WO2016115791A1 - 带镜子功能的显示装置及其制造方法 - Google Patents

带镜子功能的显示装置及其制造方法 Download PDF

Info

Publication number
WO2016115791A1
WO2016115791A1 PCT/CN2015/078794 CN2015078794W WO2016115791A1 WO 2016115791 A1 WO2016115791 A1 WO 2016115791A1 CN 2015078794 W CN2015078794 W CN 2015078794W WO 2016115791 A1 WO2016115791 A1 WO 2016115791A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
transparent substrate
display panel
panel
mirror
Prior art date
Application number
PCT/CN2015/078794
Other languages
English (en)
French (fr)
Inventor
鹿岛美纪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/124,429 priority Critical patent/US20170023826A1/en
Publication of WO2016115791A1 publication Critical patent/WO2016115791A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • Embodiments of the present invention relate to the field of liquid crystal display technologies, and in particular, to a display device with a mirror function and a method of fabricating the same.
  • the display panel of the liquid crystal display can have a mirror function.
  • existing display panels can only be switched between mirror function, display function, and full perspective function.
  • a display device with a mirror function comprising:
  • a mirror panel is disposed on a light exiting side of the display panel, the mirror panel allowing a portion of the polarized light from the display panel to pass therethrough while reflecting a portion of the ambient light.
  • the mirror panel includes:
  • a transparent electrode layer disposed on the opposite inner side surfaces of the first transparent substrate and the second transparent substrate, respectively; a cholesteric liquid crystal layer disposed between the respective transparent electrode layers of the first transparent substrate and the second transparent substrate.
  • the display panel is a liquid crystal display panel
  • the second transparent substrate is disposed on the liquid crystal display panel.
  • the display device further includes:
  • a quarter-wavelength plate placed between the display panel and the mirror panel.
  • the display device further includes a power supply system including a power source and a power source control portion, the power source being electrically connected to the transparent electrode layers of the first transparent substrate and the second transparent substrate, respectively.
  • the power control portion is adapted to control a power source to output a low frequency alternating voltage, the cholesteric liquid crystal layer allowing a portion of the polarized light from the display panel to transmit through while reflecting ambient light based on the applied low frequency alternating voltage portion.
  • the power control portion is adapted to control a power source to output a high frequency alternating voltage, the cholesteric liquid crystal layer having a pitch gradient distribution to block light from the display panel based on the applied high frequency alternating voltage, only Reflecting ambient light.
  • the power control portion is adapted to turn off the power source such that the cholesteric liquid crystal layer remains transparent to allow all of the polarized light from the display panel to pass therethrough.
  • the mirror panel includes: a first transparent substrate and a second transparent substrate disposed opposite each other; and
  • a wide-wave reflection polymer liquid crystal layer disposed between the inner surfaces of the first transparent substrate and the second transparent substrate,
  • the wide-wave reflective polymer liquid crystal layer allows circularly polarized light from the display panel to transmit therethrough while reflecting a portion of the ambient light.
  • the display panel is a liquid crystal display panel and includes a polarizer on the light exiting side;
  • the display device further includes a quarter-wavelength plate disposed between the polarizer of the display panel and the second transparent substrate of the mirror panel, the angle between the transmission axis of the polarizer and the optical axis of the quarter-wave plate It is +45 degrees.
  • the broad-wave reflective polymer liquid crystal layer is in the form of a twisted grain boundary phase and a cholesteric phase coexisting film.
  • a method of manufacturing a display device having a mirror function comprising the steps of:
  • the mirror panel is disposed on a light exit side of the display panel, the mirror panel allowing a portion of the polarized light from the display panel to pass therethrough while simultaneously reflecting a portion of the ambient light.
  • the steps of providing a mirror panel include:
  • a negative liquid crystal is applied between the respective transparent electrode layers of the first transparent substrate and the second transparent substrate, and a chiral ionic liquid is added to the negative liquid crystal.
  • the method further includes the steps of:
  • the cholesteric liquid crystal layer is distributed in a pitch gradient to block the passage of light from the display panel and reflect only ambient light;
  • the steps of providing a mirror panel include:
  • a wide-wave reflective polymer liquid crystal layer is provided between the inner surfaces of the first transparent substrate and the second transparent substrate, and the wide-wave reflective polymer liquid crystal layer has characteristics of a cholesteric liquid crystal layer.
  • the method further includes:
  • a quarter-wavelength plate is disposed between the light-emitting side of the display panel and the mirror panel.
  • the step of providing a broad wave reflective polymeric liquid crystal layer comprises:
  • Ultraviolet light irradiation is performed within 10 degrees above the transition temperature of the negative cholesteric phase and the smectic A phase of the liquid crystal to obtain a broad-wave reflective polymer liquid crystal layer.
  • the display device has a display function at the same time (ie, the display content of the display panel can be seen based on the transmitted partially polarized light) and the mirror function (ie, a part of the ambient light based on the reflection can be, for example, See the user's own reflection like).
  • Figure 1 is a schematic cross-sectional view showing the structure of a display device with a mirror function according to a first embodiment of the present invention.
  • Fig. 2 is a schematic cross-sectional view showing the structure of a display device with a mirror function according to a second embodiment of the present invention.
  • Fig. 3 is a schematic view showing the liquid crystal texture of a negative liquid crystal to which a chiral ionic liquid is added without applying a voltage, and exhibits a transmission state.
  • FIG. 4 is a schematic view showing a liquid crystal plane texture of a negative liquid crystal to which a chiral ionic liquid is added after application of a high-frequency alternating current power source, and exhibits a specular reflection state.
  • the cholesteric liquid crystal like other liquid crystalline substances, has fluidity, deformability, and viscosity of the liquid. It has an optical anisotropy of crystals and is an excellent nonlinear optical material. Due to the special molecular structure and optical anisotropy of the cholesteric liquid crystal, it has the properties of crystal optical rotation, polarized light dichroism and its own selective light scattering. The influence of the pitch of the cholesteric liquid crystal on its optical properties is very important. The characteristics of light transmission and selective light scattering are mainly determined by its pitch. For example, for a right-handed cholesteric liquid crystal having a pitch close to the wavelength of incident light, if left-handed light is incident, light transmission occurs; and when right-handed light is incident, light scattering similar to Bragg reflection is generated.
  • the mirror-equipped display device of the present invention and a corresponding manufacturing method are proposed based on the cholesteric liquid crystal characteristics.
  • the present invention provides a display device with a mirror function, including:
  • the mirror panel 20/30 has a cholesteric liquid crystal characteristic and is disposed on the light outgoing side of the liquid crystal display panel 10.
  • the mirror panel 20/30 allows a portion of the polarized light from the display panel 10 to pass therethrough while simultaneously reflecting a portion of the ambient light.
  • the display panel in the present invention is not limited to the liquid crystal display panel.
  • the mirror panel can allow only a portion of the polarized light from the display panel 10 to transmit therethrough while reflecting a portion of the ambient light based on the cholesteric liquid crystal characteristics.
  • the display device has the display function at the same time (ie, the display content of the display panel can be seen based on a part of the transmitted polarized light) and the mirror function (ie, a part of the ambient light based on the reflection can, for example, see the user's own reflection image. ).
  • a display device with a mirror function according to an embodiment of the present invention will now be described with reference to FIG.
  • the liquid crystal display panel 10 includes, for example, a lower (transparent) substrate 11 in which a thin film transistor (TFT) is formed on the lower substrate 11 and a transparent pixel electrode layer 19; opposite to the lower substrate 11
  • An upper substrate 12 having a transparent common electrode layer (not shown), a color film 13 disposed on a lower side of the upper substrate 12, and a pixel electrode layer and a common electrode layer disposed on the lower substrate 11 and the upper substrate 12
  • liquid crystal display panel 1 is merely an illustrative example, and for example, it may further include components that are generally required for a liquid crystal display panel such as a color filter, a black matrix, or the like. In view of the fact that liquid crystal display panels are well known, the present invention will not be described in detail.
  • the mirror panel 20 includes:
  • first transparent substrate 21 and a second transparent substrate 22 disposed opposite each other;
  • the chiral ionic liquid 251 is composed.
  • the display device further includes a power supply system for supplying power to the mirror panel 20, the power supply system including a power source 24 (see FIG. 4) and a power control portion (not shown), the power source and the first transparent substrate 21, respectively.
  • the two transparent electrode layers 23 of the second transparent substrate 22 are electrically connected.
  • the power control portion is adapted to control the power source 24 to output a low frequency alternating voltage, the mirror panel 10 allowing a portion of the polarized light from the display panel to be transmitted through while reflecting a portion of the ambient light based on the applied low frequency alternating voltage.
  • the quarter-wavelength plate may or may not be provided on the light-emitting side of the display panel, but the light from the display panel may be transmitted more through the mirror panel when the quarter-wavelength plate is set.
  • the low frequency alternating voltages that implement the function of "mirror panel 10 allows a portion of the polarized light from the display panel to pass through while reflecting a portion of the ambient light" can be used.
  • the low frequency alternating voltage can be a low frequency alternating voltage of 100-200 Hz.
  • the power control portion is further adapted to control the power source 24 to output a high-frequency alternating voltage, such as a high-frequency alternating voltage of 8000 Hz or more, based on the applied high-frequency alternating current, after the chiral ionic liquid migrates to the substrate side of the mirror panel under the action of a direct current electric field.
  • a high-frequency alternating voltage such as a high-frequency alternating voltage of 8000 Hz or more
  • the mirror panel 20 blocks the transmission of light from the display panel 10 while reflecting ambient light.
  • the structure of the negative liquid crystal 252 is switched to the planar texture, and since the distribution of the chiral ionic liquid 251 is concentrated on the electrode side, the pitch step distribution of the negative liquid crystal 252 occurs, showing a specular reflection state.
  • the mirror panel 20 provides only the mirror function, and the user does not see the content from the display panel 10 at all.
  • the power control portion is further adapted to switch off the power source such that the mirror panel 20 remains transparent to allow all of the polarized light from the display panel to pass therethrough.
  • the state of the negative liquid crystal 252 after the power is turned off is shown in Fig. 3, at which time a fully transmissive state is exhibited. In this case, the user can select to view the display content of the display panel, and the mirror panel 20 does not provide the mirror function.
  • the mirror panel 20 shown in FIG. 1 of the present invention not only can the mirror panel 10 be allowed to transmit a portion of the polarized light from the display panel while reflecting a portion of the ambient light" (ie, both the display function and the mirror function are satisfied). ), and can realize the full perspective function of viewing only the display content of the display panel and A full mirror function only as a mirror.
  • the mirror panel 30 includes: a first transparent substrate 31 and a second transparent substrate 32 disposed opposite to each other; and is disposed at the first transparent a wide-wave reflection polymer liquid crystal layer 33 between the substrate 31 and the inner surface of the second transparent substrate 32, the wide-wave reflection polymer liquid crystal layer having the characteristics of a cholesteric liquid crystal layer, that is, a wide-wave reflection polymer liquid crystal layer allows The circularly polarized light from the display panel is transmitted through while reflecting a portion of the ambient light.
  • the display device further includes a 1/4 wavelength plate 34 covering the outside of the second transparent substrate 32, and the 1/4 wavelength plate covers the upper polarizer 14.
  • the polarizing film may not be provided, and the 1/4 wavelength plate 34 may be directly disposed on the light outgoing side of the display panel.
  • the 1/4 wavelength plate 34 can be considered as an integral part of the mirror panel 30.
  • the 1/4 wavelength plate 34 can also be considered a separate component.
  • Wide-wave reflective polymer liquid crystal has a very wide reflection wavelength range, and it has the characteristics of cholesteric liquid crystal. Therefore, only the light in the spiral direction of the cholesteric liquid crystal passes through the wide-wave reflection polymer liquid crystal (its reflectivity) It is approximately 50% and the transmittance is approximately 50%). Therefore, the broad-wave reflection polymer liquid crystal has polarization.
  • the broad-wave reflection polymer liquid crystal layer is a broad-wave reflection liquid crystal layer composed of a nematic liquid crystal having a left-handed ionic liquid, a polymerizable monomer and an initiator.
  • Wide-wave reflective polymer liquid crystal is irradiated with ultraviolet light at a temperature higher than 10 degrees above the cholesteric phase and smectic A phase transition temperature of the liquid crystal by adding a photoinitiator to a monomer having a photopolymerizable group liquid crystal.
  • the photopolymerizable group liquid crystal monomer diffuses toward the side of the ultraviolet light source as the polymerization proceeds, resulting in an increase in the transition temperature of the cholesteric phase and the smectic A phase on the side away from the ultraviolet light source, and then the twisted crystal phase and the cholesteric phase are obtained.
  • the ⁇ phase coexists with the film to obtain a polymer liquid crystal having broad wave reflection characteristics.
  • the wide-wave reflection polymer liquid crystal layer does not require a cholesteric phase and thus does not require application of a voltage, and the wide-wave reflection polymer liquid crystal layer maintains a mirror effect of about 50%.
  • the left-handed light in the external light from the side of the wide-wave reflection polymer liquid crystal layer is reflected, so that the mirror effect can be achieved.
  • the light from the upper polarizer (POL) passes through the quarter-wavelength plate 34 and becomes right-handed circularly polarized light, so that the image can be displayed by wide-wave reflecting the liquid crystal layer.
  • the angle between the transmission axis of the upper polarizer 14 and the optical axis of the quarter-wave plate 34 is +45 degrees.
  • embodiments of the present invention are also directed to a method of fabricating a display device having a mirror function, comprising the steps of:
  • the mirror panel is disposed on a light exiting side of the display panel that allows a portion of the polarized light from the display panel 10 to pass therethrough while reflecting a portion of the ambient light.
  • the step of providing the mirror panel 20 includes:
  • a negative liquid crystal 252 is applied between the first transparent substrate 21 and the second transparent substrate 22, and a chiral ionic liquid 251 is added to the negative liquid crystal 252.
  • a mirror panel based on a cholesteric liquid crystal layer is provided.
  • the method further includes the steps of:
  • the cholesteric liquid crystal layer is distributed in a pitch gradient to block the passage of light from the display panel and reflect only ambient light;
  • the step of providing another form of the mirror panel 30 comprises: providing a first transparent substrate 31 and a second transparent substrate 32 disposed opposite to each other; on the inner side of the first transparent substrate and the second transparent substrate A wide-wave reflective polymer liquid crystal layer 33 is provided between the surfaces, and the wide-wave reflective polymer liquid crystal layer has the characteristics of a cholesteric liquid crystal layer.
  • the method of the present invention further includes the step of providing a quarter-wavelength plate 34 between the light-emitting side of the display panel and the mirror panel.
  • a display device having a wide-wave reflective polymer liquid crystal layer having a cholesteric liquid crystal layer property while providing a good display effect and a mirror effect is provided.
  • the step of providing the broad-wave reflective polymer liquid crystal layer 33 comprises: adding a photoinitiator to the photopolymerizable group liquid crystal monomer; and at a negative cholesteric phase and a smectic A phase transition temperature higher than the liquid crystal Ultraviolet light irradiation was performed within 10 degrees or more to obtain a broad-wave reflection polymer liquid crystal layer.
  • the photopolymerizable group liquid crystal monomer diffuses toward the side of the ultraviolet light source as the polymerization progresses, so that the transition temperature of the cholesteric phase and the smectic A phase away from the ultraviolet light source increases to obtain a twisted grain boundary phase and The cholesteric phase coexists with the film to obtain a broad-wave reflective polymer liquid crystal layer.
  • the emitted light of the display panel is converted into circularly polarized light by the 1/4 wavelength plate, and then the mirror panel provided with the wide wave reflecting polymer liquid crystal layer allows the circularly polarized light to pass. And at the same time reflect a part of the ambient light.
  • the mirror panel provided with the wide wave reflecting polymer liquid crystal layer allows the circularly polarized light to pass.
  • the ambient light reflect a part of the ambient light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种带镜子功能的显示装置及其制造方法,所述显示装置包括显示面板(10)和镜子面板(20/30),设置在所述显示面板(10)的出光侧。所述镜子面板(20/30)允许来自显示面板(10)的一部分偏振光透射通过,且同时反射环境光的一部分。

Description

带镜子功能的显示装置及其制造方法
本申请要求于2015年1月22日递交的、申请号为201510032984.6、发明名称为“带镜子功能的显示装置及其制造方法”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明的实施例涉及液晶显示技术领域,尤其涉及带镜子功能的显示装置及其制造方法。
背景技术
液晶显示器的显示面板可以具有镜子功能。不过,现有的显示面板只能在镜子功能、显示功能和全透视功能之间切换。
市场中还存在对同一时刻同时满足显示功能和镜子功能这样的显示装置的需求。
发明内容
本发明的目的至少在于提供允许用户清楚地看到显示内容的同时也可以作为镜子使用的显示装置以及相应的制造方法。
根据本发明的一个方面,提供了一种带镜子功能的显示装置,包括:
显示面板;
镜子面板,设置在所述显示面板的出光侧,所述镜子面板允许来自显示面板的一部分偏振光透射通过,且同时反射环境光的一部分。
在一个示例中,所述镜子面板包括:
彼此相对设置的第一透明基板和第二透明基板;
分别设置在第一透明基板和第二透明基板的相对的内侧表面上的透明电极层;设置在第一透明基板和第二透明基板的各自的透明电极层之间的胆甾相液晶层。
在一个示例中,所述显示面板为液晶显示面板所述第二透明基板设置在所述液晶显示面板上。
在一个示例中,所述显示装置还包括:
设置在显示面板和镜子面板之间的1/4波长片。
在一个示例中,所述显示装置还包括供电系统,所述供电系统包括电源和电源控制部分,所述电源分别与第一透明基板和第二透明基板的透明电极层电连接。
在一个示例中,所述电源控制部分适于控制电源以输出低频交流电压,基于施加的低频交流电压,所述胆甾相液晶层允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分。
在一个示例中,所述电源控制部分适于控制电源以输出高频交流电压,基于施加的高频交流电压,所述胆甾相液晶层呈螺距梯度分布以阻止来自显示面板的光线通过,仅反射环境光。
在一个示例中,所述电源控制部分适于切断电源,从而所述胆甾相液晶层保持透明状态以允许来自显示面板的全部偏振光透射通过。
在一个示例中,所述镜子面板包括:彼此相对设置的第一透明基板和第二透明基板;和
设置在第一透明基板和第二透明基板的内侧表面之间的宽波反射高分子液晶层,
所述宽波反射高分子液晶层允许来自显示面板的圆偏振光透射通过,且同时反射环境光的一部分。
在一个示例中,所述显示面板为液晶显示面板且包括位于出光侧的偏光片;
所述显示装置还包括设置在显示面板的偏光片和镜子面板的第二透明基板之间的1/4波长片,所述偏光片的透过轴和1/4波长片的光轴的夹角为+45度。
在一个示例中,所述宽波反射高分子液晶层为扭曲晶界相和胆甾相共存薄膜的形式。
根据本发明的另一方面,提供了一种制造带镜子功能的显示装置的方法,包括步骤:
提供显示面板;
提供镜子面板;和
将所述镜子面板设置在所述显示面板的出光侧,所述镜子面板允许来自显示面板的一部分偏振光透射通过,且同时反射环境光的一部分。
在一个示例中,提供镜子面板的步骤包括:
提供彼此相对设置的第一透明基板和第二透明基板,在第一透明基板和第二透明基板的相对的内侧表面上设置有透明电极层;
在第一透明基板和第二透明基板的各自的透明电极层之间施加负性液晶,所述负性液晶中添加有手性离子液体。
在一个示例中,所述方法还包括步骤:
提供具有电源和电源控制部分的电源系统,所述电源与所述第一透明基板和第二透明基板的两个透明电极层电连接;和
利用电源控制部分控制电源:
(1)输出低频交流电压,基于施加的低频交流电压,使得所述镜子面板允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分;
(2)输出高频交流电压,基于施加的高频交流电压,所述胆甾相液晶层呈螺距梯度分布以阻止来自显示面板的光线通过,仅反射环境光;
(3)切断给镜子面板供电,从而所述胆甾相液晶层保持透明状态以允许来自显示面板的全部偏振光透射通过。
在一个示例中,提供镜子面板的步骤包括:
提供彼此相对设置的第一透明基板和第二透明基板;和
在第一透明基板和第二透明基板的内侧表面之间提供宽波反射高分子液晶层,所述宽波反射高分子液晶层具有胆甾相液晶层的特性。
在一个示例中,所述方法还包括:
在显示面板的出光侧与镜子面板之间设置1/4波长片。
在一个示例中,提供宽波反射高分子液晶层的步骤包括:
将光引发剂加入到光可聚合基团液晶性单体;
在高于液晶的负性胆甾相和近晶A相转变温度以上10度以内进行紫外光照射,获得宽波反射高分子液晶层。
利用本发明的各示例中的技术方案,显示装置在同一时刻同时具有显示功能(即基于透射过的一部分偏振光可以看见显示面板的显示内容)和镜子功能(即基于反射的一部分环境光可以例如看到用户自己的反射像)。
附图说明
图1是本发明第一实施例的带有镜子功能的显示装置的结构的示意性截面图。
图2为本发明第二实施例的带有镜子功能的显示装置的结构的示意性截面图。
图3为没有施加电压时添加有手性离子液体的负性液晶的液晶织构示意图,并且呈现透射状态。
图4为施加了高频交流电源之后的添加有手性离子液体的负性液晶的液晶平面织构的示意图,并且呈现镜面反射状态。
具体实施方式
下面结合附图,对本发明实施例提供的带有镜子功能的显示装置及其制造方法进行详细地说明。
附图中各部件的大小和形状不反映带有镜子功能的显示装置的真实比例,目的只是示意性说明本发明的内容。
胆甾相液晶同其它液晶态物质一样,既有液体的流动性、形变性、粘性,又具 有晶体的光各向异性,是一种优良的非线性光学材料。由于胆甾相液晶特殊的分子结构以及光学的各向异性,决定了它具有晶体的旋光性、偏振光二色性和它本身特有的选择性光散射等性质。胆甾相液晶的螺距对其光学性质的影响非常重要,光透射和选择性光散射的特性主要由其螺距决定。例如,对于螺距与入射光波长相近的右旋胆甾相液晶,若左旋光入射时,则产生光透射;若右旋光入射时,则产生与布拉格(Bragg)反射相同的光散射。
基于胆甾相液晶特性提出本发明的带有镜子功能的显示装置以及相应的制造方法。
如图1-2所示,本发明提出了一种带有镜子功能的显示装置,包括:
液晶显示面板10;
镜子面板20/30,具有胆甾相液晶特性并且设置在液晶显示面板10的出光侧。
所述镜子面板20/30允许来自显示面板10的偏振光的一部分透射通过,且同时反射环境光的一部分。
需要指出的是,本发明中的显示面板不限于液晶显示面板。
利用本发明的技术方案,镜子面板基于胆甾相液晶特性,可以仅允许来自显示面板10的偏振光的一部分透射通过,且同时反射环境光的一部分。如此,使得显示装置在同一时刻同时具有显示功能(即基于透射过的偏振光的一部分可以看见显示面板的显示内容)和镜子功能(即基于反射的一部分环境光可以例如看到用户自己的反射像)。
下面参见图1描述根据本发明的一个实施例的带镜子功能的显示装置。
如图1所示,该液晶显示面板10例如包括:下侧(透明)基板11,其中的薄膜晶体管(TFT)形成在下侧基板11上的透明像素电极层19;与下侧基板11相对设置的具有透明公共电极层(未示出)的上侧基板12,在上侧基板12的下侧设置的彩膜13;设置于下侧基板11和上侧基板12的像素电极层和公共电极层之间的液晶层18;设置于上侧基板11的上侧的上偏光片14;设置于下侧基板11下侧的下偏光片15和背光源16。可以理解,图1所述的液晶显示面板10仅是一个示例性的示例,例如其还可以包括彩色滤光片、黑矩阵等液晶显示面板通常所需要的部件。鉴于液晶显示面板是公知的,故本发明对此不再做详细说明。
如图1所示,该镜子面板20包括:
彼此相对设置的第一透明基板21和第二透明基板22;
分别设置在第一透明基板21和第二透明基板22的相对的内侧表面上的透明电 极层23;
设置在第一透明基板21和第二透明基板22的透明电极层23之间的胆甾相液晶层25,更具体地,该胆甾相液晶层由负性液晶252和添加在负性液晶252中的手性离子液体251组成。
所述显示装置还包括用于给镜子面板20供电的供电系统,该供电系统包括电源24(参见图4)和电源控制部分(未示出),所述电源分别与所述第一透明基板21和第二透明基板22的两个透明电极层23电连接。
具体地,所述电源控制部分适于控制电源24输出低频交流电压,基于施加的低频交流电压,所述镜子面板10允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分。
利用该技术方案,通过控制液晶显示面板10和镜子面板20,可以同时提供良好的显示效果和镜子效果。
在图1的示例中,可以在显示面板的出光侧设置1/4波长片,也可以不设置,只是设置1/4波长片时来自显示面板的光会更多地透射过镜子面板。
可以使用任意实现“镜子面板10允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分”的功能的低频交流电压。例如,该低频交流电压可以是100-200赫兹的低频交流电压。
所述电源控制部分还适于在直流电场作用下手性离子液体迁移至镜子面板的基板侧之后,控制电源24输出高频交流电压,例如8000赫兹以上的高频交流电压,基于施加的高频交流电压,镜子面板20阻止来自显示面板10的光线透射通过,同时反射环境光。在图4中示出了镜子面板20的透明电极层23被施加了高频交流电压的情形。在图4中,负性液晶252的结构转换至平面织构,由于手性离子液体251的分布集中在电极侧,出现负性液晶252的螺距阶梯分布,而显示出镜面反射状态。在这种情况下,镜子面板20仅提供镜子功能,用户完全看不到来自显示面板10的内容。
可选地,所述电源控制部分还适于切断电源,从而镜子面板20保持透明状态以允许来自显示面板的全部偏振光透射通过。图3中示出了切断电源之后的负性液晶252的状态,此时呈现完全透射状态。在此情况下,用户可以选择观看显示面板的显示内容,镜子面板20不提供镜子功能。
可见,利用本发明的图1中示出的镜子面板20,不仅可以实现镜子面板10允许来自显示面板的偏振光的一部分透射通过、同时反射环境光的一部分”(即同时满足显示功能和镜子功能),而且可以实现仅观看显示面板的显示内容的完全透视功能和 仅作为镜子的完全镜子功能。
下面参照图2说明根据本发明的另一个实施例的带镜子功能的显示装置。如图2所示,显示面板10的结构与图1中的显示面板10的结构相同,镜子面板30包括:彼此相对设置的第一透明基板31和第二透明基板32;和设置在第一透明基板31和第二透明基板32的内侧表面之间的宽波反射高分子液晶层33,所述宽波反射高分子液晶层具有胆甾相液晶层的特性,即宽波反射高分子液晶层允许来自显示面板的圆偏振光透射通过,且同时反射环境光的一部分。
如图2所示,显示装置还包括覆盖在第二透明基板32的外侧的1/4波长片34,该1/4波长片覆盖上偏光片14。在显示面板不是液晶显示面板的情况下,可以不设置偏光片,则1/4波长片34可以直接设置在显示面板的出光侧上。在这种情况下,1/4波长片34可以认为是镜子面板30的一个组成部分。当然,也可以将1/4波长片34认为是一个单独的部件。
宽波反射高分子液晶具有非常宽的反射波长范围,而它具有胆甾相液晶的特性,因此只有跟胆甾相液晶不一样螺旋方向的光线才通过宽波反射高分子液晶(它的反射率大致为50%、透射率大致为50%)。因此宽波反射高分子液晶带有偏振性。宽波反射高分子液晶层为由具有左旋手性离子液体的向列相液晶,可聚合单体和引发剂而组成的宽波反射液晶层。宽波反射高分子液晶是通过将光引发剂加入到带有光可聚合基团液晶的单体后,在高于液晶的胆甾相和近晶A相转变温度以上10度以内进行紫外光照射,光可聚合基团液晶性单体随聚合的进行向着紫外光源的一侧扩散,导致远离紫外光源的一侧的胆甾相与近晶A相转变温度升高,后得到扭曲晶介相和胆甾相共存薄膜,从而得到宽波反射特性的高分子液晶。
利用宽波反射高分子液晶层不需要胆甾相从而不需要施加电压,宽波反射高分子液晶层会保持约50%的镜面效果。
例如,在宽波反射高分子液晶层上侧来的外部光线中的左旋光被反射,因此可以实现镜子效果。在显示图像的时候(亮态),从上偏光片(POL)出来的光线通过1/4波长片34以后变成右旋圆偏光,因此可以通过宽波反射液晶层而显示图像。
为了提高光效率,上偏光片14的透过轴和1/4波长片34的光轴的夹角为+45度。
另外,本发明的实施例还涉及一种制造带镜子功能的显示装置的方法,包括步骤:
提供显示面板10;
提供镜子面板20/30;和
将所述镜子面板设置在显示面板的出光侧,所述镜子面板允许来自显示面板10的一部分偏振光透射通过,且同时反射环境光的一部分。
可选地,上述方法中,提供镜子面板20的步骤包括:
提供彼此相对设置的第一透明基板21和第二透明基板22,在第一透明基板21和第二透明基板22的相对的内侧表面上设置有透明电极层23;
在第一透明基板21和第二透明基板22之间施加负性液晶252,负性液晶252中添加有手性离子液体251。如此,提供一种基于胆甾相液晶层的镜子面板。
在一个示例中,所述方法还包括步骤:
提供具有电源24和电源控制部分的供电系统,所述电源分别与两个透明电极层23电连接;和
利用电源控制部分控制电源:
(1)输出低频交流电压,基于施加的低频交流电压,使得所述镜子面板允许来自显示面板的圆偏振光透射通过、同时反射环境光的一部分;
(2)输出高频交流电压,基于施加的高频交流电压,所述胆甾相液晶层呈螺距梯度分布以阻止来自显示面板的光线通过,仅反射环境光;
(3)切断给镜子面板供电,从而所述胆甾相液晶层保持透明状态以允许来自显示面板的全部偏振光透射通过。。
可选地,上述方法中,提供另一种形式的镜子面板30的步骤包括:提供彼此相对设置的第一透明基板31和第二透明基板32;在第一透明基板和第二透明基板的内侧表面之间提供宽波反射高分子液晶层33,所述宽波反射高分子液晶层具有胆甾相液晶层的特性。
另外,本发明所述的方法还包括步骤:在显示面板的出光侧与镜子面板之间设置1/4波长片34。
如此,提供具有胆甾相液晶层特性的宽波反射高分子液晶层,且同时提供良好的显示效果和镜子效果的显示装置。
进一步地,提供宽波反射高分子液晶层33的步骤包括:将光引发剂加入到光可聚合基团液晶性单体;以及在高于液晶的负性胆甾相和近晶A相转变温度以上10度以内进行紫外光照射,获得宽波反射高分子液晶层。该光可聚合基团液晶性单体随着聚合的进行向着紫外光源的一侧扩散,使得远离紫外光源的一侧胆甾相与近晶A相转变温度升高,以得到扭曲晶界相和胆甾相共存薄膜,从而获得宽波反射高分子液晶层。
可以理解,在本发明的第二实施例中,显示面板的出射光通过1/4波长片转变成圆偏振光,之后设置有宽波反射高分子液晶层的镜子面板允许该圆偏振光通过,且同时反射环境光的一部分。当然,本领域技术人员基于本发明的上述公开内容容易想到直接通过显示面板来提供上述的圆偏振光而不是通过使用1/4波长片。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (17)

  1. 一种带镜子功能的显示装置,包括:
    显示面板;
    镜子面板,设置在所述显示面板的出光侧,所述镜子面板允许来自显示面板的一部分偏振光透射通过,且同时反射环境光的一部分。
  2. 根据权利要求1所述的显示装置,其中:
    所述镜子面板包括:
    彼此相对设置的第一透明基板和第二透明基板;
    分别设置在第一透明基板和第二透明基板的相对的内侧表面上的透明电极层;设置在第一透明基板和第二透明基板的各自的透明电极层之间的胆甾相液晶层。
  3. 根据权利要求2所述的显示装置,其中:
    所述显示面板为液晶显示面板所述第二透明基板设置在所述液晶显示面板上。
  4. 根据权利要求3所述的显示装置,还包括:
    设置在显示面板和镜子面板之间的1/4波长片。
  5. 根据权利要求2-4中任一项所述的显示装置,其中:
    所述显示装置还包括供电系统,所述供电系统包括电源和电源控制部分,所述电源分别与第一透明基板和第二透明基板的透明电极层电连接。
  6. 根据权利要求5所述的显示装置,其中:
    所述电源控制部分适于控制电源以输出低频交流电压,基于施加的低频交流电压,所述胆甾相液晶层允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分。
  7. 根据权利要求5所述的显示装置,其中:
    所述电源控制部分适于控制电源以输出高频交流电压,基于施加的高频交流电压,所述胆甾相液晶层呈螺距梯度分布以阻止来自显示面板的光线通过,仅反射环境光。
  8. 根据权利要求5所述的显示装置,其中:
    所述电源控制部分适于切断电源,从而所述胆甾相液晶层保持透明状态以允许来自显示面板的全部偏振光透射通过。
  9. 根据权利要求1所述的显示装置,其中:
    所述镜子面板包括:彼此相对设置的第一透明基板和第二透明基板;和
    设置在第一透明基板和第二透明基板的内侧表面之间的宽波反射高分子液晶层,
    所述宽波反射高分子液晶层允许来自显示面板的圆偏振光透射通过,且同时反射环境光的一部分。
  10. 根据权利要求9所述的显示装置,其中:
    所述显示面板为液晶显示面板且包括位于出光侧的偏光片;
    所述显示装置还包括设置在显示面板的偏光片和镜子面板的第二透明基板之间的1/4波长片,所述偏光片的透过轴和1/4波长片的光轴的夹角为+45度。
  11. 根据权利要求9所述的显示装置,其中:
    所述宽波反射高分子液晶层为扭曲晶界相和胆甾相共存薄膜的形式。
  12. 一种制造带镜子功能的显示装置的方法,包括步骤:
    提供显示面板;
    提供镜子面板;和
    将所述镜子面板设置在所述显示面板的出光侧,所述镜子面板允许来自显示面板的一部分偏振光透射通过,且同时反射环境光的一部分。
  13. 根据权利要求12所述的方法,其中:
    提供镜子面板的步骤包括:
    提供彼此相对设置的第一透明基板和第二透明基板,在第一透明基板和第二透明基板的相对的内侧表面上设置有透明电极层;
    在第一透明基板和第二透明基板的各自的透明电极层之间施加负性液晶,所述负性液晶中添加有手性离子液体。
  14. 根据权利要求13所述的方法,还包括步骤:
    提供具有电源和电源控制部分的电源系统,所述电源与所述第一透明基板和第二透明基板的两个透明电极层电连接;和
    利用电源控制部分控制电源:
    (1)输出低频交流电压,基于施加的低频交流电压,使得所述镜子面板允许来自显示面板的一部分偏振光透射通过、同时反射环境光的一部分;
    (2)输出高频交流电压,基于施加的高频交流电压,所述胆甾相液晶层呈螺距梯度分布以阻止来自显示面板的光线通过,仅反射环境光;
    (3)切断给镜子面板供电,从而所述胆甾相液晶层保持透明状态以允许来自显示面板的全部偏振光透射通过。
  15. 根据权利要求12所述的方法,其中:
    提供镜子面板的步骤包括:
    提供彼此相对设置的第一透明基板和第二透明基板;和
    在第一透明基板和第二透明基板的内侧表面之间提供宽波反射高分子液晶层,所述宽波反射高分子液晶层具有胆甾相液晶层的特性。
  16. 根据权利要求15所述的方法,还包括:
    在显示面板的出光侧与镜子面板之间设置1/4波长片。
  17. 根据权利要求15所述的方法,其中:
    提供宽波反射高分子液晶层的步骤包括:
    将光引发剂加入到光可聚合基团液晶性单体;
    在高于液晶的负性胆甾相和近晶A相转变温度以上10度以内进行紫外光照射,获得宽波反射高分子液晶层。
PCT/CN2015/078794 2015-01-22 2015-05-12 带镜子功能的显示装置及其制造方法 WO2016115791A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/124,429 US20170023826A1 (en) 2015-01-22 2015-05-12 Display apparatus having mirror function and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510032984.6 2015-01-22
CN201510032984.6A CN104570463B (zh) 2015-01-22 2015-01-22 带镜子功能的显示装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2016115791A1 true WO2016115791A1 (zh) 2016-07-28

Family

ID=53086923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078794 WO2016115791A1 (zh) 2015-01-22 2015-05-12 带镜子功能的显示装置及其制造方法

Country Status (3)

Country Link
US (1) US20170023826A1 (zh)
CN (1) CN104570463B (zh)
WO (1) WO2016115791A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570463B (zh) * 2015-01-22 2017-12-08 京东方科技集团股份有限公司 带镜子功能的显示装置及其制造方法
US10591767B2 (en) * 2015-07-29 2020-03-17 Sharp Kabushiki Kaisha Sunlight readable LCD with uniform in-cell retarder
KR102556965B1 (ko) * 2016-05-30 2023-07-19 엘지디스플레이 주식회사 미러 디스플레이
KR20180062580A (ko) * 2016-11-30 2018-06-11 엘지디스플레이 주식회사 미러셀 및 이를 포함하는 표시장치
CN107065371B (zh) * 2017-01-23 2023-10-10 京东方科技集团股份有限公司 一种双面多功能装置及其显示方法
CN107145010A (zh) * 2017-07-04 2017-09-08 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法
CN108051946A (zh) * 2018-01-02 2018-05-18 京东方科技集团股份有限公司 一种显示装置
KR102168720B1 (ko) * 2018-07-24 2020-10-22 엘지디스플레이 주식회사 미러 기능을 갖는 표시장치
CN112147808B (zh) * 2020-10-23 2023-09-01 京东方科技集团股份有限公司 一种智能玻璃以及制备方法、显示装置
CN114265226B (zh) * 2021-12-30 2023-08-11 京东方科技集团股份有限公司 显示模组及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543273A (zh) * 2003-04-29 2004-11-03 铼宝科技股份有限公司 显示镜
US20060232727A1 (en) * 2003-04-11 2006-10-19 Samsung Electronics, Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN1886679A (zh) * 2003-11-24 2006-12-27 皇家飞利浦电子股份有限公司 带有内置显示器的反射镜
EP2207220A2 (en) * 2009-01-09 2010-07-14 Samsung Mobile Display Co., Ltd. Organic light emitting diode display with a mirror function
CN102707473A (zh) * 2012-04-28 2012-10-03 京东方科技集团股份有限公司 一种液晶面板及液晶显示器
CN103217828A (zh) * 2013-04-28 2013-07-24 京东方科技集团股份有限公司 显示装置
CN203311128U (zh) * 2013-05-29 2013-11-27 东莞市亚星半导体有限公司 一种可当镜子使用的液晶显示屏
CN104570463A (zh) * 2015-01-22 2015-04-29 京东方科技集团股份有限公司 带镜子功能的显示装置及其制造方法
CN204405994U (zh) * 2015-01-22 2015-06-17 京东方科技集团股份有限公司 带镜子功能的显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009666B2 (en) * 1999-08-23 2006-03-07 Kent Displays Incorporated Back lit cholesteric liquid crystal display
US6462805B1 (en) * 2001-06-04 2002-10-08 Display Research, Inc. Reverse-mode direct-view display employing a liquid crystal having a characteristic wavelength in the non-visible spectrum
JP2003262732A (ja) * 2002-03-12 2003-09-19 Dainippon Printing Co Ltd 円偏光素子およびその製造方法
US20060290853A1 (en) * 2005-06-27 2006-12-28 Qi Hong Wide-acceptance-angle circular polarizers
EP1926632A1 (en) * 2005-09-05 2008-06-04 Koninklijke Philips Electronics N.V. Mirror device with a switchable cholesteric filter
US7879256B2 (en) * 2006-03-31 2011-02-01 E. I. Du Pont De Nemours And Company Liquid crystal compositions, polymer networks derived therefrom and process for making the same
EP2442160A4 (en) * 2009-06-11 2012-11-07 Fujifilm Corp METHOD FOR PRODUCING REFLECTIVE FILM
JP5662850B2 (ja) * 2011-03-10 2015-02-04 パナソニックIpマネジメント株式会社 発光装置
CN105474291B (zh) * 2013-08-05 2018-06-22 夏普株式会社 反射镜显示器、半反射镜板和电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060232727A1 (en) * 2003-04-11 2006-10-19 Samsung Electronics, Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN1543273A (zh) * 2003-04-29 2004-11-03 铼宝科技股份有限公司 显示镜
CN1886679A (zh) * 2003-11-24 2006-12-27 皇家飞利浦电子股份有限公司 带有内置显示器的反射镜
EP2207220A2 (en) * 2009-01-09 2010-07-14 Samsung Mobile Display Co., Ltd. Organic light emitting diode display with a mirror function
CN102707473A (zh) * 2012-04-28 2012-10-03 京东方科技集团股份有限公司 一种液晶面板及液晶显示器
CN103217828A (zh) * 2013-04-28 2013-07-24 京东方科技集团股份有限公司 显示装置
CN203311128U (zh) * 2013-05-29 2013-11-27 东莞市亚星半导体有限公司 一种可当镜子使用的液晶显示屏
CN104570463A (zh) * 2015-01-22 2015-04-29 京东方科技集团股份有限公司 带镜子功能的显示装置及其制造方法
CN204405994U (zh) * 2015-01-22 2015-06-17 京东方科技集团股份有限公司 带镜子功能的显示装置

Also Published As

Publication number Publication date
CN104570463B (zh) 2017-12-08
CN104570463A (zh) 2015-04-29
US20170023826A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2016115791A1 (zh) 带镜子功能的显示装置及其制造方法
JP6624193B2 (ja) 光学装置、表示装置および電子機器
JP3687854B2 (ja) 光学フィルムおよび液晶表示装置
US9195092B2 (en) Polarization-independent liquid crystal display devices including multiple polarizing grating arrangements and related devices
US8537310B2 (en) Polarization-independent liquid crystal display devices including multiple polarization grating arrangements and related devices
KR101474668B1 (ko) 투명 디스플레이
US10139670B2 (en) Display panel and display device
JP3291432B2 (ja) 液晶表示装置およびこれを用いた端末装置
JP2009244897A (ja) 半透過型液晶表示装置用の光学λ/4層を形成する方法
WO2017063379A1 (zh) 显示面板及其制备方法
WO2015158123A1 (zh) 柔性显示面板和柔性显示器
TW200815877A (en) Liquid crystal display device
JP2009175765A (ja) 液晶表示装置
JP2005309386A (ja) Ipsモード液晶表示装置
CN103941470A (zh) 一种显示面板及显示装置
JP5797323B2 (ja) 急速なスイッチングを行う二重セル液晶装置
JP2016141257A (ja) 映像表示装置付のミラーを備える車両
JP2004046178A (ja) 液晶表示装置
KR20130039211A (ko) 반사형 액정표시장치 및 그 제어방법
JP2004538515A (ja) 反射型液晶ディスプレイ
US9868400B2 (en) Image display mirror for a vehicle
WO2014153874A1 (zh) 半透半反液晶显示面板及液晶显示装置
JP2004069835A (ja) 液晶表示装置
KR100786475B1 (ko) 액정표시장치 및 그 구동방법
JP2007514186A (ja) 黒を最適化する双安定ネマチック型スクリーンを有するディスプレー装置および同装置の鮮鋭画定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878465

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15878465

Country of ref document: EP

Kind code of ref document: A1