WO2016117059A1 - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
WO2016117059A1
WO2016117059A1 PCT/JP2015/051582 JP2015051582W WO2016117059A1 WO 2016117059 A1 WO2016117059 A1 WO 2016117059A1 JP 2015051582 W JP2015051582 W JP 2015051582W WO 2016117059 A1 WO2016117059 A1 WO 2016117059A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
end effector
mover
positioning device
linear motion
Prior art date
Application number
PCT/JP2015/051582
Other languages
French (fr)
Japanese (ja)
Inventor
正興 岩瀬
福島 一彦
茂男 編笠屋
興起 仲
和秋 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/051582 priority Critical patent/WO2016117059A1/en
Priority to JP2015533340A priority patent/JP5963968B1/en
Publication of WO2016117059A1 publication Critical patent/WO2016117059A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections

Definitions

  • the present invention relates to a positioning device having a parallel link mechanism.
  • the parallel link mechanism is advantageous in that the end effector can be driven at a higher speed and the positioning accuracy is higher than that of the serial link mechanism. Further, the linear motion parallel link mechanism has an advantage that the end effector operating area is wider than that of the rotational drive mechanism.
  • the position of the end effector in the direction orthogonal to the mover moving direction is determined by the distance between the mover moving directions of the movers that drive the links. Determined uniquely.
  • the position of each mover in the mover moving direction is symmetric with respect to the position of the end effector in the mover moving direction.
  • a linear motion parallel link mechanism having two equal link lengths is hereinafter referred to as a linear motion equal length parallel link mechanism.
  • One of the performance indicators of the positioning device is area productivity, that is, work efficiency per unit area of the positioning device.
  • area productivity that is, work efficiency per unit area of the positioning device.
  • the present invention has been made in view of the above, and it is possible to efficiently perform positioning work by reducing the speed applied to the mover, and to obtain a positioning apparatus with high area productivity by reducing the area occupied by the apparatus. With the goal.
  • the present invention provides a guide member extending in the mover moving direction, and first and second movable along the guide member in the mover moving direction.
  • a first link having one end rotatably attached to the first mover in a plane, and one end rotatably attached to the second mover in a plane.
  • a link mechanism is formed by attaching the other end of the link to the other end of the link so as to be rotatable in a plane, a second link having a longer link length than the first link, and an end attached to the link mechanism
  • An effector and the length of the guide member in the mover moving direction is a length obtained by adding the link length of the second link to the width in the mover moving direction of the operation region of the end effector. It is characterized by that.
  • the positioning device according to the present invention has an effect that the speed applied to the mover can be reduced to perform an efficient positioning operation, and the area occupied by the device can be reduced, thereby increasing the area productivity.
  • FIG. 1 The figure which shows the structure of the positioning device concerning Embodiment 1 of this invention.
  • FIG. 1 The figure explaining another arrangement
  • FIG. The figure explaining the length of the guide rail and guide member of a needle
  • FIG. The figure which shows the definition of the variable for demonstrating the speed
  • FIG. 1 The figure which showed the relationship between the Y direction position of the end effector in the positioning apparatus concerning Embodiment 1, and sensitivity k.
  • FIG. Schematic which shows the end effector movable range in the positioning device using the linear motion equal length parallel link mechanism concerning Embodiment 3.
  • FIG. Schematic which shows the end effector movable range in the positioning device using the linear motion unequal length parallel link mechanism concerning Embodiment 3.
  • FIG. Schematic plan view showing the configuration of a positioning device according to a fourth embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of a positioning device 1 according to a first embodiment of the present invention.
  • FIG. 1 shows the X direction, which is the mover moving direction, and the Y direction perpendicular thereto.
  • the positioning device 1 includes a guide member 2 extending in the X direction, a mover 8 that is a first mover movable in the X direction along the guide member 2, and a mover 9 that is a second mover.
  • the movable joints 8 and 9 respectively have rotating joint mechanisms 10 and 11 and a first link whose one end is rotatably supported by the movable element 8 in the XY plane via the rotating joint mechanism 10.
  • a short link 12 and a long link 13, which is a second link having one end rotatably supported in an XY plane via a rotary joint mechanism 11 by a mover 9, are provided.
  • the long link 13 has a longer link length than the short link 12. That is, the positioning device 1 according to the first embodiment employs a linear motion unequal length parallel link mechanism in which two link lengths are different.
  • the positioning device 1 is attached to the link mechanism, a rotary joint mechanism 14 that forms a link mechanism by rotatably connecting the other end of the short link 12 and the other end of the long link 13 in the XY plane.
  • the short link 12, the long link 13, and the rotary joint mechanism 14 form a link mechanism.
  • the end effector 15 is the other end of the short link 12, that is, the rotary joint mechanism. It is attached to the 14th side.
  • the mover 8 includes a coil module 6 that forms a linear motor
  • the mover 9 includes a coil module 7 that forms a linear motor.
  • the working unit 16 is shown as a working hand in the example of FIG. 1, but may be an inspection machine such as a nozzle or a camera, and is not particularly limited.
  • the rotation joint mechanisms 10, 11, and 14 are not particularly limited as long as the mechanisms have a rotation function such as a bearing.
  • FIG. 1 when viewed from the guide member 2 in the Y direction, an example is shown in which the movable element 8 and the short link 12 are on the left side, and the movable element 9 and the long link 13 are on the right side. The reverse is also acceptable.
  • the guide member 2 includes a pair of guide rails 3 and 4 parallel to each other and a magnet plate 5 constituting a linear motor.
  • Movable elements 8 and 9 are attached to the guide rails 3 and 4 so as to be slidable in the X direction.
  • the movers 8 and 9 can be moved independently by applying a driving force in the X direction by some linear actuator.
  • a linear motor including the magnet plate 5 and the coil modules 6 and 7 is used to apply a driving force, but it may be a ball screw drive and is not particularly limited.
  • a method for positioning the end effector 15 of the positioning device 1 according to the first embodiment will be described below.
  • the position of the end effector 15 is uniquely determined by the arrangement of the movers 8 and 9. Therefore, the arrangement of the movable elements 8 and 9 that realize the target position of the end effector 15 is obtained by geometric calculation, and the positioning control of the movable elements 8 and 9 is performed using the obtained arrangement of the movable elements 8 and 9 as the target position. If executed, the end effector 15 can be positioned at a target position.
  • FIG. 2 is a diagram for explaining the arrangement of the movers 8 and 9 that realize that the end effector 15 becomes a target position in the positioning device 1
  • FIG. 3 shows the end effector 15 in the positioning device 1 as a target.
  • FIGS. 2 and 3. It is a figure explaining another arrangement
  • the short link angle ⁇ which is the angle of the inner angle formed by the short link 12 and the X direction, is an acute angle in FIG. 2 but an obtuse angle in FIG. 3, and the posture of the short link 12 is different.
  • FIG. 4 is a diagram illustrating the lengths of the guide rails 3 and 4 and the guide member 2 in the X direction which is the moving direction of the mover in the positioning device 1.
  • the operation region A to which the end effector 15 is given is indicated by shading.
  • FIG. 4 shows the posture of the short link 12 and the long link 13 and the arrangement of the movers 8 and 9 when the end effector 15 is positioned at the end in the X direction of the operation area A of the end effector 15.
  • the link length of the short link 12 needs to be longer than the width of the operation area A in the Y direction.
  • the short link angle ⁇ is 180 degrees
  • the mover 8 and the mover 9 are closest to each other, and the distance is the link length of the long link 13 and the short link 12. Equal to the difference.
  • the link length of the long link 13 is made longer than the sum of the safety distance between the movable elements and the link length of the short link 12.
  • the posture of the short link 12 and the long link 13 at which the short link angle ⁇ becomes an obtuse angle is selected.
  • the movers 8 and 9 are located on the right side of the left end of the operation region A in the X direction. That is, when the end effector 15 is positioned at the left end in the X direction of the operation area A, the short link angle ⁇ is made an obtuse angle, and the movable element 8 has a range in the X direction of the operation area A as shown in FIG. It becomes possible not to arrange outside.
  • both the movers 8 and 9 can be arranged inside the range of the operation area A in the X direction.
  • the long link 13 needs to be arranged on the right side of the right end of the operation region A in the X direction. Therefore, the guide rails 3 and 4 and the guide member 2 need to extend from the right end of the operation region A in the X direction to the right side in addition to the width of the operation region A in the X direction.
  • the lengths of the guide rails 3 and 4 and the guide member 2 in the X direction may be extended to the right by the length of the long link 13 from the length of the width in the X direction of the operation region A of the end effector 15. 3 and 4 and the extension to the left side of the guide member 2 become unnecessary.
  • the exclusive area of the whole apparatus can be made smaller than the apparatus which has the linear motion equal length parallel link mechanism which needs the extension to the both sides of a guide member.
  • the short link 12 is on the left side of the long link 13.
  • the same discussion as above is valid with the left and right sides reversed.
  • the in-plane angle indicating the direction in the XY plane of the end effector 15 of the positioning device 1 according to the first embodiment will be described. Since the end effector 15 is fixed to the short link 12, the in-plane angle of the end effector 15 in the XY plane is uniquely determined depending on the short link angle ⁇ . However, the end effector 15 has a mechanism capable of rotating the working unit 16 relative to the end effector 15 by means such as incorporating a rotary actuator (not shown). This rotation mechanism enables angle correction for controlling the in-plane angle in the XY plane of the work unit 16 such as a work hand included in the end effector 15 to a target value.
  • the angle correction amount in the angle correction is a difference between the target in-plane angle on the XY plane of the working unit 16 and the short link angle ⁇ .
  • the angle correction amount described above is used.
  • the short link angle ⁇ can be selected from two values. Therefore, it is possible to increase the efficiency of the positioning work by selecting the pattern having the smaller angle correction amount of the end effector 15.
  • the speeds of the movers 8 and 9 necessary to realize the target Y-direction speed of the end effector 15. Will be explained.
  • FIG. 5 is a diagram showing the definition of variables for explaining the speeds of the movers 8 and 9 that realize that the end effector 15 has a target Y-direction speed in the positioning device 1.
  • the internal angle formed by the short link 12 and the X direction is the short link angle ⁇
  • the external angle formed by the long link 13 and the X direction is the long link angle ⁇
  • the coordinate of the mover 8 in the X direction is c 1
  • the coordinate of the mover 9 in the X direction is indicated by c 2 .
  • k in the equation (1) represents the sensitivity of the velocity in the Y direction of the end effector 15 generated by the velocity difference (dc 2 / dt ⁇ dc 1 / dt) between the movers 8 and 9, and the following equation ( As represented by 2), it is a function of the short link angle ⁇ and the long link angle ⁇ .
  • the short link angle ⁇ is an obtuse angle
  • the long link angle ⁇ is an obtuse angle and is always larger than the short link angle ⁇
  • the value of the sensitivity k is always positive according to the equation (2). Accordingly, when a positive speed is applied to the end effector 15 in the Y direction, the speed difference (dc 2 / dt ⁇ dc 1 / dt) between the movers 8 and 9 becomes positive, that is, the movers 8 and 9 What is necessary is just to operate
  • the sensitivity k of the Y-direction speed of the end effector 15 in the first embodiment will be described.
  • the smaller the absolute value of the sensitivity k the smaller the speed difference (dc 2 / dt) between the movable elements 8 and 9 required to realize the target Y-direction speed of the end effector 15.
  • the absolute value of -dc 1 / dt) may be small, and an efficient positioning operation in the Y direction becomes possible.
  • FIG. 6 is a diagram illustrating a relationship between the position [m] of the end effector 15 in the positioning device 1 according to the first embodiment and the sensitivity k.
  • FIG. 6 shows the absolute value of sensitivity k by the linear motion equal length parallel link mechanism and the linear motion equal length parallel link mechanism and the short link length when the end effector 15 realizes the given position in the Y direction.
  • the absolute value of the sensitivity k of the equal linear motion unequal length parallel link mechanism is shown in comparison.
  • the linear motion unequal length parallel link mechanism the absolute value of the sensitivity k in both cases where the short link angle ⁇ is an acute angle and an obtuse angle is shown.
  • the short link angle ⁇ is an acute angle and an obtuse angle
  • the lengths of both links of the linear motion equal length parallel link mechanism are both 1 m
  • the short link length of the linear motion unequal length parallel link mechanism is 1 m
  • the long link length is 1.1 m.
  • the absolute value of the sensitivity k by the linear motion equal length parallel link mechanism is indicated by a broken line
  • the absolute value of the sensitivity k when the short link angle ⁇ is an acute angle by the linear motion unequal length parallel link mechanism is indicated by a one-dot chain line.
  • the absolute value of the sensitivity k when the short link angle ⁇ is an obtuse angle in the isometric parallel link mechanism is indicated by a solid line.
  • the absolute value of the sensitivity k is the linear motion equal length parallel link mechanism, the linear motion inequality where the short link angle ⁇ is an acute angle.
  • the long parallel link mechanism and the direct link unequal length parallel link mechanism with an obtuse angle of the short link angle ⁇ are sequentially reduced.
  • the absolute value of the sensitivity k is 2 or more, according to the equation (1), in order to make the end effector 15 achieve the target Y-direction speed, the movable elements 8 and 9 that are twice or more than that are used.
  • Speed difference (dc 2 / dt ⁇ dc 1 / dt) that is, it means that it is necessary to give at least one of the movers 8 and 9 a speed equal to or higher than the target Y-direction speed of the end effector 15.
  • the region in the Y direction position where the absolute value of sensitivity k is 2 or more is a linear motion equal length parallel link mechanism, a linear motion unequal length parallel link mechanism with a short short link angle ⁇ , and a short link angle.
  • the ⁇ becomes smaller in the order of the linear link unequal length parallel link mechanism having an obtuse angle. Therefore, according to the positioning device 1 employing the linear motion unequal length parallel link mechanism according to the first embodiment, the movers 8 and 9 must be given a speed equal to or higher than the target Y-direction speed of the end effector 15. It can be seen that the situation can be reduced.
  • the absolute value of the speeds of the movers 8 and 9 required to realize the target Y-direction speed of the end effector 15 is the linear parallel isometric parallel link. On average, it is smaller than the mechanism.
  • the end effector 15 can be operated in the Y direction more efficiently than the linear motion equal length parallel link mechanism. It can also be seen that when the short link angle ⁇ is an obtuse angle, the efficiency is even better than when it is an acute angle.
  • the angle correction amount described above of the working unit 16 with respect to the end effector 15 and the efficiency of the positioning operation in the Y direction described above are comprehensively taken into consideration. It is possible to select whether the short link angle ⁇ at the time is an acute angle or an obtuse angle, and it is possible to improve the efficiency of comprehensive positioning work.
  • the positioning device 1 according to the first embodiment it is possible to improve the efficiency of comprehensive positioning work. Furthermore, according to the positioning device 1 according to the first embodiment, the exclusive area of the entire device can be made smaller than the device having the linear motion equal length parallel link mechanism, and the effect of improving the area productivity can be obtained.
  • FIG. FIG. 7 is a diagram showing a configuration of a positioning device 1 ′ according to the second embodiment of the present invention.
  • FIG. 7 shows the X direction as the mover moving direction and the Y direction perpendicular thereto.
  • the short link 12 ′ as the first link, the long link 13 ′ as the second link, and the rotary joint mechanism 14 form a link mechanism.
  • the order in which the short link 12 ′ and the long link 13 ′ are connected on the rotating joint mechanism 14 side is reversed, and the lower side of the short link 12 ′.
  • the long link 13 ' is connected.
  • the end effector 15 ' is attached not to the short link 12' but to the end of the long link 13 'on the rotating joint mechanism 14 side. 7 and 1 have the same configuration and function, and the description thereof will be omitted.
  • FIG. 7 shows an example in which the movable element 8 and the short link 12 ′ are on the left side and the movable element 9 and the long link 13 ′ are on the right side when viewed from the guide member 2 in the Y direction. May be reversed.
  • the inertial force accompanying translational motion in the XY plane and the inertial torque accompanying link angle change act on the end effector 15 'fixed to the link end in the linear motion parallel link mechanism.
  • the end effector 15 ′ needs to have sufficient rigidity and strength so as not to generate vibration or break against these inertial forces and inertial torques. Even if the end effector 15 'performs a translational movement that produces a certain amount of movement, the change in the angle of the link at that time is smaller for the long link than for the short link.
  • the positioning device 1 ′ according to the second embodiment, it is possible to improve the efficiency of positioning work, reduce the area occupied by the entire device, improve the area productivity, and reduce the weight of the end effector.
  • FIG. FIG. 8 is a schematic plan view showing the configuration of the positioning device 10 according to the third embodiment of the present invention.
  • the positioning device 10 according to the third embodiment is a positioning device having two linear motion unequal length parallel link mechanisms shown by the positioning device 1 of the first embodiment or the positioning device 1 ′ of the second embodiment.
  • the positioning device 10 includes linear motion unequal length parallel link mechanisms 1a and 1b.
  • FIG. 8 is a schematic diagram, only the schematic configuration of the linear motion unequal length parallel link mechanisms 1a and 1b is shown, and some components such as the guide member 2 and the rotary joint mechanism 14 are not shown.
  • the linear motion unequal length parallel link mechanism 1a includes guide rails 3a and 4a, movers 8a and 9a, rotary joint mechanisms 10a and 11a, a short link 12a, a long link 13a, and an end effector 15a.
  • the linear motion unequal length parallel link mechanism 1b includes guide rails 3b and 4b, movers 8b and 9b, rotary joint mechanisms 10b and 11b, a short link 12b, a long link 13b, and an end effector 15b. Also in FIG. 8, the operation area A to which the end effectors 15a and 15b are given is indicated by shading.
  • the linear motion unequal length parallel link mechanisms 1a and 1b are the positioning device 1 of the first embodiment or the positioning device 1 'of the second embodiment, respectively. Both the linear motion unequal length parallel link mechanisms 1a and 1b may be the positioning device 1 of the first embodiment, or both may be the positioning device 1 'of the second embodiment. Alternatively, one of the linear motion unequal length parallel link mechanisms 1a and 1b may be the positioning device 1 of the first embodiment, and the other may be the positioning device 1 'of the second embodiment.
  • the components shown in FIG. 8 have the same functions as those shown in FIG. 1 or FIG.
  • the linear motion unequal-length parallel link mechanisms 1a and 1b have an operation area A shared by the end effectors 15a and 15b, in contrast to the given operation area A of the end effectors 15a and 15b shown in FIG. And so as to face each other. That is, the guide member provided with the guide rails 3a and 4a and the guide member provided with the guide rails 3b and 4b are opposed to each other with the common operation area A in between. That is, when viewed from the operation area A, the arrangement order along the guide members of the first movable element supporting the short first link and the second movable element supporting the long second link is the linear motion unequal length parallel.
  • the link mechanisms 1a and 1b are the same.
  • both of the linear motion unequal length parallel link mechanisms 1a and 1b are the same linear motion unequal length parallel link mechanism, the axis perpendicular to the plane formed by the operation area A is the linear motion unequal length parallel link mechanism 1a.
  • a linear motion unequal length parallel link mechanism 1b is arranged by rotating 180 ° around the movement area A and facing the linear motion unequal length parallel link mechanism 1a.
  • FIGS. 9 to 11 are schematic plan views for explaining the “passing” operation between the linear motion unequal length parallel link mechanisms 1a and 1b in the positioning apparatus 10 according to the third embodiment shown in FIG.
  • the end effector 15a is moved to the extent that the linear motion unequal-length parallel link mechanisms 1a and 1b pass each other once from the state shown in FIG. 9 to the state shown in FIG. “Convolution” is performed by lowering the coordinates in the Y direction.
  • the linear motion unequal length parallel link mechanism 1a is moved to perform the “passing” operation of the linear motion unequal length parallel link mechanisms 1a and 1b.
  • the end effector 15a can be positioned at the target position B as shown in FIG. Since this “folding” operation is an operation of moving the end effector 15a in the Y direction as described above, the end effector is made as shown in FIG.
  • the posture may be such that the short link angle ⁇ a is an acute angle.
  • such a “convolution” operation can be performed. Therefore, it is possible to reduce the interference between the linear motion parallel link mechanisms and to expand the operable range of the end effector. become. It will be described below that this is made possible by adopting a linear motion unequal length parallel link mechanism instead of a linear motion equal length parallel link mechanism.
  • FIG. 12 is a schematic view showing the end effector movable range in the positioning device 20 using the linear motion isometric parallel link mechanism.
  • FIG. 13 is a schematic diagram illustrating an end effector movable range in the positioning device 10 using the linear motion unequal length parallel link mechanism according to the third embodiment.
  • FIG. 12 includes linear motion equal length parallel link mechanisms 1c and 1d. Since FIG. 12 is a schematic diagram, only a schematic configuration of the linear motion isometric parallel link mechanisms 1c and 1d is shown, and some components such as a guide member and a mover are not shown.
  • the linear motion equal-length parallel link mechanism 1c includes rotating joint mechanisms 10c and 11c, links 12c and 13c, and an end effector 15c. The link lengths of the link 12c and the link 13c are equal.
  • the linear motion equal-length parallel link mechanism 1d includes rotating joint mechanisms 10d and 11d, links 12d and 13d, and an end effector 15d. The link lengths of the link 12d and the link 13d are equal.
  • the operation area A to which the end effectors 15c and 15d are given is shown as a framed frame.
  • the positioning device 10 of FIG. 8 is further simplified, and some components such as a guide member and a mover are not shown. Also in FIG. 13, the operation area A to which the end effectors 15 a and 15 b are given is shown as a frame surrounded by a frame.
  • the linear motion equal length parallel link mechanism 1c when the end effector 15d of the linear motion equal length parallel link mechanism 1d is positioned at the center of the operation area A, the linear motion equal length parallel link mechanism 1c can position the end effector 15c.
  • the effector movable range is indicated by hatching.
  • the linear motion equal length parallel link mechanism 1c cannot position the end effector 15c in the white area in the operation area A. . That is, the end effector movable range in which the linear motion equal length parallel link mechanism 1c can position the end effector 15c by interference with the linear motion equal length parallel link mechanism 1d is narrower than the operation area A.
  • the end effector 15b of the linear motion unequal length parallel link mechanism 1b is located at the center of the operation area A, but by making the short link angle ⁇ b an obtuse angle.
  • the end effector 15b is positioned at the center of the operation area A by the above-described “folding” operation.
  • the linear motion unequal-length parallel link mechanism 1a also allows the end effector 15a to perform a “folding” operation by setting the short link angle ⁇ a to an obtuse angle, so that the end effectors 15a and 15b perform a “passing” operation in that state. It becomes possible to do.
  • the end effector 15a can perform positioning using the “folding” operation even in the region where the end effector 15c cannot be positioned in FIG. The region that becomes.
  • the linear motion parallel link mechanisms are connected to each other by taking the link posture in which the short link angles ⁇ a and ⁇ b of the two linear motion unequal length parallel link mechanisms are obtuse. It is possible to widen the end effector movable range by reducing the chance of interference.
  • the work efficiency is improved by the work by a plurality of mechanisms and the reduction of the interference opportunity. It becomes possible.
  • FIG. FIG. 14 is a schematic plan view showing the configuration of the positioning device 30 according to the fourth embodiment of the present invention.
  • the positioning device 30 according to the fourth embodiment is a positioning device having two linear motion unequal length parallel link mechanisms shown by the positioning device 1 of the first embodiment or the positioning device 1 ′ of the second embodiment.
  • the positioning device 30 includes linear motion unequal length parallel link mechanisms 1a and 1e.
  • the arrangement of the short links and the long links is reversed between the linear motion unequal length parallel link mechanism 1e and the linear motion unequal length parallel link mechanism 1b of FIG.
  • FIG. 14 is a schematic diagram, only schematic configurations of the linear motion unequal length parallel link mechanisms 1a and 1e are shown, and some components such as the guide member 2 and the rotating joint mechanism 14 are not shown. . Since the linear motion unequal length parallel link mechanism 1a has been described in the third embodiment, a description thereof will be omitted.
  • the linear motion unequal length parallel link mechanism 1e includes guide rails 3e, 4e, movers 8e, 9e, rotary joint mechanisms 10e, 11e, a short link 12e, a long link 13e, and an end effector 15e. Also in FIG. 14, the operation area A to which the end effectors 15 a and 15 e are given is indicated by shading.
  • the linear motion unequal length parallel link mechanisms 1a and 1e are the positioning device 1 of the first embodiment or the positioning device 1 'of the second embodiment, respectively. Both the linear motion unequal length parallel link mechanisms 1a and 1e may be the positioning device 1 of the first embodiment, or both may be the positioning device 1 'of the second embodiment. Alternatively, one of the linear motion unequal length parallel link mechanisms 1a and 1e may be the positioning device 1 of the first embodiment, and the other may be the positioning device 1 'of the second embodiment.
  • the components shown in FIG. 14 have the same functions as the components shown in FIG. 1 or FIG.
  • the linear motion unequal-length parallel link mechanisms 1a and 1e have an operation area A shared by the end effectors 15a and 15e as opposed to the given operation area A of the end effectors 15a and 15e shown in FIG. And so as to face each other. That is, the guide member provided with the guide rails 3a and 4a and the guide member provided with the guide rails 3e and 4e are opposed to each other with the common operation area A in between.
  • the arrangement of the short link 12e and the long link 13e of the linear motion unequal length parallel link mechanism 1e is opposite to that of the linear motion unequal length parallel link mechanism 1b of FIG. ing. That is, when viewed from the operation area A, the arrangement order along the guide members of the first movable element supporting the short first link and the second movable element supporting the long second link is the linear motion unequal length parallel.
  • the link mechanisms 1a and 1e are reversed. Therefore, the direction of extension of the guide rails 3e, 4e and the guide members including them and the guide rails 3a, 4a and the guide members including them over the length of the width of the moving region of the operation area A is shown in FIG. Unlike the case, it can be taken in the same direction.
  • the positioning device 30 according to the fourth embodiment in addition to the effects obtained in the first or second embodiment, the work efficiency is improved by the plural mechanisms, and the entire apparatus when the plural mechanisms are mounted.
  • variety of this can be made small is acquired.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Abstract

A positioning device (1) is provided with: a guide member (2) extending in a mover movement direction; first and second movers (8, 9) movable in the mover movement direction along the guide member; a first link (12) connected at one end threreof to the first mover so as to be rotatable within a plane; a second link (13) for forming a link mechanism such that the second link (13) is connected at one end thereof to the second mover so as to be rotatable within a plane and is connected at the other end thereof to the other end of the first link so as to be rotatable within the plane, the second link (13) having a greater link length than the first link; and an end effecter (15) mounted to the link mechanism. The length of the guide member in the mover movement direction is equal to the value obtained by adding the link length of the second link to the width of the operation region of the end effecter in the mover movement direction.

Description

位置決め装置Positioning device
 本発明は、パラレルリンク機構を有する位置決め装置に関する。 The present invention relates to a positioning device having a parallel link mechanism.
 従来の位置決め装置としては、特許文献1に示されるように直動パラレルリンク機構を有する装置がある。一般的に、パラレルリンク機構は、シリアルリンク機構に比べエンドエフェクタの高速駆動が可能であり、位置決め精度が高いというメリットがある。また直動パラレルリンク機構は、回転駆動の機構に比べてエンドエフェクタ動作領域が広いといった利点がある。 As a conventional positioning device, there is a device having a linear motion parallel link mechanism as disclosed in Patent Document 1. In general, the parallel link mechanism is advantageous in that the end effector can be driven at a higher speed and the positioning accuracy is higher than that of the serial link mechanism. Further, the linear motion parallel link mechanism has an advantage that the end effector operating area is wider than that of the rotational drive mechanism.
特許第2588418号公報Japanese Patent No. 2588418
 上記特許文献1に例示される2つのリンク長が等しい直動パラレルリンク機構では、リンクを駆動する各可動子の可動子移動方向の間隔によって、可動子移動方向と直交方向におけるエンドエフェクタの位置が一意に決まる。そして、各可動子の可動子移動方向における位置はエンドエフェクタの可動子移動方向における位置に対して対称となる。2つのリンク長が等しい直動パラレルリンク機構を、以下、直動等長パラレルリンク機構と称する。 In the linear motion parallel link mechanism having two equal link lengths exemplified in Patent Document 1, the position of the end effector in the direction orthogonal to the mover moving direction is determined by the distance between the mover moving directions of the movers that drive the links. Determined uniquely. The position of each mover in the mover moving direction is symmetric with respect to the position of the end effector in the mover moving direction. A linear motion parallel link mechanism having two equal link lengths is hereinafter referred to as a linear motion equal length parallel link mechanism.
 位置決め装置の性能指標の一つとして、面積生産性、即ち位置決め装置の単位面積あたりの作業効率がある。直動等長パラレルリンク機構を有する位置決め装置においては、エンドエフェクタに対する目標とする速度に対して、それより速い速度を可動子に与える必要が生じ、また装置占有面積が大きく、この結果面積生産性が低いという課題がある。 One of the performance indicators of the positioning device is area productivity, that is, work efficiency per unit area of the positioning device. In a positioning device having a linear motion equal-length parallel link mechanism, it is necessary to give the mover a higher speed than the target speed for the end effector, and the area occupied by the device is large, resulting in increased area productivity. There is a problem that is low.
 本発明は、上記に鑑みてなされたものであって、可動子に与える速度を低減して効率的な位置決め作業ができ、また装置占有面積を削減できることにより面積生産性の高い位置決め装置を得ることを目的とする。 The present invention has been made in view of the above, and it is possible to efficiently perform positioning work by reducing the speed applied to the mover, and to obtain a positioning apparatus with high area productivity by reducing the area occupied by the apparatus. With the goal.
 上述した課題を解決し、目的を達成するために、本発明は、可動子移動方向に延在する案内部材と、前記案内部材に沿って前記可動子移動方向に移動自在な第1および第2の可動子と、前記第1の可動子に平面内で回転自在に一端が取り付けられた第1のリンクと、前記第2の可動子に平面内で回転自在に一端が取り付けられ、前記第1のリンクの他端に平面内で回転自在に他端が取り付けられることによりリンク機構を形成し、前記第1のリンクよりもリンク長が長い第2のリンクと、前記リンク機構に取り付けられたエンドエフェクタと、を備え、前記案内部材の前記可動子移動方向の長さは、前記エンドエフェクタの動作領域の前記可動子移動方向の幅に前記第2のリンクのリンク長を加えた長さであることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a guide member extending in the mover moving direction, and first and second movable along the guide member in the mover moving direction. A first link having one end rotatably attached to the first mover in a plane, and one end rotatably attached to the second mover in a plane. A link mechanism is formed by attaching the other end of the link to the other end of the link so as to be rotatable in a plane, a second link having a longer link length than the first link, and an end attached to the link mechanism An effector, and the length of the guide member in the mover moving direction is a length obtained by adding the link length of the second link to the width in the mover moving direction of the operation region of the end effector. It is characterized by that.
 本発明にかかる位置決め装置は、可動子に与える速度を低減して効率的な位置決め作業ができ、また装置占有面積を削減できることにより面積生産性の高められるという効果を奏する。 The positioning device according to the present invention has an effect that the speed applied to the mover can be reduced to perform an efficient positioning operation, and the area occupied by the device can be reduced, thereby increasing the area productivity.
本発明の実施の形態1にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning device concerning Embodiment 1 of this invention. 実施の形態1にかかる位置決め装置においてエンドエフェクタが目標とする位置となることを実現する可動子の配置を説明する図The figure explaining arrangement | positioning of the needle | mover which implement | achieves that an end effector becomes the target position in the positioning device concerning Embodiment 1. FIG. 実施の形態1にかかる位置決め装置においてエンドエフェクタが目標とする位置となることを実現する可動子の別の配置を説明する図The figure explaining another arrangement | positioning of the needle | mover which implement | achieves that an end effector becomes a target position in the positioning device concerning Embodiment 1. FIG. 実施の形態1にかかる位置決め装置において可動子移動方向のガイドレールおよび案内部材の長さを説明する図The figure explaining the length of the guide rail and guide member of a needle | mover moving direction in the positioning apparatus concerning Embodiment 1. FIG. 実施の形態1にかかる位置決め装置においてエンドエフェクタが目標とするY方向速度となることを実現する可動子の速度を説明するための変数の定義を示す図The figure which shows the definition of the variable for demonstrating the speed | velocity | rate of the needle | mover which implement | achieves that the end effector becomes target Y direction speed in the positioning device concerning Embodiment 1. FIG. 実施の形態1にかかる位置決め装置におけるエンドエフェクタのY方向位置と感度kの関係を示した図The figure which showed the relationship between the Y direction position of the end effector in the positioning apparatus concerning Embodiment 1, and sensitivity k. 本発明の実施の形態2にかかる位置決め装置の構成を示す図The figure which shows the structure of the positioning device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる位置決め装置の構成を示す平面概略図Schematic plan view showing the configuration of the positioning device according to the third embodiment of the present invention. 実施の形態3にかかる位置決め装置における直動不等長パラレルリンク機構同士の「すれ違い」動作を説明する平面概略図Schematic plan view for explaining the “passing” operation between the linear motion unequal length parallel link mechanisms in the positioning apparatus according to the third embodiment. 実施の形態3にかかる位置決め装置における直動不等長パラレルリンク機構同士の「すれ違い」動作を説明する平面概略図Schematic plan view for explaining the “passing” operation between the linear motion unequal length parallel link mechanisms in the positioning apparatus according to the third embodiment. 実施の形態3にかかる位置決め装置における直動不等長パラレルリンク機構同士の「すれ違い」動作を説明する平面概略図Schematic plan view for explaining the “passing” operation between the linear motion unequal length parallel link mechanisms in the positioning apparatus according to the third embodiment. 実施の形態3にかかる直動等長パラレルリンク機構を用いた位置決め装置におけるエンドエフェクタ可動範囲を示す概略図Schematic which shows the end effector movable range in the positioning device using the linear motion equal length parallel link mechanism concerning Embodiment 3. FIG. 実施の形態3にかかる直動不等長パラレルリンク機構を用いた位置決め装置におけるエンドエフェクタ可動範囲を示す概略図Schematic which shows the end effector movable range in the positioning device using the linear motion unequal length parallel link mechanism concerning Embodiment 3. FIG. 本発明の実施の形態4にかかる位置決め装置の構成を示す平面概略図Schematic plan view showing the configuration of a positioning device according to a fourth embodiment of the present invention.
 以下に、本発明の実施の形態にかかる位置決め装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a positioning device according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる位置決め装置1の構成を示す図である。図1には、可動子移動方向であるX方向およびそれに垂直なY方向が示してある。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of a positioning device 1 according to a first embodiment of the present invention. FIG. 1 shows the X direction, which is the mover moving direction, and the Y direction perpendicular thereto.
 位置決め装置1は、X方向に延在する案内部材2と、案内部材2に沿ってX方向に移動可能な第1の可動子である可動子8および第2の可動子である可動子9と、可動子8,9がそれぞれ有する回動ジョイント機構10,11と、可動子8により回動ジョイント機構10を介してX-Y平面内で回転自在に一端が支持されている第1のリンクである短リンク12と、可動子9により回動ジョイント機構11を介してX-Y平面内で回転自在に一端が支持されている第2のリンクである長リンク13とを備える。長リンク13は短リンク12よりもリンク長が長い。即ち、実施の形態1にかかる位置決め装置1は、2つのリンク長が異なる直動不等長パラレルリンク機構を採用する。 The positioning device 1 includes a guide member 2 extending in the X direction, a mover 8 that is a first mover movable in the X direction along the guide member 2, and a mover 9 that is a second mover. The movable joints 8 and 9 respectively have rotating joint mechanisms 10 and 11 and a first link whose one end is rotatably supported by the movable element 8 in the XY plane via the rotating joint mechanism 10. A short link 12 and a long link 13, which is a second link having one end rotatably supported in an XY plane via a rotary joint mechanism 11 by a mover 9, are provided. The long link 13 has a longer link length than the short link 12. That is, the positioning device 1 according to the first embodiment employs a linear motion unequal length parallel link mechanism in which two link lengths are different.
 さらに、位置決め装置1は、短リンク12の他端と長リンク13の他端とをX-Y平面内で回転自在に連結してリンク機構を形成する回動ジョイント機構14と、リンク機構に取り付けられているエンドエフェクタ15と、エンドエフェクタ15に取り付けられている作業部16とを備える。短リンク12と長リンク13と回動ジョイント機構14とがリンク機構を形成しているが、図1の位置決め装置1においては、エンドエフェクタ15は、短リンク12の他端、即ち回動ジョイント機構14側に取り付けられている。可動子8はリニアモータを構成するコイルモジュール6を備え、可動子9はリニアモータを構成するコイルモジュール7を備える。作業部16は、図1の例では作業ハンドとして示してあるが、ノズル、或いはカメラといた検査機でもよく、特に限定されない。回動ジョイント機構10,11,14は、ベアリングのように回転機能を有した機構であれば特に限定されない。 In addition, the positioning device 1 is attached to the link mechanism, a rotary joint mechanism 14 that forms a link mechanism by rotatably connecting the other end of the short link 12 and the other end of the long link 13 in the XY plane. An end effector 15 and a working unit 16 attached to the end effector 15. The short link 12, the long link 13, and the rotary joint mechanism 14 form a link mechanism. In the positioning device 1 of FIG. 1, the end effector 15 is the other end of the short link 12, that is, the rotary joint mechanism. It is attached to the 14th side. The mover 8 includes a coil module 6 that forms a linear motor, and the mover 9 includes a coil module 7 that forms a linear motor. The working unit 16 is shown as a working hand in the example of FIG. 1, but may be an inspection machine such as a nozzle or a camera, and is not particularly limited. The rotation joint mechanisms 10, 11, and 14 are not particularly limited as long as the mechanisms have a rotation function such as a bearing.
 なお、図1では、案内部材2からY方向にみると、可動子8および短リンク12は左側、可動子9および長リンク13は右側とする配置の例を示してあるが、この配置は左右逆であってもかまわない。 In FIG. 1, when viewed from the guide member 2 in the Y direction, an example is shown in which the movable element 8 and the short link 12 are on the left side, and the movable element 9 and the long link 13 are on the right side. The reverse is also acceptable.
 案内部材2は、互いに平行な一対のガイドレール3,4と、リニアモータを構成するマグネットプレート5とを備えている。ガイドレール3,4には、可動子8,9がX方向に摺動自在に取付けられている。可動子8,9は、それぞれ何らかの直動アクチュエータによってX方向に駆動力を与えることで独立に移動させることができる。図1の例では、駆動力を与えるためにマグネットプレート5とコイルモジュール6,7から成るリニアモータを採用しているが、ボールねじ駆動でもよく、特に限定されない。 The guide member 2 includes a pair of guide rails 3 and 4 parallel to each other and a magnet plate 5 constituting a linear motor. Movable elements 8 and 9 are attached to the guide rails 3 and 4 so as to be slidable in the X direction. The movers 8 and 9 can be moved independently by applying a driving force in the X direction by some linear actuator. In the example of FIG. 1, a linear motor including the magnet plate 5 and the coil modules 6 and 7 is used to apply a driving force, but it may be a ball screw drive and is not particularly limited.
 実施の形態1にかかる位置決め装置1のエンドエフェクタ15の位置決め方法を以下に説明する。位置決め装置1のような直動パラレルリンク機構では、可動子8,9の配置によってエンドエフェクタ15の位置が一意に定まる。従って、エンドエフェクタ15の目標とする位置を実現する可動子8,9の配置を幾何学的計算によって求め、求めた可動子8,9の配置を目標位置として可動子8,9の位置決め制御を実行すれば、目標とする位置にエンドエフェクタ15を位置決めすることが可能である。 A method for positioning the end effector 15 of the positioning device 1 according to the first embodiment will be described below. In a linear motion parallel link mechanism such as the positioning device 1, the position of the end effector 15 is uniquely determined by the arrangement of the movers 8 and 9. Therefore, the arrangement of the movable elements 8 and 9 that realize the target position of the end effector 15 is obtained by geometric calculation, and the positioning control of the movable elements 8 and 9 is performed using the obtained arrangement of the movable elements 8 and 9 as the target position. If executed, the end effector 15 can be positioned at a target position.
 図2は、位置決め装置1においてエンドエフェクタ15が目標とする位置となることを実現する可動子8,9の配置を説明する図であり、図3は、位置決め装置1においてエンドエフェクタ15が目標とする位置となることを実現する可動子8,9の別の配置を説明する図である。位置決め装置1で採用する直動不等長パラレルリンク機構においては、エンドエフェクタ15の目標とする位置を実現する可動子8,9の配置は、図2および図3に示すように2通り存在する。短リンク12とX方向とが成す内角の角度である短リンク角度θは、図2では鋭角であるが、図3では鈍角となっており、短リンク12の姿勢が異なっている。 FIG. 2 is a diagram for explaining the arrangement of the movers 8 and 9 that realize that the end effector 15 becomes a target position in the positioning device 1, and FIG. 3 shows the end effector 15 in the positioning device 1 as a target. It is a figure explaining another arrangement | positioning of the needle | mover 8 and 9 which implement | achieves becoming a position to perform. In the linear motion unequal length parallel link mechanism employed in the positioning device 1, there are two arrangements of the movers 8 and 9 that realize the target position of the end effector 15 as shown in FIGS. 2 and 3. . The short link angle θ, which is the angle of the inner angle formed by the short link 12 and the X direction, is an acute angle in FIG. 2 but an obtuse angle in FIG. 3, and the posture of the short link 12 is different.
 次に、ガイドレール3,4および案内部材2のX方向の長さについて説明する。図4は、位置決め装置1において可動子移動方向であるX方向のガイドレール3,4および案内部材2の長さを説明する図である。図4では、エンドエフェクタ15の与えられた動作領域Aを網掛けで示す。図4では、エンドエフェクタ15の動作領域AのX方向の端にエンドエフェクタ15を位置決めする場合における短リンク12および長リンク13の姿勢と可動子8,9の配置が示されている。 Next, the lengths in the X direction of the guide rails 3 and 4 and the guide member 2 will be described. FIG. 4 is a diagram illustrating the lengths of the guide rails 3 and 4 and the guide member 2 in the X direction which is the moving direction of the mover in the positioning device 1. In FIG. 4, the operation region A to which the end effector 15 is given is indicated by shading. FIG. 4 shows the posture of the short link 12 and the long link 13 and the arrangement of the movers 8 and 9 when the end effector 15 is positioned at the end in the X direction of the operation area A of the end effector 15.
 ここで、実施の形態1にかかる位置決め装置1の短リンク12および長リンク13のリンク長の条件について説明する。まず、短リンク12のリンク長は、動作領域AのY方向の幅以上の長さが必要である。また、実施の形態1にかかる位置決め装置1においては、短リンク角度θが180度のときに可動子8と可動子9とが最近接し、その距離は長リンク13と短リンク12のリンク長の差に等しくなる。可動子同士の衝突を回避する目的で可動子間安全距離が設定されている場合は、長リンク13のリンク長は、可動子間安全距離と短リンク12のリンク長の和よりも長くする。 Here, the condition of the link length of the short link 12 and the long link 13 of the positioning device 1 according to the first embodiment will be described. First, the link length of the short link 12 needs to be longer than the width of the operation area A in the Y direction. In the positioning device 1 according to the first embodiment, when the short link angle θ is 180 degrees, the mover 8 and the mover 9 are closest to each other, and the distance is the link length of the long link 13 and the short link 12. Equal to the difference. When the safety distance between the movable elements is set for the purpose of avoiding the collision between the movable elements, the link length of the long link 13 is made longer than the sum of the safety distance between the movable elements and the link length of the short link 12.
 図4の実線で示すように、動作領域AのX方向の左側端にエンドエフェクタ15を位置させた場合において、短リンク角度θが鈍角となる短リンク12および長リンク13の姿勢を選択すれば、このとき可動子8,9は動作領域AのX方向の左側端より右側に位置する。即ち、動作領域AのX方向の左側端にエンドエフェクタ15を位置させた場合において、短リンク角度θを鈍角にして可動子8を図2に示すように動作領域AのX方向での範囲の外側に配置しないことが可能になる。従って、可動子8,9を共に動作領域AのX方向での範囲の内側に配置することができる。これにより、実施の形態1におけるガイドレール3,4および案内部材2は、直動等長パラレルリンク機構の場合のように動作領域AのX方向の左側端より左側に延長することが不要となる。ただし、図4の破線で示すように、動作領域AのX方向の右側端にエンドエフェクタ15を位置させた場合は、長リンク13を動作領域AのX方向の右側端より右側に配置する必要があるので、ガイドレール3,4および案内部材2は、動作領域AのX方向の幅の長さに加えて、動作領域AのX方向の右側端より右側に延長する必要がある。 As shown by the solid line in FIG. 4, when the end effector 15 is positioned at the left end in the X direction of the operation area A, the posture of the short link 12 and the long link 13 at which the short link angle θ becomes an obtuse angle is selected. At this time, the movers 8 and 9 are located on the right side of the left end of the operation region A in the X direction. That is, when the end effector 15 is positioned at the left end in the X direction of the operation area A, the short link angle θ is made an obtuse angle, and the movable element 8 has a range in the X direction of the operation area A as shown in FIG. It becomes possible not to arrange outside. Accordingly, both the movers 8 and 9 can be arranged inside the range of the operation area A in the X direction. This eliminates the need for the guide rails 3 and 4 and the guide member 2 in Embodiment 1 to extend to the left from the left end in the X direction of the operation area A as in the case of the linear motion equal length parallel link mechanism. . However, as shown by the broken line in FIG. 4, when the end effector 15 is positioned at the right end of the operation region A in the X direction, the long link 13 needs to be arranged on the right side of the right end of the operation region A in the X direction. Therefore, the guide rails 3 and 4 and the guide member 2 need to extend from the right end of the operation region A in the X direction to the right side in addition to the width of the operation region A in the X direction.
 この結果、ガイドレール3,4および案内部材2のX方向の長さはエンドエフェクタ15の動作領域AのX方向の幅の長さより右側に長リンク13の長さ分延長すればよく、ガイドレール3,4および案内部材2の左側への延長が不要となる。これにより、実施の形態1にかかる位置決め装置1においては、案内部材の両側への延長が必要な直動等長パラレルリンク機構を有する装置よりも装置全体の専有面積を小さくすることができる。なお、上では短リンク12が長リンク13より左側にあるとして説明したが、短リンク12が長リンク13より右側にある配置の場合は、左右を逆にして上記と同様な議論が成り立つ。 As a result, the lengths of the guide rails 3 and 4 and the guide member 2 in the X direction may be extended to the right by the length of the long link 13 from the length of the width in the X direction of the operation region A of the end effector 15. 3 and 4 and the extension to the left side of the guide member 2 become unnecessary. Thereby, in the positioning apparatus 1 concerning Embodiment 1, the exclusive area of the whole apparatus can be made smaller than the apparatus which has the linear motion equal length parallel link mechanism which needs the extension to the both sides of a guide member. In the above description, it is assumed that the short link 12 is on the left side of the long link 13. However, in the case of the arrangement in which the short link 12 is on the right side of the long link 13, the same discussion as above is valid with the left and right sides reversed.
 次に、実施の形態1にかかる位置決め装置1のエンドエフェクタ15のX-Y平面における方向を示す面内角度について説明する。エンドエフェクタ15は短リンク12に固定されているため、エンドエフェクタ15のX-Y平面における面内角度は短リンク角度θに依存して一意に決まる。しかし、エンドエフェクタ15は、図示せぬ回転型アクチュエータを内蔵するといった手段により作業部16をエンドエフェクタ15に対して回転することが可能な機構を有している。この回転機構により、エンドエフェクタ15が備える作業ハンドといった作業部16のX-Y平面における面内角度を目標とする値に制御するための角度補正が可能となる。 Next, the in-plane angle indicating the direction in the XY plane of the end effector 15 of the positioning device 1 according to the first embodiment will be described. Since the end effector 15 is fixed to the short link 12, the in-plane angle of the end effector 15 in the XY plane is uniquely determined depending on the short link angle θ. However, the end effector 15 has a mechanism capable of rotating the working unit 16 relative to the end effector 15 by means such as incorporating a rotary actuator (not shown). This rotation mechanism enables angle correction for controlling the in-plane angle in the XY plane of the work unit 16 such as a work hand included in the end effector 15 to a target value.
 上記角度補正における角度補正量は、作業部16のX-Y平面における目標とする面内角度と短リンク角度θとの差分となるが、実施の形態1にかかる位置決め装置1においては、上述したようにエンドエフェクタ15の目標とする位置を実現する短リンク12および長リンク13の姿勢と可動子8,9の配置のパターンが2通り存在する。即ち、短リンク角度θを2つの値から選択することができる。従って、エンドエフェクタ15の角度補正量が少ない方のパターンを選択することで位置決め作業の効率化が可能となる。 The angle correction amount in the angle correction is a difference between the target in-plane angle on the XY plane of the working unit 16 and the short link angle θ. In the positioning device 1 according to the first embodiment, the angle correction amount described above is used. Thus, there are two patterns of postures of the short link 12 and the long link 13 that realize the target position of the end effector 15 and the arrangement of the movers 8 and 9. That is, the short link angle θ can be selected from two values. Therefore, it is possible to increase the efficiency of the positioning work by selecting the pattern having the smaller angle correction amount of the end effector 15.
 次に、実施の形態1にかかる直動不等長パラレルリンク機構を備えた位置決め装置1において、エンドエフェクタ15の目標とするY方向速度を実現するために必要となる可動子8,9の速度を説明する。 Next, in the positioning device 1 including the linear motion unequal length parallel link mechanism according to the first embodiment, the speeds of the movers 8 and 9 necessary to realize the target Y-direction speed of the end effector 15. Will be explained.
 図5は、位置決め装置1においてエンドエフェクタ15が目標とするY方向速度となることを実現する可動子8,9の速度を説明するための変数の定義を示す図である。図5に示すように、短リンク12とX方向がなす内角の角度は短リンク角度θ、長リンク13とX方向がなす外角の角度は長リンク角度φ、可動子8のX方向の座標はc1、可動子9のX方向の座標はc2で示す。短リンク12と長リンク13の長さが等しい直動等長パラレルリンク機構の場合は、短リンク角度θと長リンク角度φの和は180°となるが、長リンク13が短リンク12より長い直動不等長パラレルリンク機構である位置決め装置1においては、短リンク角度θと長リンク角度φの和は180°にはならない。直動パラレルリンク機構の可動子8の速度dc1/dtおよび可動子9の速度dc2/dtを用いると、エンドエフェクタ15のY方向速度dy/dtは、以下の式(1)で表される。 FIG. 5 is a diagram showing the definition of variables for explaining the speeds of the movers 8 and 9 that realize that the end effector 15 has a target Y-direction speed in the positioning device 1. As shown in FIG. 5, the internal angle formed by the short link 12 and the X direction is the short link angle θ, the external angle formed by the long link 13 and the X direction is the long link angle φ, and the coordinate of the mover 8 in the X direction is c 1 , the coordinate of the mover 9 in the X direction is indicated by c 2 . In the case of a linear-action equal-length parallel link mechanism in which the lengths of the short link 12 and the long link 13 are equal, the sum of the short link angle θ and the long link angle φ is 180 °, but the long link 13 is longer than the short link 12. In the positioning device 1 which is a linear motion unequal length parallel link mechanism, the sum of the short link angle θ and the long link angle φ does not become 180 °. With the speed dc 2 / dt of the speed of dc 1 / dt and the movable element 9 of the mover 8 of the linear motion parallel link mechanism, Y-direction speed dy / dt of the end effector 15 is represented by the following formula (1) The
 dy/dt=(dc2/dt-dc1/dt)/k   ・・・(1) dy / dt = (dc 2 / dt−dc 1 / dt) / k (1)
 ここで、式(1)中のkは、可動子8,9の速度差(dc2/dt-dc1/dt)によって生み出されるエンドエフェクタ15のY方向速度の感度を表し、以下の式(2)で表されるように短リンク角度θおよび長リンク角度φの関数となる。 Here, k in the equation (1) represents the sensitivity of the velocity in the Y direction of the end effector 15 generated by the velocity difference (dc 2 / dt−dc 1 / dt) between the movers 8 and 9, and the following equation ( As represented by 2), it is a function of the short link angle θ and the long link angle φ.
 k=tanφ-tanθ   ・・・(2) K = tanφ-tanθ (2)
 上記式(1)および(2)に基づいて、目標とするY方向速度を実現するための短リンク12と長リンク13の姿勢と可動子8,9の動作パターンについて説明する。 Based on the above equations (1) and (2), the attitude of the short link 12 and the long link 13 and the operation pattern of the movers 8 and 9 for realizing the target Y-direction speed will be described.
 短リンク角度θが鋭角である場合は、長リンク角度φが鈍角であるため、式(2)により感度kの値は必ず負となる。従って、エンドエフェクタ15にY方向に正の速度を与える場合には、可動子8,9の速度差(dc2/dt-dc1/dt)が負となるように、即ち可動子8,9の間隔を狭めるように動作させればよい。 When the short link angle θ is an acute angle, since the long link angle φ is an obtuse angle, the value of the sensitivity k is always negative according to the equation (2). Accordingly, when a positive speed is applied to the end effector 15 in the Y direction, the speed difference (dc 2 / dt−dc 1 / dt) between the movers 8 and 9 is negative, that is, the movers 8 and 9 It is sufficient to operate so as to narrow the interval.
 一方、短リンク角度θが鈍角である場合は、長リンク角度φは鈍角で常に短リンク角度θよりも大きいことを考慮すると、式(2)により感度kの値は必ず正となる。従って、エンドエフェクタ15にY方向に正の速度を与える場合には、可動子8,9の速度差(dc2/dt-dc1/dt)が正となるように、即ち可動子8,9の間隔を広げるように動作させればよい。 On the other hand, when the short link angle θ is an obtuse angle, considering that the long link angle φ is an obtuse angle and is always larger than the short link angle θ, the value of the sensitivity k is always positive according to the equation (2). Accordingly, when a positive speed is applied to the end effector 15 in the Y direction, the speed difference (dc 2 / dt−dc 1 / dt) between the movers 8 and 9 becomes positive, that is, the movers 8 and 9 What is necessary is just to operate | move so that the space | interval may be expanded.
 上記いずれの場合においても、エンドエフェクタ15にY方向に負の速度を与える場合の可動子8,9の動作は、Y方向に正の速度を与える場合とは逆になる。 In any of the above cases, the operation of the movers 8 and 9 when a negative speed is applied to the end effector 15 in the Y direction is opposite to that when a positive speed is applied in the Y direction.
 実施の形態1におけるエンドエフェクタ15のY方向速度の感度kについて説明する。式(1)に示されるように、感度kの絶対値が小さいほど、目標となるエンドエフェクタ15のY方向速度を実現するために必要となる可動子8,9の速度差(dc2/dt-dc1/dt)の絶対値が小さくても済み、効率的なY方向の位置決め動作が可能になる。 The sensitivity k of the Y-direction speed of the end effector 15 in the first embodiment will be described. As shown in the equation (1), the smaller the absolute value of the sensitivity k, the smaller the speed difference (dc 2 / dt) between the movable elements 8 and 9 required to realize the target Y-direction speed of the end effector 15. The absolute value of -dc 1 / dt) may be small, and an efficient positioning operation in the Y direction becomes possible.
 図6は、実施の形態1にかかる位置決め装置1におけるエンドエフェクタ15のY方向位置[m]と感度kの関係を示した図である。図6は、エンドエフェクタ15が与えられたY方向位置を実現しているときの、直動等長パラレルリンク機構による感度kの絶対値と、当該直動等長パラレルリンク機構と短リンク長が等しい直動不等長パラレルリンク機構の感度kの絶対値とを比較して示す。直動不等長パラレルリンク機構の場合については、短リンク角度θが鋭角の場合と鈍角の場合の両方の感度kの絶対値を示す。ここで図6では、直動等長パラレルリンク機構の両リンクの長さは共に1mであり、直動不等長パラレルリンク機構の短リンク長は1m、長リンク長は1.1mとしている。直動等長パラレルリンク機構による感度kの絶対値を破線で示し、直動不等長パラレルリンク機構で短リンク角度θが鋭角の場合の感度kの絶対値を一点鎖線で示し、直動不等長パラレルリンク機構で短リンク角度θが鈍角の場合の感度kの絶対値を実線で示す。 FIG. 6 is a diagram illustrating a relationship between the position [m] of the end effector 15 in the positioning device 1 according to the first embodiment and the sensitivity k. FIG. 6 shows the absolute value of sensitivity k by the linear motion equal length parallel link mechanism and the linear motion equal length parallel link mechanism and the short link length when the end effector 15 realizes the given position in the Y direction. The absolute value of the sensitivity k of the equal linear motion unequal length parallel link mechanism is shown in comparison. In the case of the linear motion unequal length parallel link mechanism, the absolute value of the sensitivity k in both cases where the short link angle θ is an acute angle and an obtuse angle is shown. Here, in FIG. 6, the lengths of both links of the linear motion equal length parallel link mechanism are both 1 m, the short link length of the linear motion unequal length parallel link mechanism is 1 m, and the long link length is 1.1 m. The absolute value of the sensitivity k by the linear motion equal length parallel link mechanism is indicated by a broken line, and the absolute value of the sensitivity k when the short link angle θ is an acute angle by the linear motion unequal length parallel link mechanism is indicated by a one-dot chain line. The absolute value of the sensitivity k when the short link angle θ is an obtuse angle in the isometric parallel link mechanism is indicated by a solid line.
 図6に示されるように、エンドエフェクタ15のY方向位置がいずれの位置であっても、感度kの絶対値は、直動等長パラレルリンク機構、短リンク角度θが鋭角の直動不等長パラレルリンク機構、短リンク角度θが鈍角の直動不等長パラレルリンク機構の順に小さくなっている。特に、感度kの絶対値が2以上であることは、式(1)によれば、エンドエフェクタ15に目標とするY方向速度を実現させるためには、その2倍以上の可動子8,9の速度差(dc2/dt-dc1/dt)が必要となることを意味する。即ち、エンドエフェクタ15の目標とするY方向速度以上の速度を可動子8,9の少なくとも一方に与える必要があることを意味する。 As shown in FIG. 6, regardless of the position of the end effector 15 in the Y direction, the absolute value of the sensitivity k is the linear motion equal length parallel link mechanism, the linear motion inequality where the short link angle θ is an acute angle. The long parallel link mechanism and the direct link unequal length parallel link mechanism with an obtuse angle of the short link angle θ are sequentially reduced. In particular, when the absolute value of the sensitivity k is 2 or more, according to the equation (1), in order to make the end effector 15 achieve the target Y-direction speed, the movable elements 8 and 9 that are twice or more than that are used. Speed difference (dc 2 / dt−dc 1 / dt). That is, it means that it is necessary to give at least one of the movers 8 and 9 a speed equal to or higher than the target Y-direction speed of the end effector 15.
 図6によれば、感度kの絶対値が2以上となるY方向位置の領域は、直動等長パラレルリンク機構、短リンク角度θが鋭角の直動不等長パラレルリンク機構、短リンク角度θが鈍角の直動不等長パラレルリンク機構の順に小さくなっている。従って、実施の形態1にかかる直動不等長パラレルリンク機構を採用する位置決め装置1によれば、可動子8,9にエンドエフェクタ15の目標とするY方向速度以上の速度を与えなければならない状況を低減できることがわかる。即ち、実施の形態1にかかる位置決め装置1によれば、エンドエフェクタ15の目標とするY方向速度を実現するために必要となる可動子8,9の速度の絶対値は直動等長パラレルリンク機構に比べて平均的に小さくて済む。言い換えると、実施の形態1にかかる位置決め装置1によれば、直動等長パラレルリンク機構よりも効率的にエンドエフェクタ15のY方向の動作が可能である。さらに、短リンク角度θを鈍角にした場合は、鋭角である場合よりもさらに効率が良いこともわかる。 According to FIG. 6, the region in the Y direction position where the absolute value of sensitivity k is 2 or more is a linear motion equal length parallel link mechanism, a linear motion unequal length parallel link mechanism with a short short link angle θ, and a short link angle. The θ becomes smaller in the order of the linear link unequal length parallel link mechanism having an obtuse angle. Therefore, according to the positioning device 1 employing the linear motion unequal length parallel link mechanism according to the first embodiment, the movers 8 and 9 must be given a speed equal to or higher than the target Y-direction speed of the end effector 15. It can be seen that the situation can be reduced. In other words, according to the positioning device 1 according to the first embodiment, the absolute value of the speeds of the movers 8 and 9 required to realize the target Y-direction speed of the end effector 15 is the linear parallel isometric parallel link. On average, it is smaller than the mechanism. In other words, according to the positioning device 1 according to the first embodiment, the end effector 15 can be operated in the Y direction more efficiently than the linear motion equal length parallel link mechanism. It can also be seen that when the short link angle θ is an obtuse angle, the efficiency is even better than when it is an acute angle.
 従って、実施の形態1にかかる位置決め装置1においては、エンドエフェクタ15に対する作業部16の先に説明した角度補正量と、上述したY方向の位置決め作業の効率とを総合的に勘案して、位置決め時の短リンク角度θを鋭角とするか鈍角とするかを選択することが可能となり、総合的な位置決め作業の効率化が可能となる。 Accordingly, in the positioning device 1 according to the first embodiment, the angle correction amount described above of the working unit 16 with respect to the end effector 15 and the efficiency of the positioning operation in the Y direction described above are comprehensively taken into consideration. It is possible to select whether the short link angle θ at the time is an acute angle or an obtuse angle, and it is possible to improve the efficiency of comprehensive positioning work.
 即ち、実施の形態1にかかる位置決め装置1によれば、総合的な位置決め作業の効率化が可能となる。さらに、実施の形態1にかかる位置決め装置1によれば、直動等長パラレルリンク機構を有する装置よりも装置全体の専有面積を小さくでき面積生産性の向上という効果が得られる。 That is, according to the positioning device 1 according to the first embodiment, it is possible to improve the efficiency of comprehensive positioning work. Furthermore, according to the positioning device 1 according to the first embodiment, the exclusive area of the entire device can be made smaller than the device having the linear motion equal length parallel link mechanism, and the effect of improving the area productivity can be obtained.
実施の形態2.
 図7は、本発明の実施の形態2にかかる位置決め装置1’の構成を示す図である。図7には、可動子移動方向であるX方向およびそれに垂直なY方向が示してある。
Embodiment 2. FIG.
FIG. 7 is a diagram showing a configuration of a positioning device 1 ′ according to the second embodiment of the present invention. FIG. 7 shows the X direction as the mover moving direction and the Y direction perpendicular thereto.
 図7に示す位置決め装置1’においても、第1のリンクである短リンク12’と第2のリンクである長リンク13’と回動ジョイント機構14とがリンク機構を形成しているが、実施の形態1の図1に示す位置決め装置1とは異なり、回動ジョイント機構14側で短リンク12’と長リンク13’が連結される順番が逆になっており、短リンク12’の下側で長リンク13’が連結されている。そして、エンドエフェクタ15’は、短リンク12’ではなく長リンク13’の回動ジョイント機構14側の端に取り付けられている。図7と図1で符号が同じ部位の構成および機能は同じなので、説明を省略する。 Also in the positioning device 1 ′ shown in FIG. 7, the short link 12 ′ as the first link, the long link 13 ′ as the second link, and the rotary joint mechanism 14 form a link mechanism. Unlike the positioning device 1 shown in FIG. 1 of the first embodiment, the order in which the short link 12 ′ and the long link 13 ′ are connected on the rotating joint mechanism 14 side is reversed, and the lower side of the short link 12 ′. The long link 13 'is connected. The end effector 15 'is attached not to the short link 12' but to the end of the long link 13 'on the rotating joint mechanism 14 side. 7 and 1 have the same configuration and function, and the description thereof will be omitted.
 なお、図7では、案内部材2からY方向にみると、可動子8および短リンク12’は左側、可動子9および長リンク13’は右側とする配置の例を示してあるが、この配置は左右逆であってもかまわない。 FIG. 7 shows an example in which the movable element 8 and the short link 12 ′ are on the left side and the movable element 9 and the long link 13 ′ are on the right side when viewed from the guide member 2 in the Y direction. May be reversed.
 直動パラレルリンク機構におけるリンク端に固定されるエンドエフェクタ15’には、X-Y平面における並進運動に伴う慣性力と、リンク角変化に伴う慣性トルクが作用する。エンドエフェクタ15’は、これらの慣性力および慣性トルクに対して、振動を発生したり破壊されたりしないように十分な剛性および強度を有している必要がある。エンドエフェクタ15’がある移動量を生ずる並進運動をしたとしても、そのときのリンクの角度変化は短リンクより長リンクの方が小さい。 The inertial force accompanying translational motion in the XY plane and the inertial torque accompanying link angle change act on the end effector 15 'fixed to the link end in the linear motion parallel link mechanism. The end effector 15 ′ needs to have sufficient rigidity and strength so as not to generate vibration or break against these inertial forces and inertial torques. Even if the end effector 15 'performs a translational movement that produces a certain amount of movement, the change in the angle of the link at that time is smaller for the long link than for the short link.
 従って、図1のように短リンク12にエンドエフェクタ15が固定されている場合に対して、実施の形態2の図7のように長リンク13’にエンドエフェクタ15’が固定されている場合を比べると、エンドエフェクタの角度変化が小さくて済むので、エンドエフェクタ15に比べてエンドエフェクタ15’が受ける慣性トルクが低減される。従って、エンドエフェクタが十分な剛性および強度を備えるという条件を満たしつつ、エンドエフェクタ15よりもエンドエフェクタ15’を軽量化することが可能となる。 Therefore, in contrast to the case where the end effector 15 is fixed to the short link 12 as shown in FIG. 1, the case where the end effector 15 ′ is fixed to the long link 13 ′ as shown in FIG. In comparison, since the angle change of the end effector is small, the inertial torque received by the end effector 15 ′ is reduced compared to the end effector 15. Therefore, it is possible to reduce the weight of the end effector 15 ′ rather than the end effector 15 while satisfying the condition that the end effector has sufficient rigidity and strength.
 即ち、実施の形態2にかかる位置決め装置1’によれば、位置決め作業の効率化および装置全体の専有面積を小さくでき面積生産性の向上が可能となる上、エンドエフェクタの軽量化も図れる。 That is, according to the positioning device 1 ′ according to the second embodiment, it is possible to improve the efficiency of positioning work, reduce the area occupied by the entire device, improve the area productivity, and reduce the weight of the end effector.
実施の形態3.
 図8は、本発明の実施の形態3にかかる位置決め装置10の構成を示す平面概略図である。実施の形態3にかかる位置決め装置10は、実施の形態1の位置決め装置1または実施の形態2の位置決め装置1’で示した直動不等長パラレルリンク機構を2つ有する位置決め装置である。具体的には、位置決め装置10は、直動不等長パラレルリンク機構1aおよび1bを備える。
Embodiment 3 FIG.
FIG. 8 is a schematic plan view showing the configuration of the positioning device 10 according to the third embodiment of the present invention. The positioning device 10 according to the third embodiment is a positioning device having two linear motion unequal length parallel link mechanisms shown by the positioning device 1 of the first embodiment or the positioning device 1 ′ of the second embodiment. Specifically, the positioning device 10 includes linear motion unequal length parallel link mechanisms 1a and 1b.
 図8は概略図であるので、直動不等長パラレルリンク機構1aおよび1bの概略構成のみ示してあり、案内部材2、回動ジョイント機構14といった一部の構成要素は省略して示していない。直動不等長パラレルリンク機構1aは、ガイドレール3a,4a、可動子8a,9a、回動ジョイント機構10a,11a、短リンク12a、長リンク13aおよびエンドエフェクタ15aを備える。直動不等長パラレルリンク機構1bは、ガイドレール3b,4b、可動子8b,9b、回動ジョイント機構10b,11b、短リンク12b、長リンク13bおよびエンドエフェクタ15bを備える。図8でも、エンドエフェクタ15a,15bの与えられた動作領域Aを網掛けで示す。 Since FIG. 8 is a schematic diagram, only the schematic configuration of the linear motion unequal length parallel link mechanisms 1a and 1b is shown, and some components such as the guide member 2 and the rotary joint mechanism 14 are not shown. . The linear motion unequal length parallel link mechanism 1a includes guide rails 3a and 4a, movers 8a and 9a, rotary joint mechanisms 10a and 11a, a short link 12a, a long link 13a, and an end effector 15a. The linear motion unequal length parallel link mechanism 1b includes guide rails 3b and 4b, movers 8b and 9b, rotary joint mechanisms 10b and 11b, a short link 12b, a long link 13b, and an end effector 15b. Also in FIG. 8, the operation area A to which the end effectors 15a and 15b are given is indicated by shading.
 直動不等長パラレルリンク機構1aおよび1bは、それぞれが実施の形態1の位置決め装置1または実施の形態2の位置決め装置1’である。直動不等長パラレルリンク機構1aおよび1bの両方が共に実施の形態1の位置決め装置1であっても良いし、両方が共に実施の形態2の位置決め装置1’であっても良い。あるいは、直動不等長パラレルリンク機構1aおよび1bの一方が実施の形態1の位置決め装置1であって、他方が実施の形態2の位置決め装置1’であっても良い。図8に示した構成要素は、その符号の数字が同じ図1あるいは図7で示した構成要素と同一の機能を有しているのでその説明は省略する。 The linear motion unequal length parallel link mechanisms 1a and 1b are the positioning device 1 of the first embodiment or the positioning device 1 'of the second embodiment, respectively. Both the linear motion unequal length parallel link mechanisms 1a and 1b may be the positioning device 1 of the first embodiment, or both may be the positioning device 1 'of the second embodiment. Alternatively, one of the linear motion unequal length parallel link mechanisms 1a and 1b may be the positioning device 1 of the first embodiment, and the other may be the positioning device 1 'of the second embodiment. The components shown in FIG. 8 have the same functions as those shown in FIG. 1 or FIG.
 図8の網掛けで示したエンドエフェクタ15aおよび15bの与えられた動作領域Aに対して、直動不等長パラレルリンク機構1aおよび1bは、エンドエフェクタ15aおよび15bが共用する動作領域Aを間にして互いに対向するように設置されている。即ち、ガイドレール3a,4aを備える案内部材とガイドレール3b,4bを備える案内部材とは共用する動作領域Aを間にして互いに対向している。即ち、動作領域Aからみて、短い第1のリンクを支持する第1の可動子および長い第2のリンクを支持する第2の可動子の案内部材に沿った配置順が直動不等長パラレルリンク機構1aおよび1bでは同じになっている。直動不等長パラレルリンク機構1aおよび1bの両方が共に同一の直動不等長パラレルリンク機構である場合は、直動不等長パラレルリンク機構1aを動作領域Aの成す平面に垂直な軸の周りに180°回転して動作領域Aを間にして直動不等長パラレルリンク機構1aと対向する配置にしたものが直動不等長パラレルリンク機構1bとなる。 The linear motion unequal-length parallel link mechanisms 1a and 1b have an operation area A shared by the end effectors 15a and 15b, in contrast to the given operation area A of the end effectors 15a and 15b shown in FIG. And so as to face each other. That is, the guide member provided with the guide rails 3a and 4a and the guide member provided with the guide rails 3b and 4b are opposed to each other with the common operation area A in between. That is, when viewed from the operation area A, the arrangement order along the guide members of the first movable element supporting the short first link and the second movable element supporting the long second link is the linear motion unequal length parallel. The link mechanisms 1a and 1b are the same. When both of the linear motion unequal length parallel link mechanisms 1a and 1b are the same linear motion unequal length parallel link mechanism, the axis perpendicular to the plane formed by the operation area A is the linear motion unequal length parallel link mechanism 1a. A linear motion unequal length parallel link mechanism 1b is arranged by rotating 180 ° around the movement area A and facing the linear motion unequal length parallel link mechanism 1a.
 位置決め装置10の直動不等長パラレルリンク機構1aおよび1bの「すれ違い」動作について以下に説明する。図9から図11は、図8に示した実施の形態3にかかる位置決め装置10における直動不等長パラレルリンク機構1aおよび1b同士の「すれ違い」動作を説明する平面概略図である。 The “passing” operation of the linear motion unequal length parallel link mechanisms 1a and 1b of the positioning device 10 will be described below. FIGS. 9 to 11 are schematic plan views for explaining the “passing” operation between the linear motion unequal length parallel link mechanisms 1a and 1b in the positioning apparatus 10 according to the third embodiment shown in FIG.
 はじめに、図9に示すように、直動不等長パラレルリンク機構1aのエンドエフェクタ15aの初期位置と図中点線で示すエンドエフェクタ15aの目標位置Bとの間に直動不等長パラレルリンク機構1bが存在する状態であるとする。図9の状態の場合、直動不等長パラレルリンク機構1aおよび1bが共に図9に示すリンクの姿勢のまま直動不等長パラレルリンク機構1aが位置決めしようとすると直動不等長パラレルリンク機構1aおよび1bとが干渉するためエンドエフェクタ15aを目標位置Bに位置決めすることができない。 First, as shown in FIG. 9, a linear motion unequal length parallel link mechanism between an initial position of the end effector 15a of the linear motion unequal length parallel link mechanism 1a and a target position B of the end effector 15a indicated by a dotted line in the figure. It is assumed that 1b exists. In the state of FIG. 9, if the linear motion unequal length parallel link mechanism 1a tries to position the linear motion unequal length parallel link mechanisms 1a and 1b with the link posture shown in FIG. Since the mechanisms 1a and 1b interfere with each other, the end effector 15a cannot be positioned at the target position B.
 しかし、実施の形態3にかかる位置決め装置10では、図9に示す状態から図10に示す状態に移行して、直動不等長パラレルリンク機構1aおよび1b同士が一旦すれ違える程度にエンドエフェクタ15aのY方向の座標を低くして「畳み込み」を行う。その状態で直動不等長パラレルリンク機構1aを移動させて、直動不等長パラレルリンク機構1aおよび1bの「すれ違い」動作を行う。図10の「すれ違い」動作の後は、図11に示すように目標位置Bへエンドエフェクタ15aの位置決めが可能になる。この「畳み込み」動作は、上述したようにエンドエフェクタ15aをY方向に移動させる動作であるため、短リンク角度θaを鈍角にすることで、実施の形態1の図6で説明したようにエンドエフェクタ15aの「畳み込み」動作を効率的に行うことが可能である。なお「畳み込み」動作においては短リンク角度θaが鋭角となる姿勢をとってもよい。 However, in the positioning device 10 according to the third embodiment, the end effector 15a is moved to the extent that the linear motion unequal-length parallel link mechanisms 1a and 1b pass each other once from the state shown in FIG. 9 to the state shown in FIG. “Convolution” is performed by lowering the coordinates in the Y direction. In this state, the linear motion unequal length parallel link mechanism 1a is moved to perform the “passing” operation of the linear motion unequal length parallel link mechanisms 1a and 1b. After the “passing” operation in FIG. 10, the end effector 15a can be positioned at the target position B as shown in FIG. Since this “folding” operation is an operation of moving the end effector 15a in the Y direction as described above, the end effector is made as shown in FIG. 6 of the first embodiment by making the short link angle θa an obtuse angle. It is possible to efficiently perform the “convolution” operation of 15a. In the “convolution” operation, the posture may be such that the short link angle θa is an acute angle.
 実施の形態3にかかる位置決め装置10によれば、このような「畳み込み」動作が可能になることから、直動パラレルリンク機構同士の干渉を低減してエンドエフェクタの動作可能範囲を広げることが可能になる。このことが、直動等長パラレルリンク機構ではなく直動不等長パラレルリンク機構を採用したことにより可能になることを以下に説明する。 According to the positioning device 10 according to the third embodiment, such a “convolution” operation can be performed. Therefore, it is possible to reduce the interference between the linear motion parallel link mechanisms and to expand the operable range of the end effector. become. It will be described below that this is made possible by adopting a linear motion unequal length parallel link mechanism instead of a linear motion equal length parallel link mechanism.
 図12は、直動等長パラレルリンク機構を用いた位置決め装置20におけるエンドエフェクタ可動範囲を示す概略図である。図13は、実施の形態3にかかる直動不等長パラレルリンク機構を用いた位置決め装置10におけるエンドエフェクタ可動範囲を示す概略図である。 FIG. 12 is a schematic view showing the end effector movable range in the positioning device 20 using the linear motion isometric parallel link mechanism. FIG. 13 is a schematic diagram illustrating an end effector movable range in the positioning device 10 using the linear motion unequal length parallel link mechanism according to the third embodiment.
 図12の位置決め装置20は、直動等長パラレルリンク機構1cおよび1dを備える。図12は概略図であるので、直動等長パラレルリンク機構1cおよび1dの概略構成のみ示してあり、案内部材、可動子といった一部の構成要素は省略して示していない。直動等長パラレルリンク機構1cは、回動ジョイント機構10c,11c、リンク12c,13cおよびエンドエフェクタ15cを備える。リンク12cとリンク13cのリンク長は等しい。直動等長パラレルリンク機構1dは、回動ジョイント機構10d,11d、リンク12d,13dおよびエンドエフェクタ15dを備える。リンク12dとリンク13dのリンク長は等しい。図12では、エンドエフェクタ15c,15dの与えられた動作領域Aを枠で囲った枠内として示す。 12 includes linear motion equal length parallel link mechanisms 1c and 1d. Since FIG. 12 is a schematic diagram, only a schematic configuration of the linear motion isometric parallel link mechanisms 1c and 1d is shown, and some components such as a guide member and a mover are not shown. The linear motion equal-length parallel link mechanism 1c includes rotating joint mechanisms 10c and 11c, links 12c and 13c, and an end effector 15c. The link lengths of the link 12c and the link 13c are equal. The linear motion equal-length parallel link mechanism 1d includes rotating joint mechanisms 10d and 11d, links 12d and 13d, and an end effector 15d. The link lengths of the link 12d and the link 13d are equal. In FIG. 12, the operation area A to which the end effectors 15c and 15d are given is shown as a framed frame.
 図13においては、図8の位置決め装置10をさらに簡素化して示してあり、案内部材、可動子といった一部の構成要素は省略して示していない。図13でも、エンドエフェクタ15a,15bの与えられた動作領域Aを枠で囲った枠内として示す。 In FIG. 13, the positioning device 10 of FIG. 8 is further simplified, and some components such as a guide member and a mover are not shown. Also in FIG. 13, the operation area A to which the end effectors 15 a and 15 b are given is shown as a frame surrounded by a frame.
 そして、図12において、直動等長パラレルリンク機構1dのエンドエフェクタ15dが動作領域Aの中心に位置する場合に、直動等長パラレルリンク機構1cがエンドエフェクタ15cを位置決めすることが可能なエンドエフェクタ可動範囲を斜線で示してある。直動等長パラレルリンク機構1cと1dの「すれ違い」動作は可能であるものの、動作領域A内の白抜きの領域は、直動等長パラレルリンク機構1cがエンドエフェクタ15cを位置決めすることができない。即ち、直動等長パラレルリンク機構1dとの干渉により直動等長パラレルリンク機構1cがエンドエフェクタ15cを位置決めすることが可能なエンドエフェクタ可動範囲は動作領域Aよりも狭くなっている。 In FIG. 12, when the end effector 15d of the linear motion equal length parallel link mechanism 1d is positioned at the center of the operation area A, the linear motion equal length parallel link mechanism 1c can position the end effector 15c. The effector movable range is indicated by hatching. Although the "passing" operation of the linear motion equal length parallel link mechanisms 1c and 1d is possible, the linear motion equal length parallel link mechanism 1c cannot position the end effector 15c in the white area in the operation area A. . That is, the end effector movable range in which the linear motion equal length parallel link mechanism 1c can position the end effector 15c by interference with the linear motion equal length parallel link mechanism 1d is narrower than the operation area A.
 これに対して、図13の位置決め装置10においても、直動不等長パラレルリンク機構1bのエンドエフェクタ15bが動作領域Aの中心に位置しているが、短リンク角度θbを鈍角にすることによりエンドエフェクタ15bが上述した「畳み込み」動作によって動作領域Aの中心に位置している。そして、直動不等長パラレルリンク機構1aも短リンク角度θaを鈍角にすることによりエンドエフェクタ15aも「畳み込み」動作が可能になるので、その状態でエンドエフェクタ15aおよび15bが「すれ違い」動作をすることが可能になる。「すれ違い」動作の後に、図12でエンドエフェクタ15cが位置決めすることが出来ずに白抜きになっていた領域の中でも、「畳み込み」動作を利用してエンドエフェクタ15aが位置決めを実行することが可能となる領域が発生する。その結果、直動不等長パラレルリンク機構1aによりエンドエフェクタ15aが位置決めすることが可能な斜線で示した図13のエンドエフェクタ可動範囲を図12のエンドエフェクタ可動範囲に比べて広げることが可能となる。 On the other hand, in the positioning device 10 of FIG. 13, the end effector 15b of the linear motion unequal length parallel link mechanism 1b is located at the center of the operation area A, but by making the short link angle θb an obtuse angle. The end effector 15b is positioned at the center of the operation area A by the above-described “folding” operation. The linear motion unequal-length parallel link mechanism 1a also allows the end effector 15a to perform a “folding” operation by setting the short link angle θa to an obtuse angle, so that the end effectors 15a and 15b perform a “passing” operation in that state. It becomes possible to do. After the “passing” operation, the end effector 15a can perform positioning using the “folding” operation even in the region where the end effector 15c cannot be positioned in FIG. The region that becomes. As a result, it is possible to expand the end effector movable range of FIG. 13 indicated by the oblique lines in which the end effector 15a can be positioned by the linear motion unequal length parallel link mechanism 1a as compared with the end effector movable range of FIG. Become.
 即ち、実施の形態3にかかる位置決め装置10によれば、2つの直動不等長パラレルリンク機構の短リンク角度θaおよびθbが鈍角となるリンク姿勢をとらせることで、直動パラレルリンク機構同士の干渉機会を低減して、エンドエフェクタ可動範囲を広くすることができる。これにより、実施の形態3にかかる位置決め装置10によれば、実施の形態1または実施の形態2で得られた効果に加えて、複数機構による作業とその干渉機会の低減による作業効率の向上が可能となる。 In other words, according to the positioning device 10 according to the third embodiment, the linear motion parallel link mechanisms are connected to each other by taking the link posture in which the short link angles θa and θb of the two linear motion unequal length parallel link mechanisms are obtuse. It is possible to widen the end effector movable range by reducing the chance of interference. Thereby, according to the positioning device 10 according to the third embodiment, in addition to the effects obtained in the first or second embodiment, the work efficiency is improved by the work by a plurality of mechanisms and the reduction of the interference opportunity. It becomes possible.
実施の形態4.
 図14は、本発明の実施の形態4にかかる位置決め装置30の構成を示す平面概略図である。実施の形態4にかかる位置決め装置30は、実施の形態1の位置決め装置1または実施の形態2の位置決め装置1’で示した直動不等長パラレルリンク機構を2つ有する位置決め装置である。具体的には、位置決め装置30は、直動不等長パラレルリンク機構1aおよび1eを備える。ただし、直動不等長パラレルリンク機構1eと実施の形態3の図8の直動不等長パラレルリンク機構1bとでは短リンクと長リンクの配置が逆になっている。
Embodiment 4 FIG.
FIG. 14 is a schematic plan view showing the configuration of the positioning device 30 according to the fourth embodiment of the present invention. The positioning device 30 according to the fourth embodiment is a positioning device having two linear motion unequal length parallel link mechanisms shown by the positioning device 1 of the first embodiment or the positioning device 1 ′ of the second embodiment. Specifically, the positioning device 30 includes linear motion unequal length parallel link mechanisms 1a and 1e. However, the arrangement of the short links and the long links is reversed between the linear motion unequal length parallel link mechanism 1e and the linear motion unequal length parallel link mechanism 1b of FIG.
 図14は概略図であるので、直動不等長パラレルリンク機構1aおよび1eの概略構成のみ示してあり、案内部材2、回動ジョイント機構14といった一部の構成要素は省略して示していない。直動不等長パラレルリンク機構1aは、実施の形態3で説明したので説明を省く。直動不等長パラレルリンク機構1eは、ガイドレール3e,4e、可動子8e,9e、回動ジョイント機構10e,11e、短リンク12e、長リンク13eおよびエンドエフェクタ15eを備える。図14でも、エンドエフェクタ15a,15eの与えられた動作領域Aを網掛けで示す。 Since FIG. 14 is a schematic diagram, only schematic configurations of the linear motion unequal length parallel link mechanisms 1a and 1e are shown, and some components such as the guide member 2 and the rotating joint mechanism 14 are not shown. . Since the linear motion unequal length parallel link mechanism 1a has been described in the third embodiment, a description thereof will be omitted. The linear motion unequal length parallel link mechanism 1e includes guide rails 3e, 4e, movers 8e, 9e, rotary joint mechanisms 10e, 11e, a short link 12e, a long link 13e, and an end effector 15e. Also in FIG. 14, the operation area A to which the end effectors 15 a and 15 e are given is indicated by shading.
 直動不等長パラレルリンク機構1aおよび1eは、それぞれが実施の形態1の位置決め装置1または実施の形態2の位置決め装置1’である。直動不等長パラレルリンク機構1aおよび1eの両方が共に実施の形態1の位置決め装置1であっても良いし、両方が共に実施の形態2の位置決め装置1’であっても良い。あるいは、直動不等長パラレルリンク機構1aおよび1eの一方が実施の形態1の位置決め装置1であって、他方が実施の形態2の位置決め装置1’であっても良い。図14に示した構成要素は、その符号の数字が同じ図1あるいは図7で示した構成要素と同一の機能を有しているのでその説明は省略する。 The linear motion unequal length parallel link mechanisms 1a and 1e are the positioning device 1 of the first embodiment or the positioning device 1 'of the second embodiment, respectively. Both the linear motion unequal length parallel link mechanisms 1a and 1e may be the positioning device 1 of the first embodiment, or both may be the positioning device 1 'of the second embodiment. Alternatively, one of the linear motion unequal length parallel link mechanisms 1a and 1e may be the positioning device 1 of the first embodiment, and the other may be the positioning device 1 'of the second embodiment. The components shown in FIG. 14 have the same functions as the components shown in FIG. 1 or FIG.
 図14の網掛けで示したエンドエフェクタ15aおよび15eの与えられた動作領域Aに対して、直動不等長パラレルリンク機構1aおよび1eは、エンドエフェクタ15aおよび15eが共用する動作領域Aを間にして互いに対向するように設置されている。即ち、ガイドレール3a,4aを備える案内部材とガイドレール3e,4eを備える案内部材とは共用する動作領域Aを間にして互いに対向している。 The linear motion unequal-length parallel link mechanisms 1a and 1e have an operation area A shared by the end effectors 15a and 15e as opposed to the given operation area A of the end effectors 15a and 15e shown in FIG. And so as to face each other. That is, the guide member provided with the guide rails 3a and 4a and the guide member provided with the guide rails 3e and 4e are opposed to each other with the common operation area A in between.
 しかし、位置決め装置30では、図14に示すように直動不等長パラレルリンク機構1eの短リンク12eと長リンク13eの配置が、図8の直動不等長パラレルリンク機構1bと逆になっている。即ち、動作領域Aからみて、短い第1のリンクを支持する第1の可動子および長い第2のリンクを支持する第2の可動子の案内部材に沿った配置順が直動不等長パラレルリンク機構1aおよび1eでは逆になっている。従って、ガイドレール3e,4eおよびそれらを備える案内部材とガイドレール3a,4aおよびそれらを備える案内部材の動作領域Aの可動子移動方向の幅の長さを超えた延長の方向は、図8の場合と異なって同じ方向にとることができる。 However, in the positioning device 30, as shown in FIG. 14, the arrangement of the short link 12e and the long link 13e of the linear motion unequal length parallel link mechanism 1e is opposite to that of the linear motion unequal length parallel link mechanism 1b of FIG. ing. That is, when viewed from the operation area A, the arrangement order along the guide members of the first movable element supporting the short first link and the second movable element supporting the long second link is the linear motion unequal length parallel. The link mechanisms 1a and 1e are reversed. Therefore, the direction of extension of the guide rails 3e, 4e and the guide members including them and the guide rails 3a, 4a and the guide members including them over the length of the width of the moving region of the operation area A is shown in FIG. Unlike the case, it can be taken in the same direction.
 これにより、実施の形態4にかかる位置決め装置30によれば、実施の形態1または実施の形態2で得られた効果に加えて、複数機構による作業効率の向上と、複数機構搭載時の装置全体の幅を小さくできるという効果が得られる。 Thereby, according to the positioning device 30 according to the fourth embodiment, in addition to the effects obtained in the first or second embodiment, the work efficiency is improved by the plural mechanisms, and the entire apparatus when the plural mechanisms are mounted. The effect that the width | variety of this can be made small is acquired.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1’,10,20,30 位置決め装置、1a,1b,1e 直動不等長パラレルリンク機構、1c,1d 直動等長パラレルリンク機構、2 案内部材、3,3a,3b,3e,4,4a,4b,4e ガイドレール、5 マグネットプレート、6,7 コイルモジュール、8,8a,8b,8e,9,9a,9b,9e 可動子、10,10a,10b,10c,10d,10e,11,11a,11b,11c,11d,11e,14 回動ジョイント機構、12,12’,12a,12b,12e 短リンク、13,13’,13a,13b,13e 長リンク、12c,12d,13c,13d リンク、15,15’,15a,15b,15c,15d,15e エンドエフェクタ、16 作業部。 1, 1 ', 10, 20, 30 Positioning device, 1a, 1b, 1e Linear motion unequal length parallel link mechanism, 1c, 1d Linear motion equal length parallel link mechanism, 2 guide member, 3, 3a, 3b, 3e, 4, 4a, 4b, 4e guide rail, 5 magnet plate, 6, 7 coil module, 8, 8a, 8b, 8e, 9, 9a, 9b, 9e mover, 10, 10a, 10b, 10c, 10d, 10e, 11, 11a, 11b, 11c, 11d, 11e, 14 Rotating joint mechanism, 12, 12 ′, 12a, 12b, 12e Short link, 13, 13 ′, 13a, 13b, 13e Long link, 12c, 12d, 13c, 13d link, 15, 15 ', 15a, 15b, 15c, 15d, 15e end effector, 16 working parts.

Claims (5)

  1.  可動子移動方向に延在する案内部材と、
     前記案内部材に沿って前記可動子移動方向に移動自在な第1および第2の可動子と、
     前記第1の可動子に平面内で回転自在に一端が取り付けられた第1のリンクと、
     前記第2の可動子に平面内で回転自在に一端が取り付けられ、前記第1のリンクの他端に平面内で回転自在に他端が取り付けられることによりリンク機構を形成し、前記第1のリンクよりもリンク長が長い第2のリンクと、
     前記リンク機構に取り付けられたエンドエフェクタと、
     を備え、
     前記案内部材の前記可動子移動方向の長さは、前記エンドエフェクタの動作領域の前記可動子移動方向の幅に前記第2のリンクのリンク長を加えた長さである
     ことを特徴とする位置決め装置。
    A guide member extending in the moving direction of the mover;
    First and second movers movable in the mover moving direction along the guide member;
    A first link having one end attached to the first mover so as to be rotatable in a plane;
    One end of the second mover is rotatably attached in a plane, and the other end of the first link is attached to the other end of the first link so as to be rotatable in a plane, thereby forming a link mechanism. A second link having a longer link length than the link;
    An end effector attached to the link mechanism;
    With
    The length of the guide member in the mover moving direction is a length obtained by adding the link length of the second link to the width in the mover moving direction of the operation region of the end effector. apparatus.
  2.  可動子移動方向に延在する案内部材と、
     前記案内部材に沿って前記可動子移動方向に移動自在な第1および第2の可動子と、
     前記第1の可動子に平面内で回転自在に一端が取り付けられた第1のリンクと、
     前記第2の可動子に平面内で回転自在に一端が取り付けられ、前記第1のリンクの他端に平面内で回転自在に他端が取り付けられることによりリンク機構を形成し、前記第1のリンクよりもリンク長が長い第2のリンクと、
     前記第1のリンクの他端に取り付けられたエンドエフェクタと、
     を備える
     ことを特徴とする位置決め装置。
    A guide member extending in the moving direction of the mover;
    First and second movers movable in the mover moving direction along the guide member;
    A first link having one end attached to the first mover so as to be rotatable in a plane;
    One end of the second mover is rotatably attached in a plane, and the other end of the first link is attached to the other end of the first link so as to be rotatable in a plane, thereby forming a link mechanism. A second link having a longer link length than the link;
    An end effector attached to the other end of the first link;
    A positioning device comprising:
  3.  可動子移動方向に延在する案内部材と、
     前記案内部材に沿って前記可動子移動方向に移動自在な第1および第2の可動子と、
     前記第1の可動子に平面内で回転自在に一端が取り付けられた第1のリンクと、
     前記第2の可動子に平面内で回転自在に一端が取り付けられ、前記第1のリンクの他端に平面内で回転自在に他端が取り付けられることによりリンク機構を形成し、前記第1のリンクよりもリンク長が長い第2のリンクと、
     前記第2のリンクの他端に取り付けられたエンドエフェクタと、
     を備える
     ことを特徴とする位置決め装置。
    A guide member extending in the moving direction of the mover;
    First and second movers movable in the mover moving direction along the guide member;
    A first link having one end attached to the first mover so as to be rotatable in a plane;
    One end of the second mover is rotatably attached in a plane, and the other end of the first link is attached to the other end of the first link so as to be rotatable in a plane, thereby forming a link mechanism. A second link having a longer link length than the link;
    An end effector attached to the other end of the second link;
    A positioning device comprising:
  4.  請求項1から3に記載の位置決め装置を、前記エンドエフェクタが共用する動作領域を挟んで前記エンドエフェクタ同士が対向し、当該動作領域からみて前記第1および前記第2の可動子の前記案内部材に沿った配置順が同じになるように2つ有する
     ことを特徴とする位置決め装置。
    The positioning device according to claim 1, wherein the end effectors face each other across an operation region shared by the end effector, and the guide members of the first and second movers as viewed from the operation region. Two positioning devices having the same arrangement order along the line.
  5.  請求項1から3に記載の位置決め装置を、前記エンドエフェクタが共用する動作領域を挟んで前記エンドエフェクタ同士が対向し、当該動作領域からみて前記第1および前記第2の可動子の前記案内部材に沿った配置順が逆になるように2つ有する
     ことを特徴とする位置決め装置。
    The positioning device according to claim 1, wherein the end effectors face each other across an operation region shared by the end effector, and the guide members of the first and second movers as viewed from the operation region. Two positioning devices are provided so that the arrangement order along the direction is reversed.
PCT/JP2015/051582 2015-01-21 2015-01-21 Positioning device WO2016117059A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/051582 WO2016117059A1 (en) 2015-01-21 2015-01-21 Positioning device
JP2015533340A JP5963968B1 (en) 2015-01-21 2015-01-21 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051582 WO2016117059A1 (en) 2015-01-21 2015-01-21 Positioning device

Publications (1)

Publication Number Publication Date
WO2016117059A1 true WO2016117059A1 (en) 2016-07-28

Family

ID=56416625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051582 WO2016117059A1 (en) 2015-01-21 2015-01-21 Positioning device

Country Status (2)

Country Link
JP (1) JP5963968B1 (en)
WO (1) WO2016117059A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085580A1 (en) * 2001-04-19 2002-10-31 Consiglio Nazionale Delle Ricerche Modular and reconfigurable parallel kinematic robot
JP2004524982A (en) * 2001-02-23 2004-08-19 ウィレマン マシン ソシエテ アノニム Exercise device for supporting and programmably driving end elements in a machine or instrument
DE102010024518A1 (en) * 2009-07-09 2011-01-20 Eb-Invent Gmbh machine tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866154B2 (en) * 2011-07-06 2016-02-17 キヤノン電子株式会社 Parallel link robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004524982A (en) * 2001-02-23 2004-08-19 ウィレマン マシン ソシエテ アノニム Exercise device for supporting and programmably driving end elements in a machine or instrument
WO2002085580A1 (en) * 2001-04-19 2002-10-31 Consiglio Nazionale Delle Ricerche Modular and reconfigurable parallel kinematic robot
DE102010024518A1 (en) * 2009-07-09 2011-01-20 Eb-Invent Gmbh machine tool

Also Published As

Publication number Publication date
JP5963968B1 (en) 2016-08-03
JPWO2016117059A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
CA2988803C (en) Methods and systems for controllably moving one or more moveable stages in a displacement device
US8661929B2 (en) Device for generating stiffness and method for controlling stiffness and joint of robot manipulator comprising the same
CN106573380B (en) Parallel connecting rod robot and parallel connecting rod structure
WO2013014720A1 (en) Parallel link robot
JP6582491B2 (en) robot
JP2009006460A (en) Robot hand
JP2007118177A (en) Double-arm robot
US20180207810A1 (en) Combination type link actuation device
EP3466615B1 (en) Working device using parallel link mechanism
US11660764B2 (en) Robot joint device
EP2644334B1 (en) Robot control device and control method
JP5963968B1 (en) Positioning device
JP2016153146A (en) Industrial robot
JP2012240180A (en) Double-arm robot
JPH11254375A (en) Parallel robot
US11345024B2 (en) Drive device and robot device
JP6053991B2 (en) Positioning device
KR100774887B1 (en) Apparatus for 3-axis articulation of manipulator
JP6005326B1 (en) Positioning device
JP2011036987A (en) Telescopic cover
KR100624217B1 (en) Coupled close loop link mechanism for joints of robot
KR20150125620A (en) Actuator module for the implementation 3-axis of robot
JP5141652B2 (en) Linear rotary actuator
JP6278620B2 (en) Active compliance equipment
KR102207613B1 (en) Rotating Type Mechanism

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533340

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878754

Country of ref document: EP

Kind code of ref document: A1