WO2016116014A1 - 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用 - Google Patents

一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用 Download PDF

Info

Publication number
WO2016116014A1
WO2016116014A1 PCT/CN2016/071039 CN2016071039W WO2016116014A1 WO 2016116014 A1 WO2016116014 A1 WO 2016116014A1 CN 2016071039 W CN2016071039 W CN 2016071039W WO 2016116014 A1 WO2016116014 A1 WO 2016116014A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
semiconductor
imaging system
image analysis
film
Prior art date
Application number
PCT/CN2016/071039
Other languages
English (en)
French (fr)
Inventor
钟鸿英
黄璐璐
唐雪妹
张文洋
Original Assignee
华中师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中师范大学 filed Critical 华中师范大学
Priority to US15/529,515 priority Critical patent/US20170345633A1/en
Publication of WO2016116014A1 publication Critical patent/WO2016116014A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0004Imaging particle spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • G01N27/628Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas and a beam of energy, e.g. laser enhanced ionisation

Definitions

  • the invention belongs to the field of mass spectrometry, and particularly relates to a high-resolution mass spectrometry imaging system image acquisition semiconductor film, a preparation method and application thereof.
  • Assisted laser analytical dissociation mass spectrometry is a commonly used analytical technique for mass spectrometry imaging. It covers the surface of tissue sections with an organic small molecule matrix that absorbs laser energy, and transfers the energy to the sample molecules to vaporize and ionize them. It is then detected by the mass analyzer.
  • the mode of mixing organic small molecular matrices with sample molecules is critical because it directly affects the accuracy, resolution, and reproducibility of the analytical results and the ability to quantify the analytical results.
  • an organic solvent is often used to dissolve the matrix, and then the substrate solution is sprayed on the surface of the tissue section. After the solvent is evaporated, the sample forms a mixed crystal with the matrix molecule.
  • the main disadvantage of the prior art is that it is difficult to form a crystal of uniform size and controllable morphology, so that the spectrum obtained by the laser at different scanning times is not reproducible, and there is no quantitative relationship between the signal intensity and the sample amount.
  • the initial velocity and direction of the ions obtained after laser bombardment of the sample molecules are different, which affects the resolution and quality accuracy of the image.
  • these organic small molecule matrices typically produce a series of background peaks in the low mass region, inhibit low quality molecular signals, and severely contaminate the ion source.
  • the present invention is directed to the deficiencies of the prior art, and aims to provide an image acquisition film, a preparation method and an application thereof for a high resolution mass spectrometry imaging system.
  • a high-resolution mass spectrometry imaging system image acquisition semiconductor film is obtained by burning semiconductor nanoparticles to remove organic impurities attached to the surface, and then grinding and then placing them in a tableting machine to form a film.
  • the semiconductor nanoparticles are (Bi 2 O 3 ) 0.07 (CoO) 0.03 (ZnO) 0.9 semiconductor particles.
  • the burning temperature was 350 ° C and the burning time was 1 hour.
  • the method for preparing an image acquisition semiconductor film of the above high resolution mass spectrometry imaging system comprises the following steps:
  • the semiconductor nanoparticle obtained in the step 1) is further ground with an agate mortar to make it uniformly dispersed to obtain a semiconductor nanopowder;
  • the semiconductor nanopowder obtained in the step 2) is placed in a grinding tool of a tableting machine, placed in a tableting machine, and pressed to obtain a semiconductor film;
  • the semiconductor film is pressed out in the step 3) and stored at room temperature. According to the above scheme, the pressing is performed under the pressure of 2000 kg to 4800 kg for 1 minute.
  • the above-mentioned high-resolution mass spectrometry imaging system image acquisition semiconductor film is used in invisible fingerprint image analysis, animal tissue slice image analysis, and plant tissue slice image analysis.
  • the application is: after the plant tissue section, the animal tissue section or the invisible fingerprint is fixed or pressed on the image acquisition semiconductor film of the high-resolution mass spectrometry imaging system, the semiconductor film is fixed on the sample target and directly placed.
  • the mass spectrometer was analyzed.
  • the application in the analysis of the invisible fingerprint image is: after the fingerprint is directly pressed on the surface of the semiconductor film, the semiconductor film is fixed on the MALDI sample target, and placed in the mass spectrometer to perform image analysis by laser resolution dissociation.
  • the application in the image analysis of animal tissue sections is as follows: first, the tissue section is frozen at minus 80 degrees, and then sliced into a thickness of 20 micrometers, directly transferred to the surface of the semiconductor film, and the semiconductor film is fixed.
  • the MALDI sample target was placed in a mass spectrometer and image resolved by laser resolution dissociation.
  • the application in the image analysis of the plant tissue slice is: using the semiconductor film as the initial film, placing the plant tissue slice on the surface of the primordial film, further applying pressure, and implanting the plant tissue slice into the nano film of the semiconductor film.
  • a semiconductor film containing a plant tissue slice was obtained, and the semiconductor film was fixed on a MALDI sample target, placed in a mass spectrometer, and subjected to laser analysis and dissociation for image analysis.
  • the type and amount of the semiconductor particles are determined according to different samples, and the semiconductor nanoparticles after the high temperature burning of the muffle furnace are ground in an agate mortar to make them uniformly dispersed so as to obtain the size of the semiconductor film to be pressed and The thickness is uniform.
  • the preparation method of the invention compresses the semiconductor nanoparticle material under high pressure to prepare a film with uniform thickness and controllable thickness, thereby avoiding the uncertainty of recrystallization of the organic solvent in the prior art, and the obtained semiconductor film can absorb ultraviolet light.
  • the electrons in the valence band under laser irradiation are excited to the conduction band and tunneling occurs, and the tunneling electrons are trapped by the neutral molecules in the tissue section or the fingerprint to induce ionization and chemical bond cleavage of the sample molecules, thereby further imaging according to the mass spectrum signal.
  • the spectrum signal obtained by using the semiconductor film of the invention is stable, has no background interference, has a good linear relationship between the signal intensity and the sample amount, has good reproducibility, high sensitivity and high resolution.
  • the current MALDI imaging technology does not have an image acquisition film.
  • the organic small molecule matrix is dissolved in an organic solvent and then covered with a tissue slice in the form of a spray, which is shared by the organic matrix and the sample molecule.
  • Crystalline particles vary in size, easily lead to instability of mass spectrometry signals, poor quantitative relationship, low resolution, and a large amount of background interference in low-mass regions.
  • the present invention utilizes laser-induced tunnel electron trapping principle of semiconductor nanomaterials to ionize sample molecules. With no background interference, it overcomes the limitations of conventional MALDI matrices.
  • the image acquisition semiconductor film of the high-resolution mass spectrometry imaging system of the present invention can be obtained by pressing and molding semiconductor nanoparticles under high pressure, and the method is simple, and the obtained film is uniform, the thickness and thickness are controllable, and the property is stable. The number is stable, the surface is even and smooth, and no background interference is generated. It can be used for fingerprint analysis and animal and plant tissue section analysis, and is especially suitable for accurate mass spectrometry imaging of small molecular substances, which is convenient for quality control and industrialization.
  • Example 1 is a mass spectroscopic image obtained in Example 1, which is imaged by a molecular ion peak of a dihenestrol, a fingerprint is pressed on an image-acquisition semiconductor film, and a mass spectrum is imaged after laser scanning the film.
  • Example 2 is a mass spectrophotograph of Arabidopsis leaves obtained in Example 2, which is imaged with a jasmonic acid molecular ion peak.
  • Fig. 3 is a mouse brain mass spectroscopic image obtained in Example 3, which is imaged by a cerebral phospholipid molecular ion peak.
  • the semiconductor nanoparticles obtained in the step 1) are fired in a muffle furnace at 350 ° C for 1 hour to eliminate the contamination of the adsorbed organic molecules;
  • the semiconductor nanoparticles obtained in the step 2) are further ground with an agate mortar to make the dispersion uniform;
  • step 4) The semiconductor nanopowder obtained in step 3) is placed in a grinding machine of a tableting machine, placed in a tableting machine, and subjected to a pressure of 4800 kg, and maintained at this pressure for 1 minute;
  • Fig. 1 is a mass spectrophotograph of the estrogen diethylstilbestrol. It can be seen from Fig. 1 that the spectrum signal is stable, has no background interference, high sensitivity and high resolution.
  • the semiconductor nanoparticles obtained in the step 1) are fired in a muffle furnace at 350 ° C for 1 hour to eliminate the contamination of the adsorbed organic molecules;
  • the semiconductor nanoparticles obtained in the step 2) are further ground with an agate mortar to make the dispersion uniform;
  • the semiconductor nanopowder obtained in the step 3) is placed in a grinding machine of a tableting machine, placed in a tableting machine, and subjected to a pressure of 2000 kg, and held at this pressure for 1 minute to obtain a semiconductor film;
  • step 4) is pressed to obtain the semiconductor film as the initial film, and the Arabidopsis leaves are placed on the surface of the priming film, and then placed in a tableting machine, and the pressure is raised to 2000 kg, and the pressure is maintained for 1 minute.
  • a semiconductor film containing a blade
  • the semiconductor film obtained in the step 5) is fixed on the surface of the MALDI sample target, placed in a mass spectrometer, and subjected to laser analysis and dissociation for image analysis.
  • Fig. 2 is a mass spectrophotograph of the plant hormone jasmonic acid. It can be seen from Fig. 2 that the spectrum signal is stable, has no background interference, high sensitivity and high resolution.
  • High-resolution mass spectrometry imaging system for image acquisition of semiconductor film for mass spectrometry imaging of brain tissue cephalin, the steps are as follows:
  • the semiconductor nanoparticles obtained in the step 1) are fired in a muffle furnace at 350 ° C for 1 hour to eliminate the contamination of the adsorbed organic molecules;
  • the semiconductor nanoparticles obtained in the step 2) are further ground with an agate mortar to make the dispersion uniform;
  • the two-thirds of the semiconductor nanopowder obtained in the step 3) is placed in a grinding machine of a tableting machine, placed in a tableting machine, and subjected to a pressure of 4,800 kg, and held at this pressure for 1 minute to obtain a semiconductor film;
  • Step 4) is pressed to obtain a semiconductor film, and the mouse brain is frozen at minus 80 degrees, and serially sliced, each piece having a thickness of 20 ⁇ m, and the slice is directly transferred to the surface of the film;
  • the film obtained in the step 5) was fixed on the surface of the MALDI sample target, placed in a mass spectrometer, and subjected to laser analysis and dissociation for image analysis.
  • Fig. 3 is a mass spectroscopic image of cephalin. It can be seen from Fig. 3 that the spectrum signal is stable, has no background interference, high sensitivity and high resolution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用。所述高分辨质谱成像系统图像采集半导体薄膜,通过如下方法制备得到:称取半导体纳米颗粒,首先置于马弗炉中灼烧,进一步用玛瑙研钵磨细,使其分散均匀,得到半导体纳米粉末;最后将半导体纳米粉末置于压片机中压制得到半导体薄膜。利用半导体纳米材料的激光诱导隧道电子俘获原理使样品分子离子化,无背景干扰,克服了常规MALDI基质的局限性,所述半导体薄膜简单易得,质谱信号稳定,表面均匀光滑,不产生背景干扰,可用于指纹分析和动植物组织切片分析,特别适合于小分子物质的准确质谱成像,便于质量控制和产业化。

Description

一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用 技术领域
本发明属于质谱成像领域,具体涉及一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用。
背景技术
质辅助激光解析离解质谱是目前质谱成像常用的一种分析技术,该技术将可吸收激光能量的有机小分子基质覆盖与组织切片表面,并将能量传递给样品分子,使之汽化并离子化,再被质量分析器检测。在该技术中,有机小分子基质与样品分子的混合模式是关键,因为它直接影响分析结果的准确度、分辨率以及实验结果的重现性和定量分析的能力。
现有的技术中,常常采用有机溶剂先溶解基质,再将基质溶液喷雾在组织切片的表面,待溶剂挥发后,样品与基质分子形成混晶。现有技术的主要缺点在于很难形成大小均匀,形貌可控的晶体,从而使得激光在不同扫描时间所获得的图谱不具有重现性,信号强度与样品量之间没有定量关系。并且,由于晶体大小和形貌的差异,造成激光轰击样品分子之后所得离子的初速度和方向不同,影响图像的分辨率和质量准确度。此外,这些有机小分子基质还通常在低质量区产生一系列背景峰,抑制低质量分子信号,并严重污染离子源。
发明内容
本发明针对现有技术的不足,目的在于提供一种高分辨质谱成像系统图像采集薄膜、制备方法及应用。
一种高分辨质谱成像系统图像采集半导体薄膜,其是将半导体纳米颗粒灼烧去除表面附着的有机杂质后,再经研磨处理然后置于压片机中压制成膜得到的。
按上述方案,所述半导体纳米颗粒为(Bi2O3)0.07(CoO)0.03(ZnO)0.9半导体颗粒。
按上述方案,所述灼烧的温度为350℃,灼烧时间为1小时。
上述高分辨质谱成像系统图像采集半导体薄膜的制备方法,包括如下步骤:
1)将半导体纳米颗粒在350℃马弗炉中灼烧1小时;
2)将步骤1)得到的半导体纳米颗粒进一步用玛瑙研钵磨细,使其分散均匀,得到半导体纳米粉末;
3)将步骤2)得到的半导体纳米粉末放入压片机的磨具,再放入压片机,施加压力压制得到半导体薄膜;
4)将步骤3)压制得半导体薄膜取出,室温保存。按上述方案,所述压制为2000kg~4800kg压力下压制1分钟。
上述高分辨质谱成像系统图像采集半导体薄膜在隐形指纹图像分析、动物组织切片图像分析、植物组织切片图像分析中的应用。
按上述方案,所述的应用为:将植物组织切片,动物组织切片或隐形指纹固定或按压在上述高分辨质谱成像系统图像采集半导体薄膜上后,将半导体薄膜固定在样品靶上,直接放入质谱仪进行分析。
按上述方案,所述在隐形指纹图像分析中的应用为:将指纹直接按压于半导体薄膜表面后,固定半导体薄膜在MALDI样品靶,放入质谱仪用激光解析离解进行图像分析。
按上述方案,所述在动物组织切片图像分析中的应用为:首先将组织切片置于零下八十度下冷冻,再切成20微米厚度的切片,直接转移至半导体薄膜表面,固定半导体薄膜在MALDI样品靶,放入质谱仪后用激光解析离解进行图像分析。
按上述方案,所述在植物组织切片图像分析中的应用为:把半导体薄膜作为初膜,把植物组织切片放置于初膜表面,进一步施加压力,使植物组织切片填埋于半导体薄膜的纳米颗粒中后,得到含有植物组织切片的半导体薄膜,固定半导体薄膜在MALDI样品靶,放入质谱仪后用激光解析离解进行图像分析。本发明中,半导体颗粒的种类和用量依不同的样品而定,马弗炉高温灼烧后的半导体纳米颗粒需在玛瑙研钵磨细,使其分散均匀,以便使压制得到的半导体薄膜大小和厚度均匀。
本发明制备方法将半导体纳米颗粒材料在高压下压制制备均匀、大小厚度可控的薄膜,避免了现有技术中采用有机溶剂重结晶的不确定性,其获得的半导体薄膜能够吸收紫外光,在激光照射下处于价带的电子被激发到导带并发生隧穿,隧穿电子被组织切片或指纹中的中性分子俘获从而引发样品分子的电离和化学键断裂,由此进一步根据质谱信号成像。另外,采用本发明半导体薄膜所获得的谱图信号稳定,无背景干扰,信号强度与样品量之间成良好的线性关系,重现性好,灵敏度高,分辨率高。
本发明的有益效果如下:
(1)与现有MALDI质谱成像系统相比,目前MALDI成像技术没有图像采集薄膜,一般是将有机小分子基质溶解于有机溶剂后以喷雾的形式覆盖组织切片,其由于有机基质与样品分子共结晶颗粒大小不一,容易导致质谱信号不稳定,定量关系差,分辨率低,并在低质量区产生大量背景干扰;而本发明利用半导体纳米材料的激光诱导隧道电子俘获原理使样品分子离子化,无背景干扰,克服了常规MALDI基质的局限性。
(2)本发明所述高分辨质谱成像系统图像采集半导体薄膜采用半导体纳米颗粒在高压下压制成型即可得到,不仅方法简单,且获得的薄膜均匀、大小厚度可控,性质稳定,质谱信 号稳定,表面均匀光滑,不产生背景干扰,可用于指纹分析和动植物组织切片分析,特别适合于小分子物质的准确质谱成像,便于质量控制和产业化。
附图说明
图1是实施例1所得的质谱图像,该图以己二烯雌酚分子离子峰成像,指纹按压在图像采集半导体薄膜上,激光扫描薄膜后得到质谱成像。
图2是实施例2所得拟南芥叶片的质谱图像,该图以茉莉酸分子离子峰成像。
图3是实施例3所得的小鼠脑质谱图像,该图以脑磷脂分子离子峰成像。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
高分辨质谱成像系统图像采集半导体薄膜的制备,该薄膜用于隐形指纹的成像分析,操作步骤依次如下:
1)用分析天平称取一定量的(Bi2O3)0.07(CoO)0.03(ZnO)0.9半导体纳米颗粒,比如10mg,材料的种类和量可据不同的样品而定;
2)将步骤1)得到的半导体纳米颗粒在350℃马弗炉中灼烧1小时,消除所吸附的有机分子的污染;
3)将步骤2)得到的半导体纳米颗粒进一步用玛瑙研钵磨细,使其分散均匀;
4)将步骤3)得到的半导体纳米粉末放入压片机的磨具,再放入压片机,施加4800kg压力,并在此压力下保持1分钟;
5)将步骤4)压制得半导体薄膜取出,保存在室温;
6)将指纹按压在步骤5)所得半导体薄膜表面,将薄膜固定于MALDI样品靶表面,放入质谱仪后用激光解析离解进行图像分析。
本实施例所得的质谱图像如图1所示,该图像是雌性激素己二烯雌酚的质谱图像。由图1可以看出,谱图信号稳定,无背景干扰,灵敏度高,分辨率高。
实施例2
高分辨质谱成像系统图像采集半导体薄膜的制备,该薄膜用于植物激素茉莉酸的质谱成像,操作步骤如下:
1)用分析天平称取一定量的(Bi2O3)0.07(CoO)0.03(ZnO)0.9半导体纳米颗粒,比如10mg,材料的种类和量可据不同的样品而定;
2)将步骤1)得到的半导体纳米颗粒在350℃马弗炉中灼烧1小时,消除所吸附的有机分子的污染;
3)将步骤2)得到的半导体纳米颗粒进一步用玛瑙研钵磨细,使其分散均匀;
4)将步骤3)得到的半导体纳米粉末放入压片机的磨具,再放入压片机,施加2000kg压力,并在此压力下保持1分钟,得到半导体薄膜;
5)将步骤4)压制得半导体薄膜取出作为初膜,把拟南芥叶片放于初膜表面,再放入压片机,并将压力升至2000kg压力,并在此压力保持1分钟,得到含有叶片的半导体薄膜;
6)将步骤5)所得半导体薄膜固定于MALDI样品靶表面,放入质谱仪后用激光解析离解进行成像分析。
本实施例所得的质谱图像如图2所示,该图像是植物激素茉莉酸的质谱图像。由图2可以看出,谱图信号稳定,无背景干扰,灵敏度高,分辨率高。
实施例3
高分辨质谱成像系统图像采集半导体薄膜的制备,该薄膜用于脑组织脑磷脂的质谱成像,操作步骤如下:
1)用分析天平称取一定量的(Bi2O3)0.07(CoO)0.03(ZnO)0.9半导体纳米颗粒,比如10mg,材料的种类和量可据不同的样品而定;
2)将步骤1)得到的半导体纳米颗粒在350℃马弗炉中灼烧1小时,消除所吸附的有机分子的污染;
3)将步骤2)得到的半导体纳米颗粒进一步用玛瑙研钵磨细,使其分散均匀;
4)将三分之二步骤3)得到的半导体纳米粉末放入压片机的磨具,再放入压片机,施加4800kg压力,并在此压力下保持1分钟,得到半导体薄膜;
5)将步骤4)压制得半导体薄膜取出,将小鼠脑于零下八十度冷冻后连续切片,每片厚度为20微米,直接将切片依次转移至薄膜表面;
6)将步骤5)所得薄膜固定于MALDI样品靶表面,放入质谱仪后用激光解析离解进行成像分析。
本实施例所得的质谱图像如图3所示,该图像是脑磷脂的质谱图像。由图3可以看出,谱图信号稳定,无背景干扰,灵敏度高,分辨率高。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于 本发明创造的保护范围之内。

Claims (9)

  1. 一种高分辨质谱成像系统图像采集半导体薄膜,其特征在于,其是将半导体纳米颗粒灼烧去除表面附着的有机杂质后,再经研磨处理然后置于压片机中压制成膜得到的;所述半导体纳米颗粒为(Bi2O3)0.07(CoO)0.03(ZnO)0.9半导体颗粒。
  2. 根据权利要求1所述的高分辨质谱成像系统图像采集半导体薄膜,其特征在于,所述灼烧的温度为350℃,灼烧的时间为1小时。
  3. 权利要求1所述高分辨质谱成像系统图像采集半导体薄膜的制备方法,其特征在于,包括如下步骤:
    1)将半导体纳米颗粒在350℃马弗炉中灼烧1小时;
    2)将步骤1)得到的半导体纳米颗粒进一步用玛瑙研钵磨细,使其分散均匀,得到半导体纳米粉末;
    3)将步骤2)得到的半导体纳米粉末放入压片机的磨具,再放入压片机,施加压力压制得到半导体薄膜;
    4)将步骤3)压制得半导体薄膜取出,室温保存。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤3)所述压制为:2000kg~4800kg压力下压制1分钟。
  5. 权利要求1所述高分辨质谱成像系统图像采集半导体薄膜在隐形指纹图像分析、动物组织切片图像分析、植物组织切片图像分析中的应用。
  6. 根据权利要求5所述的应用,其特征在于,所述应用为:将植物组织切片,动物组织切片或隐形指纹固定或按压在高分辨质谱成像系统图像采集半导体薄膜上后,将半导体薄膜固定在样品靶上,直接放入质谱仪进行图像分析。
  7. 根据权利要求5~6任一所述的应用,其特征在于,所述隐形指纹图像分析的应用为:将隐形指纹直接按压于半导体薄膜表面后,固定半导体薄膜在MALDI样品靶,放入质谱仪用激光解析离解进行图像分析。
  8. 根据权利要求5~6任一所述的应用,其特征在于,所述动物组织切片图像分析的应用为:首先将动物组织切片置于零下八十度下冷冻,再切成20微米厚度的切片,直接转移至半导体薄膜表面,固定半导体薄膜在MALDI样品靶,放入质谱仪后用激光解析离解进行图像分析。
  9. 根据权利要求5~6任一所述的应用,其特征在于,所述植物组织切片图像分析的应用为:将半导体薄膜作为初膜,把植物组织切片放置于初膜表面,进一步施加压力,使组织切片填埋于半导体薄膜的纳米颗粒中后,得到含有植物组织切片 的半导体薄膜,然后将其固定在MALDI样品靶,放入质谱仪后用激光解析离解进行图像分析。
PCT/CN2016/071039 2015-01-21 2016-01-15 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用 WO2016116014A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/529,515 US20170345633A1 (en) 2015-01-21 2016-01-15 Image acquisition semiconductor film for high-resolution mass spectrometric imaging system, preparation method, and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510030221.8A CN104597113B (zh) 2015-01-21 2015-01-21 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用
CN201510030221.8 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016116014A1 true WO2016116014A1 (zh) 2016-07-28

Family

ID=53123033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071039 WO2016116014A1 (zh) 2015-01-21 2016-01-15 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用

Country Status (3)

Country Link
US (1) US20170345633A1 (zh)
CN (1) CN104597113B (zh)
WO (1) WO2016116014A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597113B (zh) * 2015-01-21 2015-12-09 华中师范大学 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用
CN105973973B (zh) * 2016-07-11 2020-10-20 华南师范大学 一种生物组织质谱成像方法
WO2018046981A1 (en) * 2016-09-08 2018-03-15 Foss Analytical A/S Method for preparing a sample for laser induced breakdown spectroscopy
US10347480B2 (en) * 2017-09-25 2019-07-09 Bruker Daltonik, Gmbh Method for evaluating the quality of mass spectrometric imaging preparations and kit-of-parts therefor
US20220236152A1 (en) * 2019-06-28 2022-07-28 Asahi Kasei Kabushiki Kaisha Imaging sample for mass spectrometer and method for producing same
CN111239238B (zh) * 2020-02-03 2021-01-26 华南农业大学 一种组织样品快速质谱成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071610A (en) * 1993-11-12 2000-06-06 Waters Investments Limited Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
CN101260507A (zh) * 2008-04-24 2008-09-10 复旦大学 一种p型半导体掺镍氧化铜靶材及其制备方法
CN102426187A (zh) * 2011-11-21 2012-04-25 程金生 石墨烯基质及其在基质辅助激光解吸电离飞行时间质谱检测中的应用
US20120305760A1 (en) * 2011-06-02 2012-12-06 Robert Blick Membrane Detector for Time-of-Flight Mass Spectrometry
CN103245717A (zh) * 2012-02-10 2013-08-14 华中师范大学 高压成型基质薄膜辅助-激光解析离解质谱定量分析方法
CN104597113A (zh) * 2015-01-21 2015-05-06 华中师范大学 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060919A1 (en) * 2007-11-13 2009-05-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO MALDI matrix and MALDI method
CN101220127B (zh) * 2007-12-06 2010-06-09 浙江工业大学 一种核壳型橡胶配位交联剂
CN103409138A (zh) * 2013-08-06 2013-11-27 电子科技大学 一种pdp用碳纳米管掺杂荧光粉的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071610A (en) * 1993-11-12 2000-06-06 Waters Investments Limited Enhanced resolution matrix-laser desorption and ionization TOF-MS sample surface
CN101260507A (zh) * 2008-04-24 2008-09-10 复旦大学 一种p型半导体掺镍氧化铜靶材及其制备方法
US20120305760A1 (en) * 2011-06-02 2012-12-06 Robert Blick Membrane Detector for Time-of-Flight Mass Spectrometry
CN102426187A (zh) * 2011-11-21 2012-04-25 程金生 石墨烯基质及其在基质辅助激光解吸电离飞行时间质谱检测中的应用
CN103245717A (zh) * 2012-02-10 2013-08-14 华中师范大学 高压成型基质薄膜辅助-激光解析离解质谱定量分析方法
CN104597113A (zh) * 2015-01-21 2015-05-06 华中师范大学 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用

Also Published As

Publication number Publication date
US20170345633A1 (en) 2017-11-30
CN104597113A (zh) 2015-05-06
CN104597113B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2016116014A1 (zh) 一种高分辨质谱成像系统图像采集半导体薄膜、制备方法及应用
CN105929017B (zh) 二硫化钼/纳米银复合物作为基质在基质辅助激光解吸电离飞行时间质谱检测中的应用
DE102016008230B4 (de) Elementaranalyse von organischen Proben
CA2559847C (en) Method and system for desorption electrospray ionization
WO2016116012A1 (zh) 高分辨质谱仪负离子模式低质量区的质量校正试剂盒及校正方法
Walton et al. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints
Chen et al. Tip-enhanced photoinduced electron transfer and ionization on vertical silicon nanowires
Musapelo et al. Particle formation in ambient MALDI plumes
DE102007043456A1 (de) Matrixunterstützte Laserdesorption hoher Ionisierungsausbeute
Du et al. Ag nanoparticles/ZnO nanorods for highly sensitive detection of small molecules with laser desorption/ionization mass spectrometry
CN108845023A (zh) 一种激光解吸附离子化质谱检测方法
Huang et al. Imaging of endogenous metabolites of plant leaves by mass spectrometry based on laser activated electron tunneling
DE10322701B4 (de) Probenträger unter Verwendung eines porösen, Metalloxidpartikel umfassenden Films, Verfahren zur Herstellung eines Probenträgers, Verwendung des Probenträgers sowie Verfahren zum selektiven Nachweis von phosphorylierten/sulfatierten Biopolymeren, insbesondere Peptiden/Proteinen
Lu et al. High-spatial resolution atmospheric pressure mass spectrometry imaging using fiber probe laser ablation-dielectric barrier discharge ionization
CN103227096B (zh) 一种激光诱导电子捕获质谱解析离解脂质分子方法
JP2004361405A (ja) レーザー脱離/イオン化質量分析用試料ホルダーおよびその製造方法
CN102253109A (zh) 固体样品在基质辅助激光解析质谱仪中的检测方法
KR20170041528A (ko) 말디톱 질량분석용 나노섬 고체 매트릭스 및 이의 제조 방법
US9355826B2 (en) Method for imaging mass analysis using physical vapor deposition of platinum nanoparticles
KR102062447B1 (ko) 그래핀을 이용한 maldi 질량 분석 플레이트 및 이를 이용하는 질량 분석 방법
Nakata et al. Imaging mass spectrometry with nuclear microprobes for biological applications
CN108132295B (zh) 1,8-萘二甲酰亚胺衍生物作基质在maldi-ms中应用
Bacon et al. Atomic spectrometry update. Atomic mass spectrometry
Hercules et al. Applications of laser microprobe mass spectrometry in organic analysis
US11139155B2 (en) Laser desorption/ionization method and mass spectrometry method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739761

Country of ref document: EP

Kind code of ref document: A1