有优势。
然而,特殊地是,当装置的应用目的不同时,也有可能实施为相反的情形,举例而言,其中一种运动生理监测装置的目的是在于持续、不中断地产生心率信息,因此,当发现有剧烈移动时,反而会加强发光强度,以期通过提高S/N比而尽可能地从中分辨出心率特征,因此,在讯号质量低时如何改变发光强度并无一定的限制,可依目的不同而有不同的选择。
另一方面,当讯号质量为高时,即表示所取得的生理讯号的生理特征清楚且S/N比高,故自然可对其进行更多的分析,不再受到限制,也因此,可提供更详尽的生理信息内容。
以PPG讯号为例,当讯号质量高时,将可分辨出每一个心跳,精准地计算每个心跳间的时间间隔,以取得精准心率(beat-to-beat hear rate),进而得出心率变化(Heart Rate variation),因此,首先,最直 接可提供地是,实时心率值,让使用者掌控实时的心脏活动变化。
接着则是可进行有关心律不整的分析,通过分析心率变化可筛选出是否有心律不整可能事件,例如,早发性收缩(Premature Beats),心房颤动(AF,Atrial Fibrillation),心跳过快(Tachycardia)、心跳过慢(Bradycardia)、心跳暂停(Pause)等各种症状,其中,很重要的一个症状是心房颤动,其是心脏快速而不规则的跳动,可能是短暂的一段时间,也可能是较长的一段时间,且已知心房颤动会增加心脏衰竭(heart failure)、中风(stroke)等疾病的危险性,故是非常重要的一个指标。在此情形下,虽然有些心律不整的类型无法完全被区分,例如,早发性收缩包括有发生于心房的早发性心房收缩(Premature atrial contractions,PAC),以及发生在心窒的早发性心室收缩(Premature ventricular contractions,PVC)两种类型,仍需通过观察心电图波形而进行判定,但通过观察心率的变化,仍可解读出是否出现心律不整可能事件,并达到预先筛选的目的,通知使用者出现心律不整的相关特征,而通过这样的通知,使用者即知需要进一步咨询医生,进行更详尽的检查,例如,可通过显示心律不整可能事件的累积次数的方式而告知使用者。
所以,较佳地是,根据本发明的装置可提供一通知讯息,以实时地在出现严重的心律不整可能事件时通知使用者,然而,由于偶发的某些类别心律不整属于正常生理现象,因此,为了不造成使用者的困扰,也可实施为达到预设次数后,例如,特定时间内累积发生了特定次数以上,才通知使用者,在未达预设次数前,则仅提供而不通知,例如,仅显示于屏幕上今日已累积的次数,并且此预设次数可实施为由程序内建、或是由使用者自行设定等,没有限制。
再者,进一步地,通过分析心率,可获得HRV以及自律神经活动的信息,而此两项信息则是与许多的心血管疾病以及人的身体状态有着密切的关系,例如,发生心肌梗塞前的一段时间,例如,2-3天,自律神经活性会变得非常低,因此,若可事先得知此一情形,就有机会避免心肌梗塞的发生;另外,通过分析心率,还可获得相关RSA(Respiratory Sinus Arrhythmia,呼吸性窦性心律不整)的信息,进而 得知使用者的呼吸变化,而由于通过有意识地调整呼吸可影响自律神经,因此,通过这样的信息,可帮助使用者改善自律神经活动。此外,当采用的PPG传感器具有多个光源时,将可获得有关血氧浓度的信息。
在此,需要特别说明地是,一般在计算HRV时,当采用频域(frequency domain)分析方法时,通常需要3-5分钟的连续生理讯号作为基础,但由于本发明装置是实施为穿戴形式,故可预期所取得的生理讯号中可能存在许多因身体移动所造成的波动、或中断,因此,特别地是,可以采用时域(time domain)分析的方式,由于3个以上连续心跳即可取得时域分析的心率变异率(HRV)信息有效值,故即使发生讯号中断也可进行分析,且此分析是使用统计的方法,时序关系并非必要,如此一来,在较低的讯号质量下,仍可进行时域分析以取得HRV以及自律神经活动的相关生理信息,是相当适合的方法。
接着,再以心电讯号为例,由于心电图是最传统的心率取得来源,因此,上述通过分析PPG讯号取得心率而能提供的信息,也皆为通过分析心电讯号所能提供的内容,例如,实时心率,相关心律不整信息,HRV及自律神经活动信息,以及相关RSA信息等,故在此即不赘述。
而相较于脉波讯号,心电图最大的特征就在于其能提供心跳波形,因此,在判断心律不整时,就可通过观察心电图波形中P波及/或QRS波的形状是否出现异常而判断收缩是来自心室或心房的部位,而清楚的分辨PAC以及PVC,另外,也可知道是否具有心律不整以外的症状,例如,通过观察ST值(ST level)可得知是否具有心肌梗塞症状,或观察QRS波的振幅而得知是否有心室肥大等。
在此,需要注意地是,第二演算式的选择同样不受限制,可以是上述的任何组合,尤其,由于第二演算式所能提供的生理信息更为详尽,因此,使用者可以有更多的空间选择自己需要的生理信息内容,完全没有限制。
另外,当已因讯号质量为高而选择第二演算式时,除了上述的各种分析外,也可实施为在输入的生理讯号种类不只一种时,例如,包括了PPG讯号及心电图时,提供可仅分析其中一种生理讯号的选择,例如,仅就PPG讯号进行分析,或是选择分析心电图等,以提供更符 合需求的信息。
此外,虽然在前面的叙述中,第一生理信息的提供主要在讯号质量为低的时候,但较佳地是,该第一生理信息也可在生理讯号质量为高时提供,而让使用者可获得更多信息,至于第一与第二生理信息分别要于何时提供,则可实施为由使用者自行设定,或是随时通过手动方式启动等,可视使用需求而不同,没有限制。
再者,也需注意地是,选择使用第一演算式(讯号质量低)以及第二演算式(讯号质量高)的基础是实时地,也即,完全依照所取得的讯号质量而决定,没有特定的时段限制。
至于如何将信息(包括讯号质量信息,生理信息,以及通知讯息等)提供给使用者,则有许多选择。首先,由于本发明的装置是实施为穿戴于使用者身上的形式,因此,其中一种较佳方式是,将信息提供接口也穿戴于使用者身上,例如,通过与装置结合、或是与穿戴结构结合的方式,如此一来,使用者就只需要单个穿戴动作就可完成所有的设置,在此,可选择的信息提供方式包括触觉、听觉、及/或视觉可感知的形式,例如,振动,声音,语音,发光,颜色变化,文字显示等,不受限制,例如,可通过设置振动模块,发声元件,发光元件,显示元件等而达成,其中尤其具有优势地是,采用振动的方式,由于根据本发明的装置旨在于执行连续生理状态监测,因此,使用者多会希望将装置穿戴于较不显眼的位置,而振动即是最适合此种状况的信息提供方式之一。
或者,替代地,信息也可通过一外部装置而提供给使用者,举例而言,根据本发明的装置可通过有线或无线的方式将欲提供的信息传送至该外部装置,并通过该外部装置所具有的信息提供接口而将信息提供给使用者,例如,该外部装置可以是智能型手机,平板计算机,智能手表等可携式电子装置,并与根据本发明的装置通过耳机插孔、或蓝牙等方式而相互连接,如此一来,即也可利用振动,声音,语音,发光,颜色变化,文字显示等方式而让使用者实时得知自己的生理状态,同样相当具方便性。
再者,也具优势地是,根据本发明的装置可进一步提供一触发按 键,以让使用者可在欲得知自身的生理状况时,通过按压或触碰的动作而主动启动信息的提供,而不是被动的等待。
另外,有关对讯号的处理,也有多种可能。举例而言,在一较佳实施例中,可由穿戴于身上的装置进行计算、分析、及信息提供;或者,在另一较佳实施例中,当实施为与外部装置相连接(可以是有线或无线连接)时,可由穿戴于身上的装置进行计算、分析,而由外部装置提供信息,或是可将所取得的生理讯号、讯号质量相关信息等实时传输至外部装置,而由外部装置进行计算、分析、及信息提供;或者,在另一较佳实施例中,会将讯号先储存下来,留待之后再行计算、分析,例如,于睡眠期间进行的检测,通常会采先行储存的方式,而在此情形下,生理讯号可直接储存于装置中,例如,可储存于内存中,再通过有线或无线传输的方式传输至外部装置,或可储存SD卡中,再由外部装置读取SD卡的方式而取得所储存的数据,或者也可传输至外部装置进行储存,至于讯号质量相关信息,则也可先行储存,待事后分析时才决定讯号质量指数/等级等,或者,也可先行决定讯号质量指数/等级并标记于所取得的生理讯号上,没有限制。
在又一较佳实施例中,所取得的生理讯号、讯号质量相关信息则是被传送至云端储存系统,再由云端进行大数据运算,例如,可由穿戴装置直接上传、或是通过该外部装置连接网络而上传至一网络伺服器,且可实施为实时上传、或是先储存后再上传的形式,没有限制,另外,该网络伺服器在进行运算后,还可根据生理讯号及/或讯号质量信息而产生报告,以让使用者可以更清楚地了解检测结果。据此,可以有各种可能的实施方式,可依实际需求不同而改变。
由于本发明的目的在于提供连续生理监测,例如,8小时,24小时的长时间监测,故无可避免地,会产生大量的数据量,储存于装置内,而当需要进行如上述的数据传输时,尤其是通过无线传输方式进行时,数据量的大小将直接影响传输的时间,在此情形下,根据本发明的讯号质量判断程序即可带来缩短传输时间的优势。举例而言,在经过本发明的讯号质量判断程序后,若发现讯号质量不佳,正如前述,可能采取,例如,降低取样率、停止取样、停止记录/储存生理讯号、 及/或利用缩减取样的方式处理生理讯号等手段,故一方面可省电,另一方面也可减少数据量,而减少数据量除了影响储存空间以及计算资源外,也相当重要地就是缩短数据传输时间,因为,除了长时间监测无可避免地数据量大外,当具有多种生理感测元件时,数据量将是倍数成长,因此,有效地降低数据量将有助于大幅地减少传输时间,尤其,现今的穿戴装置多是采用无线传输方式,例如,蓝牙,以降低接线的复杂度,故多会受限于其数据传输带宽,若无法有效降低数据量,将会浪费大量的时间在数据传输上。
另外,进一步地,还可根据讯号质量判断的结果而决定是否要进行传输,例如,若判断结果显示生理讯号质量过差,则可实施为不将数据传输至外部装置或网络伺服器进行计算(无论数据量是否已被减少),同样可通过这样的方式节省计算资源。
至此,本发明通过在取得生理讯号的同时也取得质量相关信息的方式,使得生理讯号的处理程序可动态地根据讯号质量而有所适应,以最大化保证提供给使用者的生理信息的正确性,并且,也可根据讯号质量而改变生理讯号的取样程序,进一步实时地改变生理监测装置的操作方式,以达到省电、减少数据量及储存空间、缩短数据传输时间、以及节省计算资源等多重的功效。
在实际实施时,为了取得连续讯号,根据本发明的装置可通过一穿戴结构而穿戴于使用者身上,例如,可通过头戴结构、眼镜、耳戴结构、胸带、贴片、衣服、颈戴结构、腕戴结构、臂戴结构、指戴结构等,而设置于头部、耳朵、胸部、颈部、手腕、手臂、手指、或指尖上等位置,没有限制,可根据取得生理讯号的生理感测元件的种类及欲设置的位置,以及使用者的实际需求而改变。
另外,根据本发明的装置可具有一壳体,以将电路(例如,一般用于生理讯号捕获设备的模拟讯号处理器、模拟数字转换器、过滤器、放大器等,在此省略)容置于其中,再由该穿戴结构承载设置于使用者身上,或者,替代地,电路也可直接设于该穿戴结构内,而不另外设置壳体,此外,该生理感测元件可设置于壳体上、穿戴结构上、或通过一连接线延伸而出等,同样没有限制。
当采用PPG传感器时,根据本发明的心血管活动监测装置可以设置的位置包括,但不限于,头部、耳朵、颈部、手腕、手臂、手指、以及胸膛等,其测量的方式是,光发射元件发射特定波长的光线进入皮肤下方血管,光线在穿透血液或经血液反射后被一光侦测器所接收,并通过分析吸光值的变化而得知血流因心脏搏动所产生的变化,以推得心率变化。因此,只要是可通过PPG传感器取得血液生理讯号的位置皆属本发明的应用范畴,没有限制。
或者,也可采用心电电极,以取得心电图,在此情形下,根据本发明的心血管活动监测装置的设置位置包括,但不限于,头部、耳朵、颈部、手臂、手腕、手指、以及胸膛等,举例而言,可以采用传统贴片电极,也可利用胸带将两个电极设置于胸膛,或是通过适应人体各部位的各种穿戴结构而将二个电极设置于使用者身上,以达到连续取得心电讯号的目的。因此,只要是不妨碍使用者的实施方式皆属本发明的应用范畴,没有限制。
当然,也可同时具有多个生理感测元件,举例而言,可同时设置PPG传感器以及心电电极,或是分别设置于不同位置的多个PPG传感器(例如,手臂及手腕,或手腕与手指等),而通过这样的设置,就可通过两个讯号之间的比较及/或校正,而让信息的提供更具弹性,例如,当仅其中一个讯号出现异常时,可在比较后舍弃该出现异常的讯号,如此一来,质量指数将不会被降低,也不会因此而启始第二演算式的计算,使用者仍然可以获得较多的信息内容。
再者,当具有多个生理感测元件时,也可实施为其中一个生理感测元件仅在特定情形下才被启动进行讯号撷取。举例而言,在一较佳实施例中,根据本发明的穿戴式动态心血管活动监测装置可同时具有PPG传感器以及心电电极,且实施方法为,当平时于穿戴身上时,虽然心电电极已接触皮肤,但仅持续地通过该PPG传感器取得心率信息,例如,质量指数为低时提供平均心率,以及质量指数为高时提供实时心率,心律不整可能事件,以及自律神经活动情形信息,而心电电极则仅在该质量指数显示为高时,才被致能为可使用,也就是,心电图仅在稳定的状态下才进行量测,以让稳定状态下所能提供的信息更为 多元。在此,该心电图的测量则可实施为自动开始,或是由使用者进行设定致能的时机,或是由使用者手动启动等,没有限制。
或者,在另一较佳实施例中,在同时具有PPG传感器及心电电极的情形下,当根据本发明的装置穿戴于身上时,该心电电极的至少其中之一实施为未接触皮肤,而是让使用者自行决定在有需要时手动进行接触而测量心电图,举例而言,当装置设置于头部、耳朵、颈部、手腕、手指、手臂上时,可以将一个电极设置于接触皮肤的穿戴结构内侧,而另一电极则位于可由外部进行接触的位置,因此,当有需要进行检测时,使用者就可通过手按压接触外部电极、或是移动装置而使外部电极接触身体其他部位等动作而达成心电图的测量。
且特别地是,上述的方式尤其适合于心律不整的监测,正如先前所述,PPG传感器可用于监测及筛选是否出现心律不整可能事件,因此,通过这样的配置,在PPG传感器连续取得脉波讯号的情形下,通过执行第二表达式,将可得知是否出现心律不整可能事件,此时,只要通过信息提供接口通知使用者发现心律不整可能事件,就可提醒使用者实时进行心电讯号检测,举例而言,可通过振动、声音、或屏幕显示等方式通知使用者出现心律不整可能事件,而使用者收到通知后,只需举起手接触外露的电极就可开始心电讯号撷取,如此一来,不但可确认心律不整是否真的发生,也可实时记录下可能发生问题的心电图,相当有助于医师于事后进行解读及判断。然而,如前所述,由于偶发的某些类别心律不整属于正常生理现象,因此,为了不造成使用者的困扰,也可实施特定类别的心律不整才发出通知,为达到预设次数后,例如,特定时间内累积发生了特定次数以上,才通知使用者,在未达预设次数前,则仅提供而不通知,例如,仅显示于屏幕上今日已累积的次数,并且此预设次数可实施为由程序内建、或是由使用者自行设定等,没有限制。
而且,采用此种方式的另一个优势在于,为了事后解读所储存下来的数据量可大量的减少。虽然心电图确实可提供最详尽的心脏活动信息,但相对地,也表示其数据量较大,因此,在需要长时间连续监测的需求下,这样的方式,就可在确保重要的心脏事件不遗漏地被记 录下来的同时,也省下大量储存空间及计算资源,也可缩短数据传输时间。
所以,较佳地是,根据本发明装置的该通知讯息,也可实施来通知使用者手动进行心电图测量,而该通知讯息的产生时机则可以有各种可能,例如,当该质量指数显示为高时,通知使用者现在适合进行心电讯号的撷取,或是,当分析PPG传感器所取得的讯号后发现心率出现异常时,例如,出现心律不整可能事件时,通知使用者手动进行能提供更多信息的心电图讯号的测量等,都是可能的情形,不受限制。
此外,进一步地,当同时具有PPG传感器以及心电电极时,由于可得出脉波从心脏传至光传感器的感测位置所需的时间,也就是所谓的脉波传递时间(Pulse Transit Time,PTT),其已知与影响血压高低的动脉血管硬度有关,再加上,通过将PPG传感器设置于不同的位置,可通过计算两处脉波传递的时间差而获得相关脉波传播速度(Pulse Wave Velocity,PWV)的信息,如此一来,将可通过其与血压值间特定的关系而计算出参考的血压值。
据此,根据本发明的概念,首先,使用者将装置穿戴于身上,并完成生理感测元件的设置,以开始生理讯号及质量相关信息的撷取;接着,当接收到包含生理讯号及质量相关信息的输入后,处理器立即判断讯号质量为高或低,并以此作为基础而决定要采用的演算式,并在运算后,立即将当前讯号质量所能得出的信息提供给使用者,而当讯号质量出现变化时,处理器即自动重新判断可采用的演算式,并实时提供相应的生理信息给使用者。因此,通过这样的流程,使用者只需配戴上装置,安置好生理感测元件,并开始进行监测即可,无须特别注意自身的动作,更不需要因为出现了症状而需急忙使用另一台装置进行检测。
举例而言,使用者可在配戴根据本发明的穿戴式动态心血管活动监测装置的情形下从事运动,例如,慢跑,而在运动期间,由于处理器会自行根据质量指数而判断所要采用的演算式为何,例如,当正在跑步时,可能造成装置的振动幅度过大,造成讯号质量下降,因此,使用者能看到的信息可能仅限于平均心率等非实时反应生理状况的数 值,而当跑步告一段落后,使用者停下来休息时,由于使用者不再移动,讯号质量高,此时,就可以有更多有关心血管的信息可以提供给使用者,例如,实时心率,相关心律不整的信息,有关HRV及自律神经活动的信息,以及有关呼吸的信息等,而刚运动完的时间也是使用者最在意自己的心血管状况的时候,更是好发心脏问题的时间,这样的装置完全可以满足使用者的需求,提供便利性。
在另一较佳实施例中,使用者可在睡觉时配戴根据本发明的穿戴式动态心血管活动监测装置,例如,头上、手腕上或手指上等,以于睡眠期间持续的进行讯号的收集。在此情形下,首先,由于使用者正处于睡眠期间,因此,相较于实时显示,更需要的是记录下整晚的讯号,以供醒来后让使用者或是医护人员进行诊断,例如,可以通过分析心电图、及/或由PPG传感器取得的心率信息而了解是否发生心律不整,也可获得HRV而得知自律神经活动情形,进而判断睡眠阶段、睡眠深度等。
另外,也可在所采用的PPG传感器具有多个光源的情形下,记录下血氧浓度的变化,以判断是否出现睡眠呼吸中止事件,例如,呼吸暂停(Apnea)以及浅呼吸(Hypopnea),而呼吸变化直接影响的就是血液中的氧气浓度,因此,通过所取得的血氧浓度变化,就可将本发明的穿戴式动态心血管活动监测装置应用于睡眠呼吸中止事件的侦测,更增加其实用性。
在此,替代地,除了采用穿戴形式外,也很适合采用其他形式的传感器,例如,床垫压力传感器也可取得因心脏跳动所产生的振动、或是床边的电磁感应装置可测得因心电所产生的电磁场变化等。
再者,通过该质量相关信息的内容,还可得知使用者的睡眠情形,例如,可通过分析心率讯号的方式,或是在采用动作感测元件的情况下,间接或直接地获得身体移动的信息,例如,翻身的频率,进而判断睡眠质量的好坏等,因此,除了原先具有的提供心血管相关信息的功能外,只需对原本提供的讯号进行不同的分析,就可进一步地提供相关睡眠质量、睡眠深度的信息。
而且,具优势地是,通过根据本发明的讯号质量记录,医护人员 在事后解读/分析讯号时,可减少察看质量不佳讯号的时间,例如,使用者有可能在睡眠期间因移动而导致生理感测元件松脱,此可清楚地反应于讯号质量记录中,因此,医护人员只需在解读/分析前先了解讯号质量的整体状况,或是观察每一讯号区段所标记的讯号质量,并选择讯号质量足以进行分析的区段,可大量节省时间及资源。
在又一较佳实施例中,使用者可在进行放松、生理回馈、或呼吸训练时,配戴着根据本发明的穿戴式动态心血管活动监测装置,此时,由于身体多半处于静止的状态,故可预期所取得的心率讯号质量相对较高,也因此可获得较多的生理信息,例如,可取得实时心率,HRV变化,自律神经的活动情形,以及呼吸情形等,而这些则都是放松、生理回馈、及/或呼吸训练程序中会出现变化的生理信息,因此,相当适合应用于这些程序来了解所达到效果。
在再一较佳实施例中,使用者可在日常生活中配戴根据本发明的穿戴式动态心血管活动监测装置,除了可长期记录作为健康管理之用,通过连接上网络,例如,可实施为穿戴于身上的装置直接连网,或通过一外部装置而连网,可将所取得的心血管相关信息传送至远程,例如,远程医护中心或医护人员,举例而言,可定期地上传数据,或者,也可在侦测到心脏出现问题时,例如,发现心律不整可能事件时,实时地将心脏出现问题的情形通知远程,或者,也可以通过在装置上增设紧急按钮,让使用者按压而紧急求救,不受限制。
因此,通过取得讯号质量相关信息并决定讯号质量的方式,根据本发明的装置就可在不同的操作情况下提供不同的信息,让使用者通过同一个装置就可获得最大的使用效益。
以下即举例说明实际实施时的可能实施方式。
首先,根据本发明的心血管活动监测装置也可实施为耳戴形式,而生理感测元件则实施为同时具有PPG传感器以及心电电极。
在现代人的生活中,耳机的使用越来越普遍,尤其在搭乘大众交通工具、行走期间,很常使用耳机听音乐,因此,采用耳戴形式不但不显突兀,也可自然融入日常生活中,而且,更具优势地是,直接实施为与耳机相结合的形式,例如,与用来听音乐的耳机,或是用来收 发声音的耳机麦克风等相结合,且也不限于是双边耳戴或单边耳戴形式,或是采用耳塞或耳挂形式,如此一来,还可直接利用耳机作为信息提供接口,以将生理信息、通知讯息等提供给使用者,相当具便利性。
在采用耳戴形式的情形下,PPG传感器及心电电极的设置位置根据耳戴结构的不同有许多选择,而在此要特别说明的位置是,请参阅图2所示的耳廓(auricle,也称为pinna)结构,其中,在耳廓内面的耳甲艇(superior concha)及耳甲腔(inferior concha)的周围,有自耳甲底部(concha floor)(也即,平行于头颅的平面)向上连接至对耳轮(antihelix)以及对耳屏(antitragus)的一垂直区域,称为耳甲墙(concha wall),此耳朵的天然生理结构正好提供了垂直于耳甲底部的一连续平面,另外,紧接于耳甲墙下方,位于对耳屏以及耳屏之间的耳屏间切迹(intertragic notch),以及紧邻的耳屏(tragus),同样提供了垂直于耳甲底部的接触区域。
当以此区域作为电极接触位置时,固定电极所需要的力量,将会是平行于耳甲底部的力量(也即垂直于该耳甲墙方向的力量),尤其,当实施为耳塞形式时,通过耳塞与耳廓内面的凸起与凹陷间的抵顶力量,就能自然地同时达成生理感测元件与此垂直区域间的稳定接触,在使用上相当具方便性。
另外,耳廓背面的接触位置也具有同样的优势,尤其一般常见耳挂结构在实施时通常都会在耳廓的前方及后方分别设置一部件,并通过两者间的相互作用力而达到固定于耳廓上的效果,因此,当生理感测元件的接触位置选择在耳廓背面时,将正好符合相互作用力的施力方向,自然就能达成电极与耳廓背面皮肤间的稳定接触。
据此,在此实施例中,当PPG传感器实施为通过该耳戴结构而设置于耳朵上及/或耳朵附近时,其设置位置可依耳戴结构的实际实施情形而改变,例如,当该耳戴结构实施为耳塞形式时,可被设置于耳道内、耳道口、耳甲腔、耳甲艇、耳甲墙、耳甲底部、耳屏、耳屏间切迹、对耳屏等位置,也即,耳塞设置于耳廓内面时可接触到的位置,或者,当该耳戴结构实施为耳挂形式时,PPG传感器可被设置于耳后 部件上,以自耳廓背面,耳廓与头颅间V型凹陷,或耳廓附近的头颅取得讯号,或者,也可实施为耳塞配合耳挂的结构,再或者,也可实施为耳夹的形式,以夹设于耳垂上,因此,没有限制。
至于心电电极,以二个为例,其中一个心电电极实施为位于,当该耳戴结构设置于耳朵上时会与耳朵或耳朵附近的头部皮肤接触的位置,如此一来,通过穿戴该耳戴结构的动作就可完成电极的接触,而可设置的位置则与上述PPG传感器相同,例如,耳垂、耳道内、耳道口、耳甲腔、耳甲艇、耳甲墙、耳甲底部、耳屏、耳屏间切迹、对耳屏、耳廓背面、耳廓与头颅间V型凹陷、及/或耳廓附近的头颅等,也因此,此一心电电极可实施为与PPG传感器相结合。
而另一个心电电极的设置则有多种选择,举例而言,其可同样设置于该耳戴结构上,但不与耳朵或耳朵附近皮肤接触的位置,以让电极呈现外露的状态,因而可让使用者利用上肢进行接触,例如,手指触碰,如图3a所示,在此情形下,使用者只要在需要进行测量时举手触碰电极10,就可实时取得心电讯号,相当方便,而这样的设置方式特别具有优势的利用方式是,以PPG传感器进行连续侦测,并持续根据讯号质量信息而提供实时生理信息予使用者,以让使用者可在有需要,例如,出现心律不整症状时,实时地检测并记录下心电讯号,不但有助于了解实际生理状况,更有助于医师的事后诊断。
或者,替代地,也可通过连接线而将另一个心电电极设置至身体的其他部位,例如,肩颈部、胸部、手臂、手腕、手指等,此时,若再配合另一个穿戴结构,则两个心电电极即皆通过穿戴结构而维持与皮肤间的接触,例如,颈戴结构,臂戴结构,腕戴结构,指戴结构(如图3b所示),胸带等,如此一来,将可实现连续心电讯号撷取,可根据讯号质量信息而决定要提供给使用者的生理信息为何以及是否要储存所取得的心电讯号等,以减少数据量以及所需储存空间,另外,再加上可在心电讯号上标记讯号质量,还可以降低事后分析所需花费的计算、时间资源,相当具有优势。
在此,需注意地是,两个耳朵都是可以选择的设置心电电极的位置,然而,经实验后得知,外露电极或延伸电极的接触位置对于信号 质量有相当程度的影响,其中,当左上肢触碰外露电极时、或延伸电极设置于左上肢时,所获得的心电信号的质量远优于接触右上肢所取得的信号,尤其以电极分别接触左耳以及左上肢有最佳的讯号质量,因此,在以接触耳朵的方式而进行心电讯号测量时,较佳地是利用左上肢接触外露电极或延伸电极,以避免因接触右上肢而造成信号质量不良,进而导致分析产生误判。
首先,在一较佳实施例中,如图4所示,根据本发明的装置实施为颈戴形式,所采用的生理感测元件为一PPG传感器。
在此,如图中所示,特别地是,不同于一般常见的PPG传感器设置位置,例如,指尖、耳垂,在此实施例中,PPG传感器被结合于该颈戴结构上,并通过该颈戴结构而被设置于颈部后方,以进行连续脉波讯号的撷取。
当在决定PPG传感器的测量位置时,最需要考虑的是于该位置所能取得的讯号的强度及质量,因其对分析结果有着极大的影响,故在此考虑下,经由实验测试得知,当采用颈戴形式时,颈戴结构所能触及的生理位置,再配合颈戴结构与人体接触的特性,颈后是可取得强度高且质量佳的PPG讯号的位置,因此,本发明采用颈部后方此一新颖而有效的测量位置作为PPG传感器的设置位置。
而且,由于项链是一般人日常生活中会配戴的饰品,通过颈戴的形式,使用者可在日常生活中自然地使用,不显突兀,而且,即使长时间使用也不增加负担,故相当适合用于生理讯号的连续侦测。
在此,该PPG传感器可通过直接结合于该颈戴结构上的方式,或如图4所示,可通过结合在该颈戴结构所承载的一壳体上的方式而设置于颈部后方,而无论采用何种方式,较佳地是,采用符合颈部后方人体工学的材质及/或结构,举例而言,该颈戴结构可实施为长度较短,刚好围绕颈部,减少位移,或者,也可将该颈戴结构接触颈部后方的部分实施为符合颈部的曲度、及/或采用弹性材质制成,例如,硅胶,橡胶,泡棉,记忆金属,可挠曲塑料材质等,以增加服贴性,减少位移,另外,同样较佳地是,当PPG传感器是设置于壳体表面时,壳体的形状实施为符合颈部的曲度、及/或壳体采用弹性材质制成,因此, 没有限制,只要能增加PPG传感器设置于颈部后方的稳定性的方式属本发明的范畴。
或者,替代地,也可通过该颈戴结构而将一壳体置于锁骨下方、胸前、或腹部前方,因此,通过该壳体及其内容物重量所带来的拉力,颈后的PPG传感器可获得稳定的力量,在此,需要注意地是,在此情形下,PPG传感器仍可通过壳体而设置于颈后,形成前后皆具壳体的状况,故不受限制。
再者,只要配合设置振动模块、发声元件、发光元件、显示元件等,就可实时将相关的生理信息提供给使用者,例如,通过振动、发声、颜色变化、文字显示等方式,相当方便。
此外,进一步地,根据本发明的颈戴装置也适合设置心电电极,以取得心电讯号,在此,可实施为仅单独设置心电电极,或者也可实施为与PPG传感器一起设置,没有限制。
再者,根据本发明的心血管活动监测装置也可实施为眼镜形式,其中,生理感测元件实施为同时具有PPG传感器以及心电电极。
近年来,眼镜已不再限于近视患者配戴,逐渐成为装饰配件,是一般人日常生活中常见且经常使用的配件,因此,采用眼镜形式同样有助于提升使用者的接受度。在此所叙述的眼镜结构是指,通过耳廓以及鼻子作为支撑点而设置于头上、且会与头部及/或耳朵的皮肤产生接触的穿戴结构,因此,不限于一般的眼镜结构,也包括其变形,举例而言,可以是对头颅两侧具夹力的结构,或实施为两边镜脚不对称的形式,例如,一边镜脚于耳廓后方具有弯曲部分,另一边镜脚则不具弯曲部分仅架于耳廓上方,并且,也可不具镜片,因此,有各种可能性,没有限制。
PPG传感器可设置于眼镜结构上贴近头颅及/或耳朵的位置,例如,鼻梁,山根,两眼间区域,太阳穴,耳廓背面,耳廓与头颅间V型凹陷,以及耳廓附近的头颅等;至于心电电极的设置,与前述相似,可将一个心电电极设置于眼镜结构会与头颅及/或耳朵皮肤接触的位置,例如,鼻梁,山根,两眼间区域,太阳穴,耳廓背面,耳廓与头颅间V型凹陷,以及耳廓附近的头颅,因此,进一步实施为与PPG传感器相 结合,而另一电极10则可设置于眼镜结构的外露表面以供使用者的手部触碰,如图5a所示,或是利用连接线延伸而出接触身体其他部位,例如,肩颈部、胸部、手臂、手腕、手指等,且也可进一步配合另一个穿戴结构而达成长时间设置电极的可能。
至于电极及PPG传感器与眼镜结构的结合方式,则有各种可能,举例而言,可将电极、PPG传感器、及所需电路(例如,处理器,电池,无线传输模块等)直接嵌设于眼镜结构中,例如,眼镜脚、眼镜框架中;或者,也可通过附加结构而达成电极、PPG传感器、电路的配置,例如,如图5b所示,该附加结构14可实施为延伸自单边的眼镜脚,以使PPG传感器12、一个电极10接触单侧耳廓附近的接触点,并将另一个电极提供于附加结构的外露表面上,以供触碰,而所需电路则可依需求而部分或全部设置于眼镜结构或该附加结构中,另外,进一步地,该附加结构可实施为可移除形式,以让使用者具选择性地可在有需要时再将附加结构结合至眼镜结构上进行侦测。因此,可以有各种可能,没有限制。
此外,特别地是,在采用眼镜形式的情形下,只需于眼镜结构上设置发声元件及/或收音元件(例如,麦克风),就可让眼镜结构具有耳机及/或麦克风的功能,或者,也可利用由眼镜脚延伸出耳机的方式,在此,特别地是,所采用的发声元件、耳机除了可以是一般常见的空气传导形式外,也可采用骨传导形式,例如,可直接在镜脚与头骨接触的位置处设置骨传导扬声器,或是从镜脚延伸出骨传导耳机,没有限制,另外,也可设置振动模块、显示元件、发光元件等,如此一来,就可直接利用眼镜结构作为信息提供接口,以将生理信息、通知讯息等提供给使用者,相当具便利性,至于讯息的提供则可通过声音、振动、发光、镜片显示等各种方式,没有限制。
更进一步地,当实施为可与一外部装置相沟通时,例如,以耳机插孔、蓝牙等有线或无线方式与智能型手机、平板计算机、智能手表等进行沟通,则通过收音元件及发声元件(空气传导式或骨传导式),眼镜就可进一步作为免持听筒,以用于通话,此外,通过设置振动模块、发声元件(空气传导式或骨传导式)、显示元件、发光元件等, 眼镜还可作为该外部装置的讯息提供接口,例如,用来提供来电提醒、讯息通知等,至于讯息的提供,同样可通过声音、振动、发光、镜片显示等各种方式,没有限制。
此外,特别地是,还可进一步结合眼镜结构及耳戴结构,以用来设置电极及/或光传感器,例如,可由眼镜结构延伸出一耳塞或耳夹,或是眼镜结构具有一端口,以电连接一耳塞或耳夹,或是耳戴结构可套设于眼镜结构上等,如此一来,就有更多的实施可能性,举例而言,可在眼镜结构上与皮肤的接触位置以及外表面各设置一电极,以供使用者在有需要时,利用上肢触碰外露电极而取得心电讯号,然后,进一步地,使用者可在有需要时通过端口连接上一耳塞/耳夹,以通过耳塞/耳夹上的PPG传感器取得连续血液生理信息;或者,也可实施为电极/PPG传感器仅设置于耳戴结构上,且耳戴结构是通过与眼镜结构相结合的方式设置于耳朵附近,而通过这样的方式,等于提供了让一般的眼镜使用者可利用自有的镜架而设置生理感测元件的方式,相当具有优势。因此,可以实施为各种形式,没有限制。
再者,根据本发明的心血管活动监测装置也可实施为指戴形式,其中,生理感测元件实施为同时具有PPG传感器以及心电电极。
在此,选择手指作为设置心血管监测装置的位置的主要原因在于,指戴形式对一般使用者而言,就如同配戴戒指一样,不但是熟悉且无须重新学习的使用方式,且长时间配戴也不会感到负担。而且,特别地是,手指由于生理结构的关系,可取得相当良好的PPG讯号,故特别适合用于心率、SPO2的连续测量,而SPO2的侦测则更可用来了解于睡眠中因呼吸中止症所造成的血氧浓度下降,故可进一步用于侦测睡眠呼吸中止事件。
指戴形式的实施形式有许多可能,例如,如图6a所示,可实施为单纯指戴结构的形式,或者,也可实施为如图6b所示,于指戴结构上再结合一壳体的形式,另外,指戴结构于手指上的设置位置也可依需求而有所不同,可以是指尖或是其他指节,其中,较佳为近节指骨或中节指骨所在的指节,以避免因位置接近手指末端而发生因手部动作脱落的情形,因此,可视实际实施情形而定,没有限制。
如图6a-6b所示,PPG传感器12以及一个心电电极16会被设置于当装置通过指戴结构被设置于手指上时,会因穿戴动作而与该手指皮肤接触的一表面上,如此一来,只要直接将指戴结构结合于手指上即可完成PPG传感器的设置,以及电极与皮肤间的接触。
至于另一个电极10则是位于该装置上除了上述表面外的另一表面上,例如,可以是与该表面相对的表面,或是与其相邻的表面上,只需注意是不会接触该手指皮肤的位置即可。所以,当随时有需要记录下心电图时,只需再进行将外露的电极与设置指戴结构的手指所在肢体以外的其他部分皮肤的接触就可马上进行心电讯号撷取,操作流程及动作简单、自然又方便。
实际操作的方式有许多可能,例如,可由另一手去触碰位于表面的外露电极10,如图7a所示,或者也可通过移动戴该装置的手的方式而触碰其他部分的皮肤,如图7b显示了将戒指接触脸颊的操作情形,以及图7c显示了将戒指接触躯干的心电讯号撷取方式,因此,没有限制,其中,根据实验结果可知,在以手触碰头部进行测量时,以左手配戴指戴结构触碰左半边的头部皮肤可取得尤其良好的生理讯号。
在此,特别地是,由于是采用指戴形式,因此让使用者可通过移动戴有该装置的手去接触身体其他部位的方式而达成心电讯号撷取回路,带来了更多操作可能性,也让使用者可根据使用环境及需求的不同,而选择适合的接触位置,更具便利性。
所以,通过这样的概念,使用者将可很方便地通过接触不同的位置,而取得不同投影角度的心电图,有助于更精准地判断心脏的状况,图8显示了一般取得标准十二导极心电图的接触位置,通过根据本发明的指戴式心血管监测装置,使用者将可很方便地将装置配戴于左手手指上,并通过接触V1~V6各个量测点,而分别取得不同角度心脏的心电图投影。
在进行心电图测量时,每两电极就可得出一个角度的心电图,也就是,电极的设置位置决定了心电图所反应的心脏电气活动的投影角度,而由于心脏是立体的,且产生病变的心脏部位可能位于任何心脏位置,例如,心肌梗塞的检查需要察看心电波形中是否出现因心肌坏 死而出现的ST飘移,但往往可能因为其发生位置的关系而在某些角度下无法被察觉,此时,就需要通过不同角度的心电图才有可能检查得出来,因此,取得不同角度的心电图对于判断心脏疾病有很大的帮助。
而位于外露表面电极同样也可实施为通过连接线延伸而出接触身体其他部位,例如,头部、耳朵、肩颈部、胸部等,且也可进一步配合另一个穿戴结构而达成长时间设置电极的可能,因此,没有限制。
另外,根据本发明的心血管活动监测装置也可实施为腕戴形式,如图9a-9b所示,生理感测元件则实施为PPG传感器以及心电电极。
采用腕戴形式是因为,对一般使用者而言,腕戴形式的监测装置就如同配戴手表一样,是熟悉且无须重新学习的使用方式,接受度相当高,且还可实施为直接与手表相结合,以进一步通过手表作为信息提供接口,例如,利用屏幕显示、发光、产生声音/语音的方式提供生理信息、通知讯息等,轻松融入使用者的日常生活。
当采用腕戴形式时,一般而言,可实施为腕戴结构结合壳体的形式(图9a),或是单纯腕戴结构的形式(图9b),而无论采用何种形式,装置运作所需的电路是被设置于壳体及/或腕戴结构中。
如图所示,PPG传感器12被设置于壳体及/或腕戴结构设置于手腕上时面向手腕的一表面上,以在装置通过腕戴结构而设置于手腕上时,可自手腕附近取得讯号,同样地,其中一个心电电极16也会被设置于该表面上,其可实施为与PPG传感器相结合、或分开设置,没有限制;另一个电极10则可位于装置除了该表面外的另一表面上,例如,可以是与该表面相对的表面,或是与其相邻的表面,其中,较佳地是实施为与手表的按钮相结合,自然融入手表的一般操作,在此,只需注意是不会接触该手腕所在肢体皮肤的位置即可,所以,当使用者觉得有需要时,可利用另一手进行触碰,或者也可实施为通过连接线延伸而出接触身体其他部位,例如,肩颈部、胸部、手臂、手腕、手指等,且也可进一步配合另一个穿戴结构而达成长时间设置电极的可能。
在此,类似地,基于手腕可移动的特性,与指戴形式一样,可让使用者通过移动配戴腕戴结构的手腕接触身体其他部位的方式而取得心电讯号,例如,可由手腕移动而接触胸膛、头部等其他位置,增加 使用方便性。
另外,需注意地是,无论实施为何种穿戴形式,耳戴形式、眼镜形式、或腕戴形式,在设置心电电极时,除了选择地采用供手部触碰的外露电极、或是采用连接线连接的延伸电极外,也可较佳地实施为同时具有两者,举例而言,如图10所示的腕戴结构,其具有一端口18,以供电连接该延伸电极,因此,在实际实施时,可实施为该外露电极会在该延伸电极连接至该端口时自动失能,或者,也可通过一切换开关而让使用者自行决定要启动哪一个电极,实施方式不受限。
由于相较于位于装置表面的电极,延伸电极可设置于其他接触位置,因此就提供了取得不同心脏角度投影心电图的可能,举例而言,可利用左手触碰戴于左耳耳戴结构的外露电极而取得一种心脏角度投影心电图,也可将延伸电极设置于胸膛、或右手上而取得另外两种不同心脏角度投影心电图;或者,也可利用右手触碰戴左手腕戴结构上的电极而取得一种心脏角度投影心电图,也可将延伸电极设置于左边耳朵而取得另一种心脏角度投影心电图,而由于产生病变的心脏部位可能位于任何心脏位置,例如,心肌梗塞的检查需要察看心电波形中是否出现因心肌坏死而出现的ST飘移,但当病变发生位置在某些角度下无法被察觉时,不同角度的心电图就有其必要性。
综上所述,根据本发明的穿戴式动态心血管活动监测装置,其通过取得一讯号质量相关信息,而作为分析生理讯号时选择演算式的基础,因而可针对不同的使用状态,例如,使用者移动或静止,或是生理感测元件的设置情况等,而提供不同生理信息,最大化使用者可获得的信息内容,达到一机多用的目的。
而且,通过本发明的设计,当使用于日常生活中时,使用者可以在测得任何心血管状况的当下就实时获得信息及通知,无须等回到家中或到医院后才可进行下载及分析,对自身心血管健康的掌握度将可更为实时,更可因此而获得提醒,以进一步咨询医生;并且,通过这样的设计,无论采用眼镜形式、耳戴形式、指戴形式、或腕戴形式,也能在日常生活中长期的记录配戴者的生理变化,相当适合应用于居家看护领域。

Claims (35)

  1. 一种动态心血管活动监测方法,其特征在于,该方法包括下列步骤:
    提供一生理感测元件;
    通过该生理感测元件取得使用者的一心血管活动相关生理讯号;
    取得一讯号质量相关信息;
    提供多个预设条件以及多个演算式;
    比较该讯号质量相关信息与该多个预设条件,以决定一讯号质量;以及
    当该讯号质量相关信息符合该多个预设条件中的一第一预设条件时,执行该多个演算式中的一第一演算式,以根据该生理讯号而产生一第一生理信息;或
    当该讯号质量相关信息符合该多个预设条件中的一第二预设条件时,执行该多个演算式中的一第二演算式,以根据该生理讯号而产生一第二生理信息,
    其中,随着该讯号质量的改变,该第一生理信息及第二生理信息的提供也出现相应的改变。
  2. 根据权利要求1所述的方法,其中,其还包括下列步骤:
    根据该讯号质量而改变该生理感测元件的取样率。
  3. 根据权利要求1所述的方法,其中,该生理感测元件实施为下列的其中之一或多,包括:光容积变化传感器,压力传导器,以及心电电极。
  4. 根据权利要求3所述的方法,其中,该第一演算式执行下列的其中之一或多,包括:执行噪声移除程序,以及计算平均心率。
  5. 根据权利要求3所述的方法,其中,该第二演算式执行下列的其中之一或多,包括:计算实时心率,计算心跳变异率,计算心率变化,分析自律神经活动情形,辨识心律不整事件,以及辨识睡眠呼吸中止事件。
  6. 根据权利要求5所述的方法,其中,其还包括下列步骤:
    在出现至少一心律不整事件且符合一通知条件时,产生一通知讯 息;以及
    通过该通知讯息提醒该使用者执行一心电讯号检测。
  7. 根据权利要求5所述的方法,其中,该心律不整事件为下列的其中之一或多,包括:早发性收缩,心房颤动,心跳过慢,心跳过快,以及心跳暂停。
  8. 根据权利要求1所述的方法,其中,在执行该第二演算式时也执行该第一演算式。
  9. 根据权利要求1所述的方法,其中,其还包括下列步骤:
    根据该讯号质量而执行一缩减取样程序。
  10. 根据权利要求1所述的方法,其中,其还包括下列步骤:
    储存该心血管活动相关生理讯号以及该讯号质量相关信息。
  11. 根据权利要求1所述的方法,其中,其还包括下列步骤的其中之一或多:
    将该心血管活动相关生理讯号以及该讯号质量相关信息传送至一外部装置;以及
    将该心血管活动相关生理讯号以及该讯号质量相关信息通过一网络而传送至一网络伺服器。
  12. 根据权利要求1所述的方法,其中,其还包括下列步骤的其中之一或多:
    通过下列的其中之一或多而取得该讯号质量相关信息,包括:一动作传感器,一加速度器,一压力传感器,一触控传感器,一触动开关,以及一对电极;以及
    分析该生理讯号而取得该讯号质量相关信息。
  13. 根据权利要求1所述的方法,其中,其还包括下列步骤:
    提供一信息提供接口,以将下列其中之一或多提供给该使用者,包括:该第一生理信息,该第二生理信息,以及该讯号质量。
  14. 根据权利要求13所述的方法,其中,该信息提供接口实施为位于一外部装置上。
  15. 一种心血管活动监测系统,其特征在于,包括:
    一穿戴式动态心血管活动监测装置,设置于一使用者身上,以自 该使用者取得一心血管活动相关生理讯号以及一讯号质量相关信息;以及
    一外部装置,接收该心血管活动相关生理讯号以及该讯号质量相关信息,包括:
    多个预设条件以及多个演算式;以及
    一处理器,被建构以:
    比较该讯号质量相关信息与该多个预设条件,以决定一讯号质量;
    在该讯号质量相关信息符合该多个预设条件中的一第一预设条件时,执行该多个演算式中的一第一演算式,以根据该生理讯号而提供一第一生理信息;以及
    在该讯号质量相关信息符合于该多个预设条件中的一第二预设条件时,执行该多个演算式中的一第二演算式,以根据该生理讯号而提供一第二生理信息;以及
    一信息提供接口,根据该讯号质量的变化而将该第一生理信息及/或该第二生理信息提供给该使用者。
  16. 根据权利要求15所述的系统,其中,该外部装置为下列的其中之一或多,包括:一个人计算机,一智能型手机,一平板计算机,以及一智能手表。
  17. 根据权利要求15所述的系统,其中,该外部装置进一步通过一网络连接至一网络伺服器。
  18. 根据权利要求15所述的系统,其中,该穿戴式动态心血管活动监测装置进一步根据该讯号质量相关信息而执行该心血管活动相关生理讯号的一缩减取样程序。
  19. 根据权利要求15所述的系统,其中,该穿戴式动态心血管活动监测装置进一步根据该讯号质量相关信息而决定下列的其中之一或多,包括:是否储存该心血管活动相关生理讯号,以及是否将该心血管活动相关生理讯号传送至该外部装置。
  20. 一种心血管活动监测系统,其特征在于,包括:
    一穿戴式动态心血管活动监测装置,设置于一使用者身上,以自该使用者取得一心血管活动相关生理讯号以及一讯号质量相关信息;
    一外部装置;以及
    一网络伺服器,包括多个预设条件以及多个演算式,并被建构以:
    通过该外部装置而接收该心血管活动相关生理讯号以及该讯号质量相关信息;
    比较该讯号质量相关信息与该多个预设条件,以决定一讯号质量;
    在该讯号质量相关信息符合该多个预设条件中的一第一预设条件时,执行该多个演算式中的一第一演算式,以根据该生理讯号而提供一第一生理信息;以及
    在该讯号质量相关信息符合于该多个预设条件中的一第二预设条件时,执行该多个演算式中的一第二演算式,以根据该生理讯号而提供一第二生理信息;以及
    一信息提供接口,根据该讯号质量的变化而将该第一生理信息及/或该第二生理信息提供给该使用者。
  21. 根据权利要求20所述的系统,其中,该穿戴式动态心血管活动监测装置进一步根据该讯号质量相关信息而执行该心血管活动相关生理讯号的一缩减取样程序。
  22. 根据权利要求20所述的系统,其中,该穿戴式动态心血管活动监测装置进一步根据该讯号质量相关信息而决定下列的其中之一或多,包括:是否储存该心血管活动相关生理讯号,以及是否将该心血管活动相关生理讯号传送至该外部装置。
  23. 根据权利要求20所述的系统,其中,该外部装置进一步根据该讯号质量相关信息而执行该心血管活动相关生理讯号的一缩减取样程序。
  24. 根据权利要求20所述的系统,其中,该外部装置进一步根据该讯号质量相关信息而决定下列的其中之一或多,包括:是否储存该心血管活动相关生理讯号,以及是否将该心血管活动相关生理讯号传送至该网络伺服器。
  25. 一种穿戴式动态心血管活动监测装置,设置于一使用者身上,其特征在于,包括:一穿戴结构;
    至少一生理感测组件,通过该穿戴结构而设置于该使用者身上, 以自该使用者取得一心血管活动相关生理讯号;
    多个预设条件以及多个演算式;以及
    一处理器,被建构以:
    取得一讯号质量相关信息;
    比较该讯号质量相关信息与该多个预设条件,以决定一讯号质量;
    在该讯号质量相关信息符合该多个预设条件中的一第一预设条件时,执行该多个演算式中的一第一演算式,以根据该生理讯号而提供一第一生理信息;或
    在该讯号质量相关信息符合于该多个预设条件中的一第二预设条件时,执行该多个演算式中的一第二演算式,以根据该生理讯号而提供一第二生理信息;以及
    根据该讯号质量的变化而动态地提供使用者该第一生理信息及/或该第二生理信息。
  26. 根据权利要求25所述的装置,其中,该穿戴结构实施为下列的其中之一或多,包括:颈戴结构,耳戴结构,眼镜结构,指戴结构,以及腕戴结构。
  27. 根据权利要求25所述的装置,其中,该处理器进一步被建构以根据该讯号质量而改变该生理感测组件的取样率。
  28. 根据权利要求25所述的装置,其中,该生理感测组件实施为下列的其中之一或多,包括:光容积变化传感器,压力传导器,以及心电电极。
  29. 根据权利要求28所述的装置,其中,该第一演算式执行下列的其中之一或多,包括:执行噪声移除程序,以及计算平均心率。
  30. 根据权利要求28所述的装置,其中,该第二演算式执行下列的其中之一或多,包括:计算心率,计算心跳变异率,计算心率变化,分析自律神经活动情形,辨以心律不整可能事件,以及辨识睡眠呼吸中止事件。
  31. 根据权利要求30所述的装置,其中,该处理器进一步被建构以在出现至少一心律不整事件且符合一通知条件时,产生一通知讯息,以提醒该使用者执行一心电讯号检测。
  32. 根据权利要求30所述的装置,其中,该心律不整事件为下列的其中之一或多,包括:早发性收缩,心房颤动,心跳过慢,心跳过快,以及心跳暂停。
  33. 根据权利要求25所述的装置,其中,在执行该第二演算式时也执行该第一演算式。
  34. 根据权利要求25所述的装置,其中,该讯号质量相关信息是通过下列的其中之一或多而取得,包括:一动作传感器,一加速度器,一压力传感器,一触控传感器,一触动开关,以及一对电极;或者其中,该讯号质量相关信息是通过分析该生理讯号而取得。
  35. 根据权利要求25所述的装置,其中,还包括一信息提供接口,以将下列其中之一或多提供给该使用者,包括:该第一生理信息,该第二生理信息,以及该讯号质量。
PCT/CN2017/070855 2016-01-22 2017-01-11 动态心血管活动监测方法、系统以及穿戴式监测装置 WO2017124946A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610043764.8 2016-01-22
CN201610044353.0A CN106974629A (zh) 2016-01-22 2016-01-22 动态心血管活动监测方法及使用该方法的系统
CN201610043764 2016-01-22
CN201610044353.0 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017124946A1 true WO2017124946A1 (zh) 2017-07-27

Family

ID=59361471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070855 WO2017124946A1 (zh) 2016-01-22 2017-01-11 动态心血管活动监测方法、系统以及穿戴式监测装置

Country Status (1)

Country Link
WO (1) WO2017124946A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104986A3 (en) * 2018-11-22 2020-07-23 Kaunas University Of Technology A long-term non-invasive system for monitoring and characterizing atrial arrhythmias in patients with post-stroke conditions
CN111930221A (zh) * 2020-07-14 2020-11-13 苏州宣佑科技有限公司 一种智能设备低功耗模式判断切换的方法
TWI793938B (zh) * 2021-08-11 2023-02-21 聯發科技股份有限公司 生理監測裝置和生理監測方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255122A1 (en) * 2004-08-30 2007-11-01 G.R. Enlightenment Ltd. Device and Method for Measuring Physiological Parameters
CN103860164A (zh) * 2014-02-27 2014-06-18 深圳市理邦精密仪器股份有限公司 一种心电驱动导联自动切换的方法和装置
JP2014193349A (ja) * 2013-03-19 2014-10-09 Avita Corp 生理状態を監視するための装置および方法
CN104095627A (zh) * 2014-05-20 2014-10-15 邱磊 一种心电图数字化信号质量软判决方法和装置
CN104398252A (zh) * 2014-11-05 2015-03-11 深圳先进技术研究院 一种心电信号处理方法及装置
CN104921722A (zh) * 2015-07-15 2015-09-23 西南民族大学 一种双导联融合心电qrs波检测方法
CN104939820A (zh) * 2015-05-28 2015-09-30 深圳市理邦精密仪器股份有限公司 一种起搏信号检测方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070255122A1 (en) * 2004-08-30 2007-11-01 G.R. Enlightenment Ltd. Device and Method for Measuring Physiological Parameters
JP2014193349A (ja) * 2013-03-19 2014-10-09 Avita Corp 生理状態を監視するための装置および方法
CN103860164A (zh) * 2014-02-27 2014-06-18 深圳市理邦精密仪器股份有限公司 一种心电驱动导联自动切换的方法和装置
CN104095627A (zh) * 2014-05-20 2014-10-15 邱磊 一种心电图数字化信号质量软判决方法和装置
CN104398252A (zh) * 2014-11-05 2015-03-11 深圳先进技术研究院 一种心电信号处理方法及装置
CN104939820A (zh) * 2015-05-28 2015-09-30 深圳市理邦精密仪器股份有限公司 一种起搏信号检测方法及装置
CN104921722A (zh) * 2015-07-15 2015-09-23 西南民族大学 一种双导联融合心电qrs波检测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104986A3 (en) * 2018-11-22 2020-07-23 Kaunas University Of Technology A long-term non-invasive system for monitoring and characterizing atrial arrhythmias in patients with post-stroke conditions
CN111930221A (zh) * 2020-07-14 2020-11-13 苏州宣佑科技有限公司 一种智能设备低功耗模式判断切换的方法
TWI793938B (zh) * 2021-08-11 2023-02-21 聯發科技股份有限公司 生理監測裝置和生理監測方法

Similar Documents

Publication Publication Date Title
JP3217016U (ja) 装着型心電検出装置並びに装着型生理機能検出装置
CN205493806U (zh) 穿戴式心电检测装置
JP3214887U (ja) 心血管の健康モニタリング装置
RU2743026C2 (ru) Система наблюдения сердечной активности с использованием датчиков электрического потенциала
WO2016119664A1 (zh) 穿戴式心电检测装置及穿戴式生理检测装置
TWI669102B (zh) Wearable physiological detection device
CN106974629A (zh) 动态心血管活动监测方法及使用该方法的系统
TW202042219A (zh) 睡眠生理系統及睡眠警示方法
US20220218293A1 (en) Sleep physiological system and sleep alarm method
WO2017124946A1 (zh) 动态心血管活动监测方法、系统以及穿戴式监测装置
TWI603709B (zh) Dynamic cardiovascular activity monitoring method and apparatus and system using the same
KR20210065536A (ko) 뇌파 신호를 이용한 우울증 자가 진단 시스템
TW201626941A (zh) 穿戴式心電檢測裝置
TWI610656B (zh) 穿戴式生理監測裝置
TW201726056A (zh) 穿戴式動態心血管活動監測裝置
TWI586319B (zh) Cardiovascular health monitoring device and method
TWI610658B (zh) 穿戴式生理檢測裝置
TW201626950A (zh) 穿戴式心電檢測裝置
TWI701016B (zh) 多用途生理檢測裝置
CN210204731U (zh) 多用途生理检测装置
TWM574026U (zh) 穿戴式生理監測裝置及系統
TWI586321B (zh) Cardiovascular health monitoring device and method
TW201726052A (zh) 分散式心血管活動監測系統
TWI586320B (zh) Cardiovascular health monitoring device and method
TWM566551U (zh) Multi-purpose physiological detecting device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17740977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17740977

Country of ref document: EP

Kind code of ref document: A1