WO2016111025A1 - Appearance inspection device - Google Patents

Appearance inspection device Download PDF

Info

Publication number
WO2016111025A1
WO2016111025A1 PCT/JP2015/064878 JP2015064878W WO2016111025A1 WO 2016111025 A1 WO2016111025 A1 WO 2016111025A1 JP 2015064878 W JP2015064878 W JP 2015064878W WO 2016111025 A1 WO2016111025 A1 WO 2016111025A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
electronic component
imaging
inspection apparatus
appearance inspection
Prior art date
Application number
PCT/JP2015/064878
Other languages
French (fr)
Japanese (ja)
Inventor
剛弘 辻
Original Assignee
上野精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上野精機株式会社 filed Critical 上野精機株式会社
Publication of WO2016111025A1 publication Critical patent/WO2016111025A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to an appearance inspection apparatus for inspecting the appearance of an electronic component.
  • Patent Document 1 describes a specific example of an appearance inspection apparatus that images an upper part and two side parts of an electronic component (semiconductor element) with a single camera. By performing imaging of the upper part and two side parts of the electronic component with one camera, the number of cameras can be suppressed.
  • the present invention is made in view of such circumstances, and an object of the present invention is to provide an appearance inspection apparatus for inspecting an inspection target region of a rectangular parallelepiped electronic component while suppressing an increase in processing time. To do.
  • the visual inspection apparatus that meets the above-described object is a visual inspection apparatus for visual inspection of an inspection target area of a rectangular parallelepiped electronic component, and first and second imaging means for imaging different portions of the inspection target area, respectively.
  • the inspection direction is changed to at least one of the first image picked up by the first image pickup means and the second image picked up by the second image pickup means by changing the traveling direction of light.
  • Optical path adjusting means for storing an image of the target area.
  • the rectangular parallelepiped shape includes a cubic shape.
  • the visual inspection apparatus further includes N imaging units that respectively capture different portions of the inspection target region, and the optical path adjustment unit includes at least one of the images captured by the N imaging units.
  • the optical path adjustment unit includes at least one of the images captured by the N imaging units.
  • an image of the inspection target area can be stored.
  • N is a natural number.
  • the electronic component includes opposing side portions A and B, and the inspection target area includes one side and the other side of the side portion A, and one side and the other of the side portion B.
  • the optical path adjusting means causes the first image to contain an image on one side of the side portion A and an image on one side of the side portion B, and the second image to An image on the other side of the side portion A and an image on the other side of the side portion B can be stored.
  • the first and second images are combined to obtain an image of the entire side portion A and an image of the entire side portion B.
  • the visual inspection apparatus further includes N imaging means for imaging the side portions A and B of the electronic component, and the optical path adjustment means is configured to display the images captured by the N imaging means, A part of the image of the side part A and a part of the image of the side part B are accommodated, and the first and second images and the images picked up by the N imaging means are combined to form the side part A. An entire image and an image of the entire side B can be obtained.
  • N is a natural number.
  • the optical path adjusting means refracts or reflects light so that the entire image of the side part A and the entire image of the side part B are stored in parallel within a virtual frame. It is preferable that the first and second imaging means capture an image stored on one side of the virtual frame and an image stored on the other side of the virtual frame.
  • an image stored on the center side of the virtual frame is refracted or reflected on the first imaging unit that captures the image stored on one side of the virtual frame. It is preferable to further include an optical path shift mechanism for capturing.
  • the position of the first imaging unit along the imaging direction of the first imaging unit, and the imaging direction of the second imaging unit of the second imaging unit is preferable to further include a positioning mechanism that adjusts the position along the line.
  • the optical path adjusting means further stores an image on one side of each of the side part A side and the side part B side of the bottom of the electronic component in the first image. It is preferable that the second image further includes images on the other side of the side portion A side and the side portion B side of the bottom portion.
  • the visual inspection apparatus includes first and second imaging units that respectively image different parts (for example, one side and the other side) of the inspection target area of the electronic component.
  • the image is divided into images picked up by a plurality of image pickup means. For this reason, compared with imaging with only one imaging unit, an area unnecessary for appearance inspection in the entire captured image is suppressed, and as a result, processing time for performing appearance inspection can be shortened. Since the optical path adjustment means is provided, it is possible to suppress the arrangement of the first and second imaging means from being limited.
  • FIG. 1 is a side view of an appearance inspection apparatus according to an embodiment of the present invention. It is explanatory drawing of the same external appearance inspection apparatus. It is explanatory drawing of the image settled in a virtual frame.
  • (A), (B) is explanatory drawing of an optical path shift mechanism, respectively. It is explanatory drawing of the external appearance inspection apparatus which concerns on a 1st modification.
  • (A), (B) is explanatory drawing of the image imaged with the 1st and 2nd imaging means of the same external appearance inspection apparatus, respectively.
  • (A), (B) is explanatory drawing which shows a mode that a beam splitter and illumination each move. It is a side view of the external appearance inspection apparatus which concerns on a 2nd modification. It is explanatory drawing of the same external appearance inspection apparatus. It is a side view of the external appearance inspection apparatus which concerns on a 3rd modification. It is explanatory drawing of the same external appearance inspection apparatus.
  • an appearance inspection apparatus 10 is an image pickup unit that picks up an appearance of different portions of an inspection target area of a rectangular parallelepiped (including cubic) electronic component 11. 12 (first image pickup means) and image pickup means 13 (second image pickup means), and an optical path adjustment means 14 for changing the traveling direction of light.
  • This is a device for inspecting the appearance of the side 15 (side A) and the side 16 (side B).
  • inspection target regions exist on one side and the other side of the side portion 15 and on one side and the other side of the side portion 16, respectively. Details will be described below.
  • the electronic component 11 having a rectangular shape in a plan view in which an appearance inspection is performed by the appearance inspection apparatus 10 has a width and a depth that are longer than a thickness and includes a rectangle (including a square, The same).
  • the appearance inspection apparatus 10 includes a plurality of nozzles (an example of a work holding unit) 17 that sucks the upper side of the electronic component 11.
  • Each of the cylindrical nozzles 17 sequentially conveys the electronic component 11 held by suction and held horizontally to one position where the side portions 15 and 16 are imaged (hereinafter also referred to as “inspection position P”).
  • an optical path adjusting means 14 is provided in the vicinity of the electronic component 11 conveyed to the inspection position P.
  • the optical path adjusting means 14 includes a plurality of beam splitters 18 to 26 arranged at positions away from the electronic component 11. The following description is based on the assumption that the electronic component 11 is arranged at the inspection position P.
  • the beam splitters 18 and 19 are provided at the same height as the electronic component 11.
  • the beam splitters 20 and 21 having the same shape as the beam splitters 18 and 19 are arranged to face the side portions 15 and 16 in close contact with the beam splitters 18 and 19, respectively.
  • the parallelogram beam splitters 22 and 23 are fixed to the lower part of the beam splitter 20 and the lower part of the beam splitter 21, respectively.
  • the beam splitters 24 and 25 are disposed below the beam splitters 22 and 23 and spaced from the beam splitters 22 and 23.
  • the beam splitters 24 and 25 having the same shape are provided in close contact with each other.
  • a beam splitter 26 is provided at a position away from the beam splitters 24 and 25.
  • the beam splitters 18 to 26 are fixed by a support member (not shown).
  • the optical path adjusting means may be formed by a beam splitter having a shape other than the beam splitters 18 to 26.
  • Illumination 27 is provided at the same height as the beam splitters 18 and 20 on the side opposite to the electronic component 11 and spaced from the beam splitters 18 and 20.
  • an illumination 28 is provided on the side opposite to the electronic component 11 and spaced from the beam splitters 19 and 21.
  • the illuminations 27 and 28 are arranged so as to illuminate the beam splitters 18 and 20 and the beam splitters 19 and 20, respectively.
  • the imaging unit 12 is supported by the fixing member 29 at the same height as the beam splitters 24 and 25, and the imaging direction of the imaging unit 12 is directed toward the beam splitters 24 and 25. It is kept horizontal.
  • the imaging unit 13 is supported by the fixing member 30 at the same height as the beam splitter 26, and the imaging direction of the imaging unit 13 is kept horizontal toward the beam splitter 26.
  • the imaging directions of the imaging units 12 and 13 are the same (that is, the imaging direction of the imaging unit 12 and the imaging direction of the imaging unit 13 are parallel).
  • the imaging direction of the imaging units 12 and 13 is defined as the Y direction (Y direction positive direction), and the horizontal direction orthogonal to the Y direction is defined as the X direction.
  • the longitudinal directions of the side portions 15 and 16 are along the X direction, and the side portion 16 is arranged on the Y direction positive side of the side portion 15.
  • the side 15 is viewed in the positive direction of the Y direction (when the side 15 is viewed from the front)
  • the right side of the side 15 is the positive side in the X direction
  • the left side of the side 15 is negative in the X direction. Let it be the side.
  • the imaging unit 13 is arranged at a position lower than the imaging unit 12 on the X direction positive side and the Y direction positive side from the imaging unit 12.
  • the fixing members 29 and 30 are fixed to a nut block 32 attached to the screw shaft 31.
  • the screw shaft 31 is arranged in the Y direction and rotates by driving a motor 33 coupled to the screw shaft 31 to move the nut block 32.
  • the imaging units 12 and 13 move in the Y direction positive direction or the Y direction negative direction together with the nut block 32 by the rotation of the screw shaft 31.
  • the direction in which the imaging means 12 and 13 move is determined by the direction in which the motor 33 rotates.
  • the mechanism for moving the imaging means 12 and 13 is not limited to one having a screw shaft and a nut block. Furthermore, the mechanism for moving the imaging unit 12 and the mechanism for moving the imaging unit 13 may be independent of each other.
  • the light emitted from the illumination 27 is transmitted through the beam splitters 18 and 20 in order, reflected by the side portion 15 of the electronic component 11, and proceeds in the negative direction of the Y direction.
  • the beam After entering the beam splitter 20, the beam is reflected downward at the boundary between the beam splitters 18 and 20 and enters the beam splitter 22.
  • the light reflected twice in the beam splitter 22 travels downward, exits the beam splitter 22, enters the beam splitter 24, and then reflects the light reflected at the boundary between the beam splitters 24, 25 and the beam splitter 25. Branches into the light entering the.
  • the boundaries of the beam splitters 24 and 25 are inclined in a direction that decreases toward the Y direction negative side.
  • the light reflected at the boundary between the beam splitters 24 and 25 travels in the negative direction in the Y direction toward the image pickup means 12, and is within the image 12a (first image) shown in FIG. It is stored in.
  • the light that has entered the beam splitter 25 travels downward, enters the beam splitter 26, travels in the negative direction of the Y direction, and is imaged by the imaging means 13 as shown in FIG. Image).
  • the imaging unit 12 is in a position for imaging the X direction negative side (one side) of the electronic component 11, and the imaging unit 13 images the X direction positive side (the other side) of the electronic component 11. It is in the position to do.
  • the lower half of the image 12a captures the region from the X direction negative side to the center of the side portion 15, and the lower half of the image 13a captures the region of the side portion 15 from the X direction positive side to the center. It is done.
  • the imaging means 12 and 13 are arranged so that the image of the entire side part 15 of the electronic component 11 can be obtained by combining the image 12a and the image 13a.
  • the light emitted from the illumination 28 sequentially passes through the beam splitters 19 and 21, is reflected in the positive direction in the Y direction by the side portion 16 of the electronic component 11, and enters the beam splitter 21. After that, the light is reflected downward at the boundary between the beam splitters 19 and 21 and enters the beam splitter 23.
  • the light reflected twice in the beam splitter 23 travels downward, exits the beam splitter 23 and enters the beam splitter 24, and then reflects the light reflected at the boundary between the beam splitters 24 and 25 and the beam splitter 25. Branches into the light entering the.
  • the light reflected at the boundary between the beam splitters 24 and 25 travels in the negative direction in the Y direction toward the image pickup means 12, and is within the image 12a (first image) shown in FIG. It is stored in.
  • the light that has entered the beam splitter 25 travels downward, enters the beam splitter 26, travels in the negative direction of the Y direction, and is imaged by the imaging means 13 as shown in FIG. Image).
  • the X direction negative side of the side portion 16 of the electronic component 11 is displayed in the upper half.
  • the area from the center to the center is captured as an upside down image.
  • the region from the X direction positive side to the center of the side portion 15 of the electronic component 11 is captured in the lower half.
  • the region from the X direction positive side to the center of the side portion 16 is displayed in the upper half. Is captured as an upside down image.
  • the optical path adjusting unit 14 causes the image 12a to store an image on the X direction negative side (one side) of the side portion 15 of the electronic component 11 and an image on the X direction negative side (one side) of the side portion 16 to obtain an image.
  • An image on the X direction positive side (other side) of the side portion 15 of the electronic component 11 and an image on the X direction positive side (other side) of the side portion 16 are stored in 13a. Therefore, an image of the entire side portion 16 of the electronic component 11 is obtained by combining the image 12a and the image 13a.
  • a part of the image of each of the side parts 15 and 16 of the electronic component 11 captured in the image 12a is a part of the image of each of the side parts 15 and 16 of the electronic component 11 captured in the image 13a. It overlaps with the department.
  • the rectangular virtual frame 34 is arranged horizontally and kept between the beam splitters 22 and 23 and the beam splitters 24 and 25 as shown in FIG.
  • the image of the entire side part 16 of the electronic component 11 is placed in the virtual frame 34 in a state along the X direction in the Y direction positive half.
  • the entire image of the side part 15 of the electronic component 11 is accommodated in the X direction negative half in the Y direction negative half.
  • the beam splitters 18, 19, 20, 21, 22, 23 as a whole reflect light, so that the image of the entire side part 15 of the electronic component 11 and the image of the entire side part 16 of the electronic component 11 are virtual frames 34. It will be stored in parallel.
  • an optical path adjustment block is mainly constituted by the beam splitters 18, 19, 20, 21, 22, and 23.
  • the imaging means 12 images the X direction negative side of each of the side parts 15 and 16 of the electronic component 11
  • the imaging means 13 images the X direction positive side of each of the side parts 15 and 16 of the electronic component 11.
  • the imaging means 12 and 13 are arranged so as to capture an image stored on the X direction negative side (one side) of the virtual frame 34 and an image stored on the X direction positive side (other side) of the virtual frame 34, respectively. It means that
  • the optical path adjustment block uses only the refraction of light or uses the reflection and refraction of light to display the image of the entire side part 15 of the electronic component 11 and the image of the entire side part 16 of the electronic component 11. It may be designed to fit within the virtual frame 34.
  • An image processing means 40 is connected to the imaging means 12 and 13 as shown in FIG.
  • the image processing unit 40 acquires the data of the image 12a and the data of the image 13a from the imaging units 12 and 13, respectively, and inspects the presence or absence of cracks or chips on the side parts 15 and 16 of the electronic component 11 using a software program.
  • the entire side portion 15 and the entire side portion 16 are inspection target regions).
  • the inspection for the presence or absence of cracks or chips may be performed on each of the images 12a and 13a, or an image of the entire side portion 15 and an image of the entire side portion 16 of the electronic component 11 obtained by synthesizing the images 12a and 13a. You may do this for each.
  • the image processing means 40 includes a storage medium storing a software program, a CPU, and a memory.
  • the image is picked up particularly when an image of an electronic component such as the electronic component 11 in which the lateral widths of the side portions A and B are longer than the thickness is taken by one image pickup means.
  • the image includes many regions other than the side portions A and B.
  • the data size of the image captured for the appearance inspection of the entire side part A and the entire side part B increases, the time for transferring the captured image to the image processing means, and the appearance inspection by the image processing means The processing time becomes longer.
  • two images 12a and 13a are obtained using two imaging means 12 and 13
  • one imaging means having a larger number of pixels than the imaging means 12 and 13 is used.
  • a single-focus camera is employed for each of the imaging means 12 and 13.
  • the distance between the side part A and the side part B is set to Accordingly, it is necessary to adjust the optical distance of the imaging means 12 and 13.
  • the position of the imaging unit 12 along the Y direction that is, the imaging direction of the imaging unit 12
  • the Y direction of the imaging unit 13 that is, imaging of the imaging unit 13
  • the optical distance of the imaging means 12 and 13 is adjusted by changing the position along the direction.
  • the positioning mechanism is mainly composed of the screw shaft 31, the nut block 32, and the motor 33.
  • an optical path shift mechanism 35 shown in FIG. 4A that reflects light may be provided between the beam splitters 24 and 25 and the imaging unit 12.
  • the optical path shift mechanism 35 includes a plurality of beam splitters 36, 37, and 38.
  • the beam splitters 36 and 37 are in close contact with each other, and the beam splitter 38 is provided at a position having a distance from the beam splitter 37 in the negative direction of the X direction.
  • the light traveling in the Y direction negative direction from the beam splitter 24 passes through the beam splitters 36 and 37 while reflecting, enters the beam splitter 38, exits from the beam splitter 38 in the Y direction negative direction, and is imaged. Head to 12.
  • the light emitted from the beam splitter 38 travels on the negative side in the X direction compared to when entering the beam splitter 36. Therefore, the optical path shift mechanism 35 reflects the light so that the imaging unit 12 that captures the image stored on the X direction negative side of the virtual frame 34 can capture the image stored on the center side of the virtual frame 34. it can.
  • the image capturing unit 12 is used by using the optical path shift mechanism 35. It is possible to fit the entire image of the side part A and the entire image of the side part B of the electronic component into one image.
  • the optical path shift mechanism is not limited to the one provided with a plurality of beam splitters.
  • the optical path shift mechanism 35a is composed of one beam splitter 39 that is rectangular in plan view as shown in FIG. Good.
  • the beam splitter 39 is arranged to be inclined with respect to each of the X direction and the Y direction, and uses an optical refraction to capture an image stored on the negative side of the virtual frame 34 in the X direction.
  • the image capturing means 12 that has been captured captures an image stored on the center side of the virtual frame 34, and the entire image of the side part A and the entire image of the side part B of the electronic component are stored in one image.
  • the appearance inspection apparatus 10 that images the side portions 15 and 16 of the electronic component 11 using the imaging units 12 and 13 has been described.
  • the appearance inspection apparatus 50 illustrated in FIG. In addition to the 11 side portions 15 and 16, a part of the bottom 51 of the electronic component 11 is imaged.
  • the appearance inspection apparatus 50 will be described.
  • the same components as those of the appearance inspection apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted.
  • the appearance inspection apparatus 50 includes an optical path adjustment unit 52 that changes the traveling direction of light.
  • the optical path adjusting unit 52 is provided with beam splitters 53 and 54 that face the side portions 15 and 16 of the electronic component 11, and beam splitters 55 and 56 that are provided below the beam splitter 53, respectively.
  • Beam splitters 57 and 58 provided below the beam splitter 54 and beam splitters 59 and 60 disposed below the electronic component 11 are provided.
  • the beam splitters 53 and 56 are in close contact with the beam splitter 55
  • the beam splitters 54 and 58 are in close contact with the beam splitter 57
  • the beam splitter 59 is in contact with the beam splitter 60.
  • a diffusing plate 61 and an illumination 62 for irradiating upward are arranged below the beam splitter 56.
  • a diffusion plate 63 and an illumination 64 for irradiating upward are also arranged below the beam splitter 58.
  • the light emitted from the illumination 62 and transmitted through the diffusion plate 61 sequentially passes through the beam splitters 56, 55, 53, then reflects off the side part 15 of the electronic component 11, and passes through the beam splitters 53, 55, 59 in order. And enters the beam splitter 24.
  • the light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and goes to the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds toward the imaging means 13 in the negative direction of the Y direction.
  • the light emitted from the illumination 64 and transmitted through the diffusion plate 63 sequentially passes through the beam splitters 58, 57, and 54, then reflects off the side part 16 of the electronic component 11, and passes through the beam splitters 54, 57, and 60 in order. And enters the beam splitter 24.
  • the light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and goes to the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds toward the imaging means 13 in the negative direction of the Y direction.
  • the image 12b (first image) captured by the imaging unit 12 includes an image of the region from the X direction negative side to the center of the side portion 15 of the electronic component 11 as shown in FIG. An image of the region from the X-direction negative side to the center of the side part 16 of the electronic component 11 is captured.
  • an image 13b (second image) captured by the imaging unit 13 includes an image of a region from the X-direction positive side to the center of the side portion 15 of the electronic component 11, as shown in FIG. An image of a region from the X-direction positive side to the center of the side part 16 of the electronic component 11 is captured.
  • the light emitted from the illumination 62 and transmitted through the diffusion plate 61 sequentially passes through the beam splitters 56 and 55, and then the Y direction negative side (side portion) of the bottom 51 of the electronic component 11. (15 side) is also reflected.
  • the light reflected on the Y direction negative side of the bottom 51 of the electronic component 11 passes through the beam splitters 55 and 59, travels downward, and enters the beam splitter 24.
  • the light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and heads toward the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds in the negative direction of the Y direction and heads for the imaging means 13.
  • the light emitted from the illumination 64 and transmitted through the diffusion plate 63 passes through the beam splitters 58 and 57 in order, and is also reflected on the Y direction positive side (side 16 side) of the bottom 51 of the electronic component 11.
  • the light reflected on the Y direction positive side of the bottom 51 of the electronic component 11 passes through the beam splitters 57 and 60, travels downward, and enters the beam splitter 24.
  • the light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and heads toward the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds in the negative direction of the Y direction and heads for the imaging means 13.
  • the Y-direction negative side An image on the X direction positive side (other side) on the side portion 15 side and an image on the X direction positive side (other side) on the Y direction positive side (side portion 16 side) of the bottom 51 of the electronic component 11 are stored.
  • the optical distance between the side portions 15 and 16 of the electronic component 11 and the image pickup means 12 and the bottom 51 of the electronic component 11 and the image pickup means 12 are obtained using the difference in refractive index between the beam splitter and air.
  • the side distances 15 and 16 and the bottom 51 of the electronic component 11 are in focus with respect to the imaging unit 12.
  • the images 12 b and 13 b are combined with the imaging means 12 and 13, and the entire image in the X direction on the Y direction negative side of the bottom 51 of the electronic component 11 and the Y direction positive of the bottom 51 of the electronic component 11 are aligned. The entire image in the X direction is stored.
  • the beam splitters 53, 55, and 56, the diffusion plate 61, and the illumination 62 are designed to be movable in the Y direction as a unit.
  • the beam splitters 54, 57, 58, the diffusion plate 63, and the illumination 64 are also designed to be movable in the Y direction as a unit. This is because the distance between the side parts A and B or the thickness of the electronic part is different from that of the electronic part 11, and the imaging means 12 and 13 have the side parts A and B, the side part A side of the bottom part, and the bottom part. This is for adjusting the optical distance so that each side B side can be clearly imaged.
  • the distance between the side portion 67 (side portion A) and the side portion 68 (side portion B) is longer than that of the electronic component 11, and the beam splitters 53, 55, and 56, and the diffusion plate 61.
  • the group of the illumination 62 and the group of beam splitters 54, 57, and 58, the diffuser plate 63, and the illumination 64 are moved away from each other in the Y direction.
  • the group of beam splitters 53, 55, 56, diffuser plate 61 and illumination 62 and the group of beam splitters 54, 57, 58, diffuser plate 63 and illumination 64 are designed to be movable vertically in addition to the Y direction. May be.
  • the imaging units 12 and 13 are arranged at different positions in the X direction. However, the imaging units 12 and 13 may be arranged at the same position in the X direction.
  • the appearance inspection apparatus 70 shown in FIG. 8 and FIG. 9 has a side portion 71 (side portion) that is opposite to the side portions 15 and 16 of the electronic component 11 by the imaging means 12 and 13 provided at the same position in the X direction. A) and the side part 72 (side part B) are imaged.
  • the same components as those in the appearance inspection apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted, and the appearance inspection apparatus 70 will be described.
  • the side portions 71 and 72 are perpendicular to the side portions 15 and 16 as shown in FIG. 8 and FIG.
  • the side parts 71 and 72 are in a state along the Y direction (that is, the imaging direction of the imaging means 12 and 13).
  • the side portion 71 is located on the positive side in the X direction with respect to the side portion 72.
  • the imaging unit 13 is disposed on the positive side in the Y direction from the imaging unit 12 and at a position lower than the imaging unit 12.
  • the optical path adjusting means 73 includes a plurality of beam splitters 18 to 23 and 74 to 76.
  • the following description is based on the assumption that the electronic component 11 is arranged at the inspection position Q.
  • the closely-contacted beam splitters 18 and 20 are disposed to face the side portion 71 of the electronic component 11, and the closely-contacted beam splitters 19 and 21 are disposed to face the side portion 72 of the electronic component 11.
  • the positional relationship of each of the beam splitters 18 to 23 with respect to each of the other beam splitters 18 to 23 is the same as that of the optical path adjusting unit 14.
  • the beam splitters 74 and 75 are provided in close contact with each other at a position lower than the beam splitters 22 and 23 and at the same height as the imaging unit 12.
  • the surface to which the beam splitters 74 and 75 are in contact with each other is inclined in a direction that decreases toward the Y direction negative side.
  • the beam splitter 76 is disposed at the same height as the imaging unit 13 at a position lower than the beam splitters 74 and 75.
  • illumination that illuminates the beam splitters 18 and 20 is provided at the same height as the beam splitters 18 and 20 on the side opposite to the electronic component 11.
  • illumination for illuminating the beam splitters 19 and 21 is provided on the side opposite to the electronic component 11.
  • the light irradiated from the illumination for illuminating the beam splitters 18 and 20 and reflected on the Y direction negative side (one side) of the side portion 71 of the electronic component 11 enters the beam splitter 20, and at the boundary between the beam splitters 18 and 20. After reflecting downward, it enters the beam splitter 22.
  • the light that has entered the beam splitter 22 is reflected twice, then exits downward from the beam splitter 22, enters the beam splitter 74, and the boundary between the beam splitters 74 and 75 (the surface where the beam splitters 74 and 75 are in close contact with each other). ) And proceeds toward the imaging unit 12 toward the Y direction negative side.
  • the light irradiated from the illumination that illuminates the beam splitters 19 and 21 and reflected on the Y-direction negative side (one side) of the side portion 72 of the electronic component 11 also proceeds in the same manner in the beam splitters 21, 23, and 74 in order. Head to 12.
  • the light irradiated from the illumination for illuminating the beam splitters 18 and 20 and reflected on the Y direction positive side (the other side) of the side portion 71 of the electronic component 11 passes through the beam splitter 20 and enters the beam splitter 22. After exiting the beam splitter 22 downward, it passes through the beam splitters 74 and 75, enters the beam splitter 76, reflects, changes the path to the Y direction negative side, exits the beam splitter 76, Head to the imaging means 13.
  • the light irradiated from the illumination that illuminates the beam splitters 19 and 21 and reflected on the Y-direction positive side (the other side) of the side portion 72 of the electronic component 11 also travels the beam splitters 21, 23, 74, 75, and 76 in the same manner.
  • an image 77 (first image) captured by the imaging unit 12 is an image of a region from the Y-direction negative side to the center of the side portion 72 of the electronic component 11 on the left half, as shown in FIG.
  • an image of the region from the Y-direction negative side to the center of the side portion 71 of the electronic component 11 is captured.
  • the side parts 71 and 72 of the electronic component 11 are positioned above the negative side in the Y direction in the image 77.
  • the image 78 (second image) captured by the imaging means 13 captures an image of the region from the Y-direction positive side to the center of the side portion 72 of the electronic component 11 in the left half, and the electronic component in the right half.
  • region from the Y direction positive side to the center of 11 side parts 71 is caught.
  • the image of each Y direction positive side is located above each center.
  • the images 77 and 78 can be combined to obtain an entire image of the side portion 71 of the electronic component 11 and an entire image of the side portion 72 of the electronic component 11.
  • an appearance inspection facility that performs an appearance inspection of the four side portions 15, 16, 71, and 72 of the electronic component 11.
  • a rotating body in which a plurality of nozzles 17 are circularly attached at a predetermined pitch is provided on the outer periphery, and each nozzle 17 can be moved up and down.
  • the rotating body whose rotation axis extends in the vertical direction intermittently rotates by a predetermined angle, and sequentially conveys the electronic components 11 held by the nozzles 17 to the inspection positions P and Q.
  • Each electronic component 11 is held by each nozzle 17 in a state where the side portions 15 and 16 are along the conveying direction of the electronic component 11, and the side portions 15 and 16 are visually inspected at the inspection position P, and at the inspection position Q.
  • the side parts 71 and 72 are visually inspected.
  • the X direction in the appearance inspection apparatus 10 is provided at the inspection position P in an arrangement along the conveying direction of the electronic component 11, and the appearance inspection apparatus 70 has the X direction in the appearance inspection apparatus 70 in the electronic component 11.
  • the nozzle 17 may be in an ascending position or a descending position when the electronic component 11 is transported to the inspection position P and when the electronic component 11 is transported from the inspection position P to another position.
  • the nozzle 17 is disposed at the raised position. This is because when the electronic component is transported with the nozzle 17 lowered at the inspection position Q, the electronic component 11 contacts the beam splitters 18, 19, 20, 21 and the like, but does not contact at the inspection position P. Because.
  • the embodiment has been described in which the first and second images are combined to obtain an image of the entire side A of the electronic component and an image of the entire side B of the electronic component, but the first and second images have been described.
  • the image of the entire electronic component A and the image of the entire side B of the electronic component are not obtained, and three or more image pickup means including the first and second image pickup means are used.
  • An image of the entire component A and an image of the entire side B of the electronic component may be obtained.
  • N imaging means for imaging the side parts A and B of the electronic component arranged at the inspection position are provided (N is a natural number) ),
  • the images picked up by the N image pickup means respectively contain a part of the image of the side part A and a part of the image of the side part B, respectively. It is possible to obtain an image of the entire side A of the electronic component and an image of the entire side B of the electronic component by combining the images captured by the N imaging units.
  • the region to be inspected may include a part other than the side parts A and B, may be a part other than the side parts A and B, and may be only one of the side parts A and B. There may be.
  • an appearance inspection apparatus 90 shown in FIGS. 10 and 11 in which only the side portion 16 of the electronic component 11 is an inspection target area will be described.
  • symbol is attached
  • the appearance inspection apparatus 90 does not include the beam splitters 18, 20, and 22 and the illumination 27 as compared with the appearance inspection apparatus 10, and the optical path adjustment unit 91 includes the beam splitter. 19, 21, 23, 24, 25, 26.
  • the image 92 (first image) captured by the imaging unit 12 captures an image from one side to the center of the side part 16 of the electronic component 11, and the image 93 (second image) captured by the imaging unit 13. In the image), an image from the other side of the side part 16 of the electronic component 11 to the center is captured.
  • an electronic component subjected to appearance inspection may be provided with a plurality of terminals made of metal wires on the side.
  • the optical path adjusting means is disposed between at least one of the optical path between the electronic component and the first image pickup means and between the electronic component and the optical path of the second image pickup means. It is also possible to divide the bottom portion into first and second images while suppressing one of the imaging means from entering the other imaging range.
  • the imaging directions of the first and second imaging means may be non-parallel.
  • the first imaging means is The hardware for moving the first imaging unit at a position along the imaging direction of the first imaging unit may be provided independently of the hardware for moving the second imaging unit at a position along the imaging direction of the second imaging unit.
  • the optical path adjusting means may include a mirror that reflects light in addition to the beam splitter, and the image of the entire side part A of the electronic component and the entire side part B of the electronic component are included in the virtual frame. It need not be designed to fit the images in parallel.
  • the appearance inspection apparatus includes first and second imaging units that respectively image different portions of the inspection target area of the electronic component
  • the image of the inspection target area is an image captured by each of the plurality of imaging units. It is divided into. Therefore, it is possible to reduce the area other than the image of the inspection target area captured by the captured image, and as a result, it is possible to shorten the processing time for performing the appearance inspection. Therefore, the present invention is effective for efficiently performing an appearance inspection of an electronic component.

Abstract

An appearance inspection device 10 for inspecting the appearance of an area being inspected 15, 16 of a rectangular cuboid electronic component 11, the appearance inspection device being provided with first and second imaging means 12, 13 for imaging different parts of the area being inspected 15, 16, and an optical path adjustment means 14 for changing the direction of travel of light and making the image of the area being inspected 15, 16 fit in at least one from among the first image 12a imaged by the first imaging means 12 and the second image 13a imaged by the second imaging means 13.

Description

外観検査装置Appearance inspection device
本発明は、電子部品の外観を検査する外観検査装置に関する。 The present invention relates to an appearance inspection apparatus for inspecting the appearance of an electronic component.
ベアチップやCSP(Chip Size Package)等の各種電子部品は、外観が撮像され、クラックや欠け、あるいは疵の有無が検査された後に出荷される。例えば、内部に配線層を備える電子部品においては、内側まで食い込んだクラックが存在していた場合、配線の断線が疑われる。このため、外観検査は、電子部品の不良品を判別する上で重要である。
特許文献1には、電子部品(半導体素子)の上部及び2つの側部を1台のカメラで撮像する外観検査装置の具体例が記載されている。電子部品の上部及び2つの側部の撮像を1台のカメラで行うことにより、カメラの台数を抑制することができる。
Various electronic components such as bare chips and CSP (Chip Size Package) are shipped after the appearance is imaged and the presence or absence of cracks, chips or wrinkles is inspected. For example, in an electronic component having a wiring layer inside, if there is a crack that has penetrated to the inside, disconnection of the wiring is suspected. For this reason, the appearance inspection is important for determining defective electronic components.
Patent Document 1 describes a specific example of an appearance inspection apparatus that images an upper part and two side parts of an electronic component (semiconductor element) with a single camera. By performing imaging of the upper part and two side parts of the electronic component with one camera, the number of cameras can be suppressed.
特開2003-254726号公報JP 2003-254726 A
ところで、近年では、電子部品の小型化に伴い、外観検査において、マイクロメートルオーダーの精度がしばしば求められ、高画素数のカメラが採用されている。
しかしながら、画素数の多いカメラを用いると、撮像した画像のデータが大きくなって、データ転送や、画像の分析処理に長い時間を要し、結果として、一つあたりの電子部品の外観検査に要する時間が長くなるという課題が生じる。
本発明は、かかる事情に鑑みてなされるもので、直方体状の電子部品の検査対象領域を、処理時間が長くなるのを抑制した上で、外観検査する外観検査装置を提供することを目的とする。
By the way, in recent years, with the downsizing of electronic parts, in the appearance inspection, accuracy on the order of micrometers is often required, and a camera with a high pixel count is employed.
However, if a camera with a large number of pixels is used, the data of the captured image becomes large, and it takes a long time for data transfer and image analysis processing. As a result, it is necessary for visual inspection of each electronic component. The problem that time will become long arises.
The present invention is made in view of such circumstances, and an object of the present invention is to provide an appearance inspection apparatus for inspecting an inspection target region of a rectangular parallelepiped electronic component while suppressing an increase in processing time. To do.
前記目的に沿う本発明に係る外観検査装置は、直方体状の電子部品の検査対象領域を外観検査する外観検査装置において、前記検査対象領域の異なる部分をそれぞれ撮像する第1、第2の撮像手段と、光の進行方向を変えて、前記第1の撮像手段が撮像している第1の画像、及び、前記第2の撮像手段が撮像している第2の画像の少なくとも一方に、前記検査対象領域の像を収めさせる光路調整手段とを備える。なお、直方体状は、立方体状を含む。 The visual inspection apparatus according to the present invention that meets the above-described object is a visual inspection apparatus for visual inspection of an inspection target area of a rectangular parallelepiped electronic component, and first and second imaging means for imaging different portions of the inspection target area, respectively. The inspection direction is changed to at least one of the first image picked up by the first image pickup means and the second image picked up by the second image pickup means by changing the traveling direction of light. Optical path adjusting means for storing an image of the target area. The rectangular parallelepiped shape includes a cubic shape.
本発明に係る外観検査装置において、前記検査対象領域の異なる部分をそれぞれ撮像するN個の撮像手段を更に備え、前記光路調整手段は、前記N個の撮像手段がそれぞれ撮像する画像の少なくとも一つに、前記検査対象領域の像を収めさせることができる。但し、Nは、自然数である。 The visual inspection apparatus according to the present invention further includes N imaging units that respectively capture different portions of the inspection target region, and the optical path adjustment unit includes at least one of the images captured by the N imaging units. In addition, an image of the inspection target area can be stored. However, N is a natural number.
本発明に係る外観検査装置において、前記電子部品は対向する側部A、Bを備え、前記検査対象領域は、前記側部Aの一側及び他側と、前記側部Bの一側及び他側とに存在し、前記光路調整手段は、前記第1の画像に、前記側部Aの一側の像及び前記側部Bの一側の像を収めさせると共に、前記第2の画像に、前記側部Aの他側の像及び前記側部Bの他側の像を収めさせることができる。 In the appearance inspection apparatus according to the present invention, the electronic component includes opposing side portions A and B, and the inspection target area includes one side and the other side of the side portion A, and one side and the other of the side portion B. And the optical path adjusting means causes the first image to contain an image on one side of the side portion A and an image on one side of the side portion B, and the second image to An image on the other side of the side portion A and an image on the other side of the side portion B can be stored.
本発明に係る外観検査装置において、前記第1、第2の画像を合わせて、前記側部A全体の像及び前記側部B全体の像を得るのが好ましい。 In the appearance inspection apparatus according to the present invention, it is preferable that the first and second images are combined to obtain an image of the entire side portion A and an image of the entire side portion B.
本発明に係る外観検査装置において、前記電子部品の側部A、Bを撮像するN個の撮像手段を更に備え、前記光路調整手段は、前記N個の撮像手段がそれぞれ撮像する画像に、前記側部Aの一部の像及び前記側部Bの一部の像をそれぞれ収めさせ、前記第1、第2の画像及び前記N個の撮像手段が撮像する画像を合わせて、前記側部A全体の像及び前記側部B全体の像を得させることもできる。但し、Nは、自然数である。 The visual inspection apparatus according to the present invention further includes N imaging means for imaging the side portions A and B of the electronic component, and the optical path adjustment means is configured to display the images captured by the N imaging means, A part of the image of the side part A and a part of the image of the side part B are accommodated, and the first and second images and the images picked up by the N imaging means are combined to form the side part A. An entire image and an image of the entire side B can be obtained. However, N is a natural number.
本発明に係る外観検査装置において、前記光路調整手段は、光を屈折又は反射させて、前記側部A全体の像及び前記側部B全体の像を仮想枠内に並列に収めさせる光路調節ブロックを備え、前記第1、第2の撮像手段は、前記仮想枠の一側に収められる像及び該仮想枠の他側に収められる像をそれぞれとらえるのが好ましい。 In the appearance inspection apparatus according to the present invention, the optical path adjusting means refracts or reflects light so that the entire image of the side part A and the entire image of the side part B are stored in parallel within a virtual frame. It is preferable that the first and second imaging means capture an image stored on one side of the virtual frame and an image stored on the other side of the virtual frame.
本発明に係る外観検査装置において、光を屈折又は反射させて、前記仮想枠の一側に収められる像をとらえていた前記第1の撮像手段に、前記仮想枠の中心側に収められる像をとらえさせる光路シフト機構を、更に備えるのが好ましい。 In the visual inspection apparatus according to the present invention, an image stored on the center side of the virtual frame is refracted or reflected on the first imaging unit that captures the image stored on one side of the virtual frame. It is preferable to further include an optical path shift mechanism for capturing.
本発明に係る外観検査装置において、前記第1の撮像手段の、該第1の撮像手段の撮像方向に沿った位置、及び、前記第2の撮像手段の、該第2の撮像手段の撮像方向に沿った位置を調整する位置決め機構を、更に備えるのが好ましい。 In the appearance inspection apparatus according to the present invention, the position of the first imaging unit along the imaging direction of the first imaging unit, and the imaging direction of the second imaging unit of the second imaging unit. It is preferable to further include a positioning mechanism that adjusts the position along the line.
本発明に係る外観検査装置において、前記光路調整手段は、前記第1の画像に、前記電子部品の底部の前記側部A側及び前記側部B側それぞれの一側の像を、更に収めさせ、前記第2の画像に、前記底部の前記側部A側及び前記側部B側それぞれの他側の像を、更に収めさせるのが好ましい。 In the appearance inspection apparatus according to the present invention, the optical path adjusting means further stores an image on one side of each of the side part A side and the side part B side of the bottom of the electronic component in the first image. It is preferable that the second image further includes images on the other side of the side portion A side and the side portion B side of the bottom portion.
本発明に係る外観検査装置は、電子部品の検査対象領域の異なる部分(例えば、側部の一側及び他側)をそれぞれ撮像する第1、第2の撮像手段を備えるので、検査対象領域の像は、複数の撮像手段がそれぞれ撮像する画像に分割される。このため、1台の撮像手段のみで撮像するのに比べ、撮像された全体の画像における外観検査に不要な領域が抑制され、結果として、外観検査を行うための処理時間を短縮可能である。
なお、光路調整手段を備えるため、第1、第2の撮像手段の配置が限定されるのを抑制可能である。
The visual inspection apparatus according to the present invention includes first and second imaging units that respectively image different parts (for example, one side and the other side) of the inspection target area of the electronic component. The image is divided into images picked up by a plurality of image pickup means. For this reason, compared with imaging with only one imaging unit, an area unnecessary for appearance inspection in the entire captured image is suppressed, and as a result, processing time for performing appearance inspection can be shortened.
Since the optical path adjustment means is provided, it is possible to suppress the arrangement of the first and second imaging means from being limited.
本発明の一実施例に係る外観検査装置の側面図である。1 is a side view of an appearance inspection apparatus according to an embodiment of the present invention. 同外観検査装置の説明図である。It is explanatory drawing of the same external appearance inspection apparatus. 仮想枠内に収まる像の説明図である。It is explanatory drawing of the image settled in a virtual frame. (A)、(B)はそれぞれ、光路シフト機構の説明図である。(A), (B) is explanatory drawing of an optical path shift mechanism, respectively. 第1の変形例に係る外観検査装置の説明図である。It is explanatory drawing of the external appearance inspection apparatus which concerns on a 1st modification. (A)、(B)はそれぞれ、同外観検査装置の第1、第2の撮像手段で撮像される画像の説明図である。(A), (B) is explanatory drawing of the image imaged with the 1st and 2nd imaging means of the same external appearance inspection apparatus, respectively. (A)、(B)はそれぞれ、ビームスプリッタ及び照明が移動する様子を示す説明図である。(A), (B) is explanatory drawing which shows a mode that a beam splitter and illumination each move. 第2の変形例に係る外観検査装置の側面図である。It is a side view of the external appearance inspection apparatus which concerns on a 2nd modification. 同外観検査装置の説明図である。It is explanatory drawing of the same external appearance inspection apparatus. 第3の変形例に係る外観検査装置の側面図である。It is a side view of the external appearance inspection apparatus which concerns on a 3rd modification. 同外観検査装置の説明図である。It is explanatory drawing of the same external appearance inspection apparatus.
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1、図2に示すように、本発明の一実施例に係る外観検査装置10は、直方体状(立方体状を含む)の電子部品11の検査対象領域の異なる部分をそれぞれ外観撮像する撮像手段12(第1の撮像手段)及び撮像手段13(第2の撮像手段)と、光の進行方向を変える光路調整手段14とを備えて、電子部品11の対向する(幅方向両側にそれぞれ設けられた)側部15(側部A)及び側部16(側部B)を外観検査する装置である。本実施例では、検査対象領域が、側部15の一側及び他側と、側部16の一側及び他側にそれぞれ存在している。以下、詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1 and FIG. 2, an appearance inspection apparatus 10 according to an embodiment of the present invention is an image pickup unit that picks up an appearance of different portions of an inspection target area of a rectangular parallelepiped (including cubic) electronic component 11. 12 (first image pickup means) and image pickup means 13 (second image pickup means), and an optical path adjustment means 14 for changing the traveling direction of light. This is a device for inspecting the appearance of the side 15 (side A) and the side 16 (side B). In the present embodiment, inspection target regions exist on one side and the other side of the side portion 15 and on one side and the other side of the side portion 16, respectively. Details will be described below.
外観検査装置10によって外観検査がなされる平面視して矩形状の電子部品11は、図1、図2に示すように、厚みに比べて幅及び奥行きが長く、矩形(正方形を含む、以下、同じ)の板状に形成されている。
外観検査装置10は、電子部品11の上側を吸着する複数のノズル(ワーク保持部の一例)17を有している。筒状の各ノズル17は、吸着保持して水平に保った電子部品11を、順次、側部15、16が撮像される一の位置(以下、「検査位置P」ともいう)へ搬送する。
As shown in FIGS. 1 and 2, the electronic component 11 having a rectangular shape in a plan view in which an appearance inspection is performed by the appearance inspection apparatus 10 has a width and a depth that are longer than a thickness and includes a rectangle (including a square, The same).
The appearance inspection apparatus 10 includes a plurality of nozzles (an example of a work holding unit) 17 that sucks the upper side of the electronic component 11. Each of the cylindrical nozzles 17 sequentially conveys the electronic component 11 held by suction and held horizontally to one position where the side portions 15 and 16 are imaged (hereinafter also referred to as “inspection position P”).
検査位置Pに搬送された電子部品11の近傍には、図1に示すように、光路調整手段14が設けられている。光路調整手段14は、電子部品11から離れた位置に配された複数のビームスプリッタ18~26を備えている。以下、電子部品11が検査位置Pに配されていることを前提に説明する。
ビームスプリッタ18、19は、電子部品11と同じ高さ位置に設けられている。ビームスプリッタ18、19と同形状のビームスプリッタ20、21は、それぞれ、ビームスプリッタ18、19に密着した状態で、側部15、16に対向して配置されている。
As shown in FIG. 1, an optical path adjusting means 14 is provided in the vicinity of the electronic component 11 conveyed to the inspection position P. The optical path adjusting means 14 includes a plurality of beam splitters 18 to 26 arranged at positions away from the electronic component 11. The following description is based on the assumption that the electronic component 11 is arranged at the inspection position P.
The beam splitters 18 and 19 are provided at the same height as the electronic component 11. The beam splitters 20 and 21 having the same shape as the beam splitters 18 and 19 are arranged to face the side portions 15 and 16 in close contact with the beam splitters 18 and 19, respectively.
側面視して平行四辺形のビームスプリッタ22、23は、ビームスプリッタ20の下部及びビームスプリッタ21の下部にそれぞれ固定されている。ビームスプリッタ24、25は、ビームスプリッタ22、23の下方に、ビームスプリッタ22、23から間隔を空けて配置されている。同形状のビームスプリッタ24、25は、密着して設けられている。ビームスプリッタ24、25の下方には、ビームスプリッタ26が、ビームスプリッタ24、25から離れた位置に設けられている。
なお、ビームスプリッタ18~26は、図示しない支持部材によって、固定されている。ビームスプリッタ18~26以外の形状のビームスプリッタによって、光路調整手段を形成してもよい。
Viewed from the side, the parallelogram beam splitters 22 and 23 are fixed to the lower part of the beam splitter 20 and the lower part of the beam splitter 21, respectively. The beam splitters 24 and 25 are disposed below the beam splitters 22 and 23 and spaced from the beam splitters 22 and 23. The beam splitters 24 and 25 having the same shape are provided in close contact with each other. Below the beam splitters 24 and 25, a beam splitter 26 is provided at a position away from the beam splitters 24 and 25.
The beam splitters 18 to 26 are fixed by a support member (not shown). The optical path adjusting means may be formed by a beam splitter having a shape other than the beam splitters 18 to 26.
ビームスプリッタ18、20と同じ高さ位置には、電子部品11とは反対側にビームスプリッタ18、20から間隔を空けて、照明27が設けられている。ビームスプリッタ19、21と同じ高さ位置には、電子部品11とは反対側にビームスプリッタ19、21から間隔を空けて、照明28が設けられている。照明27、28は、それぞれ、ビームスプリッタ18、20及びビームスプリッタ19、20を照らす向きに配置されている。 Illumination 27 is provided at the same height as the beam splitters 18 and 20 on the side opposite to the electronic component 11 and spaced from the beam splitters 18 and 20. At the same height as the beam splitters 19 and 21, an illumination 28 is provided on the side opposite to the electronic component 11 and spaced from the beam splitters 19 and 21. The illuminations 27 and 28 are arranged so as to illuminate the beam splitters 18 and 20 and the beam splitters 19 and 20, respectively.
撮像手段12は、図1、図2に示すように、ビームスプリッタ24、25と同じ高さ位置で、固定部材29によって支持され、撮像手段12の撮像方向は、ビームスプリッタ24、25に向かって水平に保たれている。撮像手段13は、ビームスプリッタ26と同じ高さ位置で、固定部材30によって支持され、撮像手段13の撮像方向は、ビームスプリッタ26に向かって、水平に保たれている。 As shown in FIGS. 1 and 2, the imaging unit 12 is supported by the fixing member 29 at the same height as the beam splitters 24 and 25, and the imaging direction of the imaging unit 12 is directed toward the beam splitters 24 and 25. It is kept horizontal. The imaging unit 13 is supported by the fixing member 30 at the same height as the beam splitter 26, and the imaging direction of the imaging unit 13 is kept horizontal toward the beam splitter 26.
撮像手段12、13それぞれの撮像方向は、同じ方向である(即ち、撮像手段12の撮像方向と撮像手段13の撮像方向は、平行である)。以下、撮像手段12、13の撮像方向をY方向(Y方向正の向き)とし、Y方向と直交し、かつ、水平な方向をX方向とする。
電子部品11は、側部15、16の長手方向がX方向に沿っており、側部16は、側部15のY方向正側に配されている。図2に示すように、Y方向正の向きに側部15を見て(側部15を正面視して)、側部15の右側をX方向正側、側部15の左側をX方向負側とする。
撮像手段13は、撮像手段12よりX方向正側かつY方向正側で、撮像手段12より低い位置に配置されている。
The imaging directions of the imaging units 12 and 13 are the same (that is, the imaging direction of the imaging unit 12 and the imaging direction of the imaging unit 13 are parallel). Hereinafter, the imaging direction of the imaging units 12 and 13 is defined as the Y direction (Y direction positive direction), and the horizontal direction orthogonal to the Y direction is defined as the X direction.
In the electronic component 11, the longitudinal directions of the side portions 15 and 16 are along the X direction, and the side portion 16 is arranged on the Y direction positive side of the side portion 15. As shown in FIG. 2, the side 15 is viewed in the positive direction of the Y direction (when the side 15 is viewed from the front), the right side of the side 15 is the positive side in the X direction, and the left side of the side 15 is negative in the X direction. Let it be the side.
The imaging unit 13 is arranged at a position lower than the imaging unit 12 on the X direction positive side and the Y direction positive side from the imaging unit 12.
固定部材29、30は、ねじ軸31に装着されたナットブロック32に固定されている。ねじ軸31は、Y方向に配置され、ねじ軸31に連結されたモータ33の駆動により回転してナットブロック32を移動させる。撮像手段12、13は、ねじ軸31の回転により、ナットブロック32と共に、Y方向正の向き、又は、Y方向負の向きに移動する。撮像手段12、13が移動する向きは、モータ33が回転する向きによって決定される。
なお、撮像手段12、13を移動させる機構は、ねじ軸とナットブロックを備えるものに限定されない。更に、撮像手段12を移動させる機構と、撮像手段13を移動させる機構とは、それぞれ独立していてもよい。
The fixing members 29 and 30 are fixed to a nut block 32 attached to the screw shaft 31. The screw shaft 31 is arranged in the Y direction and rotates by driving a motor 33 coupled to the screw shaft 31 to move the nut block 32. The imaging units 12 and 13 move in the Y direction positive direction or the Y direction negative direction together with the nut block 32 by the rotation of the screw shaft 31. The direction in which the imaging means 12 and 13 move is determined by the direction in which the motor 33 rotates.
Note that the mechanism for moving the imaging means 12 and 13 is not limited to one having a screw shaft and a nut block. Furthermore, the mechanism for moving the imaging unit 12 and the mechanism for moving the imaging unit 13 may be independent of each other.
以下、撮像手段12、13が、電子部品11の側部15、16を撮像する様子について説明する。
まず、照明27から照射された光は、図1に示すように、ビームスプリッタ18、20を順に透過して、電子部品11の側部15で反射し、Y方向負の向きに進みながらビームスプリッタ20内に進入した後、ビームスプリッタ18、20の境界で下向きに反射して、ビームスプリッタ22内に進入する。ビームスプリッタ22内で2回反射した光は、下向きに進みながら、ビームスプリッタ22から出て、ビームスプリッタ24内に進入した後、ビームスプリッタ24、25の境界で反射する光と、ビームスプリッタ25内に進入する光とに分岐する。ビームスプリッタ24、25の境界は、Y方向負側に向かって下がる方向に傾斜している。
Hereinafter, a state in which the imaging units 12 and 13 image the side portions 15 and 16 of the electronic component 11 will be described.
First, as shown in FIG. 1, the light emitted from the illumination 27 is transmitted through the beam splitters 18 and 20 in order, reflected by the side portion 15 of the electronic component 11, and proceeds in the negative direction of the Y direction. After entering the beam splitter 20, the beam is reflected downward at the boundary between the beam splitters 18 and 20 and enters the beam splitter 22. The light reflected twice in the beam splitter 22 travels downward, exits the beam splitter 22, enters the beam splitter 24, and then reflects the light reflected at the boundary between the beam splitters 24, 25 and the beam splitter 25. Branches into the light entering the. The boundaries of the beam splitters 24 and 25 are inclined in a direction that decreases toward the Y direction negative side.
ビームスプリッタ24、25の境界で反射した光は、撮像手段12に向かって、Y方向負の向きに進行し、撮像手段12が撮像している図2に示す画像12a(第1の画像)内に収められる。
一方、ビームスプリッタ25内に進入した光は、下向きに進んでビームスプリッタ26内に進入し、Y方向負の向きに進行し、撮像手段13が撮像している図2に示す画像13a(第2の画像)内に収められる。
The light reflected at the boundary between the beam splitters 24 and 25 travels in the negative direction in the Y direction toward the image pickup means 12, and is within the image 12a (first image) shown in FIG. It is stored in.
On the other hand, the light that has entered the beam splitter 25 travels downward, enters the beam splitter 26, travels in the negative direction of the Y direction, and is imaged by the imaging means 13 as shown in FIG. Image).
撮像手段12は、図2に示すように、電子部品11のX方向負側(一側)を撮像する位置にあり、撮像手段13は、電子部品11のX方向正側(他側)を撮像する位置にある。画像12aの下側半分には、側部15のX方向負側から中央までの領域がとらえられ、画像13aの下側半分には、側部15のX方向正側から中央までの領域がとらえられる。撮像手段12、13は、画像12aと画像13aを合わせて、電子部品11の側部15全体の像が得られるように配置されている。 As shown in FIG. 2, the imaging unit 12 is in a position for imaging the X direction negative side (one side) of the electronic component 11, and the imaging unit 13 images the X direction positive side (the other side) of the electronic component 11. It is in the position to do. The lower half of the image 12a captures the region from the X direction negative side to the center of the side portion 15, and the lower half of the image 13a captures the region of the side portion 15 from the X direction positive side to the center. It is done. The imaging means 12 and 13 are arranged so that the image of the entire side part 15 of the electronic component 11 can be obtained by combining the image 12a and the image 13a.
照明28から照射された光は、図1に示すように、ビームスプリッタ19、21を順に透過して、電子部品11の側部16でY方向正の向きに反射し、ビームスプリッタ21内に進入した後、ビームスプリッタ19、21の境界で下向きに反射して、ビームスプリッタ23内に進入する。ビームスプリッタ23内で2回反射した光は、下向きに進みながら、ビームスプリッタ23から出て、ビームスプリッタ24内に進入した後、ビームスプリッタ24、25の境界で反射する光と、ビームスプリッタ25内に進入する光とに分岐する。 As shown in FIG. 1, the light emitted from the illumination 28 sequentially passes through the beam splitters 19 and 21, is reflected in the positive direction in the Y direction by the side portion 16 of the electronic component 11, and enters the beam splitter 21. After that, the light is reflected downward at the boundary between the beam splitters 19 and 21 and enters the beam splitter 23. The light reflected twice in the beam splitter 23 travels downward, exits the beam splitter 23 and enters the beam splitter 24, and then reflects the light reflected at the boundary between the beam splitters 24 and 25 and the beam splitter 25. Branches into the light entering the.
ビームスプリッタ24、25の境界で反射した光は、撮像手段12に向かって、Y方向負の向きに進行し、撮像手段12が撮像している図2に示す画像12a(第1の画像)内に収められる。
一方、ビームスプリッタ25内に進入した光は、下向きに進んでビームスプリッタ26内に進入し、Y方向負の向きに進行し、撮像手段13が撮像している図2に示す画像13a(第2の画像)内に収められる。
The light reflected at the boundary between the beam splitters 24 and 25 travels in the negative direction in the Y direction toward the image pickup means 12, and is within the image 12a (first image) shown in FIG. It is stored in.
On the other hand, the light that has entered the beam splitter 25 travels downward, enters the beam splitter 26, travels in the negative direction of the Y direction, and is imaged by the imaging means 13 as shown in FIG. Image).
その結果、下側半分に電子部品11の側部15のX方向負側から中央までの領域がとらえられている画像12aには、上側半分に、電子部品11の側部16のX方向負側から中央までの領域が、上下反対の像となって、とらえられる。そして、下側半分に電子部品11の側部15のX方向正側から中央までの領域がとらえられている画像13aには、上側半分に、側部16のX方向正側から中央までの領域が、上下反対の像となって、とらえられる。即ち、光路調整手段14は、画像12aに、電子部品11の側部15のX方向負側(一側)の像及び側部16のX方向負側(一側)の像を収めさせ、画像13aに、電子部品11の側部15のX方向正側(他側)の像及び側部16のX方向正側(他側)の像を収めさせる。
従って、画像12aと画像13aを合わせて、電子部品11の側部16全体の像が得られることになる。本実施例では、画像12aにとらえられている電子部品11の側部15、16それぞれの像の一部が、画像13aにとらえられている電子部品11の側部15、16それぞれの像の一部と重複している。
As a result, in the image 12a in which the region from the X direction negative side to the center of the side portion 15 of the electronic component 11 is captured in the lower half, the X direction negative side of the side portion 16 of the electronic component 11 is displayed in the upper half. The area from the center to the center is captured as an upside down image. Then, in the image 13a in which the region from the X direction positive side to the center of the side portion 15 of the electronic component 11 is captured in the lower half, the region from the X direction positive side to the center of the side portion 16 is displayed in the upper half. Is captured as an upside down image. In other words, the optical path adjusting unit 14 causes the image 12a to store an image on the X direction negative side (one side) of the side portion 15 of the electronic component 11 and an image on the X direction negative side (one side) of the side portion 16 to obtain an image. An image on the X direction positive side (other side) of the side portion 15 of the electronic component 11 and an image on the X direction positive side (other side) of the side portion 16 are stored in 13a.
Therefore, an image of the entire side portion 16 of the electronic component 11 is obtained by combining the image 12a and the image 13a. In the present embodiment, a part of the image of each of the side parts 15 and 16 of the electronic component 11 captured in the image 12a is a part of the image of each of the side parts 15 and 16 of the electronic component 11 captured in the image 13a. It overlaps with the department.
ここで、矩形の仮想枠34が、図1に示すように、ビームスプリッタ22、23とビームスプリッタ24、25との間に、水平に保たれて、配されているとする。下から仮想枠34を見上げると、仮想枠34内には、図3に示すように、Y方向正側半分に、電子部品11の側部16全体の像がX方向に沿った状態で収まり、Y方向負側半分に、電子部品11の側部15全体の像がX方向に沿った状態で収まる。 Here, it is assumed that the rectangular virtual frame 34 is arranged horizontally and kept between the beam splitters 22 and 23 and the beam splitters 24 and 25 as shown in FIG. Looking up at the virtual frame 34 from below, as shown in FIG. 3, the image of the entire side part 16 of the electronic component 11 is placed in the virtual frame 34 in a state along the X direction in the Y direction positive half. The entire image of the side part 15 of the electronic component 11 is accommodated in the X direction negative half in the Y direction negative half.
よって、ビームスプリッタ18、19、20、21、22、23は全体で、光を反射させて、電子部品11の側部15全体の像及び電子部品11の側部16全体の像を仮想枠34内に並列に収めさせていることになる。
本実施例では、主として、ビームスプリッタ18、19、20、21、22、23によって、光路調節ブロックが構成されている。
そして、撮像手段12が、電子部品11の側部15、16それぞれのX方向負側を撮像し、撮像手段13が、電子部品11の側部15、16それぞれのX方向正側を撮像しているのは、撮像手段12、13が、仮想枠34のX方向負側(一側)に収められる像及び仮想枠34のX方向正側(他側)に収められる像をそれぞれとらえるように配置されていることを意味している。
Therefore, the beam splitters 18, 19, 20, 21, 22, 23 as a whole reflect light, so that the image of the entire side part 15 of the electronic component 11 and the image of the entire side part 16 of the electronic component 11 are virtual frames 34. It will be stored in parallel.
In this embodiment, an optical path adjustment block is mainly constituted by the beam splitters 18, 19, 20, 21, 22, and 23.
Then, the imaging means 12 images the X direction negative side of each of the side parts 15 and 16 of the electronic component 11, and the imaging means 13 images the X direction positive side of each of the side parts 15 and 16 of the electronic component 11. The imaging means 12 and 13 are arranged so as to capture an image stored on the X direction negative side (one side) of the virtual frame 34 and an image stored on the X direction positive side (other side) of the virtual frame 34, respectively. It means that
電子部品11の側部15全体の像及び電子部品11の側部16全体の像を仮想枠34内に並列に収めさせる構造を採用していることによって、撮像手段12、13それぞれが撮像する画像を合わせて、電子部品11の側部15、16全体の像を収めさせる設計を容易にしている。
なお、光路調節ブロックは、光の屈折のみを利用して、あるいは、光の反射と屈折を利用して、電子部品11の側部15全体の像及び電子部品11の側部16全体の像を仮想枠34内に収めるように設計されていてもよい。
By adopting a structure in which an image of the entire side part 15 of the electronic component 11 and an image of the entire side part 16 of the electronic component 11 are accommodated in parallel in the virtual frame 34, images captured by the imaging units 12 and 13 respectively. Therefore, the design for accommodating the entire image of the side portions 15 and 16 of the electronic component 11 is facilitated.
The optical path adjustment block uses only the refraction of light or uses the reflection and refraction of light to display the image of the entire side part 15 of the electronic component 11 and the image of the entire side part 16 of the electronic component 11. It may be designed to fit within the virtual frame 34.
撮像手段12、13には、図2に示すように画像処理手段40が接続されている。画像処理手段40は、画像12aのデータ及び画像13aのデータを撮像手段12、13からそれぞれ取得し、ソフトウェアプログラムを用いて、電子部品11の側部15、16のクラックや欠けの有無等を検査する(本実施例では、側部15全体と側部16全体とが検査対象領域である)。クラックや欠けの有無等の検査は、画像12a、13aのそれぞれについて行ってもよいし、画像12a、13aを合成して得た電子部品11の側部15全体の像及び側部16全体の像それぞれに対して行ってもよい。画像処理手段40は、ソフトウェアプログラムが格納された記憶媒体、CPU及びメモリを備えている。 An image processing means 40 is connected to the imaging means 12 and 13 as shown in FIG. The image processing unit 40 acquires the data of the image 12a and the data of the image 13a from the imaging units 12 and 13, respectively, and inspects the presence or absence of cracks or chips on the side parts 15 and 16 of the electronic component 11 using a software program. (In this embodiment, the entire side portion 15 and the entire side portion 16 are inspection target regions). The inspection for the presence or absence of cracks or chips may be performed on each of the images 12a and 13a, or an image of the entire side portion 15 and an image of the entire side portion 16 of the electronic component 11 obtained by synthesizing the images 12a and 13a. You may do this for each. The image processing means 40 includes a storage medium storing a software program, a CPU, and a memory.
通常の撮像手段の受光範囲は、正方形状であるため、特に、厚みに比べて側部A、Bの横幅が長い電子部品11のような電子部品を1つの撮像手段で撮像する場合、撮像された画像には、側部A、B以外の領域が多く含まれることになる。その結果、側部A全体及び側部B全体を外観検査するために撮像される画像のデータサイズが大きくなって、撮像された画像を画像処理手段に転送する時間や、画像処理手段による外観検査の処理時間が長くなる。
これに対し、本実施例のように、2台の撮像手段12、13を用いて、2つの画像12a、13aを得る場合、撮像手段12、13より画素数が多い撮像手段を1台用いるのに比べ、画像全体のデータが大きくなるのを抑制でき、撮像した画像の転送や、画像処理手段40による外観検査の処理時間が短縮され、1つの電子部品の側部A全体及び側部B全体の外観検査に要する時間を短縮できる。更に、2つの画像データに対しては、画像データの転送や画像処理手段による2つの画像の外観検査の処理を並列して行うことができるので、本実施例では、その点においても、外観検査の時間短縮が可能である。
しかも、複数の撮像手段を用いる本実施例では、撮像された画像において、電子部品の側部A全体及び側部B全体に対応する画素の数が少なくなるのを抑制でき、検査精度の低下も回避可能である。
Since the light receiving range of a normal image pickup means is a square shape, the image is picked up particularly when an image of an electronic component such as the electronic component 11 in which the lateral widths of the side portions A and B are longer than the thickness is taken by one image pickup means. The image includes many regions other than the side portions A and B. As a result, the data size of the image captured for the appearance inspection of the entire side part A and the entire side part B increases, the time for transferring the captured image to the image processing means, and the appearance inspection by the image processing means The processing time becomes longer.
On the other hand, as in this embodiment, when two images 12a and 13a are obtained using two imaging means 12 and 13, one imaging means having a larger number of pixels than the imaging means 12 and 13 is used. Compared to the above, it is possible to suppress the data of the entire image from becoming large, transfer time of the captured image and processing time of the appearance inspection by the image processing means 40 are shortened, and the entire side part A and the entire side part B of one electronic component The time required for visual inspection can be shortened. Furthermore, since transfer of image data and appearance inspection processing of two images by the image processing means can be performed in parallel on the two image data, this embodiment also has an appearance inspection in this respect. Can be shortened.
In addition, in this embodiment using a plurality of image pickup means, it is possible to suppress the decrease in the number of pixels corresponding to the entire side part A and the entire side part B of the electronic component in the captured image, and the inspection accuracy is also reduced. It can be avoided.
また、本実施例では、撮像手段12、13それぞれに、単焦点のカメラを採用している。このため、側部Aと側部B間の距離が異なる様々な大きさの電子部品に対して、側部A、Bを鮮明に撮像するには、側部Aと側部B間の距離に応じて、撮像手段12、13の光学距離を調整する必要がある。
外観検査装置10においては、モータ33の作動により、撮像手段12のY方向(即ち、撮像手段12の撮像方向)に沿った位置、及び、撮像手段13のY方向(即ち、撮像手段13の撮像方向)に沿った位置を変えることにより、撮像手段12、13の光学距離を調整する。
なお、本実施例では、位置決め機構が、主として、ねじ軸31、ナットブロック32及びモータ33によって構成されている。
In the present embodiment, a single-focus camera is employed for each of the imaging means 12 and 13. For this reason, in order to clearly image the side parts A and B for electronic parts of various sizes having different distances between the side part A and the side part B, the distance between the side part A and the side part B is set to Accordingly, it is necessary to adjust the optical distance of the imaging means 12 and 13.
In the appearance inspection apparatus 10, the position of the imaging unit 12 along the Y direction (that is, the imaging direction of the imaging unit 12) and the Y direction of the imaging unit 13 (that is, imaging of the imaging unit 13) by the operation of the motor 33. The optical distance of the imaging means 12 and 13 is adjusted by changing the position along the direction.
In this embodiment, the positioning mechanism is mainly composed of the screw shaft 31, the nut block 32, and the motor 33.
そして、ビームスプリッタ24、25と撮像手段12の間には、光を反射させる図4(A)に示す光路シフト機構35を設けてもよい。光路シフト機構35は、図4(A)に示すように、複数のビームスプリッタ36、37、38を備えている。ビームスプリッタ36、37は密着し、ビームスプリッタ38は、ビームスプリッタ37からX方向負の向きに距離を有する位置に設けられている。 Further, an optical path shift mechanism 35 shown in FIG. 4A that reflects light may be provided between the beam splitters 24 and 25 and the imaging unit 12. As shown in FIG. 4A, the optical path shift mechanism 35 includes a plurality of beam splitters 36, 37, and 38. The beam splitters 36 and 37 are in close contact with each other, and the beam splitter 38 is provided at a position having a distance from the beam splitter 37 in the negative direction of the X direction.
ビームスプリッタ24からY方向負の向きに進む光は、ビームスプリッタ36、37を反射しながら通過して、ビームスプリッタ38内に進入し、ビームスプリッタ38からY方向負の向きに出て、撮像手段12に向かう。ビームスプリッタ38から出た光は、ビームスプリッタ36に進入する際に比べて、X方向負側を、進行する。従って、光路シフト機構35は、光を反射させて、仮想枠34のX方向負側に収められる像をとらえていた撮像手段12に、仮想枠34の中心側に収められる像をとらえさせることができる。
このため、側部Aの全体の像及び側部Bの全体の像が、撮像手段12が撮像する画像内に収まる大きさの電子部品の場合、光路シフト機構35を用いることで、撮像手段12は、電子部品の側部Aの全体の像及び側部Bの全体の像を、1つの画像に収めることが可能となる。
The light traveling in the Y direction negative direction from the beam splitter 24 passes through the beam splitters 36 and 37 while reflecting, enters the beam splitter 38, exits from the beam splitter 38 in the Y direction negative direction, and is imaged. Head to 12. The light emitted from the beam splitter 38 travels on the negative side in the X direction compared to when entering the beam splitter 36. Therefore, the optical path shift mechanism 35 reflects the light so that the imaging unit 12 that captures the image stored on the X direction negative side of the virtual frame 34 can capture the image stored on the center side of the virtual frame 34. it can.
For this reason, in the case of an electronic component having a size that allows the entire image of the side portion A and the entire image of the side portion B to be within the image captured by the image capturing unit 12, the image capturing unit 12 is used by using the optical path shift mechanism 35. It is possible to fit the entire image of the side part A and the entire image of the side part B of the electronic component into one image.
光路シフト機構は、複数のビームスプリッタを備えるものに限定されず、例えば、図4(B)に示す、平面視して矩形の1つのビームスプリッタ39によって構成される光路シフト機構35aであってもよい。ビームスプリッタ39は、図4(B)に示すように、X方向及びY方向それぞれに対して傾いて配置され、光の屈折を利用して、仮想枠34のX方向負側に収められる像をとらえていた撮像手段12に、仮想枠34の中心側に収められる像をとらえさせ、電子部品の側部Aの全体の像及び側部Bの全体の像を、1つの画像に収めさせる。 The optical path shift mechanism is not limited to the one provided with a plurality of beam splitters. For example, even if the optical path shift mechanism 35a is composed of one beam splitter 39 that is rectangular in plan view as shown in FIG. Good. As shown in FIG. 4B, the beam splitter 39 is arranged to be inclined with respect to each of the X direction and the Y direction, and uses an optical refraction to capture an image stored on the negative side of the virtual frame 34 in the X direction. The image capturing means 12 that has been captured captures an image stored on the center side of the virtual frame 34, and the entire image of the side part A and the entire image of the side part B of the electronic component are stored in one image.
ここまで、撮像手段12、13によって、電子部品11の側部15、16を撮像する外観検査装置10を説明したが、図5に示す外観検査装置50は、撮像手段12、13によって、電子部品11の側部15、16に加え、電子部品11の底部51の一部を撮像するものである。以下、外観検査装置50について、説明する。但し、外観検査装置10と同様の構成については、同じ符号を付して詳しい説明は省略する。 Up to this point, the appearance inspection apparatus 10 that images the side portions 15 and 16 of the electronic component 11 using the imaging units 12 and 13 has been described. However, the appearance inspection apparatus 50 illustrated in FIG. In addition to the 11 side portions 15 and 16, a part of the bottom 51 of the electronic component 11 is imaged. Hereinafter, the appearance inspection apparatus 50 will be described. However, the same components as those of the appearance inspection apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted.
外観検査装置50は、図5に示すように、光の進行方向を変える光路調整手段52を備えている。光路調整手段52は、ビームスプリッタ24、25、26に加え、電子部品11の側部15、16にそれぞれ対向するビームスプリッタ53、54、ビームスプリッタ53の下側に設けられたビームスプリッタ55、56、ビームスプリッタ54の下側に設けられたビームスプリッタ57、58、及び、電子部品11の下方に配されたビームスプリッタ59、60を備えている。
ビームスプリッタ55に対して、ビームスプリッタ53、56が密着し、ビームスプリッタ57に対して、ビームスプリッタ54、58が密着し、ビームスプリッタ59は、ビームスプリッタ60に接触している。
As shown in FIG. 5, the appearance inspection apparatus 50 includes an optical path adjustment unit 52 that changes the traveling direction of light. In addition to the beam splitters 24, 25, and 26, the optical path adjusting unit 52 is provided with beam splitters 53 and 54 that face the side portions 15 and 16 of the electronic component 11, and beam splitters 55 and 56 that are provided below the beam splitter 53, respectively. Beam splitters 57 and 58 provided below the beam splitter 54 and beam splitters 59 and 60 disposed below the electronic component 11 are provided.
The beam splitters 53 and 56 are in close contact with the beam splitter 55, the beam splitters 54 and 58 are in close contact with the beam splitter 57, and the beam splitter 59 is in contact with the beam splitter 60.
ビームスプリッタ56の下方には、拡散板61と上向きに照射する照明62が配されている。ビームスプリッタ58の下方にも、拡散板63と上向きに照射する照明64が配されている。
照明62から照射され、拡散板61を透過した光は、ビームスプリッタ56、55、53を順に、通過した後、電子部品11の側部15で反射し、ビームスプリッタ53、55、59を順に通過し、ビームスプリッタ24に進入する。ビームスプリッタ24に進入した光は、ビームスプリッタ24、25の境界面で分岐し、一方は、Y方向負の向きに進行して、撮像手段12に向かい、他方は、ビームスプリッタ25、26を通過し、撮像手段13に向かって、Y方向負の向きに進む。
Below the beam splitter 56, a diffusing plate 61 and an illumination 62 for irradiating upward are arranged. A diffusion plate 63 and an illumination 64 for irradiating upward are also arranged below the beam splitter 58.
The light emitted from the illumination 62 and transmitted through the diffusion plate 61 sequentially passes through the beam splitters 56, 55, 53, then reflects off the side part 15 of the electronic component 11, and passes through the beam splitters 53, 55, 59 in order. And enters the beam splitter 24. The light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and goes to the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds toward the imaging means 13 in the negative direction of the Y direction.
照明64から照射され、拡散板63を透過した光は、ビームスプリッタ58、57、54を順に、通過した後、電子部品11の側部16で反射し、ビームスプリッタ54、57、60を順に通過し、ビームスプリッタ24に進入する。ビームスプリッタ24に進入した光は、ビームスプリッタ24、25の境界面で分岐し、一方は、Y方向負の向きに進行して、撮像手段12に向かい、他方は、ビームスプリッタ25、26を通過し、撮像手段13に向かって、Y方向負の向きに進む。 The light emitted from the illumination 64 and transmitted through the diffusion plate 63 sequentially passes through the beam splitters 58, 57, and 54, then reflects off the side part 16 of the electronic component 11, and passes through the beam splitters 54, 57, and 60 in order. And enters the beam splitter 24. The light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and goes to the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds toward the imaging means 13 in the negative direction of the Y direction.
その結果、撮像手段12が撮像する画像12b(第1の画像)には、図6(A)に示すように、電子部品11の側部15のX方向負側から中央までの領域の像と、電子部品11の側部16のX方向負側から中央までの領域の像がとらえられる。一方、撮像手段13が撮像する画像13b(第2の画像)には、図6(B)に示すように、電子部品11の側部15のX方向正側から中央までの領域の像と、電子部品11の側部16のX方向正側から中央までの領域の像がとらえられる。
画像12b、13bを合わせて、電子部品11の側部15全体の像、及び、電子部品11の側部16全体の像が得られる。
As a result, the image 12b (first image) captured by the imaging unit 12 includes an image of the region from the X direction negative side to the center of the side portion 15 of the electronic component 11 as shown in FIG. An image of the region from the X-direction negative side to the center of the side part 16 of the electronic component 11 is captured. On the other hand, an image 13b (second image) captured by the imaging unit 13 includes an image of a region from the X-direction positive side to the center of the side portion 15 of the electronic component 11, as shown in FIG. An image of a region from the X-direction positive side to the center of the side part 16 of the electronic component 11 is captured.
By combining the images 12b and 13b, an image of the entire side part 15 of the electronic component 11 and an image of the entire side part 16 of the electronic component 11 are obtained.
また、照明62から照射され、拡散板61を透過した光は、図5に示すように、ビームスプリッタ56、55を順に、通過した後、電子部品11の底部51のY方向負側(側部15側)でも反射される。電子部品11の底部51のY方向負側で反射した光は、ビームスプリッタ55、59を通過し、下向きに進んで、ビームスプリッタ24に進入する。ビームスプリッタ24に進入した光は、ビームスプリッタ24、25の境界面で分岐し、一方は、Y方向負の向きに進行して、撮像手段12に向かい、他方は、ビームスプリッタ25、26を経由して、Y方向負の向きに進行し、撮像手段13に向かう。 Further, as shown in FIG. 5, the light emitted from the illumination 62 and transmitted through the diffusion plate 61 sequentially passes through the beam splitters 56 and 55, and then the Y direction negative side (side portion) of the bottom 51 of the electronic component 11. (15 side) is also reflected. The light reflected on the Y direction negative side of the bottom 51 of the electronic component 11 passes through the beam splitters 55 and 59, travels downward, and enters the beam splitter 24. The light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and heads toward the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds in the negative direction of the Y direction and heads for the imaging means 13.
照明64から照射され、拡散板63を透過した光は、ビームスプリッタ58、57を順に、通過した後、電子部品11の底部51のY方向正側(側部16側)でも反射される。電子部品11の底部51のY方向正側で反射した光は、ビームスプリッタ57、60を通過し、下向きに進んで、ビームスプリッタ24に進入する。ビームスプリッタ24に進入した光は、ビームスプリッタ24、25の境界面で分岐し、一方は、Y方向負の向きに進行して、撮像手段12に向かい、他方は、ビームスプリッタ25、26を経由して、Y方向負の向きに進行し、撮像手段13に向かう。 The light emitted from the illumination 64 and transmitted through the diffusion plate 63 passes through the beam splitters 58 and 57 in order, and is also reflected on the Y direction positive side (side 16 side) of the bottom 51 of the electronic component 11. The light reflected on the Y direction positive side of the bottom 51 of the electronic component 11 passes through the beam splitters 57 and 60, travels downward, and enters the beam splitter 24. The light that has entered the beam splitter 24 branches off at the boundary surface between the beam splitters 24 and 25, one of which travels in the negative direction in the Y direction and heads toward the imaging unit 12, and the other passes through the beam splitters 25 and 26. Then, it proceeds in the negative direction of the Y direction and heads for the imaging means 13.
その結果、画像12bには、図6(A)に示すように、電子部品11の側部15、16それぞれのX方向負側の像に加えて、電子部品11の底部51のY方向負側(側部15側)のX方向負側(一側)の像、及び、電子部品11の底部51のY方向正側(側部16側)のX方向負側(一側)の像が収められる。そして、画像13bには、図6(B)に示すように、電子部品11の側部15、16それぞれのX方向正側の像に加えて、電子部品11の底部51のY方向負側(側部15側)のX方向正側(他側)の像、及び、電子部品11の底部51のY方向正側(側部16側)のX方向正側(他側)の像が収められる。
本実施例では、ビームスプリッタと空気の屈折率の差異を利用して、電子部品11の側部15、16と撮像手段12の光学上の距離、及び、電子部品11の底部51と撮像手段12の光学上の距離を揃え、撮像手段12に対して、電子部品11の側部15、16及び底部51の焦点が合うようにしている。この点、撮像手段13に対しても同じである。
更に、本実施例では、撮像手段12、13に、画像12b、13bを合わせて、電子部品11の底部51のY方向負側のX方向全体の像及び電子部品11の底部51のY方向正側のX方向全体の像が収められる。
As a result, in the image 12b, as shown in FIG. 6A, in addition to the X-direction negative images of the side portions 15 and 16 of the electronic component 11, the Y-direction negative side of the bottom 51 of the electronic component 11 is obtained. An image on the X direction negative side (one side) on the (side portion 15 side) and an image on the X direction negative side (one side) on the Y direction positive side (side portion 16 side) of the bottom 51 of the electronic component 11 are stored. It is done. In addition, as shown in FIG. 6B, in the image 13b, in addition to the X-direction positive image of each of the side portions 15 and 16 of the electronic component 11, the Y-direction negative side ( An image on the X direction positive side (other side) on the side portion 15 side and an image on the X direction positive side (other side) on the Y direction positive side (side portion 16 side) of the bottom 51 of the electronic component 11 are stored. .
In the present embodiment, the optical distance between the side portions 15 and 16 of the electronic component 11 and the image pickup means 12 and the bottom 51 of the electronic component 11 and the image pickup means 12 are obtained using the difference in refractive index between the beam splitter and air. The side distances 15 and 16 and the bottom 51 of the electronic component 11 are in focus with respect to the imaging unit 12. This is the same for the imaging means 13.
Furthermore, in this embodiment, the images 12 b and 13 b are combined with the imaging means 12 and 13, and the entire image in the X direction on the Y direction negative side of the bottom 51 of the electronic component 11 and the Y direction positive of the bottom 51 of the electronic component 11 are aligned. The entire image in the X direction is stored.
また、外観検査装置50においては、図7(A)、(B)に示すように、ビームスプリッタ53、55、56、拡散板61及び照明62が、一体となってY方向に移動可能に設計され、ビームスプリッタ54、57、58、拡散板63及び照明64も、一体となってY方向に移動可能に設計されている。
これは、側部A、B間の距離又は厚みが、電子部品11とは異なる電子部品に対し、撮像手段12、13が、側部A、B、底部の側部A側、及び、底部の側部B側をそれぞれ鮮明に撮像すべく光学距離を調整するためのものである。
Further, in the appearance inspection apparatus 50, as shown in FIGS. 7A and 7B, the beam splitters 53, 55, and 56, the diffusion plate 61, and the illumination 62 are designed to be movable in the Y direction as a unit. The beam splitters 54, 57, 58, the diffusion plate 63, and the illumination 64 are also designed to be movable in the Y direction as a unit.
This is because the distance between the side parts A and B or the thickness of the electronic part is different from that of the electronic part 11, and the imaging means 12 and 13 have the side parts A and B, the side part A side of the bottom part, and the bottom part. This is for adjusting the optical distance so that each side B side can be clearly imaged.
図7(B)に示す電子部品66は、側部67(側部A)と側部68(側部B)の距離が、電子部品11より長く、ビームスプリッタ53、55、56、拡散板61及び照明62の群と、ビームスプリッタ54、57、58、拡散板63及び照明64の群とが、Y方向に離れる向きに移動している。
ビームスプリッタ53、55、56、拡散板61及び照明62の群と、ビームスプリッタ54、57、58、拡散板63及び照明64の群とは、Y方向に加え、鉛直に移動可能に設計されていてもよい。
In the electronic component 66 shown in FIG. 7B, the distance between the side portion 67 (side portion A) and the side portion 68 (side portion B) is longer than that of the electronic component 11, and the beam splitters 53, 55, and 56, and the diffusion plate 61. And the group of the illumination 62 and the group of beam splitters 54, 57, and 58, the diffuser plate 63, and the illumination 64 are moved away from each other in the Y direction.
The group of beam splitters 53, 55, 56, diffuser plate 61 and illumination 62 and the group of beam splitters 54, 57, 58, diffuser plate 63 and illumination 64 are designed to be movable vertically in addition to the Y direction. May be.
また、外観検査装置10では、撮像手段12、13がX方向で異なる位置に配されているが、撮像手段12、13がX方向において同じ位置に配置されていてもよい。図8、図9に示す外観検査装置70は、X方向において同じ位置に設けられた撮像手段12、13によって、電子部品11の側部15、16とは別の対向する側部71(側部A)及び側部72(側部B)を撮像する。
以下、外観検査装置10と同様の構成については、同じ符号を付して詳細な説明を省略し、外見検査装置70について説明する。
In the appearance inspection apparatus 10, the imaging units 12 and 13 are arranged at different positions in the X direction. However, the imaging units 12 and 13 may be arranged at the same position in the X direction. The appearance inspection apparatus 70 shown in FIG. 8 and FIG. 9 has a side portion 71 (side portion) that is opposite to the side portions 15 and 16 of the electronic component 11 by the imaging means 12 and 13 provided at the same position in the X direction. A) and the side part 72 (side part B) are imaged.
Hereinafter, the same components as those in the appearance inspection apparatus 10 are denoted by the same reference numerals and detailed description thereof is omitted, and the appearance inspection apparatus 70 will be described.
電子部品11において、側部71、72はそれぞれ、図8、図9に示すように、側部15、16に対して垂直であり、側部15、16と同様に横に長い。電子部品11は、側部71、72が撮像される検査位置Qに搬送された際、側部71、72がY方向(即ち、撮像手段12、13の撮像方向)に沿った状態であり、側部71は、側部72に対して、X方向正側に位置する。
撮像手段13は、撮像手段12よりY方向正側、かつ、撮像手段12より低い位置に配されている。
In the electronic component 11, the side portions 71 and 72 are perpendicular to the side portions 15 and 16 as shown in FIG. 8 and FIG. When the electronic component 11 is transported to the inspection position Q where the side parts 71 and 72 are imaged, the side parts 71 and 72 are in a state along the Y direction (that is, the imaging direction of the imaging means 12 and 13). The side portion 71 is located on the positive side in the X direction with respect to the side portion 72.
The imaging unit 13 is disposed on the positive side in the Y direction from the imaging unit 12 and at a position lower than the imaging unit 12.
検査位置Qに配された電子部品11の近傍には、光の進行方向を変える光路調整手段73が設けられている。光路調整手段73は、複数のビームスプリッタ18~23、74~76を備えている。以下、電子部品11が検査位置Qに配されていることを前提に説明する。
密着したビームスプリッタ18、20は、電子部品11の側部71に対向配置され、密着したビームスプリッタ19、21は、電子部品11の側部72に対向配置されている。
ビームスプリッタ18~23それぞれの他のビームスプリッタ18~23それぞれに対する位置関係は、光路調整手段14と同じである。
In the vicinity of the electronic component 11 arranged at the inspection position Q, an optical path adjusting means 73 for changing the traveling direction of light is provided. The optical path adjusting means 73 includes a plurality of beam splitters 18 to 23 and 74 to 76. The following description is based on the assumption that the electronic component 11 is arranged at the inspection position Q.
The closely-contacted beam splitters 18 and 20 are disposed to face the side portion 71 of the electronic component 11, and the closely-contacted beam splitters 19 and 21 are disposed to face the side portion 72 of the electronic component 11.
The positional relationship of each of the beam splitters 18 to 23 with respect to each of the other beam splitters 18 to 23 is the same as that of the optical path adjusting unit 14.
ビームスプリッタ74、75は、ビームスプリッタ22、23より低い位置、かつ、撮像手段12と同じ高さ位置で、密着して設けられている。ビームスプリッタ74、75が密着した面は、Y方向負側に向かって下がる方向に傾斜している。
ビームスプリッタ76は、ビームスプリッタ74、75より低い位置で、撮像手段13と同じ高さに配されている。
なお、図8、図9では記載を省略しているが、ビームスプリッタ18、20と同じ高さ位置には、電子部品11とは反対側に、ビームスプリッタ18、20を照らす照明が設けられ、ビームスプリッタ19、21と同じ高さ位置には、電子部品11とは反対側に、ビームスプリッタ19、21を照らす照明が設けられている。
The beam splitters 74 and 75 are provided in close contact with each other at a position lower than the beam splitters 22 and 23 and at the same height as the imaging unit 12. The surface to which the beam splitters 74 and 75 are in contact with each other is inclined in a direction that decreases toward the Y direction negative side.
The beam splitter 76 is disposed at the same height as the imaging unit 13 at a position lower than the beam splitters 74 and 75.
Although not shown in FIGS. 8 and 9, illumination that illuminates the beam splitters 18 and 20 is provided at the same height as the beam splitters 18 and 20 on the side opposite to the electronic component 11. At the same height as the beam splitters 19 and 21, illumination for illuminating the beam splitters 19 and 21 is provided on the side opposite to the electronic component 11.
ビームスプリッタ18、20を照らす照明から照射され、電子部品11の側部71のY方向負側(一側)で反射した光は、ビームスプリッタ20内に進入し、ビームスプリッタ18、20の境界で下向きに反射した後、ビームスプリッタ22内に進入する。ビームスプリッタ22内に進入した光は、2回反射した後、ビームスプリッタ22から下向きに出て、ビームスプリッタ74に進入して、ビームスプリッタ74、75の境界(ビームスプリッタ74、75が密着した面)で反射し、撮像手段12に向かって、Y方向負側に進む。
ビームスプリッタ19、21を照らす照明から照射され、電子部品11の側部72のY方向負側(一側)で反射した光も、ビームスプリッタ21、23、74を順に同様に進んで、撮像手段12に向かう。
The light irradiated from the illumination for illuminating the beam splitters 18 and 20 and reflected on the Y direction negative side (one side) of the side portion 71 of the electronic component 11 enters the beam splitter 20, and at the boundary between the beam splitters 18 and 20. After reflecting downward, it enters the beam splitter 22. The light that has entered the beam splitter 22 is reflected twice, then exits downward from the beam splitter 22, enters the beam splitter 74, and the boundary between the beam splitters 74 and 75 (the surface where the beam splitters 74 and 75 are in close contact with each other). ) And proceeds toward the imaging unit 12 toward the Y direction negative side.
The light irradiated from the illumination that illuminates the beam splitters 19 and 21 and reflected on the Y-direction negative side (one side) of the side portion 72 of the electronic component 11 also proceeds in the same manner in the beam splitters 21, 23, and 74 in order. Head to 12.
一方、ビームスプリッタ18、20を照らす照明から照射され、電子部品11の側部71のY方向正側(他側)で反射した光は、ビームスプリッタ20を通過して、ビームスプリッタ22内に進入し、ビームスプリッタ22から下向きに出た後、ビームスプリッタ74、75を通過して、ビームスプリッタ76内に進入し、反射して、Y方向負側に進路を変え、ビームスプリッタ76から出て、撮像手段13に向かう。
ビームスプリッタ19、21を照らす照明から照射され、電子部品11の側部72のY方向正側(他側)で反射した光も、ビームスプリッタ21、23、74、75、76を同様に進んで、撮像手段13に向かう。
On the other hand, the light irradiated from the illumination for illuminating the beam splitters 18 and 20 and reflected on the Y direction positive side (the other side) of the side portion 71 of the electronic component 11 passes through the beam splitter 20 and enters the beam splitter 22. After exiting the beam splitter 22 downward, it passes through the beam splitters 74 and 75, enters the beam splitter 76, reflects, changes the path to the Y direction negative side, exits the beam splitter 76, Head to the imaging means 13.
The light irradiated from the illumination that illuminates the beam splitters 19 and 21 and reflected on the Y-direction positive side (the other side) of the side portion 72 of the electronic component 11 also travels the beam splitters 21, 23, 74, 75, and 76 in the same manner. To the imaging means 13.
結果として、撮像手段12が撮像する画像77(第1の画像)には、図9に示すように、左側半分に、電子部品11の側部72のY方向負側から中央までの領域の像がとらえられ、右側半分に、電子部品11の側部71のY方向負側から中央までの領域の像がとらえられる。電子部品11の側部71、72は、画像77において、それぞれの中央の像がそれぞれのY方向負側の上方に位置する。 As a result, an image 77 (first image) captured by the imaging unit 12 is an image of a region from the Y-direction negative side to the center of the side portion 72 of the electronic component 11 on the left half, as shown in FIG. In the right half, an image of the region from the Y-direction negative side to the center of the side portion 71 of the electronic component 11 is captured. The side parts 71 and 72 of the electronic component 11 are positioned above the negative side in the Y direction in the image 77.
撮像手段13が撮像する画像78(第2の画像)には、左側半分に、電子部品11の側部72のY方向正側から中央までの領域の像がとらえられ、右側半分に、電子部品11の側部71のY方向正側から中央までの領域の像がとらえられる。電子部品11の側部71、72は、画像78において、それぞれのY方向正側の像がそれぞれの中央より上方に位置する。
画像77、78を合わせて、電子部品11の側部71の全体の像及び電子部品11の側部72の全体の像を得ることができる。
The image 78 (second image) captured by the imaging means 13 captures an image of the region from the Y-direction positive side to the center of the side portion 72 of the electronic component 11 in the left half, and the electronic component in the right half. The image of the area | region from the Y direction positive side to the center of 11 side parts 71 is caught. As for the side parts 71 and 72 of the electronic component 11, in the image 78, the image of each Y direction positive side is located above each center.
The images 77 and 78 can be combined to obtain an entire image of the side portion 71 of the electronic component 11 and an entire image of the side portion 72 of the electronic component 11.
また、外観検査装置10、70を組み合わせることによって、電子部品11の4つの側部15、16、71、72の外観検査を行う外観検査設備を構成することもできる。外観検査設備においては、外周部に複数のノズル17が所定のピッチで円状に取り付けられた回転体(ターレット)が設けられ、各ノズル17は、昇降可能である。回転軸が上下方向に沿った回転体は、間欠的に所定角度回動して、各ノズル17に保持された電子部品11を、順次、検査位置P、Qに搬送する。各電子部品11は、側部15、16が電子部品11の搬送方向に沿った状態で、それぞれのノズル17に保持され、検査位置Pで側部15、16が外観検査され、検査位置Qで側部71、72が外観検査される。 In addition, by combining the appearance inspection apparatuses 10 and 70, it is possible to configure an appearance inspection facility that performs an appearance inspection of the four side portions 15, 16, 71, and 72 of the electronic component 11. In the appearance inspection facility, a rotating body (turret) in which a plurality of nozzles 17 are circularly attached at a predetermined pitch is provided on the outer periphery, and each nozzle 17 can be moved up and down. The rotating body whose rotation axis extends in the vertical direction intermittently rotates by a predetermined angle, and sequentially conveys the electronic components 11 held by the nozzles 17 to the inspection positions P and Q. Each electronic component 11 is held by each nozzle 17 in a state where the side portions 15 and 16 are along the conveying direction of the electronic component 11, and the side portions 15 and 16 are visually inspected at the inspection position P, and at the inspection position Q. The side parts 71 and 72 are visually inspected.
外観検査装置10は、外観検査装置10におけるX方向が、電子部品11の搬送方向に沿う配置で検査位置Pに設けられ、外観検査装置70は、外観検査装置70におけるX方向が、電子部品11の搬送方向に沿う配置で検査位置Qに設けられる。
ノズル17は、検査位置Pに電子部品11を搬送する際、及び、検査位置Pから別位置に電子部品11を搬送する際、上昇位置にあってもよいし、降下位置にあってもよい。これに対し、検査位置Qに電子部品11を搬送する際、及び、検査位置Qから別位置に電子部品11を搬送する際は、ノズル17を上昇位置に配することとなる。これは、検査位置Qにおいて、ノズル17を降下させた状態で、電子部品を搬送した場合、電子部品11がビームスプリッタ18、19、20、21等に接触するが、検査位置Pでは、接触しないためである。
In the appearance inspection apparatus 10, the X direction in the appearance inspection apparatus 10 is provided at the inspection position P in an arrangement along the conveying direction of the electronic component 11, and the appearance inspection apparatus 70 has the X direction in the appearance inspection apparatus 70 in the electronic component 11. Is provided at the inspection position Q in an arrangement along the transport direction.
The nozzle 17 may be in an ascending position or a descending position when the electronic component 11 is transported to the inspection position P and when the electronic component 11 is transported from the inspection position P to another position. On the other hand, when the electronic component 11 is transported to the inspection position Q and when the electronic component 11 is transported from the inspection position Q to another position, the nozzle 17 is disposed at the raised position. This is because when the electronic component is transported with the nozzle 17 lowered at the inspection position Q, the electronic component 11 contacts the beam splitters 18, 19, 20, 21 and the like, but does not contact at the inspection position P. Because.
ここまで、第1、第2の画像を合わせて、電子部品の側部A全体の像及び電子部品の側部Bの全体の像を得る実施例について説明したが、第1、第2の画像を合わせても、電子部品A全体の像及び電子部品の側部B全体の像が得られないようにし、第1、第2の撮像手段を含めた3つ以上の撮像手段を用いて、電子部品A全体の像及び電子部品の側部B全体の像を得るようにしてもよい。3つ以上の撮像手段を用いる場合、第1、第2の撮像手段に加えて、検査位置に配された電子部品の側部A、Bを撮像するN個の撮像手段を設け(Nは自然数)、光路調整手段に、そのN個の撮像手段がそれぞれ撮像する画像に、側部Aの一部の像及び側部Bの一部の像をそれぞれ収め、第1、第2の画像及びそのN個の撮像手段がそれぞれ撮像する画像を合わせて、電子部品の側部A全体の像と電子部品の側部B全体の像とを得るようにすることができる。 So far, the embodiment has been described in which the first and second images are combined to obtain an image of the entire side A of the electronic component and an image of the entire side B of the electronic component, but the first and second images have been described. , The image of the entire electronic component A and the image of the entire side B of the electronic component are not obtained, and three or more image pickup means including the first and second image pickup means are used. An image of the entire component A and an image of the entire side B of the electronic component may be obtained. When three or more imaging means are used, in addition to the first and second imaging means, N imaging means for imaging the side parts A and B of the electronic component arranged at the inspection position are provided (N is a natural number) ), In the optical path adjusting means, the images picked up by the N image pickup means respectively contain a part of the image of the side part A and a part of the image of the side part B, respectively. It is possible to obtain an image of the entire side A of the electronic component and an image of the entire side B of the electronic component by combining the images captured by the N imaging units.
また、検査対象領域は、側部A、B以外の部位を含んでいてもよいし、側部A、B以外の部位のみであってもよいし、更に、側部A、Bの一方のみであってもよい。以下、図10、図11に示す、電子部品11の側部16のみを検査対象領域とする外観検査装置90について説明する。なお、外観検査装置10と同様の構成については、同じ符号を付して詳しい説明は省略する。
外観検査装置90は、図9、図10に示すように、外観検査装置10と比較して、ビームスプリッタ18、20、22及び照明27を有しておらず、光路調整手段91は、ビームスプリッタ19、21、23、24、25、26を備えている。従って、撮像手段12が撮像する画像92(第1の画像)には、電子部品11の側部16の一側から中央までの像がとらえられ、撮像手段13が撮像する画像93(第2の画像)には、電子部品11の側部16の他側から中央までの像がとらえられる。
Moreover, the region to be inspected may include a part other than the side parts A and B, may be a part other than the side parts A and B, and may be only one of the side parts A and B. There may be. Hereinafter, an appearance inspection apparatus 90 shown in FIGS. 10 and 11 in which only the side portion 16 of the electronic component 11 is an inspection target area will be described. In addition, about the structure similar to the external appearance inspection apparatus 10, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
As shown in FIGS. 9 and 10, the appearance inspection apparatus 90 does not include the beam splitters 18, 20, and 22 and the illumination 27 as compared with the appearance inspection apparatus 10, and the optical path adjustment unit 91 includes the beam splitter. 19, 21, 23, 24, 25, 26. Therefore, the image 92 (first image) captured by the imaging unit 12 captures an image from one side to the center of the side part 16 of the electronic component 11, and the image 93 (second image) captured by the imaging unit 13. In the image), an image from the other side of the side part 16 of the electronic component 11 to the center is captured.
以上、本発明の実施例を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、外観検査がなされる電子部品は、側部に金属線からなる複数の端子を備えたものであってもよい。
また、光路調整手段を、電子部品と第1の撮像手段の光学経路の間、及び、電子部品と第2の撮像手段の光学経路の間の少なくとも一方に配置して、第1、第2の撮像手段の一方が他方の撮像範囲に入るのを抑制した上で、底部を第1、第2の画像に分割して撮像することも可能である。
As mentioned above, although the Example of this invention was described, this invention is not limited to an above-described form, The change of the conditions etc. which do not deviate from a summary are all the application scopes of this invention.
For example, an electronic component subjected to appearance inspection may be provided with a plurality of terminals made of metal wires on the side.
In addition, the optical path adjusting means is disposed between at least one of the optical path between the electronic component and the first image pickup means and between the electronic component and the optical path of the second image pickup means. It is also possible to divide the bottom portion into first and second images while suppressing one of the imaging means from entering the other imaging range.
そして、第1、第2の撮像手段の各撮像方向は、非平行であってもよく、第1、第2の撮像手段の各撮像方向が非平行な場合、第1の撮像手段を、第1の撮像手段の撮像方向に沿った位置で移動させるハードウェアを、第2の撮像手段を、第2の撮像手段の撮像方向に沿った位置で移動させるハードウェアから独立して設ければよい。
更に、光路調整手段は、ビームスプリッタに加えて、光を反射するミラーを備えていてもよく、また、仮想枠内に、電子部品の側部A全体の像と電子部品の側部B全体の像を並列に収めるように設計されている必要はない。
The imaging directions of the first and second imaging means may be non-parallel. When the imaging directions of the first and second imaging means are non-parallel, the first imaging means is The hardware for moving the first imaging unit at a position along the imaging direction of the first imaging unit may be provided independently of the hardware for moving the second imaging unit at a position along the imaging direction of the second imaging unit. .
Further, the optical path adjusting means may include a mirror that reflects light in addition to the beam splitter, and the image of the entire side part A of the electronic component and the entire side part B of the electronic component are included in the virtual frame. It need not be designed to fit the images in parallel.
本発明に係る外観検査装置は、電子部品の検査対象領域の異なる部分をそれぞれ撮像する第1、第2の撮像手段を備えるので、検査対象領域の像は、複数の撮像手段がそれぞれ撮像する画像に分割される。そのため、撮像された画像にとらえられる検査対象領域の像以外の領域を低減でき、結果として、外観検査を行うための処理時間を短縮可能である。従って、本発明は、電子部品の外観検査を効率的に行うために有効である。 Since the appearance inspection apparatus according to the present invention includes first and second imaging units that respectively image different portions of the inspection target area of the electronic component, the image of the inspection target area is an image captured by each of the plurality of imaging units. It is divided into. Therefore, it is possible to reduce the area other than the image of the inspection target area captured by the captured image, and as a result, it is possible to shorten the processing time for performing the appearance inspection. Therefore, the present invention is effective for efficiently performing an appearance inspection of an electronic component.
10:外観検査装置、11:電子部品、12:撮像手段、12a、12b:画像、13:撮像手段、13a、13b:画像、14:光路調整手段、15、16:側部、17:ノズル、18~26:ビームスプリッタ、27、28:照明、29、30:固定部材、31:ねじ軸、32:ナットブロック、33:モータ、34:仮想枠、35、35a:光路シフト機構、36~39:ビームスプリッタ、40:画像処理手段、50:外観検査装置、51:底部、52:光路調整手段、53~60:ビームスプリッタ、61:拡散板、62:照明、63:拡散板、64:照明、66:電子部品、67、68:側部、70:外観検査装置、71、72:側部、73:光路調整手段、74~76:ビームスプリッタ、77、78:画像、90:外観検査装置、91:光路調整手段、92、93:画像 10: Appearance inspection apparatus, 11: Electronic component, 12: Imaging means, 12a, 12b: Image, 13: Imaging means, 13a, 13b: Image, 14: Optical path adjustment means, 15, 16: Side, 17: Nozzle, 18-26: Beam splitter, 27, 28: Illumination, 29, 30: Fixing member, 31: Screw shaft, 32: Nut block, 33: Motor, 34: Virtual frame, 35, 35a: Optical path shift mechanism, 36-39 : Beam splitter, 40: Image processing means, 50: Visual inspection apparatus, 51: Bottom, 52: Optical path adjusting means, 53-60: Beam splitter, 61: Diffuser, 62: Illumination, 63: Diffuser, 64: Illumination , 66: Electronic parts, 67, 68: Side part, 70: Appearance inspection device, 71, 72: Side part, 73: Optical path adjusting means, 74 to 76: Beam splitter, 77, 78: Image, 90: Appearance inspection Location, 91: optical path adjusting means, 92 and 93: Image

Claims (9)

  1. 直方体状の電子部品の検査対象領域を外観検査する外観検査装置において、
    前記検査対象領域の異なる部分をそれぞれ撮像する第1、第2の撮像手段と、
    光の進行方向を変えて、前記第1の撮像手段が撮像している第1の画像、及び、前記第2の撮像手段が撮像している第2の画像の少なくとも一方に、前記検査対象領域の像を収めさせる光路調整手段とを備えることを特徴とする外観検査装置。
    In an appearance inspection apparatus that visually inspects the inspection target area of a rectangular parallelepiped electronic component,
    First and second imaging means for imaging different portions of the inspection target area,
    The inspection target region is displayed on at least one of the first image picked up by the first image pickup means and the second image picked up by the second image pickup means by changing the traveling direction of light. And an optical path adjusting means for storing the image.
  2. 請求項1記載の外観検査装置において、前記検査対象領域の異なる部分をそれぞれ撮像するN個の撮像手段を更に備え、前記光路調整手段は、前記N個の撮像手段がそれぞれ撮像する画像の少なくとも一つに、前記検査対象領域の像を収めさせることを特徴とする外観検査装置。但し、Nは、自然数である。 2. The appearance inspection apparatus according to claim 1, further comprising N imaging units that respectively image different portions of the inspection target region, wherein the optical path adjustment unit includes at least one of images captured by the N imaging units. First, an appearance inspection apparatus characterized in that an image of the inspection object region is stored. However, N is a natural number.
  3. 請求項1記載の外観検査装置において、前記電子部品は対向する側部A、Bを備え、前記検査対象領域は、前記側部Aの一側及び他側と、前記側部Bの一側及び他側とに存在し、前記光路調整手段は、前記第1の画像に、前記側部Aの一側の像及び前記側部Bの一側の像を収めさせると共に、前記第2の画像に、前記側部Aの他側の像及び前記側部Bの他側の像を収めさせることを備えることを特徴とする外観検査装置。 2. The appearance inspection apparatus according to claim 1, wherein the electronic component includes opposing side portions A and B, and the inspection target area includes one side and the other side of the side portion A, one side of the side portion B, and The optical path adjusting means is located on the other side, and causes the first image to contain an image on one side of the side portion A and an image on one side of the side portion B, and the second image. A visual inspection apparatus comprising storing an image on the other side of the side portion A and an image on the other side of the side portion B.
  4. 請求項3記載の外観検査装置において、前記第1、第2の画像を合わせて、前記側部A全体の像及び前記側部B全体の像を得ることを特徴とする外観検査装置。 The appearance inspection apparatus according to claim 3, wherein the first and second images are combined to obtain an image of the entire side part A and an image of the entire side part B.
  5. 請求項3記載の外観検査装置において、前記電子部品の側部A、Bを撮像するN個の撮像手段を更に備え、前記光路調整手段は、前記N個の撮像手段がそれぞれ撮像する画像に、前記側部Aの一部の像及び前記側部Bの一部の像をそれぞれ収めさせ、前記第1、第2の画像及び前記N個の撮像手段が撮像する画像を合わせて、前記側部A全体の像及び前記側部B全体の像を得させることを特徴とする外観検査装置。但し、Nは、自然数である。 4. The appearance inspection apparatus according to claim 3, further comprising N imaging means for imaging the side parts A and B of the electronic component, wherein the optical path adjusting means includes images captured by the N imaging means. A part of the image of the side part A and a part of the image of the side part B are accommodated, and the first and second images and the images picked up by the N imaging means are combined to form the side part. An appearance inspection apparatus for obtaining an image of the entire A and an image of the entire side portion B. However, N is a natural number.
  6. 請求項3~5のいずれか1に記載の外観検査装置において、前記光路調整手段は、光を屈折又は反射させて、前記側部A全体の像及び前記側部B全体の像を仮想枠内に並列に収めさせる光路調節ブロックを備え、前記第1、第2の撮像手段は、前記仮想枠の一側に収められる像及び該仮想枠の他側に収められる像をそれぞれとらえることを特徴とする外観検査装置。 6. The visual inspection apparatus according to claim 3, wherein the optical path adjusting unit refracts or reflects light so that an image of the entire side A and an image of the entire side B are within a virtual frame. The first and second imaging means capture an image stored on one side of the virtual frame and an image stored on the other side of the virtual frame, respectively. Appearance inspection device.
  7. 請求項6記載の外観検査装置において、光を屈折又は反射させて、前記仮想枠の一側に収められる像をとらえていた前記第1の撮像手段に、前記仮想枠の中心側に収められる像をとらえさせる光路シフト機構を、更に備えることを特徴とする外観検査装置。 The visual inspection apparatus according to claim 6, wherein the first image pickup unit that captures an image stored on one side of the virtual frame by refracting or reflecting light is stored on the center side of the virtual frame. An appearance inspection apparatus, further comprising an optical path shift mechanism for capturing the light.
  8. 請求項6又は7記載の外観検査装置において、前記第1の撮像手段の、該第1の撮像手段の撮像方向に沿った位置、及び、前記第2の撮像手段の、該第2の撮像手段の撮像方向に沿った位置を調整する位置決め機構を、更に備えることを特徴とする外観検査装置。 8. The appearance inspection apparatus according to claim 6, wherein the position of the first imaging unit along the imaging direction of the first imaging unit and the second imaging unit of the second imaging unit. An appearance inspection apparatus further comprising a positioning mechanism for adjusting a position along the imaging direction.
  9. 請求項3~8のいずれか1に記載の外観検査装置において、前記光路調整手段は、前記第1の画像に、前記電子部品の底部の前記側部A側及び前記側部B側それぞれの一側の像を、更に収めさせ、前記第2の画像に、前記底部の前記側部A側及び前記側部B側それぞれの他側の像を、更に収めさせることを特徴とする外観検査装置。 The visual inspection apparatus according to any one of claims 3 to 8, wherein the optical path adjusting means includes a first image on the side A side and a side B side of the bottom of the electronic component. A visual inspection apparatus characterized in that a side image is further stored, and images on the other side of the side A and side B of the bottom are further stored in the second image.
PCT/JP2015/064878 2015-01-09 2015-05-25 Appearance inspection device WO2016111025A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003438A JP5954757B2 (en) 2015-01-09 2015-01-09 Appearance inspection device
JP2015-003438 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016111025A1 true WO2016111025A1 (en) 2016-07-14

Family

ID=56355743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064878 WO2016111025A1 (en) 2015-01-09 2015-05-25 Appearance inspection device

Country Status (2)

Country Link
JP (1) JP5954757B2 (en)
WO (1) WO2016111025A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6801860B2 (en) * 2016-09-09 2020-12-16 株式会社ミューチュアル Appearance inspection device for the object to be inspected
DE102017003231A1 (en) 2017-04-03 2018-10-04 Mühlbauer Gmbh & Co. Kg Optical component detection system and method for detecting at least one component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155249A (en) * 1988-12-07 1990-06-14 Nec Corp Visual inspection device
JPH03152408A (en) * 1989-11-10 1991-06-28 Seiko Epson Corp Inspecting apparatus for lead of ic package
JPH03209154A (en) * 1990-01-11 1991-09-12 Narumi China Corp Automatic appearance checking device
JPH0543008U (en) * 1991-11-13 1993-06-11 株式会社小松製作所 Appearance inspection device for goods
JPH1144513A (en) * 1997-05-29 1999-02-16 Sony Corp Visual examination device for semiconductor device and method therefor
JPH11230728A (en) * 1998-02-10 1999-08-27 Ntt Fanet Systems Kk Method and apparatus for visual inspection of object to be inspected
JP2003035681A (en) * 2001-07-19 2003-02-07 Sony Corp Appearance inspection apparatus of semiconductor apparatus
JP2003517723A (en) * 1999-07-23 2003-05-27 プルゾトロニク メルテン ゲゼルシャフト ミット ベシランクテル ハフツング アンド カンパニー コマンディトゲゼルシャフト Parts inspection equipment
JP2009115489A (en) * 2007-11-02 2009-05-28 Daiichi Jitsugyo Viswill Co Ltd Visual inspection apparatus
JP2011010300A (en) * 2009-06-29 2011-01-13 Internatl Business Mach Corp <Ibm> Method, system and program for creating emission image of integrated circuit
JP2014130068A (en) * 2012-12-28 2014-07-10 Nippon Electric Glass Co Ltd Resist pattern measuring device, resist pattern measuring method, and management method for concentration of resist developing solution

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3955203B2 (en) * 2001-11-28 2007-08-08 松下電器産業株式会社 Electronic component mounting device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155249A (en) * 1988-12-07 1990-06-14 Nec Corp Visual inspection device
JPH03152408A (en) * 1989-11-10 1991-06-28 Seiko Epson Corp Inspecting apparatus for lead of ic package
JPH03209154A (en) * 1990-01-11 1991-09-12 Narumi China Corp Automatic appearance checking device
JPH0543008U (en) * 1991-11-13 1993-06-11 株式会社小松製作所 Appearance inspection device for goods
JPH1144513A (en) * 1997-05-29 1999-02-16 Sony Corp Visual examination device for semiconductor device and method therefor
JPH11230728A (en) * 1998-02-10 1999-08-27 Ntt Fanet Systems Kk Method and apparatus for visual inspection of object to be inspected
JP2003517723A (en) * 1999-07-23 2003-05-27 プルゾトロニク メルテン ゲゼルシャフト ミット ベシランクテル ハフツング アンド カンパニー コマンディトゲゼルシャフト Parts inspection equipment
JP2003035681A (en) * 2001-07-19 2003-02-07 Sony Corp Appearance inspection apparatus of semiconductor apparatus
JP2009115489A (en) * 2007-11-02 2009-05-28 Daiichi Jitsugyo Viswill Co Ltd Visual inspection apparatus
JP2011010300A (en) * 2009-06-29 2011-01-13 Internatl Business Mach Corp <Ibm> Method, system and program for creating emission image of integrated circuit
JP2014130068A (en) * 2012-12-28 2014-07-10 Nippon Electric Glass Co Ltd Resist pattern measuring device, resist pattern measuring method, and management method for concentration of resist developing solution

Also Published As

Publication number Publication date
JP5954757B2 (en) 2016-07-20
JP2016128781A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
KR101207198B1 (en) Board inspection apparatus
TWI671836B (en) Processing device
KR100361962B1 (en) Apparatus for inspecting the defects on the wafer periphery and method of inspection
US8681211B2 (en) High speed optical inspection system with adaptive focusing
EP2813808A2 (en) Three-dimensional optical shape measuring apparatus
KR102255607B1 (en) Bonding device and method for detecting the height of the object to be bonded
US20120133920A1 (en) High speed, high resolution, three dimensional printed circuit board inspection system
JP2007147433A (en) Flaw inspection method of ceramic plate and flaw inspection device therefor
JP2006329714A (en) Lens inspection apparatus
KR101672523B1 (en) The visual inspection method of a lens module for a camera
JP2015197361A (en) Surface inspection device and surface inspection method
KR102393237B1 (en) Conductive ball inspection and repair device
KR102224699B1 (en) 3d measurement device, 3d measurement method, and manufacturing method of substrate
JP5954757B2 (en) Appearance inspection device
KR100969349B1 (en) Automatic optical inspection apparatus
JP2007322166A (en) Printed board inspection device
JP2012181114A (en) Appearance inspection device
JP6491425B2 (en) Electronic parts package side view photographing device
JP6464021B2 (en) measuring device
JP2021086121A (en) Image capture device and surface inspection device
WO2011056976A1 (en) High speed optical inspection system with adaptive focusing
JP2003322625A (en) Method and apparatus for inspecting semiconductor chip
JP7199241B2 (en) Semiconductor inspection system and semiconductor inspection equipment
WO2022153772A1 (en) Visual inspection device
KR20090116554A (en) Automatic optical inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876898

Country of ref document: EP

Kind code of ref document: A1