WO2016115934A1 - Dlp微型投影机系统及其投影机模组 - Google Patents

Dlp微型投影机系统及其投影机模组 Download PDF

Info

Publication number
WO2016115934A1
WO2016115934A1 PCT/CN2015/093783 CN2015093783W WO2016115934A1 WO 2016115934 A1 WO2016115934 A1 WO 2016115934A1 CN 2015093783 W CN2015093783 W CN 2015093783W WO 2016115934 A1 WO2016115934 A1 WO 2016115934A1
Authority
WO
WIPO (PCT)
Prior art keywords
dlp
light
heat dissipation
module
projector
Prior art date
Application number
PCT/CN2015/093783
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
赵远
林清云
梅良
Original Assignee
广景科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景科技有限公司 filed Critical 广景科技有限公司
Publication of WO2016115934A1 publication Critical patent/WO2016115934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to a projector device, and more particularly to a projector structure.
  • the projector is open to the public because of its projected image. With the development of electronic technology and multimedia technology, users have higher and higher requirements for projectors. At the same time, the projector's projection effect is continuously optimized, and it is also becoming more miniaturized, lighter and thinner, making it easy for users to carry and enjoy. The visual effect of the screen.
  • the existing projector is bulky and inconvenient for the user to carry.
  • the projector must ensure high-intensity output, and a high-power light source must be used.
  • a high-power light source works for a long time, a large amount of heat will accumulate. This heat is concentrated in a small space, which will inevitably affect the performance of the projector;
  • the projector's switching power supply can also generate a lot of heat during operation.
  • the physical properties of the projector determine that its operating temperature is not allowed to be too high, otherwise it will easily cause damage to optical components. Therefore, to ensure the miniaturization of the projector while ensuring high-quality projection effects, it is necessary to solve the problem of heat dissipation, so that the projector can dissipate heat quickly and uniformly.
  • an object of the present invention is to provide a DLP (Digital Light Procession) pico projector system that is compact in layout, small in size, and portable.
  • DLP Digital Light Procession
  • the present invention provides a DLP pico projector system, including: a light supply device, comprising: a light-emitting unit 1 and a first collimating lens group corresponding thereto, a light-emitting unit 2 and a second standard corresponding thereto a direct lens group, and a spectroscopic lens group that is not parallel or perpendicular to the surfaces of the two light emitting units; an illumination optical system comprising: a fly-eye lens or a light rod, a free-form optical component, and a right-angle prism, the free-form optical component including a first plane/curved surface that can converge the beam, a second plane that can totally reflect the light beam from the first plane/curved surface, and a third freeform surface/plane that can reflect the beam; a DLP light modulator; and a projection lens device
  • the light emitting unit 1 includes a first LED light emitting chip and a second LED light emitting chip packaged together, and the light emitting unit 2 includes a third LED light emitting chip separately packaged.
  • the third free curved surface is a surface having a total reflection of the incident light beam or/and an optical surface plated with the reflective film.
  • the free curved surface of the free-form optical component is described by:
  • Z is the height of the surface
  • X and Y are the projection coordinates of the height of the surface on the optical axis
  • A1 to A9 are positional parameters
  • C and k are curvature parameters.
  • the DLP pico projector system is provided with a detachable reflection device on one side of the projection lens device, that is, a direction in which the projection beam is emitted, for changing the projection direction; and the reflection optical built in the reflection device
  • the component can be a planar mirror or a free-form mirror or a right-angle prism with a reflective surface coated with a reflective film.
  • the present invention also provides a projector module that dissipates heat quickly and uniformly.
  • the projector module comprises: a printed circuit board for powering the LED lighting unit; a DLP pico projector system; a receiving cavity for sequentially packaging the optical components in the DLP pico projector system; and the DLP pico projector LED light-emitting unit paired LED package structure in the system, the light-emitting unit is fixedly connected with the LED package structure; the heat-dissipating module does not completely cover the accommodating cavity, but is closely related to the LED package structure fit.
  • the LED package structure paired with the LED illumination unit in the DLP pico projector system may be a copper substrate or an aluminum substrate or a cooling sheet, located between the LED illumination unit and the heat dissipation module, and the LED illumination unit Directly connected to the thermal module.
  • the heat dissipation module is nested from the opposite end of the projection lens device end of the accommodating cavity, and the portion of the accommodating cavity with the projection lens and the printed circuit board are exposed outside the heat dissipation module, and the heat dissipation module The insertion does not affect the motion of the projection lens device.
  • the LED package structure is located between the LED light emitting unit and the heat dissipation module, and is thermally fixedly connected to the LED light emitting unit and the heat dissipation module; the LED package structure may be a copper substrate or an aluminum substrate or a cooling sheet.
  • the heat dissipating module manufacturing material is metal aluminum or metal copper, and is connected with the accommodating cavity by a screw structure or a screw structure or a fixed riveting structure or a bonding structure.
  • the heat dissipation module has a hollow cylindrical structure or a rectangular parallelepiped structure, and is matched with the shape of the accommodating cavity structure of the DLP micro projector system, so that the heat dissipation module and the accommodating cavity are closely fitted. .
  • the DLP pico projector system is basically in a linear arrangement, wherein a free-form optical component is used in the illumination optical system to replace the relay lens and the mirror in the conventional optical system. Converging the beam and changing the direction of the beam, the layout is compact and reasonable, and the volume is small and convenient to carry.
  • the heat dissipation module of the projector module adopting the above DLP micro projector system covers the main heat dissipation part of the DLP micro projector system, and is closely attached to the LED package structure, and the heat dissipation is fast and uniform, thereby ensuring high quality projection performance.
  • the DLP pico projector system is provided with a detachable reflecting device on the side of the projection lens device, that is, the direction in which the projection beam is emitted, and the user can change the projection direction according to the projection needs.
  • FIG. 1 is a block diagram showing the structure of a DLP pico projector system in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional structural view showing a first embodiment of a projector module of the present invention.
  • FIG. 3 is a schematic perspective structural view of a first embodiment of a projector module according to the present invention.
  • FIG. 4 is a cross-sectional structural view showing a second embodiment of the projector module of the present invention.
  • FIG. 5a is a first alternative structural diagram of a reflective optical component in the second embodiment of the projector module of the present invention.
  • FIG. 5b is a second alternative structural diagram of the reflective optical component in the second embodiment of the projector module of the present invention.
  • FIG. 1 is a block diagram showing the structure of a DLP pico projector system in accordance with an embodiment of the present invention.
  • a specific structure of a DLP pico projector system according to an embodiment of the present invention includes sequentially disposed along an optical path: a light supply device, an illumination optical system, a DLP light modulator, and a projection lens device.
  • the light supply device comprises: a first LED light emitting chip packaged together and a light emitting unit 101 formed by the second LED light emitting chip, a first collimating lens group 102 corresponding thereto, and a third LED light emitting chip separately packaged
  • the first collimating lens group 102 and the second collimating lens group 104 is respectively configured to receive light from the light-emitting unit 101 and the light-emitting unit two 103, and to nearly parallelize the light.
  • the spectroscopic lenses 105 and 106 are arranged at a certain angle to realize the first
  • the light emitted by one of the light-emitting chip, the second light-emitting chip, and the third light-emitting chip is transmitted in parallel in a horizontal direction to the illumination optical system.
  • the LED light-emitting chip is composed of red (R), blue (B), and green (G) three-color light-emitting chips, and any two-color light-emitting chips of the three-color light-emitting chip are packaged together, and another light-emitting chip is separately packaged, for example: An LED light emitting chip and a second LED light emitting are respectively arranged such that the red light emitting chip and the blue light emitting chip are packaged together to form the light emitting unit 1.
  • the third LED light emitting chip is a green light emitting chip to form the light emitting unit 2.
  • An illumination optical system comprising: a fly-eye lens 107, a free-form optical component 108, and a right-angle prism 109; wherein the free-form optical component 108 includes: a first plane S1 that can converge the light beam, and can perform a full beam from the first plane S1 a second plane of reflection S2 and a third free-form surface S3 that can reflect the light beam; the third free-form surface S3 is a surface having a total reflection of the incident beam or/and an optical surface plated with a reflective film; wherein the second plane S2 is The angle in the horizontal direction is preferably from 25 to 45 degrees.
  • the freeform surface of the freeform optical component is described by:
  • Z is the height of the surface
  • X and Y are the projection coordinates of the height of the surface on the optical axis
  • A1 to A9 are positional parameters
  • C and k are curvature parameters.
  • the two faces of the fly-eye lens 107 are combined by a series of small lenses to homogenize the light beam from the light supply device; the first plane S1 of the free-form optical component 108 transmits the light beam from the fly-eye lens 107 and shapes the light beam.
  • the beam is shaped and then incident on the second plane S2 for total reflection incident on the third free-form surface S3, total reflection occurs, and then incident on the DLP light modulation through the second plane S2 and the right-angle prism 109 110.
  • the lens of the DLP light modulator 110 is on, the light beam modulated by the DLP light modulator 110 is transmitted to the oblique side of the right-angle prism 109 to cause total reflection, and is incident horizontally to the projection lens group 111.
  • the DLP microprojection system uses freeform optics to shape the beam and change the beam direction. Reducing the use of relay lenses and simplifying the optical components solves the problem of further reducing the size of the DLP pico projector and improving the projection performance.
  • the layout is compact, portable, and portable, and the production cost is reduced.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a cross-sectional structural view showing a first embodiment of a projector module of the present invention.
  • FIG. 3 is a schematic perspective structural view of a first embodiment of a projector module according to the present invention.
  • a projector module according to an embodiment of the present invention includes: a printed circuit board 201 for supplying power to an LED lighting unit; and a receiving cavity (not shown) for sequentially packaging DLP miniatures.
  • the optical component in the projector system is the DLP pico projector system built in the accommodating cavity (not shown in the figure, wherein 110 refers to the DLP optical modulator in the DLP pico projector system); the black part is the heat dissipation module 202; LED package structures 203 and 204 paired with LED lighting units in a DLP pico projector system.
  • the DLP pico projector system is built in the accommodating cavity, and the optical components are arranged substantially in a straight line.
  • the DLP pico projector system is the DLP micro projection system described in the above embodiment;
  • the heat dissipating module 202 has a hollow cylindrical structure or The rectangular structure is matched with the shape of the accommodating cavity, so that the heat dissipation module 202 and the accommodating cavity are adjacent to each other with a minimum distance, and a part of the heat dissipation module 202 is closely adhered to the LED package structures 203 and 204, and the heat dissipation effect is greatly improved. improve.
  • the DLP micro projector system is built in the accommodating cavity, and each optical component is substantially linearly arranged;
  • the heat dissipation module 202 has a hollow cylindrical structure or a rectangular parallelepiped structure, and the accommodating cavity structure. Shape matching; P1 is a part of the receiving cavity not covered by the heat dissipation module 202, a projection lens device of the DLP micro projection system is built in, and P2 is a built-in DLP micro projection system of the accommodating cavity, except for the remaining optical components of the projection lens device.
  • the heat dissipating module 202 is disposed in the outer space of the portion of the accommodating cavity P2, and substantially but does not completely cover the P2 portion of the accommodating cavity (a certain volume of space is allowed between the heat dissipating module 202 and the accommodating cavity);
  • the portion 202 is closely attached to the LED package structures 203 and 204, and can effectively and uniformly dissipate heat in time.
  • the heat dissipation module 202 is nested from the end of the built-in projection lens device, and the portion P1 of the projection lens and the printed circuit board 201 of the accommodating cavity are exposed outside the heat dissipation module, and the printed circuit board 201 and the P1 portion and the heat dissipation module 202 are reasonable. With a certain gap under the cooperation, the coordination between them is flexible, not being The card is stuck, the top dead, and the nesting of the heat dissipation module 202 does not affect the movement of the projection lens device.
  • the accommodating cavity and the heat dissipation module 202 can be connected by a thread structure or a fixed rivet structure or a bonding structure.
  • the LED package structures 203 and 204 are used for fixedly mounting the LED lighting unit and conducting heat generated by the LED lighting unit to the heat dissipation module 202 in time; the LED package structures 203 and 204 may be copper substrates or cooling sheets, and the LED lighting units are directly mounted. In the LED package structure, there is no heat conduction layer between the two, which can directly dissipate heat, which greatly improves the heat dissipation effect of the LED chip.
  • the LED package structures 203 and 204 and the LED lighting units 101 and 103 can be connected by a screw structure or a fixed riveting structure or a soldering manner.
  • the LED package structures 203 and 204 are disposed between the receiving cavity and the heat dissipation module 202, and the receiving cavity. Adjacent portions of the body and adjacent portions of the heat dissipation module 202 may be connected by a threaded structure or a fixed riveted structure or in an adhesive manner.
  • the accommodating cavity can be made of plastic material or metal material.
  • the preparation of the plastic material has the advantages of high alignment of the display chip and the projection lens and reducing the cost and weight of the projector; and the preparation of the metal material can further solve the projector light.
  • the problem of heat dissipation of the machine structure is made of a plastic material, and the sealing cover is made of a metal material such as an aluminum alloy or a magnesium alloy.
  • the card slot and light source mounting structure on the optical component mounting base can be modified according to the position and number of optical components installed, and the matching sealing cover can also be adjusted accordingly.
  • the optical component mounting base and the sealing cover can be connected by a thread structure or a fixed riveting structure, and an elastic rubber gasket can be arranged between the connecting parts.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 4 is a cross-sectional structural view showing a second embodiment of the projector module of the present invention.
  • the DLP pico projector system in the second embodiment is provided with a detachable reflecting device 312, and the size of the receiving cavity is adjusted accordingly.
  • the reflecting device 312 is disposed in the projection direction of the DLP pico projector system, adjacent to the projection lens device, and the user can change the projection direction within a certain angle range according to the projection needs.
  • the reflective optical element built in the reflecting device 312 is a right-angle prism with a reflective surface coated with a reflective film, wherein the first right-angled surface and the second right-angled surface are coated with an anti-reflection film, and the inclined surface is an optical plane capable of totally reflecting the incident projection beam or It is an optical plane plated with a reflective film.
  • FIG. 5a is a first alternative structural diagram of a reflective optical component in the second embodiment of the projector module of the present invention.
  • the plane mirror in the first structure is a plane mirror that can totally reflect the incident projection beam or a plane mirror plated with a reflection film.
  • FIG. 5b is a second schematic structural diagram of a reflective optical component in the second embodiment of the projector module of the present invention. As shown in Figure 5b, the freeform mirror in the second configuration can change the direction of the projected beam.
  • the freeform surface of the freeform mirror is described by:
  • Z is the height of the surface
  • X and Y are the projection coordinates of the height of the surface on the optical axis
  • A1 to A9 are positional parameters
  • C and k are curvature parameters.
  • the present invention does not limit the specific structure of each part and the connection manner between the parts.
  • the card slot and the light source mounting structure in the accommodating cavity can be modified according to the position and number of optical components installed.
  • a heat dissipation fan may be disposed adjacent to the heat dissipation module or the printed circuit board according to specific heat dissipation requirements to enhance the heat dissipation effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种DLP微型投影机系统包括:供光装置、照明光学系统、DLP光调制器(110)以及投影镜头装置(111),其中照明光学系统中采用一自由曲面光学部件(108)来会聚光束和改变光束方向。另外,投影镜头装置(111)的出光方向侧可设置一可自由装卸的反射装置(312),可根据投影需要改变投影方向。一种采用DLP微型投影机系统的投影机模组,包括:印刷电路板(201)、DLP微型投影机系统、容置腔体、LED封装结构(203、204)及散热模块(202)。投影机模组布局紧凑合理、体积小、散热快且均匀、投影性能高。

Description

DLP微型投影机系统及其投影机模组 【技术领域】
本发明涉及一种投影机设备,尤其涉及一种投影机结构。
【背景技术】
投影机因其投影画面可给人开阔的视野,备受用户的欢迎。随着电子技术和多媒体技术的发展,用户对投影机的要求也越来越高,投影机投影效果不断优化的同时,也朝着微型化、轻薄化发展,使用户方便携带,随时随地享受大屏的视觉效果。而现有的投影机体积大,用户携带不方便。
此外,投影机要保证高亮度输出,须采用大功率的光源,而大功率的光源长时间工作后会积聚大量的热量,这些热量汇聚在较小的空间内,势必会影响投影机的性能;除了投影机的成像系统在工作时能产生很大的热量以外,投影机的开关电源也能在工作时散发出很大的热量。投影机的自身的物理性质决定了它的工作温度不允许太高,否则容易造成光学元器件的损坏。因此,要保证投影机微型化的同时保证高质的投影效果,就需要解决散热这一难题,使投影机散热快且均匀稳定。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
【发明内容】
针对上述技术问题,本发明的目的在于提供一种布局紧凑,体积小方便携带的DLP(Digital Light Procession,数字光处理)微型投影机系统。
为实现上述目的,本发明提供了一种DLP微型投影机系统,包括:供光装置,其包括:发光单元一及与其对应的第一准直透镜组、发光单元二及与其对应的第二准直透镜组、以及与两个发光单元表面不平行也不垂直的分光镜片组;照明光学系统,其包括:复眼透镜或光棒、自由曲面光学部件及直角棱镜,所述自由曲面光学部件,包括:可会聚光束的第一平面/曲面、可对来自第一平面/曲面的光束进行全反射的第二平面及可反射光束的第三自由曲面/平面;DLP光调制器;以及投影镜头装置
优选地,上述技术方案中,发光单元一包括封装在一起的第一LED发光芯片和第二LED发光芯片,发光单元二包括单独封装的第三LED发光芯片。
优选地,上述技术方案中,所述第三自由曲面为具有对入射光束进行全反射的表面或/和镀有反射膜的光学面。
优选地,上述技术方案中,所述自由曲面光学部件的自由曲面由下式描述:
Figure PCTCN2015093783-appb-000001
其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
优选地,上述技术方案中,所述DLP微型投影机系统在投影镜头装置一侧即投影光束出光方向上设置一可自由装卸的反射装置,用于改变投影方向;所述反射装置内置的反射光学元件可以为平面反射镜或者自由曲面反射镜或者斜面镀有反射膜的直角棱镜。
根据本发明的另一目的,本发明还提供了一种散热快且均匀的投影机模组,
所述投影机模组包括:印刷电路板,用于给LED发光单元供电;DLP微型投影机系统;容置腔体,用于依次封装DLP微型投影机系统中的光学元件;与DLP微型投影机系统中的LED发光单元配对的LED封装结构,所述发光单元与LED封装结构固定连接;散热模块,不完全覆盖容置腔体,但与LED封装结构紧密 贴合。
优选地,上述技术方案中,与DLP微型投影机系统中的LED发光单元配对的LED封装结构,可以为铜基板或者铝基板或者制冷片,位于LED发光单元和散热模块之间,与LED发光单元和散热模块直接热连接。
优选地,上述技术方案中,所述散热模块从容置腔体内置投影镜头装置端的相对端套入,容置腔体内置投影镜头的部分和印刷电路板避空裸露在散热模块外,且散热模块的套入不影响投影镜头装置的运动。
优选地,上述技术方案中,所述LED封装结构位于LED发光单元和散热模块之间,与LED发光单元和散热模块热固定连接;所述LED封装结构可以为铜基板或者铝基板或者制冷片。
优选地,上述技术方案中,所述散热模块制造材料为金属铝或者金属铜,与容置腔体之间通过螺纹结构或者螺钉结构或者固定铆接结构或者粘接结构相连接。
优选地,上述技术方案中,所述散热模块呈空心类圆柱体结构或者类长方体结构,与DLP微型投影机系统的容置腔体结构形状匹配,使散热模块与部分容置腔体紧密贴合。
与现有技术相比,本发明具有如下有益效果:该DLP微型投影机系统基本呈直线型设置,其中照明光学系统中采用一自由曲面光学部件取代常规光机系统中的中继透镜和反射镜来会聚光束和改变光束方向,布局紧凑合理,体积小方便携带。采用上述DLP微型投影机系统的投影机模组的散热模块覆盖DLP微型投影机系统的主要散热部分,且紧贴LED封装结构,散热快且均匀,保证了高质的投影性能。另外,DLP微型投影机系统在投影镜头装置一侧即投影光束出光方向上设置一可自由装卸的反射装置,用户可根据投影需要改变投影方向。
【附图说明】
图1为根据本发明实施例的DLP微型投影机系统的结构示意图。
图2为本发明的投影机模组实施例一的剖面结构示意图。
图3为本发明的投影机模组实施例一的立体结构示意图。
图4为本发明的投影机模组实施例二的剖面结构示意图。
图5a为本发明的投影机模组实施例二中反射光学元件的第一替代结构示意图。
图5b为本发明的投影机模组实施例二中反射光学元件的第二替代结构示意图。
【具体实施方式】
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
图1为根据本发明实施例的DLP微型投影机系统的结构示意图。如图1所示,根据本发明具体实施方式的DLP微型投影机系统的具体结构包括沿光路顺次设置的:供光装置、照明光学系统、DLP光调制器和投影镜头装置。
供光装置,其包括:封装在一起的第一LED发光芯片和第二LED发光芯片形成的发光单元一101及与其对应的第一准直透镜组102、单独封装的第三LED发光芯片形成的发光单元二103及与其对应的第二准直透镜组104、以及与两个LED封装单元表面不平行也不垂直的分光镜片105和106;第一准直透镜组102和第二准直透镜组104分别用于接收来自发光单元一101和发光单元二103的光,并将光线近平行化。分光镜片105和106按照一定的角度设置,实现将第 一发光芯片、第二发光芯片和第三发光芯片所发出的光平行排列沿水平方向透射到照明光学系统。
所述LED发光芯片由红色(R)、蓝色(B)、绿色(G)三色发光芯片组成,三色发光芯片中任意两色发光芯片一起封装,另一发光芯片独立封装,例如:第一LED发光芯片和第二LED发光分别为红色发光芯片和蓝色发光芯片封装在一起形成发光单元一,则第三LED发光芯片为绿色发光芯片形成发光单元二。总之,通过光学元件的合理组合与光学设计,在不影响投影质量的前提下,使投影机系统中的各光学元件基本呈直线型排列,布局紧凑合理,轻巧便携。
照明光学系统,其包括:复眼透镜107、自由曲面光学部件108及直角棱镜109;其中,自由曲面光学部件108包括:可会聚光束的第一平面S1、可对来自第一平面S1的光束进行全反射的第二平面S2及可反射光束的第三自由曲面S3;第三自由曲面S3为具有对入射光束进行全反射的表面或/和镀有反射膜的光学面;其中,第二平面S2与水平方向的夹角优选为25度到45度。其中自由曲面光学部件的自由曲面由下式描述:
Figure PCTCN2015093783-appb-000002
其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
复眼透镜107的两面由一系列小透镜组合而成,可对来自供光装置的光束进行均匀化;自由曲面光学部件108的的第一平面S1透射来自复眼透镜107的光束并对光束进行整形,代替常规光机系统中的中继透镜;光束经整形后入射到第二平面S2进行全反射入射到第三自由曲面S3发生全反射再经过第二平面S2和直角棱镜109入射到入DLP光调制器110。当DLP光调制器110的镜片为开时,经DLP光调制器110调制后的光束透射到直角棱镜109的斜边产生全反射后,水平入射到投影镜头组111。
该DLP微型投影系统采用自由曲面光学部件来整形光束和改变光束方向, 减少中继透镜的使用,简化了光学元件解决了进一步减小DLP微型投影机尺寸与提高投影性能的问题,布局紧凑合理,轻便易携,且降低了生产成本。
实施例一:
图2为本发明的投影机模组实施例一的剖面结构示意图。图3为本发明的投影机模组实施例一的立体结构示意图。如图2所示,根据本发明具体实施方式的投影机模组,包括:印刷电路板201,用于给LED发光单元供电;容置腔体(图中无标示),用于依次封装DLP微型投影机系统中的光学元件;内置于容置腔体内的DLP微型投影机系统(图中无标示,其中110是指DLP微型投影机系统中的DLP光调制器);黑色部分为散热模块202;与DLP微型投影机系统中的LED发光单元配对的LED封装结构203和204。
DLP微型投影机系统内置于容置腔体内,各光学元件基本呈直线型设置,DLP微型投影机系统为上文实施例中所述的DLP微型投影系统;散热模块202呈空心类圆柱体结构或者类长方体结构,与容置腔体结构形状匹配,使散热模块202与容置腔体以最小距离相邻且保证散热模块202其中一部分与LED封装结构203和204紧密贴合,散热效果得到大大的提高。
如图2和图3所示,DLP微型投影机系统内置于容置腔体内,各光学元件基本呈直线型设置;散热模块202呈空心类圆柱体结构或者类长方体结构,与容置腔体结构形状匹配;P1为容置腔体不被散热模块202覆盖的部分,内置DLP微型投影系统的投影镜头装置,而P2为容置腔体内置DLP微型投影系统除投影镜头装置外的其余光学元件的部分;散热模块202置于容置腔体P2部分的外空间,基本但不完全覆盖容置腔体的P2部分(散热模块202和容置腔体之间允许有一定体积的空间);散热模块202部分与LED封装结构203和204紧密贴合,可及时有效均匀地散热。
散热模块202从内置投影镜头装置端套入,容置腔体内置投影镜头的部分P1和印刷电路板201避空裸露在散热模块外,印刷电路板201和P1部分与散热模块202之间在合理的配合下空出一定的间隙,使它们之间的配合灵活,不被 卡死,顶死,并且散热模块202的套入不影响投影镜头装置的运动。容置腔体与散热模块202之间可通过螺纹结构或者固定铆接结构或者粘接结构相连接。
LED封装结构203和204用于固定安装LED发光单元及将LED发光单元工作时所产生的热量及时传导至散热模块202;LED封装结构203和204可以为铜基板或者制冷片,LED发光单元直接安装在LED封装结构上,两者之间不设有导热层,可直接进行散热,极大的提高了LED芯片的散热效果。LED封装结构203和204和LED发光单元101和103可通过螺纹结构或者固定铆接结构或者焊接方式相连接,LED封装结构203和204设置于容置腔体和散热模块202之间,与容置腔体的相邻部分和散热模块202的相邻部分可通过螺纹结构或者固定铆接结构或者以粘接的方式相连。
容置腔体可采用塑胶材质或者金属材质制备,塑胶材质制备具有使显示芯片和投影镜头高度对准和降低投影机的成本和重量的优点;而采用金属材质制备,则可以进一步解决投影机光机结构散热的问题。常规做法是,光学元件安装底座采用塑胶材质,而密封盖则采用金属材质,例如铝合金或者镁合金。光学元件安装底座上的卡槽和光源安装结构可根据所安装的光学元件位置以及个数进行改动,与之匹配的密封盖也可做相应的调整。光学元件安装底座和密封盖之间可通过螺纹结构或者固定铆接结构连接,连接部位之间可设有弹性橡胶垫片。
实施例二:
图4为本发明的投影机模组实施例二的剖面结构示意图。如图4所示,与实施例一相比,实施例二中的DLP微型投影机系统多设置了一可自由装卸的反射装置312,容置腔体的大小作相应的调整。反射装置312设置于DLP微型投影机系统的投影方向,与投影镜头装置相邻,用户可根据投影需要在一定角度范围内改变投影方向。反射装置312内置的反射光学元件为斜面镀有反射膜的直角棱镜,其中,第一直角面和第二直角面镀有增透膜,而斜面为可对入射投影光束进行全反射的光学平面或者为镀有反射膜的光学平面。
反射装置312中的直角棱镜也可由其他具有反射面的光学元件代替。图5a为本发明的投影机模组实施例二中反射光学元件的第一替代结构示意图。如图5a所示,第一结构中的平面反射镜为可对入射投影光束进行全反射的平面反射镜或者为镀有反射膜的平面反射镜。图5b为本发明的投影机模组实施例二中反射光学元件的第二结构示意图。如图5b所示,第二结构中的自由曲面反射镜可对改变投影光束的方向。所述自由曲面反射镜的自由曲面由下式描述:
Figure PCTCN2015093783-appb-000003
其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
值得注意的是,本发明并不限定各部分的具体结构和各部分之间的连接方式,例如:容置腔体内的卡槽和光源安装结构可根据所安装的光学元件位置以及个数进行改动;也可根据具体散热要求,在所述散热模块或者印刷电路板相邻位置设置一散热风扇,加强散热效果。
以上内容是结合优选技术方案对本发明所做的进一步详细说明,不能认定发明的具体实施仅限于这些说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,可以做出简单的推演及替换,都应该视为本实用型新型的保护范围。

Claims (10)

  1. 一种DLP微型投影机系统,其特征在于,包括沿光路顺次设置的:
    供光装置,其包括:发光单元一及与其对应的第一准直透镜组、发光单元二及与其对应的第二准直透镜组、以及与两个发光单元表面不平行也不垂直的分光镜片组;
    照明光学系统,其包括:复眼透镜或光棒、自由曲面光学部件及直角棱镜,所述自由曲面光学部件,包括:可会聚光束的第一平面/曲面、可对来自第一平面/曲面的光束进行全反射的第二平面及可反射光束的第三自由曲面/平面;
    DLP光调制器;以及
    投影镜头装置。
  2. 根据权利要求1所述的DLP微型投影机系统,其特征在于,发光单元一包括封装在一起的第一LED发光芯片和第二LED发光芯片,发光单元二包括单独封装的第三LED发光芯片。
  3. 根据权利要求1所述的DLP微型投影机系统,其特征在于,所述第三自由曲面为具有对入射光束进行全反射的表面或/和镀有反射膜的光学面。
  4. 根据权利要求1所述的DLP微型投影机系统,其特征在于,所述自由曲面光学部件的自由曲面由下式描述:
    Figure PCTCN2015093783-appb-100001
    其中,Z为曲面高度,X、Y分别为曲面高度在光轴的投影坐标,A1到A9为位置参数,C和k为曲率参数。
  5. 根据权利要求1所述的DLP微型投影机系统,其特征在于,所述DLP微型投影机系统在投影镜头装置一侧即投影光束出光方向上设置一可自由装卸的 反射装置,用于改变投影方向;所述反射装置内置的反射光学元件可以为平面反射镜或者自由曲面反射镜或者斜面镀有反射膜的直角棱镜。
  6. 一种采用权利要求1至5中任一项所述的DLP微型投影机系统的投影机模组,其特征在于,包括:
    印刷电路板,用于给LED发光单元供电;
    DLP微型投影机系统;
    容置腔体,用于依次封装DLP微型投影机系统中的光学元件;
    与DLP微型投影机系统中的LED发光单元配对的LED封装结构,所述发光单元与LED封装结构固定连接;
    散热模块,不完全覆盖容置腔体,与LED封装结构紧密贴合。
  7. 根据权利要求6所述的投影机模组,其特征在于,所述散热模块从容置腔体内置投影镜头装置端的相对端套入,容置腔体内置投影镜头的部分和印刷电路板避空裸露在散热模块外,且散热模块的套入不影响投影镜头装置的运动。
  8. 根据权利要求6所述的投影机模组,其特征在于,所述LED封装结构位于LED发光单元和散热模块之间,与LED发光单元和散热模块热固定连接;所述LED封装结构可以为铜基板或者铝基板或者制冷片。
  9. 根据权利要求6所述的投影机模组,其特征在于,所述散热模块制造材料为金属铝或者金属铜,与容置腔体之间通过螺纹结构或者螺钉结构或者固定铆接结构或者粘接结构相连接。
  10. 根据权利要求6所述的投影机模组,其特征在于,所述散热模块呈空心类圆柱体结构或者类长方体结构,与DLP微型投影机系统的容置腔体结构形状匹配,使散热模块与部分容置腔体紧密贴合。
PCT/CN2015/093783 2015-01-19 2015-11-04 Dlp微型投影机系统及其投影机模组 WO2016115934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520035629.XU CN204331264U (zh) 2015-01-19 2015-01-19 Dlp微型投影机系统及其投影机模组
CN201520035629.X 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016115934A1 true WO2016115934A1 (zh) 2016-07-28

Family

ID=53167606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093783 WO2016115934A1 (zh) 2015-01-19 2015-11-04 Dlp微型投影机系统及其投影机模组

Country Status (2)

Country Link
CN (1) CN204331264U (zh)
WO (1) WO2016115934A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238444A (zh) * 2021-05-18 2021-08-10 陈灵 一种半立式单lcd投影机光路
CN114815485A (zh) * 2022-05-23 2022-07-29 歌尔光学科技有限公司 投影光机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204331264U (zh) * 2015-01-19 2015-05-13 广景科技有限公司 Dlp微型投影机系统及其投影机模组
CN205827039U (zh) * 2016-06-29 2016-12-21 广景视睿科技(深圳)有限公司 一种dlp投影模组
CN106873295B (zh) * 2017-03-24 2019-08-02 广景视睿科技(深圳)有限公司 一种投影机
CN114578637A (zh) 2018-12-06 2022-06-03 中强光电股份有限公司 投影装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050857A (ko) * 2009-11-09 2011-05-17 (주)프로옵틱스 디엠디 프로젝터용 광학엔진
CN202512357U (zh) * 2012-03-13 2012-10-31 陈宝大 新型led投影仪
CN202735665U (zh) * 2012-06-29 2013-02-13 北京纽曼腾飞科技有限公司 折返结合式投影机
CN103353704A (zh) * 2013-06-25 2013-10-16 深圳市安华光电技术有限公司 一种兼容直接投影模式和反射投影模式的投影装置
CN203337987U (zh) * 2013-05-22 2013-12-11 上海晟立电子科技有限公司 Led投影仪光源
CN203745713U (zh) * 2013-11-25 2014-07-30 深圳市亿思达显示科技有限公司 一种曲面反射式超短焦投影镜头
CN203838464U (zh) * 2014-05-15 2014-09-17 广景科技有限公司 直线型dlp 微型投影机
CN204331264U (zh) * 2015-01-19 2015-05-13 广景科技有限公司 Dlp微型投影机系统及其投影机模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110050857A (ko) * 2009-11-09 2011-05-17 (주)프로옵틱스 디엠디 프로젝터용 광학엔진
CN202512357U (zh) * 2012-03-13 2012-10-31 陈宝大 新型led投影仪
CN202735665U (zh) * 2012-06-29 2013-02-13 北京纽曼腾飞科技有限公司 折返结合式投影机
CN203337987U (zh) * 2013-05-22 2013-12-11 上海晟立电子科技有限公司 Led投影仪光源
CN103353704A (zh) * 2013-06-25 2013-10-16 深圳市安华光电技术有限公司 一种兼容直接投影模式和反射投影模式的投影装置
CN203745713U (zh) * 2013-11-25 2014-07-30 深圳市亿思达显示科技有限公司 一种曲面反射式超短焦投影镜头
CN203838464U (zh) * 2014-05-15 2014-09-17 广景科技有限公司 直线型dlp 微型投影机
CN204331264U (zh) * 2015-01-19 2015-05-13 广景科技有限公司 Dlp微型投影机系统及其投影机模组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238444A (zh) * 2021-05-18 2021-08-10 陈灵 一种半立式单lcd投影机光路
CN113238444B (zh) * 2021-05-18 2024-01-05 深圳亮仔光电科技有限公司 一种半立式单lcd投影机光路
CN114815485A (zh) * 2022-05-23 2022-07-29 歌尔光学科技有限公司 投影光机

Also Published As

Publication number Publication date
CN204331264U (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2016115934A1 (zh) Dlp微型投影机系统及其投影机模组
WO2018000520A1 (zh) 一种dlp投影模组
US10827153B2 (en) Projection device
US6844993B2 (en) Optical device and projector having the optical device
TWM447998U (zh) 微型光學影像裝置
TWM467084U (zh) 微型光學影像裝置
US8985784B2 (en) Light source module and micro projector using the same
TWI235805B (en) Light source and projector
WO2007099781A1 (ja) 発光モジュールとそれを用いた画像投影装置
TWM438667U (en) Mini optical image device
JP2006251149A (ja) 照明装置及び投写型画像表示装置。
US7703925B2 (en) Miniature projector module having effective utilization of light with two polarizations
JP2007041414A (ja) 電子機器
CN112114483B (zh) 激光投影设备
TWM451566U (zh) 微型光學影像裝置
JP2007250295A (ja) 小型の画像投影装置
CN112114481A (zh) 激光投影设备
TWM486786U (zh) 光學投影裝置
JP6251895B2 (ja) 投写型映像表示装置
JPH11316414A (ja) 投写型表示装置
CN101726973B (zh) 投影机
JP3669365B2 (ja) 光学装置、および、この光学装置を備えるプロジェクタ
TW201017319A (en) Projector
CN219590663U (zh) 一种激光投影系统
US9606426B2 (en) Duct cover for an image projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878602

Country of ref document: EP

Kind code of ref document: A1