WO2016111115A1 - 光コネクタ - Google Patents

光コネクタ Download PDF

Info

Publication number
WO2016111115A1
WO2016111115A1 PCT/JP2015/084778 JP2015084778W WO2016111115A1 WO 2016111115 A1 WO2016111115 A1 WO 2016111115A1 JP 2015084778 W JP2015084778 W JP 2015084778W WO 2016111115 A1 WO2016111115 A1 WO 2016111115A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission
channel
optical transmission
transmission channel
Prior art date
Application number
PCT/JP2015/084778
Other languages
English (en)
French (fr)
Inventor
中嶋 康久
山本 真也
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CA2971997A priority Critical patent/CA2971997A1/en
Priority to RU2017122840A priority patent/RU2017122840A/ru
Priority to CN201580071874.9A priority patent/CN107111088B/zh
Priority to US15/539,250 priority patent/US10324265B2/en
Priority to KR1020177016920A priority patent/KR20170095883A/ko
Priority to EP15876988.5A priority patent/EP3244243A4/en
Publication of WO2016111115A1 publication Critical patent/WO2016111115A1/ja
Priority to US16/406,393 priority patent/US10451827B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • This disclosure relates to an optical connector.
  • optical data transmission is mainly used for data transmission in infrastructure systems with a large amount of data transmission and data transmission between data servers, and has not yet been widely used for consumer use.
  • the safety standard JIS C6802
  • the connection between the device and the optical cable has a structure in which only the reliability of the connection is prioritized, and the actual situation is that the structure is not easily usable by general users.
  • Patent Document 1 proposes a laser beam blocking method for reducing the danger to the human body when the optical fiber is disconnected from the optical connector terminal.
  • Patent Document 1 describes a laser light blocking method for minimizing the influence on the human body.
  • the proposal is not a proposal for improving transmission quality, but any improvement in transmission quality. It was not considered.
  • a plurality of optical transmission paths for transmitting optical signals the end faces of which are arranged in a predetermined area, correspond to a transmission channel or a reception channel, and the light of the transmission channel is provided.
  • An optical connector is provided in which the optical transmission lines of the transmission channel are distributed and arranged around the predetermined area as compared with the case where the transmission lines are concentrated in the center of the predetermined area.
  • FIG. 6 is a schematic diagram showing the prescribed values in “class 1” of laser light obtained from Equation 1 for each of two arrangement examples of a transmission channel Tx and a reception channel Rx at the end of the optical connector 300.
  • FIG. 7 is a schematic diagram showing an example in which the arrangement of transmission channels (Tx) is expanded in the horizontal direction with respect to FIG. 6. It is a schematic diagram which shows the example at the time of carrying out concentrated arrangement
  • the transmission channel (Tx) and the reception channel (Rx) are alternately arranged in the horizontal direction, and the same channel is arranged in the upper and lower stages in the vertical direction, but the upper and lower channels are arranged differently only in the outermost arrangement
  • the system according to the present embodiment includes an optical transmission / reception device 100 and an optical transmission / reception device 200.
  • the optical transmission / reception device 100 includes a connector unit 102
  • the optical transmission / reception device 200 includes a connector unit 202.
  • the connector part 102 of the optical transceiver 100 and the connector part 202 of the optical transceiver 200 are connected by an optical cable 300.
  • the optical transmission / reception apparatus 100 includes a light emitting unit 110 for optical data, a lens 120, a light emitting end 130, a light receiving end 140, a lens 150, and a light receiving unit 160 for optical data.
  • the optical transceiver 200 includes a light receiving end 210, a lens 220, a light receiving unit 230, a light emitting end 240, a lens 250, and a light emitting unit 260 for optical data.
  • FIG. 1 shows a configuration in which the optical transmission / reception device 100 and the optical transmission / reception device 200 include one light emitting unit, one lens, and one light emitting end corresponding to the optical cable 300 having one optical transmission line
  • 300 includes a plurality of optical transmission lines (optical fibers 400)
  • the light emitting units, lenses, and light emitting ends of the optical transmission / reception apparatus 100 and the optical transmission / reception apparatus 200 correspond to the number of optical transmission lines (number of channels). A plurality are provided.
  • the optical transmission / reception device 100 and the optical transmission / reception device 200 include one light receiving end, one lens, and one light receiving unit corresponding to the optical cable 300 having one optical transmission line.
  • the optical cable 300 includes a plurality of optical transmission paths
  • a plurality of light receiving ends, lenses, and light receiving portions of the optical transmission / reception apparatus 100 and the optical transmission / reception apparatus 200 are provided corresponding to the number of optical transmission paths.
  • the lens 120 may be disposed at the light emitting end 130, and the lens 250 may be disposed at the light emitting end 240.
  • the light emitting end 130 and the light emitting end 240 indicate interfaces where light is emitted toward the connector portions 102 and 202.
  • the lens 150 may be disposed at the position of the light receiving end 140, and the lens 220 may be disposed at the position of the light receiving end 210.
  • the light receiving end 140 and the light receiving end 210 indicate interfaces that receive light incident from the connector portions 102 and 202.
  • FIG. 2 shows an example of light loss on the transmission path in the optical fiber system 1000 (light emitting unit 110 ⁇ lens 120 ⁇ light emitting end 130 ⁇ optical cable 300 ⁇ light receiving end 210 ⁇ lens 220 ⁇ light receiving unit 230).
  • Optical energy in the light emitting unit 110 for optical data is attenuated by the lens unit 120 and the light emitting end 130 of the optical transceiver 100. Further, the optical energy attenuates in proportion to the length of the optical cable 300 as well. Further, the light energy is attenuated also at the light receiving end 210 and the lens 220 of the optical transceiver 200, and the energy that has reached the light receiving unit 230 after being attenuated is photoelectrically converted to generate a desired data signal. The same applies to the optical loss on the transmission path from the optical transceiver 200 to the optical transceiver 100 via the optical cable 300.
  • the bit error rate (BER) of video / audio data and other data transmitted in the optical cable system is desirably 10 ⁇ 10 to 10 ⁇ 12 or less.
  • the light energy in the light emitting unit 110 of the optical transmission / reception device 100 must be increased. I must.
  • the optical cable 300 is detached from the connector unit 102 of the optical transmission / reception device 100 or the connector unit 202 of the optical transmission / reception device 200 or the optical cable 300 itself is disconnected. If the light energy in the light emitting unit 110 is increased, in such a case, the possibility that the light energy may harm the human body, particularly the retina of the eyeball, cannot be denied.
  • laser safety standards include “JIS C6802: Laser Product Safety Standards” and “JIS C6803: Laser Product Safety—Optical Fiber”. "Communication system safety” is defined. This JIS C6802 defines seven “classes” that are determined by the amount of laser exposure when a single device is used, for the purpose of expressing the risk during operation of the device equipped with a laser light source.
  • the optical fiber system used for consumer use must correspond to “Class 1” (hazard level 1) or “Class 1M” (hazard level 1M) in this “class”.
  • the “Class 1” risk level is such that the retina is not damaged even if the laser beam is continuously viewed for 100 seconds without blinking.
  • “Class 1M” is the same as “Class 1”, but a loupe, etc. If an auxiliary optical system is used, there is a possibility of danger, so a warning display is required.
  • FIG. 3 is a schematic diagram showing the relationship between the maximum cutoff time and the light energy of laser light in an automatic power attenuation function (hereinafter referred to as an APR function) that functions when a cable is disconnected or an optical connector is disconnected.
  • an APR function an automatic power attenuation function
  • the automatic power attenuation function is a function that attenuates the light output within the maximum cutoff time compared to the normal data transmission period when cable disconnection or optical connector disconnection occurs.
  • data transmission with an optical output higher than class 1 is permitted by the standard (JIS C6803, IEC 60825).
  • FIG. 3 shows case 1 of the APR function with a short maximum shutoff time and case 2 of the APR function with a maximum shutoff time longer than case 1.
  • the optical output during a normal data transmission period is limited to P1 or less.
  • the power of the light emitted to the outside is defined to be a certain value or less.
  • the light output is reduced to P4 after the maximum cutoff time has elapsed.
  • the maximum cutoff time T1 for case 1 is set shorter than the maximum cutoff time T2 for case 2.
  • the light output in the normal data transmission period is larger in case 1 where the maximum cutoff time T1 is shorter than in case 2 where the maximum cutoff time T1 is long can do.
  • the prescribed value of laser light output (Accessible Emission Limit, hereinafter referred to as AEL) in “Class 1” and “Class 1M” is calculated by the following formula 1 when the light wavelength is 700 nm to 1050 nm and the light source is dispersed. Is done. Equations 2 to 4 are equations for calculating C 4 , C 6 , and T 2 in Equation 1.
  • Equation 1 ⁇ is the light wavelength of the light source used for transmission. Further, as shown in FIG. 4, A is a light source diameter that is a light emission end face dimension of the optical connector 300, and ⁇ is a viewing angle determined by the measurement distance D (70 mm / 100 mm / 2000 mm) and the light source diameter A.
  • the light source diameter A is an average value in the vertical and horizontal directions when a plurality of light sources are dispersedly arranged.
  • FIG. 5 is a schematic diagram showing the prescribed values in the “class 1” of the laser light obtained from Equation 1 for each of two arrangement examples of the transmission channel Tx and the reception channel Rx at the end of the optical connector 300.
  • an optical fiber transmission line having an optical wavelength of 850 nm, an optical path diameter of 0.18 mm, a transmission channel 12ch, a reception channel 12ch, an optical path length of 100 mm, and a cutoff time of 0.01 seconds is assumed.
  • the transmission channel (Tx) and the reception channel (Rx) in the unit 202 are arranged with a pitch of 0.25 mm in the horizontal direction and a pitch of 1 mm in the vertical direction.
  • the case where the transmission channels (Tx) of (1) are concentrated in the center and the transmission of (2) are shown.
  • the case where the channel (Tx) is dispersed in the horizontal direction is shown.
  • each optical fiber 400 constituting the transmission channel (Tx) and the reception channel (Rx) is configured by coating a glass material that transmits light with a resin film.
  • each optical fiber 400 has an outermost diameter of 0.25 mm and is arranged at a pitch of 0.25 mm by arranging outermost coatings in close contact with each other in the lateral direction.
  • the vertical direction is 1 mm pitch, the vertical direction may also be arranged at a 0.25 mm pitch.
  • the optical transmission path is not limited to the optical fiber 400, and may transmit light with another configuration.
  • the light source diameter A is an average value in the vertical and horizontal directions when a plurality of light sources are distributed, the light source diameter A becomes larger when the transmission channel (Tx) is distributed, Since the viewing angle ⁇ is also increased, the light output can be increased.
  • the transmission channel (Tx) shown in (2) when the transmission channel (Tx) shown in (2) is dispersed in the lateral direction, the light source diameter A becomes larger, so that the output (specified value) of the laser beam is increased. can do. As a result, the margin shown in FIG. 2 can be increased and good transmission is possible.
  • the transmission channel (Tx) of (2) when the transmission channel (Tx) of (2) is dispersed in the horizontal direction, the laser light output becomes (0.6 mW) when the above-described conditions are applied to Equation 1, while (1) ) Transmission channels (Tx) are concentrated in the center, the output of the laser beam is (0.4 mW).
  • the maximum output in the data transmission period when the maximum cutoff time is 0.01 [sec] is (3.7 mW) when the transmission channel (Tx) of (2) is dispersed in the horizontal direction, On the other hand, when the transmission channels (Tx) of (1) are concentrated in the center, (2.5 mW) is obtained.
  • the output is increased by distributing the transmission channels (Tx) in the horizontal direction.
  • Tx transmission channels
  • the margin shown in FIG. 2 can be increased and good transmission is possible.
  • the APR function it is possible to increase the output of the laser beam during the normal data transmission period, and it is possible to further increase the margin for satisfying the BER value.
  • FIG. 6 shows an arrangement example of the optical fibers 400 of the transmission channel (Tx) and the reception channel (Rx) in the connector unit 102 and the connector unit 202 having a transmission channel 12ch, a reception channel 12ch, and a total of 24 channels.
  • a connector for consumer use is required to have a small size in order to be mounted on a device such as a portable terminal.
  • N is the number of terminals in the horizontal direction (number of optical fibers 400)
  • M is the number of terminals in the vertical direction (number of optical fibers 400).
  • the arithmetic average area of the region where the transmission channel (Tx) is arranged becomes small with respect to the connector arranged with a space between the adjacent optical fibers 400. Therefore, the laser light source The output of becomes smaller. In order to maximize the output of the laser light source in the above equation 1, it is necessary to increase the lateral arrangement length D of the transmission channel (Tx).
  • FIG. 7 is a schematic diagram showing an example in which the arrangement of transmission channels (Tx) is expanded in the horizontal direction with respect to FIG.
  • the arrangement length D of the transmission channel (Tx) is longer than that in FIG. 6, the output of the laser light source can be increased as compared with FIG.
  • the transmission channel (Tx) and the reception channel (Rx) are distributed in the periphery in the region where the transmission channel (Tx) and the reception channel (Rx) are arranged.
  • the arithmetic average area of the region where the transmission channel (Tx) is arranged can be expanded. According to the arrangement shown in FIG.
  • the output level of the laser light source can be maximized.
  • FIGS. 8 to 11 the same applies to FIGS. 8 to 11 below.
  • the occupied area area of the region surrounded by the one-dot chain line in FIG. 6 when the optical fiber 400 of the transmission channel (Tx) is concentrated in the center of the arrangement region is larger.
  • the area occupied by the optical fiber 400 of the transmission channel (Tx) distributed to the periphery is larger (the area of the region surrounded by the one-dot chain line in FIG. 7).
  • the output level of the laser light source can be increased by a specified value defined by the laser safety standard, so that a margin of the bit error rate of the transmission signal can be increased and transmission quality is improved. Therefore, user convenience can be greatly improved.
  • the transmission channel (Tx) and the reception channel (Rx) are arranged point-symmetrically in order to further free the vertical insertion direction.
  • connection is possible even when the optical cable 300 is inserted upside down with respect to the connector sections 102 and 202 (when rotated by 180 ° and inserted).
  • N 12
  • N 13
  • 8 to 11 are arrangements in which the transmission channel (Tx) is point-symmetric with respect to the center point C in the drawing, and the horizontal arrangement length D of the transmission channel (Tx) is maximized.
  • FIG. 8 shows an example in which transmission channels (Tx) are arranged in half at the upper left and lower right.
  • FIG. 9 shows an example in which an even number of transmission channels (Tx) and reception channels (Rx) are alternately arranged in the horizontal direction, and staggered arrangement is performed in the upper and lower stages. Since FIG. 8 and FIG. 9 have the same arrangement length D in the horizontal direction, an equivalent light output can be obtained.
  • FIG. 10 shows an example in which the transmission channel (Tx) and the reception channel (Rx) are alternately arranged in the horizontal direction, and the same channel is arranged in the vertical direction in the vertical direction. Also in this case, it is possible to secure the maximum arrangement length D in the horizontal direction.
  • the number of terminals in the horizontal direction is an odd number, and two transmission channels (Tx) are arranged more than the necessary number (12 in this case), but the arrangement length D of the transmission channels is shown in FIGS. It becomes longer than the case.
  • the arrangement length D of the transmission channel (Tx) is the case of FIG. Slightly shorter.
  • the arrangement examples shown in FIGS. 8 to 11 can maximize the arrangement length D of the transmission channel (Tx), but the arrangement shown in FIG. If the arrangement has an arrangement length longer than the length D, the light output can be increased more reliably than the arrangement shown in FIG. Therefore, according to the arrangements shown in FIGS. 8 to 11, the output level of the laser light source can be maximized since the occupied area of the transmission channel (Tx) is the largest among the arrangements that can be assumed.
  • the user can connect to the optical transmission / reception device 100 and the optical transmission / reception device 200 without considering the vertical direction of the optical connector units 102 and 202.
  • the output level of the laser light source (specified value defined by the laser safety standard) can be increased, so that a margin for the bit error rate of the transmission signal can be increased and the transmission quality is improved. Therefore, user convenience can be greatly improved.
  • FIG. 12 shows a modification of the terminal arrangement of the connector portions 102 and 202 of this embodiment.
  • uncompressed video / audio data is assumed as data transmitted from the optical transceiver 100 to the optical transceiver 200.
  • data transmission is performed at a transmission rate on the return channel from the optical transmission / reception device 200 to the optical transmission / reception device 100 at an extremely lower transmission rate than the above-described uncompressed video / audio data.
  • a terminal arrangement as shown in FIG. 12 can be realized.
  • the arrangement shown on the left side of FIG. 12 is the same as that of FIG.
  • the arrangement shown on the right side of FIG. 12 has transmission channels (Tx) arranged at both ends with respect to the arrangement of FIG.
  • the transmission channels (Tx) of the optical transmission / reception apparatus 100 arranged at both ends of the terminal increase the output of the laser light source to secure the above-mentioned uncompressed video / audio data margin and are arranged at the center of the terminal.
  • the output of the laser light source for the return channel of the optical transceiver 200 corresponding to the received reception channel (Rx) may be low.
  • the output level of the laser light source (specified value defined by the laser safety standard) can be increased, a margin for the bit error rate of the transmission signal can be increased, and transmission can be performed. Since the quality is improved, the convenience for the user can be greatly improved. Further, according to the present embodiment, the user can connect to the optical transmission / reception device 100 and the optical transmission / reception device 200 without considering the vertical direction of the optical connector units 102 and 202. Further, according to the present embodiment, therefore, it is possible to connect between devices that perform optical transmission even if the orientation of the connector is changed, and the transmission quality can be improved within the safety standard regulation value required for laser light. It is possible to provide a terminal arrangement of a simple connector terminal.
  • a plurality of optical transmission paths for transmitting optical signals the end faces of which are arranged in a predetermined area
  • the plurality of optical transmission lines correspond to a transmission channel or a reception channel;
  • An optical connector in which the optical transmission lines of the transmission channel are distributed and arranged around the predetermined area, as compared with the case where the optical transmission lines of the transmission channel are concentrated in the center of the predetermined area.
  • (2) The occupying area of the optical transmission path of the transmission channel when the optical transmission path of the transmission channel is concentrated in the center of the predetermined area is distributed and arranged around the predetermined area
  • the optical connector according to (1) wherein the area occupied by the optical transmission path of the transmission channel is larger.
  • the optical connector according to (1) wherein the plurality of optical transmission lines are arranged in N columns and M rows in the predetermined region.
  • the plurality of optical transmission lines are arranged in the predetermined area with even N columns and even M rows, and the transmission channel optical transmission lines are 0 to N / 2 columns, 0 to M / 2 rows. And (N / 2 + 1) to N columns and (M / 2 + 1) to M rows, the optical connector according to (3).
  • the plurality of optical transmission lines are arranged in an even number of N columns and two rows in the predetermined area, and the optical transmission lines of the transmission channel are 0 to N / 2 columns in the first row and the second row. (N / 2 + 1) to N columns of the optical connector according to (3).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 本開示に係る光コネクタは、端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置される。この構成により、光信号の出力を高めることができ、安全規格を満足しつつ、安価で伝送品位を向上することが可能となる。

Description

光コネクタ
 本開示は、光コネクタに関する。
 近時における通信容量の急激な増大に伴い、光によるデータ伝送が用いられつつある。しかしながら、光によるデータ伝送は、主としてデータ伝送量が多いインフラの基幹系におけるデータ伝送や、データサーバー間のデータ伝送に使用され、民生用としてはまだ広く普及していない。このため、レーザ管理者の管理下のもと、レーザ光に対する安全規格(JIS C6802)も高出力のクラス2もしくはクラス3が適用される。そして、機器と光ケーブルとの接続は、接続の確実性のみが優先された構造となっており、一般のユーザが気軽に使えるような構造にはなっていないのが実情である。
 特許文献1には、光ファイバが光コネクタ端子から外れた時の人体に対する危険度を低減するためのレーザ光遮断方法について提案されている。
特許第3938691号公報
 民生用として用いるために装着が容易なコネクタ構造にして、コネクタ端子から光ケーブルが外れた際に遵守しなければならないレーザ光の安全規格(JIS C6802)のクラス1又はクラス1Mを満足しなければならない。しかしながら、この安全企画を満足するレーザ光出力レベルに設定すると、光ケーブル長やコネクタ端子部での損失により光出力が低下し、十分な伝送品位を確保出来ない可能性がある。
 上記特許文献1に記載された提案は、人体に対する影響を最小限にするためのレーザ光遮断方法について述べられているが、伝送品位を向上させるための提案ではなく、伝送品位の向上については何ら考慮されていなかった。
 そこで、安全規格を満足しつつ、光出力を確保して伝送品位を向上することが望まれていた。
 本開示によれば、端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置された、光コネクタが提供される。
 以上説明したように本開示によれば、安全規格を満足しつつ、光出力を確保して伝送品位を向上することが可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る光ファイバシステム1000の構成を示す模式図である。 光ファイバシステムにおける伝送経路上の光損失の一例を示す模式図である。 ケーブル切断時や光コネクタ抜け時に機能する自動パワー減衰機能における最大遮断時間とレーザ光の光エネルギーの関係を表した概念図である。 光源径A、視角α、及び測定距離Dの関係を示す模式図である。 式1から求められるレーザ光の「クラス1」における規定値を、光コネクタ300の端部での送信チャネルTxと受信チャネルRxの2つの配置例のそれぞれについて示す模式図である。 送信チャネル12ch、受信チャネル12ch、合計24chの光路を持つコネクタ部における、送信チャネル(Tx)と受信チャネル(Rx)の光ファイバの配置例を示す模式図である。 図6に対して送信チャネル(Tx)の配置を横方向に拡げて配置した例を示す模式図である。 送信チャネル(Tx)を半分ずつ左上段と右下段に集中配置を行った場合の例を示す模式図である。 送信チャネル(Tx)と受信チャネル(Rx)を横方向に偶数個交互に配置し、上段と下段で千鳥配置を行った場合の例を示す模式図である。 送信チャネル(Tx)と受信チャネル(Rx)を横方向に交互に配置し、縦方向は上下段同じチャネルの配置を行った場合の例を示す模式図である。 送信チャネル(Tx)と受信チャネル(Rx)を横方向に交互に配置し、縦方向は上下段同じチャネルの配置を行った場合に、最も外側の配置のみ上下段異なるチャネルの配置を行った場合の例を示す模式図である。 本実施形態のコネクタ部102,202の端子配列の変形例を示す模式図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
1.光ファイバシステムの構成
2.伝送路上の光損失
3.レーザ製品に関わる安全基準
4.コネクタ部のチャネル配置
5.本実施形態の変形例
1.光ファイバシステムの構成
 まず、図1を参照して、本開示の一実施形態に係る光ファイバシステム1000の構成について説明する。図1に示すように、本実施形態に係るシステムは、光送受信装置100及び光送受信装置200を備えている。光送受信装置100はコネクタ部102を備え、光送受信装置200はコネクタ部202を備えている。光送受信装置100のコネクタ部102と光送受信装置200のコネクタ部202とは光ケーブル300によって接続されている。
また、光送受信装置100は、光データの発光部110、レンズ120、発光端130、受光端140、レンズ150および光データの受光部160を有している。同様に、光送受信装置200は、受光端210、レンズ220、受光部230、発光端240、レンズ250および光データの発光部260を有している。
 図1では、1つの光伝送路を有する光ケーブル300に対応して、光送受信装置100および光送受信装置200が1つの発光部、1つのレンズ、1つの発光端を備える構成を示したが、光ケーブル300は複数の光伝送路(光ファイバ400)を備えているため、光送受信装置100および光送受信装置200の発光部、レンズ及び発光端は、光伝送路の数(チャネル数)に対応して複数設けられる。同様に、図1においては、1つの光伝送路を有する光ケーブル300に対応して、光送受信装置100および光送受信装置200が、1つの受光端、1つのレンズ、1つの受光部を備える構成を示したが、光ケーブル300が複数の光伝送路を備えているため、光送受信装置100および光送受信装置200の受光端、レンズ及び受光部は、光伝送路の数に対応して複数設けられる。
 また、図1では、レンズ120は発光端130の位置に、レンズ250は発光端240の位置に配置されていても良い。発光端130、発光端240は、光がコネクタ部102,202に向けて発光する界面を示している。また、レンズ150は受光端140の位置に、レンズ220は受光端210の位置に配置されていても良い。受光端140、受光端210は、コネクタ部102,202から入射する光を受光する界面を示している。
2.伝送路上の光損失
 図2は、光ファイバシステム1000における伝送経路上(発光部110→レンズ120→発光端130→光ケーブル300→受光端210→レンズ220→受光部230)の光損失の一例を示す。光データの発光部110における光エネルギーは、光送受信装置100のレンズ部120および発光端130にて減衰する。さらに、光エネルギーは、光ケーブル300においても、その長さに比例して減衰する。さらに、光エネルギーは、光送受信装置200の受光端210およびレンズ220にても減衰し、受光部230に減衰して到達したエネルギーが光電気変換され、所望のデータ信号が生成される。また、光送受信装置200から光ケーブル300を介して光送受信装置100へ達する伝送経路上の光損失も同様である。
 光ケーブルシステムにおいて伝送する映像音声データ及びその他のデータのビットエラーレート(BER)は、10-10~10-12以下となる事が望ましい。光送受信装置200の受光部230において、このBER値を満足する光エネルギーの最小値を超えるマージンを持った光エネルギーとするためには、光送受信装置100の発光部110における光エネルギーを大きくしなければならない。
 しかしながら、光送受信装置100のコネクタ部102や光送受信装置200のコネクタ部202から光ケーブル300が離脱したり、光ケーブル300そのものが切断する場合が想定される。発光部110における光エネルギーを大きくすると、このような場合に、光エネルギーが人体、特に眼球の網膜に危害を及ぼす可能性を否定できない。
3.レーザ製品に関わる安全基準
 そこで、レーザ製品による使用者への障害発生を防止する目的で、レーザ安全規格として、「JIS C6802:レーザ製品の安全基準」および「JIS C6803:レーザ製品の安全―光ファイバ通信システムの安全」が定められている。このJIS C6802では、レーザ光源を搭載した機器動作時の危険度を表す目的で、機器単体使用時のレーザ被ばく量で決まる「クラス」を7つに区分して規定している。
 民生用で用いる光ファイバシステムは、この「クラス」の中で、「クラス1」(ハザードレベル1)もしくは「クラス1M」(ハザードレベル1M)に該当しなければならない。「クラス1」の危険度は、100秒間レーザ光を瞬きなしに見続けても、網膜に損傷がないレベルであり、「クラス1M」は、「クラス1」と同じであるが、ルーペ等の補助光学系を用いた場合、危険となる可能性があるので、注意喚起の表示が必要となる。
 各クラスにおける、光エネルギーの出力規制値は、レーザ光の波長とレーザ光の最大遮断時間により細分化されている。図3は、ケーブル切断時や光コネクタ抜け時に機能する自動パワー減衰機能(Automatic Power Reduction、以降APR機能と称する)における最大遮断時間とレーザ光の光エネルギーの関係を表した模式図である。
 ここで、自動パワー減衰機能とは、ケーブル切断や光コネクタの抜けが発生した場合に、最大遮断時間内に通常のデータ伝送期間よりも光の出力を減衰させる機能であり、この機能が付いていればクラス1よりも高い光出力でのデータ伝送が規格(JIS C6803,IEC60825)により認められている。
 図3では、最大遮断時間が短いAPR機能のケース1と、最大遮断時間がケース1より長いAPR機能のケース2を示す。クラス1では、通常のデータ伝送期間における光出力がP1以下に制限される。このケース1、ケース2では、時刻t0でケーブル切断、又は光コネクタの抜けが発生した場合に、外界に放出される光のパワーが一定値以下となるように規定されている。ケース1、ケース2は、いずれも最大遮断時間の経過後に光出力がP4まで低下される。ケース1の最大遮断時間T1はケース2の最大遮断時間T2よりも短く設定されている。時刻t0以降に外界に放出される光のパワーを一定値以下とすると、通常データ伝送期間における光出力は、最大遮断時間T1が短いケース1の方が最大遮断時間T1が長いケース2よりも大きくすることができる。
 ケース1では、最大遮断時間T1が短いため、通常データ伝送期間のレーザ光の出力P3を大きくすることが可能となり、前述のBER値を満足するためのマージンを大きく取ることができる。一方、短い最大遮断時間T1を実現し、その時間内でレーザ光の出力を十分減衰させるための回路等の構築には多大なコストが必要となる。
 また、ケース2では、最大遮断時間T2が長いため、通常データ伝送期間のレーザ光の出力P2を小さくしなければならず、前述のBER値を満足するためのマージンも小さくなる。一方、最大遮断時間T2内でのレーザ光出力の減衰を実現するための回路等のコストは低くなる。
 また、「クラス1」および「クラス1M」におけるレーザ光の出力の規定値(Accessible Emission Limit、以降AELと称する)は、光波長が700nm~1050nmかつ分散光源の場合、以下の式1にて算出される。なお、式2~式4は、式1におけるC,C,Tの算出式である。
P=7*10-4*C*C*T -0.25 (W) ・・・(式1)
   C = 100.002(λ-700) ・・・(式2)
   C=α/0.0015 ・・・(式3)
   T=10×10[(α-0.0015)/98.5] ・・・(式4)
 なお、式1において、λは伝送に使用する光源の光波長である。また、図4に示すように、Aは光コネクタ300の光放出端面寸法である光源径であり、αは測定距離D(70mm/100mm/2000mm)及び光源径Aで決まる視角である。
 式1によれば、レーザ光の出力Pを大きくするためには、波長λの長さと光源径Aに依存する。波長を固定とすると、光源径を大きくする方法が最も効果的である。ここで、光源径Aは、複数の光源が分散して配置されている場合は、縦横の平均値となる。
 図5は、式1から求められるレーザ光の「クラス1」における規定値を、光コネクタ300の端部での送信チャネルTxと受信チャネルRxの2つの配置例のそれぞれについて示す模式図である。ここでは、一例として、光波長が850nm、光路径が0.18mm、送信チャネル12ch、受信チャネル12ch、光路長100mm、遮断時間0.01秒の光ファイバ伝送路を想定し、コネクタ部102およびコネクタ部202での送信チャネル(Tx)と受信チャネル(Rx)を横方向に0.25mmピッチ、縦方向に1mmピッチで配列した場合を示している。
 また、測定距離D=100mmとした場合を示しており、送信チャネルTxと受信チャネルRxの配置例として、(1)の送信チャネル(Tx)を中央に密集させた場合と、(2)の送信チャネル(Tx)を横方向に分散させた場合を示している。
 図5において、送信チャネル(Tx)と受信チャネル(Rx)を構成する各光ファイバ400は、光を伝送するガラス材が樹脂被膜によって被膜されて構成されている。一例として、各光ファイバ400は、最外周の直径が0.25mmであり、横方向では最外被膜が互いに密着して配置されることで0.25mmピッチに配列される。なお、縦方向は1mmピッチとしているが、縦方向についても0.25mmピッチで配列しても良い。なお、光伝送路としては光ファイバ400に限定されるものではなく、他の構成で光を伝送するものであっても良い。
 上述したように、光源径Aは、複数の光源が分散して配置されている場合は、縦横の平均値となるため、送信チャネル(Tx)を分散した方が、光源径Aが大きくなり、視角αも大きくなるため、光出力を高めることができる。
 このため、図5に示すように、(2)に示す送信チャネル(Tx)を横方向に分散させた場合の方が、光源径Aが大きくなるため、レーザ光の出力(規定値)を大きくすることができる。これにより、図2に示したマージンを増やすことができ、良好な伝送が可能となる。具体的には、(2)の送信チャネル(Tx)を横方向に分散させた場合は、上述した条件を式1に当てはめると、レーザ光の出力が(0.6mW)となり、一方、(1)の送信チャネル(Tx)を中央に密集させた場合は、レーザ光の出力が(0.4mW)となる。また、最大遮断時間を0.01[sec]とした場合のデータ伝送期間における最大出力は、(2)の送信チャネル(Tx)を横方向に分散させた場合は、(3.7mW)となり、一方、(1)の送信チャネル(Tx)を中央に密集させた場合は、(2.5mW)となる。
 以上の結果に基づき、本実施形態では、コネクタ部102,202の光ケーブルの配置において、送信チャネル(Tx)を横方向に分散させることで、出力を増大させる。これにより、図2に示したマージンを増やすことができ、良好な伝送が可能となる。また、APR機能を用いることにより、通常データ伝送期間のレーザ光の出力を大きくすることが可能となり、BER値を満足するための更にマージンを大きく取ることが可能になる。
4.コネクタ部のチャネル配置
 図6は、送信チャネル12ch、受信チャネル12ch、合計24chの光路を持つコネクタ部102およびコネクタ部202における、送信チャネル(Tx)と受信チャネル(Rx)の光ファイバ400の配置例を示す。民生用途のコネクタには、携帯端末等の機器に搭載するために、サイズが小さいことが求められる。配置例では、合計24chの端子配列において、横方向に12個(N=12)、縦方向に2段(M=2)の配列とすることで、縦方向の厚みを極力薄くしている。また、この配置例において、それぞれの光ファイバ400の最も外側の被覆同士を接触させることで、コネクタ部102,202の大きさを極力小さくしている。ここで、Nは横方向の端子数(光ファイバ400の数)であり、Mは縦方向の端子数(光ファイバ400の数)である。
 上述したように、式1でレーザ光源の出力を最大とするためには、送信チャネル(Tx)の横方向の配置長が大きくなるようにして、送信チャネル(Tx)を分散させることが望ましい。
 図6では、横方向の端子数Nを偶数(=12)とした場合に、送信チャネル(Tx)を中央に密集させた場合を示している。上述のように送信チャネル(Tx)の横方向の配置長が大きくほど出力が大きくなる。図6に示す配置例は、N=12、M=2の配置において、送信チャネル(Tx)の横方向の配置長Dが最小であるため、送信チャネル(Tx)の出力が最も小さくなる配置である。また、図6に示す例では、隣接する光ファイバ400の間にスペースを設けて配置したコネクタに対し、送信チャネル(Tx)が配置された領域の算術平均面積が小さくなってしまうため、レーザ光源の出力が小さくなる。上述の式1でレーザ光源の出力を最大とするためには、送信チャネル(Tx)の横方向の配置長Dが大きくなるようにする必要がある。
 図7は、図6に対して送信チャネル(Tx)の配置を横方向に拡げて配置した例を示す模式図である。図7に示す例では、送信チャネル(Tx)の配置長Dが図6よりも長くなっているため、図6に比べてレーザ光源の出力を増大することができる。図7に示すように、送信チャネル(Tx)と受信チャネル(Rx)が配置された領域内で、送信チャネル(Tx)と受信チャネル(Rx)を周辺に分散して配置することで、送信チャネル(Tx)の配列長Dを長くして、送信チャネル(Tx)が配置された領域の算術平均面積を拡大することができる。図7に示す配置によれば、送信チャネル(Tx)の占有面積が想定できる配置の中で最大となるため、レーザ光源の出力レベルを最大にすることができる。以下の図8~図11においても同様である。図7に示す例によれば、送信チャネル(Tx)の光ファイバ400をその配置領域の中央に集中して配置した場合の占有面積(図6中に一点鎖線で囲んだ領域の面積)よりも、周辺へ分散されて配置された送信チャネル(Tx)の光ファイバ400の占有面積(図7中に一点鎖線で囲んだ領域の面積)の方が大きくなる。これにより、レーザ光源の出力レベルとして、レーザ安全規格で定める規定値を大きくすることができるため、伝送信号のビットエラーレートのマージンを大きく取ることができ、伝送品位が向上する。従って、ユーザの利便性を大幅に高めることができる。
 この様な配列において、さらに縦方向の上下の挿入方向を自由にするため、送信チャネル(Tx)と受信チャネル(Rx)は点対称で配置する。これにより、コネクタ部102,202に対して光ケーブル300が上下逆向きで挿入された場合(180°回転して挿入された場合)も接続が可能となる。図8~図11では、この点に鑑み、横方向の端子数を偶数(N=12)とした場合(図8、図9)と奇数(N=13)とした場合(図10、図11)について、送信チャネル(Tx)の光ファイバ400が点対称となる配列を示している。図8~図11は、いずれも送信チャネル(Tx)が図中の中心点Cに対して点対称となり、送信チャネル(Tx)の横方向の配列長Dが最大となる配置である。
 図8は、送信チャネル(Tx)を半分ずつ左上段と右下段に集中配置を行った場合の例を示す。図9は、送信チャネル(Tx)と受信チャネル(Rx)を横方向に偶数個交互に配置し、上段と下段で千鳥配置を行った場合の例を示す。図8と図9は横方向の配列長Dが同じであるため、同等の光出力を得ることができる。
 図10は、送信チャネル(Tx)と受信チャネル(Rx)を横方向に交互に配置し、縦方向は上下段同じチャネルの配置を行った場合の例を示す。この場合も横方向の配列長Dを最大限確保することができる。図10の場合、横方向の端子数を奇数とし、送信チャネル(Tx)が必要数(この場合、12個)より2個多く配置されるが、送信チャネルの配置長Dは図7および図8の場合よりも長くなる。図10の場合、送信チャネル(Tx)と受信チャネル(Rx)の配列を逆にした場合も、同様に配置可能であるが、この場合、送信チャネル(Tx)の配置長Dが図10の場合よりも若干短くなる。
 図11は、送信チャネル(Tx)と受信チャネル(Rx)を横方向に交互に配置し、縦方向は上下段同じチャネルの配置を行った場合に、最も外側の配置のみ上下段異なるチャネルの配置を行った場合の例を示す。図11の場合、受信チャネルが必要数(この場合、12個)より2個多く配置されるが、送信チャネル(Tx)の配置長Dは図8および図9の場合よりも長くなる。
 なお、N=12またはN=13、M=2の配列において、図8~図11に示す配置例が送信チャネル(Tx)の配置長Dを最も長くすることができるが、図6に示す配置長Dよりも長い配置長の配列であれば、図6に示す配置よりも確実に光出力を高めることができる。従って、図8~図11に示す配置によれば、送信チャネル(Tx)の占有面積が想定できる配置の中で最大となるため、レーザ光源の出力レベルを最大にすることができる。
 従って、本実施形態によれば、ユーザは光コネクタ部102,202の上下の向きを考慮することなく光送受信装置100、光送受信装置200へ接続することができる。また、本実施形態によれば、レーザ光源の出力レベル(レーザ安全規格で定める規定値)を大きくすることができるため、伝送信号のビットエラーレートに対するマージンを大きく取ることができ、伝送品位が向上するため、ユーザの利便性を大幅に高めることができる。
5.本実施形態の変形例
 図12は、本実施形態のコネクタ部102,202の端子配列の変形例を示す。図1の光ファイバシステム1000において、光送受信装置100から光送受信装置200へ伝送されるデータとしては、例えば非圧縮の映像音声データが想定される。この場合、光送受信装置200から光送受信装置100へのリターンチャネルでの伝送レートは上述の非圧縮の映像音声データよりも極端に低い伝送レートでデータ送信が行われることが想定される。この様な伝送方向によって非対象となる伝送レートのシステムにおいては、図12に示すような端子配列も実現可能となる。ここで、図12の左側に示す配列は図6と同様であり、図12の右側に示す配列は図6の配列に対して送信チャネル(Tx)を両端に配置している。この際、端子の両端に配置された光送受信装置100の送信チャネル(Tx)は、レーザ光源の出力を大きくして、上述の非圧縮の映像音声データのマージンを確保し、端子の中央に配置された受信チャネル(Rx)に対応する光送受信装置200のリターンチャネル用のレーザ光源の出力は低くてもよい。
 以上説明したように本実施形態によれば、レーザ光源の出力レベル(レーザ安全規格で定める規定値)を大きくすることができるため、伝送信号のビットエラーレートに対するマージンを大きく取ることができ、伝送品位が向上するため、ユーザの利便性を大幅に高めることができる。また、本実施形態によれば、ユーザは光コネクタ部102,202の上下の向きを考慮することなく光送受信装置100、光送受信装置200へ接続することができる。また、本実施形態によれば、従って、光伝送を行う機器間の接続において、コネクタの向きを変えても接続が可能となり、かつレーザ光に求められる安全規格規制値内で伝送品位を向上可能なコネクタ端子の端子配置を提供することができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、
 前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、
 前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置された、光コネクタ。
(2) 前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合の前記送信チャネルの光伝送路の占有面積よりも、前記所定領域の周辺へ分散されて配置された前記送信チャネルの光伝送路の占有面積の方が大きい、前記(1)に記載の光コネクタ。
(3) 前記複数の光伝送路は、前記所定領域内にN列、M行で配置される、前記(1)に記載の光コネクタ。
(4) 前記複数の光伝送路は前記所定領域内に偶数のN列、偶数のM行で配置され、前記送信チャネルの光伝送路は、0~N/2列、0~M/2行と、(N/2+1)~N列、(M/2+1)~M行に配置される、前記(3)に記載の光コネクタ。
(5) 前記複数の光伝送路は前記所定領域内に偶数のN列、2行で配置され、前記送信チャネルの光伝送路は、1行目の0~N/2列と、2行目の(N/2+1)~N列に配置される、前記(3)に記載の光コネクタ。
(6) 前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(3)に記載の光コネクタ。
(7) Nが偶数であり、行方向及び列方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(6)に記載の光コネクタ。
(8) Nが奇数であり、行方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置され、任意の列の列方向に配置される光伝送路は前記送信チャネル又は受信チャネルのいずれか一方である、前記(6)に記載の光コネクタ。
(9) 両端の列においては、列方向に前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、前記(8)に記載の光コネクタ。
(10) 両端の列においては、列方向に前記送信チャネルの光伝送路が配置される、前記(8)に記載の光コネクタ。
(11) 隣接する前記光伝送路の最外被膜が密着して配置された、前記(1)~(10)のいずれかに記載の光コネクタ。
 102,202  コネクタ部
 400  光ファイバ(光伝送路)

Claims (11)

  1.  端面が所定領域内に配列された、光信号を伝送する複数の光伝送路を備え、
     前記複数の光伝送路は送信チャネル又は受信チャネルに対応し、
     前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合に比べて、前記送信チャネルの光伝送路が前記所定領域の周辺へ分散されて配置された、光コネクタ。
  2.  前記送信チャネルの光伝送路を前記所定領域の中央に集中して配置した場合の前記送信チャネルの光伝送路の占有面積よりも、前記所定領域の周辺へ分散されて配置された前記送信チャネルの光伝送路の占有面積の方が大きい、請求項1に記載の光コネクタ。
  3.  前記複数の光伝送路は、前記所定領域内にN列、M行で配置される、請求項1に記載の光コネクタ。
  4.  前記複数の光伝送路は前記所定領域内に偶数のN列、偶数のM行で配置され、前記送信チャネルの光伝送路は、0~N/2列、0~M/2行と、(N/2+1)~N列、(M/2+1)~M行に配置される、請求項3に記載の光コネクタ。
  5.  前記複数の光伝送路は前記所定領域内に偶数のN列、2行で配置され、前記送信チャネルの光伝送路は、1行目の0~N/2列と、2行目の(N/2+1)~N列に配置される、請求項3に記載の光コネクタ。
  6.  前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項3に記載の光コネクタ。
  7.  Nが偶数であり、行方向及び列方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項6に記載の光コネクタ。
  8.  Nが奇数であり、行方向において前記送信チャネル及び受信チャネルの光伝送路が交互に配置され、任意の列の列方向に配置される光伝送路は前記送信チャネル又は受信チャネルのいずれか一方である、請求項6に記載の光コネクタ。
  9.  両端の列においては、列方向に前記送信チャネル及び受信チャネルの光伝送路が交互に配置される、請求項8に記載の光コネクタ。
  10.  両端の列においては、列方向に前記送信チャネルの光伝送路が配置される、請求項8に記載の光コネクタ。
  11.  隣接する前記光伝送路の最外被膜が密着して配置された、請求項1に記載の光コネクタ。
PCT/JP2015/084778 2015-01-07 2015-12-11 光コネクタ WO2016111115A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2971997A CA2971997A1 (en) 2015-01-07 2015-12-11 Optical connector
RU2017122840A RU2017122840A (ru) 2015-01-07 2015-12-11 Оптический разъем
CN201580071874.9A CN107111088B (zh) 2015-01-07 2015-12-11 光连接器
US15/539,250 US10324265B2 (en) 2015-01-07 2015-12-11 Optical connector
KR1020177016920A KR20170095883A (ko) 2015-01-07 2015-12-11 광커넥터
EP15876988.5A EP3244243A4 (en) 2015-01-07 2015-12-11 Optical connector
US16/406,393 US10451827B2 (en) 2015-01-07 2019-05-08 Optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-001578 2015-01-07
JP2015001578A JP2016126236A (ja) 2015-01-07 2015-01-07 光コネクタ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/539,250 A-371-Of-International US10324265B2 (en) 2015-01-07 2015-12-11 Optical connector
US16/406,393 Continuation US10451827B2 (en) 2015-01-07 2019-05-08 Optical connector

Publications (1)

Publication Number Publication Date
WO2016111115A1 true WO2016111115A1 (ja) 2016-07-14

Family

ID=56355817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084778 WO2016111115A1 (ja) 2015-01-07 2015-12-11 光コネクタ

Country Status (9)

Country Link
US (2) US10324265B2 (ja)
EP (1) EP3244243A4 (ja)
JP (1) JP2016126236A (ja)
KR (1) KR20170095883A (ja)
CN (1) CN107111088B (ja)
CA (1) CA2971997A1 (ja)
RU (1) RU2017122840A (ja)
TW (1) TWI672011B (ja)
WO (1) WO2016111115A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11934911B2 (en) * 2021-10-12 2024-03-19 Zebra Technologies Corporation Laser driving mode for aiming system of barcode imager

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015610A (ja) * 1983-07-07 1985-01-26 Sumitomo Electric Ind Ltd 多芯光ケ−ブルカプラ
JP2012504312A (ja) * 2008-09-30 2012-02-16 アップル インコーポレイテッド 光信号経路を有する磁気コネクタ
JP2012120095A (ja) * 2010-12-03 2012-06-21 Sumitomo Electric Ind Ltd 光モジュール及び光システム
JP2012516470A (ja) * 2009-01-30 2012-07-19 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 光ファイバ相互接続装置及びこの装置を用いたシステム
US20120183302A1 (en) * 2011-01-14 2012-07-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical transceiver module having an electromagnetic interference (emi) cancellation device disposed therein, and an emi cancelation method for use in an optical transceiver module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400790B2 (en) * 2004-11-03 2008-07-15 Hewlett-Packard Development Company, L.P. Optical connections and methods of forming optical connections
US8485737B2 (en) * 2009-10-29 2013-07-16 Commscope, Inc. Of North Carolina Optical fiber array connectivity system for multiple transceivers and/or multiple trunk cables
JP2011192851A (ja) * 2010-03-15 2011-09-29 Omron Corp 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法
US20120189259A1 (en) * 2010-12-15 2012-07-26 Leviton Manufacturing Co., Inc. Pre-terminated fiber devices, systems, and methods
TW201430415A (zh) 2013-01-22 2014-08-01 Hon Hai Prec Ind Co Ltd 光纖耦合連接器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015610A (ja) * 1983-07-07 1985-01-26 Sumitomo Electric Ind Ltd 多芯光ケ−ブルカプラ
JP2012504312A (ja) * 2008-09-30 2012-02-16 アップル インコーポレイテッド 光信号経路を有する磁気コネクタ
JP2012516470A (ja) * 2009-01-30 2012-07-19 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 光ファイバ相互接続装置及びこの装置を用いたシステム
JP2012120095A (ja) * 2010-12-03 2012-06-21 Sumitomo Electric Ind Ltd 光モジュール及び光システム
US20120183302A1 (en) * 2011-01-14 2012-07-19 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical transceiver module having an electromagnetic interference (emi) cancellation device disposed therein, and an emi cancelation method for use in an optical transceiver module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244243A4 *

Also Published As

Publication number Publication date
CN107111088A (zh) 2017-08-29
KR20170095883A (ko) 2017-08-23
CN107111088B (zh) 2020-01-21
US10324265B2 (en) 2019-06-18
US20190265424A1 (en) 2019-08-29
US10451827B2 (en) 2019-10-22
EP3244243A4 (en) 2018-08-22
RU2017122840A (ru) 2018-12-29
TWI672011B (zh) 2019-09-11
TW201644214A (zh) 2016-12-16
RU2017122840A3 (ja) 2019-04-30
EP3244243A1 (en) 2017-11-15
JP2016126236A (ja) 2016-07-11
CA2971997A1 (en) 2016-07-14
US20170373756A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US20070003288A1 (en) Bidirectional HDCP transmission module using single optical fiber
US20150078744A1 (en) Multiplexed optical transmission line, optical transmission system, and optical transmission method
US8526810B2 (en) Eye safety and interoperability of active cable devices
US20040120717A1 (en) Extended source free-space optical communication system
KR20170137194A (ko) 광학 로터리 전기 연결부
WO2015133164A1 (ja) 光コネクタとケーブルおよび光通信装置
WO2016111115A1 (ja) 光コネクタ
WO2016111123A1 (ja) 光コネクタ
WO2004075422A2 (en) Module having two bi-directional optical transceivers
US8457465B1 (en) Optical attenuation system
Tottori et al. Multi functionality demonstration for multi core fiber fan-in/fan-out devices using free space optics
Shibahara et al. Advanced MIMO signal processing for dense SDM transmission using multi-core few-mode fibers
US10707956B1 (en) Active fiber tap
JP5315500B2 (ja) 偏光レベル差調整装置
JPH09261174A (ja) 光並列伝送方式
KR101014411B1 (ko) 송수신 장치 및 이를 갖는 광통신 시스템
JP2010165860A (ja) 光インタフェース装置
CN116095541A (zh) Bosa模块、交换机及测试装置
Sakai et al. A micro optical wireless module for high-definition images and broadband wireless access
US20160033726A1 (en) Low loss fiber optic harness
JP2005345270A (ja) 光線路試験システム、減衰ファイバ及び減衰素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876988

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015876988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016920

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2971997

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15539250

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017122840

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE