WO2016117223A1 - Gas barrier film manufacturing apparatus and manufacturing method - Google Patents

Gas barrier film manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
WO2016117223A1
WO2016117223A1 PCT/JP2015/082944 JP2015082944W WO2016117223A1 WO 2016117223 A1 WO2016117223 A1 WO 2016117223A1 JP 2015082944 W JP2015082944 W JP 2015082944W WO 2016117223 A1 WO2016117223 A1 WO 2016117223A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
discharge space
gas
barrier film
film
Prior art date
Application number
PCT/JP2015/082944
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 達也
和喜 田地
千明 門馬
大石 清
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016570502A priority Critical patent/JPWO2016117223A1/en
Publication of WO2016117223A1 publication Critical patent/WO2016117223A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the present invention relates to a gas barrier film manufacturing apparatus and manufacturing method.
  • a gas barrier film that prevents permeation of water vapor, oxygen, and the like has a barrier layer having a barrier property and a base material portion that supports the barrier layer, and is manufactured by a plasma CVD (PECVD: plasma-enhanced chemical vapor deposition) method. .
  • the barrier layer is formed by continuously transporting the base portion of the gas barrier film via a discharge space for converting the source gas and the reaction gas into plasma (see, for example, Patent Documents 1 and 2).
  • the precursor generated by the plasma of the raw material gas and the reaction gas leaks from the discharge space and adheres to the base portion of the gas barrier film before being carried into the discharge space.
  • the layer formed by the adhesion of the precursor is very brittle and easily damaged, and deteriorates the smoothness of the base material portion. Therefore, the barrier property and adhesion of the barrier layer formed thereon are deteriorated. .
  • the present invention has been made to solve the problems associated with the above-described conventional technology, and an object thereof is to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
  • a manufacturing apparatus for manufacturing a gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer by a roll-to-roll type plasma CVD method A discharge space for converting the source gas and the reaction gas to form the barrier layer into plasma; A transport mechanism for continuously transporting the base portion of the gas barrier film via the discharge space; A low-temperature condensing member having a temperature capable of condensing and trapping the precursor generated by plasmification of the source gas and the reaction gas, The low temperature condensing member is The gas barrier film upstream of the discharge space in the transport direction of the base material portion of the gas barrier film, before the precursor leaking from the discharge space is condensed and trapped, and is carried into the discharge space
  • the manufacturing apparatus installed in the position which suppresses that the said precursor adheres to the said base material part.
  • a first film forming roll It is located on the downstream side in the transport direction of the base material portion of the gas barrier film from the first film forming roll, and is disposed relative to the first film forming roll, and an electrode pair together with the first film forming roll. And further comprising a second film forming roll,
  • the said discharge space is a manufacturing apparatus as described in said (1) comprised by the space between a said 1st film-forming roll and a said 2nd film-forming roll.
  • a baffle plate further disposed between the low-temperature condensing member and the discharge space, The manufacturing apparatus according to any one of (1 to (8), wherein the baffle plate suppresses leakage of the precursor from the discharge space.
  • a second low-temperature condensing member having a temperature at which the precursor generated by plasmification of the source gas and the reaction gas can be condensed and trapped;
  • the transport mechanism reverses the transport direction of the base material portion of the gas barrier film after the formation of the barrier layer on the base material portion of the gas barrier film is completed, and passes through the discharge space,
  • the base portion of the gas barrier film is configured to be continuously re-transportable,
  • the second low-temperature condensing member condenses and traps the precursor leaking from the discharge space on the upstream side in the re-transport direction of the base material portion of the gas barrier film from the discharge space.
  • a manufacturing method for manufacturing a gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer by a roll-to-roll type plasma CVD method When continuously transporting the base material portion of the gas barrier film via a discharge space for converting the raw material gas and the reaction gas to plasma into the barrier layer, The precursor leaked from the discharge space is condensed and trapped by the low-temperature condensing member installed on the upstream side in the transport direction of the base material part of the gas barrier film from the discharge space, and before being carried into the discharge space.
  • the manufacturing method which suppresses that the said precursor adheres to the said base material part of the said gas barrier film.
  • the precursor of the gas barrier film before being brought into the discharge space by condensing and trapping the precursor leaked from the discharge space by the low-temperature condensing member It is suppressed that a precursor adheres to a part. Therefore, since a precursor-derived layer is not interposed between the base material portion and the barrier layer, the barrier layer has good barrier properties and adhesion. That is, it is possible to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
  • FIG. 3 is an enlarged view of a main part of FIG. 2. 3 is a flowchart for explaining a method for producing a gas barrier film according to Embodiment 1. 3 is a table showing performance evaluation results of gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1.
  • FIG. 6 is a schematic diagram for explaining a first modification according to the first embodiment.
  • FIG. 10 is a schematic diagram for explaining a second modification according to the first embodiment.
  • FIG. 5 is a flowchart for explaining a method for producing a gas barrier film according to Embodiment 2.
  • 6 is a table showing results of performance evaluation of gas barrier films according to Examples 1 and 2 and Comparative Example 1 according to Embodiment 2.
  • FIG. 9 is a schematic diagram for explaining a first modification according to the second embodiment.
  • FIG. 10 is a schematic diagram for explaining a second modification according to the second embodiment.
  • FIG. 1 is a cross-sectional view for explaining a gas barrier film according to Embodiment 1.
  • FIG. 1 is a cross-sectional view for explaining a gas barrier film according to Embodiment 1.
  • the gas barrier film 10 according to Embodiment 1 includes a barrier layer 20 and a base material portion 30 and is applied to packaging, electronic devices, and the like.
  • the electronic device is, for example, a solar cell element, an organic electro-luminescence (OEL) element, or a liquid crystal display (LCD) element.
  • OEL organic electro-luminescence
  • LCD liquid crystal display
  • the barrier layer 20 is a thin film having a barrier property manufactured by a roll-to-roll type plasma CVD method, and is disposed on one surface of the base material portion 30.
  • the barrier layer 20 has a composition according to conditions such as a raw material gas and a reaction gas contained in the film forming gas, and a decomposition temperature.
  • the barrier layer 20 produced using a silicon compound and oxygen as a source gas and a reaction gas contains a silicon oxide.
  • the base material portion 30 includes a base material 32, a clear hard coat layer 34, and a bleed-out prevention layer 36.
  • the base material 32 is a support for the barrier layer 20 and is made of, for example, a colorless and transparent resin film.
  • the clear hard coat layer 34 is located between the barrier layer 20 and the base material 32.
  • the clear hard coat layer 34 has a function of improving adhesion between the barrier layer 20 and the base material 32, a function of relaxing internal stress resulting from a difference between expansion and contraction of the barrier layer 20 and the base material 32, and the barrier layer 20 Has a function of flattening the surface on which the low molecular weight component is disposed, and a function of preventing low molecular weight components such as monomers and oligomers from the substrate 32 from bleeding out.
  • the bleed-out prevention layer 36 is disposed on the other surface of the base material portion 30 (the surface of the base material 32 on which the barrier layer 20 and the clear hard coat layer 34 are not disposed).
  • the bleed-out prevention layer 36 has a function of preventing bleed-out of low molecular weight components such as monomers and oligomers from the base material 32.
  • the barrier layer 20 contains silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, aluminum silicate, a composite thereof, and the like. Is possible.
  • the barrier layer 20 contains silicon, oxygen, and carbon
  • the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms determines the performance variation over time and the gas barrier properties. From the viewpoint, it is preferably 20 at% or more, more preferably 25% or more. From the viewpoint of moisture resistance, flexibility and flexibility, it is preferably 40% or less, more preferably 45 at% or less.
  • the atomic ratio of the oxygen atom content is preferably 30 at% or more from the viewpoint of transparency and durability, and preferably 70 at% or less from the viewpoint of suppression of performance fluctuation over time and durability due to temperature change. is there.
  • the atomic ratio of the carbon atom content is preferably 0.5 at% or more from the viewpoint of flexibility and durability due to temperature change, and preferably 40 at% or less from the viewpoint of transparency and suppression of film defects. .
  • the thickness of the barrier layer 20 is preferably 10 nm or more from the viewpoint of film thickness uniformity and gas barrier properties, and preferably 500 nm or less from the viewpoint of crack suppression.
  • the base material 32 is, for example, a polyester resin, a polyolefin resin, a polyamide resin, a polycarbonate resin, a polystyrene resin, a polyvinyl alcohol resin, a saponified ethylene-vinyl acetate copolymer, a polyacrylonitrile resin, or an acetal resin. It is comprised from resin, a polyimide-type resin, etc.
  • the polyester resin is, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
  • the polyolefin resin is, for example, polyethylene (PE), polypropylene (PP), or cyclic polyolefin. From the viewpoint of heat resistance, linear expansion coefficient, and production cost, polyester resins and polyolefin resins are preferable, and PET and PEN are particularly preferable. Two or more kinds of resins for the base material 32 can be used in combination.
  • the thickness of the base material 32 is appropriately set in consideration of the stability and mechanical strength when producing the gas barrier film 10, and is preferably in the range of 5 to 500 ⁇ m, for example, in the range of 50 to 200 ⁇ m. More preferably, it is in the range of 50 to 100 ⁇ m.
  • the surface activation treatment is, for example, corona treatment, plasma treatment, or flame treatment.
  • the clear hard coat layer 34 can be formed, for example, by applying a photosensitive resin composition on one surface of the substrate 32 and curing it.
  • the photosensitive resin composition contains a photosensitive resin, a photopolymerization initiator, a solvent, and the like.
  • the photosensitive resin is, for example, a resin containing an acrylate compound having a radical reactive unsaturated bond, a resin containing an acrylate compound and a mercapto compound having a thiol group, or a resin containing a polyfunctional acrylate monomer.
  • Resins containing a polyfunctional acrylate monomer are epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate, and the like.
  • photopolymerization initiator examples include acetophenone, benzophenone, Michler's ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl) -1-propane, ⁇ -acyloxime ester, thioxanthones.
  • the photosensitive resin and the polymerization initiator can be used in combination of two or more.
  • the thickness of the clear hard coat layer is 1 ⁇ m or more, more preferably 2 ⁇ m or more from the viewpoint of heat resistance of the gas barrier film 10, and more preferably 10 ⁇ m or less from the viewpoint of optical characteristics and curl suppression of the gas barrier film 10. Is 7 ⁇ m.
  • the bleed-out prevention layer 36 can be formed, for example, by applying a photosensitive resin composition on the other surface of the substrate 32 and curing it.
  • a photosensitive resin composition for example, by applying a photosensitive resin composition on the other surface of the substrate 32 and curing it.
  • the photosensitive resin and the polymerization initiator constituting the photosensitive resin composition those described above can be applied.
  • the thickness of the bleed-out prevention layer is 1 ⁇ m or more, more preferably 2 ⁇ m or more from the viewpoint of heat resistance of the gas barrier film 10, similarly to the clear hard coat layer. From the viewpoint, it is 10 ⁇ m or less, more preferably 7 ⁇ m.
  • the gas barrier film 10 is not limited to the above-described form, and the clear hard coat layer 34 is disposed on both surfaces of the base material 32, or another functionalized layer is used instead of the clear hard coat layer 34 and / or the bleed out preventing layer 36. It is also possible to arrange another functional layer, or to omit the clear hard coat layer 34 and / or the bleed-out preventing layer 36.
  • Another functionalized layer is, for example, a smooth layer, an anchor coat layer, a hygroscopic layer, an antistatic layer, or a protective layer.
  • the protective layer is, for example, a layer containing an organic compound, and is disposed above the barrier layer 20 and has a function of preventing damage to the barrier layer 20.
  • the organic compound is an organic resin such as an organic monomer, oligomer, or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer, polymer, or the like having an organic group.
  • FIG. 2 is a schematic view for explaining the gas barrier film manufacturing apparatus according to Embodiment 1
  • FIG. 3 is an enlarged view of a main part of FIG.
  • a manufacturing apparatus 100 shown in FIG. 2 is used to manufacture the gas barrier film 10 by a roll-to-roll type plasma CVD method, and includes a vacuum chamber 110, a first vacuum pump 180, a second vacuum pump 182, and a plasma generating device.
  • a power source 185, a bias power source 187, and a film forming gas supply unit 190 are included.
  • the roll-to-roll type plasma CVD method is preferable from the viewpoint of high material utilization efficiency and high-speed film formation.
  • the vacuum chamber 110 has an unwinding chamber 115, a film forming chamber 140, a film forming roll 150, and partition walls 160 and 162.
  • the unwinding chamber 115 is located above the film forming chamber 140 through the partition walls 160 and 162 and is connected to the first vacuum pump 180.
  • the unwinding roll 120, the winding roll 125, and the guide rollers 130 and 132 are connected to the unwinding chamber 115.
  • Have The first vacuum pump 180 is used to depressurize the inside of the unwinding chamber 115 to a predetermined degree of vacuum so as not to affect the film forming chamber 140.
  • the delivery roll 120 is configured by winding the base material portion 30 of the gas barrier film 10 and is disposed so as to be rotatable around a shaft 122.
  • the take-up roll 125 is disposed so as to be rotatable about a shaft 127 and is used to take up the base material portion 30 (gas barrier film 10) on which the barrier layer 20 is formed.
  • the take-up roll 125 and the delivery roll 120 are driven in synchronization.
  • the guide roller 130 is located between the feed roll 120 and the film forming roll 150, guides the base material part 30 fed out from the feed roll 120, and carries (wraps) the film on the film forming roll 150 positioned below in the drawing. Used for.
  • the guide roller 132 is positioned between the film forming roll 150 and the take-up roll 125, and guides the base material unit 30 carried out (separated) from the film forming roll 150 to cause the take-up roll 125 to take up the guide roller 132. Used for.
  • the barrier layer 20 is formed on the base material part 30 carried out (separated) from the film forming roll 150.
  • the base material portion 30 of the gas barrier film 10 is unwound from the feed roll 120 and taken up by the take-up roll 125 via the guide roller 130, the film forming roll 150 and the guide roller 132. That is, the delivery roll 120, the guide rollers 130 and 132, the film forming roll 150, and the take-up roll 125 constitute a transport mechanism that continuously transports the base material portion 30 of the gas barrier film 10.
  • the film forming roll 150 is connected to a bias power source 187, is positioned between the unwinding chamber 115 and the film forming chamber 140, and is disposed so as to be rotatable about a shaft 152.
  • the film forming roll 150 has a gap 164 between the partition walls 160 and 162.
  • the gap 164 constitutes a conveyance path for carrying the base material portion 30 of the gas barrier film 10 from the unwind chamber 115 to the film formation chamber 140.
  • the bias power source 187 includes, for example, a high-frequency power source, and is used to apply a bias electric field (apply a bias potential) to the base member 30 wound around the outer periphery of the film forming roll 150.
  • the film forming roll 150 preferably has a temperature adjustment mechanism that adjusts the temperature of the base material portion 30.
  • the temperature adjustment mechanism can use a refrigerant or a Peltier element, for example.
  • the bias power source 187 is not limited to a high frequency power source.
  • the film forming chamber 140 is located below the unwinding chamber 115 in the drawing through the partition walls 160 and 162 and connected to the second vacuum pump 182, and has a shower electrode 142 and a cryocoil 170.
  • the second vacuum pump 182 is used to depressurize the inside of the film forming chamber 140 to a degree of vacuum suitable for plasma CVD.
  • a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump can be applied to the first vacuum pump 180 and the second vacuum pump 182.
  • the shower electrode 142 is made of, for example, aluminum, has a hollow portion 144 and a gas supply hole 146, is connected to the plasma generation power source 185, and is disposed relative to the film forming roll 150.
  • the surface of the shower electrode 142 facing the film forming roll 150 has a curved surface shape corresponding to the shape of the outer peripheral surface of the film forming roll 150 and is separated by a predetermined interval.
  • the shower electrode 142 constitutes an electrode pair together with the film forming roll 150 and functions as a counter electrode of the film forming roll 150. That is, the space between the shower electrode 142 and the film forming roll 150 constitutes a discharge space S (see FIG. 3) that generates plasma.
  • the hollow portion 144 is connected to the film forming gas supply unit 190.
  • the deposition gas includes a source gas and a reactive gas
  • the deposition gas supply unit 190 includes a source gas source 192 and a reactive gas source 194.
  • the source gas and the reaction gas held in the source gas source 192 and the reaction gas source 194 are supplied to the hollow portion 144 in a mixed state via, for example, a vaporizer or a bubbler.
  • the film-forming gas can contain a carrier gas and a discharge gas for generating plasma discharge as necessary.
  • Carrier gas and discharge gas are rare gas, hydrogen, and nitrogen, for example.
  • the rare gas is helium, argon, neon, xenon, or the like.
  • the gas supply hole 146 communicates with the hollow portion 144 and is disposed on the surface facing the film forming roll 150.
  • the plasma generation power source 185 is a high frequency power source used to supply plasma excitation power to the shower electrode 142.
  • the shower electrode 142 has a function as a high frequency electrode and a function of supplying the source gas and the reaction gas to the discharge space S.
  • the surface facing the film forming roll 150 in the shower electrode 142 may be roughened by blasting or the like, or a sprayed film may be formed in order to prevent separation of deposits generated when the barrier layer 20 is formed. Is also preferable. Note that the shower electrode 142 is not limited to the above embodiment.
  • the degree of vacuum of the film forming chamber 140 is, for example, 1 to several hundred Pa.
  • the applied power of the plasma generation power source 185 is, for example, 0.1 to 10 kW.
  • the frequency of the plasma generation power source 185 is, for example, several tens to several hundreds kHz (HF), 13.56 MHz (RF), and 2.45 GHz (microwave).
  • the conveyance speed of the base material portion 30 of the gas barrier film 10 is 0.1 to 100 m / min.
  • the source gas contained in the film forming gas is, for example, an organic silicon compound containing carbon and silicon, or an organic compound gas containing carbon, and is appropriately selected according to the use or type of the barrier layer 20.
  • Organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, Trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetra Such as siloxane.
  • HMSO and HMDS are preferable from the viewpoints of handleability and gas barrier properties.
  • the organosilicon compounds can be used in combination of two or more.
  • the organic compound gas containing carbon is methane, ethane, ethylene, acetylene, tetraisopropyl titanate, titanium tetraethoxide, titanium tetrabutoxide, cyclopentadinier titanium triisopropoxide, tetrakisdimethylaminotitanium, tetrakisdiethylaminotitanium, tetra Methoxy aluminum, tetraethoxy aluminum, tetraisopropoxy aluminum, tetra n butoxy aluminum, aluminum sec-butyrate, and the like.
  • the reaction gas contained in the deposition gas is a gas that reacts with the raw material gas to generate an inorganic compound such as an oxide or a nitride, and contains at least an oxygen gas.
  • the reactive gas that generates an oxide by reacting with the raw material gas is, for example, oxygen gas or ozone gas.
  • the reactive gas that reacts with the raw material gas to generate nitride are nitrogen gas and ammonia gas.
  • the reaction gas can be used by combining two or more kinds. For example, an oxynitride is formed by using a reaction gas for forming an oxide and a reaction gas for forming a nitride in combination.
  • the ratio of the reaction gas to the source gas is higher than the ratio of the reaction gas that is theoretically necessary to completely react the source gas and the reaction gas. It is preferable not to make it excessively large.
  • the oxygen amount is preferably equal to or less than the theoretically required oxygen amount to completely oxidize the entire organosilicon compound.
  • cryocoil 170 Next, the cryocoil 170 will be described.
  • the cryocoil 170 is a low-temperature condensing member having a temperature at which, for example, a refrigerant of ⁇ 120 to ⁇ 130 ° C. circulates, and a precursor that is generated by converting the raw material gas and the reaction gas into plasma can be condensed and trapped.
  • the cryocoil 170 is upstream of the discharge space S in the transport direction of the base material portion 30 of the gas barrier film 10, condenses and traps the precursor leaking from the discharge space S, and before being carried into the discharge space S. It is installed in the position which suppresses that a precursor adheres to the base-material part 30 of this gas barrier film 10.
  • the layer formed by the precursor is very brittle and easily damaged, and deteriorates the smoothness of the substrate.
  • the precursor adheres to the base material portion 30 before being carried into the discharge space S (a precursor-derived layer is formed between the base material portion 30 and the barrier layer 20). ) Is suppressed. That is, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 has good barrier properties and adhesion.
  • the installation position of the cryocoil 170 is not particularly limited as long as it is possible to suppress the adhesion of the precursor to the base material portion 30 before being carried into the discharge space S.
  • the installation positions of the cryocoil 170 are three locations P 1 , P 2 and P 3 inside the film forming chamber 140.
  • the installation position P 1 is a position near the outer periphery of the film forming roll 150 upstream of the discharge space S and adjacent to the shower electrode 142.
  • the installation position P ⁇ b > 2 is a substantially central position in the film formation chamber 140 region located upstream from the discharge space S.
  • the installation position P 3 is a position near the outer periphery of the film forming roll 150 upstream of the discharge space S and adjacent to the gap 164.
  • cryogenic coil 170 is installed at a position P 1.
  • the precursor includes a raw material gas and a reaction gas contained in the film forming gas, and a substance generated by decomposition of the film forming gas.
  • the source gas is HMDSO
  • Si (CH 3 ) 3 generated by decomposition of HMDSO, OSi (CH 3 ) 3 , and Si (CH 3 ) 3 reacts with OH to generate Si (CH 3 ) 3 (OH), H 2 O and CO 2 produced by reaction of MDSO and O 2 .
  • the low-temperature condensing member is not particularly limited to the form of the cryocoil 170 as long as the precursor can be condensed and trapped.
  • FIG. 4 is a flowchart for explaining the method for manufacturing the gas barrier film according to the first embodiment.
  • the present manufacturing method includes an attaching process, a feeding process, a carrying-in process, a barrier layer forming process, a carrying-out process, a winding process, and a removing process, as shown in FIG.
  • the feed roll 120 configured by winding the base material portion 30 of the gas barrier film 10 is attached to be rotatable about the shaft 122. Then, the first vacuum pump 180 and the second vacuum pump 182 are operated, and the inside of the unwinding chamber 115 and the film forming chamber 140 is depressurized to a degree of vacuum suitable for plasma CVD.
  • the base material portion 30 of the gas barrier film 10 is fed from the feeding roll 120 toward the guide roller 130.
  • the base material portion 30 of the gas barrier film 10 is guided by the guide roller 130 and carried (wrapped) onto the film forming roll 150.
  • the cryocoil 170 installed at the position P 1 upstream of the discharge space S that is the space between the shower electrode 142 and the film forming roll 150 and adjacent to the shower electrode 142 is upstream of the discharge space S. Condensate the precursor leaking into the trap. Therefore, the precursor is prevented from adhering to the base material part 30 before being carried into the discharge space S (the precursor-derived layer is formed between the base material part 30 and the barrier layer 20).
  • the base material portion 30 of the gas barrier film 10 passes through the discharge space S in a state of being wound (adhered to) the film forming roll 150.
  • the shower electrode 142 is connected to a plasma generation power source 185 and also connected to a film forming gas supply unit 190.
  • a bias power source 187 is connected to the film forming roll 150. Therefore, the shower electrode 142 and the film-forming roll 150 constitute an electrode pair, and the film-forming gas (raw material gas and reaction gas) from the film-forming gas supply unit 190 of the shower electrode 142 is converted into plasma, so that the gas barrier film 10
  • the barrier layer 20 is formed on the base material portion 30.
  • the base material portion 30 of the gas barrier film 10 is suppressed from forming a precursor-derived layer by the action of the cryocoil 170 in the carrying-in process immediately before the barrier layer forming process. Therefore, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 having good barrier properties and adhesiveness is formed.
  • the gas barrier film 10 in which the barrier layer 20 is formed on the base member 30 is unloaded (separated) from the film forming roll 150 toward the guide roller 132.
  • the gas barrier film 10 in which the barrier layer 20 is formed on the base member 30 is guided to the winding roll 125 by the guide roller 132 and is wound on the winding roll 125.
  • FIG. 5 is a table showing the performance evaluation results of the gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1
  • FIG. 6 is the installation of the cryocoil in Comparative Examples 3 and 4. It is the schematic for demonstrating a position.
  • the base material portion of the gas barrier film according to Example 1 has a base material, a clear hard coat layer, and a bleed out prevention layer.
  • the base material is a 125 ⁇ m-thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83) with easy adhesion on both sides.
  • the clear hard coat layer had a thickness of 4 ⁇ m, and was formed by applying the photosensitive resin composition to the substrate, drying it, and curing it with a high-pressure mercury lamp in an air atmosphere.
  • the photosensitive resin composition is a UV curable organic / inorganic hybrid hard coat material (OPSTAR Z7501) manufactured by JSR Corporation. A die coater was used for application of the photosensitive resin composition. Drying conditions are 80 ° C. and 3 minutes. The curing condition of the high pressure mercury lamp is 1.0 J / cm 2 .
  • the bleed-out prevention layer was formed in the same manner as the clear hard coat layer except for the photosensitive resin composition.
  • the photosensitive resin composition is a UV curable organic / inorganic hybrid hard coat material (OPSTAR Z7535) manufactured by JSR Corporation.
  • the installation position P 2 is a substantially central position of the film forming chamber 140 region located upstream of the discharge space S (see FIG. 2).
  • the source gas is SiH 4 , and the supply amount thereof is 100 sccm (Standard Cubic Centimeter per Minute).
  • the reaction gases are NH 4 and H 2 , the supply amount of NH 4 is 200 sccm, and the supply amount of H 2 is 1500 sccm.
  • the degree of vacuum in the vacuum chamber 110 is 100 Pa.
  • the applied power of the plasma generation power source 185 is 1.2 kW, and the frequency is 13.56 MHz.
  • the conveyance speed of a gas barrier film base material part is 1 m / min.
  • the temperature of the film forming roll 150 is ⁇ 10 ° C.
  • the installation position P 3 is a near and a position adjacent to the gap 164 of the outer periphery of the upstream side of the film-forming roll 150 from the discharge space S (see FIG. 2).
  • Gas barrier film according to Example 3, except that was installed cryocoil 170 in position P 1 was prepared in the same manner as the gas barrier film according to the first embodiment.
  • the installation position P 1 is a position adjacent to the near and the shower electrode 142 of the outer periphery of the upstream side of the film-forming roll 150 from the discharge space S (see FIG. 2).
  • the gas barrier film according to Example 4 was produced in the same manner as the gas barrier film according to Example 1 except for the raw material gas, the reaction gas, and the degree of vacuum.
  • the source gas is HMDSO
  • the reaction gas is O 2
  • the supply amount is 500 sccm
  • the degree of vacuum is 50 Pa.
  • the gas barrier film according to Comparative Example 1 was manufactured in the same manner as the gas barrier film according to Example 1 with no cryocoil 170 installed in the gas barrier film manufacturing apparatus 100.
  • the gas barrier film according to Comparative Example 2 was manufactured in the same manner as the gas barrier film according to Example 4 with no cryocoil 170 installed in the gas barrier film manufacturing apparatus 100.
  • the position P ⁇ b> 5 is a position downstream from the discharge space S and spaced from the partition wall 162 in the unwind chamber 115.
  • Evaluation of barrier properties was carried out using an evaluation cell.
  • the evaluation cell was prepared as follows by sealing both sides of the gas barrier film on the barrier layer side and the bleed-out prevention layer side.
  • the surface of the barrier layer of the gas barrier film was masked except for 9 areas, and then calcium, which is a metal that reacts with water and corrodes, was deposited in a vacuum state.
  • the size of the nine areas is 12 mm ⁇ 12 mm.
  • the mask was removed, aluminum was deposited, and then the vacuum state was released.
  • the barrier layer side of the gas barrier film was sealed with aluminum.
  • a vacuum deposition apparatus manufactured by JEOL Ltd., vacuum deposition apparatus JEE-400
  • quartz glass is disposed on the surface of the bleed-out prevention layer of the gas barrier film via an ultraviolet curable resin, and irradiated with ultraviolet rays.
  • the UV curable resin was cured. Thereby, the bleed-out prevention layer side of the gas barrier film was sealed with quartz glass.
  • Evaluation criterion A means that the amount of permeated water is less than 5 ⁇ 10 ⁇ 4 g / m 2 / day.
  • Evaluation criterion B means that the amount of permeated water is 1 ⁇ 10 ⁇ 4 g / m 2 / day or more and less than 1 ⁇ 10 ⁇ 3 g / m 2 / day.
  • Evaluation criterion C means that the amount of permeated water is 1 ⁇ 10 ⁇ 3 g / m 2 / day or more and less than 1 ⁇ 10 ⁇ 2 g / m 2 / day.
  • Evaluation criteria D means that the amount of permeated water is 1 ⁇ 10 ⁇ 2 g / m 2 / day or more.
  • the calcium corrosion method is described in, for example, Japanese Patent Application Laid-Open No. 2005-283561.
  • a comparative sample in which a quartz glass plate having a thickness of 0.2 mm was substituted for the gas barrier film was prepared.
  • the comparative sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, it was confirmed that no calcium corrosion occurred even after 1000 hours.
  • the adhesion was classified into four evaluation criteria A to D according to the results of a cross cut test according to JIS-K5400. Specifically, 100 1 mm square grids are formed on the barrier layer surface of the gas barrier film so as to intersect 11 cuts in the vertical and horizontal directions, and A cellophane tape was stuck on the surface, and it was quickly peeled off at an angle of 90 °. The portion of the barrier layer that adhered to the cellophane tape and peeled off was visually evaluated. Evaluation criterion A means that it is not peeled off at all. Evaluation criteria B means that although a slight float is observed in some grids, the quality is good. Evaluation criteria C means that the quality is acceptable for practical use, although peeling is observed at one or two grids. Evaluation criteria D means that the quality is a problem that is practically problematic because peeling is observed at three or more grids.
  • Bending resistance is based on four evaluation criteria A based on the change in the water vapor transmission coefficient of the gas barrier film before and after the bending test (ratio of the water vapor transmission coefficient after the bending test to the water vapor transmission coefficient before the bending test).
  • Classified into ⁇ D Specifically, a gas barrier film whose water vapor transmission coefficient has been measured in advance is wound around a metal rod, bent, and allowed to stand for 1 minute, and then the gas barrier film is returned flat and the water vapor transmission coefficient is measured again. did.
  • the radius of curvature of the gas barrier film is set to 8 mm, which corresponds to 1 ⁇ 2 of the diameter of the metal rod. However, when the number of turns of the gas barrier film increased, 1/2 of the diameter when the gas barrier film was wound was taken as the radius of curvature.
  • Evaluation criteria A means that the ratio is 0.95 or more.
  • Evaluation criterion B means that the ratio is 0.85 or more and less than 0.95.
  • Evaluation criterion C means that the ratio is 0.70 or more and less than 0.85.
  • Evaluation criteria D means that the ratio is less than 0.70.
  • the gas barrier films according to Examples 1 to 4 have an evaluation criterion B or higher, and the gas barrier films according to Comparative Examples 1 to 4 have an evaluation criterion C or lower. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4.
  • the gas barrier film according to the third embodiment cryocoil 170 was installed at a position P 1 was evaluated criteria A.
  • the gas barrier films according to Examples 1 to 4 are equal to or higher than the evaluation standard B, and the gas barrier films according to Comparative Examples 1 to 4 are equal to or lower than the evaluation standard C, as in the barrier property. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4.
  • the gas barrier film according to Example 2 and Example 3 cryocoil 170 was installed at a position P 3 and the position P 1, was a measure A.
  • the gas barrier films according to Examples 1 to 4 are evaluation criteria B or higher, and the gas barrier films according to Comparative Examples 1 to 4 are evaluation criteria C or lower. It is. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4.
  • the gas barrier film according to the third embodiment cryocoil 170 was installed at a position P 1 was evaluated criteria A.
  • the gas barrier films according to Examples 1 to 4 showed better results with respect to the barrier properties, adhesion, and bending resistance (flexibility) than the gas barrier films according to Comparative Examples 1 to 4. Yes.
  • the gas barrier film according to Example 3 in which the cryocoil 170 was installed at the position P 1 was Evaluation Criteria A in all of barrier properties, adhesion properties, and bending resistance (flexibility), and Examples 1-4 Among them, particularly excellent results are shown.
  • the gas barrier films according to Comparative Examples 2 to 4 in which the source gas is HMDSO are evaluation criteria D regarding the barrier properties and adhesion, and are compared with the gas barrier film according to Comparative Example 1 in which the source gas is SiH 4. It was inferior. This indicates that the precursor produced when the source gas is HMDSO contains silicon containing organic matter, and the strength of the formed film is weaker than when SiH 4 is used as the starting material. . Therefore, the improvement effect by the action of the cryocoil 170 is remarkable when the source gas is an organosilicon compound.
  • FIG. 7 is a schematic diagram for explaining a first modification according to the first embodiment.
  • Cryocoil is limited to a mode of installing only the upstream side of the discharge space S Zarezu, for example, it is also to place the second cryocoil 172 to the position P 6 adjacent to the downstream side and the shower head electrode 142 from the discharge space S Is possible.
  • the transport mechanism is configured so that the transport direction can be reversed (re-transportable), and after the formation of the barrier layer 20 on the base material portion 30 of the gas barrier film 10 is completed, the transport direction is reversed (reversed).
  • the cryocoil 172 is positioned upstream of the discharge space S in the re-conveying direction when the barrier layer 20 is increased in thickness by being re-conveyed continuously and re-introduced into the discharge space S. For this reason, the precursor is prevented from adhering to the barrier layer 20 before being re-loaded into the discharge space S (the formation of a precursor-derived layer on the surface of the barrier layer 20 is suppressed. Intervening layers from the precursor are avoided.
  • the discharge space is not limited to the form is placed in a position P 6 located on the opposite side of the position P 1 through S, for example, through the discharge space S position P 2 and the position P It is also possible to install it at a position located on the opposite side of 3 .
  • FIG. 8 is a schematic diagram for explaining a second modification according to the first embodiment.
  • baffle plate 175 between the cryocoil 170 and the discharge space S.
  • the baffle plate 175 further suppresses the precursor from adhering to the base material portion 30 before being carried into the discharge space S (a precursor-derived layer is formed).
  • the precursor leaked from the discharge space is condensed and trapped by the low-temperature condensing member, and the precursor is placed on the base of the gas barrier film before being carried into the discharge space. Adhesion is suppressed. Therefore, since a precursor-derived layer is not interposed between the base material portion and the barrier layer, the barrier layer has good barrier properties and adhesion. That is, it is possible to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
  • FIG. 9 is a schematic diagram for explaining the gas barrier film manufacturing apparatus according to the second embodiment.
  • the gas barrier film manufacturing apparatus 200 shown in FIG. 2 is generally different from the gas barrier film manufacturing apparatus 100 according to Embodiment 1 in that it has opposed film forming rolls and does not use a dedicated electrode (shower electrode). .
  • the gas barrier film manufacturing apparatus 200 is preferable in that it has good high-speed film forming properties and does not cause contamination through a dedicated electrode (shower electrode).
  • the gas barrier film manufacturing apparatus 200 includes a vacuum chamber 210, a vacuum pump 280, a plasma generation power source 285, and a film forming gas supply unit 290.
  • the vacuum chamber 210 includes a feed roll 220, a take-up roll 225, guide rollers 230, 232, 234, 236, a first film forming roll 240, a second film forming roll 245, a film forming gas supply port 250, and a cryocoil 270. And a vacuum pump 280 is connected.
  • the delivery roll 220 is configured by winding the base material portion 30 of the gas barrier film 10, and is arranged so as to be rotatable around a shaft 222.
  • the take-up roll 225 is disposed so as to be rotatable about a shaft 227 and is used to take up the base material portion 30 (the gas barrier film 10) on which the barrier layer 20 is formed.
  • the guide roller 230 is located between the delivery roll 220 and the first film formation roll 240, guides the base material part 30 fed out from the delivery roll 220, and carries (winds) the first film formation roll 240. used.
  • the guide roller 232 is located between the first film forming roll 240 and the guide roller 234, guides the base material unit 30 carried out (separated) from the first film forming roll 240, and transfers it to the guide roller 234. Used for.
  • the guide roller 234 is located between the guide roller 232 and the second film forming roll 245, and carries the base material part 30 on which the barrier layer 20 transferred from the guide roller 232 is formed into the second film forming roll 245. Used to do (wrap).
  • the guide roller 236 is located between the second film-forming roll 245 and the take-up roll 225, guides the base material part 30 carried out (separated) from the second film-forming roll 245, and guides it to the take-up roll 225. Used to wind up.
  • the barrier layer 20 is formed on the base material part 30 carried out (separated) from the first film-forming roll 240, and the thickness of the barrier layer increases in the second film-forming roll 245.
  • the base material portion 30 of the gas barrier film 10 is fed from the feed roll 220, and the guide roller 230, the first film forming roll 240, the guide rollers 232 and 234, the second film forming roll 245, and the guide roller 236.
  • the winding roll 225 That is, the delivery roll 220, the guide rollers 230, 232, 234, 236, the first film forming roll 240, the second film forming roll 245, and the take-up roll 225 continuously convey the base material portion 30 of the gas barrier film 10.
  • a transport mechanism is configured.
  • the first film-forming roll 240 is connected to a plasma generation power source 285, and has a first magnetic field generation device 244, and is disposed so as to be rotatable about an axis 242.
  • the second film forming roll 245 is connected to the plasma generating power source 285 and has a second magnetic field generating device 249 and is arranged to be rotatable about the shaft 247.
  • the first film forming roll 240 and the second film forming roll 245 are positioned so as to face each other.
  • the first film-forming roll 240 and the second film-forming roll 245 are positioned so that their central axes are substantially parallel to each other on the same plane, and have the same diameter. It is preferable that
  • the power source 285 for generating plasma is used to supply power to the first film forming roll 240 and the second film forming roll 245 and to use it as a counter electrode for discharging. Therefore, the space between the first film forming roll 240 and the second film forming roll 245 constitutes the discharge space S, and the supplied film forming gas (source gas and reaction gas) can be converted into plasma. is there.
  • the plasma generating power source 285 is configured by an AC power source capable of alternately inverting the polarities of the first film forming roll 240 and the second film forming roll 245.
  • the plasma generating power source 285 is not limited to an AC power source.
  • the first magnetic field generator 244 is fixedly arranged inside the first film forming roll 240 so as not to follow the rotation of the first film forming roll 240.
  • the second magnetic field generator 249 is fixedly disposed inside the second film forming roll 245 so as not to follow the rotation of the second film forming roll 245.
  • the first magnetic field generator 244 and the second magnetic field generator 249 preferably have magnetic poles arranged so that the magnetic lines of force do not cross each other and form a substantially closed magnetic circuit.
  • the magnetic pole of the first magnetic field generator 244 has a racetrack shape that is long in the axial direction of the first film forming roll 240
  • the magnetic pole of the second magnetic field generator 249 is a long race in the axial direction of the second film forming roll 245. It is configured in a track shape and has the same polarity as the magnetic poles of the first magnetic field generator 244 facing each other.
  • the film formation gas supply port 250 is connected to a film formation gas supply unit 290 having a source gas source 192 and a reaction gas source 194, and is disposed adjacent to the discharge space S in the upper part of the figure. Therefore, the mixed source gas and reaction gas can be supplied to the discharge space S from the film forming gas supply port 250.
  • the supply of the deposition gas is not limited to the above form, and the source gas and the reaction gas can be individually supplied through independent paths.
  • the vacuum pump 280 is used to depressurize the inside of the vacuum chamber 210 to a degree of vacuum suitable for plasma CVD, and for example, a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump can be applied.
  • the vacuum pump 280 is preferably disposed to face the film forming gas supply port 250 with the discharge space S interposed therebetween. In this case, since the film forming gas (the raw material gas and the reactive gas) is efficiently supplied to the discharge space S, the formation efficiency of the barrier layer 20 is improved.
  • the cryocoil 270 is upstream of the discharge space S in the transport direction of the base material portion 30, condenses and traps the precursor leaked from the discharge space S, and before the base material portion 30 is carried into the discharge space S. In addition, it is installed at a position that suppresses the adhesion of the precursor.
  • the cryocoil 270 is installed in the vicinity of the outer periphery of the first film forming roll 240 and in the vicinity of the position P 1 immediately before the base member 30 is wound around the first film forming roll 240.
  • the cryocoil 270 is not limited to the form of being installed at the position P 1, and can be installed at another position in the vicinity of the outer periphery of the first film forming roll 240, for example.
  • FIG. 10 is a flowchart for explaining a method for manufacturing a gas barrier film according to the second embodiment.
  • this manufacturing method includes an attaching process, a feeding process, a carrying-in process, a barrier layer forming process, a transferring process, a barrier layer film increasing process, a carrying-out process, a winding process, and a removing process.
  • a feed roll 220 configured by winding the base material portion 30 of the gas barrier film 10 is attached to be rotatable about a shaft 222. Then, the vacuum pump 280 is operated, and the inside of the vacuum chamber 210 is depressurized to a degree of vacuum suitable for plasma CVD.
  • the base material part 30 of the gas barrier film 10 is fed from the feeding roll 220 toward the guide roller 230.
  • the base material portion 30 of the gas barrier film 10 is guided by the guide roller 230 and carried (wrapped) onto the first film forming roll 240.
  • the cryocoil 270 condenses and traps the precursor leaking from the discharge space S to the upstream side. Therefore, the precursor is prevented from adhering to the base material part 30 before being carried into the discharge space S (the precursor-derived layer is formed between the base material part 30 and the barrier layer 20).
  • the base material portion 30 of the gas barrier film 10 passes through the discharge space S while being in close contact with the first film forming roll 240.
  • the first film-forming roll 240 and the second film-forming roll 245 facing the first film-forming roll 240 are connected to the plasma generating power source 285 and function as counter electrodes for discharging. That is, the space between the first film-forming roll 240 and the second film-forming roll 245 constitutes the discharge space S, and is adjacent to the discharge space S from the film-forming gas supply port 250 disposed in the upper part in the drawing.
  • the film-forming gas source gas and reaction gas
  • the base material portion 30 of the gas barrier film 10 is suppressed from forming a precursor-derived layer by the action of the cryocoil 270 in the carry-in process immediately before the barrier layer forming process. Therefore, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 has good barrier properties and adhesion.
  • the gas barrier film 10 in which the barrier layer 20 is formed on the base material portion 30 is separated from the first film forming roll 240, guided by the guide rollers 232 and 234, and moved to the second film forming roll 245. It is transferred (wound around the second film forming roll 245 via the guide rollers 232 and 234).
  • the base material portion 30 of the gas barrier film 10 passes through the discharge space S in a state of being wound (adhered to) the second film forming roll 245. Thereby, the thickness of the barrier layer 20 on the base material part 30 of the gas barrier film 10 increases.
  • the gas barrier film 10 in which the thickness of the barrier layer 20 on the base member 30 is increased is unloaded (separated) from the second film forming roll 245 toward the guide roller 236.
  • the gas barrier film 10 in which the thickness of the barrier layer 20 on the base member 30 is increased is guided to the winding roll 225 by the guide roller 236 and wound on the winding roll 225.
  • the gas barrier film 10 in which the thickness of the barrier layer 20 on the substrate 30 is increased is wound up.
  • the take-up roll 225 is removed.
  • FIG. 11 is a table showing the performance evaluation results of the gas barrier films according to Examples 1 and 2 and Comparative Example 1 according to the second embodiment.
  • the barrier layer of the gas barrier film according to Example 1 has the cryocoil 270 installed at the position P 1 and passes the first film forming roll 240 and the second film forming roll 245 once. Formed.
  • the installation position P 1 is upstream of the discharge space S, in the vicinity of the outer periphery of the first film forming roll 240 and in the vicinity of the position immediately before the base member 30 is wound around the first film forming roll 240 (see FIG. 9).
  • the source gas is HMDSO, and the supply amount is 100 sccm.
  • the reaction gas is O 2 and its supply amount is 500 sccm.
  • the degree of vacuum in the vacuum chamber 210 is 1.5 Pa.
  • the applied power of the plasma generation power source 185 is 1.2 kW, and the frequency is 80 kHz.
  • the conveyance speed of a gas barrier film base material part is 1 m / min.
  • the temperature of the film forming roll 150 is 30 ° C.
  • the barrier layer of the gas barrier film according to Example 2 was manufactured in the same manner as the gas barrier film according to Example 1 except that the source gas was HMDS.
  • the gas barrier film according to Comparative Example 1 was manufactured in the same manner as the gas barrier film according to Example 1 except that the cryocoil 270 was not installed in the gas barrier film manufacturing apparatus 200.
  • Evaluation methods and evaluation criteria for barrier properties, evaluation methods and evaluation criteria for adhesion, and evaluation methods and evaluation criteria for bending resistance (flexibility) are the same as in Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1. Since it is the same as that of the gas barrier film which concerns, the description is abbreviate
  • the gas barrier films according to Examples 1 and 2 are evaluation criteria A, and the gas barrier film according to Comparative Example 1 is evaluation criteria C. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
  • the gas barrier film according to Examples 1 and 2 is the evaluation standard A
  • the gas barrier film according to Comparative Example 1 is the evaluation standard C, as in the barrier property. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
  • the gas barrier film according to Examples 1 and 2 is the evaluation standard A
  • the gas barrier film according to Comparative Example 1 is the evaluation standard C, similarly to the barrier property. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
  • the gas barrier films according to Examples 1 and 2 are evaluation criteria A in all of the barrier properties, adhesion and bending resistance (flexibility), and are better than the gas barrier films according to Comparative Example 1. Results.
  • FIG. 12 is a schematic diagram for explaining the first modification according to the second embodiment.
  • the cryocoil is not limited to the form installed only on the upstream side of the discharge space S.
  • the cryocoil is positioned downstream of the discharge space S and adjacent to the discharge space S (the gas barrier film 10 is separated from the second film forming roll 245). It is also possible to install the second cryocoil 272 at a position immediately after the operation.
  • the transport mechanism is configured so that the transport direction can be reversed (re-transportable), and after the formation of the barrier layer 20 on the base material portion 30 of the gas barrier film 10 is completed, the transport direction is reversed (reversed).
  • the cryocoil 272 is positioned upstream of the discharge space S in the re-transport direction when the barrier layer 20 is increased in thickness by being re-transported continuously and re-loaded into the discharge space S. For this reason, the precursor-derived layer is suppressed from being formed on the surface of the barrier layer 20 before being carried into the discharge space S again. Accordingly, it is possible to avoid a precursor-derived layer intervening in the barrier layer 20.
  • FIG. 13 is a schematic diagram for explaining a second modification according to the second embodiment.
  • baffle plate 275 between the cryocoil 270 and the discharge space S.
  • the baffle plate 275 further suppresses the precursor from adhering to the base material part 30 before being carried into the discharge space S (a layer derived from the precursor is formed).
  • the implementation related to the roll-to-roll type plasma CVD method having a dedicated electrode is performed.
  • the barrier layer has good barrier properties and adhesion.
  • the low-temperature condensing members (cryocoils 170 and 270) and the second low-temperature condensing members (cryocoils 172 and 272) can be installed at a plurality of locations as necessary.
  • the barrier layer 20 can also be configured to have a multilayer structure by disposing the second barrier layer 20 above the intermediate layer via an intermediate layer.
  • the intermediate layer is composed of, for example, a polysiloxane modified layer.

Abstract

[Problem] To provide a manufacturing apparatus and manufacturing method for a gas barrier film with good barrier properties and adhesiveness. [Solution] A manufacturing apparatus 100 for manufacturing a gas barrier film 10 using a roll-to-roll-type plasma CVD method comprises: an electric discharge space for converting a starting material gas and a reaction gas for forming a barrier layer 20 of the gas barrier film into a plasma; conveyance mechanisms 120, 125, 130, 132 for continuously conveying the substrate 30 of the gas barrier film through the electric discharge space; and a cryocoil 170 capable of condensing and trapping precursors generated by the conversion of the starting material gas and reaction gas to plasma. The cryocoil 170 is set at a position, which is on the upstream side of the electric discharge space in the conveyance direction of the substrate 30 and at which adhesion of precursors to the substrate 30 to be conveyed into the electric discharge space is limited by condensing and trapping precursors that have leaked from the electric discharge space.

Description

ガスバリアーフィルムの製造装置および製造方法Gas barrier film manufacturing apparatus and manufacturing method
 本発明は、ガスバリアーフィルムの製造装置および製造方法に関する。 The present invention relates to a gas barrier film manufacturing apparatus and manufacturing method.
 水蒸気や酸素等の透過を防ぐガスバリアーフィルムは、バリアー性を有するバリアー層とバリアー層を支持する基材部とを有し、プラズマCVD(PECVD:plasma-enhanced chemical vapor deposition)法によって製造される。バリアー層は、原料ガスおよび反応ガスをプラズマ化する放電空間を経由して、ガスバリアーフィルムの基材部を連続的に搬送することによって形成される(例えば、特許文献1および2参照。)。 A gas barrier film that prevents permeation of water vapor, oxygen, and the like has a barrier layer having a barrier property and a base material portion that supports the barrier layer, and is manufactured by a plasma CVD (PECVD: plasma-enhanced chemical vapor deposition) method. . The barrier layer is formed by continuously transporting the base portion of the gas barrier film via a discharge space for converting the source gas and the reaction gas into plasma (see, for example, Patent Documents 1 and 2).
特開2013-28163号公報JP 2013-28163 A 特開2014-61679号公報JP 2014-61679 A
 しかし、原料ガスおよび反応ガスのプラズマ化によって生成されるプレカーサーが、放電空間から漏れて、放電空間に搬入される前のガスバリアーフィルムの基材部に、プレカーサーが付着する問題を有する。例えば、プレカーサーが付着することによって形成される層は、非常に脆く傷つき易く、かつ、基材部の平滑性を劣化させるため、その上に形成されるバリアー層のバリアー性および密着性を劣化させる。 However, there is a problem that the precursor generated by the plasma of the raw material gas and the reaction gas leaks from the discharge space and adheres to the base portion of the gas barrier film before being carried into the discharge space. For example, the layer formed by the adhesion of the precursor is very brittle and easily damaged, and deteriorates the smoothness of the base material portion. Therefore, the barrier property and adhesion of the barrier layer formed thereon are deteriorated. .
 一方、放電空間から漏れるプレカーサーを削減するため、プレカーサーの漏出経路となるガスバリアーフィルムの基材部の搬送経路を狭める場合、ガスバリアーフィルムの基材部が、意図せず搬送経路と接触して、損傷を受ける虞がある。そのため、搬送経路からのプレカーサーの漏れを抑制することは困難である。 On the other hand, in order to reduce the precursor leaking from the discharge space, when narrowing the transport path of the base part of the gas barrier film that becomes the leak path of the precursor, the base part of the gas barrier film is inadvertently in contact with the transport path. There is a risk of damage. Therefore, it is difficult to suppress the leakage of the precursor from the conveyance path.
 本発明は、上記従来技術に伴う課題を解決するためになされたものであり、良好なバリアー性および密着性を有するガスバリアーフィルムの製造装置および製造方法を提供することを目的とする。 The present invention has been made to solve the problems associated with the above-described conventional technology, and an object thereof is to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
 本発明の上記目的は、下記の手段によって達成される。 The above object of the present invention is achieved by the following means.
 (1)バリアー性を有するバリアー層と、前記バリアー層を支持する基材部と、を有するガスバリアーフィルムを、ロールツーロール型のプラズマCVD法によって製造するための製造装置であって、
 前記バリアー層を形成する原料ガスおよび反応ガスをプラズマ化する放電空間と、
 前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に搬送する搬送機構と、
 前記原料ガスおよび前記反応ガスのプラズマ化によって生成されるプレカーサーを凝縮させてトラップし得る温度を有する低温凝縮部材と、を有し、
 前記低温凝縮部材は、
 前記放電空間より、前記ガスバリアーフィルムの前記基材部の搬送方向上流側であって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記基材部に、前記プレカーサーが付着することを抑制する位置に、設置されている、製造装置。
(1) A manufacturing apparatus for manufacturing a gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer by a roll-to-roll type plasma CVD method,
A discharge space for converting the source gas and the reaction gas to form the barrier layer into plasma;
A transport mechanism for continuously transporting the base portion of the gas barrier film via the discharge space;
A low-temperature condensing member having a temperature capable of condensing and trapping the precursor generated by plasmification of the source gas and the reaction gas,
The low temperature condensing member is
The gas barrier film upstream of the discharge space in the transport direction of the base material portion of the gas barrier film, before the precursor leaking from the discharge space is condensed and trapped, and is carried into the discharge space The manufacturing apparatus installed in the position which suppresses that the said precursor adheres to the said base material part.
 (2)前記ガスバリアーフィルムの前記基材部が巻き付く成膜ロールと、
 前記成膜ロールに相対して配置され、かつ、前記成膜ロールと共に電極対を構成するシャワー電極と、をさらに有し、
 前記放電空間は、前記シャワー電極と前記成膜ロールとの間の空間によって構成される、前記(1)に記載の製造装置。
(2) a film forming roll around which the base portion of the gas barrier film is wound;
A shower electrode disposed relative to the film forming roll and constituting an electrode pair together with the film forming roll;
The said discharge space is a manufacturing apparatus as described in said (1) comprised by the space between the said shower electrode and the said film-forming roll.
 (3)前記放電空間および前記シャワー電極が配置され、かつ、前記成膜ロールにおける前記ガスバリアーフィルムの前記基材部が巻き付く部位が位置する成膜室と、をさらに有し、
 前記低温凝縮部材は、前記成膜室に配置されている、前記(2)に記載の製造装置。
(3) The discharge space and the shower electrode are disposed, and a film forming chamber in which a portion around which the base material portion of the gas barrier film in the film forming roll is wound is further provided,
The manufacturing apparatus according to (2), wherein the low-temperature condensing member is disposed in the film forming chamber.
 (4)前記低温凝縮部材が設置される前記位置は、前記成膜ロールの外周の近傍である、前記(3)に記載の製造装置。 (4) The manufacturing apparatus according to (3), wherein the position where the low-temperature condensing member is installed is in the vicinity of the outer periphery of the film forming roll.
 (5)前記低温凝縮部材が設置される前記位置は、前記シャワー電極に隣接している、前記(4)に記載の製造装置。 (5) The manufacturing apparatus according to (4), wherein the position where the low-temperature condensing member is installed is adjacent to the shower electrode.
 (6)第1成膜ロールと、
 第1成膜ロールより、前記ガスバリアーフィルムの前記基材部の搬送方向下流側に位置し、かつ、前記第1成膜ロールに相対して配置され、前記第1成膜ロールと共に電極対を構成する第2成膜ロールと、をさらに有し、
 前記放電空間は、前記第1成膜ロールと前記第2成膜ロールとの間の空間によって構成される、前記(1)に記載の製造装置。
(6) a first film forming roll;
It is located on the downstream side in the transport direction of the base material portion of the gas barrier film from the first film forming roll, and is disposed relative to the first film forming roll, and an electrode pair together with the first film forming roll. And further comprising a second film forming roll,
The said discharge space is a manufacturing apparatus as described in said (1) comprised by the space between a said 1st film-forming roll and a said 2nd film-forming roll.
 (7)前記低温凝縮部材が設置される前記位置は、前記第1成膜ロールの外周の近傍である、前記(6)に記載の製造装置。 (7) The manufacturing apparatus according to (6), wherein the position where the low-temperature condensing member is installed is in the vicinity of the outer periphery of the first film forming roll.
 (8)前記低温凝縮部材が設置される前記位置は、前記ガスバリアーフィルムの前記基材部が前記第1成膜ロールに巻き付く直前の位置の近傍である、前記(7)に記載の製造装置。 (8) The manufacturing according to (7), wherein the position where the low-temperature condensing member is installed is in the vicinity of a position immediately before the base portion of the gas barrier film is wound around the first film forming roll. apparatus.
 (9)前記低温凝縮部材と前記放電空間との間に配置される邪魔板を、さらに有し、
 前記邪魔板は、前記放電空間からの前記プレカーサーの漏れを抑制する、前記(1~(8)のいずれか1項に記載の製造装置。
(9) A baffle plate further disposed between the low-temperature condensing member and the discharge space,
The manufacturing apparatus according to any one of (1 to (8), wherein the baffle plate suppresses leakage of the precursor from the discharge space.
 (10)前記原料ガスおよび前記反応ガスのプラズマ化によって生成されるプレカーサーを凝縮させてトラップし得る温度を有する第2の低温凝縮部材を、さらに有し、
 前記搬送機構は、前記ガスバリアーフィルムの前記基材部に対する前記バリアー層の形成が完了した後、前記ガスバリアーフィルムの前記基材部の搬送方向を反転し、前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に再搬送可能に構成されており、
 前記第2の低温凝縮部材は、前記放電空間より、前記ガスバリアーフィルムの前記基材部の再搬送方向上流側であって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記バリアー層に、前記プレカーサーが付着することを抑制する位置に、設置されている、前記(1)~(9)のいずれか1項に記載の製造装置。
(10) a second low-temperature condensing member having a temperature at which the precursor generated by plasmification of the source gas and the reaction gas can be condensed and trapped;
The transport mechanism reverses the transport direction of the base material portion of the gas barrier film after the formation of the barrier layer on the base material portion of the gas barrier film is completed, and passes through the discharge space, The base portion of the gas barrier film is configured to be continuously re-transportable,
The second low-temperature condensing member condenses and traps the precursor leaking from the discharge space on the upstream side in the re-transport direction of the base material portion of the gas barrier film from the discharge space. 10. The production according to any one of (1) to (9), wherein the production is installed at a position where the precursor is prevented from adhering to the barrier layer of the gas barrier film before being carried into the container. apparatus.
 (11)バリアー性を有するバリアー層と、前記バリアー層を支持する基材部と、を有するガスバリアーフィルムを、ロールツーロール型のプラズマCVD法によって製造するための製造方法であって、
 前記バリアー層を形成する原料ガスおよび反応ガスをプラズマ化する放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に搬送する際、
 前記放電空間より、前記ガスバリアーフィルムの前記基材部の搬送方向上流側に設置される低温凝縮部材によって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記基材部に、前記プレカーサーが付着することを抑制する、製造方法。
(11) A manufacturing method for manufacturing a gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer by a roll-to-roll type plasma CVD method,
When continuously transporting the base material portion of the gas barrier film via a discharge space for converting the raw material gas and the reaction gas to plasma into the barrier layer,
The precursor leaked from the discharge space is condensed and trapped by the low-temperature condensing member installed on the upstream side in the transport direction of the base material part of the gas barrier film from the discharge space, and before being carried into the discharge space. The manufacturing method which suppresses that the said precursor adheres to the said base material part of the said gas barrier film.
 (12)前記低温凝縮部材と前記放電空間との間に配置される邪魔板によって、前記放電空間からの前記プレカーサーの漏れを抑制する、前記(11)に記載の製造方法。 (12) The manufacturing method according to (11), wherein leakage of the precursor from the discharge space is suppressed by a baffle plate arranged between the low-temperature condensing member and the discharge space.
 (13)前記ガスバリアーフィルムの前記基材部に対する前記バリアー層の形成が完了した後、前記ガスバリアーフィルムの前記基材部の搬送方向を反転し、前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に再搬送する際、
 前記放電空間より、前記ガスバリアーフィルムの前記基材部の再搬送方向上流側に設置される第2の低温凝縮部材によって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記バリアー層に、前記プレカーサーが付着することを抑制する、前記(11)又は前記(12)に記載の製造方法。
(13) After the formation of the barrier layer on the base portion of the gas barrier film is completed, the transport direction of the base portion of the gas barrier film is reversed, and the gas barrier passes through the discharge space. When continuously re-feeding the base part of the film,
The precursor leaked from the discharge space is condensed and trapped by the second low-temperature condensing member installed on the upstream side in the re-conveying direction of the base material portion of the gas barrier film from the discharge space, and trapped in the discharge space. The manufacturing method according to (11) or (12), wherein the precursor is prevented from adhering to the barrier layer of the gas barrier film before being carried in.
 (14)前記原料ガスは、有機ケイ素化合物である、前記(11)~(13)のいずれか1項に記載の製造方法。 (14) The manufacturing method according to any one of (11) to (13), wherein the source gas is an organosilicon compound.
 本発明に係るガスバリアーフィルムの製造装置および製造方法によれば、低温凝縮部材によって、放電空間から漏れたプレカーサーを凝縮させてトラップして、放電空間に搬入される前のガスバリアーフィルムの基材部に、プレカーサーが付着することが抑制される。したがって、基材部とバリアー層との間にプレカーサー由来の層が介在されないため、バリアー層は、良好なバリアー性および密着性を有する。つまり、良好なバリアー性および密着性を有するガスバリアーフィルムの製造装置および製造方法を提供することが可能である。 According to the gas barrier film manufacturing apparatus and the manufacturing method of the present invention, the precursor of the gas barrier film before being brought into the discharge space by condensing and trapping the precursor leaked from the discharge space by the low-temperature condensing member. It is suppressed that a precursor adheres to a part. Therefore, since a precursor-derived layer is not interposed between the base material portion and the barrier layer, the barrier layer has good barrier properties and adhesion. That is, it is possible to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
 本発明のさらに他の目的、特徴および特質は、以後の説明および添付図面に例示される好ましい実施の形態を参照することによって、明らかになるであろう。 Further objects, features, and characteristics of the present invention will become apparent by referring to the preferred embodiments illustrated in the following description and the accompanying drawings.
実施の形態1に係るガスバリアーフィルムを説明するための断面図である。It is sectional drawing for demonstrating the gas barrier film which concerns on Embodiment 1. FIG. 実施の形態1に係るガスバリアーフィルムの製造装置を説明するための概略図である。It is the schematic for demonstrating the manufacturing apparatus of the gas barrier film which concerns on Embodiment 1. FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 実施の形態1に係るガスバリアーフィルムの製造方法を説明するためのフローチャートである。3 is a flowchart for explaining a method for producing a gas barrier film according to Embodiment 1. 実施の形態1に係る実施例1~4および比較例1~4に係るガスバリアーフィルムの性能評価結果を示しているテーブルである。3 is a table showing performance evaluation results of gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1. FIG. 比較例3および4におけるクライオコイルの設置位置を説明するための概略図である。It is the schematic for demonstrating the installation position of the cryocoil in the comparative examples 3 and 4. FIG. 実施の形態1に係る変形例1を説明するための概略図である。FIG. 6 is a schematic diagram for explaining a first modification according to the first embodiment. 実施の形態1に係る変形例2を説明するための概略図である。FIG. 10 is a schematic diagram for explaining a second modification according to the first embodiment. 実施の形態2に係るガスバリアーフィルム製造装置を説明するための概略図である。It is the schematic for demonstrating the gas barrier film manufacturing apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係るガスバリアーフィルムの製造方法を説明するためのフローチャートである。5 is a flowchart for explaining a method for producing a gas barrier film according to Embodiment 2. 実施の形態2に係る実施例1、2および比較例1に係るガスバリアーフィルムの性能評価結果を示しているテーブルである。6 is a table showing results of performance evaluation of gas barrier films according to Examples 1 and 2 and Comparative Example 1 according to Embodiment 2. 実施の形態2に係る変形例1を説明するための概略図である。FIG. 9 is a schematic diagram for explaining a first modification according to the second embodiment. 実施の形態2に係る変形例2を説明するための概略図である。FIG. 10 is a schematic diagram for explaining a second modification according to the second embodiment.
 以下、本発明の実施の形態を、図面を参照しつつ説明する。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、実施の形態1に係るガスバリアーフィルムを説明するための断面図である。 FIG. 1 is a cross-sectional view for explaining a gas barrier film according to Embodiment 1. FIG.
 実施の形態1に係るガスバリアーフィルム10は、図1に示されるように、バリアー層20と基材部30とから構成され、包装や電子デバイス等に適用される。電子デバイスは、例えば、太陽電池素子、有機エレクトロルミネッセンス(OEL:organic electro-luminescence)素子、液晶表示(LCD:liquid crystal display)素子である。 As shown in FIG. 1, the gas barrier film 10 according to Embodiment 1 includes a barrier layer 20 and a base material portion 30 and is applied to packaging, electronic devices, and the like. The electronic device is, for example, a solar cell element, an organic electro-luminescence (OEL) element, or a liquid crystal display (LCD) element.
 バリアー層20は、ロールツーロール型のプラズマCVD法によって製造されるバリアー性を有する薄膜であり、基材部30の一方の面に配置される。バリアー層20は、成膜ガスに含まれる原料ガスおよび反応ガス、分解温度等の条件に応じた組成を有する。例えば、ケイ素化合物および酸素を、原料ガスおよび反応ガスとして製造されるバリアー層20は、ケイ素酸化物を含有する。 The barrier layer 20 is a thin film having a barrier property manufactured by a roll-to-roll type plasma CVD method, and is disposed on one surface of the base material portion 30. The barrier layer 20 has a composition according to conditions such as a raw material gas and a reaction gas contained in the film forming gas, and a decomposition temperature. For example, the barrier layer 20 produced using a silicon compound and oxygen as a source gas and a reaction gas contains a silicon oxide.
 基材部30は、基材32、クリアハードコート層34およびブリードアウト防止層36を有する。基材32は、バリアー層20の支持体であり、例えば、無色透明な樹脂フィルムから構成される。 The base material portion 30 includes a base material 32, a clear hard coat layer 34, and a bleed-out prevention layer 36. The base material 32 is a support for the barrier layer 20 and is made of, for example, a colorless and transparent resin film.
 クリアハードコート層34は、バリアー層20と基材32との間に位置する。クリアハードコート層34は、バリアー層20と基材32との間の密着性を向上させる機能、バリアー層20と基材32の膨張および収縮の差から生じる内部応力を緩和させる機能、バリアー層20が配置される面を平坦化する機能、および、基材32からのモノマー、オリゴマー等の低分子量成分がブリードアウトすることを防止する機能を有する。 The clear hard coat layer 34 is located between the barrier layer 20 and the base material 32. The clear hard coat layer 34 has a function of improving adhesion between the barrier layer 20 and the base material 32, a function of relaxing internal stress resulting from a difference between expansion and contraction of the barrier layer 20 and the base material 32, and the barrier layer 20 Has a function of flattening the surface on which the low molecular weight component is disposed, and a function of preventing low molecular weight components such as monomers and oligomers from the substrate 32 from bleeding out.
 ブリードアウト防止層36は、基材部30の他方の面(基材32におけるバリアー層20およびクリアハードコート層34が配置されていない表面)に配置される。ブリードアウト防止層36は、基材32からのモノマー、オリゴマー等の低分子量成分がブリードアウトすることを防止する機能を有する。 The bleed-out prevention layer 36 is disposed on the other surface of the base material portion 30 (the surface of the base material 32 on which the barrier layer 20 and the clear hard coat layer 34 are not disposed). The bleed-out prevention layer 36 has a function of preventing bleed-out of low molecular weight components such as monomers and oligomers from the base material 32.
 次に、バリアー層20、基材32、クリアハードコート層34およびブリードアウト防止層36の材質等について説明する。 Next, materials of the barrier layer 20, the base material 32, the clear hard coat layer 34, and the bleed-out prevention layer 36 will be described.
 バリアー層20は、酸化ケイ素(SiO)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、炭化ケイ素、酸化アルミニウム、酸化チタン、アルミニウムシリケート、これらの複合体等を含有することが可能である。 The barrier layer 20 contains silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, aluminum silicate, a composite thereof, and the like. Is possible.
 例えば、バリアー層20がケイ素、酸素及び炭素を含有する場合、ケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子の含有量の原子比率は、経時での性能変動の抑制およびガスバリアー性の観点から、好ましくは20at%以上、より好ましくは25%以上であり、耐湿性、屈曲性および柔軟性の観点から、好ましくは40%以下、より好ましくは45at%以下である。酸素原子の含有量の原子比率は、透明性および耐久性の観点から、好ましくは30at%以上であり、経時での性能変動の抑制および温度変化による耐久性の観点から、好ましくは70at%以下である。炭素原子の含有量の原子比率は、柔軟性および温度変化による耐久性の観点から、好ましくは0.5at%以上であり、透明性およびフィルム欠陥の抑制の観点から、好ましくは40at%以下である。 For example, when the barrier layer 20 contains silicon, oxygen, and carbon, the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms determines the performance variation over time and the gas barrier properties. From the viewpoint, it is preferably 20 at% or more, more preferably 25% or more. From the viewpoint of moisture resistance, flexibility and flexibility, it is preferably 40% or less, more preferably 45 at% or less. The atomic ratio of the oxygen atom content is preferably 30 at% or more from the viewpoint of transparency and durability, and preferably 70 at% or less from the viewpoint of suppression of performance fluctuation over time and durability due to temperature change. is there. The atomic ratio of the carbon atom content is preferably 0.5 at% or more from the viewpoint of flexibility and durability due to temperature change, and preferably 40 at% or less from the viewpoint of transparency and suppression of film defects. .
 バリアー層20の厚さは、膜厚の均一性およびガスバリアー性の観点から、好ましくは10nm以上であり、クラック抑制の観点から、好ましくは500nm以下である。 The thickness of the barrier layer 20 is preferably 10 nm or more from the viewpoint of film thickness uniformity and gas barrier properties, and preferably 500 nm or less from the viewpoint of crack suppression.
 基材32は、例えば、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、エチレン-酢酸ビニル共重合体のケン化物、ポリアクリロニトリル系樹脂、アセタール系樹脂、ポリイミド系樹脂等から構成される。ポリエステル系樹脂は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)である。ポリオレフィン系樹脂は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィンである。耐熱性、線膨張率、製造コストの観点から、ポリエステル系樹脂、ポリオレフィン系樹脂が好ましく、PET、PENが特に好ましい。基材32用の樹脂は、2種以上を組み合わせて使用することも可能である。 The base material 32 is, for example, a polyester resin, a polyolefin resin, a polyamide resin, a polycarbonate resin, a polystyrene resin, a polyvinyl alcohol resin, a saponified ethylene-vinyl acetate copolymer, a polyacrylonitrile resin, or an acetal resin. It is comprised from resin, a polyimide-type resin, etc. The polyester resin is, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN). The polyolefin resin is, for example, polyethylene (PE), polypropylene (PP), or cyclic polyolefin. From the viewpoint of heat resistance, linear expansion coefficient, and production cost, polyester resins and polyolefin resins are preferable, and PET and PEN are particularly preferable. Two or more kinds of resins for the base material 32 can be used in combination.
 基材32の厚みは、ガスバリアーフィルム10を製造する際の安定性や機械的強度を考慮して適宜に設定され、例えば、5~500μmの範囲であることが好ましく、50~200μmの範囲であることがより好ましく、50~100μmの範囲であることが特に好ましい。 The thickness of the base material 32 is appropriately set in consideration of the stability and mechanical strength when producing the gas barrier film 10, and is preferably in the range of 5 to 500 μm, for example, in the range of 50 to 200 μm. More preferably, it is in the range of 50 to 100 μm.
 バリアー層20との密着性の観点から、基材32の表面に対して表面活性処理を施して清浄することが好ましい。表面活性処理は、例えば、コロナ処理、プラズマ処理、フレーム処理である。 From the viewpoint of adhesion to the barrier layer 20, it is preferable to clean the surface of the substrate 32 by subjecting it to a surface activation treatment. The surface activation treatment is, for example, corona treatment, plasma treatment, or flame treatment.
 クリアハードコート層34は、例えば、感光性樹脂組成物を基材32の一方の面上に塗布し、硬化させることで形成することが可能である。感光性樹脂組成物は、感光性樹脂、光重合開始剤、溶媒等を含んでいる。感光性樹脂は、例えば、ラジカル反応性不飽和結合を有するアクリレート化合物を含有する樹脂、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂、多官能アクリレートモノマーを含有する樹脂である。多官能アクリレートモノマーを含有する樹脂は、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等である。 The clear hard coat layer 34 can be formed, for example, by applying a photosensitive resin composition on one surface of the substrate 32 and curing it. The photosensitive resin composition contains a photosensitive resin, a photopolymerization initiator, a solvent, and the like. The photosensitive resin is, for example, a resin containing an acrylate compound having a radical reactive unsaturated bond, a resin containing an acrylate compound and a mercapto compound having a thiol group, or a resin containing a polyfunctional acrylate monomer. Resins containing a polyfunctional acrylate monomer are epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate, and the like.
 光重合開始剤は、例えば、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-(4-モルフォリニル)-1-プロパン、α-アシロキシムエステル、チオキサンソン類である。なお、感光性樹脂および重合開始剤は、2種以上を組み合わせて用いることも可能である。 Examples of the photopolymerization initiator include acetophenone, benzophenone, Michler's ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl) -1-propane, α-acyloxime ester, thioxanthones. The photosensitive resin and the polymerization initiator can be used in combination of two or more.
 クリアハードコート層の厚さは、ガスバリアーフィルム10の耐熱性の観点から、1μm以上、より好ましくは2μm以上であり、ガスバリアーフィルム10の光学特性およびカール抑制の観点から、10μm以下、より好ましくは7μmである。 The thickness of the clear hard coat layer is 1 μm or more, more preferably 2 μm or more from the viewpoint of heat resistance of the gas barrier film 10, and more preferably 10 μm or less from the viewpoint of optical characteristics and curl suppression of the gas barrier film 10. Is 7 μm.
 ブリードアウト防止層36は、例えば、感光性樹脂組成物を基材32の他方の面上に塗布し、硬化させることで形成することが可能である。感光性樹脂組成物を構成する感光性樹脂および重合開始剤は、上述のものを適用することが可能である。 The bleed-out prevention layer 36 can be formed, for example, by applying a photosensitive resin composition on the other surface of the substrate 32 and curing it. As the photosensitive resin and the polymerization initiator constituting the photosensitive resin composition, those described above can be applied.
 ブリードアウト防止層の厚さは、クリアハードコート層と同様に、ガスバリアーフィルム10の耐熱性の観点から、1μm以上、より好ましくは2μm以上であり、ガスバリアーフィルム10の光学特性およびカール抑制の観点から、10μm以下、より好ましくは7μmである。 The thickness of the bleed-out prevention layer is 1 μm or more, more preferably 2 μm or more from the viewpoint of heat resistance of the gas barrier film 10, similarly to the clear hard coat layer. From the viewpoint, it is 10 μm or less, more preferably 7 μm.
 ガスバリアーフィルム10は、上記形態に限定されず、基材32の両面にクリアハードコート層34を配置したり、クリアハードコート層34および/又はブリードアウト防止層36の代わりに別の機能化層を配置したり、追加して別の機能化層を配置したり、クリアハードコート層34および/又はブリードアウト防止層36を省略したりすることも可能である。別の機能化層は、例えば、平滑層、アンカーコート層、吸湿層、帯電防止層、保護層である。なお、保護層は、例えば、有機化合物を含有する層であり、バリアー層20の上方に配置され、バリアー層20の損傷を防ぐ機能を有する。有機化合物は、有機モノマー、オリゴマー、ポリマー等の有機樹脂や、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂等である。 The gas barrier film 10 is not limited to the above-described form, and the clear hard coat layer 34 is disposed on both surfaces of the base material 32, or another functionalized layer is used instead of the clear hard coat layer 34 and / or the bleed out preventing layer 36. It is also possible to arrange another functional layer, or to omit the clear hard coat layer 34 and / or the bleed-out preventing layer 36. Another functionalized layer is, for example, a smooth layer, an anchor coat layer, a hygroscopic layer, an antistatic layer, or a protective layer. The protective layer is, for example, a layer containing an organic compound, and is disposed above the barrier layer 20 and has a function of preventing damage to the barrier layer 20. The organic compound is an organic resin such as an organic monomer, oligomer, or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer, polymer, or the like having an organic group.
 次に、ガスバリアーフィルム10の製造装置を説明する。 Next, an apparatus for manufacturing the gas barrier film 10 will be described.
 図2は、実施の形態1に係るガスバリアーフィルムの製造装置を説明するための概略図、図3は、図2の要部拡大図である。 FIG. 2 is a schematic view for explaining the gas barrier film manufacturing apparatus according to Embodiment 1, and FIG. 3 is an enlarged view of a main part of FIG.
 図2に示される製造装置100は、ロールツーロール型のプラズマCVD法によってガスバリアーフィルム10を製造するために使用され、真空チャンバー110、第1真空ポンプ180、第2真空ポンプ182、プラズマ発生用電源185、バイアス電源187、および、成膜ガス供給部190を有する。ロールツーロール型のプラズマCVD法は、高い材料利用効率および高速成膜性の観点から好ましい。 A manufacturing apparatus 100 shown in FIG. 2 is used to manufacture the gas barrier film 10 by a roll-to-roll type plasma CVD method, and includes a vacuum chamber 110, a first vacuum pump 180, a second vacuum pump 182, and a plasma generating device. A power source 185, a bias power source 187, and a film forming gas supply unit 190 are included. The roll-to-roll type plasma CVD method is preferable from the viewpoint of high material utilization efficiency and high-speed film formation.
 真空チャンバー110は、巻出し室115、成膜室140、成膜ロール150および隔壁160,162を有する。 The vacuum chamber 110 has an unwinding chamber 115, a film forming chamber 140, a film forming roll 150, and partition walls 160 and 162.
 巻出し室115は、隔壁160,162を介して成膜室140の図中上方に位置しかつ第1真空ポンプ180が接続されており、送り出しロール120、巻き取りロール125およびガイドローラー130,132を有する。第1真空ポンプ180は、成膜室140に影響を与えないように、巻出し室115の内部を所定の真空度に減圧するために使用される。 The unwinding chamber 115 is located above the film forming chamber 140 through the partition walls 160 and 162 and is connected to the first vacuum pump 180. The unwinding roll 120, the winding roll 125, and the guide rollers 130 and 132 are connected to the unwinding chamber 115. Have The first vacuum pump 180 is used to depressurize the inside of the unwinding chamber 115 to a predetermined degree of vacuum so as not to affect the film forming chamber 140.
 送り出しロール120は、ガスバリアーフィルム10の基材部30を巻回して構成されており、軸122を中心に回転自在に配置されている。巻き取りロール125は、軸127を中心に回転自在に配置されており、バリアー層20が形成された基材部30(ガスバリアーフィルム10)を巻き取るために使用される。なお、巻き取りロール125および送り出しロール120は、同期して駆動される。 The delivery roll 120 is configured by winding the base material portion 30 of the gas barrier film 10 and is disposed so as to be rotatable around a shaft 122. The take-up roll 125 is disposed so as to be rotatable about a shaft 127 and is used to take up the base material portion 30 (gas barrier film 10) on which the barrier layer 20 is formed. The take-up roll 125 and the delivery roll 120 are driven in synchronization.
 ガイドローラー130は、送り出しロール120と成膜ロール150との間に位置し、送り出しロール120から繰り出される基材部30を案内し、図中下方に位置する成膜ロール150に搬入する(巻き付ける)ために使用される。ガイドローラー132は、成膜ロール150と巻き取りロール125との間に位置し、成膜ロール150から搬出される(離間する)基材部30を、案内し、巻き取りロール125に巻き取らせるために使用される。なお、成膜ロール150から搬出される(離間する)基材部30上には、バリアー層20が形成されている。 The guide roller 130 is located between the feed roll 120 and the film forming roll 150, guides the base material part 30 fed out from the feed roll 120, and carries (wraps) the film on the film forming roll 150 positioned below in the drawing. Used for. The guide roller 132 is positioned between the film forming roll 150 and the take-up roll 125, and guides the base material unit 30 carried out (separated) from the film forming roll 150 to cause the take-up roll 125 to take up the guide roller 132. Used for. In addition, the barrier layer 20 is formed on the base material part 30 carried out (separated) from the film forming roll 150.
 ガスバリアーフィルム10の基材部30は、上記のように、送り出しロール120から繰り出され、ガイドローラー130、成膜ロール150およびガイドローラー132を経由し、巻き取りロール125に巻き取られる。つまり、送り出しロール120、ガイドローラー130,132、成膜ロール150および巻き取りロール125は、ガスバリアーフィルム10の基材部30を連続的に搬送する搬送機構を構成する。 As described above, the base material portion 30 of the gas barrier film 10 is unwound from the feed roll 120 and taken up by the take-up roll 125 via the guide roller 130, the film forming roll 150 and the guide roller 132. That is, the delivery roll 120, the guide rollers 130 and 132, the film forming roll 150, and the take-up roll 125 constitute a transport mechanism that continuously transports the base material portion 30 of the gas barrier film 10.
 成膜ロール150は、バイアス電源187に接続され、巻出し室115と成膜室140との間に位置し、軸152を中心に回転自在に配置されている。成膜ロール150は、隔壁160,162との間に隙間164を有している。隙間164は、ガスバリアーフィルム10の基材部30を、巻出し室115から成膜室140へ搬入するための搬送経路を構成している。バイアス電源187は、例えば、高周波電源からなり、成膜ロール150の外周に巻き付いた基材部30に、バイアス電界を掛ける(バイアス電位を印加する)ために使用される。成膜ロール150は、基材部30の温度を調整する温度調整機構を有することが好ましい。温度調整機構は、例えば、冷媒やペルチェ素子を利用することが可能である。なお、バイアス電源187は、高周波電源に限定されない。 The film forming roll 150 is connected to a bias power source 187, is positioned between the unwinding chamber 115 and the film forming chamber 140, and is disposed so as to be rotatable about a shaft 152. The film forming roll 150 has a gap 164 between the partition walls 160 and 162. The gap 164 constitutes a conveyance path for carrying the base material portion 30 of the gas barrier film 10 from the unwind chamber 115 to the film formation chamber 140. The bias power source 187 includes, for example, a high-frequency power source, and is used to apply a bias electric field (apply a bias potential) to the base member 30 wound around the outer periphery of the film forming roll 150. The film forming roll 150 preferably has a temperature adjustment mechanism that adjusts the temperature of the base material portion 30. The temperature adjustment mechanism can use a refrigerant or a Peltier element, for example. The bias power source 187 is not limited to a high frequency power source.
 成膜室140は、隔壁160,162を介して巻出し室115の図中下方に位置しかつ第2真空ポンプ182が接続されており、シャワー電極142およびクライオコイル170を有する。第2真空ポンプ182は、成膜室140の内部をプラズマCVDに適した真空度に減圧するために使用される。なお、第1真空ポンプ180および第2真空ポンプ182は、例えば、ターボポンプ、メカニカルブースターポンプ、ロータリーポンプ、ドライポンプを適用することが可能である。 The film forming chamber 140 is located below the unwinding chamber 115 in the drawing through the partition walls 160 and 162 and connected to the second vacuum pump 182, and has a shower electrode 142 and a cryocoil 170. The second vacuum pump 182 is used to depressurize the inside of the film forming chamber 140 to a degree of vacuum suitable for plasma CVD. For example, a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump can be applied to the first vacuum pump 180 and the second vacuum pump 182.
 シャワー電極142は、例えば、アルミニウム製であり、中空部144およびガス供給孔146を有し、プラズマ発生用電源185に接続され、成膜ロール150に相対して配置される。シャワー電極142における成膜ロール150との対向面は、成膜ロール150の外周面形状と対応した曲面状となっており、所定間隔で離間している。シャワー電極142は、成膜ロール150と共に電極対を構成し、成膜ロール150の対向電極として機能する。つまり、シャワー電極142と成膜ロール150との間の空間は、プラズマを生成する放電空間S(図3参照)を構成する。 The shower electrode 142 is made of, for example, aluminum, has a hollow portion 144 and a gas supply hole 146, is connected to the plasma generation power source 185, and is disposed relative to the film forming roll 150. The surface of the shower electrode 142 facing the film forming roll 150 has a curved surface shape corresponding to the shape of the outer peripheral surface of the film forming roll 150 and is separated by a predetermined interval. The shower electrode 142 constitutes an electrode pair together with the film forming roll 150 and functions as a counter electrode of the film forming roll 150. That is, the space between the shower electrode 142 and the film forming roll 150 constitutes a discharge space S (see FIG. 3) that generates plasma.
 中空部144は、成膜ガス供給部190に接続されている。成膜ガスは、原料ガスおよび反応ガスを含んでおり、成膜ガス供給部190は、原料ガス源192および反応ガス源194を有する。原料ガス源192および反応ガス源194に保持されている原料ガスおよび反応ガスは、例えば、気化器やバブラーを経由し、混合された状態で、中空部144に供給される。成膜ガスは、必要に応じて、キャリアガスや、プラズマ放電を発生させるための放電ガスを含むことも可能である。キャリアガスおよび放電ガスは、例えば、希ガス、水素、窒素である。希ガスは、ヘリウム、アルゴン、ネオン、キセノン等である。 The hollow portion 144 is connected to the film forming gas supply unit 190. The deposition gas includes a source gas and a reactive gas, and the deposition gas supply unit 190 includes a source gas source 192 and a reactive gas source 194. The source gas and the reaction gas held in the source gas source 192 and the reaction gas source 194 are supplied to the hollow portion 144 in a mixed state via, for example, a vaporizer or a bubbler. The film-forming gas can contain a carrier gas and a discharge gas for generating plasma discharge as necessary. Carrier gas and discharge gas are rare gas, hydrogen, and nitrogen, for example. The rare gas is helium, argon, neon, xenon, or the like.
 ガス供給孔146は、中空部144に連通しており、成膜ロール150との対向面に配置される。プラズマ発生用電源185は、シャワー電極142に対してプラズマ励起電力を供給するために使用される高周波電源である。 The gas supply hole 146 communicates with the hollow portion 144 and is disposed on the surface facing the film forming roll 150. The plasma generation power source 185 is a high frequency power source used to supply plasma excitation power to the shower electrode 142.
 したがって、シャワー電極142は、高周波電極としての機能と原料ガスおよび反応ガスを放電空間Sに供給する機能とを有する。シャワー電極142における成膜ロール150との対向面は、バリアー層20を形成する際に生じる堆積物の剥離を防止するために、ブラスト処理等によって粗面化したり、溶射膜を形成したりすることも好ましい。なお、シャワー電極142は、上記形態に限定されない。 Therefore, the shower electrode 142 has a function as a high frequency electrode and a function of supplying the source gas and the reaction gas to the discharge space S. The surface facing the film forming roll 150 in the shower electrode 142 may be roughened by blasting or the like, or a sprayed film may be formed in order to prevent separation of deposits generated when the barrier layer 20 is formed. Is also preferable. Note that the shower electrode 142 is not limited to the above embodiment.
 成膜室140の真空度は、例えば、1~数100Paである。プラズマ発生用電源185の印加電力は、例えば、0.1~10kWである。プラズマ発生用電源185の周波数は、例えば、数十~数百kHz(HF)、13.56MHz(RF)および2.45GHz(マイクロ波)である。ガスバリアーフィルム10の基材部30の搬送速度は、0.1~100m/minである。 The degree of vacuum of the film forming chamber 140 is, for example, 1 to several hundred Pa. The applied power of the plasma generation power source 185 is, for example, 0.1 to 10 kW. The frequency of the plasma generation power source 185 is, for example, several tens to several hundreds kHz (HF), 13.56 MHz (RF), and 2.45 GHz (microwave). The conveyance speed of the base material portion 30 of the gas barrier film 10 is 0.1 to 100 m / min.
 成膜ガスに含まれる原料ガスは、例えば、炭素及び珪素を含有する有機珪素化合物や、炭素を含有する有機化合物ガスであり、バリアー層20の用途あるいは種類に応じて、適宜選択される。 The source gas contained in the film forming gas is, for example, an organic silicon compound containing carbon and silicon, or an organic compound gas containing carbon, and is appropriately selected according to the use or type of the barrier layer 20.
 有機珪素化合物は、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等である。HMDSOおよびHMDSは、取り扱い性およびガスバリアー性の観点から、好ましい。有機珪素化合物は、2種以上を組み合わせて使用することも可能である。 Organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, Trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetra Such as siloxane. HMSO and HMDS are preferable from the viewpoints of handleability and gas barrier properties. The organosilicon compounds can be used in combination of two or more.
 炭素を含有する有機化合物ガスは、メタン、エタン、エチレン、アセチレン、テトライソプロピルチタネート、チタンテトラエトキシド、チタンテトラブトキシド、シクロペンタジニエルチタントリイソプロポキシド、テトラキスジメチルアミノチタン、テトラキスジエチルアミノチタン、テトラメトキシアルミニウム、テトラエトキシアルミニウム、テトライソプロポキシアルミニウム、テトラnブトキシアルミニウム、アルミニウムsec-ブチレート等である。 The organic compound gas containing carbon is methane, ethane, ethylene, acetylene, tetraisopropyl titanate, titanium tetraethoxide, titanium tetrabutoxide, cyclopentadinier titanium triisopropoxide, tetrakisdimethylaminotitanium, tetrakisdiethylaminotitanium, tetra Methoxy aluminum, tetraethoxy aluminum, tetraisopropoxy aluminum, tetra n butoxy aluminum, aluminum sec-butyrate, and the like.
 成膜ガスに含まれる反応ガスは、原料ガスと反応して酸化物、窒化物等の無機化合物を生成するガスであり、少なくとも、酸素ガスを含んでいる。 The reaction gas contained in the deposition gas is a gas that reacts with the raw material gas to generate an inorganic compound such as an oxide or a nitride, and contains at least an oxygen gas.
 原料ガスと反応して酸化物を生成する反応ガスは、例えば、酸素ガス、オゾンガスである。原料ガスと反応して窒化物を生成する反応ガスは、例えば、窒素ガス、アンモニアガスである。反応ガスは、2種以上を組み合わせても使用することが可能である。例えば、酸化物を形成するための反応ガスと、窒化物を形成するための反応ガスと、を組み合わせて使用することにより、酸窒化物が形成される。 The reactive gas that generates an oxide by reacting with the raw material gas is, for example, oxygen gas or ozone gas. Examples of the reactive gas that reacts with the raw material gas to generate nitride are nitrogen gas and ammonia gas. The reaction gas can be used by combining two or more kinds. For example, an oxynitride is formed by using a reaction gas for forming an oxide and a reaction gas for forming a nitride in combination.
 形成されるバリアー層20のバリアー性および耐屈曲性の観点から、原料ガスに対する反応ガスの比率は、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの比率よりも、過剰に大きくしないことが好ましい。また、原料ガスが有機ケイ素化合物であり、反応ガスが酸素である場合、酸素量は、有機ケイ素化合物の全量を完全酸化するのに理論上必要となる酸素量以下であることが好ましい。 From the viewpoint of barrier properties and bending resistance of the barrier layer 20 to be formed, the ratio of the reaction gas to the source gas is higher than the ratio of the reaction gas that is theoretically necessary to completely react the source gas and the reaction gas. It is preferable not to make it excessively large. When the source gas is an organosilicon compound and the reaction gas is oxygen, the oxygen amount is preferably equal to or less than the theoretically required oxygen amount to completely oxidize the entire organosilicon compound.
 次に、クライオコイル170を説明する。 Next, the cryocoil 170 will be described.
 クライオコイル170は、例えば、-120~-130℃の冷媒が循環しており、原料ガスおよび反応ガスのプラズマ化によって生成されるプレカーサーを凝縮させてトラップし得る温度を有する低温凝縮部材である。クライオコイル170は、放電空間Sより、ガスバリアーフィルム10の基材部30の搬送方向上流側であって、放電空間Sから漏れたプレカーサーを凝縮させてトラップし、放電空間Sに搬入される前のガスバリアーフィルム10の基材部30に、プレカーサーが付着することを抑制する位置に、設置されている。 The cryocoil 170 is a low-temperature condensing member having a temperature at which, for example, a refrigerant of −120 to −130 ° C. circulates, and a precursor that is generated by converting the raw material gas and the reaction gas into plasma can be condensed and trapped. The cryocoil 170 is upstream of the discharge space S in the transport direction of the base material portion 30 of the gas barrier film 10, condenses and traps the precursor leaking from the discharge space S, and before being carried into the discharge space S. It is installed in the position which suppresses that a precursor adheres to the base-material part 30 of this gas barrier film 10. FIG.
 プレカーサーによって形成される層は、非常に脆く傷つき易く、かつ、基材の平滑性を劣化させる。しかし、クライオコイル170の設置により、放電空間Sに搬入される前の基材部30にプレカーサーが付着すること(基材部30とバリアー層20との間にプレカーサー由来の層が形成されること)が抑制される。つまり、基材部30とバリアー層20との間に、プレカーサー由来の層が介在されないため、バリアー層20は、良好なバリアー性および密着性を有する。 The layer formed by the precursor is very brittle and easily damaged, and deteriorates the smoothness of the substrate. However, when the cryocoil 170 is installed, the precursor adheres to the base material portion 30 before being carried into the discharge space S (a precursor-derived layer is formed between the base material portion 30 and the barrier layer 20). ) Is suppressed. That is, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 has good barrier properties and adhesion.
 クライオコイル170の設置位置は、放電空間Sに搬入される前の基材部30に対するプレカーサーの付着を抑制することが可能であれば、特に限定されない。例えば、クライオコイル170の設置位置は、成膜室140内部の3箇所P、PおよびPである。設置位置Pは、放電空間Sより上流側の成膜ロール150の外周の近傍かつシャワー電極142に隣接する位置である。設置位置Pは、放電空間Sより上流側に位置する成膜室140領域における略中央位置である。設置位置Pは、放電空間Sより上流側の成膜ロール150の外周の近傍かつ隙間164に隣接する位置である。なお、本実施の形態においては、クライオコイル170は位置Pに設置されている。 The installation position of the cryocoil 170 is not particularly limited as long as it is possible to suppress the adhesion of the precursor to the base material portion 30 before being carried into the discharge space S. For example, the installation positions of the cryocoil 170 are three locations P 1 , P 2 and P 3 inside the film forming chamber 140. The installation position P 1 is a position near the outer periphery of the film forming roll 150 upstream of the discharge space S and adjacent to the shower electrode 142. The installation position P < b > 2 is a substantially central position in the film formation chamber 140 region located upstream from the discharge space S. The installation position P 3 is a position near the outer periphery of the film forming roll 150 upstream of the discharge space S and adjacent to the gap 164. In this embodiment, cryogenic coil 170 is installed at a position P 1.
 プレカーサーは、成膜ガスに含まれる原料ガスや反応ガスそのものや、成膜ガスが分解して生成される物質を含んでいる。例えば、原料ガスがHMDSOの場合、HMDSOが分解して生成されるSi(CHおよびOSi(CH、Si(CHがOHと反応して生成されるSi(CH(OH)、MDSOとOが反応して生成されるHOおよびCOである。 The precursor includes a raw material gas and a reaction gas contained in the film forming gas, and a substance generated by decomposition of the film forming gas. For example, when the source gas is HMDSO, Si (CH 3 ) 3 generated by decomposition of HMDSO, OSi (CH 3 ) 3 , and Si (CH 3 ) 3 reacts with OH to generate Si (CH 3 ) 3 (OH), H 2 O and CO 2 produced by reaction of MDSO and O 2 .
 低温凝縮部材は、プレカーサーを凝縮させてトラップすることが可能であれば、特に、クライオコイル170の形態に限定されない。 The low-temperature condensing member is not particularly limited to the form of the cryocoil 170 as long as the precursor can be condensed and trapped.
 次に、実施の形態1に係るガスバリアーフィルムの製造方法を説明する。 Next, a method for manufacturing the gas barrier film according to Embodiment 1 will be described.
 図4は、実施の形態1に係るガスバリアーフィルムの製造方法を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the method for manufacturing the gas barrier film according to the first embodiment.
 本製造方法は、図4に示されるように、取付け工程、繰り出し工程、搬入工程、バリアー層形成工程、搬出工程、巻き取り工程および取り外し工程を有する。 The present manufacturing method includes an attaching process, a feeding process, a carrying-in process, a barrier layer forming process, a carrying-out process, a winding process, and a removing process, as shown in FIG.
 取付け工程においては、ガスバリアーフィルム10の基材部30を巻回して構成される送り出しロール120が、軸122を中心に回転自在に取付けされる。そして、第1真空ポンプ180および第2真空ポンプ182が稼働され、巻出し室115および成膜室140の内部が、プラズマCVDに適した真空度に減圧される。 In the attaching step, the feed roll 120 configured by winding the base material portion 30 of the gas barrier film 10 is attached to be rotatable about the shaft 122. Then, the first vacuum pump 180 and the second vacuum pump 182 are operated, and the inside of the unwinding chamber 115 and the film forming chamber 140 is depressurized to a degree of vacuum suitable for plasma CVD.
 繰り出し工程においては、ガスバリアーフィルム10の基材部30が、ガイドローラー130に向かって送り出しロール120から繰り出される。 In the feeding process, the base material portion 30 of the gas barrier film 10 is fed from the feeding roll 120 toward the guide roller 130.
 搬入工程においては、ガスバリアーフィルム10の基材部30が、ガイドローラー130によって案内され、成膜ロール150に搬入される(巻き付けられる)。 In the carrying-in process, the base material portion 30 of the gas barrier film 10 is guided by the guide roller 130 and carried (wrapped) onto the film forming roll 150.
 この際、シャワー電極142と成膜ロール150との間の空間である放電空間Sより上流側かつシャワー電極142に隣接する位置Pに設置されているクライオコイル170は、放電空間Sから上流側に漏れるプレカーサーを凝縮させてトラップする。したがって、放電空間Sに搬入される前の基材部30にプレカーサーが付着すること(基材部30とバリアー層20との間にプレカーサー由来の層が形成されること)が抑制される。 At this time, the cryocoil 170 installed at the position P 1 upstream of the discharge space S that is the space between the shower electrode 142 and the film forming roll 150 and adjacent to the shower electrode 142 is upstream of the discharge space S. Condensate the precursor leaking into the trap. Therefore, the precursor is prevented from adhering to the base material part 30 before being carried into the discharge space S (the precursor-derived layer is formed between the base material part 30 and the barrier layer 20).
 バリアー層形成工程においては、ガスバリアーフィルム10の基材部30が、成膜ロール150に巻き付いた(密着した)状態で、放電空間Sを通過する。シャワー電極142は、プラズマ発生用電源185に接続され、また、成膜ガス供給部190に接続されている。成膜ロール150は、バイアス電源187が接続されている。そのため、シャワー電極142および成膜ロール150は、電極対を構成し、シャワー電極142の成膜ガス供給部190からの成膜ガス(原料ガスおよび反応ガス)をプラズマ化して、ガスバリアーフィルム10の基材部30上にバリアー層20を形成する。 In the barrier layer forming step, the base material portion 30 of the gas barrier film 10 passes through the discharge space S in a state of being wound (adhered to) the film forming roll 150. The shower electrode 142 is connected to a plasma generation power source 185 and also connected to a film forming gas supply unit 190. A bias power source 187 is connected to the film forming roll 150. Therefore, the shower electrode 142 and the film-forming roll 150 constitute an electrode pair, and the film-forming gas (raw material gas and reaction gas) from the film-forming gas supply unit 190 of the shower electrode 142 is converted into plasma, so that the gas barrier film 10 The barrier layer 20 is formed on the base material portion 30.
 ガスバリアーフィルム10の基材部30は、バリアー層形成工程の直前の搬入工程において、クライオコイル170の作用によってプレカーサー由来の層が形成されることが抑制されている。したがって、基材部30とバリアー層20との間に、プレカーサー由来の層が介在されないため、良好なバリアー性および密着性を有するバリアー層20が形成される。 The base material portion 30 of the gas barrier film 10 is suppressed from forming a precursor-derived layer by the action of the cryocoil 170 in the carrying-in process immediately before the barrier layer forming process. Therefore, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 having good barrier properties and adhesiveness is formed.
 搬出工程においては、基材部30上にバリアー層20が形成されたガスバリアーフィルム10が、ガイドローラー132に向かって、成膜ロール150から搬出される(離間する)。 In the unloading step, the gas barrier film 10 in which the barrier layer 20 is formed on the base member 30 is unloaded (separated) from the film forming roll 150 toward the guide roller 132.
 巻き取り工程においては、基材部30上にバリアー層20が形成されたガスバリアーフィルム10が、ガイドローラー132によって巻き取りロール125に案内され、巻き取りロール125に巻き取られる。 In the winding process, the gas barrier film 10 in which the barrier layer 20 is formed on the base member 30 is guided to the winding roll 125 by the guide roller 132 and is wound on the winding roll 125.
 取り外し工程においては、第1真空ポンプ180および第2真空ポンプ182の稼働が停止され、巻出し室115および成膜室140の内部が、大気圧に戻されると、基材部30上にバリアー層20が形成されたガスバリアーフィルム10が巻き取られた巻き取りロール125が。取り外される。 In the removal process, when the operation of the first vacuum pump 180 and the second vacuum pump 182 is stopped and the inside of the unwinding chamber 115 and the film forming chamber 140 is returned to the atmospheric pressure, a barrier layer is formed on the base material portion 30. A take-up roll 125 on which the gas barrier film 10 having 20 formed thereon is taken up. Removed.
 次に、ガスバリアーフィルムの性能評価結果を説明する。 Next, the performance evaluation results of the gas barrier film will be described.
 図5は、実施の形態1に係る実施例1~4および比較例1~4に係るガスバリアーフィルムの性能評価結果を示しているテーブル、図6は、比較例3および4におけるクライオコイルの設置位置を説明するための概略図である。 FIG. 5 is a table showing the performance evaluation results of the gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1, and FIG. 6 is the installation of the cryocoil in Comparative Examples 3 and 4. It is the schematic for demonstrating a position.
 まず、実施例1~4および比較例1~4に係るガスバリアーフィルムの製造条件を説明する。 First, the production conditions of the gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 will be described.
 実施例1に係るガスバリアーフィルムの基材部は、基材、クリアハードコート層およびブリードアウト防止層を有する。 The base material portion of the gas barrier film according to Example 1 has a base material, a clear hard coat layer, and a bleed out prevention layer.
 基材は、両面に易接着加工された125μm厚みのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)である。 The base material is a 125 μm-thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83) with easy adhesion on both sides.
 クリアハードコート層は、厚みが4μmであり、感光性樹脂組成物を基材に塗布した後、乾燥し、そして、空気雰囲気下、高圧水銀ランプによって硬化することによって、形成された。感光性樹脂組成物は、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材(OPSTAR Z7501)である。感光性樹脂組成物の塗布は、ダイコーターを使用した。乾燥条件は、80℃、3分である。高圧水銀ランプの硬化条件は、1.0J/cmである。 The clear hard coat layer had a thickness of 4 μm, and was formed by applying the photosensitive resin composition to the substrate, drying it, and curing it with a high-pressure mercury lamp in an air atmosphere. The photosensitive resin composition is a UV curable organic / inorganic hybrid hard coat material (OPSTAR Z7501) manufactured by JSR Corporation. A die coater was used for application of the photosensitive resin composition. Drying conditions are 80 ° C. and 3 minutes. The curing condition of the high pressure mercury lamp is 1.0 J / cm 2 .
 ブリードアウト防止層は、感光性樹脂組成物を除き、クリアハードコート層の場合と同様にして形成された。感光性樹脂組成物は、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材(OPSTAR Z7535)である。 The bleed-out prevention layer was formed in the same manner as the clear hard coat layer except for the photosensitive resin composition. The photosensitive resin composition is a UV curable organic / inorganic hybrid hard coat material (OPSTAR Z7535) manufactured by JSR Corporation.
 バリアー層は、ガスバリアーフィルム製造装置100において、クライオコイル170を位置Pに設置し、成膜ロール150とシャワー電極142との間を1回通過させて、形成した。なお、設置位置Pは、放電空間Sより上流側に位置する成膜室140領域の略中央位置(図2参照)である。 Barrier layer in the gas barrier film manufacturing apparatus 100 has established a cryocoil 170 to the position P 2, and between the film-forming roll 150 and the shower head electrode 142 is passed through once, to form. Incidentally, the installation position P 2 is a substantially central position of the film forming chamber 140 region located upstream of the discharge space S (see FIG. 2).
 原料ガスは、SiHであり、その供給量は、100sccm(Standard Cubic Centimeter per Minute)である。反応ガスは、NHおよびHであり、NHの供給量は、200sccmであり、Hの供給量は、1500sccmである。真空チャンバー110内の真空度は、100Paである。プラズマ発生用電源185の印加電力は、1.2kWであり、周波数は、13.56MHzである。ガスバリアーフィルム基材部の搬送速度は、1m/minである。成膜ロール150の温度は、-10℃である。 The source gas is SiH 4 , and the supply amount thereof is 100 sccm (Standard Cubic Centimeter per Minute). The reaction gases are NH 4 and H 2 , the supply amount of NH 4 is 200 sccm, and the supply amount of H 2 is 1500 sccm. The degree of vacuum in the vacuum chamber 110 is 100 Pa. The applied power of the plasma generation power source 185 is 1.2 kW, and the frequency is 13.56 MHz. The conveyance speed of a gas barrier film base material part is 1 m / min. The temperature of the film forming roll 150 is −10 ° C.
 実施例2に係るガスバリアーフィルムは、クライオコイル170を位置Pに設置した以外は、実施例1に係るガスバリアーフィルムと同様にして製造された。なお、設置位置Pは、放電空間Sより上流側の成膜ロール150の外周の近傍かつ隙間164に隣接する位置(図2参照)である。 Gas barrier film according to the second embodiment, except that established the cryocoil 170 to the position P 3 were prepared in the same manner as the gas barrier film according to the first embodiment. Incidentally, the installation position P 3 is a near and a position adjacent to the gap 164 of the outer periphery of the upstream side of the film-forming roll 150 from the discharge space S (see FIG. 2).
 実施例3に係るガスバリアーフィルムは、クライオコイル170を位置Pに設置した以外は、実施例1に係るガスバリアーフィルムと同様にして製造された。なお、設置位置Pは、放電空間Sより上流側の成膜ロール150の外周の近傍かつシャワー電極142に隣接する位置(図2参照)である。 Gas barrier film according to Example 3, except that was installed cryocoil 170 in position P 1 was prepared in the same manner as the gas barrier film according to the first embodiment. Incidentally, the installation position P 1 is a position adjacent to the near and the shower electrode 142 of the outer periphery of the upstream side of the film-forming roll 150 from the discharge space S (see FIG. 2).
 実施例4に係るガスバリアーフィルムは、原料ガス、反応ガスおよび真空度を除き、実施例1に係るガスバリアーフィルムと同様にして製造された。具体的には、原料ガスがHMDSOであり、反応ガスがOでありかつその供給量が500sccmであり、真空度が50Paである。 The gas barrier film according to Example 4 was produced in the same manner as the gas barrier film according to Example 1 except for the raw material gas, the reaction gas, and the degree of vacuum. Specifically, the source gas is HMDSO, the reaction gas is O 2 , the supply amount is 500 sccm, and the degree of vacuum is 50 Pa.
 比較例1に係るガスバリアーフィルムは、ガスバリアーフィルム製造装置100においてクライオコイル170が設置されていない状態で、実施例1に係るガスバリアーフィルムと同様にして製造された。 The gas barrier film according to Comparative Example 1 was manufactured in the same manner as the gas barrier film according to Example 1 with no cryocoil 170 installed in the gas barrier film manufacturing apparatus 100.
 比較例2に係るガスバリアーフィルムは、ガスバリアーフィルム製造装置100においてクライオコイル170が設置されていない状態で、実施例4に係るガスバリアーフィルムと同様にして製造された。 The gas barrier film according to Comparative Example 2 was manufactured in the same manner as the gas barrier film according to Example 4 with no cryocoil 170 installed in the gas barrier film manufacturing apparatus 100.
 比較例3に係るガスバリアーフィルムは、クライオコイル170を位置Pに設置した以外は、実施例4に係るガスバリアーフィルムと同様にして製造された。位置Pは、図6に示されるように、放電空間Sより下流側かつ成膜室140における隔壁162に隣接する位置である。 Gas barrier film according to Comparative Example 3, except that was installed cryocoil 170 to the position P 4 were prepared in the same manner as the gas barrier film according to the fourth embodiment. Position P 4, as shown in FIG. 6, a position adjacent to the partition wall 162 on the downstream side and the film forming chamber 140 from the discharge space S.
 比較例4に係るガスバリアーフィルムは、クライオコイル170を位置Pに設置した以外は、実施例4に係るガスバリアーフィルムと同様にして製造された。位置Pは、図6に示されるように、放電空間Sより下流側かつ巻出し室115における隔壁162から離間した位置である。 Gas barrier film according to Comparative Example 4, except that established the cryocoil 170 to the position P 5 was prepared in the same manner as the gas barrier film according to the fourth embodiment. As shown in FIG. 6, the position P <b> 5 is a position downstream from the discharge space S and spaced from the partition wall 162 in the unwind chamber 115.
 次に、バリアー性の評価方法および評価基準を説明する。 Next, the barrier property evaluation method and evaluation criteria will be described.
 バリアー性の評価は、評価用セルを使用して実施した。評価用セルは、ガスバリアーフィルムのバリアー層側およびブリードアウト防止層側の両面が封止されてなり、以下のように作製した。 Evaluation of barrier properties was carried out using an evaluation cell. The evaluation cell was prepared as follows by sealing both sides of the gas barrier film on the barrier layer side and the bleed-out prevention layer side.
 まず、ガスバリアーフィルムのバリアー層表面に関し、9箇所の領域を除いてマスクした後で、水と反応して腐食する金属であるカルシウムを、真空状態で蒸着させた。9箇所の領域のサイズは、各12mm×12mmである。その後、真空状態を維持した状態で、マスクを取り去り、アルミニウムを蒸着させ、その後、真空状態を解除した。これにより、ガスバリアーフィルムのバリアー層側が、アルミニウムによって封止した。なお、カルシウムおよびアルミニウムの蒸着は、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用いた。 First, the surface of the barrier layer of the gas barrier film was masked except for 9 areas, and then calcium, which is a metal that reacts with water and corrodes, was deposited in a vacuum state. The size of the nine areas is 12 mm × 12 mm. Thereafter, in a state where the vacuum state was maintained, the mask was removed, aluminum was deposited, and then the vacuum state was released. Thereby, the barrier layer side of the gas barrier film was sealed with aluminum. For vapor deposition of calcium and aluminum, a vacuum deposition apparatus (manufactured by JEOL Ltd., vacuum deposition apparatus JEE-400) was used.
 そして、ガスバリアーフィルムは、乾燥窒素ガス雰囲気下に速やかに移行させられた後、ガスバリアーフィルムのブリードアウト防止層表面に、紫外線硬化樹脂を介して石英ガラスを配置し、紫外線を照射することで、紫外線硬化樹脂を硬化した。これにより、ガスバリアーフィルムのブリードアウト防止層側を石英ガラスによって封止した。 Then, after the gas barrier film is quickly transferred to the dry nitrogen gas atmosphere, quartz glass is disposed on the surface of the bleed-out prevention layer of the gas barrier film via an ultraviolet curable resin, and irradiated with ultraviolet rays. The UV curable resin was cured. Thereby, the bleed-out prevention layer side of the gas barrier film was sealed with quartz glass.
 作製された評価用セルは、85℃、85%RHの高温高湿下で保存し、カルシウム腐食法(Ca法)に基づき、金属カルシウムの腐食量からセル内部に透過した水分量(透過水分量)を計算し、4つの評価基準A~Dに分類した。評価基準Aは、透過水分量が5×10-4g/m/day未満であることを意味する。評価基準Bは、透過水分量が1×10-4g/m/day以上、1×10-3g/m/day未満であることを意味する。評価基準Cは、透過水分量が1×10-3g/m/day以上、1×10-2g/m/day未満であることを意味する。評価基準Dは、透過水分量が1×10-2g/m/day以上であることを意味する。カルシウム腐食法は、例えば、特開2005-283561号公報に記載されている。 The produced evaluation cell was stored under high temperature and high humidity of 85 ° C. and 85% RH, and based on the calcium corrosion method (Ca method), the amount of moisture permeated into the cell from the corrosion amount of metallic calcium (permeated moisture amount) ) Was calculated and classified into four evaluation criteria AD. Evaluation criterion A means that the amount of permeated water is less than 5 × 10 −4 g / m 2 / day. Evaluation criterion B means that the amount of permeated water is 1 × 10 −4 g / m 2 / day or more and less than 1 × 10 −3 g / m 2 / day. Evaluation criterion C means that the amount of permeated water is 1 × 10 −3 g / m 2 / day or more and less than 1 × 10 −2 g / m 2 / day. Evaluation criteria D means that the amount of permeated water is 1 × 10 −2 g / m 2 / day or more. The calcium corrosion method is described in, for example, Japanese Patent Application Laid-Open No. 2005-283561.
 なお、厚さ0.2mmの石英ガラス板をガスバリアーフィルムの代替とした比較試料を作製した。比較試料は、85℃、85%RHの高温高湿下で保存したところ、1000時間経過後でもカルシウム腐食が発生しないことが確認した。 In addition, a comparative sample in which a quartz glass plate having a thickness of 0.2 mm was substituted for the gas barrier film was prepared. When the comparative sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, it was confirmed that no calcium corrosion occurred even after 1000 hours.
 次に、密着性の評価方法および評価基準を説明する。 Next, the adhesion evaluation method and evaluation criteria will be described.
 密着性は、JIS-K5400に準じる碁盤目試験の結果によって、4つの評価基準A~Dに分類した。具体的には、ガスバリアーフィルムのバリアー層表面に、縦方向および横方向に各11本の切れ目を交差するように形成することで、1mm角の碁盤目を100個形成し、そして、碁盤目の上にセロハンテープを張り付け、90度の角度で素早く剥がし、セロハンテープに付着して剥離したバリアー層の部位を、目視で評価した。評価基準Aは、全く剥がれないことを意味する。評価基準Bは、一部の碁盤目で極僅かな浮きが認められるが、良好な品質であることを意味する。評価基準Cは、1あるいは2個の碁盤目で剥離が認められるが、実用上は許容される品質であることを意味する。評価基準Dは、3個以上の碁盤目で剥離が認められ、実用上問題となる品質であることを意味する。 The adhesion was classified into four evaluation criteria A to D according to the results of a cross cut test according to JIS-K5400. Specifically, 100 1 mm square grids are formed on the barrier layer surface of the gas barrier film so as to intersect 11 cuts in the vertical and horizontal directions, and A cellophane tape was stuck on the surface, and it was quickly peeled off at an angle of 90 °. The portion of the barrier layer that adhered to the cellophane tape and peeled off was visually evaluated. Evaluation criterion A means that it is not peeled off at all. Evaluation criteria B means that although a slight float is observed in some grids, the quality is good. Evaluation criteria C means that the quality is acceptable for practical use, although peeling is observed at one or two grids. Evaluation criteria D means that the quality is a problem that is practically problematic because peeling is observed at three or more grids.
 次に、折り曲げ耐性(屈曲性)の評価方法および評価基準を説明する。 Next, an evaluation method and evaluation criteria for bending resistance (flexibility) will be described.
 折り曲げ耐性(屈曲性)は、屈曲試験前後にけるガスバリアーフィルムの水蒸気透過係数の変化(屈曲試験前の水蒸気透過係数に対する屈曲試験後の水蒸気透過係数の比率)に基づいて、4つの評価基準A~Dに分類した。具体的には、水蒸気透過係数を予め測定したガスバリアーフィルムを、金属製の棒に巻き付けて屈曲させて、1分放置し、その後、ガスバリアーフィルムを平らに戻して、水蒸気透過係数を再度測定した。なお、ガスバリアーフィルムの曲率半径は、8mmに設定しており、これは、金属製の棒の直径の1/2に相当する。しかし、ガスバリアーフィルムの巻き数が多くなった場合は、ガスバリアーフィルムを巻き付けた時の直径の1/2を曲率半径とした。 Bending resistance (flexibility) is based on four evaluation criteria A based on the change in the water vapor transmission coefficient of the gas barrier film before and after the bending test (ratio of the water vapor transmission coefficient after the bending test to the water vapor transmission coefficient before the bending test). Classified into ~ D. Specifically, a gas barrier film whose water vapor transmission coefficient has been measured in advance is wound around a metal rod, bent, and allowed to stand for 1 minute, and then the gas barrier film is returned flat and the water vapor transmission coefficient is measured again. did. Note that the radius of curvature of the gas barrier film is set to 8 mm, which corresponds to ½ of the diameter of the metal rod. However, when the number of turns of the gas barrier film increased, 1/2 of the diameter when the gas barrier film was wound was taken as the radius of curvature.
 評価基準Aは、比率が0.95以上であることを意味する。評価基準Bは、比率が0.85以上~0.95未満であることを意味する。評価基準Cは、比率が0.70以上~0.85未満であることを意味する。評価基準Dは、比率が0.70未満であることを意味する。 Evaluation criteria A means that the ratio is 0.95 or more. Evaluation criterion B means that the ratio is 0.85 or more and less than 0.95. Evaluation criterion C means that the ratio is 0.70 or more and less than 0.85. Evaluation criteria D means that the ratio is less than 0.70.
 次に、図5を参照し、実施の形態1に係る実施例1~4および比較例1~4に係るガスバリアーフィルムのバリアー性、密着性および折り曲げ耐性(屈曲性)を順次説明する。 Next, referring to FIG. 5, the barrier properties, adhesion, and bending resistance (flexibility) of the gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1 will be sequentially described.
 バリアー性に関しては、実施例1~4に係るガスバリアーフィルムは、評価基準B以上であり、比較例1~4に係るガスバリアーフィルムは、評価基準C以下である。したがって、実施例1~4に係るガスバリアーフィルムは、比較例1~4に係るガスバリアーフィルムに比較し良好な結果を示している。特に、クライオコイル170が位置Pに設置されていた実施例3に係るガスバリアーフィルムは、評価基準Aであった。 Regarding the barrier properties, the gas barrier films according to Examples 1 to 4 have an evaluation criterion B or higher, and the gas barrier films according to Comparative Examples 1 to 4 have an evaluation criterion C or lower. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4. In particular, the gas barrier film according to the third embodiment cryocoil 170 was installed at a position P 1 was evaluated criteria A.
 密着性に関しては、バリアー性と同様に、実施例1~4に係るガスバリアーフィルムは、評価基準B以上であり、比較例1~4に係るガスバリアーフィルムは、評価基準C以下である。したがって、実施例1~4に係るガスバリアーフィルムは、比較例1~4に係るガスバリアーフィルムに比較し良好な結果を示している。特に、クライオコイル170が位置Pおよび位置Pにそれぞれ設置されていた実施例2および実施例3に係るガスバリアーフィルムは、評価基準Aであった。 Regarding the adhesiveness, the gas barrier films according to Examples 1 to 4 are equal to or higher than the evaluation standard B, and the gas barrier films according to Comparative Examples 1 to 4 are equal to or lower than the evaluation standard C, as in the barrier property. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4. In particular, the gas barrier film according to Example 2 and Example 3 cryocoil 170 was installed at a position P 3 and the position P 1, was a measure A.
 折り曲げ耐性(屈曲性)に関しては、バリアー性と同様に、実施例1~4に係るガスバリアーフィルムは、評価基準B以上であり、比較例1~4に係るガスバリアーフィルムは、評価基準C以下である。したがって、実施例1~4に係るガスバリアーフィルムは、比較例1~4に係るガスバリアーフィルムに比較し良好な結果を示している。特に、クライオコイル170が位置Pに設置されていた実施例3に係るガスバリアーフィルムは、評価基準Aであった。 Regarding the bending resistance (flexibility), as with the barrier property, the gas barrier films according to Examples 1 to 4 are evaluation criteria B or higher, and the gas barrier films according to Comparative Examples 1 to 4 are evaluation criteria C or lower. It is. Therefore, the gas barrier films according to Examples 1 to 4 show better results than the gas barrier films according to Comparative Examples 1 to 4. In particular, the gas barrier film according to the third embodiment cryocoil 170 was installed at a position P 1 was evaluated criteria A.
 実施例1~4に係るガスバリアーフィルムは、上述のように、バリアー性、密着性および折り曲げ耐性(屈曲性)に関し、比較例1~4に係るガスバリアーフィルムに比較し良好な結果を示している。また、クライオコイル170が位置Pに設置されていた実施例3に係るガスバリアーフィルムは、バリアー性、密着性および折り曲げ耐性(屈曲性)の全てにおいて評価基準Aであり、実施例1~4の中でも特に優れた結果を示している。 As described above, the gas barrier films according to Examples 1 to 4 showed better results with respect to the barrier properties, adhesion, and bending resistance (flexibility) than the gas barrier films according to Comparative Examples 1 to 4. Yes. In addition, the gas barrier film according to Example 3 in which the cryocoil 170 was installed at the position P 1 was Evaluation Criteria A in all of barrier properties, adhesion properties, and bending resistance (flexibility), and Examples 1-4 Among them, particularly excellent results are shown.
 なお、原料ガスがHMDSOである比較例2~4に係るガスバリアーフィルムは、バリアー性および密着性に関し、評価基準Dであり、原料ガスがSiHである比較例1に係るガスバリアーフィルムに比較し劣っていた。これは、原料ガスがHMDSOである場合に生成されるプレカーサーは、有機を含むケイ素を含んでおり、形成される膜の強度が、SiHを出発原料とする場合と比べ、弱いこと示している。したがって、クライオコイル170の作用による改善効果は、原料ガスが有機ケイ素化合物である場合、顕著である。 The gas barrier films according to Comparative Examples 2 to 4 in which the source gas is HMDSO are evaluation criteria D regarding the barrier properties and adhesion, and are compared with the gas barrier film according to Comparative Example 1 in which the source gas is SiH 4. It was inferior. This indicates that the precursor produced when the source gas is HMDSO contains silicon containing organic matter, and the strength of the formed film is weaker than when SiH 4 is used as the starting material. . Therefore, the improvement effect by the action of the cryocoil 170 is remarkable when the source gas is an organosilicon compound.
 次に、実施の形態1に係る変形例1および変形例2を順次説明する。 Next, Modification 1 and Modification 2 according to Embodiment 1 will be sequentially described.
 図7は、実施の形態1に係る変形例1を説明するための概略図である。 FIG. 7 is a schematic diagram for explaining a first modification according to the first embodiment.
 クライオコイルは、放電空間Sの上流側のみに設置する形態に限定ざれず、例えば、放電空間Sより下流側かつシャワー電極142に隣接する位置Pに第2のクライオコイル172を設置することも可能である。この場合、搬送機構は、搬送方向を反転可能(再搬送可能)に構成されており、ガスバリアーフィルム10の基材部30に対するバリアー層20の形成が完了した後、搬送方向を反転(逆転)させて連続的に再搬送し、放電空間Sに再搬入して、バリアー層20の厚みを増加させる際に、クライオコイル172は、放電空間Sの再搬送方向上流側に位置することとなる。そのため、放電空間Sに再搬入する前に、バリアー層20にプレカーサーが付着すること(バリアー層20の表面にプレカーサー由来の層が形成されることが抑制される。したがって、バリアー層20の内部にプレカーサー由来の層が介在することが避けられる。 Cryocoil is limited to a mode of installing only the upstream side of the discharge space S Zarezu, for example, it is also to place the second cryocoil 172 to the position P 6 adjacent to the downstream side and the shower head electrode 142 from the discharge space S Is possible. In this case, the transport mechanism is configured so that the transport direction can be reversed (re-transportable), and after the formation of the barrier layer 20 on the base material portion 30 of the gas barrier film 10 is completed, the transport direction is reversed (reversed). The cryocoil 172 is positioned upstream of the discharge space S in the re-conveying direction when the barrier layer 20 is increased in thickness by being re-conveyed continuously and re-introduced into the discharge space S. For this reason, the precursor is prevented from adhering to the barrier layer 20 before being re-loaded into the discharge space S (the formation of a precursor-derived layer on the surface of the barrier layer 20 is suppressed. Intervening layers from the precursor are avoided.
 第2のクライオコイル172は、放電空間Sを介して位置Pの逆側に位置する位置Pに設置される形態に限定されず、例えば、放電空間Sを介して位置Pおよび位置Pの逆側に位置する位置に設置することも可能である。 Second cryocoil 172, the discharge space is not limited to the form is placed in a position P 6 located on the opposite side of the position P 1 through S, for example, through the discharge space S position P 2 and the position P It is also possible to install it at a position located on the opposite side of 3 .
 図8は、実施の形態1に係る変形例2を説明するための概略図である。 FIG. 8 is a schematic diagram for explaining a second modification according to the first embodiment.
 クライオコイル170と放電空間Sとの間に、邪魔板175を配置することも可能である。邪魔板175は、プレカーサーの漏れを抑制するため、放電空間Sに搬入される前の基材部30にプレカーサーが付着する(プレカーサー由来の層が形成される)ことがさらに抑制される。 It is also possible to arrange a baffle plate 175 between the cryocoil 170 and the discharge space S. In order to suppress the leakage of the precursor, the baffle plate 175 further suppresses the precursor from adhering to the base material portion 30 before being carried into the discharge space S (a precursor-derived layer is formed).
 以上のように、実施の形態1においては、低温凝縮部材によって、放電空間から漏れたプレカーサーを凝縮させてトラップして、放電空間に搬入される前のガスバリアーフィルムの基材部に、プレカーサーが付着することが抑制される。したがって、基材部とバリアー層との間にプレカーサー由来の層が介在されないため、バリアー層は、良好なバリアー性および密着性を有する。つまり、良好なバリアー性および密着性を有するガスバリアーフィルムの製造装置および製造方法を提供することが可能である。 As described above, in the first embodiment, the precursor leaked from the discharge space is condensed and trapped by the low-temperature condensing member, and the precursor is placed on the base of the gas barrier film before being carried into the discharge space. Adhesion is suppressed. Therefore, since a precursor-derived layer is not interposed between the base material portion and the barrier layer, the barrier layer has good barrier properties and adhesion. That is, it is possible to provide a gas barrier film manufacturing apparatus and manufacturing method having good barrier properties and adhesion.
 次に、実施の形態2を説明する。なお、実施の形態1と同様の機能を有する部材については類似する符号を使用し、重複を避けるため、その説明を適宜省略する。 Next, the second embodiment will be described. In addition, about the member which has the function similar to Embodiment 1, the same code | symbol is used and in order to avoid duplication, the description is abbreviate | omitted suitably.
 図9は、実施の形態2に係るガスバリアーフィルム製造装置を説明するための概略図である。 FIG. 9 is a schematic diagram for explaining the gas barrier film manufacturing apparatus according to the second embodiment.
 図2に示されるガスバリアーフィルム製造装置200は、対向した成膜ロールを有し、専用の電極(シャワー電極)を利用しない点で、実施の形態1に係るガスバリアーフィルム製造装置100と概して異なる。ガスバリアーフィルム製造装置200は、良好な高速成膜性を有し、また、専用の電極(シャワー電極)を介したコンタミネイションが生じない点で好ましい。詳述すると、ガスバリアーフィルム製造装置200は、真空チャンバー210、真空ポンプ280、プラズマ発生用電源285および成膜ガス供給部290を有する。 The gas barrier film manufacturing apparatus 200 shown in FIG. 2 is generally different from the gas barrier film manufacturing apparatus 100 according to Embodiment 1 in that it has opposed film forming rolls and does not use a dedicated electrode (shower electrode). . The gas barrier film manufacturing apparatus 200 is preferable in that it has good high-speed film forming properties and does not cause contamination through a dedicated electrode (shower electrode). Specifically, the gas barrier film manufacturing apparatus 200 includes a vacuum chamber 210, a vacuum pump 280, a plasma generation power source 285, and a film forming gas supply unit 290.
 真空チャンバー210は、送り出しロール220、巻き取りロール225、ガイドローラー230,232,234,236、第1成膜ロール240、第2成膜ロール245、成膜ガス供給口250およびクライオコイル270を有し、かつ、真空ポンプ280が接続されている。 The vacuum chamber 210 includes a feed roll 220, a take-up roll 225, guide rollers 230, 232, 234, 236, a first film forming roll 240, a second film forming roll 245, a film forming gas supply port 250, and a cryocoil 270. And a vacuum pump 280 is connected.
 送り出しロール220は、ガスバリアーフィルム10の基材部30を巻回して構成されており、軸222を中心に回転自在に配置されている。巻き取りロール225は、軸227を中心に回転自在に配置されており、バリアー層20が形成された基材部30(ガスバリアーフィルム10)を巻き取るために使用される。 The delivery roll 220 is configured by winding the base material portion 30 of the gas barrier film 10, and is arranged so as to be rotatable around a shaft 222. The take-up roll 225 is disposed so as to be rotatable about a shaft 227 and is used to take up the base material portion 30 (the gas barrier film 10) on which the barrier layer 20 is formed.
 ガイドローラー230は、送り出しロール220と第1成膜ロール240との間に位置し、送り出しロール220から繰り出される基材部30を案内し、第1成膜ロール240に搬入する(巻き付ける)ために使用される。ガイドローラー232は、第1成膜ロール240とガイドローラー234との間に位置し、第1成膜ロール240から搬出される(離間する)基材部30を案内し、ガイドローラー234に移送するために使用される。 The guide roller 230 is located between the delivery roll 220 and the first film formation roll 240, guides the base material part 30 fed out from the delivery roll 220, and carries (winds) the first film formation roll 240. used. The guide roller 232 is located between the first film forming roll 240 and the guide roller 234, guides the base material unit 30 carried out (separated) from the first film forming roll 240, and transfers it to the guide roller 234. Used for.
 ガイドローラー234は、ガイドローラー232と第2成膜ロール245との間に位置し、ガイドローラー232から移送されたバリアー層20が形成された基材部30を、第2成膜ロール245に搬入する(巻き付ける)ために使用される。ガイドローラー236は、第2成膜ロール245と巻き取りロール225との間に位置し、第2成膜ロール245から搬出される(離間する)基材部30を案内し、巻き取りロール225に巻き取らせるために使用される。なお、第1成膜ロール240から搬出される(離間する)基材部30上には、バリアー層20が形成されており、第2成膜ロール245においては、バリアー層の厚みが増加する。 The guide roller 234 is located between the guide roller 232 and the second film forming roll 245, and carries the base material part 30 on which the barrier layer 20 transferred from the guide roller 232 is formed into the second film forming roll 245. Used to do (wrap). The guide roller 236 is located between the second film-forming roll 245 and the take-up roll 225, guides the base material part 30 carried out (separated) from the second film-forming roll 245, and guides it to the take-up roll 225. Used to wind up. In addition, the barrier layer 20 is formed on the base material part 30 carried out (separated) from the first film-forming roll 240, and the thickness of the barrier layer increases in the second film-forming roll 245.
 ガスバリアーフィルム10の基材部30は、上記のように、送り出しロール220から繰り出され、ガイドローラー230、第1成膜ロール240、ガイドローラー232,234、第2成膜ロール245およびガイドローラー236を経由し、巻き取りロール225に巻き取られる。つまり、送り出しロール220、ガイドローラー230,232,234,236、第1成膜ロール240、第2成膜ロール245および巻き取りロール225は、ガスバリアーフィルム10の基材部30を連続的に搬送する搬送機構を構成する。 As described above, the base material portion 30 of the gas barrier film 10 is fed from the feed roll 220, and the guide roller 230, the first film forming roll 240, the guide rollers 232 and 234, the second film forming roll 245, and the guide roller 236. Through the winding roll 225. That is, the delivery roll 220, the guide rollers 230, 232, 234, 236, the first film forming roll 240, the second film forming roll 245, and the take-up roll 225 continuously convey the base material portion 30 of the gas barrier film 10. A transport mechanism is configured.
 第1成膜ロール240は、プラズマ発生用電源285に接続され、また、第1磁場発生装置244を有し、軸242を中心に回転自在に配置されている。第2成膜ロール245は、プラズマ発生用電源285に接続され、また、第2磁場発生装置249を有し、軸247を中心に回転自在に配置されている。第1成膜ロール240および第2成膜ロール245は、互いに対向するように位置決めされている。バリアー層20の効率的な形成のため、第1成膜ロール240および第2成膜ロール245は、互いの中心軸が同一平面上において略平行となるようにして位置決めされ、また、直径が同一であることが好ましい。 The first film-forming roll 240 is connected to a plasma generation power source 285, and has a first magnetic field generation device 244, and is disposed so as to be rotatable about an axis 242. The second film forming roll 245 is connected to the plasma generating power source 285 and has a second magnetic field generating device 249 and is arranged to be rotatable about the shaft 247. The first film forming roll 240 and the second film forming roll 245 are positioned so as to face each other. In order to efficiently form the barrier layer 20, the first film-forming roll 240 and the second film-forming roll 245 are positioned so that their central axes are substantially parallel to each other on the same plane, and have the same diameter. It is preferable that
 プラズマ発生用電源285は、第1成膜ロール240および第2成膜ロール245に電力を供給し、放電のための対向電極として利用するために使用される。したがって、第1成膜ロール240と第2成膜ロール245との間の空間は、放電空間Sを構成し、供給される成膜ガス(原料ガスおよび反応ガス)をプラズマ化することが可能である。プラズマ発生用電源285は、第1成膜ロール240および第2成膜ロール245の極性を交互に反転させることが可能な交流電源から構成される。なお、プラズマ発生用電源285は、交流電源に限定されない。 The power source 285 for generating plasma is used to supply power to the first film forming roll 240 and the second film forming roll 245 and to use it as a counter electrode for discharging. Therefore, the space between the first film forming roll 240 and the second film forming roll 245 constitutes the discharge space S, and the supplied film forming gas (source gas and reaction gas) can be converted into plasma. is there. The plasma generating power source 285 is configured by an AC power source capable of alternately inverting the polarities of the first film forming roll 240 and the second film forming roll 245. The plasma generating power source 285 is not limited to an AC power source.
 第1磁場発生装置244は、第1成膜ロール240回転に追従しないように、第1成膜ロール240の内部に固定的に配置されている。第2磁場発生装置249は、第2成膜ロール245の回転に追従しないように、第2成膜ロール245の内部に固定的に配置されている。 The first magnetic field generator 244 is fixedly arranged inside the first film forming roll 240 so as not to follow the rotation of the first film forming roll 240. The second magnetic field generator 249 is fixedly disposed inside the second film forming roll 245 so as not to follow the rotation of the second film forming roll 245.
 第1磁場発生装置244および第2磁場発生装置249は、磁力線が互いにまたがらず、略閉じた磁気回路を形成するように磁極が配置されていることが好ましい。例えば、第1磁場発生装置244の磁極を、第1成膜ロール240の軸方向に長いレーストラック状とし、第2磁場発生装置249の磁極を、第2成膜ロール245の軸方向に長いレーストラック状とし、かつ、対向する第1磁場発生装置244の磁極と同一極性となるように構成する。この場合、第1成膜ロール240および第2成膜ロール245における対向側表面付近において、磁力線が膨らんだ磁場の形成が促進されるため、当該磁場にプラズマが収束され易くなり、バリアー層20の形成効率が向上する。 The first magnetic field generator 244 and the second magnetic field generator 249 preferably have magnetic poles arranged so that the magnetic lines of force do not cross each other and form a substantially closed magnetic circuit. For example, the magnetic pole of the first magnetic field generator 244 has a racetrack shape that is long in the axial direction of the first film forming roll 240, and the magnetic pole of the second magnetic field generator 249 is a long race in the axial direction of the second film forming roll 245. It is configured in a track shape and has the same polarity as the magnetic poles of the first magnetic field generator 244 facing each other. In this case, since the formation of a magnetic field in which the magnetic lines of force swell is promoted near the opposing surface in the first film forming roll 240 and the second film forming roll 245, the plasma is easily converged on the magnetic field, and the barrier layer 20 Formation efficiency is improved.
 成膜ガス供給口250は、原料ガス源192および反応ガス源194を有する成膜ガス供給部290に接続され、また、放電空間Sに隣接し図中上方に配置されている。したがって、混合された状態の原料ガスおよび反応ガスを、成膜ガス供給口250から放電空間Sに供給することが可能である。成膜ガスの供給は、上記形態に限定されず、原料ガスおよび反応ガスを独立した経路で個別に供給することも可能である。 The film formation gas supply port 250 is connected to a film formation gas supply unit 290 having a source gas source 192 and a reaction gas source 194, and is disposed adjacent to the discharge space S in the upper part of the figure. Therefore, the mixed source gas and reaction gas can be supplied to the discharge space S from the film forming gas supply port 250. The supply of the deposition gas is not limited to the above form, and the source gas and the reaction gas can be individually supplied through independent paths.
 真空ポンプ280は、真空チャンバー210の内部をプラズマCVDに適した真空度に減圧するために使用され、例えば、ターボポンプ、メカニカルブースターポンプ、ロータリーポンプ、ドライポンプを適用することが可能である。真空ポンプ280は、放電空間Sを介し成膜ガス供給口250と対向して配置することが好ましい。この場合、成膜ガス(原料ガスおよび反応ガス)が、放電空間Sに効率よく供給されるため、バリアー層20の形成効率が向上する。 The vacuum pump 280 is used to depressurize the inside of the vacuum chamber 210 to a degree of vacuum suitable for plasma CVD, and for example, a turbo pump, a mechanical booster pump, a rotary pump, or a dry pump can be applied. The vacuum pump 280 is preferably disposed to face the film forming gas supply port 250 with the discharge space S interposed therebetween. In this case, since the film forming gas (the raw material gas and the reactive gas) is efficiently supplied to the discharge space S, the formation efficiency of the barrier layer 20 is improved.
 クライオコイル270は、放電空間Sより、基材部30の搬送方向上流側であって、放電空間Sから漏れたプレカーサーを凝縮させてトラップし、放電空間Sに搬入される前の基材部30に、プレカーサーが付着することを抑制する位置に、設置されている。本実施の形態においては、クライオコイル270は、第1成膜ロール240の外周の近傍かつ基材部30が第1成膜ロール240に巻き付く直前の位置の近傍位置Pに設置されている。なお、クライオコイル270は、位置Pに設置する形態に限定されず、例えば、第1成膜ロール240の外周の近傍における他の位置に設置することも可能である。 The cryocoil 270 is upstream of the discharge space S in the transport direction of the base material portion 30, condenses and traps the precursor leaked from the discharge space S, and before the base material portion 30 is carried into the discharge space S. In addition, it is installed at a position that suppresses the adhesion of the precursor. In the present embodiment, the cryocoil 270 is installed in the vicinity of the outer periphery of the first film forming roll 240 and in the vicinity of the position P 1 immediately before the base member 30 is wound around the first film forming roll 240. . Note that the cryocoil 270 is not limited to the form of being installed at the position P 1, and can be installed at another position in the vicinity of the outer periphery of the first film forming roll 240, for example.
 次に、実施の形態2に係るガスバリアーフィルムの製造方法を説明する。 Next, a method for manufacturing a gas barrier film according to Embodiment 2 will be described.
 図10は、実施の形態2に係るガスバリアーフィルムの製造方法を説明するためのフローチャートである。 FIG. 10 is a flowchart for explaining a method for manufacturing a gas barrier film according to the second embodiment.
 本製造方法は、図10に示されるように、取付け工程、繰り出し工程、搬入工程、バリアー層形成工程、移送工程、バリアー層増膜工程、搬出工程、巻き取り工程および取り外し工程を有する。 As shown in FIG. 10, this manufacturing method includes an attaching process, a feeding process, a carrying-in process, a barrier layer forming process, a transferring process, a barrier layer film increasing process, a carrying-out process, a winding process, and a removing process.
 取付け工程においては、ガスバリアーフィルム10の基材部30を巻回して構成される送り出しロール220が、軸222を中心に回転自在に取付けられる。そして、真空ポンプ280が稼働され、真空チャンバー210の内部が、プラズマCVDに適した真空度に減圧される。 In the attachment process, a feed roll 220 configured by winding the base material portion 30 of the gas barrier film 10 is attached to be rotatable about a shaft 222. Then, the vacuum pump 280 is operated, and the inside of the vacuum chamber 210 is depressurized to a degree of vacuum suitable for plasma CVD.
 繰り出し工程においては、ガスバリアーフィルム10の基材部30が、ガイドローラー230に向かって送り出しロール220から繰り出される。 In the feeding process, the base material part 30 of the gas barrier film 10 is fed from the feeding roll 220 toward the guide roller 230.
 搬入工程においては、ガスバリアーフィルム10の基材部30が、ガイドローラー230によって案内され、第1成膜ロール240に搬入される(巻き付けられる)。 In the carrying-in process, the base material portion 30 of the gas barrier film 10 is guided by the guide roller 230 and carried (wrapped) onto the first film forming roll 240.
 この際、放電空間Sより上流側であって第1成膜ロール240の外周の近傍かつ基材部30が第1成膜ロール240に巻き付く直前の位置の近傍位置Pに設置されているクライオコイル270は、放電空間Sから上流側に漏れるプレカーサーを凝縮させてトラップする。したがって、放電空間Sに搬入される前の基材部30にプレカーサーが付着すること(基材部30とバリアー層20との間にプレカーサー由来の層が形成されること)が抑制される。 At this time, it is located on the upstream side of the discharge space S, in the vicinity of the outer periphery of the first film forming roll 240 and in the vicinity of the position P 1 immediately before the base member 30 is wound around the first film forming roll 240. The cryocoil 270 condenses and traps the precursor leaking from the discharge space S to the upstream side. Therefore, the precursor is prevented from adhering to the base material part 30 before being carried into the discharge space S (the precursor-derived layer is formed between the base material part 30 and the barrier layer 20).
 バリアー層形成工程においては、ガスバリアーフィルム10の基材部30が、第1成膜ロール240に密着した状態で、放電空間Sを通過する。 In the barrier layer forming step, the base material portion 30 of the gas barrier film 10 passes through the discharge space S while being in close contact with the first film forming roll 240.
 第1成膜ロール240と、第1成膜ロール240に相対する第2成膜ロール245とは、プラズマ発生用電源285に接続されており、放電のための対向電極として機能する。つまり、第1成膜ロール240と第2成膜ロール245との間の空間は、放電空間Sを構成し、放電空間Sに隣接し図中上方に配置される成膜ガス供給口250からの成膜ガス(原料ガスおよび反応ガス)をプラズマ化して、ガスバリアーフィルム10の基材部30上にバリアー層20を形成する。 The first film-forming roll 240 and the second film-forming roll 245 facing the first film-forming roll 240 are connected to the plasma generating power source 285 and function as counter electrodes for discharging. That is, the space between the first film-forming roll 240 and the second film-forming roll 245 constitutes the discharge space S, and is adjacent to the discharge space S from the film-forming gas supply port 250 disposed in the upper part in the drawing. The film-forming gas (source gas and reaction gas) is turned into plasma to form the barrier layer 20 on the base material portion 30 of the gas barrier film 10.
 ガスバリアーフィルム10の基材部30は、バリアー層形成工程の直前の搬入工程において、クライオコイル270の作用によってプレカーサー由来の層が形成されることが抑制されている。したがって、基材部30とバリアー層20との間に、プレカーサー由来の層が介在されないため、バリアー層20は、良好なバリアー性および密着性を有する。 The base material portion 30 of the gas barrier film 10 is suppressed from forming a precursor-derived layer by the action of the cryocoil 270 in the carry-in process immediately before the barrier layer forming process. Therefore, since the precursor-derived layer is not interposed between the base material portion 30 and the barrier layer 20, the barrier layer 20 has good barrier properties and adhesion.
 移送工程においては、基材部30上にバリアー層20が形成されたガスバリアーフィルム10が、第1成膜ロール240から離間し、ガイドローラー232,234に案内され、第2成膜ロール245に移送される(ガイドローラー232,234を経由して第2成膜ロール245に巻き付けられる)。 In the transfer step, the gas barrier film 10 in which the barrier layer 20 is formed on the base material portion 30 is separated from the first film forming roll 240, guided by the guide rollers 232 and 234, and moved to the second film forming roll 245. It is transferred (wound around the second film forming roll 245 via the guide rollers 232 and 234).
 バリアー層増膜工程においては、ガスバリアーフィルム10の基材部30が、第2成膜ロール245に巻き付けられた(密着した)状態で、放電空間Sを通過する。これにより、ガスバリアーフィルム10の基材部30上のバリアー層20の厚みが増加する。 In the barrier layer thickening step, the base material portion 30 of the gas barrier film 10 passes through the discharge space S in a state of being wound (adhered to) the second film forming roll 245. Thereby, the thickness of the barrier layer 20 on the base material part 30 of the gas barrier film 10 increases.
 搬出工程においては、基材部30上のバリアー層20の厚みが増加したガスバリアーフィルム10が、ガイドローラー236に向かって、第2成膜ロール245から搬出される(離間する)。 In the unloading step, the gas barrier film 10 in which the thickness of the barrier layer 20 on the base member 30 is increased is unloaded (separated) from the second film forming roll 245 toward the guide roller 236.
 巻き取り工程においては、基材部30上のバリアー層20の厚みが増加したガスバリアーフィルム10が、ガイドローラー236によって巻き取りロール225に案内され、巻き取りロール225に巻き取られる。 In the winding process, the gas barrier film 10 in which the thickness of the barrier layer 20 on the base member 30 is increased is guided to the winding roll 225 by the guide roller 236 and wound on the winding roll 225.
 取り外し工程においては、真空ポンプ280の稼働が停止され、真空チャンバー210の内部が、大気圧に戻されると、基材部30上のバリアー層20の厚みが増加したガスバリアーフィルム10が巻き取られた巻き取りロール225が取り外される。 In the removal process, when the operation of the vacuum pump 280 is stopped and the inside of the vacuum chamber 210 is returned to the atmospheric pressure, the gas barrier film 10 in which the thickness of the barrier layer 20 on the substrate 30 is increased is wound up. The take-up roll 225 is removed.
 次に、ガスバリアーフィルムの性能評価結果を説明する。 Next, the performance evaluation results of the gas barrier film will be described.
 図11は、実施の形態2に係る実施例1、2および比較例1に係るガスバリアーフィルムの性能評価結果を示しているテーブルである。 FIG. 11 is a table showing the performance evaluation results of the gas barrier films according to Examples 1 and 2 and Comparative Example 1 according to the second embodiment.
 まず、実施例1、2および比較例1に係るガスバリアーフィルムの製造条件を説明する。なお、ガスバリアーフィルムの基材部の構成は、実施の形態1に係る実施例1~4および比較例1~4に係るガスバリアーフィルムの場合と同一であるため、その説明は省略し、バリアー層の構成のみを説明する。 First, manufacturing conditions for the gas barrier films according to Examples 1 and 2 and Comparative Example 1 will be described. The configuration of the base portion of the gas barrier film is the same as that of the gas barrier films according to Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1, and therefore the description thereof is omitted. Only the layer structure will be described.
 実施例1に係るガスバリアーフィルムのバリアー層は、ガスバリアーフィルム製造装置200において、クライオコイル270を位置Pに設置し、第1成膜ロール240および第2成膜ロール245を1回通過させて、形成した。なお、設置位置Pは、放電空間Sより上流側であって第1成膜ロール240の外周の近傍かつ基材部30が第1成膜ロール240に巻き付く直前の位置の近傍位置(図9参照)である。 In the gas barrier film manufacturing apparatus 200, the barrier layer of the gas barrier film according to Example 1 has the cryocoil 270 installed at the position P 1 and passes the first film forming roll 240 and the second film forming roll 245 once. Formed. The installation position P 1 is upstream of the discharge space S, in the vicinity of the outer periphery of the first film forming roll 240 and in the vicinity of the position immediately before the base member 30 is wound around the first film forming roll 240 (see FIG. 9).
 原料ガスは、HMDSOであり、その供給量は、100sccmである。反応ガスは、Oであり、その供給量は、500sccmである。真空チャンバー210内の真空度は、1.5Paである。プラズマ発生用電源185の印加電力は、1.2kWであり、周波数は、80kHzである。ガスバリアーフィルム基材部の搬送速度は、1m/minである。成膜ロール150の温度は、30℃である。 The source gas is HMDSO, and the supply amount is 100 sccm. The reaction gas is O 2 and its supply amount is 500 sccm. The degree of vacuum in the vacuum chamber 210 is 1.5 Pa. The applied power of the plasma generation power source 185 is 1.2 kW, and the frequency is 80 kHz. The conveyance speed of a gas barrier film base material part is 1 m / min. The temperature of the film forming roll 150 is 30 ° C.
 実施例2に係るガスバリアーフィルムのバリアー層は、原料ガスがHMDSであることを除き、実施例1に係るガスバリアーフィルムと同様にして製造された。 The barrier layer of the gas barrier film according to Example 2 was manufactured in the same manner as the gas barrier film according to Example 1 except that the source gas was HMDS.
 比較例1に係るガスバリアーフィルムは、ガスバリアーフィルム製造装置200にクライオコイル270が設置されていないことを除き、実施例1に係るガスバリアーフィルムと同様にして製造された。 The gas barrier film according to Comparative Example 1 was manufactured in the same manner as the gas barrier film according to Example 1 except that the cryocoil 270 was not installed in the gas barrier film manufacturing apparatus 200.
 バリアー性の評価方法および評価基準、密着性の評価方法および評価基準および折り曲げ耐性(屈曲性)の評価方法および評価基準は、実施の形態1に係る実施例1~4および比較例1~4に係るガスバリアーフィルムの場合と同一であるため、その説明は省略する。 Evaluation methods and evaluation criteria for barrier properties, evaluation methods and evaluation criteria for adhesion, and evaluation methods and evaluation criteria for bending resistance (flexibility) are the same as in Examples 1 to 4 and Comparative Examples 1 to 4 according to Embodiment 1. Since it is the same as that of the gas barrier film which concerns, the description is abbreviate | omitted.
 次に、図11を参照し、実施例1、2および比較例1に係るガスバリアーフィルムのバリアー性、密着性および折り曲げ耐性(屈曲性)を順次説明する。 Next, referring to FIG. 11, the barrier properties, adhesion, and bending resistance (flexibility) of the gas barrier films according to Examples 1 and 2 and Comparative Example 1 will be sequentially described.
 バリアー性に関しては、実施例1、2に係るガスバリアーフィルムは、評価基準Aであり、比較例1に係るガスバリアーフィルムは、評価基準Cである。したがって、実施例1、2に係るガスバリアーフィルムは、比較例1に係るガスバリアーフィルムに比較し良好な結果を示している。 Regarding the barrier properties, the gas barrier films according to Examples 1 and 2 are evaluation criteria A, and the gas barrier film according to Comparative Example 1 is evaluation criteria C. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
 密着性に関しては、バリアー性と同様に、実施例1、2に係るガスバリアーフィルムは、評価基準Aであり、比較例1に係るガスバリアーフィルムは、評価基準Cである。したがって、実施例1、2に係るガスバリアーフィルムは、比較例1に係るガスバリアーフィルムに比較し良好な結果を示している。 Regarding the adhesion, the gas barrier film according to Examples 1 and 2 is the evaluation standard A, and the gas barrier film according to Comparative Example 1 is the evaluation standard C, as in the barrier property. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
 折り曲げ耐性(屈曲性)に関しては、バリアー性と同様に、実施例1、2に係るガスバリアーフィルムは、評価基準Aであり、比較例1に係るガスバリアーフィルムは、評価基準Cである。したがって、実施例1、2に係るガスバリアーフィルムは、比較例1に係るガスバリアーフィルムに比較し良好な結果を示している。 Regarding the bending resistance (flexibility), the gas barrier film according to Examples 1 and 2 is the evaluation standard A, and the gas barrier film according to Comparative Example 1 is the evaluation standard C, similarly to the barrier property. Therefore, the gas barrier films according to Examples 1 and 2 show better results than the gas barrier film according to Comparative Example 1.
 実施例1、2に係るガスバリアーフィルムは、上述のように、バリアー性、密着性および折り曲げ耐性(屈曲性)の全てにおいて評価基準Aであり、比較例1に係るガスバリアーフィルムに比較し良好な結果を示している。 As described above, the gas barrier films according to Examples 1 and 2 are evaluation criteria A in all of the barrier properties, adhesion and bending resistance (flexibility), and are better than the gas barrier films according to Comparative Example 1. Results.
 次に、実施の形態2に係る変形例1および変形例2を順次説明する。 Next, Modification 1 and Modification 2 according to Embodiment 2 will be sequentially described.
 図12は、実施の形態2に係る変形例1を説明するための概略図である。 FIG. 12 is a schematic diagram for explaining the first modification according to the second embodiment.
 クライオコイルは、放電空間Sの上流側のみに設置する形態に限定ざれず、例えば、放電空間Sの下流側かつ放電空間Sに隣接する位置(ガスバリアーフィルム10が第2成膜ロール245から離間した直後の位置)に第2のクライオコイル272を設置することも可能である。この場合、搬送機構は、搬送方向を反転可能(再搬送可能)に構成されており、ガスバリアーフィルム10の基材部30に対するバリアー層20の形成が完了した後、搬送方向を反転(逆転)させて連続的に再搬送し、放電空間Sに再搬入して、バリアー層20の厚みを増加させる際に、クライオコイル272は、放電空間Sの再搬送方向上流側に位置することとなる。そのため、放電空間Sに再搬入する前に、バリアー層20の表面にプレカーサー由来の層が形成されることが抑制される。したがって、バリアー層20の内部にプレカーサー由来の層が介在することが避けられる。 The cryocoil is not limited to the form installed only on the upstream side of the discharge space S. For example, the cryocoil is positioned downstream of the discharge space S and adjacent to the discharge space S (the gas barrier film 10 is separated from the second film forming roll 245). It is also possible to install the second cryocoil 272 at a position immediately after the operation. In this case, the transport mechanism is configured so that the transport direction can be reversed (re-transportable), and after the formation of the barrier layer 20 on the base material portion 30 of the gas barrier film 10 is completed, the transport direction is reversed (reversed). The cryocoil 272 is positioned upstream of the discharge space S in the re-transport direction when the barrier layer 20 is increased in thickness by being re-transported continuously and re-loaded into the discharge space S. For this reason, the precursor-derived layer is suppressed from being formed on the surface of the barrier layer 20 before being carried into the discharge space S again. Accordingly, it is possible to avoid a precursor-derived layer intervening in the barrier layer 20.
 図13は、実施の形態2に係る変形例2を説明するための概略図である。 FIG. 13 is a schematic diagram for explaining a second modification according to the second embodiment.
 クライオコイル270と放電空間Sとの間に、邪魔板275を配置することも可能である。邪魔板275は、プレカーサーの漏れを抑制するため、放電空間Sに搬入される前の基材部30にプレカーサーが付着する(プレカーサー由来の層が形成される)ことがさらに抑制される。 It is also possible to arrange a baffle plate 275 between the cryocoil 270 and the discharge space S. In order to suppress the leakage of the precursor, the baffle plate 275 further suppresses the precursor from adhering to the base material part 30 before being carried into the discharge space S (a layer derived from the precursor is formed).
 以上のように、対向した成膜ロールを有するロールツーロール型のプラズマCVD法に係る実施の形態2においても、専用の電極(シャワー電極)を有するロールツーロール型のプラズマCVD法に係る実施の形態1の場合と同様に、バリアー層は、良好なバリアー性および密着性を有する。 As described above, also in the second embodiment related to the roll-to-roll type plasma CVD method having the facing film-forming rolls, the implementation related to the roll-to-roll type plasma CVD method having a dedicated electrode (shower electrode) is performed. As in the case of Form 1, the barrier layer has good barrier properties and adhesion.
 本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。例えば、低温凝縮部材(クライオコイル170,270)および第2の低温凝縮部材(クライオコイル172,272)は、必要に応じて複数箇所に設置することも可能である。また、バリアー層20は、その上方に、中間層を介して第2のバリアー層20を配置することにより、多層構造を有するように構成することも可能である。例えば、中間層は、例えば、ポリシロキサン改質層から構成される。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, the low-temperature condensing members (cryocoils 170 and 270) and the second low-temperature condensing members (cryocoils 172 and 272) can be installed at a plurality of locations as necessary. The barrier layer 20 can also be configured to have a multilayer structure by disposing the second barrier layer 20 above the intermediate layer via an intermediate layer. For example, the intermediate layer is composed of, for example, a polysiloxane modified layer.
 本出願は、2015年1月22日に出願された日本特許出願番号2015-10658号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-10658 filed on January 22, 2015, the disclosure content of which is referenced and incorporated as a whole.
10 ガスバリアーフィルム、
20 バリアー層、
30 基材部、
32 基材、
34 クリアハードコート層、
36 ブリードアウト防止層、
100 ガスバリアーフィルム製造装置、
110 真空チャンバー、
115 巻出し室、
120 送り出しロール、
125 巻き取りロール、
122,127 軸、
130,132 ガイドローラー、
140 成膜室、
142 シャワー電極、
144 中空部、
146 ガス供給孔、
150 成膜ロール、
152 軸、
160,162 隔壁、
164 隙間、
170 クライオコイル(低温凝縮部材)、
172 クライオコイル(第2の低温凝縮部材)、
175 邪魔板、
180 第1真空ポンプ、
182 第2真空ポンプ、
185 プラズマ発生用電源、
187 バイアス電源、
190 成膜ガス供給部、
192 原料ガス源、
194 反応ガス源、
200 ガスバリアーフィルム製造装置、
210 真空チャンバー、
220 送り出しロール、
225 巻き取りロール、
222,227 軸、
230,232,234,236 ガイドローラー、
240 第1成膜ロール、
244 第1磁場発生装置、
245 第2成膜ロール、
249 第2磁場発生装置、
242,247 軸、
250 成膜ガス供給口、
270 クライオコイル(低温凝縮部材)、
272 クライオコイル(第2の低温凝縮部材)、
275 邪魔板、
280 真空ポンプ、
285 プラズマ発生用電源、
290 成膜ガス供給部、
,P,P,P,P.P 設置位置、
S 放電空間。
10 Gas barrier film,
20 barrier layer,
30 substrate part,
32 base material,
34 Clear hard coat layer,
36 Bleed-out prevention layer,
100 gas barrier film manufacturing equipment,
110 vacuum chamber,
115 unwinding chamber,
120 feed roll,
125 take-up roll,
122,127 axes,
130, 132 guide rollers,
140 Deposition chamber,
142 shower electrodes,
144 hollow part,
146 gas supply holes,
150 film forming roll,
152 axes,
160, 162 Bulkhead,
164 gap,
170 cryocoil (low temperature condensing member),
172 cryocoil (second low-temperature condensing member),
175 baffle,
180 first vacuum pump,
182 second vacuum pump,
185 Power supply for plasma generation,
187 bias power supply,
190 Deposition gas supply unit,
192 Source gas source,
194 reaction gas source,
200 Gas barrier film manufacturing equipment,
210 vacuum chamber,
220 feed roll,
225 take-up roll,
222, 227 axes,
230, 232, 234, 236 guide rollers,
240 first film forming roll,
244 first magnetic field generator,
245 Second film forming roll,
249 Second magnetic field generator,
242 and 247 axes,
250 Deposition gas supply port,
270 cryocoil (low temperature condensing member),
272 cryocoil (second low-temperature condensing member),
275 baffle,
280 vacuum pump,
285 power supply for plasma generation,
290 Deposition gas supply unit,
P 1 , P 2 , P 3 , P 4 , P 5 . P 6 installation position,
S Discharge space.

Claims (14)

  1.  バリアー性を有するバリアー層と、前記バリアー層を支持する基材部と、を有するガスバリアーフィルムを、ロールツーロール型のプラズマCVD法によって製造するための製造装置であって、
     前記バリアー層を形成する原料ガスおよび反応ガスをプラズマ化する放電空間と、
     前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に搬送する搬送機構と、
     前記原料ガスおよび前記反応ガスのプラズマ化によって生成されるプレカーサーを凝縮させてトラップし得る温度を有する低温凝縮部材と、を有し、
     前記低温凝縮部材は、
     前記放電空間より、前記ガスバリアーフィルムの前記基材部の搬送方向上流側であって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記基材部に、前記プレカーサーが付着することを抑制する位置に、設置されている、製造装置。
    A manufacturing apparatus for manufacturing a gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer by a roll-to-roll type plasma CVD method,
    A discharge space for converting the source gas and the reaction gas to form the barrier layer into plasma;
    A transport mechanism for continuously transporting the base portion of the gas barrier film via the discharge space;
    A low-temperature condensing member having a temperature capable of condensing and trapping the precursor generated by plasmification of the source gas and the reaction gas,
    The low temperature condensing member is
    The gas barrier film upstream of the discharge space in the transport direction of the base material portion of the gas barrier film, before the precursor leaking from the discharge space is condensed and trapped, and is carried into the discharge space The manufacturing apparatus installed in the position which suppresses that the said precursor adheres to the said base material part.
  2.  前記ガスバリアーフィルムの前記基材部が巻き付く成膜ロールと、
     前記成膜ロールに相対して配置され、かつ、前記成膜ロールと共に電極対を構成するシャワー電極と、をさらに有し、
     前記放電空間は、前記シャワー電極と前記成膜ロールとの間の空間によって構成される、請求項1に記載の製造装置。
    A film forming roll on which the base material portion of the gas barrier film is wound;
    A shower electrode disposed relative to the film forming roll and constituting an electrode pair together with the film forming roll;
    The manufacturing apparatus according to claim 1, wherein the discharge space is configured by a space between the shower electrode and the film forming roll.
  3.  前記放電空間および前記シャワー電極が配置され、かつ、前記成膜ロールにおける前記ガスバリアーフィルムの前記基材部が巻き付く部位が位置する成膜室と、をさらに有し、
     前記低温凝縮部材は、前記成膜室に配置されている、請求項2に記載の製造装置。
    A film forming chamber in which the discharge space and the shower electrode are arranged, and a portion around which the base portion of the gas barrier film in the film forming roll is wound is located,
    The manufacturing apparatus according to claim 2, wherein the low temperature condensing member is disposed in the film forming chamber.
  4.  前記低温凝縮部材が設置される前記位置は、前記成膜ロールの外周の近傍である、請求項3に記載の製造装置。 The manufacturing apparatus according to claim 3, wherein the position where the low-temperature condensing member is installed is in the vicinity of the outer periphery of the film forming roll.
  5.  前記低温凝縮部材が設置される前記位置は、前記シャワー電極に隣接している、請求項4に記載の製造装置。 The manufacturing apparatus according to claim 4, wherein the position where the low-temperature condensing member is installed is adjacent to the shower electrode.
  6.  第1成膜ロールと、
     第1成膜ロールより、前記ガスバリアーフィルムの前記基材部の搬送方向下流側に位置し、かつ、前記第1成膜ロールに相対して配置され、前記第1成膜ロールと共に電極対を構成する第2成膜ロールと、をさらに有し、
     前記放電空間は、前記第1成膜ロールと前記第2成膜ロールとの間の空間によって構成される、請求項1に記載の製造装置。
    A first film forming roll;
    It is located on the downstream side in the transport direction of the base material portion of the gas barrier film from the first film forming roll, and is disposed relative to the first film forming roll, and an electrode pair together with the first film forming roll. And further comprising a second film forming roll,
    The manufacturing apparatus according to claim 1, wherein the discharge space is configured by a space between the first film forming roll and the second film forming roll.
  7.  前記低温凝縮部材が設置される前記位置は、前記第1成膜ロールの外周の近傍である、請求項6に記載の製造装置。 The manufacturing apparatus according to claim 6, wherein the position where the low-temperature condensing member is installed is in the vicinity of the outer periphery of the first film forming roll.
  8.  前記低温凝縮部材が設置される前記位置は、前記ガスバリアーフィルムの前記基材部が前記第1成膜ロールに巻き付く直前の位置の近傍である、請求項7に記載の製造装置。 The manufacturing apparatus according to claim 7, wherein the position where the low-temperature condensing member is installed is near a position immediately before the base portion of the gas barrier film is wound around the first film forming roll.
  9.  前記低温凝縮部材と前記放電空間との間に配置される邪魔板を、さらに有し、
     前記邪魔板は、前記放電空間からの前記プレカーサーの漏れを抑制する、請求項1~8のいずれか1項に記載の製造装置。
    A baffle plate disposed between the low-temperature condensing member and the discharge space,
    The manufacturing apparatus according to any one of claims 1 to 8, wherein the baffle plate suppresses leakage of the precursor from the discharge space.
  10.  前記原料ガスおよび前記反応ガスのプラズマ化によって生成されるプレカーサーを凝縮させてトラップし得る温度を有する第2の低温凝縮部材を、さらに有し、
     前記搬送機構は、前記ガスバリアーフィルムの前記基材部に対する前記バリアー層の形成が完了した後、前記ガスバリアーフィルムの前記基材部の搬送方向を反転し、前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に再搬送可能に構成されており、
     前記第2の低温凝縮部材は、前記放電空間より、前記ガスバリアーフィルムの前記基材部の再搬送方向上流側であって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記バリアー層に、前記プレカーサーが付着することを抑制する位置に、設置されている、請求項1~9のいずれか1項に記載の製造装置。
    A second low-temperature condensing member having a temperature capable of condensing and trapping the precursor generated by plasmification of the source gas and the reaction gas;
    The transport mechanism reverses the transport direction of the base material portion of the gas barrier film after the formation of the barrier layer on the base material portion of the gas barrier film is completed, and passes through the discharge space, The base portion of the gas barrier film is configured to be continuously re-transportable,
    The second low-temperature condensing member condenses and traps the precursor leaking from the discharge space on the upstream side in the re-transport direction of the base material portion of the gas barrier film from the discharge space. The manufacturing apparatus according to any one of claims 1 to 9, wherein the manufacturing apparatus is installed at a position where the precursor is prevented from adhering to the barrier layer of the gas barrier film before being carried into the container.
  11.  バリアー性を有するバリアー層と、前記バリアー層を支持する基材部と、を有するガスバリアーフィルムを、ロールツーロール型のプラズマCVD法によって製造するための製造方法であって、
     前記バリアー層を形成する原料ガスおよび反応ガスをプラズマ化する放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に搬送する際、
     前記放電空間より、前記ガスバリアーフィルムの前記基材部の搬送方向上流側に設置される低温凝縮部材によって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記基材部に、前記プレカーサーが付着することを抑制する、製造方法。
    A gas barrier film having a barrier layer having a barrier property and a base material portion supporting the barrier layer, a manufacturing method for manufacturing by a roll-to-roll type plasma CVD method,
    When continuously transporting the base material portion of the gas barrier film via a discharge space for converting the raw material gas and the reaction gas to plasma into the barrier layer,
    The precursor leaked from the discharge space is condensed and trapped by the low-temperature condensing member installed on the upstream side in the transport direction of the base material part of the gas barrier film from the discharge space, and before being carried into the discharge space. The manufacturing method which suppresses that the said precursor adheres to the said base material part of the said gas barrier film.
  12.  前記低温凝縮部材と前記放電空間との間に配置される邪魔板によって、前記放電空間からの前記プレカーサーの漏れを抑制する、請求項11に記載の製造方法。 The manufacturing method according to claim 11, wherein leakage of the precursor from the discharge space is suppressed by a baffle plate disposed between the low-temperature condensing member and the discharge space.
  13.  前記ガスバリアーフィルムの前記基材部に対する前記バリアー層の形成が完了した後、前記ガスバリアーフィルムの前記基材部の搬送方向を反転し、前記放電空間を経由して、前記ガスバリアーフィルムの前記基材部を連続的に再搬送する際、
     前記放電空間より、前記ガスバリアーフィルムの前記基材部の再搬送方向上流側に設置される第2の低温凝縮部材によって、前記放電空間から漏れたプレカーサーを凝縮させてトラップし、前記放電空間に搬入される前の前記ガスバリアーフィルムの前記バリアー層に、前記プレカーサーが付着することを抑制する、請求項11又は請求項12に記載の製造方法。
    After the formation of the barrier layer with respect to the base portion of the gas barrier film is completed, the transport direction of the base portion of the gas barrier film is reversed, and through the discharge space, the gas barrier film When re-feeding the base material continuously,
    The precursor leaked from the discharge space is condensed and trapped by the second low-temperature condensing member installed on the upstream side in the re-conveying direction of the base material portion of the gas barrier film from the discharge space, and trapped in the discharge space. The manufacturing method of Claim 11 or Claim 12 which suppresses that the said precursor adheres to the said barrier layer of the said gas barrier film before carrying in.
  14.  前記原料ガスは、有機ケイ素化合物である、請求項11~13のいずれか1項に記載の製造方法。 The method according to any one of claims 11 to 13, wherein the source gas is an organosilicon compound.
PCT/JP2015/082944 2015-01-22 2015-11-24 Gas barrier film manufacturing apparatus and manufacturing method WO2016117223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016570502A JPWO2016117223A1 (en) 2015-01-22 2015-11-24 Gas barrier film manufacturing apparatus and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015010658 2015-01-22
JP2015-010658 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016117223A1 true WO2016117223A1 (en) 2016-07-28

Family

ID=56416783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082944 WO2016117223A1 (en) 2015-01-22 2015-11-24 Gas barrier film manufacturing apparatus and manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2016117223A1 (en)
WO (1) WO2016117223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158869A (en) * 2019-03-28 2020-10-01 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystal substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247335A (en) * 2009-04-10 2010-11-04 Fujifilm Corp Gas-barrier film and method for producing the same
JP2013028163A (en) * 2011-06-21 2013-02-07 Sumitomo Chemical Co Ltd Laminated film and electronic device
JP2013056514A (en) * 2011-09-09 2013-03-28 Fujifilm Corp Functional film and method of producing the same
JP2013208753A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Functional film and method of manufacturing functional film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247335A (en) * 2009-04-10 2010-11-04 Fujifilm Corp Gas-barrier film and method for producing the same
JP2013028163A (en) * 2011-06-21 2013-02-07 Sumitomo Chemical Co Ltd Laminated film and electronic device
JP2013056514A (en) * 2011-09-09 2013-03-28 Fujifilm Corp Functional film and method of producing the same
JP2013208753A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Functional film and method of manufacturing functional film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158869A (en) * 2019-03-28 2020-10-01 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystal substrate
JP7338193B2 (en) 2019-03-28 2023-09-05 住友金属鉱山株式会社 Method for manufacturing polycrystalline silicon carbide substrate

Also Published As

Publication number Publication date
JPWO2016117223A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP5730235B2 (en) Gas barrier film and method for producing gas barrier film
JP6342776B2 (en) Manufacturing method of laminate
WO2014203892A1 (en) Gas barrier film and method for producing same
JP5983454B2 (en) Gas barrier film
WO2016117223A1 (en) Gas barrier film manufacturing apparatus and manufacturing method
WO2018101083A1 (en) Laminate body and device including same
JP2016010889A (en) Gas barrier film and production method of functional film
WO2015083706A1 (en) Gas barrier film and method for producing same
JP2014141055A (en) Gas barrier film
WO2015083681A1 (en) Gas barrier film and production method therefor
JP6354302B2 (en) Gas barrier film
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP5895855B2 (en) Method for producing gas barrier film
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
JP6288082B2 (en) Film forming apparatus, electrode roll, and gas barrier film manufacturing method
JP6593347B2 (en) Gas barrier film manufacturing method and manufacturing apparatus
WO2015025783A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP6579098B2 (en) Method for producing gas barrier film
JP6642587B2 (en) Plasma CVD film forming equipment
JP6897567B2 (en) Gas barrier film
JP2022138914A (en) Method for producing gas barrier film and wound body of the same
WO2016148029A1 (en) Film forming apparatus and gas barrier film production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878912

Country of ref document: EP

Kind code of ref document: A1