WO2016116959A1 - Conductive resin composition and semiconductor device - Google Patents

Conductive resin composition and semiconductor device Download PDF

Info

Publication number
WO2016116959A1
WO2016116959A1 PCT/JP2015/000206 JP2015000206W WO2016116959A1 WO 2016116959 A1 WO2016116959 A1 WO 2016116959A1 JP 2015000206 W JP2015000206 W JP 2015000206W WO 2016116959 A1 WO2016116959 A1 WO 2016116959A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
silver
conductive resin
meth
particles
Prior art date
Application number
PCT/JP2015/000206
Other languages
French (fr)
Japanese (ja)
Inventor
大島 彩
勇気 谷口
健 阿南
野口 有一
Original Assignee
京セラケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラケミカル株式会社 filed Critical 京セラケミカル株式会社
Priority to PCT/JP2015/000206 priority Critical patent/WO2016116959A1/en
Priority to CN201580073954.8A priority patent/CN107207835B/en
Publication of WO2016116959A1 publication Critical patent/WO2016116959A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a conductive resin composition suitably used for bonding a semiconductor element to a support member and a semiconductor device using the same.
  • a conductive resin composition is used for adhesion between a support member and a semiconductor element.
  • a conductive resin composition in addition to basic characteristics such as conductivity, adhesion, and workability, weight reduction and cost reduction are required.
  • conductivity is expressed by filling silver powder as a conductive powder.
  • silver powder is expensive, it is preferable to refrain from use from the viewpoint of manufacturing cost.
  • silver powder has a large specific gravity of 10.5, silver powder tends to settle in the conductive resin composition.
  • the use of metal-coated powder in which the surface of particles made of a material other than silver is coated with a metal such as silver has been studied as a conductive powder. According to the metal-coated powder, since only the surface is coated with a metal such as silver, weight reduction and cost reduction can be achieved.
  • a metal-coated powder As a metal-coated powder, a metal component is added to a glass raw material, melted, and heat-treated in a reducing atmosphere to deposit a metal film on the surface (see, for example, Patent Document 1). .
  • the metal film tends to be non-uniform and the particle size tends to be uneven. Thereby, workability
  • a metal-coated powder whose surface is coated with silver is known (see, for example, Patent Documents 2 and 3).
  • this metal-coated powder is used for forming a conductive pattern and the conductive resin composition contains a large amount of an organic solvent.
  • a conductive resin composition containing a large amount of organic solvent is used for bonding semiconductor elements, voids are generated and sufficient adhesion cannot be obtained.
  • a flake-shaped powder whose surface is coated with silver and has a specific aspect ratio is known (for example, see Patent Document 4).
  • the coating can be made uniform by increasing the coating amount, but the specific gravity of the metal-coated powder tends to increase.
  • the specific gravity of the metal-coated powder increases, the mass of the conductive resin composition tends to increase, and the metal-coated powder tends to settle in the conductive resin composition.
  • the coating is easily peeled off by an external factor such as a slight impact or stress, and sufficient conductivity and adhesiveness cannot be obtained.
  • sufficient adhesion cannot be obtained because cracks at the time of breakage tend to extend.
  • the present invention has been made in response to such problems, and an object of the present invention is to provide a conductive resin composition that has good conductivity, adhesiveness, and workability and can be manufactured at low cost. Moreover, an object of this invention is to provide the semiconductor device excellent in the reliability which uses such a conductive resin composition.
  • the conductive resin composition of the present invention contains (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components.
  • (A) The silver-coated silica particles are contained in an amount of 35 to 90% by mass in the conductive resin composition.
  • the silver-coated silica particles (A) have an aspect ratio of 1.0 to 1.2, a specific surface area of 0.3 to 5.0 m 2 / g, a cumulative volume particle size D 50 of 1 to 10 ⁇ m, diameter D 10, the ratio of D 50 D 50 / D 10 of 1.5 to 5.0 and a maximum particle size of less spherical particles 40 [mu] m.
  • a conductive resin composition that has good conductivity, adhesion, and workability and can be manufactured at low cost.
  • a semiconductor device having excellent reliability can be provided by bonding a semiconductor element using the conductive resin composition.
  • the conductive resin composition according to one embodiment of the present invention contains (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components.
  • Such a conductive resin composition is suitably used for bonding a semiconductor element to a support member.
  • the silver-coated silica particles (A) are obtained by coating the surfaces of the silica particles with silver, and are used for imparting conductivity to the conductive resin composition.
  • the silver-coated silica particles have an aspect ratio of 1.0 to 1.2, a specific surface area of 0.3 to 5.0 m 2 / g, a cumulative volume particle size D 50 of 1 to 10 ⁇ m, a cumulative volume particle size D 10 , D the ratio D 50 / D 10 of 50 1.5 to 5.0 and a maximum particle size of less spherical particles 40 [mu] m.
  • a silver covering silica particle may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the specific surface area is measured by a gas adsorption method.
  • D 10 , D 50 , and the maximum particle size of the silver-coated silica particles are measured by a laser diffraction / scattering particle size distribution measurement method.
  • Silver-coated silica particles are spherical.
  • the spherical shape is preferable because it is excellent in filling property, dispersibility, and stress relaxation property.
  • the silver-coated silica particles may be hollow or porous as long as they are spherical as a whole, and may have a number of protrusions or irregularities on the surface.
  • Silver-coated silica particles have silica particles as a core material.
  • the shape of the silica particles is preferably spherical.
  • the spherical silica particles are produced, for example, by dropping silica melted in a melting furnace from the upper part and making it spheroidized during cooling.
  • the silica particles may be subjected to a surface treatment before being coated with silver.
  • Examples of methods for coating the surface of the silica particles with silver include vapor deposition, sputtering, electroplating, displacement plating, and electroless plating. These methods can be performed in combination. Among these methods, the electroless plating method is preferable because the surface of the silica particles can be uniformly coated.
  • a specific coating method for example, a method of activation by palladium, nickel plating, and then silver plating can be mentioned. According to such a method, the surface of the silica particles can be efficiently coated.
  • the conductive resin composition can be highly filled with silver-coated silica particles, thereby reducing the volume resistivity.
  • the silver-coated silica particles have an aspect ratio of 1.0 to 1.2, workability is good because the increase in viscosity is suppressed even when the content of the silver-coated silica particles in the conductive resin composition is large. become.
  • the aspect ratio in this specification is calculated
  • the specific surface area of the silver-coated silica particles is 0.3 to 5.0 m 2 / g, the workability of the conductive resin composition is improved and the volume resistivity is also reduced. That is, when the specific surface area is 0.3 m 2 / g or more, workability is improved. For example, even when dispensing with a syringe having a needle diameter of 0.3 mm, sag and stringing are suppressed, and workability is improved. When the specific surface area is 5.0 m 2 / g or less, the viscosity and the thixotropy are lowered and the workability is improved.
  • the specific surface area is 5.0 m 2 / g or less
  • the specific gravity of the silver-coated silica particles can be reduced because the amount of silver covering the silica particles can be reduced, so that the silver-coated silica particles settle. Can be suppressed.
  • the specific surface area is 5.0 m 2 / g or less, if the amount of silver is the same, the coating area becomes small, and thus the silver coating tends to be thick, thereby reducing the volume resistivity.
  • the specific surface area is measured by a gas adsorption method.
  • the workability of the conductive resin composition is improved. That is, if the D 50 is equal to or greater than 1 [mu] m, workability since the viscosity of the conductive resin composition is lowered is improved. If D 50 is 10 ⁇ m or less, for example, even when dispensed using a syringe needle diameter 0.3 mm, nozzle clogging is suppressed hardly poor coating occurs in the syringe tip, the workability becomes good.
  • the conductivity and adhesiveness of the conductive resin composition are improved.
  • the ratio D 50 / D 10 is 5.0 or less, the area to be covered with silver is small because the proportion of fine powder is low. Thereby, it is easy to increase the thickness of the silver coating and to reduce the volume resistivity.
  • the ratio D 50 / D 10 is 5.0 or less, since the proportion of fine powder is low, the amount of the thermosetting resin used for coating the silver-coated silica particles is reduced, so that the support member and the conductive member are electrically conductive. The amount of the thermosetting resin at the interface with the conductive resin composition and at the interface between the semiconductor element and the conductive resin composition is increased, and the adhesiveness is improved.
  • the maximum particle diameter of the silver-coated silica particles is 40 ⁇ m or less, the inclination of the semiconductor element when the semiconductor element and the support member are bonded is suppressed.
  • the thickness of the conductive resin composition between the semiconductor element and the support member is 10 to 30 ⁇ m.
  • the maximum particle size of the silver-coated silica particles is 40 ⁇ m or less, nozzle clogging at the tip of the syringe is suppressed even when dispensing with a syringe having a needle diameter of 0.3 mm.
  • the specific gravity of the silver-coated silica particles is preferably 2.4 to 3.6.
  • the specific gravity is 2.4 to 3.6, the dispersibility and conductivity of the conductive resin composition are improved. That is, when the specific gravity is 2.4 or more, the silver coating on the silver-coated silica particles tends to have a sufficient thickness, and thereby the conductivity of the conductive resin composition tends to be good.
  • the specific gravity is 3.6 or less, precipitation of the silver-coated silica particles in the conductive resin composition is suppressed, and the silver-coated silica particles are uniformly dispersed.
  • the specific gravity is more preferably 2.7 to 3.3.
  • the surface of the silver-coated silica particles is preferably coated with a silane coupling agent.
  • a silane coupling agent When the surface of the silver-coated silica particles is coated with a silane coupling agent, the adhesion and compatibility between the silver-coated silica particles and the thermosetting resin is improved, and the adhesiveness of the conductive resin composition is improved. Become.
  • the surface of the silver-coated silica particles is coated with a silane coupling agent
  • the adhesion and compatibility between the silver-coated silica particles and the thermosetting resin are improved by processing with a silane coupling agent. Good adhesion.
  • the method of coating with the silane coupling agent may be either a wet method or a dry method.
  • a method of adding a silane coupling agent to the plating solution when the surface of silica particles is coated with silver a method of coating the surface of silver-coated silica particles with a silane coupling agent by a gas phase reaction, alcohol, petroleum solvent
  • a method of immersing silver-coated silica particles in a solution obtained by adding a silane coupling agent to a solvent such as the above a method of spraying the above solution onto silver-coated silica particles, and the like.
  • silane coupling agents include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, N- 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-mercaptopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyl Trimethoxysi
  • silane coupling agents may be used alone or in a combination of two or more.
  • thermosetting resins particularly epoxy resins, 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, Methyltrimethoxysilane and bis (triethoxysilylpropyl) tetrasulfide are preferred.
  • the surface of the silver-coated silica particles may be coated with a fatty acid or a fatty acid salt instead of coating with a silane coupling agent.
  • a fatty acid or a fatty acid salt When the surface of the silver-coated silica particles is coated with a fatty acid or a fatty acid salt, the dispersibility and compatibility of the silver-coated silica particles are improved, and aggregation of the silver-coated silica particles is suppressed. Thereby, the adhesiveness of a conductive resin composition becomes favorable.
  • a method of coating with a fatty acid or a fatty acid salt either a wet method or a dry method may be used.
  • a method of adding a fatty acid or a fatty acid salt to the plating solution when the surface of the silica particles is coated with silver a method of coating the surface of the silver-coated silica particles with a fatty acid or a fatty acid salt by a gas phase reaction, alcohol, petroleum-based solvent Examples include a method of immersing silver-coated silica particles in a solution obtained by adding a fatty acid or a fatty acid salt to a solvent such as the above, and a method of spraying the above solution onto silver-coated silica particles.
  • fatty acids or fatty acid salts examples include lauric acid, myristic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, propionic acid, caprylic acid Acrylic acid, benzotriazole, and salts thereof.
  • These fatty acids or fatty acid salts may be used alone or in a combination of two or more.
  • myristic acid is preferably used from the viewpoint of compatibility with an epoxy resin.
  • the content of silver-coated silica particles is 35 to 90% by mass in the conductive resin composition.
  • the conductivity, adhesion and workability of the conductive resin composition are improved. That is, when the content of the silver-coated silica particles is 35% by mass or more, the conductivity of the conductive resin composition is improved.
  • content of a silver covering silica particle is 90 mass% or less, the adhesiveness and workability
  • the content of silver-coated silica particles is preferably 40 to 80% by mass.
  • the conductive resin composition may contain a filler other than the silver-coated silica particles together with the silver-coated silica particles.
  • a filler other than the silver-coated silica particles either conductive particles or non-conductive particles may be used.
  • Examples of the conductive particles contained in the conductive resin composition include silver particles, copper particles, nickel particles, aluminum particles, silver-coated copper particles, and nano silver particles.
  • silver particles and nano silver particles are preferable from the viewpoints of conductivity and workability.
  • nano silver particles are preferable because they improve adhesiveness at high temperatures.
  • the D 50 of the silver particles is preferably 0.5 to 15 ⁇ m.
  • the shape of the silver particles is preferably a flake shape or an indefinite shape. When D 50 is 0.5 to 15 ⁇ m and the shape is flaky or irregular, it is preferable because the volume resistivity of the conductive resin composition decreases.
  • D 50 of the nanosilver particles is preferably 5 ⁇ 300 nm.
  • the shape of the nano silver particles include flake shape, scale shape, dendritic shape, rod shape, wire shape, spherical shape, plate shape, and the like, and a spherical shape or a plate shape is preferable, and a plate shape is more preferable.
  • the effect of improving the adhesiveness at a high temperature is greater than that of a spherical shape.
  • a coating layer made of an organic compound containing a functional group such as an amino group or a carboxyl group is provided on the surface of the nanosilver particle.
  • plate-type nano silver particles are obtained by growing one metal crystal face greatly, and are flaky particles having a uniform thickness.
  • known ones can be used.
  • plate-type nano silver particles have a thickness of about several nanometers and a size on the order of microns.
  • Examples of the shape of the plate-type nano silver particles include a triangular plate shape, a hexagonal plate shape, and a truncated triangular plate shape. It is preferable that the surface of the plate-type nano silver particle is widely covered with the [111] plane.
  • the D 50 of the plate-type nanosilver particles is preferably 0.3 to 15 ⁇ m.
  • the length of the long side in the plane direction of the plate-type nano silver particles is preferably 8 to 150 times, more preferably 10 to 50 times the thickness.
  • the length of the short side in the plane direction of the plate-type nano silver particles is preferably 1 to 100 times, more preferably 3 to 50 times the thickness.
  • the plane direction means a direction perpendicular to the thickness direction.
  • plate-type nano silver particles examples include M612 (trade name, D 50 : 6 to 12 ⁇ m, particle thickness: 60 to 100 nm, melting point: 250 ° C.), M27 (trade name, D 50 : 2 to 7 ⁇ m) manufactured by Toxen Industries, Ltd.
  • Particle thickness 60 to 100 nm, melting point: 200 ° C., M13 (trade name, D 50 : 1 to 3 ⁇ m, particle thickness: 40 to 60 nm, melting point: 200 ° C.), N300 (trade name, D 50 : 0.3 to 0.6 ⁇ m, particle thickness: 50 nm or less, melting point: 150 ° C., manufactured by Mitsuboshi Belting Co., Ltd., MDot (trade name, D 50 : 50 nm), Ag nano Powder-1 (specific surface area 15-20 mm 2 / g, ⁇ 95 wt) %), Ag nano Powder-2 (specific surface area 5 to 8 mm 2 / g, ⁇ 98 wt%), and the like.
  • the content thereof is preferably 50% by mass or less and more preferably 30% by mass or less in the total of silver-coated silica particles and conductive particles.
  • the content is preferably 1% by mass or more and more preferably 5% by mass or more in the total of the silver-coated silica particles and the conductive particles from the viewpoint of obtaining a sufficient effect.
  • the nonconductive particles contained in the conductive resin composition may be either inorganic particles or organic particles.
  • Examples of the inorganic particles contained in the conductive resin composition include silica, fumed silica, alumina, boron nitride, titanium oxide, barium, talc, calcium carbonate, and aluminum hydroxide. Among these, silica or fumed silica is preferable from the viewpoint of workability and adhesiveness of the conductive resin composition.
  • the D 50 of silica is preferably 0.5 to 15 ⁇ m.
  • the shape of silica is preferably spherical.
  • the primary particle size D 50 of fumed silica is preferably 5 to 300 nm.
  • the shape of fumed silica is not particularly limited. When fumed silica is contained, it is preferable because workability is improved.
  • Examples of the organic particles contained in the conductive resin composition include resin particles such as silicone powder and a crosslinked polymer.
  • resin particles such as silicone powder and a crosslinked polymer.
  • Examples of the shape of the resin particles include a spherical shape and an indefinite shape, but a spherical shape is preferable from the viewpoint of dispersibility.
  • Silicone powder includes silicone rubber powder having a structure in which linear dimethylpolysiloxane is crosslinked, silicone resin powder that is a cured product of polyorganosilsesquioxane having a structure in which siloxane bonds are crosslinked in a three-dimensional network, silicone Examples thereof include a silicone composite powder in which the surface of rubber particles is coated with a silicone resin. Among these, silicone resin powder and silicone composite powder are preferable from the viewpoint of heat resistance and dispersibility.
  • silicone powder examples include silicone composite powders (KMP-600, KMP-601, KMP-602, KMP-605, X-52-7030, etc.) manufactured by Shin-Etsu Chemical Co., Ltd., silicone rubber powders (KMP-597, KMP). -598, KMP-594, X-52-875, etc.) and silicone resin powder (KMP-590, KMP-701, X-52-854, X-52-1621, etc.). These silicone powders may be used alone or in a combination of two or more.
  • crosslinked polymer examples include divinylbenzene crosslinked polymer, methyl methacrylate resin (PMMA), ethyl methacrylate resin (PEMA), butyl methacrylate resin (PBMA), methyl methacrylate-ethyl methacrylate copolymer, and mixtures thereof. Etc. Among these, a divinylbenzene crosslinked polymer and a methyl methacrylate resin are preferable because of excellent heat resistance and stability.
  • the average particle diameter of the organic particles is preferably 0.5 to 40 ⁇ m. When the average particle diameter of the organic particles is 0.5 to 40 ⁇ m, the stress of the conductive resin composition is relaxed, and the reflow resistance, the thermal shock resistance, etc. are improved.
  • the average particle size of the organic particles is more preferably 0.8 to 20 ⁇ m, further preferably 0.8 to 10 ⁇ m, and particularly preferably 0.8 to 5 ⁇ m.
  • the surface of the above-mentioned inorganic particles and organic particles can be used as conductive particles by coating a metal such as gold or silver.
  • the content thereof is preferably 50% by mass or less and more preferably 30% by mass or less in the whole filler.
  • the filler means silver-coated silica particles, conductive particles, and non-conductive particles.
  • the content is 1 mass% or more in the whole filler from a viewpoint of obtaining sufficient effect, and 3 mass% or more is more preferable.
  • thermosetting resin of a component As a thermosetting resin of a component, what is used for an adhesive use etc. can be used conveniently.
  • the thermosetting resin is preferably liquid at normal temperature (25 ° C.).
  • the thermosetting resin include epoxy resins, phenol resins, unsaturated polyester resins, polyimide resins, silicone resins, polyurethane resins, xylene resins, butadiene resins, maleimide resins, cyanate resins, radical polymerizable acrylic resins, and the like.
  • These thermosetting resins may be used individually by 1 type, and 2 or more types may be mixed and used for them. Among these, it is preferable to contain at least one selected from an epoxy resin, an acrylic resin, and a maleimide resin.
  • epoxy resin one having two or more glycidyl groups in one molecule can be used.
  • the epoxy resin is preferably liquid at normal temperature.
  • an epoxy resin that is solid at room temperature can be used in a liquid state by diluting with a liquid epoxy resin, a reactive diluent, a solvent, or the like.
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, 1,6-hexanediol diglycidyl ether, 4,4′-isopropylidenedicyclohexanol diglycidyl ether, 1,4-cyclohexanedimethanol Diglycidyl ether, 1,4-butanediol diglycidyl ether, and a flexible epoxy resin are preferred. Among these, a flexible epoxy resin is preferable because good adhesive strength can be obtained.
  • Examples of the flexible epoxy resin include diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, polyoxyalkylene glycol and polytetramethylene ether glycol containing an alkylene group having 2 to 9 carbon atoms (preferably 2 to 4 carbon atoms), etc.
  • the flexible epoxy resin represented by following formula (1) is preferable.
  • A is a divalent aliphatic hydrocarbon group having 6 to 14 carbon atoms
  • B is —CH 2 — or —C (CH 3 ) 2 —
  • Ar is an aliphatic hydrocarbon substituted or non-substituted group.
  • a substituted phenylene group, and n is an integer of 1 to 10.
  • a commercially available product can be used as the flexible epoxy resin represented by the formula (1).
  • YL7175-500 (epoxy equivalent 487) manufactured by Japan Epoxy Resin, YL7150-1000 (epoxy equivalent 1000), EP-4003S (epoxy equivalent 412) manufactured by DIC, which is a bisphenol A modified epoxy resin, EP-4000S (epoxy equivalent 260) and the like.
  • the acrylic resin is a compound having a (meth) acryloyl group in the molecule, and is cured by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group. It is preferable that one or more (meth) acryloyl groups are contained in the molecule.
  • Acrylic resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1,2-cyclohexane Dimethanol mono (meth) acrylate, 1,3-cyclohexanedimethanol mono (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 1,2-cyclohexanediethanol mono (Meth) acrylate, 1,3-cyclohexanediethanol mono (meth) acrylate, 1,4-cycl
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, And derivatives thereof.
  • acrylic resins include polyethers, polyesters, polycarbonates, poly (meth) acrylates having a (meth) acrylic group, (meth) acrylates having a hydroxyl group, and hydroxyl groups having a molecular weight of 100 to 10,000.
  • (Meth) acrylamide etc. are mentioned.
  • the polyether skeleton is preferably one in which an organic group having 1 to 6 carbon atoms is repeated via an ether bond, and preferably does not contain an aromatic ring.
  • a compound having a (meth) acrylic group in a polyether can be obtained by a reaction between a polyether polyol and (meth) acrylic acid or a derivative thereof.
  • polyester skeleton those in which an organic group having 1 to 6 carbon atoms is repeated via an ester bond are preferable, and those having no aromatic ring are preferable.
  • a compound having a (meth) acrylic group in polyester can be obtained by a reaction between a polyester polyol and (meth) acrylic acid or a derivative thereof.
  • the polycarbonate skeleton is preferably one in which an organic group having 1 to 6 carbon atoms is repeated via a carbonate bond, and preferably does not contain an aromatic ring.
  • a compound having a (meth) acrylic group in polycarbonate can be obtained by a reaction between a polycarbonate polyol and (meth) acrylic acid or a derivative thereof.
  • a copolymer of (meth) acrylate having a glycidyl group and a (meth) acrylate having no polar group is preferred.
  • each of the above copolymers reacts with (meth) acrylate having a hydroxyl group having a hydroxyl group or (meth) acrylate having a glycidyl group, whereby (meth) acrylic acid having a hydroxyl group having no polar group and a derivative thereof By reacting, the glycidyl group can be obtained by reacting with (meth) acrylic acid having no polar group and its derivative.
  • the compound which has a (meth) acryl group with poly (meth) acrylate can be obtained by reaction of poly (meth) acrylate polyol and (meth) acrylic acid or its derivative.
  • the (meth) acrylate or (meth) acrylamide having a hydroxyl group is a (meth) acrylate or (meth) acrylamide having one or more (meth) acryl groups in one molecule, and contains a hydroxyl group. To do.
  • the (meth) acrylate having a hydroxyl group can be obtained by a reaction between a polyol compound and a (meth) acrylic acid derivative.
  • a reaction a known reaction can be used, and usually 0.5 to 5 moles of acrylic acid ester or acrylic acid is used with respect to the polyol compound.
  • (Meth) acrylamide having a hydroxyl group can be obtained by reaction of an amine compound having a hydroxyl group with (meth) acrylic acid and its derivatives.
  • the method of producing (meth) acrylamides by reacting (meth) acrylic acid esters with amine compounds is based on the fact that the double bonds of (meth) acrylic acid esters are extremely reactive, so amines, cyclopentadiene, alcohols
  • the compound is previously added to the double bond as a protecting group, and after completion of the amidation, the product is heated to remove the protecting group to produce the target product.
  • the hydroxyl group is an alcoholic group in which the hydrogen atom of the aliphatic hydrocarbon group is substituted, and the hydroxyl group content is preferably 1 to 50 in one molecule.
  • Examples of such an acrylic resin compound having a hydroxyl group include compounds represented by the following formulas (2) to (5).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a divalent aliphatic hydrocarbon group having 1 to 100 carbon atoms or an aliphatic hydrocarbon group having a cyclic structure.
  • R 1 represents the same as above, and n represents an integer of 1 to 50.
  • the maleimide resin contains one or more maleimide groups in one molecule and is cured by forming a three-dimensional network structure by reacting the maleimide groups by heating.
  • maleimide resins include N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and 2,2-bis [4- (4-maleimide).
  • bismaleimide resins such as phenoxy) phenyl] propane.
  • the maleimide resin is more preferably a compound obtained by the reaction of a dimer acid diamine and maleic anhydride, or a compound obtained by a reaction of a maleimidated amino acid such as maleimide acetic acid or maleimide caproic acid with a polyol.
  • the main chain connecting two maleimide groups has an aliphatic hydrocarbon group, and this main chain has a hydrocarbon group having 1 or more carbon atoms.
  • the hydrocarbon group may be any of linear, branched and cyclic forms, preferably having 6 or more carbon atoms, more preferably 12 or more carbon atoms, Is particularly preferably 24 or more.
  • the hydrocarbon group is preferably directly bonded to the maleimide group.
  • a compound represented by the following formula (6) is also preferably used.
  • Q represents a divalent linear, branched, or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms
  • P is a divalent atom or an organic group
  • m represents an integer of 1 to 10.
  • examples of the divalent atom represented by P include O and S
  • examples of the divalent organic group include CO, COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S 2 , SO, SO 2 and the like, and organic groups containing at least one or more of these atoms or organic groups can be mentioned.
  • examples of the organic group including an atom or an organic group described above include those having a hydrocarbon group having 1 to 3 carbon atoms, a benzene ring, a cyclo ring, a urethane bond, etc. as a structure other than the above. Examples include groups represented by the following chemical formula.
  • a bismaleimide resin having an aliphatic hydrocarbon group in the main chain is preferable because it provides a thermosetting resin composition for semiconductor adhesion that is excellent in heat resistance and good in heat bond strength after moisture absorption at low stress. .
  • maleimide resins include BMI-1500 (manufactured by Designer Molecules, trade name, molecular weight: 1500), BMI-1700 (manufactured by Diginer Molecules, trade name, molecular weight: 1700). , Etc.
  • the maleimide resin is particularly preferably used in combination with an allylated epoxy resin which is a polymer of allylated bisphenol and epichlorohydrin, or an acrylic resin containing a hydroxy group.
  • an allylated epoxy resin which is a polymer of allylated bisphenol and epichlorohydrin can be obtained, for example, as follows.
  • a solvent such as alcohols such as methanol, isopropanol and n-propanol, and ketones such as acetone and methyl ethyl ketone.
  • a base such as sodium hydroxide or potassium hydroxide is used to react with an allyl halide such as allyl chloride or allyl bromide to obtain an allyl ether of a polyhydric phenol compound.
  • an allylated epoxy resin As a catalyst to a mixture of an allylated polyphenol compound and an epihalohydrin, a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added all at once or gradually, at 0.5 to 20 ° C. at 20 to 120 ° C. Let react for 10 hours. Thereby, an allylated epoxy resin can be obtained.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • R 3 to R 10 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group and a substituted or unsubstituted allyl group, at least one of which is substituted or unsubstituted X is a divalent atom or organic group selected from SO, SO 2 , CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , O, CO, and COO; k is 0 or 1.
  • the blending ratio is preferably 50/50 to 95/5, more preferably 65/35 to 90/10.
  • the blending ratio is preferably 5/95 to 95/5.
  • the conductive resin composition may contain a resin other than the thermosetting resin for the purpose of improving stress relaxation and adhesion.
  • resins include acrylic resins, polyester resins, polybutadiene resins, phenol resins, polyimide resins, silicone resins, polyurethane resins, xylene resins, and the like. These resins may be used alone or in combination of two or more.
  • the content of the resin other than the thermosetting resin is preferably 50 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the curing agent for the component (C) is not particularly limited as long as it cures the thermosetting resin, and one kind may be used alone, or two or more kinds may be mixed and used.
  • the epoxy resin curing agent include dicyandiamide, phenol resin, amine compound, latent amine compound, cationic compound, acid anhydride, and special epoxy curing agent. Among these, it is preferable to contain at least one selected from dicyandiamide and a phenol resin from the viewpoints of curability and adhesiveness.
  • the content of the curing agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the thermosetting resin is an epoxy resin and the curing agent is a phenol resin
  • the content of the phenol resin is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin. Is more preferable.
  • the thermosetting resin is an epoxy resin and the curing agent is dicyandiamide
  • the content of dicyandiamide is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the conductive resin composition may contain a curing accelerator.
  • a known curing accelerator can be used as the curing accelerator.
  • the thermosetting resin is an epoxy resin, as a curing accelerator, an imidazole curing accelerator, an amine curing accelerator, a triphenylphosphine curing accelerator, a diazabicyclo curing accelerator, a urea curing accelerator, Examples thereof include a borate salt curing accelerator and a polyamide curing accelerator. These may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • hardenability and adhesiveness it is preferable to use an imidazole type hardening accelerator.
  • imidazole curing accelerator examples include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-n-propylimidazole, 2-undecyl-1H-imidazole, 2-phenyl-4-methylimidazole (2P4MZ ), 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and the like.
  • amine curing accelerator examples include aliphatic amines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, piperidine, piperazine, menthanediamine, isophoronediamine.
  • Alicyclic and heterocyclic amines such as 1,8-diazabicyclo (4.5.0) undecene-7, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, m-xylenediamine , Aromatic amines such as pyridine and picoline, epoxy compound-added polyamines, Michael-added polyamines, Mannich-added polyamines, thiourea-added polyamines, modified polyamines such as ketone-capped polyamines, Dicyandiamide, guanidine, organic acid hydrazide, diaminomaleonitrile, amineimide, boron trifluoride - piperidine complex, boron trifluoride - monoethylamine complexes.
  • Aromatic amines such as pyridine and picoline, epoxy compound-added polyamines, Michael-added polyamines, Mannich
  • the imidazole curing accelerators 2-phenyl-4-methylimidazole (2P4MZ), 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ), 2-phenyl-4-methyl-5-hydroxy Methylimidazole (2P4MHZ) is more preferred.
  • thermosetting resin is a cyanate resin
  • an organic metal complex such as zinc octylate, tin octylate, cobalt naphthenate, zinc naphthenate, and acetylacetone iron, metal such as aluminum chloride, tin chloride, and zinc chloride Salts, amines such as triethylamine and dimethylbenzylamine are used.
  • One of these curing accelerators may be used alone, or two or more thereof may be mixed and used.
  • the content varies depending on the type of the thermosetting resin, but is preferably 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. 0.0 part by mass is more preferable.
  • the conductive resin composition may further contain an adhesion assistant.
  • the adhesion assistant include silane coupling agents.
  • As an adhesion assistant it is preferable to contain a compound represented by the following formula (8).
  • R and R ′ are each independently an alkyl group having 1 to 4 carbon atoms, and A ′ is a divalent hydrocarbon group having 3 to 12 carbon atoms which may have an oxygen atom interposed therebetween.
  • n is an integer of 1 to 3.
  • R and R ′ examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, and these may be the same or different.
  • R is preferably a methyl group or an ethyl group.
  • R ′ is preferably a methyl group.
  • Examples of the divalent hydrocarbon group for A ′ include a hydrocarbon group or a group having an ether bond (—O—) in which oxygen is interposed in the hydrocarbon group.
  • the carbon number of the divalent hydrocarbon group of A ′ is 3 or more, the adhesiveness, particularly the adhesiveness at high temperature and the adhesiveness at high temperature after moisture absorption are improved.
  • carbon number is 12 or less, a viscosity will become low and a dispersibility will become favorable.
  • the number of carbon atoms is more preferably 5 to 12, and further preferably 7 to 12.
  • an alkylene group is preferable.
  • —C 6 H 12 —O—CH 2 —, —C 8 H 16 —O—CH 2 —, —C 10 H 20 —O—CH 2 — and the like are preferable.
  • one or more hydrogen atoms may be substituted with a halogen atom such as a fluorine atom or a chlorine atom.
  • n is preferably 2 or 3, and more preferably 3.
  • the conductive resin composition can further contain, for example, a reactive diluent having reactivity with respect to ring-opening polymerization of an epoxy resin for the purpose of improving workability.
  • a reactive diluent having reactivity with respect to ring-opening polymerization of an epoxy resin for the purpose of improving workability.
  • the reactive diluent include n-butyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, glycidyl methacrylate.
  • T-butylphenyl glycidyl ether diglycidyl ether, (poly) ethylene glycol glycidyl ether, butanediol glycidyl ether, trimethylolpropane triglycidyl ether, 1,6-hexanediol diglycidyl ether, and the like. These may be used individually by 1 type, and 2 or more types may be mixed and used for them. Of these, phenyl glycidyl ether and t-butylphenyl glycidyl ether are more preferred.
  • the amount of the reactive diluent used is preferably in the range in which the viscosity of the conductive adhesive composition (measured with a 3 ° cone using an E-type viscometer) is in the range of 5 to 200 Pa ⁇ s.
  • the conductive resin composition may contain a diluent other than the above for the purpose of improving workability.
  • a diluent such as solvents, (meth) acrylate compounds and the like can be used.
  • the solvent examples include diethylene glycol diethyl ether, n-butyl glycidyl ether, t-butylphenyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dioxane, hexane, methyl Cellosolve, cyclohexane, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol dimethyl ether, diacetone alcohol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, ⁇ -butyrolactone, and 1,3-dimethyl-2-imidazo Examples include lysinone.
  • diluents may be used alone or in combination of two or more. These diluents are preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the solid content of the conductive resin composition.
  • the conductive resin composition can contain components other than the above components as long as not departing from the spirit of the present invention.
  • examples of such components include viscosity modifiers, antifoaming agents, colorants, flame retardants, and the like.
  • viscosity modifier examples include cellosolve acetate, ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, butyl carbitol acetate, propylene glycol phenyl ether, diethylene glycol dimethyl ether, diacetone alcohol and the like.
  • One of these viscosity modifiers may be used alone, or two or more thereof may be mixed and used.
  • the conductive resin composition comprises, for example, high-speed mixing of (A) silver-coated silica particles, (B) a thermosetting resin, and (C) an essential component composed of a curing agent, and an optional component added as necessary. It can be manufactured by mixing uniformly using a machine, kneading using a disperse, kneader, three-roll, etc., and further defoaming.
  • the specific gravity of the conductive resin composition is preferably 1.0 to 3.0.
  • the conductivity and dispersibility of the conductive resin composition are improved. That is, when the specific gravity is 1.0 or more, the conductivity of the conductive resin composition is improved.
  • specific gravity becomes 3.0 or less the dispersibility and workability
  • the specific gravity of the conductive resin composition is more preferably 1.3 to 2.5.
  • the viscosity of the conductive resin composition is preferably 5 to 200 Pa ⁇ s.
  • the viscosity is measured using an E-type viscometer (3 ° cone) at 25 ° C. and 0.5 rpm.
  • the viscosity is 5 to 200 Pa ⁇ s, the workability of the conductive resin composition is improved. That is, when the viscosity is 5 Pa ⁇ s or more, the occurrence of dripping or the like is suppressed.
  • a viscosity is 200 Pa * s or less, dispensing becomes easy and workability
  • the viscosity of the conductive resin composition is more preferably 20 to 180 Pa ⁇ s.
  • the conductive resin composition of the embodiment is excellent in workability with little stringiness and dripping.
  • the conductive resin composition of the embodiment is excellent in conductivity and adhesiveness in bonding the semiconductor element and the support member.
  • examples of the support member include a copper frame, a silver-plated copper frame, and a PPF frame.
  • the conductive resin composition of the embodiment has a long pot life and suppresses the generation of voids.
  • the conductive resin composition of the embodiment has, for example, a viscosity of 5 to 200 Pa ⁇ s, a volume resistivity of the cured product of 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less, an adhesive strength at 25 ° C. of 20 N or more, and 260 ° C.
  • the adhesive strength is 6N or more.
  • the above characteristics can be obtained by containing (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components. .
  • the said characteristic is based on the test conditions in an Example.
  • FIG. 1 shows a semiconductor device according to an embodiment of the present invention.
  • the semiconductor device 1 has, for example, a semiconductor element 2, a conductive resin composition 3, a support member 4, a bonding wire 5, and a sealing resin composition 6.
  • the conductive resin composition 3 is composed of the conductive resin composition of the above-described embodiment.
  • the support member 4 is composed of a lead frame.
  • the semiconductor device 1 is excellent in reliability and productivity because the semiconductor element 2 and the support member 4 are bonded by the conductive resin composition 3 made of the conductive resin composition of the embodiment.
  • the semiconductor device 1 is manufactured as follows, for example. First, the semiconductor element 2 is laminated on the support member 4 with the conductive resin composition 3 interposed therebetween, and the conductive resin composition 3 is cured by heating so that the semiconductor element 2 and the support member 4 are connected to the conductive resin composition. 3. Adhere by 3. Further, the electrodes 2a of the semiconductor element 2 and the lead portions 4a of the support member 4 are wire-bonded by ultrasonic waves. Thereafter, these are sealed with a sealing resin composition 6.
  • the palladium-adhered substrate particles were stirred in 300 ml of deionized water for 3 minutes, and 1 g of metal nickel particle slurry (trade name: 2020SUS, manufactured by Mitsui Kinzoku Co., Ltd.) was added to obtain nickel particle-attached substrate particles.
  • metal nickel particle slurry (trade name: 2020SUS, manufactured by Mitsui Kinzoku Co., Ltd.) was added to obtain nickel particle-attached substrate particles.
  • the nickel particle-adhered substrate particles were diluted with 1000 ml of distilled water, added with 4 ml of a plating stabilizer, and stirred to obtain a substrate particle mixed solution. Thereafter, 150 ml of a mixed solution of 400 g / l of nickel sulfate, 100 g / l of sodium hypophosphite, 100 g / l of sodium citrate, and 6 ml of a plating stabilizer is gradually added to this base particle mixed solution while stirring. A nickel coating was formed on the material particles. The solution after plating was filtered, and the filtrate was washed with water and dried to obtain nickel-coated substrate particles.
  • Nickel-coated substrate particles in an electroless silver plating solution prepared by mixing and dissolving 30 g of succinimide and 4 g of citric acid in a mixed solution of 5 g of silver nitrate, 1200 ml of distilled water and 10 g of benzimidazole, and adding 10 g of glyoxylic acid was introduced.
  • the mixture was heated and stirred at 80 ° C. to perform electroless plating, then washed with water and dried with alcohol to obtain particles-1 which are spherical silver-coated silica particles.
  • the silver coating amount was 27.3 mass%.
  • Particle-2 Using spherical silica particles having a D 50 of 8.3 ⁇ m (trade name: US-10, manufactured by Tatsumori Co., Ltd.), electroless plating was performed in the same manner as for particles-1, and particles that were spherical silver-coated silica particles- 2 was obtained.
  • the silver coating amount was 29.2% by mass.
  • Particle-3 100 g of Particle-1 was blended in a mixed solution of 1.0% by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) and methanol, stirred, filtered, Drying was performed to obtain Particles-3, which are spherical silver-coated silica particles that have been treated with a silane coupling agent.
  • the silver coating amount was 27.4% by mass.
  • Particle-4 Put 100g of Particle-1 into a ball mill, add 2g of myristic acid and 200g of mineral spirit, add zirconia balls with a diameter of 2mm, and after 3 hours fatty acid coating treatment, filter and dry, and coat with fatty acid Particle-4, which was a spherical silver-coated silica particle, was obtained.
  • Particle-5 100 g of Particle-4 was blended in a solution in which 1.0% by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) and methanol were mixed, stirred, filtered, Drying was performed to obtain Particles-5, which are spherical silver-coated silica particles that have been treated with a silane coupling agent.
  • the silver coating amount was 27.3 mass%.
  • Particle-6 Electroless plating using spherical silica particles with a D 50 of 1.0 ⁇ m (trade name: SO-E3, manufactured by Admatechs), followed by washing with water and substitution with alcohol in the same manner as for particles-1. Was dried to obtain particles-6 which are spherical silver-coated silica particles.
  • the silver coating amount was 20.0% by mass.
  • Particles that are spherical silver-coated silica particles are obtained by performing electroless plating using silica particles having a D 50 of 8.0 ⁇ m in the same manner as the particles-1, washing with water, and drying the particles substituted with alcohol. 7 was obtained.
  • particle-8 Using spherical silica particles having a D 50 of 7.0 ⁇ m, electroless plating was performed in the same manner as for the particles-1 to obtain particles-8 which are silver-coated silica particles.
  • Particle-9 Using spherical silica particles having a D 50 of 4.0 ⁇ m and a D 10 of 0.68 ⁇ m, electroless plating was performed in the same manner as the particle-1 to obtain particles-9 which are spherical silver-coated silica particles.
  • the aspect ratio was measured with a scanning electron microscope SSX-550 (manufactured by Shimadzu Corporation).
  • the specific surface area was measured with a flow-type specific surface area measuring apparatus Flow Soap II 2300 (manufactured by Shimadzu Corporation).
  • D 50 , D 10 and the maximum particle size were measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.).
  • the silver coating amount was calculated from the weight of the silver-coated silica particles and the weight of the silver-removed silica particles that were removed by dissolving silver with nitric acid. Table 1 summarizes the characteristics of particles-1 to 9.
  • Examples 1 to 16 Comparative Examples 1 to 6> Each component was sufficiently blended and mixed so as to have the compositions shown in Tables 2, 4, and 6, and then kneaded with three rolls to prepare a conductive resin composition.
  • This conductive resin composition was defoamed with a self-revolving vacuum defoaming apparatus, and then various characteristics were evaluated. The results are shown in Tables 3, 5, and 7.
  • the detail of each component used for preparation of a conductive resin composition is as follows.
  • Thermosetting resin bisphenol A type epoxy resin (epoxy equivalent 185)
  • Thermosetting resin flexible epoxy resin (Mitsubishi Chemical Co., Ltd., trade name: YL7175-500, epoxy equivalent: 487, formula (1))
  • Thermosetting resin hydroxylethyl acrylamide (product name: HEAA)
  • Thermosetting resin Imide-expanded bismaleimide (manufactured by Designer Molecules, Inc., trade name: BMI-1500, number average molecular weight: 1500)
  • Thermosetting resin Allylated bisphenol epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: RE-810NM, epoxy equivalent: 223, hydrolyzable chlorine: 150 ppm (1N KOH-ethanol, dioxane solvent, reflux 30 minutes))
  • Curing agent Bisphenol F (Honshu Chemical Co., Ltd.) Curing agent: Diciadiamide (DICY) Polymerization initiator
  • Adhesive strength The conductive resin composition was applied on a silver-plated copper frame to a thickness of 20 ⁇ m, and a 2 mm ⁇ 2 mm silicon chip was mounted thereon and cured at 175 ° C. for 1 hour. Thereafter, the die shear strength during heating at 25 ° C. and 260 ° C. was measured using a die shear strength measuring device.
  • the conductive resin composition was printed on a glass plate so that the thickness after curing was 40 ⁇ m and the width was 5 mm, cured at 150 ° C. for 1 hour, and then measured with a digital multimeter. .
  • a conductive resin composition is applied to a thickness of 20 ⁇ m on a silver-plated copper frame, and a 4 mm ⁇ 4 mm silicon chip is mounted thereon and cured at 150 ° C. for 1 hour. I let you. Thereafter, an epoxy sealing material (trade name: KE-G3000D) manufactured by Kyocera Chemical Co., Ltd. was used to form a package according to the following [molding conditions]. The package was subjected to a moisture absorption treatment at 85 ° C. and a relative humidity of 85% for 168 hours, and then an IR reflow treatment (260 ° C., 10 seconds). About the package after a process, the presence or absence of generation
  • Thermal shock resistance A conductive resin composition is applied to a thickness of 20 ⁇ m on a silver-plated copper frame, and a 4 mm ⁇ 4 mm silicon chip is mounted thereon and cured at 150 ° C. for 1 hour. I let you. Thereafter, a package was molded under the following [molding conditions] using an epoxy sealing material (trade name: KE-G3000D) manufactured by Kyocera Chemical Co., Ltd. This package was subjected to a cold cycle treatment (the operation of raising the temperature from ⁇ 55 ° C. to 150 ° C. and cooling to ⁇ 55 ° C. as one cycle, which was 1000 cycles). About the package after a process, the presence or absence of generation
  • thermal shock resistance [%] number of defective products / total number of measurements ⁇ 100
  • SYMBOLS 1 Semiconductor device, 2 ... Semiconductor element, 2a ... Electrode, 3 ... Conductive resin composition, 4 ... Support member 4a ... Lead part, 5 ... Bonding wire, 6 ... Resin composition for sealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a conductive resin composition that has favorable conductivity, adhesion and workability and can be manufactured inexpensively. The conductive resin composition contains, as essential components, (A) silver-coated silica particles, (B) a thermosetting resin and (C) a curing agent. The conductive resin composition contains 35-90 mass% of the (A) silver-coated silica particles. Further, the (A) silver-coated silica particles are spherical particles having an aspect ratio of 1.0-1.2, a specific surface area of 0.3-5.0 m2/g, an accumulated volume particle size D50 of 1-10 μm, a ratio D50/D10 of accumulated volume particle sizes D10 and D50 of 1.5-5.0 and a maximum particle size of at most 40 μm.

Description

導電性樹脂組成物および半導体装置Conductive resin composition and semiconductor device
 本発明は、半導体素子を支持部材に接着するために好適に使用される導電性樹脂組成物およびこれを使用した半導体装置に関する。 The present invention relates to a conductive resin composition suitably used for bonding a semiconductor element to a support member and a semiconductor device using the same.
 高度情報化社会の拡大とエレクトロニクス産業の著しい発展に伴い、トランジスタ、IC、LSI、LED等の半導体装置に使用される半導体素子の集積度が増加しており、半導体装置には、熱放散性、信頼性等の向上が求められている。また、半導体装置には、利便性、可搬性等を高めるために小型化および高性能化が求められており、これに使用される部品にも小型化および高性能化が求められている。例えば、半導体装置においては、支持部材と半導体素子との接着に導電性樹脂組成物が使用されている。このような導電性樹脂組成物については、導電性、接着性、作業性等の基本的な特性に加えて、軽量化および低コスト化が求められている。 With the expansion of the advanced information society and the remarkable development of the electronics industry, the degree of integration of semiconductor elements used in semiconductor devices such as transistors, ICs, LSIs, and LEDs has increased. Improvement in reliability and the like is required. In addition, semiconductor devices are required to be smaller and have higher performance in order to improve convenience, portability, and the like, and components used for such devices are also required to be smaller and have higher performance. For example, in a semiconductor device, a conductive resin composition is used for adhesion between a support member and a semiconductor element. For such a conductive resin composition, in addition to basic characteristics such as conductivity, adhesion, and workability, weight reduction and cost reduction are required.
 一般に、導電性樹脂組成物においては、導電粉末として銀粉が充填されることにより導電性が発現される。しかし、銀粉は、高価であることから、製造コストの観点から使用を控えることが好ましい。また、銀粉は、比重が10.5と大きいことから、導電性樹脂組成物中において沈降しやすい。このため、近年、導電粉末として、銀以外の材料からなる粒子の表面に銀等の金属を被覆した金属被覆粉末の使用が検討されている。金属被覆粉末によれば、表面のみが銀等の金属により被覆されることから、軽量化および低コスト化を図ることができる。 Generally, in a conductive resin composition, conductivity is expressed by filling silver powder as a conductive powder. However, since silver powder is expensive, it is preferable to refrain from use from the viewpoint of manufacturing cost. Moreover, since silver powder has a large specific gravity of 10.5, silver powder tends to settle in the conductive resin composition. For this reason, in recent years, the use of metal-coated powder in which the surface of particles made of a material other than silver is coated with a metal such as silver has been studied as a conductive powder. According to the metal-coated powder, since only the surface is coated with a metal such as silver, weight reduction and cost reduction can be achieved.
 金属被覆粉末として、ガラス原料に金属成分を添加し、溶融するとともに、還元性雰囲気中で熱処理して、表面に金属皮膜を析出させたものが知られている(例えば、特許文献1参照。)。しかし、このような金属被覆粉末については、金属皮膜が不均一になりやすく、粒径も不揃いになりやすい。これにより、導電性樹脂組成物の作業性や導電性が良好にならず、また支持部材と半導体素子とを接着したときに半導体素子に傾きが発生しやすい。 As a metal-coated powder, a metal component is added to a glass raw material, melted, and heat-treated in a reducing atmosphere to deposit a metal film on the surface (see, for example, Patent Document 1). . However, with such a metal-coated powder, the metal film tends to be non-uniform and the particle size tends to be uneven. Thereby, workability | operativity and electroconductivity of a conductive resin composition do not become favorable, and when a support member and a semiconductor element are adhere | attached, it is easy to generate | occur | produce an inclination in a semiconductor element.
 また、金属被覆粉末として、表面を銀で被覆したものが知られている(例えば、特許文献2、3参照。)。しかし、この金属被覆粉末は導電パターンの形成等に使用されるものであり、導電性樹脂組成物には多量の有機溶媒が含有される。このような多量の有機溶媒を含有する導電性樹脂組成物を半導体素子の接着に使用した場合、ボイドが発生するために十分な接着性が得られない。 Further, a metal-coated powder whose surface is coated with silver is known (see, for example, Patent Documents 2 and 3). However, this metal-coated powder is used for forming a conductive pattern and the conductive resin composition contains a large amount of an organic solvent. When such a conductive resin composition containing a large amount of organic solvent is used for bonding semiconductor elements, voids are generated and sufficient adhesion cannot be obtained.
 また、金属被覆粉末として、表面を銀で被覆し、かつ特定のアスペクト比としたフレーク状のものが知られている(例えば、特許文献4参照。)。しかし、フレーク状の場合、角部を被覆しにくく、十分な導電性が得られない。これに対して、被覆量を多くすることにより被覆を均一にすることもできるが、金属被覆粉末の比重が大きくなりやすい。金属被覆粉末の比重が大きくなると、導電性樹脂組成物の質量が増加しやすくなるとともに、導電性樹脂組成物中において金属被覆粉末が沈降しやすくなる。また、フレーク状の場合、僅かな衝撃や応力等の外的要因により被覆が剥離しやすく、十分な導電性や接着性が得られない。さらに、フレーク状の場合、破断時の亀裂が延伸しやすいために十分な接着性が得られない。 Further, as a metal-coated powder, a flake-shaped powder whose surface is coated with silver and has a specific aspect ratio is known (for example, see Patent Document 4). However, in the case of flakes, it is difficult to cover the corners, and sufficient conductivity cannot be obtained. On the other hand, the coating can be made uniform by increasing the coating amount, but the specific gravity of the metal-coated powder tends to increase. When the specific gravity of the metal-coated powder increases, the mass of the conductive resin composition tends to increase, and the metal-coated powder tends to settle in the conductive resin composition. In the case of flakes, the coating is easily peeled off by an external factor such as a slight impact or stress, and sufficient conductivity and adhesiveness cannot be obtained. Furthermore, in the case of flakes, sufficient adhesion cannot be obtained because cracks at the time of breakage tend to extend.
特開昭51-053295号公報Japanese Patent Laid-Open No. 51-053295 特開2012-079457号公報JP 2012-0779457 A 特表2010-539650号公報Special table 2010-539650 gazette 国際公開第2012/118061号International Publication No. 2012/118061
 本発明は、このような課題に対処してなされたもので、導電性、接着性、作業性が良好であり、かつ安価に製造できる導電性樹脂組成物を提供することを目的とする。また、本発明は、このような導電性樹脂組成物を使用した信頼性に優れる半導体装置を提供することを目的とする。 The present invention has been made in response to such problems, and an object of the present invention is to provide a conductive resin composition that has good conductivity, adhesiveness, and workability and can be manufactured at low cost. Moreover, an object of this invention is to provide the semiconductor device excellent in the reliability which uses such a conductive resin composition.
 本発明の導電性樹脂組成物は、(A)銀被覆シリカ粒子、(B)熱硬化性樹脂、および(C)硬化剤を必須成分として含有する。(A)銀被覆シリカ粒子は、導電性樹脂組成物中に35~90質量%含まれる。また、(A)銀被覆シリカ粒子は、アスペクト比が1.0~1.2、比表面積が0.3~5.0m/g、累積体積粒径D50が1~10μm、累積体積粒径D10、D50の比D50/D10が1.5~5.0、および最大粒径が40μm以下の球状粒子である。 The conductive resin composition of the present invention contains (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components. (A) The silver-coated silica particles are contained in an amount of 35 to 90% by mass in the conductive resin composition. The silver-coated silica particles (A) have an aspect ratio of 1.0 to 1.2, a specific surface area of 0.3 to 5.0 m 2 / g, a cumulative volume particle size D 50 of 1 to 10 μm, diameter D 10, the ratio of D 50 D 50 / D 10 of 1.5 to 5.0 and a maximum particle size of less spherical particles 40 [mu] m.
 本発明によれば、導電性、接着性、作業性が良好であり、かつ安価に製造できる導電性樹脂組成物を提供できる。また、本発明によれば、上記導電性樹脂組成物を使用して半導体素子を接着することにより、信頼性に優れる半導体装置を提供できる。 According to the present invention, it is possible to provide a conductive resin composition that has good conductivity, adhesion, and workability and can be manufactured at low cost. Moreover, according to the present invention, a semiconductor device having excellent reliability can be provided by bonding a semiconductor element using the conductive resin composition.
一実施形態の半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device of one Embodiment.
 以下、本発明を実施するための形態について説明する。
 本発明の一実施形態による導電性樹脂組成物は、(A)銀被覆シリカ粒子、(B)熱硬化性樹脂、および(C)硬化剤を必須成分として含有する。このような導電性樹脂組成物は、支持部材に半導体素子を接着するために好適に使用される。
Hereinafter, modes for carrying out the present invention will be described.
The conductive resin composition according to one embodiment of the present invention contains (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components. Such a conductive resin composition is suitably used for bonding a semiconductor element to a support member.
 (A)成分の銀被覆シリカ粒子は、シリカ粒子の表面を銀で被覆したものであり、導電性樹脂組成物に導電性を付与するために使用される。銀被覆シリカ粒子は、アスペクト比が1.0~1.2、比表面積が0.3~5.0m/g、累積体積粒径D50が1~10μm、累積体積粒径D10、D50の比D50/D10が1.5~5.0、および最大粒径が40μm以下の球状粒子である。なお、銀被覆シリカ粒子は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。また、比表面積は、ガス吸着法により測定される。また、銀被覆シリカ粒子のD10、D50、および最大粒径は、レーザー回折散乱式粒度分布測定法により測定される。 The silver-coated silica particles (A) are obtained by coating the surfaces of the silica particles with silver, and are used for imparting conductivity to the conductive resin composition. The silver-coated silica particles have an aspect ratio of 1.0 to 1.2, a specific surface area of 0.3 to 5.0 m 2 / g, a cumulative volume particle size D 50 of 1 to 10 μm, a cumulative volume particle size D 10 , D the ratio D 50 / D 10 of 50 1.5 to 5.0 and a maximum particle size of less spherical particles 40 [mu] m. In addition, a silver covering silica particle may be used individually by 1 type, and 2 or more types may be mixed and used for it. The specific surface area is measured by a gas adsorption method. Further, D 10 , D 50 , and the maximum particle size of the silver-coated silica particles are measured by a laser diffraction / scattering particle size distribution measurement method.
 銀被覆シリカ粒子は、球状である。球状の場合、充填性、分散性、応力緩和性に優れるために好ましい。なお、銀被覆シリカ粒子は、全体として球状であれば、中空状、ポーラス状でもよいし、表面に多数の突起または凸凹を有してもよい。 Silver-coated silica particles are spherical. The spherical shape is preferable because it is excellent in filling property, dispersibility, and stress relaxation property. The silver-coated silica particles may be hollow or porous as long as they are spherical as a whole, and may have a number of protrusions or irregularities on the surface.
 銀被覆シリカ粒子は、コア材としてシリカ粒子を有する。シリカ粒子の形状は、球状が好ましい。球状のシリカ粒子は、例えば、溶融炉で溶融させたシリカを上部より落下させ、冷却時に球状化させることにより製造される。シリカ粒子には、銀による被覆が行われる前に表面処理が施されてもよい。 Silver-coated silica particles have silica particles as a core material. The shape of the silica particles is preferably spherical. The spherical silica particles are produced, for example, by dropping silica melted in a melting furnace from the upper part and making it spheroidized during cooling. The silica particles may be subjected to a surface treatment before being coated with silver.
 シリカ粒子の表面を銀により被覆する方法としては、蒸着法、スパッタ法、電気メッキ法、置換メッキ法、無電解メッキ法等が挙げられる。これらの方法は、組合せて行うことができる。これらの方法の中でも、シリカ粒子の表面を均一に被覆できることから無電解メッキ法が好ましい。具体的な被覆の方法としては、例えば、パラジウムにより活性化させ、ニッケルメッキした後、銀メッキする方法が挙げられる。このような方法によれば、シリカ粒子の表面を効率的に被覆できる。 Examples of methods for coating the surface of the silica particles with silver include vapor deposition, sputtering, electroplating, displacement plating, and electroless plating. These methods can be performed in combination. Among these methods, the electroless plating method is preferable because the surface of the silica particles can be uniformly coated. As a specific coating method, for example, a method of activation by palladium, nickel plating, and then silver plating can be mentioned. According to such a method, the surface of the silica particles can be efficiently coated.
 銀被覆シリカ粒子のアスペクト比が1.0~1.2である場合、導電性樹脂組成物中に銀被覆シリカ粒子を高充填でき、これにより体積抵抗率を低下させることができる。また、銀被覆シリカ粒子のアスペクト比が1.0~1.2である場合、導電性樹脂組成物における銀被覆シリカ粒子の含有量が多い場合でも、粘度の上昇が抑制されて作業性が良好になる。なお、本明細書におけるアスペクト比は、(粒子の最大長径/最大長径に直交する幅)により求められる。 When the aspect ratio of the silver-coated silica particles is 1.0 to 1.2, the conductive resin composition can be highly filled with silver-coated silica particles, thereby reducing the volume resistivity. In addition, when the silver-coated silica particles have an aspect ratio of 1.0 to 1.2, workability is good because the increase in viscosity is suppressed even when the content of the silver-coated silica particles in the conductive resin composition is large. become. In addition, the aspect ratio in this specification is calculated | required by (the width | variety orthogonal to the largest long diameter / maximum long diameter of particle | grains).
 銀被覆シリカ粒子の比表面積が0.3~5.0m/gである場合、導電性樹脂組成物の作業性が良好になるとともに、体積抵抗率も低下する。すなわち、比表面積が0.3m/g以上の場合、作業性が良好になる。例えば、ニードル径0.3mmのシリンジでディスペンスした場合でも、液ダレや糸引きが抑制されて作業性が良好になる。比表面積が5.0m/g以下の場合、粘度、チキソ性が低下して作業性が良好になる。また、比表面積が5.0m/g以下の場合、シリカ粒子の量に対してこれを被覆する銀の量を少なくできるために銀被覆シリカ粒子の比重を小さくでき、銀被覆シリカ粒子の沈降を抑制できる。また、比表面積が5.0m/g以下の場合、銀の量が同じであれば被覆面積が小さくなることから銀の被覆が厚くなりやすく、これにより体積抵抗率を低下できる。なお、比表面積は、ガス吸着法により測定される。 When the specific surface area of the silver-coated silica particles is 0.3 to 5.0 m 2 / g, the workability of the conductive resin composition is improved and the volume resistivity is also reduced. That is, when the specific surface area is 0.3 m 2 / g or more, workability is improved. For example, even when dispensing with a syringe having a needle diameter of 0.3 mm, sag and stringing are suppressed, and workability is improved. When the specific surface area is 5.0 m 2 / g or less, the viscosity and the thixotropy are lowered and the workability is improved. Moreover, when the specific surface area is 5.0 m 2 / g or less, the specific gravity of the silver-coated silica particles can be reduced because the amount of silver covering the silica particles can be reduced, so that the silver-coated silica particles settle. Can be suppressed. In addition, when the specific surface area is 5.0 m 2 / g or less, if the amount of silver is the same, the coating area becomes small, and thus the silver coating tends to be thick, thereby reducing the volume resistivity. The specific surface area is measured by a gas adsorption method.
 銀被覆シリカ粒子のD50が1~10μmの場合、導電性樹脂組成物の作業性が良好になる。すなわち、D50が1μm以上の場合、導電性樹脂組成物の粘度が低下するために作業性が良好になる。D50が10μm以下の場合、例えば、ニードル径0.3mmのシリンジでディスペンスした場合でも、シリンジ先端におけるノズル詰まりが抑制されて塗布不良が発生しにくくなり、作業性が良好になる。 When the D 50 of the silver-coated silica particles is 1 to 10 μm, the workability of the conductive resin composition is improved. That is, if the D 50 is equal to or greater than 1 [mu] m, workability since the viscosity of the conductive resin composition is lowered is improved. If D 50 is 10μm or less, for example, even when dispensed using a syringe needle diameter 0.3 mm, nozzle clogging is suppressed hardly poor coating occurs in the syringe tip, the workability becomes good.
 銀被覆シリカ粒子の比D50/D10が1.5~5.0の場合、導電性樹脂組成物の導電性や接着性が良好になる。例えば、比D50/D10が5.0以下の場合、微粉の割合が低いために、銀により被覆すべき面積が小さくなる。これにより、銀の被覆を厚くしやすく、体積抵抗率を低下させやすい。また、比D50/D10が5.0以下の場合、微粉の割合が低いために、銀被覆シリカ粒子の被覆に利用される熱硬化性樹脂の量が少なくなることから、支持部材と導電性樹脂組成物との界面、半導体素子と導電性樹脂組成物との界面における熱硬化性樹脂の量が増加して接着性が良好になる。 When the ratio D 50 / D 10 of the silver-coated silica particles is 1.5 to 5.0, the conductivity and adhesiveness of the conductive resin composition are improved. For example, when the ratio D 50 / D 10 is 5.0 or less, the area to be covered with silver is small because the proportion of fine powder is low. Thereby, it is easy to increase the thickness of the silver coating and to reduce the volume resistivity. In addition, when the ratio D 50 / D 10 is 5.0 or less, since the proportion of fine powder is low, the amount of the thermosetting resin used for coating the silver-coated silica particles is reduced, so that the support member and the conductive member are electrically conductive. The amount of the thermosetting resin at the interface with the conductive resin composition and at the interface between the semiconductor element and the conductive resin composition is increased, and the adhesiveness is improved.
 銀被覆シリカ粒子の最大粒径が40μm以下の場合、半導体素子と支持部材とを接着したときの半導体素子の傾きが抑制される。例えば、半導体素子と支持部材とを導電性樹脂組成物を介して接着した場合、半導体素子と支持部材との間の導電性樹脂組成物の厚さは10~30μmになる。このとき、粒径が40μmを超えるような銀被覆シリカ粒子が存在すると半導体素子が傾きやすい。また、銀被覆シリカ粒子の最大粒径が40μm以下の場合、ニードル径0.3mmのシリンジでディスペンスしても、シリンジ先端におけるノズル詰まりが抑制される。 When the maximum particle diameter of the silver-coated silica particles is 40 μm or less, the inclination of the semiconductor element when the semiconductor element and the support member are bonded is suppressed. For example, when the semiconductor element and the support member are bonded via the conductive resin composition, the thickness of the conductive resin composition between the semiconductor element and the support member is 10 to 30 μm. At this time, if silver-coated silica particles having a particle size exceeding 40 μm are present, the semiconductor element tends to tilt. When the maximum particle size of the silver-coated silica particles is 40 μm or less, nozzle clogging at the tip of the syringe is suppressed even when dispensing with a syringe having a needle diameter of 0.3 mm.
 銀被覆シリカ粒子の比重は、2.4~3.6が好ましい。比重が2.4~3.6の場合、導電性樹脂組成物の分散性や導電性が良好になる。すなわち、比重が2.4以上の場合、銀被覆シリカ粒子における銀の被覆が十分な厚さになりやすく、これにより導電性樹脂組成物の導電性が良好になりやすい。比重が3.6以下の場合、導電性樹脂組成物中における銀被覆シリカ粒子の沈降が抑制され、銀被覆シリカ粒子が均一に分散されたものとなる。比重は、2.7~3.3がより好ましい。 The specific gravity of the silver-coated silica particles is preferably 2.4 to 3.6. When the specific gravity is 2.4 to 3.6, the dispersibility and conductivity of the conductive resin composition are improved. That is, when the specific gravity is 2.4 or more, the silver coating on the silver-coated silica particles tends to have a sufficient thickness, and thereby the conductivity of the conductive resin composition tends to be good. When the specific gravity is 3.6 or less, precipitation of the silver-coated silica particles in the conductive resin composition is suppressed, and the silver-coated silica particles are uniformly dispersed. The specific gravity is more preferably 2.7 to 3.3.
 銀被覆シリカ粒子の表面は、シランカップリング剤により被覆されていることが好ましい。銀被覆シリカ粒子の表面がシランカップリング剤により被覆されている場合、銀被覆シリカ粒子と熱硬化性樹脂との密着性や相溶性が向上して、導電性樹脂組成物の接着性が良好になる。 The surface of the silver-coated silica particles is preferably coated with a silane coupling agent. When the surface of the silver-coated silica particles is coated with a silane coupling agent, the adhesion and compatibility between the silver-coated silica particles and the thermosetting resin is improved, and the adhesiveness of the conductive resin composition is improved. Become.
 銀被覆シリカ粒子の表面をシランカップリング剤により被覆する場合、銀被覆シリカ粒子の表面を脂肪酸または脂肪酸塩で処理した後、最表面をシランカップリング剤で処理することが好ましい。このように、脂肪酸または脂肪酸塩で処理した後、シランカップリング剤により処理することにより、銀被覆シリカ粒子と熱硬化性樹脂との密着性や相溶性が向上して、導電性樹脂組成物の接着性が良好になる。 When the surface of the silver-coated silica particles is coated with a silane coupling agent, it is preferable to treat the surface of the silver-coated silica particles with a fatty acid or a fatty acid salt and then treat the outermost surface with a silane coupling agent. Thus, after processing with a fatty acid or a fatty acid salt, the adhesion and compatibility between the silver-coated silica particles and the thermosetting resin are improved by processing with a silane coupling agent. Good adhesion.
 シランカップリング剤による被覆の方法としては、湿式法、乾式法のいずれでもよい。例えば、シリカ粒子の表面を銀で被覆するときのメッキ液にシランカップリング剤を添加する方法、銀被覆シリカ粒子の表面に気相反応によりシランカップリング剤を被覆する方法、アルコール、石油系溶剤等の溶媒にシランカップリング剤を添加した溶液に銀被覆シリカ粒子を浸漬する方法、上記溶液を銀被覆シリカ粒子に噴霧する方法等が挙げられる。 The method of coating with the silane coupling agent may be either a wet method or a dry method. For example, a method of adding a silane coupling agent to the plating solution when the surface of silica particles is coated with silver, a method of coating the surface of silver-coated silica particles with a silane coupling agent by a gas phase reaction, alcohol, petroleum solvent Examples include a method of immersing silver-coated silica particles in a solution obtained by adding a silane coupling agent to a solvent such as the above, a method of spraying the above solution onto silver-coated silica particles, and the like.
 シランカップリング剤としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド等が挙げられる。これらのシランカップリング剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。熱硬化性樹脂、特に、エポキシ樹脂との相溶性や反応性の観点から、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、メチルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィドが好ましい。 Examples of silane coupling agents include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, N- 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3 -Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-mercaptopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, methyl Trimethoxysilane, bis ( Li) tetrasulfide, and the like. These silane coupling agents may be used alone or in a combination of two or more. From the viewpoint of compatibility and reactivity with thermosetting resins, particularly epoxy resins, 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, Methyltrimethoxysilane and bis (triethoxysilylpropyl) tetrasulfide are preferred.
 銀被覆シリカ粒子の表面は、シランカップリング剤により被覆する代わりに、脂肪酸または脂肪酸塩により被覆してもよい。銀被覆シリカ粒子の表面が脂肪酸または脂肪酸塩により被覆されている場合、銀被覆シリカ粒子の分散性や相溶性が向上し、また銀被覆シリカ粒子同士の凝集が抑制される。これにより、導電性樹脂組成物の接着性が良好になる。 The surface of the silver-coated silica particles may be coated with a fatty acid or a fatty acid salt instead of coating with a silane coupling agent. When the surface of the silver-coated silica particles is coated with a fatty acid or a fatty acid salt, the dispersibility and compatibility of the silver-coated silica particles are improved, and aggregation of the silver-coated silica particles is suppressed. Thereby, the adhesiveness of a conductive resin composition becomes favorable.
 脂肪酸または脂肪酸塩による被覆の方法としては、湿式法、乾式法のいずれでもよい。例えば、シリカ粒子の表面を銀で被覆するときのメッキ液に脂肪酸または脂肪酸塩を添加する方法、銀被覆シリカ粒子の表面に気相反応により脂肪酸または脂肪酸塩を被覆する方法、アルコール、石油系溶剤等の溶媒に脂肪酸または脂肪酸塩を添加した溶液に銀被覆シリカ粒子を浸漬する方法、上記溶液を銀被覆シリカ粒子に噴霧する方法等が挙げられる。 As a method of coating with a fatty acid or a fatty acid salt, either a wet method or a dry method may be used. For example, a method of adding a fatty acid or a fatty acid salt to the plating solution when the surface of the silica particles is coated with silver, a method of coating the surface of the silver-coated silica particles with a fatty acid or a fatty acid salt by a gas phase reaction, alcohol, petroleum-based solvent Examples include a method of immersing silver-coated silica particles in a solution obtained by adding a fatty acid or a fatty acid salt to a solvent such as the above, and a method of spraying the above solution onto silver-coated silica particles.
 脂肪酸または脂肪酸塩としては、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸、べへン酸、プロピオン酸、カプリル酸、アクリル酸、ベンゾトリアゾール、およびこれらの塩等が挙げられる。これらの脂肪酸または脂肪酸塩は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。これらの中でも、熱硬化性樹脂との相溶性、導電性樹脂組成物の作業性の観点から、ミリスチン酸、オレイン酸、ステアリン酸、およびパルミチン酸から選ばれる少なくとも1種を使用することが好ましい。特に、エポキシ樹脂との相溶性等の観点から、ミリスチン酸を使用することが好ましい。 Examples of fatty acids or fatty acid salts include lauric acid, myristic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, propionic acid, caprylic acid Acrylic acid, benzotriazole, and salts thereof. These fatty acids or fatty acid salts may be used alone or in a combination of two or more. Among these, it is preferable to use at least one selected from myristic acid, oleic acid, stearic acid, and palmitic acid from the viewpoint of compatibility with the thermosetting resin and workability of the conductive resin composition. In particular, myristic acid is preferably used from the viewpoint of compatibility with an epoxy resin.
 銀被覆シリカ粒子の含有量は、導電性樹脂組成物中、35~90質量%である。銀被覆シリカ粒子の含有量が35~90質量%の場合、導電性樹脂組成物の導電性、接着性、作業性が良好になる。すなわち、銀被覆シリカ粒子の含有量が35質量%以上の場合、導電性樹脂組成物の導電性が良好になる。また、銀被覆シリカ粒子の含有量が90質量%以下の場合、導電性樹脂組成物の接着性や作業性が良好になり、導電性樹脂組成物の製造コストも低下する。銀被覆シリカ粒子の含有量は、40~80質量%が好ましい。 The content of silver-coated silica particles is 35 to 90% by mass in the conductive resin composition. When the content of the silver-coated silica particles is 35 to 90% by mass, the conductivity, adhesion and workability of the conductive resin composition are improved. That is, when the content of the silver-coated silica particles is 35% by mass or more, the conductivity of the conductive resin composition is improved. Moreover, when content of a silver covering silica particle is 90 mass% or less, the adhesiveness and workability | operativity of a conductive resin composition become favorable, and the manufacturing cost of a conductive resin composition also falls. The content of silver-coated silica particles is preferably 40 to 80% by mass.
 導電性樹脂組成物は、銀被覆シリカ粒子とともに、銀被覆シリカ粒子以外の充填材を含有してもよい。銀被覆シリカ粒子以外の充填材としては、導電性粒子、非導電性粒子のいずれでもよい。 The conductive resin composition may contain a filler other than the silver-coated silica particles together with the silver-coated silica particles. As the filler other than the silver-coated silica particles, either conductive particles or non-conductive particles may be used.
 導電性樹脂組成物に含有される導電性粒子としては、銀粒子、銅粒子、ニッケル粒子、アルミニウム粒子、銀被覆銅粒子、ナノ銀粒子等が挙げられる。これらの中でも、導電性、作業性の観点から、銀粒子、ナノ銀粒子が好ましい。特に、ナノ銀粒子は、高温での接着性を向上させることから好ましい。 Examples of the conductive particles contained in the conductive resin composition include silver particles, copper particles, nickel particles, aluminum particles, silver-coated copper particles, and nano silver particles. Among these, silver particles and nano silver particles are preferable from the viewpoints of conductivity and workability. In particular, nano silver particles are preferable because they improve adhesiveness at high temperatures.
 銀粒子のD50は、0.5~15μmが好ましい。銀粒子の形状は、フレーク状または不定形状が好ましい。D50が0.5~15μm、形状がフレーク状または不定形状の場合、導電性樹脂組成物の体積抵抗率が低下するために好ましい。 The D 50 of the silver particles is preferably 0.5 to 15 μm. The shape of the silver particles is preferably a flake shape or an indefinite shape. When D 50 is 0.5 to 15 μm and the shape is flaky or irregular, it is preferable because the volume resistivity of the conductive resin composition decreases.
 ナノ銀粒子のD50は、5~300nmが好ましい。ナノ銀粒子の形状は、フレーク状、鱗片状、樹枝状、ロッド状、ワイヤー状、球状、プレート型等が挙げられ、球状またはプレート型が好ましく、プレート型がより好ましい。プレート型の場合、球状に比べて高温での接着性を向上させる効果が大きい。また、プレート型の場合、高温での接着性を向上させる効果に加えて、常温での接着性を向上させる効果もある。ナノ銀粒子の表面には、アミノ基、カルボキシル基等の官能基を含む有機化合物からなる被覆層が設けられることが好ましい。 D 50 of the nanosilver particles is preferably 5 ~ 300 nm. Examples of the shape of the nano silver particles include flake shape, scale shape, dendritic shape, rod shape, wire shape, spherical shape, plate shape, and the like, and a spherical shape or a plate shape is preferable, and a plate shape is more preferable. In the case of a plate type, the effect of improving the adhesiveness at a high temperature is greater than that of a spherical shape. Moreover, in the case of a plate type, in addition to the effect of improving the adhesiveness at high temperature, there is also the effect of improving the adhesiveness at normal temperature. It is preferable that a coating layer made of an organic compound containing a functional group such as an amino group or a carboxyl group is provided on the surface of the nanosilver particle.
 プレート型のナノ銀粒子は、球状のナノ銀粒子と異なり、一つの金属結晶面を大きく成長させたものであり、均一な厚みを有する薄片状の粒子である。プレート型のナノ銀粒子としては、公知のものを使用できる。一般に、プレート型のナノ銀粒子は、厚みが数ナノメートル程度であり、大きさがミクロンオーダーである。プレート型のナノ銀粒子の形状は、三角形板状、六角形板状、切頂三角形板状等が挙げられる。プレート型のナノ銀粒子の表面は、[111]面により広く覆われていることが好ましい。プレート型のナノ銀粒子のD50は、0.3~15μmが好ましい。 Unlike spherical nano silver particles, plate-type nano silver particles are obtained by growing one metal crystal face greatly, and are flaky particles having a uniform thickness. As the plate-type nano silver particles, known ones can be used. In general, plate-type nano silver particles have a thickness of about several nanometers and a size on the order of microns. Examples of the shape of the plate-type nano silver particles include a triangular plate shape, a hexagonal plate shape, and a truncated triangular plate shape. It is preferable that the surface of the plate-type nano silver particle is widely covered with the [111] plane. The D 50 of the plate-type nanosilver particles is preferably 0.3 to 15 μm.
 プレート型のナノ銀粒子の面方向における長辺の長さは、厚みに対して8~150倍が好ましく、10~50倍がより好ましい。また、プレート型のナノ銀粒子の面方向における短辺の長さは、厚みに対して1~100倍が好ましく、3~50倍がより好ましい。面方向の長さが上記範囲内の場合、プレート型のナノ銀粒子が水平方向に配向しやすく、より多くの接点が形成されて導電性が良好になるために好ましい。なお、面方向とは、厚み方向に対して垂直な方向を意味する。 The length of the long side in the plane direction of the plate-type nano silver particles is preferably 8 to 150 times, more preferably 10 to 50 times the thickness. In addition, the length of the short side in the plane direction of the plate-type nano silver particles is preferably 1 to 100 times, more preferably 3 to 50 times the thickness. When the length in the plane direction is within the above range, it is preferable because the plate-type nano silver particles are easily oriented in the horizontal direction, more contacts are formed, and the conductivity is improved. The plane direction means a direction perpendicular to the thickness direction.
 プレート型のナノ銀粒子としては、市販品を使用することができる。このようなものとしては、トクセン工業株式会社製のM612(商品名、 50 :6~12μm、粒子厚み:60~100nm、融点:250℃)、M27(商品名、 50 :2~7μm、粒子厚み:60~100nm、融点:200℃)、M13(商品名、 50 :1~3μm、粒子厚み:40~60nm、融点:200℃)、N300(商品名、 50 :0.3~0.6μm、粒子厚み:50nm以下、融点:150℃)、三ツ星ベルト株式会社製、MDot(商品名、 50 :50nm)、Ag nano Powder-1(比表面積15~20mm/g、≧95wt%)、Ag nano Powder-2(比表面積5~8mm/g、≧98wt%)等が挙げられる。 Commercially available products can be used as the plate-type nano silver particles. Examples of such products include M612 (trade name, D 50 : 6 to 12 μm, particle thickness: 60 to 100 nm, melting point: 250 ° C.), M27 (trade name, D 50 : 2 to 7 μm) manufactured by Toxen Industries, Ltd. Particle thickness: 60 to 100 nm, melting point: 200 ° C., M13 (trade name, D 50 : 1 to 3 μm, particle thickness: 40 to 60 nm, melting point: 200 ° C.), N300 (trade name, D 50 : 0.3 to 0.6 μm, particle thickness: 50 nm or less, melting point: 150 ° C., manufactured by Mitsuboshi Belting Co., Ltd., MDot (trade name, D 50 : 50 nm), Ag nano Powder-1 (specific surface area 15-20 mm 2 / g, ≧ 95 wt) %), Ag nano Powder-2 (specific surface area 5 to 8 mm 2 / g, ≧ 98 wt%), and the like.
 導電性粒子(銀被覆シリカ粒子を除く)を含有させる場合、その含有量は、銀被覆シリカ粒子および導電性粒子の合計中、50質量%以下が好ましく、30質量%以下がより好ましい。また、導電性粒子を含有させる場合、その含有量は、十分な効果を得る観点から、銀被覆シリカ粒子および導電性粒子の合計中、1質量%以上が好ましく、5質量%以上がより好ましい。 In the case where conductive particles (excluding silver-coated silica particles) are contained, the content thereof is preferably 50% by mass or less and more preferably 30% by mass or less in the total of silver-coated silica particles and conductive particles. When the conductive particles are contained, the content is preferably 1% by mass or more and more preferably 5% by mass or more in the total of the silver-coated silica particles and the conductive particles from the viewpoint of obtaining a sufficient effect.
 導電性樹脂組成物に含有される非導電性粒子としては、無機粒子、有機粒子のいずれでもよい。 The nonconductive particles contained in the conductive resin composition may be either inorganic particles or organic particles.
 導電性樹脂組成物に含有される無機粒子としては、シリカ、ヒュームドシリカ、アルミナ、窒化ホウ素、酸化チタン、バリウム、タルク、炭酸カルシウム、水酸化アルミニウム等が挙げられる。これらの中でも、導電性樹脂組成物の作業性や接着性の観点から、シリカまたはヒュームドシリカが好ましい。シリカのD50は、0.5~15μmが好ましい。シリカの形状は、球状が好ましい。ヒュームドシリカの一次粒径D50は、5~300nmが好ましい。ヒュームドシリカの形状は、特に制限されない。ヒュームドシリカを含有する場合、作業性が向上するために好ましい。 Examples of the inorganic particles contained in the conductive resin composition include silica, fumed silica, alumina, boron nitride, titanium oxide, barium, talc, calcium carbonate, and aluminum hydroxide. Among these, silica or fumed silica is preferable from the viewpoint of workability and adhesiveness of the conductive resin composition. The D 50 of silica is preferably 0.5 to 15 μm. The shape of silica is preferably spherical. The primary particle size D 50 of fumed silica is preferably 5 to 300 nm. The shape of fumed silica is not particularly limited. When fumed silica is contained, it is preferable because workability is improved.
 導電性樹脂組成物に含有される有機粒子としては、シリコーンパウダー、架橋重合体等の樹脂粒子が挙げられる。樹脂粒子の形状としては、球状、不定形状等が挙げられるが、分散性の観点から球状が好ましい。 Examples of the organic particles contained in the conductive resin composition include resin particles such as silicone powder and a crosslinked polymer. Examples of the shape of the resin particles include a spherical shape and an indefinite shape, but a spherical shape is preferable from the viewpoint of dispersibility.
 シリコーンパウダーとしては、直鎖状のジメチルポリシロキサンを架橋した構造を有するシリコーンゴムパウダー、シロキサン結合が三次元網目状に架橋した構造を有するポリオルガノシルセスキオキサン硬化物であるシリコーンレジンパウダー、シリコーンゴム粒子の表面をシリコーンレジンで被膜したシリコーン複合パウダー等が挙げられる。これらの中でも、耐熱性および分散性の観点から、シリコーンレジンパウダー、シリコーン複合パウダーが好ましい。 Silicone powder includes silicone rubber powder having a structure in which linear dimethylpolysiloxane is crosslinked, silicone resin powder that is a cured product of polyorganosilsesquioxane having a structure in which siloxane bonds are crosslinked in a three-dimensional network, silicone Examples thereof include a silicone composite powder in which the surface of rubber particles is coated with a silicone resin. Among these, silicone resin powder and silicone composite powder are preferable from the viewpoint of heat resistance and dispersibility.
 シリコーンパウダーとしては、市販品を使用することができる。このようなものとしては、信越化学工業社製のシリコーン複合パウダー(KMP-600、KMP-601、KMP-602、KMP-605、X-52-7030等)、シリコーンゴムパウダー(KMP-597、KMP-598、KMP-594、X-52-875等)、シリコーンレジンパウダー(KMP-590、KMP-701、X-52-854、X-52-1621等)が挙げられる。これらのシリコーンパウダーは、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 Commercially available products can be used as the silicone powder. Examples of such materials include silicone composite powders (KMP-600, KMP-601, KMP-602, KMP-605, X-52-7030, etc.) manufactured by Shin-Etsu Chemical Co., Ltd., silicone rubber powders (KMP-597, KMP). -598, KMP-594, X-52-875, etc.) and silicone resin powder (KMP-590, KMP-701, X-52-854, X-52-1621, etc.). These silicone powders may be used alone or in a combination of two or more.
 架橋重合体としては、ジビニルベンゼン架橋重合体、メタクリル酸メチル樹脂(PMMA)、メタクリル酸エチル樹脂(PEMA)、メタクリル酸ブチル樹脂(PBMA)、メタクリル酸メチル-メタクリル酸エチル共重合体およびこれらの混合物等が挙げられる。これらの中でも、耐熱性、安定性に優れることから、ジビニルベンゼン架橋重合体、メタクリル酸メチル樹脂が好ましい。 Examples of the crosslinked polymer include divinylbenzene crosslinked polymer, methyl methacrylate resin (PMMA), ethyl methacrylate resin (PEMA), butyl methacrylate resin (PBMA), methyl methacrylate-ethyl methacrylate copolymer, and mixtures thereof. Etc. Among these, a divinylbenzene crosslinked polymer and a methyl methacrylate resin are preferable because of excellent heat resistance and stability.
 有機粒子の平均粒子径は、0.5~40μmが好ましい。有機粒子の平均粒子径が0.5~40μmの場合、導電性樹脂組成物の応力が緩和され、耐リフロー性、耐熱衝撃性等が良好になる。有機粒子の平均粒子径は、0.8~20μmがより好ましく、0.8~10μmがさらに好ましく、0.8~5μmが特に好ましい。 The average particle diameter of the organic particles is preferably 0.5 to 40 μm. When the average particle diameter of the organic particles is 0.5 to 40 μm, the stress of the conductive resin composition is relaxed, and the reflow resistance, the thermal shock resistance, etc. are improved. The average particle size of the organic particles is more preferably 0.8 to 20 μm, further preferably 0.8 to 10 μm, and particularly preferably 0.8 to 5 μm.
 なお、上記した無機粒子および有機粒子の表面には、金、銀等の金属を被覆して、導電性粒子として使用することもできる。 In addition, the surface of the above-mentioned inorganic particles and organic particles can be used as conductive particles by coating a metal such as gold or silver.
 非導電性粒子を含有させる場合、その含有量は、充填材の全体中、50質量%以下が好ましく、30質量%以下がより好ましい。ここで、充填材とは、銀被覆シリカ粒子、導電性粒子、および非導電性粒子を意味する。また、非導電性粒子を含有させる場合、その含有量は、十分な効果を得る観点から、充填材の全体中、1質量%以上が好ましく、3質量%以上がより好ましい。 When the non-conductive particles are contained, the content thereof is preferably 50% by mass or less and more preferably 30% by mass or less in the whole filler. Here, the filler means silver-coated silica particles, conductive particles, and non-conductive particles. Moreover, when it contains nonelectroconductive particle, the content is 1 mass% or more in the whole filler from a viewpoint of obtaining sufficient effect, and 3 mass% or more is more preferable.
 (B)成分の熱硬化性樹脂としては、接着用途等に使用されるものを好適に使用できる。熱硬化性樹脂は、常温(25℃)において液状であることが好ましい。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂、キシレン樹脂、ブタジエン樹脂、マレイミド樹脂、シアネート樹脂、ラジカル重合性のアクリル樹脂等が挙げられる。これらの熱硬化性樹脂は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。これらの中でも、エポキシ樹脂、アクリル樹脂、およびマレイミド樹脂から選ばれる少なくとも1種を含有することが好ましい。 (B) As a thermosetting resin of a component, what is used for an adhesive use etc. can be used conveniently. The thermosetting resin is preferably liquid at normal temperature (25 ° C.). Examples of the thermosetting resin include epoxy resins, phenol resins, unsaturated polyester resins, polyimide resins, silicone resins, polyurethane resins, xylene resins, butadiene resins, maleimide resins, cyanate resins, radical polymerizable acrylic resins, and the like. These thermosetting resins may be used individually by 1 type, and 2 or more types may be mixed and used for them. Among these, it is preferable to contain at least one selected from an epoxy resin, an acrylic resin, and a maleimide resin.
 エポキシ樹脂としては、1分子中に2個以上のグリシジル基を有するものを使用できる。このようなものとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、エーテルまたはポリエーテル型エポキシ樹脂、エステルまたはポリエステルエポキシ樹脂、ウレタン型エポキシ樹脂、多官能型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、水添型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、エチレンオキサイド変性ビスフェノールA型エポキシ樹脂、プロピレンオキサイド変性ビスフェノールA型エポキシ樹脂、グリシジル変性ポリプタジエン樹脂、グリシジル変性トリアジン樹脂、シリコーン変性エポキシ樹脂、アミノフェノール型エポキシ樹脂、可とう性エポキシ樹脂、メタクリル変性エポキシ樹脂、アクリル変性エポキシ樹脂、特殊変性エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、側鎖水酸基アルキル変性エポキシ樹脂、長鎖アルキル変性エポキシ樹脂、イミド変性エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。なお、エポキシ樹脂は、これらのものに限定されない。 As the epoxy resin, one having two or more glycidyl groups in one molecule can be used. Such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, novolac type epoxy resin, ether or polyether type epoxy resin, ester or polyester epoxy resin, urethane type epoxy resin, polyfunctional Type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, hydrogenated epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, ethylene oxide modified bisphenol A type epoxy resin, propylene oxide modified bisphenol A type epoxy resin, glycidyl Modified polyptadiene resin, glycidyl modified triazine resin, silicone modified epoxy resin, aminophenol type epoxy resin, flexible epoxy resin, methacrylic modified epoxy resin, resin Lil modified epoxy resin, special modified epoxy resin, dicyclopentadiene type epoxy resin, side chain hydroxyl alkyl-modified epoxy resins, long-chain alkyl-modified epoxy resins, imide-modified epoxy resins, CTBN modified epoxy resins or the like. The epoxy resin is not limited to these.
 エポキシ樹脂は、常温において液状であることが好ましい。なお、常温において固体状のエポキシ樹脂でも、液状のエポキシ樹脂、反応性希釈剤、溶剤等で希釈することにより、液状にして使用できる。液状のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、1,6-ヘキサンジオールジグリシジルエーテル、4,4‘-イソプロピリデンジシクロヘキサノールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、可とう性エポキシ樹脂が好ましい。これらの中でも、良好な接着強度が得られることから、可とう性エポキシ樹脂が好ましい。 The epoxy resin is preferably liquid at normal temperature. Note that an epoxy resin that is solid at room temperature can be used in a liquid state by diluting with a liquid epoxy resin, a reactive diluent, a solvent, or the like. Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, 1,6-hexanediol diglycidyl ether, 4,4′-isopropylidenedicyclohexanol diglycidyl ether, 1,4-cyclohexanedimethanol Diglycidyl ether, 1,4-butanediol diglycidyl ether, and a flexible epoxy resin are preferred. Among these, a flexible epoxy resin is preferable because good adhesive strength can be obtained.
 可とう性エポキシ樹脂としては、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、炭素数2~9(好ましくは2~4)のアルキレン基を含むポリオキシアルキレングリコールやポリテトラメチレンエーテルグリコール等を含む長鎖ポリオールのポリグリシジルエーテル、グリシジル(メタ)アクリレートとエチレン、酢酸ビニルもしくは(メタ)アクリル酸エステル等のラジカル重合性モノマーとの共重合体、共役ジエン化合物の(共)重合体またはその部分水添物の(共)重合体における不飽和炭素結合をエポキシ化したもの、エポキシ基を有するポリエステル樹脂、ウレタン結合やポリカプロラクトン結合を導入したウレタン変性エポキシやポリカプロラクトン変性エポキシ樹脂、ダイマー酸またはその誘導体の分子内にエポキシ基を導入したダイマー酸変性エポキシ樹脂、NBR、CTBN、ポリブタジエン、アクリルゴム等のゴム成分の分子内にエポキシ基を導入したゴム変性エポキシ樹脂等が挙げられる。 Examples of the flexible epoxy resin include diglycidyl ether of polyethylene glycol, diglycidyl ether of polypropylene glycol, polyoxyalkylene glycol and polytetramethylene ether glycol containing an alkylene group having 2 to 9 carbon atoms (preferably 2 to 4 carbon atoms), etc. A long chain polyol polyglycidyl ether, a copolymer of glycidyl (meth) acrylate and a radically polymerizable monomer such as ethylene, vinyl acetate or (meth) acrylic acid ester, a (co) polymer of a conjugated diene compound or its Epoxidized unsaturated carbon bond in partially hydrogenated (co) polymer, polyester resin having epoxy group, urethane modified epoxy or polycaprolactone modified epoxy resin with urethane bond or polycaprolactone bond introduced Dimer acid or dimer acid-modified epoxy resin obtained by introducing an epoxy group in the molecule of its derivatives, NBR, CTBN, polybutadiene, and a rubber-modified epoxy resin obtained by introducing a molecular epoxy group in a rubber component such as acrylic rubber.
 可とう性エポキシ樹脂としては、下記式(1)で表される可とう性エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Aは炭素数6~14の2価の脂肪族炭化水素基であり、Bは-CH-または-C(CH-であり、Arは脂肪族炭化水素置換または無置換のフェニレン基であり、nは1~10の整数である。)
As a flexible epoxy resin, the flexible epoxy resin represented by following formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
(In the formula, A is a divalent aliphatic hydrocarbon group having 6 to 14 carbon atoms, B is —CH 2 — or —C (CH 3 ) 2 —, and Ar is an aliphatic hydrocarbon substituted or non-substituted group. A substituted phenylene group, and n is an integer of 1 to 10.)
 式(1)で表される可とう性エポキシ樹脂としては、市販品を使用することができる。このようなものとしては、ジャパンエポキシレジン社製YL7175-500(エポキシ当量487)、YL7150-1000(エポキシ当量1000)、ビスフェノールA型変成エポキシ樹脂であるDIC社製EP-4003S(エポキシ当量412)、EP-4000S(エポキシ当量260)等が挙げられる。 A commercially available product can be used as the flexible epoxy resin represented by the formula (1). As such, YL7175-500 (epoxy equivalent 487) manufactured by Japan Epoxy Resin, YL7150-1000 (epoxy equivalent 1000), EP-4003S (epoxy equivalent 412) manufactured by DIC, which is a bisphenol A modified epoxy resin, EP-4000S (epoxy equivalent 260) and the like.
 アクリル樹脂は、分子内に(メタ)アクリロイル基を有する化合物であり、(メタ)アクリロイル基が反応することにより3次元的網目構造を形成して硬化する。(メタ)アクリロイル基は分子内に1つ以上含まれていることが好ましい。 The acrylic resin is a compound having a (meth) acryloyl group in the molecule, and is cured by forming a three-dimensional network structure by the reaction of the (meth) acryloyl group. It is preferable that one or more (meth) acryloyl groups are contained in the molecule.
 アクリル樹脂としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,2-シクロヘキサンジオールモノ(メタ)アクリレート、1,3-シクロヘキサンジオールモノ(メタ)アクリレート、1,4-シクロヘキサンジオールモノ(メタ)アクリレート、1,2-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、1,2-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,3-シクロヘキサンジエタノールモノ(メタ)アクリレート、1,4-シクロヘキサンジエタノールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレートやこれら水酸基を有する(メタ)アクリレートとジカルボン酸またはその誘導体を反応して得られるカルボキシ基を有する(メタ)アクリレート等が挙げられる。ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、およびこれらの誘導体等が挙げられる。 Acrylic resins include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 1,2-cyclohexanediol mono (meth) acrylate, 1,3-cyclohexanediol mono (meth) acrylate, 1,4-cyclohexanediol mono (meth) acrylate, 1,2-cyclohexane Dimethanol mono (meth) acrylate, 1,3-cyclohexanedimethanol mono (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 1,2-cyclohexanediethanol mono (Meth) acrylate, 1,3-cyclohexanediethanol mono (meth) acrylate, 1,4-cyclohexanediethanol mono (meth) acrylate, glycerin mono (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane mono (meth) acrylate , Having a hydroxyl group such as trimethylolpropane di (meth) acrylate, pentaerythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate (meth) Examples include acrylates and (meth) acrylates having a carboxy group obtained by reacting these (meth) acrylates having a hydroxyl group with a dicarboxylic acid or a derivative thereof. That. Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, And derivatives thereof.
 さらに、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アタリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコール(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3-テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4-ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリアルキレングリコールモノ(メタ)アクリレート、オクトキシポリアルキレングリコールモノ(メタ)アクリレート、ラウロキシポリアルキレングリコールモノ(メタ)アクリレート、ステアロキシポリアルキレングリコールモノ(メタ)アクリレート、アリロキシポリアルキレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリアルキレングリコールモノ(メタ)アクリレート、アクリロイルモルフォリン、ヒドロキシエチルアクリルアミド、N,N’-メチレンビス(メタ)アクリルアミド、N,N’-エチレンビス(メタ)アクリルアミド、1,2-ジ(メタ)アクリルアミドエチレングリコール、ジ(メタ)アクリロイロキシメチルトリシクロデカン、N-(メタ)アクリロイロキシエチルマレイミド、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイロキシエチルフタルイミド、n-ビニル-2-ピロリドン、スチレン誘導体、α-メチルスチレン誘導体等を使用することもできる。 Further, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (Meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isoamyl (meth) acrylate, isostearyl (meth) acrylate, behenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, other alkyl (meth) Acrylate, cyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl ( Acrylate), isobornyl (meth) acrylate, glycidyl (meth) acrylate, trimethylolpropane tri (meth) acrylate, zinc mono (meth) acrylate, zinc di (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) Acrylate, neopentyl glycol (meth) acrylate, trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 2,2,3,3,4,4-hexafluorobutyl ( (Meth) acrylate, perfluorooctyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butyl Diol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,10-decanediol di ( (Meth) acrylate, tetramethylene glycol di (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxypolyalkylene glycol mono (meth) acrylate, octoxypolyalkylene glycol mono (Meth) acrylate, Lauroxy polyalkylene glycol mono (meth) acrylate, Stearoxy polyalkylene glycol mono (meth) acrylate, Allyloxy polyalkylene glycol Mono (meth) acrylate, nonylphenoxypolyalkylene glycol mono (meth) acrylate, acryloylmorpholine, hydroxyethylacrylamide, N, N'-methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, 1, 2-di (meth) acrylamide ethylene glycol, di (meth) acryloyloxymethyltricyclodecane, N- (meth) acryloyloxyethylmaleimide, N- (meth) acryloyloxyethyl hexahydrophthalimide, N- (meta ) Acryloxyethyl phthalimide, n-vinyl-2-pyrrolidone, styrene derivatives, α-methylstyrene derivatives, etc. can also be used.
 また、特に好ましいアクリル樹脂としては、分子量が100~10000のポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレートで(メタ)アクリル基を有する化合物、ヒドロキシル基を有する(メタ)アクリレート、ヒドロキシル基を有する(メタ)アクリルアミド等が挙げられる。 Particularly preferred acrylic resins include polyethers, polyesters, polycarbonates, poly (meth) acrylates having a (meth) acrylic group, (meth) acrylates having a hydroxyl group, and hydroxyl groups having a molecular weight of 100 to 10,000. (Meth) acrylamide etc. are mentioned.
 ここで、ポリエーテル骨格としては、炭素数が1~6の有機基がエーテル結合を介して繰り返したものが好ましく、芳香族環を含まないものが好ましい。ポリエーテルで(メタ)アクリル基を有する化合物は、ポリエーテルポリオールと(メタ)アクリル酸またはその誘導体との反応により得ることが可能である。 Here, the polyether skeleton is preferably one in which an organic group having 1 to 6 carbon atoms is repeated via an ether bond, and preferably does not contain an aromatic ring. A compound having a (meth) acrylic group in a polyether can be obtained by a reaction between a polyether polyol and (meth) acrylic acid or a derivative thereof.
 ポリエステル骨格としては、炭素数が1~6の有機基がエステル結合を介して繰り返したものが好ましく、芳香族環を含まないものが好ましい。ポリエステルで(メタ)アクリル基を有する化合物は、ポリエステルポリオールと(メタ)アクリル酸またはその誘導体との反応により得ることが可能である。 As the polyester skeleton, those in which an organic group having 1 to 6 carbon atoms is repeated via an ester bond are preferable, and those having no aromatic ring are preferable. A compound having a (meth) acrylic group in polyester can be obtained by a reaction between a polyester polyol and (meth) acrylic acid or a derivative thereof.
 ポリカーボネート骨格としては、炭素数が1~6の有機基がカーボネート結合を介して繰り返したものが好ましく、芳香族環を含まないものが好ましい。ポリカーボネートで(メタ)アクリル基を有する化合物は、ポリカーボネートポリオールと(メタ)アクリル酸またはその誘導体との反応により得ることが可能である。 The polycarbonate skeleton is preferably one in which an organic group having 1 to 6 carbon atoms is repeated via a carbonate bond, and preferably does not contain an aromatic ring. A compound having a (meth) acrylic group in polycarbonate can be obtained by a reaction between a polycarbonate polyol and (meth) acrylic acid or a derivative thereof.
 ポリ(メタ)アクリレート骨格としては、(メタ)アクリル酸と(メタ)アクリレートとの共重合体、水酸基を有する(メタ)アクリレートとカルボキシル基、水酸基などの極性基を有さない(メタ)アクリレートとの共重合体、グリシジル基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体等が好ましい。 As a poly (meth) acrylate skeleton, a copolymer of (meth) acrylic acid and (meth) acrylate, a (meth) acrylate having a hydroxyl group and a (meth) acrylate having no polar group such as a carboxyl group and a hydroxyl group; A copolymer of (meth) acrylate having a glycidyl group and a (meth) acrylate having no polar group is preferred.
 上記共重合体は、それぞれ、カルボキシル基が水酸基を有する(メタ)アクリレートあるいはグリシジル基を有する(メタ)アクリレートと反応することにより、水酸基が極性基を有さない(メタ)アクリル酸およびその誘導体と反応することにより、グリシジル基が極性基を有さない(メタ)アクリル酸およびその誘導体と反応することにより、得ることができる。 Each of the above copolymers reacts with (meth) acrylate having a hydroxyl group having a hydroxyl group or (meth) acrylate having a glycidyl group, whereby (meth) acrylic acid having a hydroxyl group having no polar group and a derivative thereof By reacting, the glycidyl group can be obtained by reacting with (meth) acrylic acid having no polar group and its derivative.
 そして、ポリ(メタ)アクリレートで(メタ)アクリル基を有する化合物は、ポリ(メタ)アクリレートポリオールと(メタ)アクリル酸またはその誘導体との反応により得ることができる。 And the compound which has a (meth) acryl group with poly (meth) acrylate can be obtained by reaction of poly (meth) acrylate polyol and (meth) acrylic acid or its derivative.
 ヒドロキシル基を有する、(メタ)アクリレートまたは(メタ)アクリルアミドは、それぞれ1分子中に1個以上の(メタ)アクリル基を有する(メタ)アクリレートまたは(メタ)アクリルアミドであり、かつ、ヒドロキシル基を含有するものである。 The (meth) acrylate or (meth) acrylamide having a hydroxyl group is a (meth) acrylate or (meth) acrylamide having one or more (meth) acryl groups in one molecule, and contains a hydroxyl group. To do.
 ヒドロキシル基を有する(メタ)アクリレートは、ポリオール化合物と(メタ)アクリル酸誘導体との反応により得ることができる。この反応は、公知反応を使用することができ、ポリオール化合物に対し、通常0.5~5倍モルのアクリル酸エステルまたはアクリル酸を使用する。 The (meth) acrylate having a hydroxyl group can be obtained by a reaction between a polyol compound and a (meth) acrylic acid derivative. As this reaction, a known reaction can be used, and usually 0.5 to 5 moles of acrylic acid ester or acrylic acid is used with respect to the polyol compound.
 ヒドロキシル基を有する(メタ)アクリルアミドは、ヒドロキシル基を有するアミン化合物と(メタ)アクリル酸およびその誘導体との反応により得ることができる。(メタ)アクリル酸エステルとアミン化合物とを反応させて(メタ)アクリルアミド類を製造する方法は、(メタ)アクリル酸エステルの二重結合が極めて反応性に富む為に、アミン、シクロペンタジエン、アルコール等を予め二重結合に保護基として付加させ、アミド化終了後加熱して保護基を脱離させ目的物を製造するのが一般的である。 (Meth) acrylamide having a hydroxyl group can be obtained by reaction of an amine compound having a hydroxyl group with (meth) acrylic acid and its derivatives. The method of producing (meth) acrylamides by reacting (meth) acrylic acid esters with amine compounds is based on the fact that the double bonds of (meth) acrylic acid esters are extremely reactive, so amines, cyclopentadiene, alcohols In general, the compound is previously added to the double bond as a protecting group, and after completion of the amidation, the product is heated to remove the protecting group to produce the target product.
 ここで、ヒドロキシル基は脂肪族炭化水素基の水素原子が置換されたアルコール性の基であり、ヒドロキシル基の含有量は、1分子中に1から50個が好ましい。 Here, the hydroxyl group is an alcoholic group in which the hydrogen atom of the aliphatic hydrocarbon group is substituted, and the hydroxyl group content is preferably 1 to 50 in one molecule.
 このようなヒドロキシル基を有するアクリル樹脂化合物としては、例えば、次の式(2)~(5)で示される化合物が挙げられる。 Examples of such an acrylic resin compound having a hydroxyl group include compounds represented by the following formulas (2) to (5).
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子またはメチル基を表し、Rは炭素数1~100の2価の脂肪族炭化水素基または環状構造を持つ脂肪族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a divalent aliphatic hydrocarbon group having 1 to 100 carbon atoms or an aliphatic hydrocarbon group having a cyclic structure.)
Figure JPOXMLDOC01-appb-C000003
(式中、RおよびRはそれぞれ上記と同じものを表す。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 are the same as described above.)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは上記と同じものを表し、nは1~50の整数を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 represents the same as above, and n represents an integer of 1 to 50.)
Figure JPOXMLDOC01-appb-C000005
(式中、Rおよびnはそれぞれ上記と同じものを表す。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 and n each represents the same as above)
 マレイミド樹脂は、1分子内にマレイミド基を1つ以上含み、加熱によりマレイミド基が反応することにより3次元的網目構造を形成して硬化する。マレイミド樹脂としては、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等のビスマレイミド樹脂等が挙げられる。 The maleimide resin contains one or more maleimide groups in one molecule and is cured by forming a three-dimensional network structure by reacting the maleimide groups by heating. Examples of maleimide resins include N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, and 2,2-bis [4- (4-maleimide). And bismaleimide resins such as phenoxy) phenyl] propane.
 マレイミド樹脂としては、ダイマー酸ジアミンと無水マレイン酸の反応により得られる化合物、マレイミド酢酸、マレイミドカプロン酸といったマレイミド化アミノ酸とポリオールの反応により得られる化合物がより好ましい。 The maleimide resin is more preferably a compound obtained by the reaction of a dimer acid diamine and maleic anhydride, or a compound obtained by a reaction of a maleimidated amino acid such as maleimide acetic acid or maleimide caproic acid with a polyol.
 マレイミド樹脂としては、特に、2つのマレイミド基を連結する主鎖に脂肪族炭化水素基を有し、この主鎖が炭素数が1以上の炭化水素基を有することが好ましい。ここで、炭化水素基は、直鎖状、分枝鎖状および環状のいずれの形態でもよく、炭素数が6以上であることが好ましく、炭素数が12以上であることがより好ましく、炭素数が24以上であることが特に好ましい。また、この炭化水素基はマレイミド基に直接結合していることが好ましい。 As the maleimide resin, it is particularly preferable that the main chain connecting two maleimide groups has an aliphatic hydrocarbon group, and this main chain has a hydrocarbon group having 1 or more carbon atoms. Here, the hydrocarbon group may be any of linear, branched and cyclic forms, preferably having 6 or more carbon atoms, more preferably 12 or more carbon atoms, Is particularly preferably 24 or more. The hydrocarbon group is preferably directly bonded to the maleimide group.
 マレイミド樹脂としては、次の式(6)で表される化合物も好適に使用される。
Figure JPOXMLDOC01-appb-C000006
(式中、Qは、炭素数6以上の2価の直鎖状、分枝鎖状、または環状の脂肪族炭化水素基を示し、Pは、2価の原子または有機基であって、O、CO、COO、CH、C(CH、C(CF、S、S、SO、およびSOから選ばれる2価の原子または有機基を少なくとも1つ以上含む基であり、mは1~10の整数を表す。)
As the maleimide resin, a compound represented by the following formula (6) is also preferably used.
Figure JPOXMLDOC01-appb-C000006
(In the formula, Q represents a divalent linear, branched, or cyclic aliphatic hydrocarbon group having 6 or more carbon atoms, P is a divalent atom or an organic group, and A group containing at least one divalent atom or organic group selected from CO, COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S, S 2 , SO, and SO 2 And m represents an integer of 1 to 10.)
 ここで、Pで表される2価の原子は、O、S等が挙げられ、2価の有機基は、CO、COO、CH、C(CH、C(CF、S、SO、SO等、また、これらの原子または有機基を少なくとも1つ以上含む有機基が挙げられる。上記した原子または有機基を含む有機基としては、上記以外の構造として、炭素数1~3の炭化水素基、ベンゼン環、シクロ環、ウレタン結合等を有するものが挙げられ、その場合のPとして次の化学式で表される基が例示できる。
Figure JPOXMLDOC01-appb-C000007
Here, examples of the divalent atom represented by P include O and S, and examples of the divalent organic group include CO, COO, CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , S 2 , SO, SO 2 and the like, and organic groups containing at least one or more of these atoms or organic groups can be mentioned. Examples of the organic group including an atom or an organic group described above include those having a hydrocarbon group having 1 to 3 carbon atoms, a benzene ring, a cyclo ring, a urethane bond, etc. as a structure other than the above. Examples include groups represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000007
 主鎖に脂肪族炭化水素基を有するビスマレイミド樹脂を用いると、耐熱性に優れるとともに、低応力で吸湿後の熱時接着強度の良好な半導体接着用熱硬化型樹脂組成物が得られるため好ましい。 Use of a bismaleimide resin having an aliphatic hydrocarbon group in the main chain is preferable because it provides a thermosetting resin composition for semiconductor adhesion that is excellent in heat resistance and good in heat bond strength after moisture absorption at low stress. .
 このようなマレイミド樹脂の具体例としては、BMI-1500(デジグナーモレキュールズ社製、商品名、分子量:1500)、BMI-1700(デジグナーモレキュールズ社製、商品名、分子量:1700)、等が挙げられる。 Specific examples of such maleimide resins include BMI-1500 (manufactured by Designer Molecules, trade name, molecular weight: 1500), BMI-1700 (manufactured by Diginer Molecules, trade name, molecular weight: 1700). , Etc.
 さらに、マレイミド樹脂は、アリル化ビスフェノールとエピクロルヒドリンの重合物であるアリル化エポキシ樹脂、もしくはヒドロキシ基を含有するアクリル樹脂との併用が特に好ましい。 Furthermore, the maleimide resin is particularly preferably used in combination with an allylated epoxy resin which is a polymer of allylated bisphenol and epichlorohydrin, or an acrylic resin containing a hydroxy group.
 ここで、アリル化ビスフェノールとエピクロルヒドリンの重合物であるアリル化エポキシ樹脂は、例えば、以下のようにして得ることができる。まず、多価フェノール化合物を、メタノール、イソプロパノール、n-プロパノール等のアルコール類やアセトン、メチルエチルケトン等のケトン類等の溶剤に溶解する。その後、水酸化ナトリウムや水酸化カリウム等の塩基を使用して、塩化アリルや臭化アリル等のハロゲン化アリルと反応させて多価フェノール化合物のアリルエーテルを得る。アリル化多価フェノール化合物とエピハロヒドリン類の混合物に触媒として、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を一括添加または徐々に添加しながら、20~120℃で0.5~10時間反応させる。これにより、アリル化エポキシ樹脂を得ることができる。 Here, an allylated epoxy resin which is a polymer of allylated bisphenol and epichlorohydrin can be obtained, for example, as follows. First, the polyhydric phenol compound is dissolved in a solvent such as alcohols such as methanol, isopropanol and n-propanol, and ketones such as acetone and methyl ethyl ketone. Thereafter, a base such as sodium hydroxide or potassium hydroxide is used to react with an allyl halide such as allyl chloride or allyl bromide to obtain an allyl ether of a polyhydric phenol compound. As a catalyst to a mixture of an allylated polyphenol compound and an epihalohydrin, a solid of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added all at once or gradually, at 0.5 to 20 ° C. at 20 to 120 ° C. Let react for 10 hours. Thereby, an allylated epoxy resin can be obtained.
 アリル化エポキシ樹脂は、次式(7)で表される化合物が好適に使用される。
Figure JPOXMLDOC01-appb-C000008
(式中、R~R10は、それぞれ独立に水素原子、置換または無置換のアルキル基および置換または無置換のアリル基から選ばれる基であって、そのうちの少なくとも1つは置換または無置換のアリル基であり、Xは、SO、SO、CH、C(CH、C(CF、O、CO、およびCOOから選ばれる2価の原子または有機基であり、kは0または1である。)
As the allylated epoxy resin, a compound represented by the following formula (7) is preferably used.
Figure JPOXMLDOC01-appb-C000008
Wherein R 3 to R 10 are each independently a group selected from a hydrogen atom, a substituted or unsubstituted alkyl group and a substituted or unsubstituted allyl group, at least one of which is substituted or unsubstituted X is a divalent atom or organic group selected from SO, SO 2 , CH 2 , C (CH 3 ) 2 , C (CF 3 ) 2 , O, CO, and COO; k is 0 or 1.)
 マレイミド樹脂とアリル化エポキシ樹脂を併用する場合、その配合割合は、50/50~95/5が好ましく、より好ましくは65/35~90/10である。 When maleimide resin and allylated epoxy resin are used in combination, the blending ratio is preferably 50/50 to 95/5, more preferably 65/35 to 90/10.
 マレイミド樹脂とアクリル樹脂を併用する場合、その配合割合は、5/95~95/5が好ましい。 When maleimide resin and acrylic resin are used in combination, the blending ratio is preferably 5/95 to 95/5.
 導電性樹脂組成物は、応力緩和性、密着性等の改善を目的として、熱硬化性樹脂以外の樹脂を含有してもよい。このような樹脂としては、アクリル樹脂、ポリエステル樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂、キシレン樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよいし、2種以上を混合して使用してもよい。熱硬化性樹脂以外の樹脂の含有量は、熱硬化性樹脂100質量部に対して、50質量部以下が好ましい。 The conductive resin composition may contain a resin other than the thermosetting resin for the purpose of improving stress relaxation and adhesion. Examples of such resins include acrylic resins, polyester resins, polybutadiene resins, phenol resins, polyimide resins, silicone resins, polyurethane resins, xylene resins, and the like. These resins may be used alone or in combination of two or more. The content of the resin other than the thermosetting resin is preferably 50 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
 (C)成分の硬化剤は、熱硬化性樹脂を硬化させるものであればよく、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。例えば、エポキシ樹脂の硬化剤として、ジシアンジアミド、フェノール樹脂、アミン化合物、潜在性アミン化合物、カチオン化合物、酸無水物、特殊エポキシ硬化剤等が挙げられる。これらの中でも、硬化性、接着性の観点から、ジシアンジアミドおよびフェノール樹脂から選ばれる少なくとも1種を含有することが好ましい。 The curing agent for the component (C) is not particularly limited as long as it cures the thermosetting resin, and one kind may be used alone, or two or more kinds may be mixed and used. Examples of the epoxy resin curing agent include dicyandiamide, phenol resin, amine compound, latent amine compound, cationic compound, acid anhydride, and special epoxy curing agent. Among these, it is preferable to contain at least one selected from dicyandiamide and a phenol resin from the viewpoints of curability and adhesiveness.
 硬化剤の含有量は、熱硬化性樹脂100質量部に対して、0.1~100質量部が好ましい。なお、硬化剤の含有量は、熱硬化性樹脂、硬化剤の種類に応じて、調整することが好ましい。例えば、熱硬化性樹脂がエポキシ樹脂であり、硬化剤がフェノール樹脂である場合、フェノール樹脂の含有量は、エポキシ樹脂100質量部に対して、5~100質量部が好ましく、10~100質量部がより好ましい。また、熱硬化性樹脂がエポキシ樹脂であり、硬化剤がジシアンジアミドである場合、ジシアンジアミドの含有量は、エポキシ樹脂100質量部に対して、0.1~10質量部が好ましい。 The content of the curing agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the thermosetting resin. In addition, it is preferable to adjust content of a hardening | curing agent according to the kind of thermosetting resin and a hardening | curing agent. For example, when the thermosetting resin is an epoxy resin and the curing agent is a phenol resin, the content of the phenol resin is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin. Is more preferable. When the thermosetting resin is an epoxy resin and the curing agent is dicyandiamide, the content of dicyandiamide is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin.
 導電性樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤としては、公知の硬化促進剤を使用できる。例えば、熱硬化性樹脂がエポキシ樹脂である場合、硬化促進剤として、イミダゾール系硬化促進剤、アミン系硬化促進剤、トリフェニルホスフィン系硬化促進剤、ジアザビシクロ系硬化促進剤、ウレア系硬化促進剤、ボレート塩系硬化促進剤、ポリアミド系硬化促進剤等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。これらの中でも、硬化性、接着性の観点から、イミダゾール系硬化促進剤およびアミン系硬化促進剤から選ばれる少なくとも1種を使用することが好ましく、イミダゾール系硬化促進剤を使用することが好ましい。 The conductive resin composition may contain a curing accelerator. A known curing accelerator can be used as the curing accelerator. For example, when the thermosetting resin is an epoxy resin, as a curing accelerator, an imidazole curing accelerator, an amine curing accelerator, a triphenylphosphine curing accelerator, a diazabicyclo curing accelerator, a urea curing accelerator, Examples thereof include a borate salt curing accelerator and a polyamide curing accelerator. These may be used individually by 1 type, and 2 or more types may be mixed and used for them. Among these, it is preferable to use at least 1 sort (s) chosen from an imidazole series hardening accelerator and an amine type hardening accelerator from a viewpoint of sclerosis | hardenability and adhesiveness, and it is preferable to use an imidazole type hardening accelerator.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-n-プロピルイミダゾール、2-ウンデシル-1H-イミダゾール、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-n-propylimidazole, 2-undecyl-1H-imidazole, 2-phenyl-4-methylimidazole (2P4MZ ), 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and the like.
 アミン系硬化促進剤としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族アミン類、ピペリジン、ピベラジン、メンタンジアミン、イソホロンジアミン、1,8-ジアザビシクロ(4.5.0)ウンデセン-7等の脂環式および複素環式アミン類、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、ジアミノジフェニルメタン、m-キシレンジアミン、ピリジン、ピコリン等の芳香族アミン類、エポキシ化合物付加ポリアミン、マイケル付加ポリアミン、マンニッヒ付加ポリアミン、チオ尿素付加ポリアミン、ケトン封鎖ポリアミン等の変性ポリアミン類、ジシアンジアミド、グアニジン、有機酸ヒドラジド、ジアミノマレオニトリル、アミンイミド、三フッ化ホウ素-ピペリジン錯体、三フッ化ホウ素-モノエチルアミン錯体等が挙げられる。硬化性の観点から、イミダゾール系硬化促進剤の2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)がより好ましい。 Examples of the amine curing accelerator include aliphatic amines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, piperidine, piperazine, menthanediamine, isophoronediamine. Alicyclic and heterocyclic amines such as 1,8-diazabicyclo (4.5.0) undecene-7, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, diaminodiphenylmethane, m-xylenediamine , Aromatic amines such as pyridine and picoline, epoxy compound-added polyamines, Michael-added polyamines, Mannich-added polyamines, thiourea-added polyamines, modified polyamines such as ketone-capped polyamines, Dicyandiamide, guanidine, organic acid hydrazide, diaminomaleonitrile, amineimide, boron trifluoride - piperidine complex, boron trifluoride - monoethylamine complexes. From the viewpoint of curability, the imidazole curing accelerators 2-phenyl-4-methylimidazole (2P4MZ), 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ), 2-phenyl-4-methyl-5-hydroxy Methylimidazole (2P4MHZ) is more preferred.
 熱硬化性樹脂がシアネート樹脂の場合、硬化促進剤として、オクチル酸亜鉛、オクチル酸錫、ナフテン酸コバルト、ナフテン酸亜鉛、アセチルアセトン鉄等の有機金属錯体、塩化アルミニウム、塩化錫、塩化亜鉛等の金属塩、トリエチルアミン、ジメチルベンジルアミン等のアミン類等が使用される。これらの硬化促進剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 When the thermosetting resin is a cyanate resin, as a curing accelerator, an organic metal complex such as zinc octylate, tin octylate, cobalt naphthenate, zinc naphthenate, and acetylacetone iron, metal such as aluminum chloride, tin chloride, and zinc chloride Salts, amines such as triethylamine and dimethylbenzylamine are used. One of these curing accelerators may be used alone, or two or more thereof may be mixed and used.
 硬化促進剤を含有させる場合、その含有量は、熱硬化性樹脂の種類によっても異なるが、熱硬化性樹脂100質量部に対して、0.1~10質量部が好ましく、0.1~5.0質量部がより好ましい。 When the curing accelerator is contained, the content varies depending on the type of the thermosetting resin, but is preferably 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. 0.0 part by mass is more preferable.
 導電性樹脂組成物は、さらに、接着助剤を含有してもよい。接着助剤としては、シランカップリング剤等が挙げられる。接着助剤としては、下記式(8)で表される化合物を含有することが好ましい。接着助剤として、式(8)で表される化合物を含有することにより、特に導電性樹脂組成物の高温での接着性や耐リフロー性が良好になる。
Figure JPOXMLDOC01-appb-C000009
(式(8)中、RおよびR’はそれぞれ独立に炭素数1~4のアルキル基であり、A’は酸素原子を間に挟んでもよい炭素数3~12の2価の炭化水素基であり、nは1~3の整数である。)
The conductive resin composition may further contain an adhesion assistant. Examples of the adhesion assistant include silane coupling agents. As an adhesion assistant, it is preferable to contain a compound represented by the following formula (8). By containing the compound represented by Formula (8) as an adhesion assistant, the adhesiveness and reflow resistance at high temperatures of the conductive resin composition are particularly improved.
Figure JPOXMLDOC01-appb-C000009
(In the formula (8), R and R ′ are each independently an alkyl group having 1 to 4 carbon atoms, and A ′ is a divalent hydrocarbon group having 3 to 12 carbon atoms which may have an oxygen atom interposed therebetween. And n is an integer of 1 to 3.)
 R、R’としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられ、両者は互いに同一でも異なってもよい。Rとしては、メチル基、エチル基が好ましい。R’としては、メチル基が好ましい。 Examples of R and R ′ include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group, and these may be the same or different. R is preferably a methyl group or an ethyl group. R ′ is preferably a methyl group.
 A’の2価の炭化水素基としては、炭化水素基、または炭化水素基の中に酸素が介在したエーテル結合(-O-)を有する基等が挙げられる。A’の2価の炭化水素基の炭素数が3以上の場合、接着性、特に、高温での接着性、吸湿後の高温での接着性が良好になる。炭素数が12以下の場合、粘度が低くなり、分散性が良好になる。炭素数は、5~12がより好ましく、7~12がさらに好ましい。炭化水素基としては、アルキレン基が好ましい。エーテル結合を有する基としては、-C12-O-CH-、-C16-O-CH-、-C1020-O-CH-等が好ましい。なお、A’の2価の炭化水素基は、水素原子の1個またはそれ以上が、フッ素原子、塩素原子等のハロゲン原子等で置換されていてもよい。nとしては、2または3が好ましく、3がより好ましい。 Examples of the divalent hydrocarbon group for A ′ include a hydrocarbon group or a group having an ether bond (—O—) in which oxygen is interposed in the hydrocarbon group. When the carbon number of the divalent hydrocarbon group of A ′ is 3 or more, the adhesiveness, particularly the adhesiveness at high temperature and the adhesiveness at high temperature after moisture absorption are improved. When carbon number is 12 or less, a viscosity will become low and a dispersibility will become favorable. The number of carbon atoms is more preferably 5 to 12, and further preferably 7 to 12. As the hydrocarbon group, an alkylene group is preferable. As the group having an ether bond, —C 6 H 12 —O—CH 2 —, —C 8 H 16 —O—CH 2 —, —C 10 H 20 —O—CH 2 — and the like are preferable. In the divalent hydrocarbon group for A ′, one or more hydrogen atoms may be substituted with a halogen atom such as a fluorine atom or a chlorine atom. n is preferably 2 or 3, and more preferably 3.
 導電性樹脂組成物は、さらに、作業性を改善する目的で、例えば、エポキシ樹脂の開環重合に対する反応性を備えた反応性希釈剤を含有できる。反応性希釈剤としては、例えば、n-ブチルグリシジルエーテル、アリルグリシジルエーテル、2-エチルへキシルグリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、グリシジルメタクリレート、t-ブチルフェニルグリシジルエーテル、ジグリシジルエーテル、(ポリ)エチレングリコールグリシジルエーテル、ブタンジオールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。これらのうち、フェニルグリシジルエーテル、t-ブチルフェニルグリシジルエーテルがより好ましい。反応性希釈剤の使用量は、導電性接着剤組成物の粘度(E型粘度計を用い3°コーンの条件で測定した値)が5~200Pa・sの範囲となる範囲が好ましい。 The conductive resin composition can further contain, for example, a reactive diluent having reactivity with respect to ring-opening polymerization of an epoxy resin for the purpose of improving workability. Examples of the reactive diluent include n-butyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, glycidyl methacrylate. T-butylphenyl glycidyl ether, diglycidyl ether, (poly) ethylene glycol glycidyl ether, butanediol glycidyl ether, trimethylolpropane triglycidyl ether, 1,6-hexanediol diglycidyl ether, and the like. These may be used individually by 1 type, and 2 or more types may be mixed and used for them. Of these, phenyl glycidyl ether and t-butylphenyl glycidyl ether are more preferred. The amount of the reactive diluent used is preferably in the range in which the viscosity of the conductive adhesive composition (measured with a 3 ° cone using an E-type viscometer) is in the range of 5 to 200 Pa · s.
 導電性樹脂組成物には、作業性を改善する目的で、上記以外の希釈剤を含有することができる。希釈剤としては、溶剤類、(メタ)アクリレート化合物等を使用できる。 The conductive resin composition may contain a diluent other than the above for the purpose of improving workability. As the diluent, solvents, (meth) acrylate compounds and the like can be used.
 溶剤としては、例えば、ジエチレングリコールジエチルエーテル、n-ブチルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、スチレンオキシド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、ジオキサン、ヘキサン、メチルセロソルブ、シクロヘキサン、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトール、ブチルカルビトールアセテート、ジエチレングリコールジメチルエーテル、ジアセトンアルコール、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、γ-ブチロラクトン、および1,3-ジメチル-2-イミダゾリジノン等が挙げられる。 Examples of the solvent include diethylene glycol diethyl ether, n-butyl glycidyl ether, t-butylphenyl glycidyl ether, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dioxane, hexane, methyl Cellosolve, cyclohexane, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol dimethyl ether, diacetone alcohol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, γ-butyrolactone, and 1,3-dimethyl-2-imidazo Examples include lysinone.
 これらの希釈剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。これらの希釈剤は、導電性樹脂組成物の固形分100質量部に対して、1~20質量部添加することが好ましい。 These diluents may be used alone or in combination of two or more. These diluents are preferably added in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the solid content of the conductive resin composition.
 導電性樹脂組成物は、本発明の趣旨に反しない限度において、上記成分以外の成分を含有できる。このような成分としては、粘度調整剤、消泡剤、着色剤、難燃剤等が挙げられる。 The conductive resin composition can contain components other than the above components as long as not departing from the spirit of the present invention. Examples of such components include viscosity modifiers, antifoaming agents, colorants, flame retardants, and the like.
 粘度調整剤としては、酢酸セロソルブ、エチルセロソルブ、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトールアセテート、プロピレングリコールフェニルエーテル、ジエチレングリコールジメチルエーテル、ジアセトンアルコール等が挙げられる。これらの粘度調整剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 Examples of the viscosity modifier include cellosolve acetate, ethyl cellosolve, butyl cellosolve, butyl cellosolve acetate, butyl carbitol acetate, propylene glycol phenyl ether, diethylene glycol dimethyl ether, diacetone alcohol and the like. One of these viscosity modifiers may be used alone, or two or more thereof may be mixed and used.
 導電性樹脂組成物は、例えば、(A)銀被覆シリカ粒子、(B)熱硬化性樹脂、および(C)硬化剤からなる必須成分、ならびに必要に応じて添加される任意成分を、高速混合機等を使用して均一に混合した後、ディスパース、ニーダ、三本ロール等を使用して混練し、さらに脱泡することにより製造できる。 The conductive resin composition comprises, for example, high-speed mixing of (A) silver-coated silica particles, (B) a thermosetting resin, and (C) an essential component composed of a curing agent, and an optional component added as necessary. It can be manufactured by mixing uniformly using a machine, kneading using a disperse, kneader, three-roll, etc., and further defoaming.
 導電性樹脂組成物の比重は、1.0~3.0が好ましい。比重が1.0~3.0の場合、導電性樹脂組成物の導電性や分散性が良好になる。すなわち、比重が1.0以上になると、導電性樹脂組成物の導電性が良好になる。比重が3.0以下になると、導電性樹脂組成物の分散性や作業性が良好になり、導電性樹脂組成物の製造コストも低下する。導電性樹脂組成物の比重は、1.3~2.5がより好ましい。 The specific gravity of the conductive resin composition is preferably 1.0 to 3.0. When the specific gravity is 1.0 to 3.0, the conductivity and dispersibility of the conductive resin composition are improved. That is, when the specific gravity is 1.0 or more, the conductivity of the conductive resin composition is improved. When specific gravity becomes 3.0 or less, the dispersibility and workability | operativity of a conductive resin composition will become favorable, and the manufacturing cost of a conductive resin composition will also fall. The specific gravity of the conductive resin composition is more preferably 1.3 to 2.5.
 導電性樹脂組成物の粘度は、5~200Pa・sが好ましい。なお、粘度は、E型粘度計(3°コーン)を使用して、25℃、0.5rpmの条件で測定される。粘度が5~200Pa・sの場合、導電性樹脂組成物の作業性が良好になる。すなわち、粘度が5Pa・s以上の場合、液ダレ等の発生が抑制される。また、粘度が200Pa・s以下の場合、ディスペンスが容易になり、作業性が良好になる。導電性樹脂組成物の粘度は、20~180Pa・sがより好ましい。 The viscosity of the conductive resin composition is preferably 5 to 200 Pa · s. The viscosity is measured using an E-type viscometer (3 ° cone) at 25 ° C. and 0.5 rpm. When the viscosity is 5 to 200 Pa · s, the workability of the conductive resin composition is improved. That is, when the viscosity is 5 Pa · s or more, the occurrence of dripping or the like is suppressed. Moreover, when a viscosity is 200 Pa * s or less, dispensing becomes easy and workability | operativity becomes favorable. The viscosity of the conductive resin composition is more preferably 20 to 180 Pa · s.
 実施形態の導電性樹脂組成物は、糸引き性や液ダレが少なく作業性に優れる。また、実施形態の導電性樹脂組成物は、半導体素子と支持部材との接着において、導電性、接着性に優れる。ここで、支持部材としては、銅フレーム、銀メッキ銅フレーム、PPFフレーム等が挙げられる。さらに、実施形態の導電性樹脂組成物は、可使時間が長く、ボイドの発生も抑制される。 The conductive resin composition of the embodiment is excellent in workability with little stringiness and dripping. In addition, the conductive resin composition of the embodiment is excellent in conductivity and adhesiveness in bonding the semiconductor element and the support member. Here, examples of the support member include a copper frame, a silver-plated copper frame, and a PPF frame. Furthermore, the conductive resin composition of the embodiment has a long pot life and suppresses the generation of voids.
 実施形態の導電性樹脂組成物は、例えば、粘度が5~200Pa・s、硬化物の体積抵抗率が1×10-1Ω・cm以下、25℃での接着強度が20N以上、260℃での接着強度が6N以上である。実施形態の導電性樹脂組成物によれば、(A)銀被覆シリカ粒子、(B)熱硬化性樹脂、および(C)硬化剤を必須成分として含有することにより、上記特性を得ることができる。なお、上記特性は、実施例中の試験条件によるものである。 The conductive resin composition of the embodiment has, for example, a viscosity of 5 to 200 Pa · s, a volume resistivity of the cured product of 1 × 10 −1 Ω · cm or less, an adhesive strength at 25 ° C. of 20 N or more, and 260 ° C. The adhesive strength is 6N or more. According to the conductive resin composition of the embodiment, the above characteristics can be obtained by containing (A) silver-coated silica particles, (B) a thermosetting resin, and (C) a curing agent as essential components. . In addition, the said characteristic is based on the test conditions in an Example.
 次に、本発明の半導体装置について説明する。
 図1は、本発明の一実施形態による半導体装置を示したものである。
Next, the semiconductor device of the present invention will be described.
FIG. 1 shows a semiconductor device according to an embodiment of the present invention.
 半導体装置1は、例えば、半導体素子2、導電性樹脂組成物3、支持部材4、ボンディングワイヤ5、および封止用樹脂組成物6を有する。ここで、導電性樹脂組成物3は、上記した実施形態の導電性樹脂組成物からなる。また、支持部材4は、リードフレームからなる。半導体装置1は、半導体素子2と支持部材4とが実施形態の導電性樹脂組成物からなる導電性樹脂組成物3により接着されていることから、信頼性、生産性に優れている。 The semiconductor device 1 has, for example, a semiconductor element 2, a conductive resin composition 3, a support member 4, a bonding wire 5, and a sealing resin composition 6. Here, the conductive resin composition 3 is composed of the conductive resin composition of the above-described embodiment. The support member 4 is composed of a lead frame. The semiconductor device 1 is excellent in reliability and productivity because the semiconductor element 2 and the support member 4 are bonded by the conductive resin composition 3 made of the conductive resin composition of the embodiment.
 半導体装置1は、例えば、以下のようにして製造される。まず、支持部材4上に導電性樹脂組成物3を介して半導体素子2を積層して、加熱により導電性樹脂組成物3を硬化させて半導体素子2と支持部材4とを導電性樹脂組成物3により接着する。また、半導体素子2の電極2aと支持部材4のリード部4aとを超音波によりワイヤボンディングする。その後、これらを封止用樹脂組成物6により封止する。 The semiconductor device 1 is manufactured as follows, for example. First, the semiconductor element 2 is laminated on the support member 4 with the conductive resin composition 3 interposed therebetween, and the conductive resin composition 3 is cured by heating so that the semiconductor element 2 and the support member 4 are connected to the conductive resin composition. 3. Adhere by 3. Further, the electrodes 2a of the semiconductor element 2 and the lead portions 4a of the support member 4 are wire-bonded by ultrasonic waves. Thereafter, these are sealed with a sealing resin composition 6.
 以下、本発明の具体的な実施例を示す。
 なお、本発明はこれらの実施例に限定されない。
Specific examples of the present invention will be described below.
The present invention is not limited to these examples.
<粒子-1の製造例>
 D50が3.5μmの球状シリカ粒子(龍森社製、商品名:US-5)10gをアルカリ脱脂、酸中和してエッチングし、水洗後、二塩化パラジウム溶液に加え、撹拌し、パラジウム付着基材粒子を得た。
<Production example of particle-1>
10 g of spherical silica particles having a D 50 of 3.5 μm (trade name: US-5, manufactured by Tatsumori) are alkali degreased, acid neutralized and etched, washed with water, added to a palladium dichloride solution, stirred, palladium Adhering substrate particles were obtained.
 このパラジウム付着基材粒子を脱イオン水300ml中で3分撹拌し、金属ニッケル粒子スラリー(三井金属社製、商品名:2020SUS)1gを添加し、ニッケル粒子付着基材粒子を得た。 The palladium-adhered substrate particles were stirred in 300 ml of deionized water for 3 minutes, and 1 g of metal nickel particle slurry (trade name: 2020SUS, manufactured by Mitsui Kinzoku Co., Ltd.) was added to obtain nickel particle-attached substrate particles.
 このニッケル粒子付着基材粒子を、蒸留水1000mlで希釈し、メッキ安定剤4mlを加えて撹拌して基材粒子混合溶液とした。その後、この基材粒子混合溶液に、硫酸ニッケル400g/l、次亜リン酸ナトリウム100g/l、クエン酸ナトリウム100g/l、メッキ安定剤6mlの混合溶液150mlを撹拌しながら徐々に添加し、基材粒子にニッケル被膜を形成した。メッキ後の液を濾過し、濾過物を水洗した後、乾燥して、ニッケル被膜基材粒子を得た。 The nickel particle-adhered substrate particles were diluted with 1000 ml of distilled water, added with 4 ml of a plating stabilizer, and stirred to obtain a substrate particle mixed solution. Thereafter, 150 ml of a mixed solution of 400 g / l of nickel sulfate, 100 g / l of sodium hypophosphite, 100 g / l of sodium citrate, and 6 ml of a plating stabilizer is gradually added to this base particle mixed solution while stirring. A nickel coating was formed on the material particles. The solution after plating was filtered, and the filtrate was washed with water and dried to obtain nickel-coated substrate particles.
 硝酸銀5g、蒸留水1200ml、ベンズイミダゾール10gを混合した溶液に、さらにコハク酸イミド30g、クエン酸4gを混合溶解し、グリオキシル酸10gを加えて調整した無電解銀メッキ液に、ニッケル被膜基材粒子を投入した。80℃で加熱撹拌を行い無電解メッキを行った後、水洗し、アルコールで置換したものを乾燥させて、球状銀被覆シリカ粒子である粒子-1を得た。 Nickel-coated substrate particles in an electroless silver plating solution prepared by mixing and dissolving 30 g of succinimide and 4 g of citric acid in a mixed solution of 5 g of silver nitrate, 1200 ml of distilled water and 10 g of benzimidazole, and adding 10 g of glyoxylic acid Was introduced. The mixture was heated and stirred at 80 ° C. to perform electroless plating, then washed with water and dried with alcohol to obtain particles-1 which are spherical silver-coated silica particles.
 粒子-1は、アスペクト比1.01、比表面積1.5m/g、D50=3.8μm、比D50/D10=1.8、最大粒径19μm、比重2.8であり、銀被覆量は27.3質量%であった。 Particle-1 has an aspect ratio of 1.01, a specific surface area of 1.5 m 2 / g, D 50 = 3.8 μm, a ratio D 50 / D 10 = 1.8, a maximum particle size of 19 μm, and a specific gravity of 2.8. The silver coating amount was 27.3 mass%.
<粒子-2の製造例>
 D50が8.3μmの球状シリカ粒子(龍森社製、商品名:US-10)を使用して、粒子-1と同様に無電解メッキを行って、球状銀被覆シリカ粒子である粒子-2を得た。粒子-2は、アスペクト比1.04、比表面積0.5m/g、D50=8.5μm、比D50/D10=1.6、最大粒径32μm、比重3.1であり、銀被覆量は29.2質量%であった。
<Production example of particle-2>
Using spherical silica particles having a D 50 of 8.3 μm (trade name: US-10, manufactured by Tatsumori Co., Ltd.), electroless plating was performed in the same manner as for particles-1, and particles that were spherical silver-coated silica particles- 2 was obtained. Particle-2 has an aspect ratio of 1.04, a specific surface area of 0.5 m 2 / g, D 50 = 8.5 μm, a ratio D 50 / D 10 = 1.6, a maximum particle size of 32 μm, and a specific gravity of 3.1. The silver coating amount was 29.2% by mass.
<粒子-3の製造例>
 粒子-1の100gを、1.0質量%のシランカップリング剤(信越化学工業社製、商品名:KBM-403)とメタノールとを混合した溶液に配合し、撹拌を行った後、濾過、乾燥を行って、シランカップリング剤による処理が行われた球状銀被覆シリカ粒子である粒子-3を得た。粒子-3は、アスペクト比1.01、比表面積1.5m/g、D50=3.8μm、比D50/D10=1.8、最大粒径24μm、比重2.8であり、銀被覆量は27.4質量%であった。
<Production example of particle-3>
100 g of Particle-1 was blended in a mixed solution of 1.0% by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) and methanol, stirred, filtered, Drying was performed to obtain Particles-3, which are spherical silver-coated silica particles that have been treated with a silane coupling agent. Particle-3 has an aspect ratio of 1.01, a specific surface area of 1.5 m 2 / g, D 50 = 3.8 μm, a ratio D 50 / D 10 = 1.8, a maximum particle size of 24 μm, and a specific gravity of 2.8. The silver coating amount was 27.4% by mass.
<粒子-4の製造例>
 粒子-1の100gをボールミルに入れ、ミリスチン酸2gおよびミネラルスピリット200gを加えるとともに、直径2mmのジルコニアボールを加えて、3時間脂肪酸被覆処理を行った後、濾過、乾燥を行って、脂肪酸により被覆された球状銀被覆シリカ粒子である粒子-4を得た。粒子-4は、アスペクト比1.01、比表面積1.5m/g、D50=3.8μm、比D50/D10=1.8、最大粒径23μm、比重2.8であり、銀被覆量は27.4質量%であった。
<Production example of particle-4>
Put 100g of Particle-1 into a ball mill, add 2g of myristic acid and 200g of mineral spirit, add zirconia balls with a diameter of 2mm, and after 3 hours fatty acid coating treatment, filter and dry, and coat with fatty acid Particle-4, which was a spherical silver-coated silica particle, was obtained. Particle-4 has an aspect ratio of 1.01, a specific surface area of 1.5 m 2 / g, D 50 = 3.8 μm, a ratio D 50 / D 10 = 1.8, a maximum particle size of 23 μm, and a specific gravity of 2.8, The silver coating amount was 27.4% by mass.
<粒子-5の製造例>
 粒子-4の100gを、1.0質量%のシランカップリング剤(信越化学工業社製、商品名:KBM-403)とメタノールとを混合した溶液に配合し、撹拌を行った後、濾過、乾燥を行って、シランカップリング剤による処理が行われた球状銀被覆シリカ粒子である粒子-5を得た。粒子-5は、アスペクト比1.01、比表面積1.5m/g、D50=3.8μm、比D50/D10=1.8、最大粒径22μm、比重2.8であり、銀被覆量は27.3質量%であった。
<Production Example of Particle-5>
100 g of Particle-4 was blended in a solution in which 1.0% by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBM-403) and methanol were mixed, stirred, filtered, Drying was performed to obtain Particles-5, which are spherical silver-coated silica particles that have been treated with a silane coupling agent. Particle-5 has an aspect ratio of 1.01, a specific surface area of 1.5 m 2 / g, D 50 = 3.8 μm, a ratio D 50 / D 10 = 1.8, a maximum particle size of 22 μm, and a specific gravity of 2.8. The silver coating amount was 27.3 mass%.
<粒子-6の製造例>
 D50が1.0μmの球状シリカ粒子(アドマテックス社製、商品名:SO-E3)を使用して、粒子-1と同様に無電解メッキを行った後、水洗し、アルコールで置換したものを乾燥させて、球状銀被覆シリカ粒子である粒子-6を得た。粒子-6は、アスペクト比1.03、比表面積6.0m/g、D50=1.9μm、比D50/D10=2.5、最大粒径18μm、比重2.6であり、銀被覆量は20.0質量%であった。
<Production Example of Particle-6>
Electroless plating using spherical silica particles with a D 50 of 1.0 μm (trade name: SO-E3, manufactured by Admatechs), followed by washing with water and substitution with alcohol in the same manner as for particles-1. Was dried to obtain particles-6 which are spherical silver-coated silica particles. Particle-6 has an aspect ratio of 1.03, a specific surface area of 6.0 m 2 / g, D 50 = 1.9 μm, a ratio D 50 / D 10 = 2.5, a maximum particle size of 18 μm, and a specific gravity of 2.6. The silver coating amount was 20.0% by mass.
<粒子-7の製造例>
 D50が8.0μmのシリカ粒子を使用して、粒子-1と同様に無電解メッキを行った後、水洗し、アルコールで置換したものを乾燥させて、球状銀被覆シリカ粒子である粒子-7を得た。粒子-7は、アスペクト比1.29、比表面積2.2m/g、D50=8.5μm、比D50/D10=1.5、最大粒径72μm、比重4.9であり、銀被覆量は30.0質量%であった。
<Production example of particle-7>
Particles that are spherical silver-coated silica particles are obtained by performing electroless plating using silica particles having a D 50 of 8.0 μm in the same manner as the particles-1, washing with water, and drying the particles substituted with alcohol. 7 was obtained. Particle-7 has an aspect ratio of 1.29, a specific surface area of 2.2 m 2 / g, D 50 = 8.5 μm, a ratio D 50 / D 10 = 1.5, a maximum particle size of 72 μm, and a specific gravity of 4.9, The silver coating amount was 30.0% by mass.
<粒子-8の製造例>
 D50が7.0μmの球状シリカ粒子を使用して、粒子-1と同様に無電解メッキを行って、銀被覆シリカ粒子である粒子-8を得た。粒子-8は、アスペクト比1.01、比表面積1.1m/g、D50=7.6μm、比D50/D10=1.8、最大粒径46μm、比重2.8であり、銀被覆量は29.0質量%であった。
<Production example of particle-8>
Using spherical silica particles having a D 50 of 7.0 μm, electroless plating was performed in the same manner as for the particles-1 to obtain particles-8 which are silver-coated silica particles. Particle-8 has an aspect ratio of 1.01, a specific surface area of 1.1 m 2 / g, D 50 = 7.6 μm, a ratio D 50 / D 10 = 1.8, a maximum particle size of 46 μm, and a specific gravity of 2.8, The silver coating amount was 29.0% by mass.
<粒子-9の製造例>
 D50が4.0μm、D10が0.68μmの球状シリカ粒子を使用して、粒子-1と同様に無電解メッキを行って、球状銀被覆シリカ粒子である粒子-9を得た。粒子-9は、アスペクト比1.03、比表面積4.5m/g、D50=4.3μm、D10=0.71μm、比D50/D10=6.1、最大粒径22μm、比重3.0であり、銀被覆量は30.5質量%であった。
<Production Example of Particle-9>
Using spherical silica particles having a D 50 of 4.0 μm and a D 10 of 0.68 μm, electroless plating was performed in the same manner as the particle-1 to obtain particles-9 which are spherical silver-coated silica particles. Particle-9 has an aspect ratio of 1.03, a specific surface area of 4.5 m 2 / g, D 50 = 4.3 μm, D 10 = 0.71 μm, a ratio D 50 / D 10 = 6.1, a maximum particle size of 22 μm, The specific gravity was 3.0, and the silver coating amount was 30.5% by mass.
 なお、アスペクト比は、走査型電子顕微鏡SSX-550(島津製作所製)により測定した。比表面積は、流動式比表面積測定装置フローソープII2300(島津製作所製)により測定した。D50、D10、最大粒径は、レーザー回折散乱式粒度分布測定装置LA-920(堀場製作所製)により測定した。銀被覆量は、銀被覆シリカ粒子の重量と、硝酸により銀を溶解して除去した銀除去シリカ粒子の重量とから算出した。表1に、粒子-1~9の特性をまとめて示す。 The aspect ratio was measured with a scanning electron microscope SSX-550 (manufactured by Shimadzu Corporation). The specific surface area was measured with a flow-type specific surface area measuring apparatus Flow Soap II 2300 (manufactured by Shimadzu Corporation). D 50 , D 10 and the maximum particle size were measured with a laser diffraction / scattering particle size distribution analyzer LA-920 (manufactured by Horiba, Ltd.). The silver coating amount was calculated from the weight of the silver-coated silica particles and the weight of the silver-removed silica particles that were removed by dissolving silver with nitric acid. Table 1 summarizes the characteristics of particles-1 to 9.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1~16、比較例1~6>
 表2、4、6に示す組成となるように各成分を十分に配合および混合した後、三本ロールで混練して導電性樹脂組成物を調製した。この導電性樹脂組成物を自公転真空脱泡装置にて脱泡した後、各種の特性を評価した。結果を、表3、5、7に示す。なお、導電性樹脂組成物の調製に使用した各成分の詳細は以下の通りである。
<Examples 1 to 16, Comparative Examples 1 to 6>
Each component was sufficiently blended and mixed so as to have the compositions shown in Tables 2, 4, and 6, and then kneaded with three rolls to prepare a conductive resin composition. This conductive resin composition was defoamed with a self-revolving vacuum defoaming apparatus, and then various characteristics were evaluated. The results are shown in Tables 3, 5, and 7. In addition, the detail of each component used for preparation of a conductive resin composition is as follows.
 ・熱硬化性樹脂:ビスフェノールA型エポキシ樹脂(エポキシ当量185)
 ・熱硬化性樹脂:可とう性エポキシ樹脂(三菱化学社製、商品名:YL7175-500、エポキシ当量:487、式(1))
 ・熱硬化性樹脂:ヒドロキシルエチルアクリルアミド(興人製、商品名:HEAA)
 ・熱硬化性樹脂:イミド拡張型ビスマレイミド(デジグナーモレキュールズ社製、商品名:BMI-1500、数平均分子量:1500)
 ・熱硬化性樹脂:アリル化ビスフェノールエポキシ樹脂(日本化薬社製、商品名:RE-810NM、エポキシ当量:223、加水分解性塩素:150ppm(1N KOH-エタノール、ジオキサン溶媒、還流30分))
 ・硬化剤:ビスフェノールF(本州化学社製)
 ・硬化剤:ジシアジアミド(DICY)
 ・重合開始剤:ジクミルパーオキサイド(日本油脂社製、商品名:パークミルD、急速加熱試験における分解温度:126℃)
 ・硬化促進剤:2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(四国化成社製、商品名:2P4MHZ)
 ・接着助剤:グリシドキシオクチルトリメトキシシラン(信越シリコーン社製、商品名:KBM-4803)
 ・希釈剤:t-ブチルフェニルグリシジルエーテル(日本化薬社製、商品名:TGE-H)
 ・チキソ剤:ヒュームドシリカ(日本アエロジル社製、商品名:アエロジル200)
 ・充填材(フレーク状銀被覆ガラス):フレーク状銀被覆ガラス(Ecka社製、商品名:Ag/flaky glass5/30、アスペクト比:1.25、D50:6.0μm、D50/D10:1.7、最大粒径:28μm、比重:4.6、銀被覆量:30質量%)
 ・充填材(フレーク状銀粉):フレーク状銀粉(福田金属箔工業社製、商品名:AgC-221A、D50:6.6μm、比重:10.5)
 ・充填材(シリカ粉):溶融シリカ(龍森社製、商品名:US-5、D50:3.5μm、比重:2.2)
 ・充填剤(ナノ銀粒子):プレート型ナノ銀粒子(トクセン工業社製、商品名:M13、D50:2μm、厚み:50nm以下)
 ・充填剤(ナノ銀粒子):球状ナノ銀粒子(三ツ星ベルト社製、商品名:MDot、D50:50nm)
 ・充填剤(樹脂粒子):球状樹脂粒子(信越化学工業社製、商品名:KMP-600、D50:1μm)
Thermosetting resin: bisphenol A type epoxy resin (epoxy equivalent 185)
Thermosetting resin: flexible epoxy resin (Mitsubishi Chemical Co., Ltd., trade name: YL7175-500, epoxy equivalent: 487, formula (1))
・ Thermosetting resin: hydroxylethyl acrylamide (product name: HEAA)
-Thermosetting resin: Imide-expanded bismaleimide (manufactured by Designer Molecules, Inc., trade name: BMI-1500, number average molecular weight: 1500)
Thermosetting resin: Allylated bisphenol epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: RE-810NM, epoxy equivalent: 223, hydrolyzable chlorine: 150 ppm (1N KOH-ethanol, dioxane solvent, reflux 30 minutes))
・ Curing agent: Bisphenol F (Honshu Chemical Co., Ltd.)
Curing agent: Diciadiamide (DICY)
Polymerization initiator: Dicumyl peroxide (manufactured by NOF Corporation, trade name: Park Mill D, decomposition temperature in rapid heating test: 126 ° C.)
Curing accelerator: 2-phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name: 2P4MHZ)
Adhesion aid: Glycidoxyoctyltrimethoxysilane (manufactured by Shin-Etsu Silicone, trade name: KBM-4803)
Diluent: t-butylphenyl glycidyl ether (Nippon Kayaku Co., Ltd., trade name: TGE-H)
・ Thixotropic agent: fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 200)
Filler (flaky silver-coated glass): flaky silver-coated glass (manufactured by Ecka, trade name: Ag / flaky glass 5/30, aspect ratio: 1.25, D 50 : 6.0 μm, D 50 / D 10 (1.7, maximum particle size: 28 μm, specific gravity: 4.6, silver coating amount: 30% by mass)
Filler (flaky silver powder): flaky silver powder (made by Fukuda Metal Foil Industry Co., Ltd., trade name: AgC-221A, D 50 : 6.6 μm, specific gravity: 10.5)
Filler (silica powder): fused silica (manufactured by Tatsumori Co., Ltd., trade name: US-5, D 50 : 3.5 μm, specific gravity: 2.2)
Filler (nano silver particles): Plate type nano silver particles (manufactured by Toxen Industries, trade name: M13, D 50 : 2 μm, thickness: 50 nm or less)
Filler (nano silver particles): spherical nano silver particles (manufactured by Mitsuboshi Belting, trade name: MDot, D 50 : 50 nm)
Filler (resin particles): spherical resin particles (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KMP-600, D 50 : 1 μm)
<評価方法>
(1)粘度
 東機産業社製のE型粘度計(3°コーン)を使用して、25℃、0.5rpmの条件で測定した。
<Evaluation method>
(1) Viscosity Using an E-type viscometer (3 ° cone) manufactured by Toki Sangyo Co., Ltd., the viscosity was measured at 25 ° C. and 0.5 rpm.
(2)チキソ性
 東機産業社製のE型粘度計(3°コーン)を使用して、25℃、5.0rpmの条件で粘度を測定して、(1)の結果と合わせて、異なる回転数で測定した粘度の比をチキソ性(粘度(0.5rpm)/粘度(5.0rpm))として算出した。
(2) Thixotropic Using an E-type viscometer (3 ° cone) manufactured by Toki Sangyo Co., Ltd., measuring the viscosity under the conditions of 25 ° C. and 5.0 rpm, differing from the results of (1) The ratio of the viscosity measured by the number of revolutions was calculated as thixotropy (viscosity (0.5 rpm) / viscosity (5.0 rpm)).
(3)沈降性
 シリンジに導電性樹脂組成物を10g充填して、25℃インキュベーターにシリンジが垂直になるよう設置した。24時間後、シリンジの上部および下部から導電性樹脂組成物を取出して、灰分を測定した。沈降性を下記に示す式より算出した。沈降性が1.5%より大きければ、沈降しやすいと判断できる。
 沈降性[%]=(シリンジ下部灰分-シリンジ上部灰分)/シリンジ上部灰分×100
(3) Precipitation The syringe was filled with 10 g of the conductive resin composition, and placed in a 25 ° C. incubator so that the syringe was vertical. After 24 hours, the conductive resin composition was taken out from the upper and lower portions of the syringe, and the ash content was measured. The sedimentation property was calculated from the following formula. If the sedimentation property is greater than 1.5%, it can be determined that the sedimentation is likely to occur.
Sedimentability [%] = (Syringe lower ash−Syringe upper ash) / Syringe upper ash × 100
(4)接着強度
 導電性樹脂組成物を銀メッキした銅フレーム上に20μmの厚さに塗布して、その上に2mm×2mmのシリコンチップをマウントして、175℃で1時間硬化させた。その後、ダイシェア強度測定装置を用いて、25℃および260℃での熱時ダイシェア強度を測定した。
(4) Adhesive strength The conductive resin composition was applied on a silver-plated copper frame to a thickness of 20 μm, and a 2 mm × 2 mm silicon chip was mounted thereon and cured at 175 ° C. for 1 hour. Thereafter, the die shear strength during heating at 25 ° C. and 260 ° C. was measured using a die shear strength measuring device.
(5)体積抵抗率
 導電性樹脂組成物を硬化後の厚さが40μmかつ幅が5mmとなるようにガラス板状に印刷し、150℃で1時間硬化させた後、デジタルマルチメーターで測定した。
(5) Volume resistivity The conductive resin composition was printed on a glass plate so that the thickness after curing was 40 μm and the width was 5 mm, cured at 150 ° C. for 1 hour, and then measured with a digital multimeter. .
(6)作業性
 シリンジに導電性樹脂組成物を10g充填し、武蔵エンジニアリング社製のショットマスターを使用して、温度25℃、湿度35%RH、ニードル径φ=0.3mm、吐出圧7.85N(0.8kgf)、ギャップ100μmの条件で、シリコンウェハー基板上に対するディスペンス試験を行った。ディスペンス試験は、ショット数を100ショットとし、糸引きによる角倒れ、シリンジ詰まり、液ダレが発生したショット数(不良数)を測定した。そして、下記式により作業性を算出した。作業性が10%より大きい場合は、作業性が悪いと判断できる。
 作業性[%]=不良数/100×100
(6) Workability A syringe is filled with 10 g of a conductive resin composition, and a shot master manufactured by Musashi Engineering Co., Ltd. is used. Temperature 25 ° C., humidity 35% RH, needle diameter φ = 0.3 mm, discharge pressure 7. A dispensing test was performed on a silicon wafer substrate under the conditions of 85 N (0.8 kgf) and a gap of 100 μm. In the dispense test, the number of shots was set to 100, and the number of shots (number of defects) in which corner collapse due to stringing, syringe clogging, and dripping occurred was measured. And workability | operativity was computed by the following formula. When workability is greater than 10%, it can be determined that workability is poor.
Workability [%] = number of defects / 100 × 100
(7)耐リフロー性
 銀メッキが施された銅フレーム上に導電性樹脂組成物を20μmの厚さに塗布し、その上に4mm×4mmのシリコンチップをマウントして、150℃で1時間硬化させた。その後、京セラケミカル社製のエポキシ封止材(商品名:KE-G3000D)を使用して、下記[成形条件]によりパッケージを成形した。このパッケージについて、85℃、相対湿度85%、168時間の吸湿処理を行った後、IRリフロー処理(260℃、10秒)を行った。処理後のパッケージについて、クラック、剥離等の発生の有無を超音波顕微鏡を使用して観察した。10個のサンプルについて、クラック、剥離等の発生した個数(不良品数)を測定し、下記式により耐リフロー性を算出した。耐リフロー性が30%より大きい場合、耐リフロー性が悪いと判断できる。
 耐リフロー性[%]=不良品数/サンプル総数×100
(7) Reflow resistance A conductive resin composition is applied to a thickness of 20 μm on a silver-plated copper frame, and a 4 mm × 4 mm silicon chip is mounted thereon and cured at 150 ° C. for 1 hour. I let you. Thereafter, an epoxy sealing material (trade name: KE-G3000D) manufactured by Kyocera Chemical Co., Ltd. was used to form a package according to the following [molding conditions]. The package was subjected to a moisture absorption treatment at 85 ° C. and a relative humidity of 85% for 168 hours, and then an IR reflow treatment (260 ° C., 10 seconds). About the package after a process, the presence or absence of generation | occurrence | production of a crack, peeling, etc. was observed using the ultrasonic microscope. For 10 samples, the number of cracks, peeling, etc. (number of defective products) was measured, and the reflow resistance was calculated by the following formula. If the reflow resistance is greater than 30%, it can be determined that the reflow resistance is poor.
Reflow resistance [%] = number of defective products / total number of samples × 100
(8)耐熱衝撃性
 銀メッキが施された銅フレーム上に導電性樹脂組成物を20μmの厚さに塗布し、その上に4mm×4mmのシリコンチップをマウントして、150℃で1時間硬化させた。その後、京セラケミカル社製エポキシ封止材(商品名:KE-G3000D)を使用して、下記[成形条件]によりパッケージを成形した。このパッケージについて、冷熱サイクル処理(-55℃から150℃まで昇温し、また-55℃に冷却する操作を1サイクルとし、これを1000サイクル)を行った。処理後のパッケージについて、クラック、剥離等の発生の有無を超音波顕微鏡を使用して観察した。10個のサンプルについて、クラック、剥離等の発生した個数(不良品数)を測定し、下記式により耐熱衝撃性を算出した。耐熱衝撃性が30%より大きい場合、耐熱衝撃性が悪いと判断できる。
 耐熱衝撃性[%]=不良品数/測定総数×100
(8) Thermal shock resistance A conductive resin composition is applied to a thickness of 20 μm on a silver-plated copper frame, and a 4 mm × 4 mm silicon chip is mounted thereon and cured at 150 ° C. for 1 hour. I let you. Thereafter, a package was molded under the following [molding conditions] using an epoxy sealing material (trade name: KE-G3000D) manufactured by Kyocera Chemical Co., Ltd. This package was subjected to a cold cycle treatment (the operation of raising the temperature from −55 ° C. to 150 ° C. and cooling to −55 ° C. as one cycle, which was 1000 cycles). About the package after a process, the presence or absence of generation | occurrence | production of a crack, peeling, etc. was observed using the ultrasonic microscope. About 10 samples, the number (number of defective products) in which cracks, peeling, etc. occurred was measured, and the thermal shock resistance was calculated by the following formula. If the thermal shock resistance is greater than 30%, it can be determined that the thermal shock resistance is poor.
Thermal shock resistance [%] = number of defective products / total number of measurements × 100
[成形条件]
 パッケージ:80pQFP(14mm×14mm×1.6mm厚)
 チップ:シリコンチップ
 リードフレーム:銅
 封止材の成形:175℃、3分間
 ポストモールドキュアー:175℃、8時間
[Molding condition]
Package: 80pQFP (14mm x 14mm x 1.6mm thickness)
Chip: Silicon chip Lead frame: Copper Molding of sealing material: 175 ° C., 3 minutes Post mold cure: 175 ° C., 8 hours
(9)総合評価
 各評価に基づいて総合評価を行った。判定基準は以下の通りである。
 「A」:以下の条件を全てを満たすもの。
     粘度5~200Pa・s
     チキソ性2.0~7.0
     比重1.0~3.0
     沈降性1.5%以下
     接着強度(25℃)20N以上
     接着強度(260℃)6N以上
     体積抵抗率1×10-1Ω・cm以下
     作業性10%以下
     耐リフロー性30%以下
     耐熱衝撃性30%以下
 「AA」:「A」の条件を全て満たし、さらに以下の条件の全てを満たすもの。
     接着強度(25℃)120N以上
     接着強度(260℃)22N以上
 「B」:「A」の条件を1つでも満たさないもの。
(9) Comprehensive evaluation Comprehensive evaluation was performed based on each evaluation. Judgment criteria are as follows.
“A”: satisfying all of the following conditions.
Viscosity 5 to 200 Pa · s
Thixotropic 2.0-7.0
Specific gravity 1.0-3.0
Sedimentation 1.5% or less Adhesive strength (25 ° C.) 20 N or more Adhesive strength (260 ° C.) 6 N or more Volume resistivity 1 × 10 −1 Ω · cm or less Workability 10% or less Reflow resistance 30% or less Thermal shock resistance 30 % Or less “AA”: satisfying all the conditions of “A” and further satisfying all of the following conditions.
Adhesive strength (25 ° C.) 120 N or higher Adhesive strength (260 ° C.) 22 N or higher “B”: A material that does not satisfy any of the conditions of “A”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 1…半導体装置、2…半導体素子、2a…電極、3…導電性樹脂組成物、4…支持部材4a…リード部、5…ボンディングワイヤ、6…封止用樹脂組成物。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Semiconductor element, 2a ... Electrode, 3 ... Conductive resin composition, 4 ... Support member 4a ... Lead part, 5 ... Bonding wire, 6 ... Resin composition for sealing.

Claims (12)

  1.  (A)銀被覆シリカ粒子、(B)熱硬化性樹脂、および(C)硬化剤を必須成分とする導電性樹脂組成物であって、 前記(A)銀被覆シリカ粒子は、前記導電性樹脂組成物中に35~90質量%含まれるとともに、アスペクト比が1.0~1.2、ガス吸着法による比表面積が0.3~5.0m/g、レーザー回折散乱式粒度分布測定法による累積体積粒径D50が1~10μm、累積体積粒径D10、D50の比D50/D10が1.5~5.0、および最大粒径が40μm以下の球状粒子であることを特徴とする導電性樹脂組成物。 (A) A silver-coated silica particle, (B) a thermosetting resin, and (C) a conductive resin composition containing a curing agent as essential components, wherein (A) the silver-coated silica particles are the conductive resin The composition contains 35 to 90% by mass, has an aspect ratio of 1.0 to 1.2, a specific surface area by gas adsorption method of 0.3 to 5.0 m 2 / g, and a laser diffraction scattering type particle size distribution measuring method. cumulative volume particle diameter D 50 according to the 1 ~ 10 [mu] m, the ratio D 50 / D 10 of 1.5 to 5.0 cumulative volume particle diameter D 10, D 50, and the maximum particle size is less spherical particles 40μm A conductive resin composition characterized by the above.
  2.  前記(A)銀被覆シリカ粒子の比重が2.4~3.6である請求項1記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the specific gravity of the (A) silver-coated silica particles is 2.4 to 3.6.
  3.  前記(A)銀被覆シリカ粒子の表面がシランカップリング剤により被覆されていることを特徴とする請求項1または2記載の導電性樹脂組成物。 The conductive resin composition according to claim 1 or 2, wherein the surface of the (A) silver-coated silica particles is coated with a silane coupling agent.
  4.  前記(A)銀被覆シリカ粒子の表面が脂肪酸または脂肪酸塩により被覆されていることを特徴とする請求項1または2記載の導電性樹脂組成物。 The conductive resin composition according to claim 1 or 2, wherein the surface of the (A) silver-coated silica particles is coated with a fatty acid or a fatty acid salt.
  5.  前記(A)銀被覆シリカ粒子の表面がミリスチン酸により被覆されていることを特徴とする請求項1または2記載の導電性樹脂組成物。 3. The conductive resin composition according to claim 1 or 2, wherein the surface of the (A) silver-coated silica particles is coated with myristic acid.
  6.  比重が1.0~3.0かつ25℃での粘度が5~200Pa・sである請求項1乃至5のいずれか1項記載の導電性樹脂組成物。 6. The conductive resin composition according to claim 1, wherein the specific gravity is 1.0 to 3.0 and the viscosity at 25 ° C. is 5 to 200 Pa · s.
  7.  さらに、ナノ銀粒子を含有することを特徴とする請求項1乃至6のいずれか1項記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 6, further comprising nano silver particles.
  8.  前記(B)熱硬化性樹脂がエポキシ樹脂を含有することを特徴とする請求項1乃至7のいずれか1項記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 7, wherein the (B) thermosetting resin contains an epoxy resin.
  9.  前記(B)熱硬化性樹脂が下記式(1)で表される可とう性エポキシ樹脂を含有することを特徴とする請求項1乃至8いずれか1項記載の導電性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010
     (式中、Aは炭素数6~14の2価の脂肪族炭化水素基であり、Bは-CH-または-C(CH-であり、Arは脂肪族炭化水素置換または無置換のフェニレン基であり、nは1~10の整数である。)
    The conductive resin composition according to any one of claims 1 to 8, wherein the (B) thermosetting resin contains a flexible epoxy resin represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, A is a divalent aliphatic hydrocarbon group having 6 to 14 carbon atoms, B is —CH 2 — or —C (CH 3 ) 2 —, and Ar is an aliphatic hydrocarbon substituted or non-substituted group. A substituted phenylene group, and n is an integer of 1 to 10.)
  10.  さらに、接着助剤として下記式(2)で表される化合物を含有することを特徴とする請求項1乃至9いずれか1項記載の導電性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
     (式中、RおよびR’はそれぞれ独立に炭素数1~4の炭化水素基であり、A’は酸素原子を間に挟んでもよい炭素数3~12の2価の炭化水素基であり、nは1~3の整数である。) 
    Furthermore, the compound represented by following formula (2) is contained as an adhesion assistant, The conductive resin composition of any one of Claim 1 thru | or 9 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000011
    (Wherein R and R ′ are each independently a hydrocarbon group having 1 to 4 carbon atoms, A ′ is a divalent hydrocarbon group having 3 to 12 carbon atoms which may have an oxygen atom interposed therebetween, n is an integer of 1 to 3.)
  11.  さらに、樹脂粒子を含有することを特徴とする請求項1乃至10いずれか1項記載の導電性樹脂組成物。 The conductive resin composition according to any one of claims 1 to 10, further comprising resin particles.
  12.  支持部材と、
     前記支持部材に、請求項1乃至11のいずれか1項記載の導電性樹脂組成物により接着された半導体素子と、
    を有することを特徴とする半導体装置。
    A support member;
    A semiconductor element bonded to the support member with the conductive resin composition according to any one of claims 1 to 11,
    A semiconductor device comprising:
PCT/JP2015/000206 2015-01-19 2015-01-19 Conductive resin composition and semiconductor device WO2016116959A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/000206 WO2016116959A1 (en) 2015-01-19 2015-01-19 Conductive resin composition and semiconductor device
CN201580073954.8A CN107207835B (en) 2015-01-19 2015-01-19 Conductive resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/000206 WO2016116959A1 (en) 2015-01-19 2015-01-19 Conductive resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
WO2016116959A1 true WO2016116959A1 (en) 2016-07-28

Family

ID=56416532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000206 WO2016116959A1 (en) 2015-01-19 2015-01-19 Conductive resin composition and semiconductor device

Country Status (2)

Country Link
CN (1) CN107207835B (en)
WO (1) WO2016116959A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078157A1 (en) * 2015-11-04 2017-05-11 日立化成株式会社 Adhesive composition and structure
WO2018079362A1 (en) * 2016-10-31 2018-05-03 信越化学工業株式会社 Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
CN109952356A (en) * 2016-11-10 2019-06-28 京瓷株式会社 Semiconductor bonding resin combination, Semiconductor bonding piece and the semiconductor device using it
JP2020188270A (en) * 2016-03-25 2020-11-19 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate
CN113621216A (en) * 2021-08-16 2021-11-09 广东生益科技股份有限公司 Resin composition and application thereof
CN114450352A (en) * 2019-10-04 2022-05-06 三键有限公司 Conductive resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673322B2 (en) * 2017-12-20 2020-03-25 住友ベークライト株式会社 Conductive paste and stretchable wiring board
CN118039250A (en) * 2024-03-25 2024-05-14 无锡日月合金材料有限公司 Heterojunction silver paste preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953001A (en) * 1995-08-14 1997-02-25 Admatechs:Kk Electroconductive epoxy resin composition
JP2004063445A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2005132854A (en) * 2003-10-28 2005-05-26 Tamura Kaken Co Ltd Conductive adhesive composition
JP2007250540A (en) * 2006-03-10 2007-09-27 Natl Starch & Chem Investment Holding Corp Anisotropic conductive adhesive
JP2014125596A (en) * 2012-12-27 2014-07-07 Kansai Univ Thermally conductive electroconductive adhesive composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953001A (en) * 1995-08-14 1997-02-25 Admatechs:Kk Electroconductive epoxy resin composition
JP2004063445A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
JP2005132854A (en) * 2003-10-28 2005-05-26 Tamura Kaken Co Ltd Conductive adhesive composition
JP2007250540A (en) * 2006-03-10 2007-09-27 Natl Starch & Chem Investment Holding Corp Anisotropic conductive adhesive
JP2014125596A (en) * 2012-12-27 2014-07-07 Kansai Univ Thermally conductive electroconductive adhesive composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017078157A1 (en) * 2015-11-04 2018-09-27 日立化成株式会社 Adhesive composition and structure
JP7000857B2 (en) 2015-11-04 2022-01-19 昭和電工マテリアルズ株式会社 Adhesive composition and structure
WO2017078157A1 (en) * 2015-11-04 2017-05-11 日立化成株式会社 Adhesive composition and structure
JP2020188270A (en) * 2016-03-25 2020-11-19 住友ベークライト株式会社 Paste-like adhesive composition, semiconductor device, method for manufacturing semiconductor device, and method for bonding heat dissipation plate
KR102288665B1 (en) 2016-10-31 2021-08-11 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally Conductive Silicone Composition, Semiconductor Device, and Method for Manufacturing Semiconductor Device
WO2018079362A1 (en) * 2016-10-31 2018-05-03 信越化学工業株式会社 Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
US11236203B2 (en) 2016-10-31 2022-02-01 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition, semiconductor device, and method for manufacturing semiconductor device
KR20190077345A (en) * 2016-10-31 2019-07-03 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition, semiconductor device and method of manufacturing semiconductor device
US10767085B2 (en) 2016-11-10 2020-09-08 Kyocera Corporation Semiconductor-bonding resin composition, semiconductor-bonding sheet, and semiconductor device using semiconductor-bonding sheet
EP3540025A4 (en) * 2016-11-10 2020-06-24 Kyocera Corporation Semiconductor-bonding resin composition, semiconductor-bonding sheet, and semiconductor device using semiconductor-bonding sheet
CN109952356A (en) * 2016-11-10 2019-06-28 京瓷株式会社 Semiconductor bonding resin combination, Semiconductor bonding piece and the semiconductor device using it
CN114450352A (en) * 2019-10-04 2022-05-06 三键有限公司 Conductive resin composition
CN114450352B (en) * 2019-10-04 2023-12-26 三键有限公司 Conductive resin composition
CN113621216A (en) * 2021-08-16 2021-11-09 广东生益科技股份有限公司 Resin composition and application thereof

Also Published As

Publication number Publication date
CN107207835A (en) 2017-09-26
CN107207835B (en) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2016116959A1 (en) Conductive resin composition and semiconductor device
JP6675155B2 (en) Die attach paste for semiconductor and semiconductor device
TWI532818B (en) Connecting material and semiconductor device
JP6254015B2 (en) Conductive paste, electrical / electronic component and manufacturing method thereof
JP6190653B2 (en) Conductive resin composition and semiconductor device
JP5662104B2 (en) Conductive resin composition and semiconductor device using the same
TWI782928B (en) Heat conductive paste and electronic device
JP5979237B2 (en) Conductive adhesive
CN108137930B (en) Resin composition, bonded body, and semiconductor device
JP2016088978A (en) Conductive resin composition and electronic component device using the same
JP6420626B2 (en) Conductive resin composition for bonding electronic components
JP6542077B2 (en) Method of producing conductive paste and conductive paste
JPWO2015099049A1 (en) Conductive paste and conductive film
JP6132400B2 (en) Conductive material
JP4064090B2 (en) Resin paste for semiconductor and semiconductor device
JP2021036022A (en) Thermoconductive adhesive sheet, and semiconductor device
CN110692126B (en) Resin composition for bonding electronic component, method for bonding small chip component, electronic circuit board, and method for manufacturing electronic circuit board
JP6134597B2 (en) Die attach agent
JP6420121B2 (en) Resin composition for semiconductor bonding and semiconductor device
TWI663608B (en) Conductive resin composition and semiconductor device
JP6636874B2 (en) Resin composition for bonding electronic components, bonding method for electronic components, and electronic component mounting substrate
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP6701039B2 (en) Resin composition for semiconductor adhesion and semiconductor device
JPWO2016052664A1 (en) Resin composition
JP7351437B2 (en) Conductive resin compositions for die attach materials, high thermal conductivity materials, and semiconductor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15878660

Country of ref document: EP

Kind code of ref document: A1