WO2016111115A1 - 光コネクタ - Google Patents
光コネクタ Download PDFInfo
- Publication number
- WO2016111115A1 WO2016111115A1 PCT/JP2015/084778 JP2015084778W WO2016111115A1 WO 2016111115 A1 WO2016111115 A1 WO 2016111115A1 JP 2015084778 W JP2015084778 W JP 2015084778W WO 2016111115 A1 WO2016111115 A1 WO 2016111115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- transmission
- channel
- optical transmission
- transmission channel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4292—Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/04—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
- G02B6/3885—Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2589—Bidirectional transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/40—Transceivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
Definitions
- This disclosure relates to an optical connector.
- optical data transmission is mainly used for data transmission in infrastructure systems with a large amount of data transmission and data transmission between data servers, and has not yet been widely used for consumer use.
- the safety standard JIS C6802
- the connection between the device and the optical cable has a structure in which only the reliability of the connection is prioritized, and the actual situation is that the structure is not easily usable by general users.
- Patent Document 1 proposes a laser beam blocking method for reducing the danger to the human body when the optical fiber is disconnected from the optical connector terminal.
- Patent Document 1 describes a laser light blocking method for minimizing the influence on the human body.
- the proposal is not a proposal for improving transmission quality, but any improvement in transmission quality. It was not considered.
- a plurality of optical transmission paths for transmitting optical signals the end faces of which are arranged in a predetermined area, correspond to a transmission channel or a reception channel, and the light of the transmission channel is provided.
- An optical connector is provided in which the optical transmission lines of the transmission channel are distributed and arranged around the predetermined area as compared with the case where the transmission lines are concentrated in the center of the predetermined area.
- FIG. 6 is a schematic diagram showing the prescribed values in “class 1” of laser light obtained from Equation 1 for each of two arrangement examples of a transmission channel Tx and a reception channel Rx at the end of the optical connector 300.
- FIG. 7 is a schematic diagram showing an example in which the arrangement of transmission channels (Tx) is expanded in the horizontal direction with respect to FIG. 6. It is a schematic diagram which shows the example at the time of carrying out concentrated arrangement
- the transmission channel (Tx) and the reception channel (Rx) are alternately arranged in the horizontal direction, and the same channel is arranged in the upper and lower stages in the vertical direction, but the upper and lower channels are arranged differently only in the outermost arrangement
- the system according to the present embodiment includes an optical transmission / reception device 100 and an optical transmission / reception device 200.
- the optical transmission / reception device 100 includes a connector unit 102
- the optical transmission / reception device 200 includes a connector unit 202.
- the connector part 102 of the optical transceiver 100 and the connector part 202 of the optical transceiver 200 are connected by an optical cable 300.
- the optical transmission / reception apparatus 100 includes a light emitting unit 110 for optical data, a lens 120, a light emitting end 130, a light receiving end 140, a lens 150, and a light receiving unit 160 for optical data.
- the optical transceiver 200 includes a light receiving end 210, a lens 220, a light receiving unit 230, a light emitting end 240, a lens 250, and a light emitting unit 260 for optical data.
- FIG. 1 shows a configuration in which the optical transmission / reception device 100 and the optical transmission / reception device 200 include one light emitting unit, one lens, and one light emitting end corresponding to the optical cable 300 having one optical transmission line
- 300 includes a plurality of optical transmission lines (optical fibers 400)
- the light emitting units, lenses, and light emitting ends of the optical transmission / reception apparatus 100 and the optical transmission / reception apparatus 200 correspond to the number of optical transmission lines (number of channels). A plurality are provided.
- the optical transmission / reception device 100 and the optical transmission / reception device 200 include one light receiving end, one lens, and one light receiving unit corresponding to the optical cable 300 having one optical transmission line.
- the optical cable 300 includes a plurality of optical transmission paths
- a plurality of light receiving ends, lenses, and light receiving portions of the optical transmission / reception apparatus 100 and the optical transmission / reception apparatus 200 are provided corresponding to the number of optical transmission paths.
- the lens 120 may be disposed at the light emitting end 130, and the lens 250 may be disposed at the light emitting end 240.
- the light emitting end 130 and the light emitting end 240 indicate interfaces where light is emitted toward the connector portions 102 and 202.
- the lens 150 may be disposed at the position of the light receiving end 140, and the lens 220 may be disposed at the position of the light receiving end 210.
- the light receiving end 140 and the light receiving end 210 indicate interfaces that receive light incident from the connector portions 102 and 202.
- FIG. 2 shows an example of light loss on the transmission path in the optical fiber system 1000 (light emitting unit 110 ⁇ lens 120 ⁇ light emitting end 130 ⁇ optical cable 300 ⁇ light receiving end 210 ⁇ lens 220 ⁇ light receiving unit 230).
- Optical energy in the light emitting unit 110 for optical data is attenuated by the lens unit 120 and the light emitting end 130 of the optical transceiver 100. Further, the optical energy attenuates in proportion to the length of the optical cable 300 as well. Further, the light energy is attenuated also at the light receiving end 210 and the lens 220 of the optical transceiver 200, and the energy that has reached the light receiving unit 230 after being attenuated is photoelectrically converted to generate a desired data signal. The same applies to the optical loss on the transmission path from the optical transceiver 200 to the optical transceiver 100 via the optical cable 300.
- the bit error rate (BER) of video / audio data and other data transmitted in the optical cable system is desirably 10 ⁇ 10 to 10 ⁇ 12 or less.
- the light energy in the light emitting unit 110 of the optical transmission / reception device 100 must be increased. I must.
- the optical cable 300 is detached from the connector unit 102 of the optical transmission / reception device 100 or the connector unit 202 of the optical transmission / reception device 200 or the optical cable 300 itself is disconnected. If the light energy in the light emitting unit 110 is increased, in such a case, the possibility that the light energy may harm the human body, particularly the retina of the eyeball, cannot be denied.
- laser safety standards include “JIS C6802: Laser Product Safety Standards” and “JIS C6803: Laser Product Safety—Optical Fiber”. "Communication system safety” is defined. This JIS C6802 defines seven “classes” that are determined by the amount of laser exposure when a single device is used, for the purpose of expressing the risk during operation of the device equipped with a laser light source.
- the optical fiber system used for consumer use must correspond to “Class 1” (hazard level 1) or “Class 1M” (hazard level 1M) in this “class”.
- the “Class 1” risk level is such that the retina is not damaged even if the laser beam is continuously viewed for 100 seconds without blinking.
- “Class 1M” is the same as “Class 1”, but a loupe, etc. If an auxiliary optical system is used, there is a possibility of danger, so a warning display is required.
- FIG. 3 is a schematic diagram showing the relationship between the maximum cutoff time and the light energy of laser light in an automatic power attenuation function (hereinafter referred to as an APR function) that functions when a cable is disconnected or an optical connector is disconnected.
- an APR function an automatic power attenuation function
- the automatic power attenuation function is a function that attenuates the light output within the maximum cutoff time compared to the normal data transmission period when cable disconnection or optical connector disconnection occurs.
- data transmission with an optical output higher than class 1 is permitted by the standard (JIS C6803, IEC 60825).
- FIG. 3 shows case 1 of the APR function with a short maximum shutoff time and case 2 of the APR function with a maximum shutoff time longer than case 1.
- the optical output during a normal data transmission period is limited to P1 or less.
- the power of the light emitted to the outside is defined to be a certain value or less.
- the light output is reduced to P4 after the maximum cutoff time has elapsed.
- the maximum cutoff time T1 for case 1 is set shorter than the maximum cutoff time T2 for case 2.
- the light output in the normal data transmission period is larger in case 1 where the maximum cutoff time T1 is shorter than in case 2 where the maximum cutoff time T1 is long can do.
- the prescribed value of laser light output (Accessible Emission Limit, hereinafter referred to as AEL) in “Class 1” and “Class 1M” is calculated by the following formula 1 when the light wavelength is 700 nm to 1050 nm and the light source is dispersed. Is done. Equations 2 to 4 are equations for calculating C 4 , C 6 , and T 2 in Equation 1.
- Equation 1 ⁇ is the light wavelength of the light source used for transmission. Further, as shown in FIG. 4, A is a light source diameter that is a light emission end face dimension of the optical connector 300, and ⁇ is a viewing angle determined by the measurement distance D (70 mm / 100 mm / 2000 mm) and the light source diameter A.
- the light source diameter A is an average value in the vertical and horizontal directions when a plurality of light sources are dispersedly arranged.
- FIG. 5 is a schematic diagram showing the prescribed values in the “class 1” of the laser light obtained from Equation 1 for each of two arrangement examples of the transmission channel Tx and the reception channel Rx at the end of the optical connector 300.
- an optical fiber transmission line having an optical wavelength of 850 nm, an optical path diameter of 0.18 mm, a transmission channel 12ch, a reception channel 12ch, an optical path length of 100 mm, and a cutoff time of 0.01 seconds is assumed.
- the transmission channel (Tx) and the reception channel (Rx) in the unit 202 are arranged with a pitch of 0.25 mm in the horizontal direction and a pitch of 1 mm in the vertical direction.
- the case where the transmission channels (Tx) of (1) are concentrated in the center and the transmission of (2) are shown.
- the case where the channel (Tx) is dispersed in the horizontal direction is shown.
- each optical fiber 400 constituting the transmission channel (Tx) and the reception channel (Rx) is configured by coating a glass material that transmits light with a resin film.
- each optical fiber 400 has an outermost diameter of 0.25 mm and is arranged at a pitch of 0.25 mm by arranging outermost coatings in close contact with each other in the lateral direction.
- the vertical direction is 1 mm pitch, the vertical direction may also be arranged at a 0.25 mm pitch.
- the optical transmission path is not limited to the optical fiber 400, and may transmit light with another configuration.
- the light source diameter A is an average value in the vertical and horizontal directions when a plurality of light sources are distributed, the light source diameter A becomes larger when the transmission channel (Tx) is distributed, Since the viewing angle ⁇ is also increased, the light output can be increased.
- the transmission channel (Tx) shown in (2) when the transmission channel (Tx) shown in (2) is dispersed in the lateral direction, the light source diameter A becomes larger, so that the output (specified value) of the laser beam is increased. can do. As a result, the margin shown in FIG. 2 can be increased and good transmission is possible.
- the transmission channel (Tx) of (2) when the transmission channel (Tx) of (2) is dispersed in the horizontal direction, the laser light output becomes (0.6 mW) when the above-described conditions are applied to Equation 1, while (1) ) Transmission channels (Tx) are concentrated in the center, the output of the laser beam is (0.4 mW).
- the maximum output in the data transmission period when the maximum cutoff time is 0.01 [sec] is (3.7 mW) when the transmission channel (Tx) of (2) is dispersed in the horizontal direction, On the other hand, when the transmission channels (Tx) of (1) are concentrated in the center, (2.5 mW) is obtained.
- the output is increased by distributing the transmission channels (Tx) in the horizontal direction.
- Tx transmission channels
- the margin shown in FIG. 2 can be increased and good transmission is possible.
- the APR function it is possible to increase the output of the laser beam during the normal data transmission period, and it is possible to further increase the margin for satisfying the BER value.
- FIG. 6 shows an arrangement example of the optical fibers 400 of the transmission channel (Tx) and the reception channel (Rx) in the connector unit 102 and the connector unit 202 having a transmission channel 12ch, a reception channel 12ch, and a total of 24 channels.
- a connector for consumer use is required to have a small size in order to be mounted on a device such as a portable terminal.
- N is the number of terminals in the horizontal direction (number of optical fibers 400)
- M is the number of terminals in the vertical direction (number of optical fibers 400).
- the arithmetic average area of the region where the transmission channel (Tx) is arranged becomes small with respect to the connector arranged with a space between the adjacent optical fibers 400. Therefore, the laser light source The output of becomes smaller. In order to maximize the output of the laser light source in the above equation 1, it is necessary to increase the lateral arrangement length D of the transmission channel (Tx).
- FIG. 7 is a schematic diagram showing an example in which the arrangement of transmission channels (Tx) is expanded in the horizontal direction with respect to FIG.
- the arrangement length D of the transmission channel (Tx) is longer than that in FIG. 6, the output of the laser light source can be increased as compared with FIG.
- the transmission channel (Tx) and the reception channel (Rx) are distributed in the periphery in the region where the transmission channel (Tx) and the reception channel (Rx) are arranged.
- the arithmetic average area of the region where the transmission channel (Tx) is arranged can be expanded. According to the arrangement shown in FIG.
- the output level of the laser light source can be maximized.
- FIGS. 8 to 11 the same applies to FIGS. 8 to 11 below.
- the occupied area area of the region surrounded by the one-dot chain line in FIG. 6 when the optical fiber 400 of the transmission channel (Tx) is concentrated in the center of the arrangement region is larger.
- the area occupied by the optical fiber 400 of the transmission channel (Tx) distributed to the periphery is larger (the area of the region surrounded by the one-dot chain line in FIG. 7).
- the output level of the laser light source can be increased by a specified value defined by the laser safety standard, so that a margin of the bit error rate of the transmission signal can be increased and transmission quality is improved. Therefore, user convenience can be greatly improved.
- the transmission channel (Tx) and the reception channel (Rx) are arranged point-symmetrically in order to further free the vertical insertion direction.
- connection is possible even when the optical cable 300 is inserted upside down with respect to the connector sections 102 and 202 (when rotated by 180 ° and inserted).
- N 12
- N 13
- 8 to 11 are arrangements in which the transmission channel (Tx) is point-symmetric with respect to the center point C in the drawing, and the horizontal arrangement length D of the transmission channel (Tx) is maximized.
- FIG. 8 shows an example in which transmission channels (Tx) are arranged in half at the upper left and lower right.
- FIG. 9 shows an example in which an even number of transmission channels (Tx) and reception channels (Rx) are alternately arranged in the horizontal direction, and staggered arrangement is performed in the upper and lower stages. Since FIG. 8 and FIG. 9 have the same arrangement length D in the horizontal direction, an equivalent light output can be obtained.
- FIG. 10 shows an example in which the transmission channel (Tx) and the reception channel (Rx) are alternately arranged in the horizontal direction, and the same channel is arranged in the vertical direction in the vertical direction. Also in this case, it is possible to secure the maximum arrangement length D in the horizontal direction.
- the number of terminals in the horizontal direction is an odd number, and two transmission channels (Tx) are arranged more than the necessary number (12 in this case), but the arrangement length D of the transmission channels is shown in FIGS. It becomes longer than the case.
- the arrangement length D of the transmission channel (Tx) is the case of FIG. Slightly shorter.
- the arrangement examples shown in FIGS. 8 to 11 can maximize the arrangement length D of the transmission channel (Tx), but the arrangement shown in FIG. If the arrangement has an arrangement length longer than the length D, the light output can be increased more reliably than the arrangement shown in FIG. Therefore, according to the arrangements shown in FIGS. 8 to 11, the output level of the laser light source can be maximized since the occupied area of the transmission channel (Tx) is the largest among the arrangements that can be assumed.
- the user can connect to the optical transmission / reception device 100 and the optical transmission / reception device 200 without considering the vertical direction of the optical connector units 102 and 202.
- the output level of the laser light source (specified value defined by the laser safety standard) can be increased, so that a margin for the bit error rate of the transmission signal can be increased and the transmission quality is improved. Therefore, user convenience can be greatly improved.
- FIG. 12 shows a modification of the terminal arrangement of the connector portions 102 and 202 of this embodiment.
- uncompressed video / audio data is assumed as data transmitted from the optical transceiver 100 to the optical transceiver 200.
- data transmission is performed at a transmission rate on the return channel from the optical transmission / reception device 200 to the optical transmission / reception device 100 at an extremely lower transmission rate than the above-described uncompressed video / audio data.
- a terminal arrangement as shown in FIG. 12 can be realized.
- the arrangement shown on the left side of FIG. 12 is the same as that of FIG.
- the arrangement shown on the right side of FIG. 12 has transmission channels (Tx) arranged at both ends with respect to the arrangement of FIG.
- the transmission channels (Tx) of the optical transmission / reception apparatus 100 arranged at both ends of the terminal increase the output of the laser light source to secure the above-mentioned uncompressed video / audio data margin and are arranged at the center of the terminal.
- the output of the laser light source for the return channel of the optical transceiver 200 corresponding to the received reception channel (Rx) may be low.
- the output level of the laser light source (specified value defined by the laser safety standard) can be increased, a margin for the bit error rate of the transmission signal can be increased, and transmission can be performed. Since the quality is improved, the convenience for the user can be greatly improved. Further, according to the present embodiment, the user can connect to the optical transmission / reception device 100 and the optical transmission / reception device 200 without considering the vertical direction of the optical connector units 102 and 202. Further, according to the present embodiment, therefore, it is possible to connect between devices that perform optical transmission even if the orientation of the connector is changed, and the transmission quality can be improved within the safety standard regulation value required for laser light. It is possible to provide a terminal arrangement of a simple connector terminal.
- a plurality of optical transmission paths for transmitting optical signals the end faces of which are arranged in a predetermined area
- the plurality of optical transmission lines correspond to a transmission channel or a reception channel;
- An optical connector in which the optical transmission lines of the transmission channel are distributed and arranged around the predetermined area, as compared with the case where the optical transmission lines of the transmission channel are concentrated in the center of the predetermined area.
- (2) The occupying area of the optical transmission path of the transmission channel when the optical transmission path of the transmission channel is concentrated in the center of the predetermined area is distributed and arranged around the predetermined area
- the optical connector according to (1) wherein the area occupied by the optical transmission path of the transmission channel is larger.
- the optical connector according to (1) wherein the plurality of optical transmission lines are arranged in N columns and M rows in the predetermined region.
- the plurality of optical transmission lines are arranged in the predetermined area with even N columns and even M rows, and the transmission channel optical transmission lines are 0 to N / 2 columns, 0 to M / 2 rows. And (N / 2 + 1) to N columns and (M / 2 + 1) to M rows, the optical connector according to (3).
- the plurality of optical transmission lines are arranged in an even number of N columns and two rows in the predetermined area, and the optical transmission lines of the transmission channel are 0 to N / 2 columns in the first row and the second row. (N / 2 + 1) to N columns of the optical connector according to (3).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Communication System (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
2.伝送路上の光損失
3.レーザ製品に関わる安全基準
4.コネクタ部のチャネル配置
5.本実施形態の変形例
まず、図1を参照して、本開示の一実施形態に係る光ファイバシステム1000の構成について説明する。図1に示すように、本実施形態に係るシステムは、光送受信装置100及び光送受信装置200を備えている。光送受信装置100はコネクタ部102を備え、光送受信装置200はコネクタ部202を備えている。光送受信装置100のコネクタ部102と光送受信装置200のコネクタ部202とは光ケーブル300によって接続されている。
図2は、光ファイバシステム1000における伝送経路上(発光部110→レンズ120→発光端130→光ケーブル300→受光端210→レンズ220→受光部230)の光損失の一例を示す。光データの発光部110における光エネルギーは、光送受信装置100のレンズ部120および発光端130にて減衰する。さらに、光エネルギーは、光ケーブル300においても、その長さに比例して減衰する。さらに、光エネルギーは、光送受信装置200の受光端210およびレンズ220にても減衰し、受光部230に減衰して到達したエネルギーが光電気変換され、所望のデータ信号が生成される。また、光送受信装置200から光ケーブル300を介して光送受信装置100へ達する伝送経路上の光損失も同様である。
そこで、レーザ製品による使用者への障害発生を防止する目的で、レーザ安全規格として、「JIS C6802:レーザ製品の安全基準」および「JIS C6803:レーザ製品の安全―光ファイバ通信システムの安全」が定められている。このJIS C6802では、レーザ光源を搭載した機器動作時の危険度を表す目的で、機器単体使用時のレーザ被ばく量で決まる「クラス」を7つに区分して規定している。
C4 = 100.002(λ-700) ・・・(式2)
C6=α/0.0015 ・・・(式3)
T2=10×10[(α-0.0015)/98.5] ・・・(式4)
図6は、送信チャネル12ch、受信チャネル12ch、合計24chの光路を持つコネクタ部102およびコネクタ部202における、送信チャネル(Tx)と受信チャネル(Rx)の光ファイバ400の配置例を示す。民生用途のコネクタには、携帯端末等の機器に搭載するために、サイズが小さいことが求められる。配置例では、合計24chの端子配列において、横方向に12個(N=12)、縦方向に2段(M=2)の配列とすることで、縦方向の厚みを極力薄くしている。また、この配置例において、それぞれの光ファイバ400の最も外側の被覆同士を接触させることで、コネクタ部102,202の大きさを極力小さくしている。ここで、Nは横方向の端子数(光ファイバ400の数)であり、Mは縦方向の端子数(光ファイバ400の数)である。
図12は、本実施形態のコネクタ部102,202の端子配列の変形例を示す。図1の光ファイバシステム1000において、光送受信装置100から光送受信装置200へ伝送されるデータとしては、例えば非圧縮の映像音声データが想定される。この場合、光送受信装置200から光送受信装置100へのリターンチャネルでの伝送レートは上述の非圧縮の映像音声データよりも極端に低い伝送レートでデータ送信が行われることが想定される。この様な伝送方向によって非対象となる伝送レートのシステムにおいては、図12に示すような端子配列も実現可能となる。ここで、図12の左側に示す配列は図6と同様であり、図12の右側に示す配列は図6の配列に対して送信チャネル(Tx)を両端に配置している。この際、端子の両端に配置された光送受信装置100の送信チャネル(Tx)は、レーザ光源の出力を大きくして、上述の非圧縮の映像音声データのマージンを確保し、端子の中央に配置された受信チャネル(Rx)に対応する光送受信装置200のリターンチャネル用のレーザ光源の出力は低くてもよい。
(1) 端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、
前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、
前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置された、光コネクタ。
(2) 前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合の前記送信チャネルの光伝送路の占有面積よりも、前記所定領域の周辺へ分散されて配置された前記送信チャネルの光伝送路の占有面積の方が大きい、前記(1)に記載の光コネクタ。
(3) 前記複数の光伝送路は、前記所定領域内にN列、M行で配置される、前記(1)に記載の光コネクタ。
(4) 前記複数の光伝送路は前記所定領域内に偶数のN列、偶数のM行で配置され、前記送信チャネルの光伝送路は、0~N/2列、0~M/2行と、(N/2+1)~N列、(M/2+1)~M行に配置される、前記(3)に記載の光コネクタ。
(5) 前記複数の光伝送路は前記所定領域内に偶数のN列、2行で配置され、前記送信チャネルの光伝送路は、1行目の0~N/2列と、2行目の(N/2+1)~N列に配置される、前記(3)に記載の光コネクタ。
(6) 前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(3)に記載の光コネクタ。
(7) Nが偶数であり、行方向及び列方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(6)に記載の光コネクタ。
(8) Nが奇数であり、行方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置され、任意の列の列方向に配置される光伝送路は前記送信チャネル又は受信チャネルのいずれか一方である、前記(6)に記載の光コネクタ。
(9) 両端の列においては、列方向に前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(8)に記載の光コネクタ。
(10) 両端の列においては、列方向に前記送信チャネルの光伝送路が配置される、前記(8)に記載の光コネクタ。
(11) 隣接する前記光伝送路の最外被膜が密着して配置された、前記(1)~(10)のいずれかに記載の光コネクタ。
400 光ファイバ(光伝送路)
Claims (11)
- 端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、
前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、
前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置された、光コネクタ。 - 前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合の前記送信チャネルの光伝送路の占有面積よりも、前記所定領域の周辺へ分散されて配置された前記送信チャネルの光伝送路の占有面積の方が大きい、請求項1に記載の光コネクタ。
- 前記複数の光伝送路は、前記所定領域内にN列、M行で配置される、請求項1に記載の光コネクタ。
- 前記複数の光伝送路は前記所定領域内に偶数のN列、偶数のM行で配置され、前記送信チャネルの光伝送路は、0~N/2列、0~M/2行と、(N/2+1)~N列、(M/2+1)~M行に配置される、請求項3に記載の光コネクタ。
- 前記複数の光伝送路は前記所定領域内に偶数のN列、2行で配置され、前記送信チャネルの光伝送路は、1行目の0~N/2列と、2行目の(N/2+1)~N列に配置される、請求項3に記載の光コネクタ。
- 前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項3に記載の光コネクタ。
- Nが偶数であり、行方向及び列方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項6に記載の光コネクタ。
- Nが奇数であり、行方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置され、任意の列の列方向に配置される光伝送路は前記送信チャネル又は受信チャネルのいずれか一方である、請求項6に記載の光コネクタ。
- 両端の列においては、列方向に前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項8に記載の光コネクタ。
- 両端の列においては、列方向に前記送信チャネルの光伝送路が配置される、請求項8に記載の光コネクタ。
- 隣接する前記光伝送路の最外被膜が密着して配置された、請求項1に記載の光コネクタ。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2971997A CA2971997A1 (en) | 2015-01-07 | 2015-12-11 | Optical connector |
RU2017122840A RU2017122840A (ru) | 2015-01-07 | 2015-12-11 | Оптический разъем |
CN201580071874.9A CN107111088B (zh) | 2015-01-07 | 2015-12-11 | 光连接器 |
US15/539,250 US10324265B2 (en) | 2015-01-07 | 2015-12-11 | Optical connector |
KR1020177016920A KR20170095883A (ko) | 2015-01-07 | 2015-12-11 | 광커넥터 |
EP15876988.5A EP3244243A4 (en) | 2015-01-07 | 2015-12-11 | Optical connector |
US16/406,393 US10451827B2 (en) | 2015-01-07 | 2019-05-08 | Optical connector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-001578 | 2015-01-07 | ||
JP2015001578A JP2016126236A (ja) | 2015-01-07 | 2015-01-07 | 光コネクタ |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/539,250 A-371-Of-International US10324265B2 (en) | 2015-01-07 | 2015-12-11 | Optical connector |
US16/406,393 Continuation US10451827B2 (en) | 2015-01-07 | 2019-05-08 | Optical connector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016111115A1 true WO2016111115A1 (ja) | 2016-07-14 |
Family
ID=56355817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/084778 WO2016111115A1 (ja) | 2015-01-07 | 2015-12-11 | 光コネクタ |
Country Status (9)
Country | Link |
---|---|
US (2) | US10324265B2 (ja) |
EP (1) | EP3244243A4 (ja) |
JP (1) | JP2016126236A (ja) |
KR (1) | KR20170095883A (ja) |
CN (1) | CN107111088B (ja) |
CA (1) | CA2971997A1 (ja) |
RU (1) | RU2017122840A (ja) |
TW (1) | TWI672011B (ja) |
WO (1) | WO2016111115A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11934911B2 (en) * | 2021-10-12 | 2024-03-19 | Zebra Technologies Corporation | Laser driving mode for aiming system of barcode imager |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6015610A (ja) * | 1983-07-07 | 1985-01-26 | Sumitomo Electric Ind Ltd | 多芯光ケ−ブルカプラ |
JP2012504312A (ja) * | 2008-09-30 | 2012-02-16 | アップル インコーポレイテッド | 光信号経路を有する磁気コネクタ |
JP2012120095A (ja) * | 2010-12-03 | 2012-06-21 | Sumitomo Electric Ind Ltd | 光モジュール及び光システム |
JP2012516470A (ja) * | 2009-01-30 | 2012-07-19 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | 光ファイバ相互接続装置及びこの装置を用いたシステム |
US20120183302A1 (en) * | 2011-01-14 | 2012-07-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Optical transceiver module having an electromagnetic interference (emi) cancellation device disposed therein, and an emi cancelation method for use in an optical transceiver module |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7400790B2 (en) * | 2004-11-03 | 2008-07-15 | Hewlett-Packard Development Company, L.P. | Optical connections and methods of forming optical connections |
US8485737B2 (en) * | 2009-10-29 | 2013-07-16 | Commscope, Inc. Of North Carolina | Optical fiber array connectivity system for multiple transceivers and/or multiple trunk cables |
JP2011192851A (ja) * | 2010-03-15 | 2011-09-29 | Omron Corp | 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法 |
US20120189259A1 (en) * | 2010-12-15 | 2012-07-26 | Leviton Manufacturing Co., Inc. | Pre-terminated fiber devices, systems, and methods |
TW201430415A (zh) | 2013-01-22 | 2014-08-01 | Hon Hai Prec Ind Co Ltd | 光纖耦合連接器 |
-
2015
- 2015-01-07 JP JP2015001578A patent/JP2016126236A/ja active Pending
- 2015-12-11 US US15/539,250 patent/US10324265B2/en active Active
- 2015-12-11 EP EP15876988.5A patent/EP3244243A4/en active Pending
- 2015-12-11 WO PCT/JP2015/084778 patent/WO2016111115A1/ja active Application Filing
- 2015-12-11 RU RU2017122840A patent/RU2017122840A/ru not_active Application Discontinuation
- 2015-12-11 KR KR1020177016920A patent/KR20170095883A/ko active Search and Examination
- 2015-12-11 CN CN201580071874.9A patent/CN107111088B/zh active Active
- 2015-12-11 CA CA2971997A patent/CA2971997A1/en not_active Abandoned
- 2015-12-28 TW TW104144087A patent/TWI672011B/zh active
-
2019
- 2019-05-08 US US16/406,393 patent/US10451827B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6015610A (ja) * | 1983-07-07 | 1985-01-26 | Sumitomo Electric Ind Ltd | 多芯光ケ−ブルカプラ |
JP2012504312A (ja) * | 2008-09-30 | 2012-02-16 | アップル インコーポレイテッド | 光信号経路を有する磁気コネクタ |
JP2012516470A (ja) * | 2009-01-30 | 2012-07-19 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | 光ファイバ相互接続装置及びこの装置を用いたシステム |
JP2012120095A (ja) * | 2010-12-03 | 2012-06-21 | Sumitomo Electric Ind Ltd | 光モジュール及び光システム |
US20120183302A1 (en) * | 2011-01-14 | 2012-07-19 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Optical transceiver module having an electromagnetic interference (emi) cancellation device disposed therein, and an emi cancelation method for use in an optical transceiver module |
Non-Patent Citations (1)
Title |
---|
See also references of EP3244243A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN107111088A (zh) | 2017-08-29 |
KR20170095883A (ko) | 2017-08-23 |
CN107111088B (zh) | 2020-01-21 |
US10324265B2 (en) | 2019-06-18 |
US20190265424A1 (en) | 2019-08-29 |
US10451827B2 (en) | 2019-10-22 |
EP3244243A4 (en) | 2018-08-22 |
RU2017122840A (ru) | 2018-12-29 |
TWI672011B (zh) | 2019-09-11 |
TW201644214A (zh) | 2016-12-16 |
RU2017122840A3 (ja) | 2019-04-30 |
EP3244243A1 (en) | 2017-11-15 |
JP2016126236A (ja) | 2016-07-11 |
CA2971997A1 (en) | 2016-07-14 |
US20170373756A1 (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070003288A1 (en) | Bidirectional HDCP transmission module using single optical fiber | |
US20150078744A1 (en) | Multiplexed optical transmission line, optical transmission system, and optical transmission method | |
US8526810B2 (en) | Eye safety and interoperability of active cable devices | |
US20040120717A1 (en) | Extended source free-space optical communication system | |
KR20170137194A (ko) | 광학 로터리 전기 연결부 | |
WO2015133164A1 (ja) | 光コネクタとケーブルおよび光通信装置 | |
WO2016111115A1 (ja) | 光コネクタ | |
WO2016111123A1 (ja) | 光コネクタ | |
WO2004075422A2 (en) | Module having two bi-directional optical transceivers | |
US8457465B1 (en) | Optical attenuation system | |
Tottori et al. | Multi functionality demonstration for multi core fiber fan-in/fan-out devices using free space optics | |
Shibahara et al. | Advanced MIMO signal processing for dense SDM transmission using multi-core few-mode fibers | |
US10707956B1 (en) | Active fiber tap | |
JP5315500B2 (ja) | 偏光レベル差調整装置 | |
JPH09261174A (ja) | 光並列伝送方式 | |
KR101014411B1 (ko) | 송수신 장치 및 이를 갖는 광통신 시스템 | |
JP2010165860A (ja) | 光インタフェース装置 | |
CN116095541A (zh) | Bosa模块、交换机及测试装置 | |
Sakai et al. | A micro optical wireless module for high-definition images and broadband wireless access | |
US20160033726A1 (en) | Low loss fiber optic harness | |
JP2005345270A (ja) | 光線路試験システム、減衰ファイバ及び減衰素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876988 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015876988 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177016920 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2971997 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15539250 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017122840 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |