WO2016115980A1 - 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法 - Google Patents

一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法 Download PDF

Info

Publication number
WO2016115980A1
WO2016115980A1 PCT/CN2016/070294 CN2016070294W WO2016115980A1 WO 2016115980 A1 WO2016115980 A1 WO 2016115980A1 CN 2016070294 W CN2016070294 W CN 2016070294W WO 2016115980 A1 WO2016115980 A1 WO 2016115980A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
water
constructing
washing
tio
Prior art date
Application number
PCT/CN2016/070294
Other languages
English (en)
French (fr)
Inventor
赖跃坤
黄剑莹
张克勤
李淑荟
葛明政
Original Assignee
南通纺织丝绸产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院 filed Critical 南通纺织丝绸产业技术研究院
Publication of WO2016115980A1 publication Critical patent/WO2016115980A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond

Definitions

  • the invention relates to a construction method for constructing a special wettability titanium dioxide film layer with ultraviolet protection and water washing on the surface of a fiber fabric.
  • UV Ultraviolet light
  • UVA long-wave ultraviolet UVA
  • UVB medium-wave ultraviolet UVB
  • UVC short-wave ultraviolet UVC
  • the mechanism of ultraviolet protection of textiles mainly comes from the absorption and shielding effect of the fiber fabric itself on ultraviolet rays, or the absorption and reflection of ultraviolet rays by the shielding agent. Excellent UV resistance can be obtained by the treatment of the shielding agent.
  • superhydrophobic surface is meant a surface having a contact angle with water droplets greater than 150° and a rolling angle of less than 10°.
  • nano TiO 2 is UV-resistant, chemically stable, thermally stable, non-toxic, etc., and has been widely used in the field of UV-resistant materials and textiles in recent years. At present, the most important is to prepare superhydrophobic surfaces by sol-gel method or electrospinning method.
  • the object of the present invention is to provide a method for constructing a fabric surface having ultraviolet protection and washing resistance and special wettability function, and adopting a one-step hydrothermal method to prepare a micro-nano structure TiO 2 film layer combined with a fluorosilane modification to solve the preparation of superhydrophobic self-cleaning.
  • the surface operation process is complicated, the stability is poor, and the morphology of the TiO 2 film layer is uncontrollable.
  • a method for constructing a surface of a fabric having a UV-protecting and water-resistant special infiltrating function comprising the steps of:
  • the step of dissolving the potassium titanium oxalate in the mixed solution of water and diethylene glycol in the step (1), and stirring uniformly under the action of the magnetic rotor comprises: dissolving 0.5 to 5 mmol of titanium potassium oxalate in the solution.
  • the mixture is uniformly stirred by the action of the magnetic rotor.
  • volume ratio of water to diethylene glycol in the step (1) is from 3:4 to 4:3.
  • the cleaned fabric described in the step (1) is ultrasonically washed successively with water and absolute ethanol, and the spare fabric is dried.
  • the temperature of the reaction in which the cleaned fabric is added to the hydrothermal reaction vessel and placed in an oven in the step (1) is in the range of 100 to 250 °C.
  • reaction time in which the cleaned fabric is added to the hydrothermal reaction vessel and placed in an oven in the step (1) is 0.5 to 30 h.
  • the fluorosilane solution in the step (2) is 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, A solution prepared by any one of a chlorosilane and a siloxane compound.
  • the fluorosilane solution in the step (2) is a 1-6% fluorosilane solution
  • the preparation step is: adding 38 to 48 ml of methanol to the dry and clean centrifuge tube, and then slowly adding 0.5 to 3 ml of 1H. , 1H, 2H, 2H-perfluorodecyltriethoxysilane, 1.5 to 9 ml of H 2 O was added dropwise under stirring of a magnetic rotor.
  • the fabric having the surface of the nano TiO 2 film layer is immersed in the fluorosilane solution for a reaction time of 1 h, and then the drying temperature for taking out and drying is 140 ° C.
  • the surface of nano-TiO 2 is obtained by one-step hydrothermal method.
  • the preparation process is simple and easy to operate.
  • the prepared TiO 2 film has controllable morphology and durability, and solves many traditional methods.
  • the preparation process is complicated, time-consuming and stable.
  • the mechanical properties are poor, and the surface morphology of TiO 2 is uncontrollable.
  • Fluorosilane-modified nano-TiO 2 cotton fabric can obtain a super-hydrophobic self-cleaning surface in a short time.
  • the surface of the fabric exhibits good oil-water separation and has a long-lasting superhydrophobic property under external friction.
  • Cotton cellulose is a rich resource in the world. It has low cost, good biodegradability, good chemical resistance, no toxicity, and can be directly in contact with food. It solves the problems of high raw material cost, serious environmental pollution, and no loss. Liquid transportation, micropipettes, anti-pollution, UV-resistant materials, super-hydrophobic textiles, oil-water separation materials, etc. are widely used.
  • FIG. 1 is a schematic view showing the steps of a method for constructing a surface of a fabric having a UV-protecting and water-washing special infiltrating functional fabric according to the present invention
  • FIG. 2 is a diagram showing the distribution of Ti element and the EDS spectrum of the surface of a fabric having ultraviolet protection and washing resistance and special wettability function according to the present invention
  • FIG. 3 is an XPS spectrum of a surface of a fabric having a UV-protecting and water-washing special infiltrating function according to the present invention
  • Figure 4 is a view showing the surface morphology and contact angle of a fabric having a UV-protecting and water-washing special infiltrating functional fabric according to the present invention
  • FIG. 5 is an SEM image of a surface of a micro-nano structure prepared according to Embodiment 1 of a method for constructing a surface of a UV-protected and water-resistant special invasive cotton fabric according to the present invention
  • Figure 6 is a SEM image of the surface of the micro-nano structure prepared in the second embodiment of the method for constructing the surface of the ultraviolet-shielded and water-resistant special invasive cotton fabric according to the present invention
  • Figure 7 is a SEM image of the surface of the micro-nano structure prepared in the third embodiment of the method for constructing the surface of the ultraviolet-shielded and water-resistant special invasive cotton fabric according to the present invention
  • Example 8 is an SEM image of a micro-nano structure surface prepared in Example 4 of a method for constructing a surface of a UV-protected and water-resistant special invasive cotton fabric according to the present invention
  • Figure 9 is a SEM image of the surface of the micro-nano structure prepared in Example 5 of the method for constructing the surface of the ultraviolet-shielded and water-resistant special infiltrating polyester fabric according to the present invention.
  • Figure 10 is a construction method of a surface of a cotton fabric with ultraviolet protection and water-washing special infiltrating cotton fabric according to the present invention.
  • the surface of the UV-protected and water-resistant special infiltrating functional fabric prepared at different temperatures in water at 180 ° C according to the AATCC standard a trend pattern of contact angle changes after five washes; and
  • Figure 11 is a construction method of a surface of a cotton fabric with ultraviolet protection and water-washing special infiltrating cotton fabric.
  • the surface of the UV-protected and water-resistant special infiltrating functional fabric prepared at different temperatures is water-washed according to the AATCC standard at 20 hours after water heat. Five times the trend of the contact angle change.
  • the invention provides a construction method for a surface of a fabric having ultraviolet protection and washing resistance special infiltrating function, comprising the following steps:
  • a method for constructing a surface of a fabric having a UV-protecting and water-resistant special infiltrating function comprising the steps of:
  • a method for constructing a surface of a fabric having a UV-protective and wash-resistant special infiltrating function comprising:
  • Step 1 preparing a fabric having a surface of a nano TiO 2 film layer by a hydrothermal method
  • the step may be specifically performed as follows: firstly, the fabric is cut into 5 pieces according to a 3 ⁇ 3 cm specification, and placed in a beaker, sequentially subjected to deionized water and absolute ethanol for 5 minutes, and after ultrasonication, placed in an oven at 80° C. Dry Dry, cool and spare.
  • 0.5 to 5 mol of potassium titanium oxalate is dissolved in a mixed solution of water and diethylene glycol in a volume ratio of 3:4 to 4:3, stirred uniformly under the action of a magnetic rotor, and then the prepared solution is placed in water.
  • the hydrothermal reaction kettle is added by ultrasonic cleaning with water and anhydrous ethanol, and the spare fabric is dried and placed in an oven at a temperature of 100 to 250 ° C for 0.5 to 30 hours;
  • Step 2 Fluorosilane modification produces a fabric having a UV-protected and wash-resistant special infiltrating functional fabric surface.
  • the step can be specifically carried out by adding 38 to 48 ml of methanol to a dry and clean centrifuge tube, and then slowly adding 0.5 to 3 ml of 1H, 1H, 2H, 2H-perfluorodecyltriethoxy.
  • a solution prepared by any one of silane, 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane, chlorosilane and siloxane compound added to the magnetic rotor and slowly added dropwise under stirring ⁇ 9.0 ml H 2 O, stirring was continued for 1 h and allowed to stand at room temperature for half a day before use.
  • the surface of the deposited nano-TiO 2 fabric prepared by the above hydrothermal method was immersed in the prepared fluorosilane solution, taken out after 1 hour, and dried at 140 ° C.
  • FIG. 1 is a schematic diagram showing the steps of a method for constructing a surface of a fabric having a UV-protecting and water-washing special infiltrating functional fabric according to the present invention.
  • the cotton fabric is first hydrothermally reacted to construct a second-order micro-nanostructure TiO 2 @cotton fabric surface, and then modified with a fluorosilane solution to obtain a superhydrophobic self-cleaning functional fabric surface.
  • FIG. 2 is a diagram showing the distribution of Ti element and the EDS spectrum of the surface of a fabric having ultraviolet protection and water-washing special infiltrating functional fabric according to the present invention.
  • To prepare the top of the structure shown in FIG. 2 micro-nano TiO 2 content of cotton textile surface element spectrum; below is prepared micro- and nanostructures cotton TiO 2 surface profile of the elements Ti, fabric embedded SEM scanning range, to successively The right is the distribution map of the elements C and O.
  • FIG. 3 is an XPS spectrum of a surface of a fabric having ultraviolet protection and water-washing special infiltrating function according to the present invention.
  • a significant Ti peak appeared on the surface of the deposited nano-TiO 2 fabric, compared to the unmodified nano-TiO 2 fabric, as shown in Fig. 3(b), modified with fluorosilane.
  • the fluorine signal peak was detected on the surface of the nano-TiO 2 fabric, indicating that the fluorosilane has been successfully modified to the surface of the nano-TiO 2 fabric, and the fabric is super-hydrophobic and particularly wettable.
  • FIG. 4 is a view showing the surface morphology and contact angle of a fabric having a UV-protecting and water-washing special infiltrating functional fabric according to the present invention.
  • the surface of the prepared special infiltrating functional fabric exhibits a micro-nano structure having a shape of "marigold", and a superhydrophobic surface is obtained, and the contact angle is 158 or more.
  • an embodiment or “an embodiment” as used herein refers to a particular feature, structure, or characteristic that can be included in at least one implementation of the invention.
  • a UV-protected and wash-resistant special infiltrating functional fabric surface is prepared as follows:
  • Step one one step hydrothermal method to obtain a cotton cloth having a surface of a nano TiO 2 film layer
  • the cotton cloth was cut into 5 pieces according to the 3 ⁇ 3cm specification, and placed in a beaker, and then ultrasonically filtered through deionized water and absolute ethanol for 5 minutes. After ultrasonication, it was placed in an oven at 80 ° C for drying and cooled for use. Weigh 0.5mmol titanium potassium oxalate with an electronic balance, dissolve in a mixed solution of 15ml deionized water and 20ml diethylene glycol, stir evenly under the action of magnetic rotor, then add clean cotton cloth and place in hydrothermal reaction kettle. The mixture was pressurized and tightened. Finally, the hydrothermal reaction kettle was placed in an oven at 100 ° C for 0.5 h. After the reaction, the excess reactant on the surface of the cotton fabric was thoroughly cleaned with deionized water.
  • Step 2 Fluorosilane modification to obtain a cotton cloth having a UV-protected and wash-resistant special infiltrating functional fabric surface
  • FIG. 5 is a construction method for the surface of the cotton fabric with ultraviolet protection and washing resistance. SEM image of the surface of the micro-nanostructure prepared in Example 1.
  • a UV-protected and wash-resistant special infiltrating functional fabric surface is prepared as follows:
  • Step one one step hydrothermal method to obtain a cotton cloth having a surface of a nano TiO 2 film layer
  • the cotton cloth was cut into 5 pieces according to the 3 ⁇ 3cm specification, and placed in a beaker, and then ultrasonically filtered through deionized water and absolute ethanol for 5 minutes. After ultrasonication, it was placed in an oven at 80 ° C for drying and cooled for use. Weigh 2mmol of potassium oxalate with an electronic balance, dissolve it in a mixed solution of 15ml of deionized water and 20ml of diethylene glycol, stir evenly under the action of the magnetic rotor, then add the cleaned cotton cloth and place it in the hydrothermal reaction kettle. And pressurizing and tightening, finally, the hydrothermal reaction kettle was placed in an oven at 150 ° C for 10 h, and after the reaction was completed, the excess reactant on the surface of the cotton fabric was thoroughly cleaned with deionized water.
  • Step 2 Fluorosilane modification to obtain a cotton cloth having a UV-protected and wash-resistant special infiltrating functional fabric surface
  • Figure 6 is a SEM image of the surface of the micro-nano structure prepared in Example 2 of the method for constructing the surface of the ultraviolet-shielded and water-resistant special infiltrating cotton fabric according to the present invention.
  • a UV-protected and wash-resistant special infiltrating functional fabric surface is prepared as follows:
  • Step one one step hydrothermal method to obtain a cotton cloth having a surface of a nano TiO 2 film layer
  • the cotton cloth was cut into 5 pieces according to the 3 ⁇ 3cm specification, and placed in a beaker, and then ultrasonically filtered through deionized water and absolute ethanol for 5 minutes. After ultrasonication, it was placed in an oven at 80 ° C for drying and cooled for use. Weigh 3mmol of potassium oxalate with an electronic balance, dissolve it in a mixed solution of 20ml of deionized water and 15ml of diethylene glycol, stir evenly under the action of the magnetic rotor, then add the cleaned cotton cloth and place it in the hydrothermal reaction kettle. And pressurizing and tightening, finally, the hydrothermal reaction kettle is placed in an oven at 180 ° C for 20 h, and after the reaction is finished, the excess reactant on the surface of the cotton fabric is thoroughly cleaned with deionized water.
  • Step 2 Fluorosilane modification to obtain a cotton cloth having a UV-protected and wash-resistant special infiltrating functional fabric surface
  • FIG. 7 is a construction method for the surface of the cotton fabric with ultraviolet protection and washing resistance.
  • a UV-protected and wash-resistant special infiltrating functional fabric surface is prepared as follows:
  • Step one one step hydrothermal method to obtain a cotton cloth having a surface of a nano TiO 2 film layer
  • the cotton cloth was cut into 5 pieces according to the 3 ⁇ 3cm specification, and placed in a beaker, and then ultrasonically filtered through deionized water and absolute ethanol for 5 minutes. After ultrasonication, it was placed in an oven at 80 ° C for drying and cooled for use. Weigh 5 mmol of potassium oxalate with an electronic balance, dissolve in a mixed solution of 20 ml of deionized water and 15 ml of diethylene glycol, stir evenly under the action of a magnetic rotor, then add clean cotton cloth and place in a hydrothermal reaction kettle. And pressurizing and tightening, finally, the hydrothermal reaction kettle is placed in an oven at 250 ° C for 30 hours, and after the reaction is finished, the excess reactant on the surface of the cotton fabric is thoroughly cleaned with deionized water.
  • Step 2 Fluorosilane modification to obtain a cotton cloth having a UV-protected and wash-resistant special infiltrating functional fabric surface
  • FIG. 8 is a construction method of the surface of the cotton fabric with ultraviolet protection and washing resistance.
  • a UV-protected and wash-resistant special infiltrating functional fabric surface is prepared as follows:
  • Step 1 One step hydrothermal method to obtain a surface of a polyester fabric having a surface of a nano TiO 2 film layer
  • the polyester was cut into 5 pieces according to the 3 ⁇ 3cm specification, and placed in a beaker, and then ultrasonically filtered through deionized water and absolute ethanol for 5 minutes. After ultrasonication, it was placed in an oven at 80 ° C for drying and cooled for use. Weigh 3mmol of potassium oxalate with an electronic balance, dissolve it in a mixed solution of 20ml of deionized water and 15ml of diethylene glycol, stir evenly under the action of the magnetic rotor, then add the cleaned polyester and place it in the hydrothermal reactor. And pressurizing and tightening, finally, the hydrothermal reaction kettle was placed in an oven at 150 ° C for 10 h, and after the reaction was completed, the excess reactant on the surface of the polyester fabric was thoroughly cleaned with deionized water.
  • Step 2 Fluorosilane modification to obtain a polyester fabric having a UV-protected and wash-resistant special infiltrating functional fabric surface
  • FIG. 9 is a construction method for the surface of the special infiltrating polyester fabric with ultraviolet protection and washing resistance according to the present invention.
  • the following table shows the UV protection performance data of the surface of a UV-protected and wash-resistant special infiltrating functional fabric of the present invention:
  • the UV-proof coefficient of the blank sample without any treatment is 0, and the sample prepared by hydrothermal 180 °C for 1 h has an anti-ultraviolet ability of 10, 5 h to obtain an excellent UV-blocking effect, and nano-TiO 2 It is non-toxic and harmless, and can directly contact with the skin. It has broad development prospects in the fields of anti-UV textiles and functional materials.
  • the UV-protected and wash-resistant special infiltrating functional fabric surface prepared by one-step hydrothermal method and fluorosilane modification has long-lasting hydrophobicity under external friction and water washing, please refer to FIG. 10 and FIG.
  • the invention relates to a method for constructing a surface of a fabric having a UV-protecting and water-washing special infiltrating function according to the present invention.
  • the surface of the UV-protected and water-resistant special infiltrating functional fabric prepared at different times in water at a temperature of 180 ° C is washed according to the AATCC standard. The trend of the contact angle change. As shown in Fig.
  • the surface of the special infiltrating functional fabric at different temperatures of 180 °C was washed by water according to the AATCC standard 2A method, and the contact angle of the surface of the fabric with water was increased 5 times, as can be seen from Fig. 10. After five times of enhanced washing, the sample maintains good hydrophobicity.
  • the latitude and longitude tissue points on the surface of the fabric are the most vulnerable to frictional damage. At these positions, the nano-TiO 2 particles are detached or destroyed, resulting in a small decrease in the hydrophobic properties of the cotton fabric. .
  • FIG. 11 is a schematic diagram of a method for constructing a surface of a fabric having a UV-protecting and water-washing special infiltrating functional fabric.
  • the surface of the UV-protecting and water-washing special infiltrating functional fabric prepared at different temperatures in water and heat for 20 hours.
  • the present invention discloses a method for constructing a surface of a fabric having a UV-protecting and water-washing special infiltrating function.
  • the method utilizes a one-step hydrothermal method to construct a micro-nano-order second-order TiO 2 based on the prior art.
  • the method of combining the surface of the rough structure of the fabric with the modification of fluorosilane obtains a superhydrophobic self-cleaning and oil-water separation functional surface.
  • the reaction condition is mild, the process is simple and easy to operate, the prepared nanometer TiO 2 has controllable morphology, excellent super-hydrophobic property after rubbing, no pollution to the environment, good application prospect, and can be transported in no loss liquid, micro pipette, Anti-UV products, functional materials, self-cleaning textiles, oil-water separable materials, etc. are well used.

Abstract

本发明公开了一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,该方法包括如下步骤:将草酸钛钾溶解在水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,将上述配制好的溶液装入水热反应釜中,在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应,制得具有纳米TiO2膜层表面的织物;将所述具有纳米TiO2膜层表面的织物浸泡在硅烷溶液中反应,然后取出清洗烘干,制得具有紫外防护和耐水洗特殊浸润性功能织物表面的织物。该方法具有工艺简便易操作、反应条件可控、适用范围广、原材料来源广泛,成本低无污染,优良的防紫外性能,耐水洗性能,持久稳定的超疏水自清洁性能,良好的油水分离功能,织物的舒适性、透气性佳。

Description

一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法 技术领域
本发明涉及一种在纤维织物表面构筑具有紫外防护和耐水洗特殊浸润性二氧化钛膜层的构筑方法。
背景技术
紫外线(简称UV)按辐射波长可分为长波紫外线UVA(320~400nm)、中波紫外线UVB(280~320nm)和短波紫外线UVC(200~280nm),其中,容易对人体造成伤害的紫外线波长段为290~400nm。如果紫外光线在织物上吸收率和反射率越高,那么紫外线透过率越低,产品的防护性能越好。目前纺织品紫外线防护的机理主要来源于纤维织物本身对紫外线的吸收屏蔽作用,或利用屏蔽剂对紫外线进行吸收和反射。利用屏蔽剂的处理可获得优良的抗紫外线性能,主要的处理方法有2种:一是在纤维成形时加入无机或有机屏蔽剂,制作成抗紫外线纤维;二是选用紫外线屏蔽剂将织物经浸轧或涂层整理赋予织物抗紫外线功能。然而前者的处理技术要求高、成本大,多以聚酯和聚丙烯为基材,难以应用于天然纤维,且在混纺时效果难以控制;后者的产品功能耐洗涤程度差,织物风格受到影响,均不大适合用于以轻薄、透气、吸湿等性能为主的夏季服装面料。
自1997年德国植物学家Barthlott发现荷叶表面的自清洁效应和超疏水现象以来,超疏水表面已经引起了科研人员极大的兴趣和广泛的关注。所谓超疏水表面是指与水滴的接触角大于150°且滚动角小于10°的表面。研究发现,这些超疏水表面的微纳米结构对超疏水性起着至关重要的作用。纳米TiO2具有抗紫外线性、化学稳定性、热稳定性、无毒性等,近些年来被广泛用在抗紫外线材料、纺织领域。目前,最主要的是用溶胶-凝胶法或电纺法制备超疏水表面,然而这些方法需要特殊的实验设备、实验周期长,纳米TiO2形貌不可控。因此,如何制备表面具有持久的超疏水自清洁性能、良好的机械性能、化学稳定性、油水分离性能等,能够在无损失液体运输、微量吸液管、防紫外产品、功能性材料、自清洁纺织品,油水分离材料等领域得到广泛应用,成为人们亟待解决的问题。
发明内容
本发明目的是:提供一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,采用一步水热法制备微纳结构TiO2膜层与氟硅烷修饰相结合,解决制备超疏水自清洁表面操作工艺复杂、稳定性差、TiO2膜层形貌不可控的问题。
本发明的技术方案是:
一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,该方法包括如下步骤:
(1)将草酸钛钾溶解在水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,将上述配制好的溶液装入水热反应釜中,在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应,制得具有纳米TiO2膜层表面的织物;和
(2)将所述具有纳米TiO2膜层表面的织物浸泡在氟硅烷溶液中反应,然后取出清洗烘干,制得具有紫外防护和耐水洗特殊浸润性功能织物表面的织物。
进一步的,步骤(1)中所述将草酸钛钾溶解在水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀的步骤包括:将0.5~5mmol的草酸钛钾溶解在去离子水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀。
进一步的,步骤(1)中所述水和二乙二醇的体积比为3:4~4:3。
进一步的,步骤(1)中所述清洗干净的织物为依次经过水、无水乙醇超声清洗,并烘干备用的织物。
进一步的,步骤(1)中所述在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应的温度范围为100~250℃。
进一步的,步骤(1)中所述在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应的反应时间为0.5~30h。
进一步的,在步骤(1)结束后、步骤(2)开始前,还需要用去离子水清洗掉所述具有纳米TiO2膜层表面的织物上的多余的反应物。
进一步的,步骤(2)中所述氟硅烷溶液为1H,1H,2H,2H-全氟癸基三乙氧基硅烷、1H,1H,2H,2H-全氟辛基三乙氧基硅烷、氯硅烷以及硅氧烷类化合物中的任意一种配制成的溶液。
进一步的,步骤(2)中所述氟硅烷溶液为体积分数为1-6%氟硅烷溶液,其配 制步骤为:在干燥洁净的离心管中加入38~48ml甲醇,然后缓慢滴加0.5~3ml1H,1H,2H,2H-全氟癸基三乙氧基硅烷,在磁力转子的搅拌作用下滴加1.5~9ml H2O。
进一步的,步骤(2)中将所述具有纳米TiO2膜层表面的织物浸泡在氟硅烷溶液中反应的时间为1h,然后取出烘干的烘干温度为140℃。
本发明的优点是:
(1)采用一步水热法获得纳米TiO2表面,制备工艺简单,操作方便,制备的TiO2膜层形貌可控、耐久性好,解决了许多传统方法制备工序复杂,耗时长、稳定性、机械性能差,TiO2表面形貌不可控等问题。
(2)氟硅烷修饰纳米TiO2棉织物在短时间内就可获得超疏水自清洁表面,此外,织物表面表现出良好的油水分离现象,并且在外力摩擦作用下,拥有持久的超疏水性能。棉纤维素是世界上丰富的资源,成本低、可生物降解性好、耐化学性好,无毒害,可直接与食物接触,解决了原料成本高,环境污染严重等问题,并可在无损失液体运输、微量吸液管、防污染、抗紫外线材料、超疏水纺织品、油水分离材料等得以广泛应用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中,
图1为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法的步骤示意图;
图2为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的Ti元素分布以及EDS能谱图;
图3为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的XPS谱图;
图4为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的形貌及接触角;
图5为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例一所制备的微纳结构表面的SEM图;
图6为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例二所制备的微纳结构表面的SEM图;
图7为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例三所制备的微纳结构表面的SEM图;
图8为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例四所制备的微纳结构表面的SEM图;
图9为本发明所述的一种具有紫外防护和耐水洗特殊浸润性涤纶织物表面的构筑方法的实施例五所制备的微纳结构表面的SEM图;
图10为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法在水热180℃时,不同时间制备的紫外防护和耐水洗特殊浸润性功能织物表面按照AATCC标准水洗五次的接触角变化趋势图;和
图11为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法在水热20h时,不同温度制备的紫外防护和耐水洗特殊浸润性功能织物表面按照AATCC标准水洗五次的接触角变化趋势图。
具体实施方式
本发明提供一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,包括以下步骤:
一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,该方法包括如下步骤:
(1)一步水热法制得具有纳米TiO2膜层表面的织物;和
(2)氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的织物。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施方式对本发明作进一步详细的说明。
一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,包括:
步骤一:一步水热法制得具有纳米TiO2膜层表面的织物;
在一个实施例中,该步骤可以具体如下执行:先将织物按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干 燥,冷却备用。将0.5~5mol的草酸钛钾溶解在体积比为3:4~4:3的水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后将配制好的溶液装在水热反应釜中,在所述水热反应釜中加入依次经过水、无水乙醇超声清洗,并烘干备用的织物并放入烘箱中在100~250℃温度下反应0.5~30h;
步骤二:氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的织物。
在一个实施例中,该步骤可以具体如下执行:在干燥洁净的离心管中加入38~48ml甲醇,然后慢慢滴加0.5~3ml 1H,1H,2H,2H-全氟癸基三乙氧基硅烷、1H,1H,2H,2H-全氟辛基三乙氧基硅烷、氯硅烷以及硅氧烷类化合物中的任意一种配制成的溶液,加入磁力转子在搅拌的状态下缓慢滴加1.5~9.0ml H2O,持续搅拌1h并在室温下静置半天后使用。将上述水热法制备的沉积纳米TiO2织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
上述步骤过程可参阅图1,图1为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法的步骤示意图。如图1所示,棉织物首先经过水热反应构建二阶微纳结构TiO2@棉织物表面,然后经氟硅烷溶液修饰获得超疏水自清洁功能织物表面。
上述步骤所得实验结果请参阅图2-图4,请参阅图2,图2为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的Ti元素分布以及EDS能谱图。如图2所示上方为制备的微纳结构TiO2棉织物表面元素含量谱图;下方为制备的微纳结构TiO2棉织物表面元素Ti的分布图,嵌入的SEM为织物扫描范围,依次往右为元素C、O分布图。
请参阅图3,图3为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的XPS谱图。如图3(a)所示,制备的沉积纳米TiO2织物表面出现了明显的Ti峰,相比于未修饰的纳米TiO2织物,如图3(b)所示,在氟硅烷修饰过的纳米TiO2织物表面探测到氟元素信号峰,说明氟硅烷已成功修饰到纳米TiO2织物表面,并赋予织物超疏水特殊浸润性。
请参阅图4,图4为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的形貌及接触角。如图4所示,制备的特殊浸润性功能织物表面呈现出类“万寿菊”形状的微纳米结构,获得超疏水表面,接触角达到158°以上。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图 和实施例进一步说明本发明的技术方案。但是本发明不限于所列出的实施例,还应包括在本发明所要求的权利范围内其他任何公知的改变。
首先,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
其次,本发明利用结构示意图等进行详细描述,在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是实例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间。
另外,本发明中所讲的字母简称,均为本领域固定简称,其中部分字母文解释如下:TiO2@棉织物:沉积有纳米二氧化钛颗粒的棉织物表面;PDES:1H,1H,2H,2H-全氟癸基三乙氧基硅烷;PTES:1H,1H,2H,2H-全氟辛基三乙氧基硅烷;SEM图:电子扫描显像图;EDS图:能谱图;XPS谱图:X射线光电子能谱分析谱图。
由于实施种类较多,下面以氟硅烷溶液为PDES溶液为例。
实施例一
本实施方式按照如下步骤制备一种紫外防护和耐水洗特殊浸润性功能织物表面:
步骤一、一步水热法制得具有纳米TiO2膜层表面的棉布
将棉布按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干燥,冷却备用。用电子天平称量0.5mmol草酸钛钾,溶解在15ml去离子水和20ml二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后加入清洗干净的棉布,置于水热反应釜中并加压拧紧,最后将水热反应釜放入烘箱100℃反应0.5h,反应结束后用去离子水彻底清洗干净棉织物表面多余的反应物。
步骤二、氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的棉布
在干燥洁净的离心管中加入38ml甲醇,然后慢慢滴加0.5ml PDES,加入磁力转子在搅拌的状态下缓慢滴加1.5ml H2O,持续搅拌1h并在室温 下静置半天后使用。将上述水热法制备的沉积纳米TiO2棉织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
本实施例制备的紫外防护和耐水洗特殊浸润性功能织物表面的形貌结构请参阅图5,图5为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例一所制备的微纳结构表面的SEM图。
实施例二
本实施方式按照如下步骤制备一种紫外防护和耐水洗特殊浸润性功能织物表面:
步骤一、一步水热法制得具有纳米TiO2膜层表面的棉布
将棉布按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干燥,冷却备用。用电子天平称量2mmol草酸钛钾,溶解在15ml去离子水和20ml二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后加入清洗干净的棉布,置于水热反应釜中并加压拧紧,最后将水热反应釜放入烘箱150℃反应10h,反应结束后用去离子水彻底清洗干净棉织物表面多余的反应物。
步骤二、氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的棉布
在干燥洁净的离心管中加入40ml甲醇,然后慢慢滴加1.0ml PDES,加入磁力转子在搅拌的状态下缓慢滴加4ml H2O,持续搅拌1h并在室温下静置半天后使用。将上述水热法制备的沉积纳米TiO2棉织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
本实施例制备的紫外防护和耐水洗特殊浸润性功能织物表面的形貌结构请参阅图6。图6为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例二所制备的微纳结构表面的SEM图。
实施例三
本实施方式按照如下步骤制备一种紫外防护和耐水洗特殊浸润性功能织物表面:
步骤一、一步水热法制得具有纳米TiO2膜层表面的棉布
将棉布按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干燥,冷却备用。用电子天平称量3mmol草酸钛钾,溶解在20ml去离子水和15ml二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后加入清洗干净的棉布,置于水热反应釜中并加压拧紧,最后将水热反应釜放入烘箱180℃反应20h,反应结束后用去离子水彻底清洗干净棉织物表面多余的反应物。
步骤二、氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的棉布
在干燥洁净的离心管中加入42ml甲醇,然后慢慢滴加2ml PDES,加入磁力转子在搅拌的状态下缓慢滴加7ml H2O,持续搅拌1h,并在室温下静置半天后使用。将上述水热法制备的沉积纳米TiO2棉织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
本实施例制备的紫外防护和耐水洗特殊浸润性功能织物表面的形貌结构请参阅图7,图7为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例三所制备的微纳结构表面的SEM图。
实施例四
本实施方式按照如下步骤制备一种紫外防护和耐水洗特殊浸润性功能织物表面:
步骤一、一步水热法制得具有纳米TiO2膜层表面的棉布
将棉布按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干燥,冷却备用。用电子天平称量5mmol草酸钛钾,溶解在20ml去离子水和15ml二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后加入清洗干净的棉布,置于水热反应釜中并加压拧紧,最后将水热反应釜放入烘箱250℃反应30h,反应结束后用去离子水彻底清洗干净棉织物表面多余的反应物。
步骤二、氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的棉布
在干燥洁净的离心管中加入48ml甲醇,然后慢慢滴加3ml PDES,加入磁力转子在搅拌的状态下缓慢滴加9ml H2O,持续搅拌1h并在室温下静 置半天后使用。将上述水热法制备的沉积纳米TiO2棉织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
本实施例制备的紫外防护和耐水洗特殊浸润性功能织物表面的形貌结构请参阅图8,图8为本发明所述的一种具有紫外防护和耐水洗特殊浸润性棉织物表面的构筑方法的实施例四所制备的微纳结构表面的SEM图。
实施例五
本实施方式按照如下步骤制备一种紫外防护和耐水洗特殊浸润性功能织物表面:
步骤一、一步水热法制得具有纳米TiO2膜层表面的涤纶织物表面
将涤纶按照3×3cm规格裁剪5块,并置于烧杯中依次经过去离子水、无水乙醇超声5min,超声完毕后放入烘箱80℃干燥,冷却备用。用电子天平称量3mmol草酸钛钾,溶解在20ml去离子水和15ml二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,然后加入清洗干净的涤纶,置于水热反应釜中并加压拧紧,最后将水热反应釜放入烘箱150℃反应10h,反应结束后用去离子水彻底清洗干净涤纶织物表面多余的反应物。
步骤二、氟硅烷修饰制得具有紫外防护和耐水洗特殊浸润性功能织物表面的涤纶织物
在干燥洁净的离心管中加入48ml甲醇,然后慢慢滴加0.5ml PDES,加入磁力转子在搅拌的状态下缓慢滴加1.5ml H2O,持续搅拌1h并在室温下静置半天后使用。将上述水热法制备的沉积纳米TiO2涤纶织物表面浸泡在配好的氟硅烷溶液里面,经过1h后取出,并在140℃下烘干。
本实施例制备的紫外防护和耐水洗特殊浸润性功能织物表面的形貌结构请参阅图9,图9为本发明所述的一种具有紫外防护和耐水洗特殊浸润性涤纶织物表面的构筑方法的实施例四所制备的微纳结构表面的SEM图。
下表为本发明的一种紫外防护和耐水洗特殊浸润性功能织物表面的紫外防护性能数据:
Sample UPF T(UVA) T(UVB) UPF Rating
Pristine 3.95 30.74% 23.77% 0
180℃1h 12.74 23.4% 5.97% 10
180℃2h 47.08 5.16% 1.98% 45
180℃5h 56.65 3.77% 1.67% 50+
180℃10h 43.52 5.64% 2.11% 40
180℃20h 50.98 3.81% 1.89% 50+
表一
如表一所示,未做任何处理的空白样防紫外系数为0,而水热180℃1h制备的样品防紫外能力达到10,5h制备的样品获得极佳的防紫外效果,并且纳米TiO2无毒无害,可直接与皮肤接触,在防紫外纺织品、功能性材料等领域具有广泛发展前景。
在以上五个实施例中,通过一步水热法和氟硅烷修饰制备的紫外防护和耐水洗特殊浸润性功能织物表面在外界摩擦以及水洗作用下具有持久的疏水性,请参阅图10,图10为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法在水热180℃时,不同时间制备的紫外防护和耐水洗特殊浸润性功能织物表面按照AATCC标准水洗五次的接触角变化趋势图。如图10所示,按照AATCC标准的2A方法水洗制备的水热180°C不同时间特殊浸润性功能织物表面,经过5次加强循环织物表面与水的接触角变化趋势,从图10可以看出,五次加强水洗后样品保持了较好的疏水性,织物表面经纬组织点是最易受到摩擦破坏的位置,在这些位置纳米TiO2颗粒发生脱落或破坏,导致棉织物疏水性能有小幅度下降。
参阅图11,图11为本发明所述的一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法在水热20h时,不同温度制备的紫外防护和耐水洗特殊浸润性功能织物表面按照AATCC标准水洗五次的接触角变化趋势图。如图11所示,200℃制备的样品耐水洗效果最差,但保持在140°以上,这是因为随着温度的升高,纤维内部发生溶胀,沉积在表面的TiO2膜层出现爆裂甚至脱落,经AATCC标准水洗后,织物表面纳米颗粒在机械外力的作用下发生摩擦掉落,表面形貌发生破坏。
综上所述,本发明公开了一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,本方法在现有技术基础上充分利用了一步水热法构建微纳级二阶TiO2织物粗糙结构表面与氟硅烷修饰相结合的方法,获得超疏水自清洁与油水分离功能表面。其反应条件温和,工艺简便易操作,制备的纳 米TiO2形貌可控,摩擦后超疏水性能优良,对环境无污染,具有良好的应用前景,能在无损失液体运输、微量吸液管、防紫外产品、功能性材料、自清洁纺织品、油水可分离材料等得到很好的应用。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于,该方法包括如下步骤:
    (1)将草酸钛钾溶解在水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀,将上述配制好的溶液装入水热反应釜中,在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应,制得具有纳米TiO2膜层表面的棉布;和
    (2)将所述具有纳米TiO2膜层表面的织物浸泡在氟硅烷溶液中反应,然后取出清洗烘干,制得具有紫外防护和耐水洗特殊浸润性功能织物表面的织物。
  2. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:步骤(1)中所述将草酸钛钾溶解在水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀的步骤包括:将0.5~5mmol的草酸钛钾溶解在去离子水和二乙二醇的混合溶液中,在磁力转子的作用下搅拌均匀。
  3. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:步骤(1)中所述水和二乙二醇的体积比为3:4~4:3。
  4. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:步骤(1)中所述清洗干净的织物为依次经过水、无水乙醇超声清洗,并烘干备用的织物。
  5. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:步骤(1)中所述在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应的温度范围为100~250℃。
  6. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:步骤(1)中所述在所述水热反应釜中加入清洗干净的织物并放入烘箱中反应的反应时间为0.5~30h。
  7. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于:在步骤(1)结束后、步骤(2)开始前,还需要用去离子水清洗掉所述具有纳米TiO2膜层表面的织物上的多余的反应物。
  8. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物 表面的构筑方法,其特征在于:步骤(2)中所述氟硅烷溶液为1H,1H,2H,2H-全氟癸基三乙氧基硅烷、1H,1H,2H,2H-全氟辛基三乙氧基硅烷、氯硅烷以及硅氧烷类化合物中的任意一种配制成的溶液。
  9. 根据权利要求8所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于,步骤(2)中所述氟硅烷溶液为体积分数为1-6%氟硅烷溶液,其配制步骤为:在干燥洁净的离心管中加入38~48ml甲醇,然后缓慢滴加0.5~3ml 1H,1H,2H,2H-全氟癸基三乙氧基硅烷,在磁力转子的搅拌作用下滴加1.5~9ml H2O。
  10. 根据权利要求1所述的具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法,其特征在于,步骤(2)中将所述具有纳米TiO2膜层表面的织物浸泡在氟硅烷溶液中反应的时间为1h,然后取出烘干的烘干温度为140℃。
PCT/CN2016/070294 2015-01-21 2016-01-06 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法 WO2016115980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510030697.1A CN104562637B (zh) 2015-01-21 2015-01-21 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法
CN201510030697.1 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016115980A1 true WO2016115980A1 (zh) 2016-07-28

Family

ID=53079659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070294 WO2016115980A1 (zh) 2015-01-21 2016-01-06 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法

Country Status (2)

Country Link
CN (1) CN104562637B (zh)
WO (1) WO2016115980A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172747A (zh) * 2019-12-30 2020-05-19 比音勒芬服饰股份有限公司 一种抗紫外的面料及其制备方法、应用
CN111379163A (zh) * 2018-12-29 2020-07-07 江苏唐工纺实业有限公司 基于放射状纳米TiO2的疏液性涤纶面料的制备方法
CN113774652A (zh) * 2021-09-10 2021-12-10 盐城工学院 一种BiOCl-Bi2WO6功能化棉织物的制备方法
CN114434919A (zh) * 2022-01-25 2022-05-06 安徽工程大学 一种具有自清洁功能的三层结构消防服及其生产方法
CN115701463A (zh) * 2021-08-02 2023-02-10 安徽璜峪电磁技术有限公司 一种多级结构构筑的复合材料及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562637B (zh) * 2015-01-21 2017-01-11 苏州大学 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法
CN105568669B (zh) * 2015-12-31 2018-07-31 苏州榕绿纳米科技有限公司 一种抗菌纺织品及其制备方法
CN107217368A (zh) * 2016-03-22 2017-09-29 孙彦飞 一种防水抗静电布料及其制造方法
CN106495213B (zh) * 2016-11-24 2018-01-12 安徽理工大学 一种TiO2透明自支撑膜及其制备方法和应用
CN106702718B (zh) * 2016-12-05 2019-05-14 苏州榕绿纳米科技有限公司 一种超耐磨特殊浸润性抗紫外功能织物构筑方法
CN112342792B (zh) * 2020-12-18 2021-11-26 福州大学 一种具有被动日间辐射冷却功能和特殊浸润性功能织物表面的构筑方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439742A (zh) * 2003-03-27 2003-09-03 厦门大学 基于表面纳米构筑的金属表面防腐蚀方法
CN103409984A (zh) * 2013-07-15 2013-11-27 东华大学 一种在棉织物表面低温制备锐钛型二氧化钛薄膜的方法
CN103871750A (zh) * 2014-03-20 2014-06-18 华中科技大学 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN104294592A (zh) * 2014-10-16 2015-01-21 苏州大学 一种具有自清洁和油水分离功能的特殊浸润性功能织物表面的制备方法
CN104562637A (zh) * 2015-01-21 2015-04-29 苏州大学 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277724B (zh) * 2011-06-28 2013-01-16 东华大学 一种纳米抗紫外抗菌自清洁织物的整理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439742A (zh) * 2003-03-27 2003-09-03 厦门大学 基于表面纳米构筑的金属表面防腐蚀方法
CN103409984A (zh) * 2013-07-15 2013-11-27 东华大学 一种在棉织物表面低温制备锐钛型二氧化钛薄膜的方法
CN103871750A (zh) * 2014-03-20 2014-06-18 华中科技大学 锐钛矿TiO2纳米树状阵列及其在太阳能电池制备中的应用
CN104294592A (zh) * 2014-10-16 2015-01-21 苏州大学 一种具有自清洁和油水分离功能的特殊浸润性功能织物表面的制备方法
CN104562637A (zh) * 2015-01-21 2015-04-29 苏州大学 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, J.Y. ET AL.: "Multifunctional Superamphiphobic Ti02 Nanostructure Surfaces with Facile Wettability and Adhesion Engineering", SMALL, vol. 10, no. 23, 28 July 2014 (2014-07-28), ISSN: 1613-6810 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111379163A (zh) * 2018-12-29 2020-07-07 江苏唐工纺实业有限公司 基于放射状纳米TiO2的疏液性涤纶面料的制备方法
CN111172747A (zh) * 2019-12-30 2020-05-19 比音勒芬服饰股份有限公司 一种抗紫外的面料及其制备方法、应用
CN115701463A (zh) * 2021-08-02 2023-02-10 安徽璜峪电磁技术有限公司 一种多级结构构筑的复合材料及其制备方法和应用
CN113774652A (zh) * 2021-09-10 2021-12-10 盐城工学院 一种BiOCl-Bi2WO6功能化棉织物的制备方法
CN113774652B (zh) * 2021-09-10 2023-02-21 盐城工学院 一种BiOCl-Bi2WO6功能化棉织物的制备方法
CN114434919A (zh) * 2022-01-25 2022-05-06 安徽工程大学 一种具有自清洁功能的三层结构消防服及其生产方法

Also Published As

Publication number Publication date
CN104562637A (zh) 2015-04-29
CN104562637B (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2016115980A1 (zh) 一种具有紫外防护和耐水洗特殊浸润性功能织物表面的构筑方法
Gao et al. Facile construction of robust fluorine-free superhydrophobic TiO2@ fabrics with excellent anti-fouling, water-oil separation and UV-protective properties
Qi et al. Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide
Pakdel et al. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments
Duan et al. Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles
CN103147281B (zh) 一种超疏水织物的制备方法及超疏水功能织物
CN102321974B (zh) 一种超疏水防紫外线纺织品的制备方法
Fakin et al. Synthesis of TiO2–SiO2 colloid and its performance in reactive dyeing of cotton fabrics
Ahmad et al. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation
CN103114436B (zh) 一种超疏水织物的制备方法及超疏水功能织物
Janowicz et al. Fluorine-free transparent superhydrophobic nanocomposite coatings from mesoporous silica
Wu et al. Durable superhydrophobic and photocatalytic cotton modified by PDMS with TiO2 supported bamboo charcoal nanocomposites
WO2017133312A1 (zh) 一种超疏水织物及其构筑方法
CN103388273B (zh) 一种利用瓦楞纸/纳米二氧化钛制备纳米疏水纸的方法
CN103088629A (zh) 一种对pet织物表面进行超疏水改性的方法
Zheng et al. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures
CN108755111B (zh) 一种沉积银纳米颗粒制备性能稳定抗菌超疏水织物的方法
Zhou et al. Fabrication of robust and self-healing superhydrophobic PET fabrics based on profiled fiber structure
Gupta et al. Self cleaning finishes for textiles
CN103409984A (zh) 一种在棉织物表面低温制备锐钛型二氧化钛薄膜的方法
Yi et al. Nanocellulose-based superhydrophobic coating with acid resistance and fluorescence
Lv et al. Robust, infrared-reflective, superhydrophobic and breathable coatings on polyester fabrics
CN105220453A (zh) 一种抗紫外丙纶的制备方法
Yang et al. Facile fabrication of robust fluorine-free superhydrophobic cellulosic fabric for self-cleaning, photocatalysis and UV shielding
Seth et al. Facile fabrication of fluorine free zirconium zinc stearate based superhydrophobic and superoleophilic coating on cotton fabric with superior antibacterial property

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27/09/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16739727

Country of ref document: EP

Kind code of ref document: A1