WO2016119205A1 - 马达转速控制方法及其系统 - Google Patents

马达转速控制方法及其系统 Download PDF

Info

Publication number
WO2016119205A1
WO2016119205A1 PCT/CN2015/071930 CN2015071930W WO2016119205A1 WO 2016119205 A1 WO2016119205 A1 WO 2016119205A1 CN 2015071930 W CN2015071930 W CN 2015071930W WO 2016119205 A1 WO2016119205 A1 WO 2016119205A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
current value
stator
control module
induced
Prior art date
Application number
PCT/CN2015/071930
Other languages
English (en)
French (fr)
Inventor
庄志男
Original Assignee
寰纪动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寰纪动力科技有限公司 filed Critical 寰纪动力科技有限公司
Priority to PCT/CN2015/071930 priority Critical patent/WO2016119205A1/zh
Publication of WO2016119205A1 publication Critical patent/WO2016119205A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Definitions

  • the invention relates to a motor speed control method and a system thereof, in particular to a motor speed control method and a system thereof which can weaken the rotor magnetic force and improve the performance.
  • motors are often chosen as the source of power. Since the motor can convert electrical energy or magnetic energy into mechanical energy, it has been widely used in various industrial, electrical, and transportation system devices, and it has become an indispensable device. There are several types of motors, such as induction motors and permanent magnet motors. Users can choose different types of motors according to different environments and conditions.
  • the hardware structure of the conventional permanent magnet motor can be divided into a stator, a rotor and a casing, wherein the stator is composed of an armature coil and an armature core, wherein the armature core is formed by stacking silicon steel sheets, and the armature is located in the stator. Therefore, it is possible to conduct current to the rotor without a brush.
  • the rotor is made up of permanent magnets.
  • the outer casing can not only fix the stator, but also be part of the magnetic circuit.
  • the permanent magnet motor can be divided into two-phase, three-phase and five-equivalent permanent magnet motors in the manner of electronic winding, among which three phases are relatively common, and the structure is similar to that of the synchronous motor.
  • Permanent magnet motors typically have high operating efficiencies that create a torque by the interaction of a permanent magnet on the rotor with a rotating magnetic field generated by the stator windings to maintain a synchronous speed.
  • the permanent magnet motor can achieve extremely high operating efficiency in synchronous rotation.
  • the permanent magnet motor has a slow start-up characteristic, and the torque generated at a low rotational speed is insufficient, so that it takes a long time to reach a certain value. Furthermore, it requires a complicated control system, which indirectly increases the manufacturing cost of the motor. In addition, when the permanent magnet motor reaches the maximum effective speed, it consumes too much power. It can be seen that there is currently a lack of low cost and simple in the market. Easy control system and method, motor torque control method and system with high torque and maximum speed and energy saving at the same time, so the researchers are seeking solutions.
  • the motor includes a rotor and a stator.
  • the rotor comprises at least one inductive rotor portion and at least one permanent magnet rotor portion.
  • the stator is coaxially disposed on the rotor, and the stator includes at least one inductive stator portion and at least one permanent magnet stator portion.
  • the inductive rotor portion and the inductive stator portion correspond to each other and are separated by an inductive spacing, and the permanent magnet rotor portion and the permanent magnet stator portion correspond to each other and There are permanent magnet spacings apart.
  • the control module electrically connects the rotor and the stator.
  • the control module controls the induced rotor current value of the induction rotor portion, the induced stator current value of the induction stator portion, and the permanent magnet stator current value of the permanent magnet stator portion to cause the rotor to generate the rotational speed.
  • the control module will reduce or turn off the induced rotor current value, causing the rotor to maintain the speed by the rotational inertia and the induced stator current value.
  • the display module is electrically connected to the rotor, and the display module can display the rotational speed, the induced rotor current value, and the permanent magnet stator current value.
  • the motor rotation speed control system of the present invention replaces the use of the permanent magnet by the induction coil, and can reduce the thermal demagnetization caused by the high temperature of the motor under high load. Furthermore, the maximum rotor current is activated at low motor speeds to maintain the maximum torque of the motor. In addition, the hysteresis phenomenon of the motor is reduced by the mechanism of weakening of the rotor at a high rotational speed of the motor, thereby achieving the effect of energy saving, and the maximum rotational speed can be further increased by controlling the permanent magnet stator current value by using the control module.
  • the control module can include a first control member that controls the sense rotor current value and the sense stator current value. When the rotational speed reaches a preset value, the first control member reduces or turns off the induced rotor current value. Additionally, the aforementioned control module can include a second control that controls the permanent magnet stator current value. When the rotational speed reaches the preset value, the second control member increases the permanent magnet stator current value, so that the rotational speed becomes larger. Furthermore, the aforementioned motor speed control system may include a power supply that is electrically connected to the control module and the display module. The power supply provides rotating power to the control module, and the rotating electrical energy is converted into induction energy and permanent magnet power through the control module.
  • the inductive power supply is applied to the inductive rotor portion and the inductive stator portion, and respectively generates an induced rotor current value and an induced stator current value.
  • the permanent magnet energy is supplied to the permanent magnet stator and produces a permanent magnet stator current value.
  • the power supply provides control power to the control module and provides display power to the display module.
  • the aforementioned rotor may include a plurality of N-pole magnets and a plurality of S-pole magnets. The N-pole magnet and the S-pole magnet are staggered with each other. Both the rotor and the stator are cylindrical.
  • the aforementioned motor may include two slip rings and a brush set, and the rotor may include an axis. Two collector rings are disposed on the shaft and electrically connected to the inductive rotor portion.
  • the brush set is electrically connected to the control module, and the brush set includes two carbon brushes, and the two carbon brushes respectively connect the two collector rings.
  • the first control member can weaken the rotor at a high rotational speed of the motor, which not only reduces the hysteresis of the motor, but also achieves an energy saving effect.
  • the second control member can increase the permanent magnet stator current value to further increase the maximum speed.
  • the N-pole magnet of the induction rotor portion and the N-pole magnet of the permanent magnet rotor portion are adjacent to each other, and the same polarity mutual exclusion effect can be produced, and mutual magnetic field interference can be prevented.
  • the power supply produces stable power to the motor, control module, and display module for proper operation.
  • the present invention provides a motor speed control method including a first adjustment step, a second adjustment step, a third adjustment step, and a display step.
  • the first adjustment step uses the control module to adjust the induced rotor current value and the induced stator current value.
  • the start control module adjusts the induced rotor current value and the induced stator current value, causing the rotational speed to change.
  • the second adjustment step uses the control module to determine the magnitude of the rotation speed.
  • the dynamic control module reduces or closes the induced rotor current value such that the rotor maintains the rotational speed by the rotational inertia and the induced stator current value.
  • the third adjustment step uses the control module to adjust the permanent magnet stator current value.
  • the startup control module adjusts the permanent magnet stator current value, so that the rotation speed exceeds the preset value.
  • the display step displays the rotational speed, the induced rotor current value, and the permanent magnet stator current value.
  • the motor rotation speed control method of the present invention uses the induction coil instead of the permanent magnet to reduce thermal demagnetization caused by the high temperature of the motor under high load. Furthermore, the maximum rotor current is activated at low motor speeds to maintain the maximum torque of the motor. In addition, the hysteresis phenomenon of the motor is reduced by the mechanism of weakening of the rotor at a high rotational speed of the motor, thereby achieving the effect of energy saving, and the maximum rotational speed can be further increased by controlling the permanent magnet stator current value by using the control module.
  • the control module may include the first control member, and the first adjusting step adjusts the induced rotor current value and the induced stator current value by the first control member.
  • the aforementioned second adjustment step may reduce or turn off the induced rotor current value by the first control member.
  • the aforementioned control module may include a second control member, and the second adjustment step adjusts the permanent magnet stator current value by the second control member.
  • the foregoing motor speed control method may include a power supply step of providing a rotating power, controlling power, and displaying power to the motor, the control module, and the display module, respectively, by using the power supply. The rotating electric energy is converted into induction electric energy and permanent magnet electric energy through the control module.
  • the inductive power is supplied to the inductive rotor portion and the inductive stator portion through the control module, and respectively generates an induced rotor current value and an induced stator current value.
  • the permanent magnet stator portion is supplied to work and the permanent magnet stator current value is generated.
  • the first control member can weaken the rotor at a high rotational speed of the motor, which not only reduces the hysteresis of the motor, but also achieves an energy saving effect.
  • the second control member can increase the permanent magnet stator current value to further increase the maximum speed.
  • the power supply step provides stable power during the other steps, enabling the motor to operate effectively under the premise of energy saving.
  • a motor speed control system that includes a motor, a control module, and a display module.
  • the motor includes a rotor and a stator. Where the rotor contains At least one inductive rotor portion.
  • the stator is coaxially disposed on the rotor, and the stator includes at least one inductive stator portion, and the inductive rotor portion and the inductive stator portion correspond to each other and are separated by an inductive spacing.
  • the control module electrically connects the rotor and the stator. The control module controls the induced rotor current value of the induction rotor portion and the induced stator current value of the induction stator portion to cause the rotor to generate the rotational speed.
  • the control module When the speed reaches the preset value, the control module will reduce or turn off the induced rotor current value, causing the rotor to maintain the speed by the rotational inertia and the induced stator current value.
  • the display module is electrically connected to the rotor, and the display module can display the rotational speed and the induced rotor current value.
  • the motor rotation speed control system of the present invention completely replaces the use of the permanent magnet by the induction coil, and can reduce the thermal demagnetization caused by the high temperature of the motor under high load. Furthermore, the maximum rotor current is activated at low motor speeds to maintain the maximum torque of the motor. In addition, the hysteresis of the motor is reduced by the mechanism of weakening of the rotor at a high rotational speed of the motor, thereby achieving an energy saving effect.
  • the control module can include a first control member that controls the sense rotor current value and the sense stator current value. When the rotational speed reaches a preset value, the first control member reduces or turns off the induced rotor current value.
  • the aforementioned motor speed control system may include a power supply that is electrically connected to the control module and the display module. This power supply provides rotational power to the control module. The rotating electric energy is supplied to the induction rotor portion and the induction stator portion through the control module, and respectively generates an induced rotor current value and an induced stator current value. The power supply also provides control power to the control module and provides display power to the display module.
  • the aforementioned rotor may include a plurality of N-pole magnets and a plurality of S-pole magnets.
  • the N-pole magnet and the S-pole magnet are staggered with each other.
  • Both the rotor and the stator are cylindrical.
  • the aforementioned motor may include two slip rings and a brush set, and the rotor may include an axis.
  • Two collector rings are disposed on the shaft and electrically connected to the inductive rotor portion.
  • the brush set is electrically connected to the control module, and the brush set comprises two carbon brushes, and the two carbon brushes are respectively connected to the two collector rings.
  • the first control member can weaken the rotor at a high rotational speed of the motor, which not only reduces the hysteresis of the motor, but also achieves an energy saving effect.
  • the N-pole magnet of the induction rotor portion and the N-pole magnet of the permanent magnet rotor portion are adjacent to each other, which can produce the same polarity mutual exclusion effect and can prevent Stop each other's magnetic field interference.
  • the power supply produces stable power to the motor, control module, and display module for proper operation.
  • FIG. 1 is a schematic view of a motor rotation speed control system according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line 2-2 of Figure 1.
  • 3A is a side view of the rotor of FIG. 2.
  • 3B is a cross-sectional view taken along line 3-3 of FIG. 2.
  • FIG. 4A is a cross-sectional view of a motor according to another embodiment of the present invention.
  • 4B is a schematic view of a slip ring according to another embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a motor rotation speed control method according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a motor speed control system 100 in accordance with one embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line 2-2 of Figure 1.
  • FIG. 3A is a side view of the rotor 210 of FIG. 2.
  • 3B is a cross-sectional view taken along line 3-3 of FIG. 2.
  • the motor speed control system 100 includes a motor 200, a control module 300, a display module 400, and a power supply 500.
  • the motor 200 includes a rotor 210, a stator 220, two slip rings 250, and a brush set 260.
  • the rotor 210 includes a shaft center 230, an inductive rotor portion 212 and a permanent magnet rotor portion 214
  • the stator 220 includes a housing 240, an inductive stator portion 222 and a permanent magnet stator portion 224.
  • the stator 220 is located outside of the rotor 210.
  • the inductive rotor portion 212 and the inductive stator portion 222 correspond to each other and are separated by an inductive spacing d1.
  • the permanent magnet rotor portion 214 and the permanent magnet stator portion 224 correspond to each other and are separated by a permanent magnet spacing d2.
  • motor 200 has a motor current value 270 that represents the amount of current consumed by integral motor 200.
  • the inductive rotor portion 212 has an induced rotor current value 272 that represents the amount of current consumed by the inductive rotor portion 212.
  • the induction stator portion 222 has an induced stator current value 274, which represents the induction The amount of current consumed by the stator portion 222.
  • the permanent magnet stator portion 224 then has a permanent magnet stator current value 276 that represents the amount of current consumed by the permanent magnet stator portion 224.
  • the induction rotor portion 212, the induction stator portion 222, and the permanent magnet rotor portion 214 each have a coil, and the induction rotor portion 212 and the induction stator portion 222 induce torque through the coil to start the operation of the rotor 210 and generate a rotational speed.
  • the permanent magnet rotor portion 214 is composed of a permanent magnet.
  • the rotor 210 includes a plurality of N-pole magnets 216 and a plurality of S-pole magnets 218, and the N-pole magnets 216 and the S-pole magnets 218 are staggered with each other.
  • the rotor 210 includes the inductive rotor portion 212 and the permanent magnet rotor portion 214, the inductive rotor portion 212 and the permanent magnet rotor portion 214 each have a plurality of N pole magnets 216 and a plurality of S pole magnets 218.
  • the N-pole magnet 216 of the inductive rotor portion 212 and the N-pole magnet 216 of the permanent magnet rotor portion 214 are adjacent to each other, and the same polarity mutual exclusion effect can be generated, and mutual magnetic field interference can be prevented.
  • the inductive stator portion 222 and the permanent magnet stator portion 224 of the stator 220 are fixed to the inner wall of the outer casing 240 and located outside the rotor 210, and the outer casing 240 is pivotally disposed on the shaft center 230.
  • the N-pole magnet 216 of the rotor 210 is staggered with the S-pole magnet 218 at the axis 230.
  • the rotor 210 pivots relative to the stator 220, that is, the axis 230 pivots relative to the housing 240.
  • the stator 220 and the rotor 210 are coaxially pivoted to each other through the outer casing 240 and the shaft center 230.
  • the two slip rings 250 are annularly disposed outside the shaft 230 and electrically coupled to the inductive rotor portion 212 of the rotor 210.
  • the brush set 260 is electrically connected to the control module 300 via wires.
  • the brush set 260 includes two carbon brushes 262, and the two carbon brushes 262 are respectively connected to the two collector rings 250 to conduct current.
  • the outer casing 240 is a hollow cylinder, and the shaft center 230 is of a cylindrical shape. Since the stator 220 is fixed to the inner wall of the outer casing 240, the stator 220 is also cylindrical. Similarly, since the rotor 210 is fixed to the outer surface of the shaft 230, the rotor 210 also exhibits a cylindrical shape.
  • the direction of rotation of the rotor 210 can be forward or reverse. It is also worth mentioning that the inductive rotor portion 212 is spaced apart from the permanent magnet rotor portion 214 by a magnetic spacing d3, which not only prevents mutual interference between the inductive rotor portion 212 and the permanent magnet rotor portion 214, but also prevents the inductive stator. The portion 222 and the permanent magnet stator portion 224 interfere with each other.
  • the control module 300 includes a first control member 310 and a second control member 320.
  • the control module 300 electrically connects the rotor 210, the stator 220, and the brush set 260.
  • Control module 300 by first control
  • the workpiece 310 controls the induced rotor current value 272 of the inductive rotor portion 212 and the induced stator current value 274 of the inductive stator portion 222, and controls the permanent magnet stator current value 276 of the permanent magnet stator portion 224 through the second control member 320 to cause the rotor 210 Rotate to produce the speed.
  • the inductive rotor current value 272 can be reduced or turned off by the first control member 310, but also the second control member 320 can be used to increase the permanent magnet stator current value 276 to make the motor 200 The speed becomes larger.
  • the above preset value is the maximum rotational speed of the rotor 210.
  • reducing or closing the induced rotor current value 272 can weaken the rotor 210, thereby reducing the hysteresis of the motor 200, causing the rotor 210 to be held by its own rotational inertia and the induced stator current value 274 of the induction stator portion 222.
  • Speed and energy saving effect is the speed and energy saving effect.
  • the coil of the rotor 210 is short-circuited to form a closed loop, and there is still an induced current in the coil of the rotor 210, which is affected by the induced stator current value 274.
  • the permanent magnet stator current value 276 can be adjusted simultaneously by the second control member 320, and the highest rotational speed can be further improved.
  • the first control member 310 and the second control member 320 can be implemented by using a knob or a button.
  • the display module 400 includes a first display unit 410 and a second display unit 420, and the display module 400 is electrically coupled to the control module 300.
  • the first display unit 410 displays the rotational speed
  • the second display unit 420 can display the motor current value 270, the induced rotor current value 272, the induced stator current value 274, or the permanent magnet stator current value 276.
  • motor current value 270 includes an induced rotor current value 272 and a permanent magnet stator current value 276.
  • the power supply 500 is electrically connected to the control module 300 and the display module 400.
  • the power supply 500 not only provides rotational power to the motor 200, but the power supply 500 provides control power to the control module 300 while providing display power to the display module 400 for operation.
  • Rotating electrical energy produces a rotational current that is the motor current value 270.
  • electricity The source supply 500 provides rotational power to the control module 300, and the rotating electrical energy is converted by the control module 300 into inductive electrical energy and permanent magnet electrical energy, wherein the inductive electrical energy is supplied to the inductive rotor portion 212 and the inductive stator portion 222.
  • the inductive power supply sensing rotor portion 212 produces an induced rotor current that is the magnitude of the induced rotor current value 272.
  • the inductive power supply sensing stator portion 222 generates an induced stator current that is the magnitude of the induced stator current value 274.
  • the power supply 500 provides inductive power and generates an induced rotor current value 272 through the control module 300, which is input to the inductive rotor portion 212 via the brush set 260 and the slip ring 250 for operation.
  • the first control member 310 can be utilized to reduce or turn off the induced rotor current value 272 during operation to weaken the rotor 210.
  • the permanent magnet power provides a permanent magnet stator portion 224 and generates a permanent magnet stator current having a permanent magnet stator current value of 276.
  • the power supply 500 generates stable power to the motor 200, the control module 300, and the display module 400 to operate normally.
  • the rotor 602 includes an inductive rotor portion 610 and a housing 616
  • the stator 604 includes an inductive stator portion 620 and an axis 622
  • the inductive rotor portion 610 includes a plurality of N-pole magnets 612 and a plurality of S-pole magnets 614.
  • the N-pole magnet 612 and the S-pole magnet 614 of the inductive rotor portion 610 are fixedly disposed on the inner wall of the outer casing 616 and on the outer side of the stator 604, and the outer casing 616 is pivotally mounted on the axial center 622.
  • the rotor 602 pivots relative to the stator 604, that is, the axis 622 pivots relative to the outer casing 616.
  • the stator 604 and the rotor 602 are pivoted coaxially with each other through the outer casing 616 and the shaft 622.
  • FIG. 3B and FIG. 4A the difference between FIG. 3B and FIG. 4A is that the rotor 210 of FIG. 3B is located inside the stator 220, the rotor 210 is internally rotated, and the rotor 602 of FIG. 4A is located outside the stator 604, and the rotor 602 is externally rotated.
  • the manufacturer can select the appropriate motor 200 (see Figure 2) or motor 600 structure through the desired field of application.
  • FIG. 4B is a schematic diagram of a slip ring 252 according to another embodiment of the present invention.
  • the collector ring 252 of the embodiment of FIG. 4B is disposed outside the outer casing 616, and the number of the collector rings 252 is two.
  • the collector ring 252 electrically connects the inductive rotor portion 610 of the rotor 602.
  • the brush set 264 is electrically connected to the control module 300 via wires, and the brush set 264 is connected to the two collector rings 252 by two carbon brushes 266.
  • the slip ring 252 and The brush set 264 can be disposed outside the outer casing 616 corresponding to the position of the inductive rotor portion 610.
  • This structure can greatly reduce the manufacturing cost compared to the embodiment in which the slip ring 250 of FIG. 1 is disposed on the axial center 230.
  • the manufacturer can provide the induced magnetic field of the rotor 210 by the collector ring 250 of FIG. 1 in conjunction with the brush set 260 to rotate the rotor 210.
  • the collector 602 is rotated by the collector ring 252 of FIG. 4B in conjunction with the brush set 264 to rotate the rotor 602.
  • FIG. 5 is a schematic flow chart of a motor rotation speed control method 700 according to an embodiment of the present invention.
  • the motor speed control method 700 includes a first adjustment step s1, a second adjustment step s2, a third adjustment step s3, a display step s4, and a power supply step s5.
  • the first adjustment step s1 uses the control module 300 to adjust the induced rotor current value 272.
  • the first control member 310 of the start control module 300 adjusts the induced rotor current value 272, causing the rotational speed to change.
  • the second adjustment step s2 uses the control module 300 to determine the magnitude of the rotational speed.
  • the first control member 310 of the start control module 300 reduces or closes the induced rotor current value 272, causing the rotor 210 to maintain the rotational speed by its own rotational inertia and the induced stator current value 274 of the induced stator portion 222. . Therefore, when the motor 200 rotates at a high speed, the hysteresis phenomenon of the motor 200 is reduced by the mechanism in which the rotor 210 is weakened, thereby achieving an energy saving effect.
  • the coil of the rotor 210 is short-circuited to form a closed loop, and there is still an induced current in the coil of the rotor 210, which is affected by the induced stator current value 274.
  • the third adjustment step s3 uses the control module 300 to adjust the permanent magnet stator current value 276.
  • the second control member 320 of the start control module 300 increases the permanent magnet stator current value 276, so that the rotational speed exceeds the preset value, and the highest rotational speed can be further increased.
  • the display step s4 displays the rotational speed using the first display unit 410. Furthermore, through the second display The unit 420 displays a motor current value 270, an induced rotor current value 272, an induced stator current value 274, or a permanent magnet stator current value 276, which allows the user to know the current operation and energy consumption of the motor 200 or the motor 600 to facilitate observation and analysis.
  • the power supply step s5 uses the power supply 500 to respectively provide the rotating electric energy, the control electric energy, and the display electric energy to the motor 200, the control module 300, and the display module 400.
  • the rotating electrical energy is converted by the control module 300 into inductive electrical energy and permanent magnet electrical energy.
  • the inductive electrical energy provides an inductive rotor portion 212 and produces an induced rotor current that is the magnitude of the induced rotor current value 272.
  • the inductive power also provides an inductive stator portion 222 and produces an induced stator current that is the magnitude of the induced stator current value 274.
  • the permanent magnet power provides a permanent magnet stator portion 224 and generates a permanent magnet stator current having a permanent magnet stator current value of 276.
  • the power supply step s5 provides stable power during the first adjustment step s1, the second adjustment step s2, the third adjustment step s3, and the display step s4, so that the motor rotation speed control method 700 can be effectively realized under the premise of energy saving. .
  • the present invention has the following advantages: First, the use of an induction coil instead of a permanent magnet can reduce thermal demagnetization caused by high temperature of a motor under high load. Second, the maximum rotor current is started when the motor is running at a low speed, and the maximum torque of the motor can be maintained. Thirdly, the hysteresis phenomenon of the motor is reduced by the mechanism of weakening of the rotor at the high motor speed, thereby achieving the effect of energy saving, and the control module is used to control the permanent magnet stator current value, thereby further increasing the maximum speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种马达转速控制方法及其系统,该马达转速控制系统包含马达(200)、控制模块(300)以及显示模块(400)。马达(200)包含转子(210)与定子(220)。转子(210)包含感应转子部(212)。定子(220)同轴枢设于转子(210),定子(220)包含感应定子部(222)。控制模块(300)电性连结转子(210)与定子(220),且控制感应转子部(212)的感应转子电流值(272)与感应定子部(222)的感应定子电流值(274),令转子(210)产生转速。当转速到达预设值时,控制模块(300)降低或关闭感应转子电流值(272),致使转子(210)借由转动惯性与感应定子电流值(274)保持转速。显示模块(400)电性连结控制模块(300),且可显示转速与马达电流值(270)。在马达高速运转时弱化转子磁力,可降低马达磁滞现象,进而达到节能的效果。

Description

马达转速控制方法及其系统 技术领域
本发明涉及一种马达转速控制方法及其系统,特别涉及一种可弱化转子磁力且能提升效能的马达转速控制方法及其系统。
背景技术
现今许多产业的日常作业,常需依赖动力以驱动机械做旋转、或其他形式的运动,此时通常会选择以马达作为动力来源。由于马达可将电能或磁能转换成为机械能,所以广泛地应用于各种工业、电器、运输系统的装置上,其已成为一种不可或缺的设备。马达的型式有若干种,例如感应马达及永磁马达。使用者可根据不同的环境及条件,选用不同型式的马达。
传统的永磁马达的硬体架构可分为定子、转子以及外壳,其中定子以电枢线圈与电枢铁心所构成,其中电枢铁心是由硅钢片积迭而成的,而电枢位于定子上,因此可以不需要电刷传导电流给转子。转子则为永久磁铁所构成。而外壳不只可以固定定子,也可当作磁路的一部分。再者,永磁马达按电子绕线的方式,可分为两相、三相及五相等永磁马达,其中三相是较为常见的,其结构和同步马达类似。永磁马达通常具有高运转效率,其由转子上的永久磁铁与定子绕组所产生的旋转磁场交互作用产生转矩,以维持同步转速。近年来,由于永久磁铁的材质与磁能积不断提升,使得永磁马达可在同步旋转时得到极高的运转效率。
然而,永磁马达具有启动较慢的特性,而且在低转速时所产生的扭力不足,因此其转速需要较长时间才能到达一定值。再者,其需要复杂的控制系统,会间接提高马达的制造成本。此外,当永磁马达达到最高有效转速时,其消耗的电能过大。由此可知,目前市场上缺乏一种低成本、具简 易的控制系统与方法、可同时兼具高扭力与最高转速以及节能的马达转速控制方法及其系统,所以相关研究人员均在寻求其解决之道。
发明内容
因此,本发明的目的在于提供一种马达转速控制方法及其系统,利用感应线圈取代永磁的使用,可降低高负载下的马达因高温所造成的热消磁。再者,在马达低转速时启动最大转子电流,可保有马达的最大扭力。此外,在马达高转速时通过转子弱化的机制降低马达的磁滞现象,进而达到节能的效果,同时利用控制模块控制永磁定子电流值,可进一步提升最高转速。
本发明一方面提供一种马达转速控制系统,其包含马达、控制模块以及显示模块。其中马达包含转子与定子。其中转子包含至少一个感应转子部与至少一个永磁转子部。定子同轴枢设于转子,定子包含至少一个感应定子部与至少一个永磁定子部,感应转子部与感应定子部彼此对应且相隔有感应间距,永磁转子部与永磁定子部彼此对应且相隔有永磁间距。再者,控制模块电性连结转子与定子。控制模块控制感应转子部的感应转子电流值、感应定子部的感应定子电流值以及永磁定子部的永磁定子电流值,令转子产生转速。当转速到达预设值时,控制模块会降低或关闭感应转子电流值,致使转子借由转动惯性与感应定子电流值保持转速。此外,显示模块则电性连结转子,且显示模块可显示转速、感应转子电流值及永磁定子电流值。
借此,本发明的马达转速控制系统利用感应线圈取代永磁的使用,可降低高负载下的马达因高温所造成的热消磁。再者,在马达低转速时启动最大转子电流,可保有马达的最大扭力。此外,在马达高转速时通过转子弱化的机制降低马达的磁滞现象,进而达到节能的效果,同时利用控制模块控制永磁定子电流值,可进一步提升最高转速。
根据前述的马达转速控制系统,其中控制模块可包含第一控制件,此第一控制件控制感应转子电流值与感应定子电流值。当转速到达预设值时,第一控制件降低或关闭感应转子电流值。另外,前述控制模块可包含第二控制件,此第二控制件控制永磁定子电流值。当转速到达预设值时,第二控制件会增加永磁定子电流值,致使转速变大。再者,前述马达转速控制系统可包含电源供应器,此电源供应器电性连接控制模块与显示模块。此电源供应器提供转动电能给控制模块,且转动电能通过控制模块转换成感应电能与永磁电能。其中感应电能供给感应转子部与感应定子部工作,并分别对应产生感应转子电流值与感应定子电流值。永磁电能则供给永磁定子部工作并产生永磁定子电流值。而电源供应器提供控制电能给控制模块工作,并提供显示电能给显示模块工作。此外,前述转子可包含多个N极磁体与多个S极磁体。N极磁体与S极磁体彼此交错排列。转子与定子均为圆筒型。另外,前述马达可包含两个集电环与电刷组,且转子可包含轴心。两个集电环环设于轴心上且电性连结感应转子部。电刷组电性连结控制模块,且电刷组包含两个碳刷,两个碳刷分别连接两个集电环。
借由上述实施例,第一控制件可在马达高转速时弱化转子,不但能降低马达的磁滞现象,还可达到节能的效果。第二控制件可增加永磁定子电流值,能进一步提升最高转速。再者,感应转子部的N极磁体与永磁转子部的N极磁体彼此相邻对应,可产生同极互斥的效果,且能防止彼此的磁场干扰。此外,电源供应器可产生稳定的电能给马达、控制模块以及显示模块,使其可正常工作。
本发明另一方面提供一种马达转速控制方法,此方法包含第一调整步骤、第二调整步骤、第三调整步骤以及显示步骤。其中第一调整步骤利用控制模块调整感应转子电流值与感应定子电流值。当转速低于预设值时,启动控制模块调整感应转子电流值与感应定子电流值,致使转速改变。而第二调整步骤系利用控制模块判断转速的大小,当转速到达预设值时,启 动控制模块降低或关闭感应转子电流值,致使转子借由转动惯性与感应定子电流值保持转速。再者,第三调整步骤利用控制模块调整永磁定子电流值,当转速到达预设值时,启动控制模块调整永磁定子电流值,致使转速超过预设值。此外,显示步骤显示转速、感应转子电流值及永磁定子电流值。
借此,本发明的马达转速控制方法利用感应线圈取代永磁的使用,可降低高负载下的马达因高温所造成的热消磁。再者,在马达低转速时启动最大转子电流,可保有马达的最大扭力。此外,在马达高转速时通过转子弱化的机制降低马达的磁滞现象,进而达到节能的效果,同时利用控制模块控制永磁定子电流值,可进一步提升最高转速。
根据前述的马达转速控制方法,其中控制模块可包含第一控制件,且第一调整步骤通过第一控制件调整感应转子电流值与感应定子电流值。前述第二调整步骤可通过第一控制件降低或关闭感应转子电流值。再者,前述控制模块可包含第二控制件,且第二调整步骤通过第二控制件调整永磁定子电流值。此外,前述马达转速控制方法可包含供电步骤,其利用电源供应器分别提供一转动电能、控制电能及显示电能给马达、控制模块及显示模块工作。其中转动电能通过控制模块转换成感应电能与永磁电能。而感应电能通过控制模块供给感应转子部与感应定子部工作,并分别对应产生感应转子电流值与感应定子电流值。至于永磁电能则供给永磁定子部工作并产生永磁定子电流值。
借由上述实施例,第一控制件可在马达高转速时弱化转子,不但能降低马达的磁滞现象,还可达到节能的效果。第二控制件可增加永磁定子电流值,能进一步提升最高转速。此外,供电步骤于其他步骤的过程中均可提供稳定的电能,使马达在节能的前提下,得以有效地运转。
本发明系统方面的另一个实施方式为一种马达转速控制系统,其包含马达、控制模块以及显示模块。其中马达包含转子与定子。其中转子包含 至少一个感应转子部。定子同轴枢设于转子,定子包含至少一个感应定子部,感应转子部与感应定子部彼此对应且相隔有感应间距。再者,控制模块电性连结转子与定子。控制模块控制感应转子部的感应转子电流值与感应定子部的感应定子电流值,令转子产生转速。当转速到达预设值时,控制模块会降低或关闭感应转子电流值,致使转子借由转动惯性与感应定子电流值保持转速。此外,显示模块则电性连结转子,且显示模块可显示转速与感应转子电流值。
借此,本发明的马达转速控制系统利用感应线圈完全取代永磁的使用,可降低高负载下的马达因高温所造成的热消磁。再者,在马达低转速时启动最大转子电流,可保有马达的最大扭力。此外,于马达高转速时通过转子弱化的机制降低马达的磁滞现象,进而达到节能的效果。
根据前述的马达转速控制系统,其中控制模块可包含第一控制件,此第一控制件控制感应转子电流值与感应定子电流值。当转速到达预设值时,第一控制件降低或关闭感应转子电流值。再者,前述马达转速控制系统可包含电源供应器,此电源供应器电性连接控制模块与显示模块。此电源供应器提供转动电能给控制模块。转动电能通过控制模块供给感应转子部与感应定子部工作,并分别对应产生感应转子电流值与感应定子电流值。电源供应器也提供控制电能给控制模块工作,并提供显示电能给显示模块工作。此外,前述转子可包含多个N极磁体与多个S极磁体。N极磁体与S极磁体彼此交错排列。转子与定子均为圆筒型。另外,前述马达可包含两个集电环与电刷组,且转子可包含轴心。两个集电环环设于轴心上且电性连结感应转子部。电刷组电性连结控制模块,且电刷组包含两个碳刷,两个碳刷分别连接两集电环。
借由上述实施例,第一控制件可在马达高转速时弱化转子,不但能降低马达的磁滞现象,还可达到节能的效果。再者,感应转子部的N极磁体与永磁转子部的N极磁体彼此相邻对应,可产生同极互斥的效果,且能防 止彼此的磁场干扰。此外,电源供应器可产生稳定的电能给马达、控制模块以及显示模块,使其可正常工作。
附图说明
图1为本发明一个实施方式的马达转速控制系统的示意图。
图2为图1的剖线2-2的剖视图。
图3A为图2的转子的侧视图。
图3B为图2的剖线3-3的剖视图。
图4A为本发明另一个实施方式的马达的剖视图。
图4B为本发明另一个实施方式的集电环的示意图。
图5为本发明一个实施方式的马达转速控制方法的流程示意图。
具体实施方式
请一并参阅图1、图2、图3A以及图3B。图1为本发明一个实施方式的马达转速控制系统100的示意图。图2为图1的剖线2-2的剖视图。图3A为图2的转子210的侧视图。图3B为图2的剖线3-3的剖视图。如图所示,此马达转速控制系统100包含马达200、控制模块300、显示模块400以及电源供应器500。
马达200包含转子210、定子220、两个集电环250以及电刷组260。其中转子210包含轴心230、感应转子部212与永磁转子部214,且定子220包含外壳240、感应定子部222与永磁定子部224。定子220位于转子210的外侧。感应转子部212与感应定子部222彼此对应且相隔有感应间距d1。而永磁转子部214与永磁定子部224彼此对应且相隔有永磁间距d2。另外,马达200具有马达电流值270,其代表整体马达200消耗的电流量。而感应转子部212具有感应转子电流值272,其代表感应转子部212所消耗的电流量。感应定子部222具有感应定子电流值274,其代表感应 定子部222所消耗的电流量。永磁定子部224则具有永磁定子电流值276,其代表永磁定子部224所消耗的电流量。感应转子部212、感应定子部222以及永磁转子部214均具有线圈,感应转子部212与感应定子部222通过线圈感应产生转矩,以启动转子210的运转并产生转速。永磁转子部214由永久磁铁所构成。此外,转子210包含多个N极磁体216与多个S极磁体218,N极磁体216与S极磁体218彼此交错排列。而由于转子210包含感应转子部212与永磁转子部214,因此感应转子部212与永磁转子部214个别均有多个N极磁体216与多个S极磁体218。特别的是,感应转子部212的N极磁体216与永磁转子部214的N极磁体216彼此相邻对应,可产生同极互斥的效果,能防止彼此的磁场干扰。再者,定子220的感应定子部222与永磁定子部224固设于外壳240的内壁且位于转子210的外侧,而外壳240则枢设于轴心230上。转子210的N极磁体216与S极磁体218交错地固设于轴心230,当马达200转动时,转子210相对于定子220枢转,也即轴心230相对于外壳240枢转。换句话说,定子220与转子210彼此通过外壳240与轴心230同轴枢设。再者,两个集电环250环设于轴心230的外侧且电性连结转子210的感应转子部212。电刷组260则是经由导线电性连接控制模块300。电刷组260包含两个碳刷262,两个碳刷262则分别连接两个集电环250,以传导电流。另外,外壳240为中空圆筒,而轴心230为圆筒型,由于定子220固设于外壳240的内壁,所以定子220也呈圆筒型。同理,由于转子210固设于轴心230的外表面,因此转子210也呈现圆筒型。再者,转子210的转动方向可为正转或逆转。另值得一提的是,感应转子部212与永磁转子部214相距感磁间距d3,此感磁间距d3不但可防止感应转子部212与永磁转子部214的相互干扰,也可防止感应定子部222与永磁定子部224的相互干扰。
控制模块300包含第一控制件310与第二控制件320。控制模块300电性连结转子210、定子220以及电刷组260。控制模块300借由第一控 制件310控制感应转子部212的感应转子电流值272与感应定子部222的感应定子电流值274,并通过第二控制件320控制永磁定子部224的永磁定子电流值276,令转子210旋转而产生转速。当马达200的转速到达预设值时,不但可通过第一控制件310降低或关闭感应转子电流值272,还可同时利用第二控制件320来增加永磁定子电流值276,使马达200的转速变大。上述预设值为转子210的最高转速。特别的是,降低或关闭感应转子电流值272能将转子210弱化,进而降低马达200的磁滞现象,使转子210借由本身的转动惯性以及感应定子部222的感应定子电流值274来保持住转速,并可达到节能的效果。在保持转速的同时,转子210的线圈会短路而形成闭回路,且转子210的线圈中仍有感应电流,此感应电流将受感应定子电流值274所影响。此外,在降低马达200消耗功率的条件下,还可同时利用第二控制件320调整永磁定子电流值276,能进一步提升最高的转速。再者,第一控制件310与第二控制件320可利用旋钮或按键实现。
显示模块400包含第一显示单元410与第二显示单元420,且显示模块400电性连结控制模块300。其中第一显示单元410显示转速,而第二显示单元420可显示马达电流值270、感应转子电流值272、感应定子电流值274或永磁定子电流值276。再者,马达电流值270包含感应转子电流值272与永磁定子电流值276。在调整第一控制件310与第二控制件320的过程当中,显示模块400所显示的转速与马达电流值270会随的而变化,使用者通过显示模块400可知晓目前马达200的运转与耗能的状况,以方便观察与分析。
电源供应器500电性连接控制模块300与显示模块400。电源供应器500不但提供转动电能给马达200工作,而且电源供应器500提供控制电能给控制模块300工作,同时提供显示电能给显示模块400工作。转动电能会产生转动电流,此转动电流的大小为马达电流值270。详细的说,电 源供应器500提供转动电能给控制模块300,且转动电能通过控制模块300转换成感应电能与永磁电能,其中感应电能供给感应转子部212与感应定子部222工作。感应电能供给感应转子部212会产生感应转子电流,此感应转子电流的大小为感应转子电流值272。而感应电能供给感应定子部222会产生感应定子电流,此感应定子电流的大小为感应定子电流值274。详细的说,电源供应器500提供感应电能并通过控制模块300产生感应转子电流值272,此感应转子电流会经由电刷组260与集电环250而输入至感应转子部212供其工作。在工作的过程中可利用第一控制件310来降低或关闭感应转子电流值272以弱化转子210。而永磁电能则提供永磁定子部224并产生永磁定子电流,此永磁定子电流的大小为永磁定子电流值276。电源供应器500产生稳定的电能给马达200、控制模块300以及显示模块400,使其可正常工作。
图4A为本发明另一个实施方式的马达600的剖视图。转子602包含感应转子部610与外壳616,且定子604包含感应定子部620与轴心622,其中感应转子部610包含多个N极磁体612与多个S极磁体614。感应转子部610的N极磁体612与S极磁体614交错地固设于外壳616的内壁且位于定子604的外侧,而外壳616则枢设于轴心622上。当马达600转动时,转子602相对于定子604枢转,也即轴心622相对于外壳616枢转。换句话说,定子604与转子602彼此通过外壳616与轴心622同轴枢设。有此可知,图3B与图4A的差异在于图3B的转子210位于定子220的内侧,转子210为内转,而图4A的转子602位于定子604的外侧,转子602为外转。制造者可通过所需的应用领域,选择适合的马达200(请参见图2)或马达600结构。
配合参阅图4A及4B,图4B为本发明另一个实施方式的集电环252的示意图。图4B实施方式的集电环252环设于外壳616的外侧,且集电环252的数量为2。集电环252电性连结转子602的感应转子部610。再 者,电刷组264是经由导线电性连接控制模块300,且电刷组264借由两个碳刷266连接两个集电环252。此外,由于转子602的感应转子部610的N极磁体612与S极磁体614交错地固设于外壳616的内壁,为了方便集电环252与感应转子部610的互相连结,集电环252与电刷组264可设在对应于感应转子部610位置的外壳616外侧,此结构相较于图1中集电环250设于轴心230的实施例而言,可大幅降低制造成本。由上述可知,制造者可通过图1的集电环250搭配电刷组260来提供转子210的感应磁场,使转子210转动。或者借由图4B的集电环252搭配电刷组264来提供转子602的感应磁场,使转子602转动。
配合参阅图1、图2以及图5,图5为本发明一个实施方式的马达转速控制方法700的流程示意图。马达转速控制方法700包含第一调整步骤s1、第二调整步骤s2、第三调整步骤s3、显示步骤s4以及供电步骤s5。
第一调整步骤s1利用控制模块300调整感应转子电流值272。当转速低于预设值时,启动控制模块300的第一控制件310调整感应转子电流值272,致使转速改变。
第二调整步骤s2利用控制模块300判断转速的大小。当转速到达预设值时,启动控制模块300的第一控制件310降低或关闭感应转子电流值272,致使转子210借由本身的转动惯性以及感应定子部222的感应定子电流值274来保持转速。因此,马达200于高速转动时,通过转子210弱化的机制降低马达200的磁滞现象,进而达到节能的效果。此外,在保持转速的同时,转子210的线圈会短路而形成闭回路,且转子210的线圈中仍有感应电流,此感应电流将受感应定子电流值274所影响。
第三调整步骤s3利用控制模块300调整永磁定子电流值276。当转速到达预设值时,启动控制模块300的第二控制件320增加永磁定子电流值276,致使转速超过预设值,可进一步提升最高的转速。
显示步骤s4利用第一显示单元410显示转速。再者,通过第二显示 单元420显示马达电流值270、感应转子电流值272、感应定子电流值274或永磁定子电流值276,可让使用者知晓目前马达200或马达600的运转与耗能的状况,以方便观察与分析。
供电步骤s5利用电源供应器500分别提供转动电能、控制电能及显示电能给马达200、控制模块300及显示模块400工作。转动电能通过控制模块300转换成感应电能与永磁电能。其中感应电能提供感应转子部212并产生感应转子电流,此感应转子电流的大小为感应转子电流值272。感应电能也提供感应定子部222并产生感应定子电流,此感应定子电流的大小为感应定子电流值274。而永磁电能则提供永磁定子部224并产生永磁定子电流,此永磁定子电流的大小为永磁定子电流值276。供电步骤s5在第一调整步骤s1、第二调整步骤s2、第三调整步骤s3以及显示步骤s4的过程中均提供稳定的电能,使马达转速控制方法700在节能的前提下,得以有效地实现。
由上述实施方式可知,本发明具有下列优点:其一,利用感应线圈取代永磁的使用,可降低高负载下的马达因高温所造成的热消磁。其二,在马达低转速时启动最大转子电流,可保有马达的最大扭力。其三,在马达高转速时通过转子弱化的机制降低马达的磁滞现象,进而达到节能的效果,同时利用控制模块控制永磁定子电流值,可进一步提升最高转速。
虽然本发明已以实施方式公开如上,然其并非用于限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,可作各种不同的选择和修改,因此本发明的保护范围有权利要求书及其等同形式所限定。

Claims (16)

  1. 一种马达转速控制系统,其特征在于,所述马达转速控制系统包含:
    马达,其包含:
    转子,其包含至少一个感应转子部与至少一个永磁转子部;及
    定子,其同轴枢设于所述转子,所述定子包含至少一个感应定子部与至少一个永磁定子部,所述感应转子部与所述感应定子部彼此对应且相隔有感应间距,所述永磁转子部与所述永磁定子部彼此对应且相隔有永磁间距;
    控制模块,其电性连结所述转子与所述定子,所述控制模块控制所述感应转子部的感应转子电流值、所述感应定子部的感应定子电流值及所述永磁定子部的永磁定子电流值,令所述转子产生转速,当所述转速到达预设值时,所述控制模块降低或关闭所述感应转子电流值,致使所述转子借由转动惯性与所述感应定子电流值保持所述转速;以及
    显示模块,其电性连结所述控制模块,所述显示模块显示所述转速、所述感应转子电流值及所述永磁定子电流值。
  2. 如权利要求1所述的马达转速控制系统,其特征在于,所述控制模块包含第一控制件,所述第一控制件控制所述感应转子电流值与所述感应定子电流值,当所述转速到达预设值时,所述第一控制件降低或关闭所述感应转子电流值。
  3. 如权利要求2所述的马达转速控制系统,其特征在于,所述控制模块还包含第二控制件,所述第二控制件控制所述永磁定子电流值,当所述转速到预设值时,所述第二控制件增加所述永磁定子电流值,致使所述转速变大。
  4. 如权利要求3所述的马达转速控制系统,其特征在于,所述马达转 速控制系统还包含:
    电源供应器,其电性连接所述控制模块与所述显示模块,所述电源供应器提供转动电能给所述控制模块,且所述转动电能通过所述控制模块转换成感应电能与永磁电能,所述感应电能供给所述感应转子部与所述感应定子部工作,并分别对应产生所述感应转子电流值与所述感应定子电流值,所述永磁电能供给所述永磁定子部工作并产生所述永磁定子电流值,所述电源供应器提供控制电能给所述控制模块工作,并提供显示电能给所述显示模块工作。
  5. 如权利要求1所述的马达转速控制系统,其特征在于,所述转子还包含多个N极磁体与多个S极磁体,各所述N极磁体与各所述S极磁体彼此交错排列,所述转子与所述定子均为圆筒型。
  6. 如权利要求1所述的马达转速控制系统,其特征在于,所述马达还包含两个集电环与电刷组,所述转子还包含轴心,两个所述集电环环设于所述轴心上且电性连结所述感应转子部,所述电刷组电性连结所述控制模块,且所述电刷组包含两个碳刷,两个所述碳刷分别连接两个所述集电环。
  7. 一种使用权利要求1所述的马达转速控制系统的马达转速控制方法,其特征在于,所述马达转速控制方法包含以下步骤:
    第一调整步骤,其利用所述控制模块调整所述感应转子电流值与所述感应定子电流值,当所述转速低于所述预设值时,启动所述控制模块调整所述感应转子电流值与所述感应定子电流值,致使所述转速改变;
    第二调整步骤,其利用所述控制模块判断所述转速的大小,当所述转速到达所述预设值时,启动所述控制模块降低或关闭所述感应转子电流值,致使所述转子借由转动惯性与所述感应定子电流值保持所述转速;
    第三调整步骤,其利用所述控制模块调整所述永磁定子电流值,当所述转速到达该预设值时,启动所述控制模块调整所述永磁定子电流值,致使所述转速超过所述预设值;以及
    显示步骤,其显示所述转速、所述感应转子电流值及所述永磁定子电流值。
  8. 如权利要求7所述的马达转速控制方法,其特征在于,所述控制模块包含第一控制件,所述第一调整步骤通过所述第一控制件调整所述感应转子电流值与所述感应定子电流值。
  9. 如权利要求8所述的马达转速控制方法,其特征在于,所述第二调整步骤通过所述第一控制件降低或关闭所述感应转子电流值。
  10. 如权利要求7所述的马达转速控制方法,其特征在于,所述控制模块包含第二控制件,所述第三调整步骤通过所述第二控制件调整所述永磁定子电流值。
  11. 如权利要求7所述的马达转速控制方法,其特征在于,所述马达转速控制方法还包含:
    供电步骤,其利用电源供应器分别提供转动电能、控制电能及显示电能给所述马达、所述控制模块及所述显示模块工作,所述转动电能通过所述控制模块转换成感应电能与永磁电能,所述感应电能通过所述控制模块供给所述感应转子部与所述感应定子部工作,并分别对应产生所述感应转子电流值与所述感应定子电流值,所述永磁电能供给所述永磁定子部工作并产生所述永磁定子电流值。
  12. 一种马达转速控制系统,其特征在于,所述马达转速控制系统包含:
    马达,其包含:
    转子,其包含至少一个感应转子部;及
    定子,其同轴枢设于所述转子,所述定子包含至少一个感应定子部,所述感应转子部与所述感应定子部彼此对应且相隔有感应间距;
    控制模块,其电性连结所述转子与所述定子,所述控制模块控制所述感应转子部的感应转子电流值与所述感应定子部的感应定子电流值,令所 述转子产生转速,当所述转速到达预设值时,所述控制模块降低或关闭所述感应转子电流值,致使所述转子借由转动惯性与所述感应定子电流值保持所述转速;以及
    显示模块,其电性连结所述转子,所述显示模块显示所述转速与所述感应转子电流值。
  13. 如权利要求12所述的马达转速控制系统,其特征在于,所述控制模块包含第一控制件,所述第一控制件控制所述感应转子电流值与所述感应定子电流值,当所述转速到达预设值时,所述第一控制件降低或关闭所述感应转子电流值。
  14. 如权利要求13所述的马达转速控制系统,其特征在于,所述马达转速控制系统还包含:
    电源供应器,其电性连接所述控制模块与所述显示模块,所述电源供应器提供转动电能给所述控制模块,所述转动电能通过所述控制模块供给所述感应转子部与所述感应定子部工作,并分别对应产生所述感应转子电流值与所述感应定子电流值,所述电源供应器提供控制电能给所述控制模块工作,并提供显示电能给所述显示模块工作。
  15. 如权利要求12所述的马达转速控制系统,其特征在于,所述转子还包含多个N极磁体与多个S极磁体,各所述N极磁体与各所述S极磁体彼此交错排列,所述转子与所述定子均为圆筒型。
  16. 如权利要求12所述的马达转速控制系统,其特征在于,所述马达还包含两个集电环与两个电刷组,所述转子还包含轴心,两个所述集电环环设于所述轴心上且电性连结所述感应转子部,所述电刷组电性连结所述控制模块,且所述电刷组包含两个碳刷,两个所述碳刷分别连接两个所述集电环。
PCT/CN2015/071930 2015-01-30 2015-01-30 马达转速控制方法及其系统 WO2016119205A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071930 WO2016119205A1 (zh) 2015-01-30 2015-01-30 马达转速控制方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071930 WO2016119205A1 (zh) 2015-01-30 2015-01-30 马达转速控制方法及其系统

Publications (1)

Publication Number Publication Date
WO2016119205A1 true WO2016119205A1 (zh) 2016-08-04

Family

ID=56542199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071930 WO2016119205A1 (zh) 2015-01-30 2015-01-30 马达转速控制方法及其系统

Country Status (1)

Country Link
WO (1) WO2016119205A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746294A (zh) * 2021-09-02 2021-12-03 宁德时代电机科技有限公司 高转速范围无弱磁控制异步永磁水冷驱动同轴双电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365153A (en) * 1992-06-10 1994-11-15 Fuji Electric Co., Ltd. AC variable speed driving apparatus and electric vehicle using the same
CN1545188A (zh) * 2003-11-19 2004-11-10 南京航空航天大学 混合励磁同步电机
JP2005094908A (ja) * 2003-09-17 2005-04-07 Yukio Kinoshita 複合式回転電機
CN101447719A (zh) * 2008-10-08 2009-06-03 徐荣祖 一种同步永磁电机及其启动、运行方法
CN201523299U (zh) * 2009-09-18 2010-07-07 东元电机股份有限公司 复合式马达结构与具有复合式马达结构的压缩机
CN202190196U (zh) * 2011-08-25 2012-04-11 无锡新大力电机有限公司 一种采用新型结构的永磁电机
CN202475195U (zh) * 2012-03-12 2012-10-03 王雅芳 一种双动力电机
CN102868267A (zh) * 2012-09-28 2013-01-09 北京交通大学 多功率实心转子与叠片转子串联式永磁同步电机系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365153A (en) * 1992-06-10 1994-11-15 Fuji Electric Co., Ltd. AC variable speed driving apparatus and electric vehicle using the same
JP2005094908A (ja) * 2003-09-17 2005-04-07 Yukio Kinoshita 複合式回転電機
CN1545188A (zh) * 2003-11-19 2004-11-10 南京航空航天大学 混合励磁同步电机
CN101447719A (zh) * 2008-10-08 2009-06-03 徐荣祖 一种同步永磁电机及其启动、运行方法
CN201523299U (zh) * 2009-09-18 2010-07-07 东元电机股份有限公司 复合式马达结构与具有复合式马达结构的压缩机
CN202190196U (zh) * 2011-08-25 2012-04-11 无锡新大力电机有限公司 一种采用新型结构的永磁电机
CN202475195U (zh) * 2012-03-12 2012-10-03 王雅芳 一种双动力电机
CN102868267A (zh) * 2012-09-28 2013-01-09 北京交通大学 多功率实心转子与叠片转子串联式永磁同步电机系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746294A (zh) * 2021-09-02 2021-12-03 宁德时代电机科技有限公司 高转速范围无弱磁控制异步永磁水冷驱动同轴双电机

Similar Documents

Publication Publication Date Title
JP2011188605A (ja) モータ
JP2013055789A (ja) 電動発電機
JP2006121896A (ja) 単相誘導電動機
JP2008061485A (ja) 交流電源で自起動可能な永久磁石型モータ
JP2007068239A (ja) 回転電機および電磁機器
TWI558086B (zh) 馬達轉速控制方法及其系統
CN105576929A (zh) 一种集中绕组交流无刷电励磁起动发电机
CN104967256A (zh) 一种气隙可调的盘式电机
CN102255452A (zh) 一种混合励磁电机装置
JP3207072U (ja) 冷却装置
WO2016119205A1 (zh) 马达转速控制方法及其系统
EP1633036A1 (en) Single phase induction motor
US20160352204A1 (en) Refrigeration apparatus
CN104505961B (zh) 一种外转子电动发电机
JP2005057941A (ja) 回転電機
JP2007110776A (ja) 回転電機
TWM506420U (zh) 馬達轉速控制系統
JP4525026B2 (ja) 回転電機
JP2001238417A (ja) 電気機械
JP2021158882A (ja) ダブルステータパワーモータ装置
TWI556569B (zh) Brushless DC Motor Speed ​​Control System
CN104467339A (zh) 一种带重力补偿的直线振荡电机
CN209375418U (zh) 一种高速永磁开关磁阻电动机
JP5011602B2 (ja) 動力発生装置およびこれを用いた電気洗濯機
KR20180000897A (ko) 브러시가 없는 직류전동기를 갖는 권선기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879413

Country of ref document: EP

Kind code of ref document: A1