WO2016110135A1 - 一种褶皱膜温度传感器及其制作方法 - Google Patents

一种褶皱膜温度传感器及其制作方法 Download PDF

Info

Publication number
WO2016110135A1
WO2016110135A1 PCT/CN2015/091661 CN2015091661W WO2016110135A1 WO 2016110135 A1 WO2016110135 A1 WO 2016110135A1 CN 2015091661 W CN2015091661 W CN 2015091661W WO 2016110135 A1 WO2016110135 A1 WO 2016110135A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
groove
thermopile material
dielectric layer
material structure
Prior art date
Application number
PCT/CN2015/091661
Other languages
English (en)
French (fr)
Inventor
费跃
王旭洪
张颖
Original Assignee
上海新微技术研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新微技术研发中心有限公司 filed Critical 上海新微技术研发中心有限公司
Publication of WO2016110135A1 publication Critical patent/WO2016110135A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a pleated film temperature sensor and a method of fabricating the same.
  • thermopile temperature sensor is widely studied because of its simple manufacturing process, low cost, convenient use and no 1/f noise.
  • thermopile temperature sensor The main working principle of the thermopile temperature sensor is the Seebeck effect of Seebeck.
  • thermopile temperature sensor mainly adopts a heat-insulating film structure, and the specific form thereof is to form two kinds of thermocouple materials having a high Seebeck coefficient on a silicon substrate, which is generally elongated to reduce thermal conductivity of the thermocouple.
  • the N pairs of thermocouple pairs are connected in series to form a thermopile structure.
  • One end of the two thermocouple materials is arranged at the center of the sensor as a hot junction of the thermopile temperature sensor for receiving the infrared absorption layer to absorb the temperature generated by the infrared radiation emitted by the measuring object.
  • the other end is placed on a silicon substrate remote from the center of the sensor, in line with the ambient temperature, as a cold junction of the thermopile temperature sensor.
  • thermopile temperature sensor Etching a silicon substrate or a front opening release hole to etch the silicon substrate on the back side of the sensor central region, and forming a thin film on the thermocouple pair of the thermopile to thermally isolate the thermopile from the silicon substrate, The greater the thermal resistance between, the better the thermal isolation effect, the higher the sensitivity of the thermopile temperature sensor.
  • thermopile temperature sensor is difficult to effectively modulate and optimize the thermal resistance between the thermopile and the silicon substrate in a limited area due to the size effect limitation, thereby the thermopile temperature sensor The sensitivity is not too high.
  • the invention provides a pleated film temperature sensor and a manufacturing method thereof, and the micro-processing technology is used to form a wrinkle structure of the heat-insulating film, thereby increasing the size of the heat-insulating film, so that the thermal resistance of the heat-insulating film and the thermocouple pair is greatly increased. Therefore, the pleated film temperature sensor of the present application improves the sensitivity without increasing the sensor area compared with the thermopile temperature sensor of the prior art; moreover, the manufacturing method of the present application is compared with the conventional back surface engraving The method of etching a silicon substrate by etching a silicon substrate or a front opening release hole is more convenient and efficient.
  • a method for fabricating a pleated film temperature sensor comprising:
  • first groove 2 Forming a first groove 2 on the substrate 1, and a portion of the substrate at the periphery of the first groove 2 is formed as a step portion 2a;
  • a sacrificial layer wrinkle structure 4 covering at least the bottom of the first groove 2, the sacrificial
  • the pleat structure 4 has at least two recesses 4a and at least one protrusion 4b;
  • thermopile material structure 6 Forming a first layer of thermopile material structure 6 to cover a surface of the first dielectric layer 5, and the first layer of thermopile material structure 6 has a portion exposing a portion of an upper surface of the first layer of dielectric layer 5 Second groove 7;
  • thermopile material structure 11 Forming a second layer of thermopile material structure 11 to cover the second layer of dielectric layer structure 8 and the fourth recess 10, the second layer of thermopile material structure 11 passing through the fourth recess 10 and below
  • the first layer of thermopile material structure 6 is connected, and the second layer of thermopile material structure 11 has a fifth groove 11b corresponding to the second groove 7 to expose the second groove 7
  • a third dielectric layer structure 12 Forming a third dielectric layer structure 12 to cover the second layer of thermopile material structure 11 and the fifth recess 11b, the third layer of dielectric layer structure 12 having a sixth recess 13 and a seventh recess 14 Wherein the sixth groove 13 is located above the step portion 2a and further away from the first groove 2 than the third groove 9, the second layer thermopile material structure 11 is a sixth recess 13 is exposed, the seventh recess 14 is located above the second recess 7, and a portion of the second dielectric layer structure 8 in the second recess 7 passes through the Seven grooves 14 are exposed;
  • the sacrificial layer pleat structure 4 is removed via the release hole 14a to form a cavity 15.
  • thermopile material structure 6 has adjacent at least two
  • second layer thermopile material structure 11 has adjacent at least two
  • the second layer of thermopile material structure 11 and the adjacent first layer of thermopile material structure 6 are connected via the third groove 9 to form a series of thermocouple pairs.
  • the recesses 4a are in a direction parallel to the surface of the substrate 1.
  • the widths above are the same or different from each other.
  • the infrared absorbing layer structure 16 located around the seventh groove 14 is formed on the surface of the third dielectric layer structure 12 before the release hole 14a is formed.
  • the first layer thermopile material structure and the second layer thermopile material structure are doped polysilicon, bismuth (Sb) and a compound thereof, bismuth (Bi), and a compound thereof, titanium (Ti) and a compound thereof, tantalum (Ta) and a compound thereof, one of aluminum (Al) and gold (Au), and the first layer thermopile material structure and the second layer
  • the thermopile material structure has different Seebeck coefficients.
  • a pleated film temperature sensor including:
  • a substrate 1 having a first groove 2 and a step portion 2a located at the periphery of the first groove 2;
  • the multilayer film structure is a first dielectric layer 5 and a first layer thermopile material structure 6 from bottom to top.
  • a second dielectric layer structure 8 a second layer thermopile material structure 11, and a third dielectric layer structure 12, and the first dielectric layer 5, the second dielectric layer structure 8,
  • the third dielectric layer structure 12, and the first groove 2 encloses a cavity 15;
  • a portion of the multilayer film structure located above the first groove 2 is formed as a pleated structure having at least two recesses and at least one protrusion, and the pleat structure further has the vacancy a release hole 14a communicating with the outside of the cavity;
  • the second dielectric layer structure 8 has a fourth recess 10 located outside the release aperture 14a, and the second layer of thermopile material structure 8 passes through the fourth recess 10 and the first layer The thermopile material structure 6 is connected.
  • the beneficial effects of the present application are: forming a pleated thermal insulation film structure by using a micro-machined sacrificial layer technology, and increasing the sensitivity of the temperature detector by increasing the vertical height of the thermal diaphragm and the pair of thermocouples distributed thereon, and the method Compared with the traditional process, the process difficulty of forming the cavity structure is correspondingly reduced, and is suitable for mass production and production.
  • FIG. 1 is a schematic flow chart of a method for fabricating a pleated film temperature sensor according to an embodiment of the present application
  • 2A-2N are cross-sectional views showing the structure of a device corresponding to each step of the method for fabricating a pleated film temperature sensor according to an embodiment of the present application;
  • Figure 3 is a cross-sectional view showing the structure of a pleated film temperature sensor having an infrared absorbing layer structure in the present embodiment
  • FIG. 4 and FIG. 5 are cross-sectional views showing the structure of a pleated film temperature sensor which does not have an infrared absorbing layer structure and has different recess depths in this embodiment;
  • FIGS. 6 and 7 are cross-sectional views showing the structure of a pleated membrane temperature sensor having an infrared absorbing layer structure and different recess depths in the present embodiment.
  • the surface on which the respective dielectric layers of the substrate are disposed is referred to as "upper surface", and the surface of the substrate opposite to the “upper surface” is referred to as “lower surface”, whereby “ The “up” direction refers to the direction from the “lower surface” to the “upper surface”, the “lower” direction is opposite to the “upper” direction, and the “upper” direction and the “down” direction are collectively referred to as “longitudinal”.
  • Semiconductor The direction in which the "upper surface” is parallel is called “lateral”. It should be noted that, in the present application, the "upper” and “lower” settings are relative, and are merely for convenience of explanation, and do not represent the orientation in which the pleated film temperature sensor is specifically used or manufactured.
  • Embodiment 1 of the present application provides a method of fabricating a pleated film temperature sensor.
  • 1 is a schematic flow chart of a method for fabricating the pleated film temperature sensor
  • FIG. 2 is a longitudinal cross-sectional view showing a device structure corresponding to each step of the method for fabricating the pleated film temperature sensor.
  • a method of manufacturing the pleated film temperature sensor of the present embodiment will be described with reference to Figs. 1 and 2 .
  • Step S101 A first groove 2 is formed on the substrate 1, as shown in Fig. 2A.
  • the substrate may be a wafer commonly used in the field of semiconductor fabrication, such as a silicon wafer, a silicon-on-insulator, a SOI wafer, a silicon wafer, a germanium wafer, or a nitride.
  • a silicon wafer a silicon-on-insulator, a SOI wafer, a silicon wafer, a germanium wafer, or a nitride.
  • Gallium Gallium Nitride, GaN wafer, etc., this embodiment is not limited thereto.
  • a deep etching pattern Deep Etching Pattern may be formed on the substrate 1 by reticle lithography, and the pattern is etched by a deep etching technique to form a first groove 2 on the substrate 1, and the A portion of the substrate 1 at the periphery of the first groove 2 is formed as a step portion 2a.
  • Step S102 forming a sacrificial layer pleat structure 4 covering at least the bottom of the first groove 2.
  • step S102 may include the following steps:
  • a sacrificial layer 3 is formed in the first recess 2 by spin coating and high temperature curing, and the sacrificial layer 3 is used to form a cavity of the pleated film temperature sensor, as shown in FIG. 2B.
  • the sacrificial layer pattern 3 is formed by reticle lithography, and the pattern is etched to form a sacrificial layer pleat structure 4 having at least two recesses 4a and at least one convex portion 4b as shown in FIG. 2C.
  • the total width of the sacrificial layer pleat structure 4 is similar to that of the thermopile groove formed by the conventional method, and determines the width of the cavity, that is, the heat insulating film; the sum of the depths of the recesses 4a of the sacrificial layer pleat structure, that is, the total vertical height of the pleats, determines The sensitivity gain of the thermopile structure, the higher the total vertical height, the greater the gain.
  • Step S103 forming a first dielectric layer 5 on the surface of the step portion 2a and the surface of the sacrificial layer pleat structure 4, the first dielectric layer 5 being used for electrically insulating the substrate 1 from the thermopile structure.
  • Step S104 forming a first layer of thermopile material structure 6.
  • step S104 may include the following steps:
  • thermopile material is deposited on the surface of the first dielectric layer 5, covering the entire sacrificial layer pleat structure 4 and the step portion 2a, as shown in Fig. 2E.
  • the material of the first layer 6a of the thermopile material may have a larger Seebeck coefficient to increase the overall sensitivity of the temperature probe.
  • thermopile material structure 6 Forming a first layer pattern of thermopile material by reticle lithography, etching the pattern to form a first layer of thermopile material structure 6, and having the first layer of thermopile material structure 6 having the first layer of dielectric layer A portion of the upper surface of the upper surface of the second recess 7 is exposed as shown in Fig. 2F.
  • the second recess 7 may be located on a recess 4b, and the de-recess 4b may be located at the center of the sacrificial layer pleat structure 4.
  • the embodiment is not limited thereto, and the second groove may also be located at other positions.
  • step S105 may include the following steps:
  • a second dielectric layer 8a is deposited to cover the first layer of thermopile material structure 6 and fill the second recess 7, as shown in Figure 2G.
  • the second dielectric layer 8a is used for electrical insulation of the first layer of thermopile material structure and the second layer of thermopile material structure.
  • the third groove 9 is located above the step portion 2a, and the fourth groove 10 is located outside the second groove 7, as shown in FIG. 2H Shown.
  • the third groove 9 may be located above the step portion 2a near the edge of the first groove 2, and the fourth groove 10 may be formed at the center of the sacrificial layer pleat structure 4.
  • the convex portion 4b is formed above the center of the sacrificial layer pleat structure 4.
  • the third groove 9 and the fourth groove 10 may be a cold junction and a heat junction groove of the thermocouple pair formed by the first layer thermopile material structure and the second layer thermopile material structure, respectively. .
  • step S106 may include the following steps:
  • thermopile material is second Layer 11a can also be used to make electrodes for thermopiles for subsequent package leads and testing.
  • thermopile material structure 11 Forming a second layer pattern of the thermopile material by reticle lithography, etching the pattern to form a second layer of thermopile material structure 11 through which the second layer of thermopile material structure 11 passes
  • the first layer of thermopile material structure 6 is connected, and the second layer of thermopile material structure 11 has a fifth groove 11b corresponding to the second groove 7 to expose the second groove 7
  • the second dielectric layer structure 8 is as shown in FIG. 2J.
  • the second layer thermopile material structure 11 and the first layer thermopile material structure 6 together form a thermocouple pair of the thermopile, and the thermocouple pair can be formed at the fourth groove 10.
  • the hot junction can form a cold junction at the other end of the pair of thermocouples.
  • the pair of thermocouples may be an open circuit, whereby a single pair of thermocouple material structures 11 and a first layer of thermopile material structure 6 may form a single pair of thermocouples.
  • first layer of thermopile material structure 6 may have adjacent at least two
  • second layer of thermopile material structure 11 has adjacent at least two
  • the second layer of thermopile material The structure 11 is connected to the adjacent first layer of thermopile material structure 6 via the third groove 9 to form a pair of thermocouples in series.
  • step S107 may include the following steps:
  • a third layer 12a of the dielectric layer is deposited to cover the second layer of thermopile material structure 11 and the fifth recess 11b, as shown in FIG. 2K.
  • the third layer 12a of the dielectric layer is used for the passivation layer and the protective layer of the temperature sensor.
  • the groove 9 is further away from the first groove 2
  • the second layer thermopile material structure 11 is exposed from the sixth groove 13
  • the seventh groove 14 is located above the second groove 7.
  • a portion of the second dielectric layer structure 8 in the second recess 7 is exposed through the seventh recess 14, as shown in FIG. 2L.
  • the sixth groove 13 can serve as the temperature sensor electrode to expose the groove.
  • step S110 may be further provided, in which an infrared absorbing layer structure 16 is formed on the surface of the third dielectric layer structure 12.
  • step S110 can be implemented by the following steps:
  • an infrared absorbing layer pattern structure 16 that is, forming an infrared absorbing layer pattern by reticle lithography, etching the pattern to form an infrared absorbing layer structure 16.
  • the infrared absorbing layer structure 16 may be located around the seventh groove 14 and does not cover the seventh groove 14.
  • Figure 3 shows the shape in the case where the infrared absorbing layer structure 16 is provided. A cross-sectional view of the temperature sensor after the cavity is formed. By providing an infrared absorbing layer, the infrared absorption efficiency can be increased to increase the sensitivity of the temperature sensor.
  • the infrared absorbing layer structure 16 may also cover a region above the fourth recess 10 so that the heat of the infrared absorbing layer structure 16 is rapidly transferred to the thermal junction of the thermocouple pair.
  • the depths of the recesses 4a in the direction perpendicular to the surface of the substrate 1 are the same or different from each other, and the widths of the recesses 4a in the direction parallel to the surface of the substrate 1 are identical to each other or different.
  • 4 and 5 are cross-sectional views showing the structure of a temperature sensor having no infrared absorbing layer structure and different recess depths
  • FIGS. 6 and 7 are cross-sectional views showing the structure of a temperature sensor having an infrared absorbing layer structure and different recess depths.
  • the stress of the heat insulating film can be sized such that the upper surface of the heat insulating film remains flat.
  • the material of the sacrificial layer pleat structure may be a sacrificial layer material commonly used in a semiconductor manufacturing process, such as one of materials such as polyimide, amorphous silicon, polysilicon, silicon oxide, and photoresist. Or two or more.
  • the method for removing the sacrificial layer pleat structure used in the step S109 is different, and the specific method can refer to the prior art, and details are not described in this embodiment.
  • the material of the infrared absorbing layer may be titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), gold black (black black), silicon black (Silicon black).
  • Ti titanium
  • TiN titanium nitride
  • Ta tantalum
  • TaN tantalum nitride
  • gold black black
  • silicon black Silicon black
  • One or two or more of the dielectric layer composite films and the like may be, for example, a composite film system such as silicon nitride/amorphous silicon/silicon oxide (Si3N4/a-Si/SiO2).
  • the first dielectric layer, the second dielectric layer structure, and the third dielectric layer structure may be selected from silicon nitride (Si3N4), silicon oxide (SiO2), amorphous silicon (a-Si), and the like.
  • the non-conductive dielectric film, the three-layer dielectric film may be different materials.
  • the first layer thermopile material structure and the second layer thermoelectric stack The material structure may be doped polysilicon, bismuth (Sb) and its compound, bismuth (Bi) and its compounds, titanium (Ti) and its compounds, tantalum (Ta) and its compounds, aluminum (Al) and gold (Au). And one of the materials; and the first layer thermopile material structure and the second layer thermopile material structure have different Seebeck coefficients, whereby the two can form a thermocouple pair for temperature detection .
  • the present application forms a pleated thermal insulation film structure by using a micro-machined sacrificial layer technology, and increases the sensitivity of the temperature detector by increasing the vertical height of the thermal diaphragm and the pair of thermocouples distributed thereon, and Compared with the traditional process, the method has a correspondingly reduced process difficulty in forming a cavity structure, and is suitable for mass production and production.
  • the sacrificial layer pleat structure 4 is made of polyimide (PI)
  • the third dielectric layer structure 12 is made of silicon nitride (Si 3 N 4 )
  • the second dielectric layer structure 8 is made of silicon oxide (SiO 2 )
  • the infrared absorption layer structure 16 is made of titanium nitride (TiN)
  • the first layer of thermopile material is used.
  • the structure 6 is made of boron-doped polysilicon (PolySi: B)
  • the second layer of the thermopile material structure 11 is made of aluminum (Al)
  • the substrate 1 may be a wafer wafer.
  • a photoresist pattern on the silicon wafer 1 is photolithographically coated on a silicon wafer 1 by a reticle, and the method is etched by deep reactive ion etching (Deep RIE).
  • the pattern forms a groove as the first groove 2.
  • a layer of polyimide 3 is epoxy-coated on the silicon wafer 1 and cured at a high temperature as a sacrificial layer of the temperature sensor.
  • the photoresist on the sacrificial layer 3 is photolithographically coated by a reticle to form a pattern, which is etched by reactive ion etching (RIE) or particle beam etching (IBE) or inductively coupled plasma etching (ICP).
  • RIE reactive ion etching
  • IBE particle beam etching
  • ICP inductively coupled plasma etching
  • a method of vapor deposition (LPCVD) or plasma enhanced chemical vapor deposition (PECVD) deposits a silicon nitride film as the first dielectric layer 5 of the temperature sensor, which covers the entire pleat pattern 4.
  • a polysilicon film is deposited by LPCVD or PECVD on the basis of the first dielectric layer 5 of the formed dielectric layer, and doped with a certain concentration of boron to form boron-doped boron.
  • the polysilicon film 6a covers the first layer of the pleated pattern 5 of the entire dielectric layer.
  • the photoresist on the boron-doped polysilicon film 6a is photolithographically coated by a reticle to form a pattern, and the pattern is etched by RIE or IBE to form a first layer of thermopile material structure 6, which is first in the sensor center A groove pattern is exposed on the upper surface of the layer dielectric layer as the second groove 7.
  • the first layer of thermopile material structure 6 may have at least two adjacent ones.
  • a silicon oxide film 8a is continuously deposited by LPCVD or PECVD to cover the first layer of the thermopile material structure 6 and fill the exposed first recess 7.
  • the photoresist on the silicon oxide film 8 is photolithographically patterned by a reticle to form a pattern, and the pattern is etched by RIE or IBE to form a second dielectric layer structure 8 which is in the silicon substrate to the sacrificial layer structure.
  • a third groove 9 and a fourth groove 10 are formed at the edge and the sensor center position edge, respectively.
  • thermopile material structure 11 can have at least two adjacent.
  • thermocouple pair The second layer of thermopile material structure 11 and the first layer of thermopile material structure 6 located below thereof form a thermocouple pair and are connected by a fourth groove, and the second layer of thermopile material structure 11 is adjacent to The first layer of thermopile material structure 6 passes through the third groove 9 connected to form a pair of thermocouples in series.
  • the second layer thermopile material structure 11 has a fifth recess 11b corresponding to the second recess 7 to expose the second dielectric layer structure 8 in the second recess 7.
  • a silicon nitride film 12a is deposited by LPCVD or PECVD to cover the device structure of the entire temperature sensor, and the silicon nitride film 12a is used for the passivation layer of the temperature sensor.
  • the protective layer The photoresist on the silicon nitride film 12a is photolithographically patterned by a reticle to form a pattern, and the pattern is etched by RIE or IBE to form a third dielectric layer structure 12, which is exposed on both sides of the silicon substrate.
  • the sixth recess 13 serves as an electrode recess and forms a seventh recess 14 in the central portion of the sensor.
  • the second dielectric layer structure 8 and the first dielectric layer structure 5 under the seventh recess 14 in the center of the sensor are etched by the method of IBE to form a release hole 14a.
  • the sacrificial layer pleat structure 4 is released by radio frequency or microwave by oxygen plasma ashing to form the cavity 15.
  • an infrared absorbing layer 16 is further formed on the basis of the three-layer dielectric film Si3N4/SiO2/Si3N4 which is originally used as the infrared absorbing film system to enhance the pleated film temperature sensor.
  • the infrared absorption efficiency, the specific steps are as follows:
  • Metal Ti is deposited on the third dielectric layer 12 by a magnetron sputtering apparatus, and simultaneously a process gas nitrogen (N2) is introduced, and the wafer wafer 1 is heated to 350 ° C or higher, thereby, in the third layer medium
  • a layer of titanium nitride (TiN) film is formed on the layer 12, and the resistivity thereof is adjusted to be close to 377 ⁇ cm.
  • the titanium nitride film is used for absorbing infrared radiation; the light on the titanium nitride film 16 is photolithographically coated by a reticle.
  • Engraving, forming a pattern, using wet or RIE or IBE methods The pattern is etched to form an infrared absorbing layer structure 16 formed on top of the three dielectric layer structures 5, 8, 12, and the infrared absorbing layer 16 surrounds the seventh recess 14.
  • 3 is a cross-sectional view showing the structure of the temperature sensor after the cavity is formed with the infrared absorbing layer structure 16 disposed.
  • Embodiment 2 of the present application provides a pleated film temperature sensor.
  • 2N is a schematic longitudinal sectional view of the pleated membrane temperature sensor.
  • the pleated film temperature sensor may include:
  • a substrate 1 having a first groove 2 and a step portion 2a located at the periphery of the first groove 2;
  • the multilayer film structure is a first dielectric layer 5 and a first layer thermopile material structure 6 from bottom to top.
  • a second dielectric layer structure 8 a second layer thermopile material structure 11, and a third dielectric layer structure 12, and the first dielectric layer 5, the second dielectric layer structure 8, and the third dielectric layer structure 12, and the first groove 2 encloses a cavity 15;
  • a portion of the multilayer film structure located above the first groove 2 is formed as a pleated structure having at least two recesses and at least one protrusion, and the pleat structure further has the vacancy a release hole 14a communicating with the outside of the cavity;
  • the second dielectric layer structure 8 has a fourth recess 10 located outside the release aperture 14a, and the second layer of thermopile material structure 8 passes through the fourth recess 10 and the first layer The thermopile material structure 6 is connected.
  • the first dielectric layer 5 is responsible for the electrical insulation of the thermopile from the substrate 1; the second dielectric layer structure 8 is responsible for forming the first thermopile material structure 6 and the second of the thermocouple pair of the thermopile. Electrical insulation between layer thermopile material structures 11, third dielectric layer junction
  • the structure 12 is responsible for the passivation and protection of the temperature sensor; the infrared film formed by the three dielectric films 5, 8, 12 can be used to absorb the infrared radiation of the object to be measured, and can also be used in the third dielectric layer structure.
  • the cover 12 is covered with a special infrared absorbing layer structure 16; the cavity 15 is responsible for forming a thermopile insulation film to form thermal isolation from the substrate 1.
  • the temperature sensor has a sixth recess 13 for exposing the second layer of thermopile material structure 11, the sixth recess 13 serving as an electrode recess for wire bonding and testing; and a release aperture 14a for use in the temperature sensor
  • the sacrificial layer structure is released during the fabrication process, and the size of the release hole is small, so its influence on infrared absorption can be ignored.
  • the second dielectric layer structure 8 further has a third recess 9 located above the step portion 2a, and the first layer thermopile material structure 6 has at least two adjacent ones.
  • the second layer of thermopile material structure 11 has at least two adjacent ones, and the second layer of thermopile material structure 11 and the adjacent first layer of thermopile material structure 6 are via the third recess
  • the slots 9 are joined to form a pair of thermocouples in series.
  • ⁇ V is the potential difference generated by the Seebeck effect.
  • the two equations can be combined to obtain the relationship between the response rate and the thermal conductivity.
  • Rv ⁇ *t*N *( ⁇ 1- ⁇ 2)/G total .
  • the thermal conductivity decreases, the temperature difference generated by the thermopile increases, and the sensitivity or response rate of the detector increases accordingly.
  • thermocouple pair composed of a thermocouple double material
  • it is generally elongated and has a certain thickness
  • thermal conductivity
  • S cross-sectional area
  • the thermal barrier In addition to the thermal conductivity of the thermocouple pair, the thermal barrier also has its own thermal conductivity. Different shapes of thermal diaphragms have different thermal conductivity expressions.
  • a and b are respectively the distance from the center of the heat insulating film to the hot junction region and the cold junction region, ⁇ mem is the thermal conductivity of the support layer, and t mem is the thickness thereof.
  • G men 8 ⁇ mem *t mem /Ln(b/a).
  • the distance from the center of the thermal insulation film to the hot junction is the same as that of the conventional thermopile.
  • t crease refers to the sum of the heights of all the thermal insulation films in the vertical direction, that is, the sum of the depths of all the concave portions of the pleat structure.
  • the thermal insulation film and the thermal coupler are formed into a pleated structure, and therefore, compared with the conventional planar thermal insulation film
  • the pleated film temperature sensor of the present application is lengthened by the same cavity size, and the length of the heat insulating film and the thermal coupler is lengthened due to wrinkles, thereby reducing the thermal conductivity of the heat insulating film and the thermal coupler, thereby improving
  • the temperature difference between the hot junction and the cold junction of the thermopile increases the sensitivity of the temperature detector to detect the temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种褶皱膜温度传感器及其制作方法,该褶皱膜温度传感器包括:具有第一凹槽(2)和台阶部(2a)的基片(1);在台阶部(2a)表面和第一凹槽(2)上方具有多层膜结构,其中,第一层介质层(5)、第二层介质层结构(8)、第三层介质层结构(12)、以及第一凹槽(2)围成空腔(15);多层膜结构的位于第一凹槽(2)上方的部分形成为褶皱结构,其具有至少两个凹部和至少一个凸部,并且,褶皱结构还具有释放孔(14a);位于释放孔(14a)外侧的第四凹槽(10),并且,第二层热电堆材料结构(8)通过第四凹槽(10)与第一层热电堆材料结构(6)连接。上述结构能够增加褶皱膜温度传感器的热偶对和隔热膜的长度,使其热导率降低,提高传感器灵敏度,并且,在其制造工艺中,可以提高工艺稳定性和器件性能。

Description

一种褶皱膜温度传感器及其制作方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种褶皱膜温度传感器及其制作方法。
背景技术
温度探测一直以来是传感器行业热门的话题,其中红外探测技术由其非接触式测温更受广大设计、制造和使用者欢迎。热电堆温度传感器作为红外探测器的一种,以其制造工艺简单、成本低、使用方便、无1/f噪声等特点被广泛研究。
热电堆温度传感器的主要工作原理为塞贝克Seebeck效应。该效应可以简述为:两种具有不同塞贝克系数α1、α2的材料一端相连一端开路,若两端存在温度差ΔT=T1-T2,则会在开路端会产生一开路电势ΔV,即赛贝克效应。该结构构成一个热电偶,若将N个热电偶串联起来就形成热电堆,与单个热电偶相比可以产生更大的热电势,即ΔV=N*(α1-α2)*ΔT。
通常,热电堆温度传感器主要采用隔热膜式结构,其具体形式为在一硅片衬底上制作具有高塞贝克系数的两种热偶材料,一般呈长条状以减少热偶的热导,将N对热偶对串联起来形成热电堆结构。两种热偶材料的一端布置在传感器中心位置,作为热电堆温度传感器的热结,用于接受红外吸收层吸收测量物体发出的红外辐射而产生的温 度变化;另一端布置在远离传感器中心的硅衬底上,与环境温度一致,作为热电堆温度传感器的冷结。在传感器中心区域背面刻蚀硅衬底或者正面开释放孔刻蚀硅衬底,并在热电堆的热偶对上形成一层薄膜,以使该热电堆与硅衬底的热隔离,二者之间热阻越大,热隔离效果越好,则热电堆温度传感器的灵敏度越高。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本申请的发明人发现,传统的热电堆温度传感器由于尺寸效应的限制,在有限区域内很难有效地调制和优化热电堆与硅衬底之间的热阻,从而这种热电堆温度传感器的灵敏度也不会太高。
本申请提出一种褶皱膜温度传感器及其制作方法,通过微加工技术,使隔热膜形成一种褶皱结构,从而增加隔热膜的尺寸,使得隔热膜以及热偶对的热阻大大增加,由此,本申请的褶皱膜温度传感器与现有技术中的热电堆温度传感器相比,在不增加传感器面积的情况下,提高灵敏度;此外,本申请的制作方法相比于传统的背面刻蚀硅衬底或者正面开释放孔刻蚀硅衬底的方法更便捷和高效。
根据本申请实施例的一个方面,提供一种褶皱膜温度传感器的制作方法,该方法包括:
在基片1上形成第一凹槽2,并且,所述基片在所述第一凹槽2周边的部分形成为台阶部2a;
形成至少覆盖所述第一凹槽2底部的牺牲层褶皱结构4,所述牺 牲层褶皱结构4具有至少两个凹部4a和至少一个凸部4b;
在所述台阶部2a的表面以及所述牺牲层褶皱结构4的表面形成第一层介质层5;
形成第一层热电堆材料结构6以覆盖所述第一介质层5的表面,并且,所述第一层热电堆材料结构6具有使所述第一层介质层5的上表面的一部分露出的第二凹槽7;
形成第二层介质层结构8以覆盖所述第一层热电堆材料结构6以及所述第二凹槽7,并且,所述第二层介质层结构8具有使所述第一层热电堆材料结构6部分露出的第三凹槽9和第四凹槽10,所述第三凹槽9位于所述台阶部2a上方,所述第四凹槽10位于所述第二凹槽7的外侧;
形成第二层热电堆材料结构11以覆盖所述第二层介质层结构8和所述第四凹槽10,所述第二层热电堆材料结构11通过所述第四凹槽10与下方的所述第一层热电堆材料结构6连接,所述第二层热电堆材料结构11具有对应于所述第二凹槽7的第五凹槽11b,以露出所述第二凹槽7内的所述第二层介质层结构8;
形成第三层介质层结构12以覆盖所述第二层热电堆材料结构11和所述第五凹槽11b,所述第三层介质层结构12具有第六凹槽13和第七凹槽14,其中,所述第六凹槽13位于所述台阶部2a上方,且比所述第三凹槽9更远离所述第一凹槽2,所述第二层热电堆材料结构11从所述第六凹槽13露出,所述第七凹槽14位于所述第二凹槽7的上方,且所述第二凹槽7内的所述第二层介质层结构8的一部分通过所述第七凹槽14露出;
通过所述第七凹槽14刻蚀所述第二层介质层结构8和所述第一层介质层5,形成释放孔14a;
经由所述释放孔14a去除所述牺牲层褶皱结构4,形成空腔15。
根据本申请实施例的另一个方面,其中,所述第一层热电堆材料结构6具有相邻的至少两个,所述第二层热电堆材料结构11具有相邻的至少两个,并且,所述第二层热电堆材料结构11与相邻的所述第一层热电堆材料结构6经由所述第三凹槽9连接,以形成串联的热偶对。
根据本申请实施例的另一个方面,其中,所述凹部4a在垂直于所述基片1表面的方向上的深度彼此相同或不同,所述凹部4a在平行于所述基片1表面的方向上的宽度彼此相同或不同。
根据本申请实施例的另一个方面,其中,在形成所述释放孔14a之前,在所述第三层介质层结构12表面形成位于所述第七凹槽14周围的红外吸收层结构16。
根据本申请实施例的另一个方面,其中,所述第一层热电堆材料结构和所述第二层热电堆材料结构分别是掺杂多晶硅、锑(Sb)及其化合物、铋(Bi)及其化合物、钛(Ti)及其化合物、钽(Ta)及其化合物、铝(Al)和金(Au)中的一种,并且,所述第一层热电堆材料结构和所述第二层热电堆材料结构具有不同的塞贝克系数。
根据本申请实施例的再一个方面,提供一种褶皱膜温度传感器,包括:
基片1,其具有第一凹槽2和位于所述第一凹槽2周边的台阶部2a;
在所述台阶部2a表面和所述第一凹槽2上方具有多层膜结构,所述多层膜结构自下而上依次为第一层介质层5、第一层热电堆材料结构6、第二介质层结构8、第二层热电堆材料结构11、以及第三介质层结构12,并且,所述第一介质层5、所述第二介质层结构8、所 述第三介质层结构12、以及所述第一凹槽2围成空腔15;
所述多层膜结构的位于所述第一凹槽2上方的部分形成为褶皱结构,所述褶皱结构具有至少两个凹部和至少一个凸部,并且,所述褶皱结构还具有使所述空腔与外界连通的释放孔14a;
所述第二介质层结构8具有位于所述释放孔14a的外侧的第四凹槽10,并且,所述第二层热电堆材料结构8通过所述第四凹槽10与所述第一层热电堆材料结构6连接。
本申请的有益效果在于:采用微加工牺牲层技术,形成褶皱式隔热膜结构,通过增加热隔膜和分布于其上的热偶对的垂直高度,提高的温度探测器的灵敏度,且该方法与传统工艺相比,其形成空腔结构的工艺难度也相应降低,适合大批量制造和生产。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起 来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例的褶皱膜温度传感器制作方法的一个流程示意图;
图2A-图2N是本申请实施例的褶皱膜温度传感器制作方法的每一步对应的器件结构剖示图;
图3是本实施例中具有红外吸收层结构的褶皱膜温度传感器结构剖视图;
图4和图5是本实施例中不具备红外吸收层结构且凹部深度不同的褶皱膜温度传感器结构剖视图;
图6和图7是本实施例中具备红外吸收层结构且凹部深度不同的褶皱膜温度传感器结构剖视图。
具体实施方式
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请中,为了说明方便,将基片的设置各介质层的面称为“上表面”,将基片的与该“上表面”相对的面称为“下表面”,由此,“上”方向是指从“下表面”指向“上表面”的方向,“下”方向与“上”方向相反,并且,将“上”方向与“下”方向统称为“纵向”,将与所述半导体的 “上表面”平行的方向称为“横向”。需要说明的是,在本申请中,“上”和“下”的设定是相对而言,仅是为了说明方便,并不代表具体使用或制造该褶皱膜温度传感器的方位。
实施例1
本申请实施例1提供一种褶皱膜温度传感器的制作方法。图1是该褶皱膜温度传感器的制作方法的一个流程示意图,图2是该褶皱膜温度传感器的制作方法的每一步对应的器件结构的纵剖面示意图。下面,结合图1和图2,对本实施例的褶皱膜温度传感器的制作方法进行说明。
步骤S101:在基片1上形成第一凹槽2,如图2A所示。
在本实施例中,该基片可以是半导体制造领域中常用的晶圆,例如硅晶圆、绝缘体上的硅Silicon-On-Insulator,SOI晶圆、锗硅晶圆、锗晶圆或氮化镓Gallium Nitride,GaN晶圆等,本实施例对此并不限制。
在本实施例中,可以在基片1上通过掩模版光刻形成深刻蚀图形Deep Etching Pattern,用深刻蚀技术刻蚀该图形,以在基片1上形成第一凹槽2,并且,该基片1在该第一凹槽2周边的部分形成为台阶部2a。
步骤S102:形成至少覆盖所述第一凹槽2底部的牺牲层褶皱结构4。
在本实施例中,该步骤S102可以包括以下步骤:
S1:旋涂牺牲层。
通过旋涂和高温固化等方法在该第一凹槽2中形成一层牺牲层3,该牺牲层3用于制作褶皱膜温度传感器的空腔,如图2B所示。
S2:形成牺牲层褶皱结构。
通过掩模版光刻形成牺牲层图形3,并刻蚀该图形,形成牺牲层褶皱结构4,所述牺牲层褶皱结构4具有至少两个凹部4a和至少一个凸部4b,如图2C所示。牺牲层褶皱结构4的总宽度和传统方法形成的热电堆凹槽类似,决定了空腔即隔热膜的宽度;牺牲层褶皱结构的各凹部4a的深度总和,即褶皱总垂直高度,决定了热电堆结构的灵敏度增益,该总垂直高度越高,增益越大。
步骤S103:在所述台阶部2a的表面以及所述牺牲层褶皱结构4的表面形成第一层介质层5,该第一层介质层5用于基片1与热电堆结构的电绝缘。
步骤S104:形成第一层热电堆材料结构6。
在本实施例中,该步骤S104可以包括以下步骤:
S1:沉积热电堆材料第一层。
在第一介质层5的表面沉积热电堆材料第一层6a,其覆盖整个牺牲层褶皱结构4以及台阶部2a,如图2E所示。该热电堆材料第一层6a的材料可以具有较大的塞贝克系数以增加温度探测器整体的灵敏度。
S2:形成第一层热电堆材料结构。
通过掩模版光刻形成热电堆材料第一层图形,刻蚀该图形,形成第一层热电堆材料结构6,并且,所述第一层热电堆材料结构6具有使所述第一层介质层5的上表面的一部分露出的第二凹槽7,如图2F所示。
在本实施例中,该第二凹槽7可以位于一个凹部4b上,并且,该去凹部4b可以位于该牺牲层褶皱结构4的中心。当然,本实施例并不限于此,该第二凹槽还可以位于其它的位置。
S105:形成第二层介质层结构8以覆盖所述第一层热电堆材料结构6以及所述第二凹槽7。
在本实施例中,该步骤S105可以包括以下步骤:
S1:沉积第二层介质层。
沉积第二层介质层8a,以覆盖第一层热电堆材料结构6并填充第二凹槽7,如图2G所示。该第二层介质层8a用于第一层热电堆材料结构和第二层热电堆材料结构的电绝缘。
S2:形成第二层介质层结构。
通过掩模版光刻形成第二层介质层图形,刻蚀该图形,形成第二层介质层结构8,并且,该第二层介质层结构8具有使所述第一层热电堆材料结构6部分露出的第三凹槽9和第四凹槽10,所述第三凹槽9位于所述台阶部2a上方,所述第四凹槽10位于所述第二凹槽7的外侧,如图2H所示。在一个具体的实施方式中,该第三凹槽9可以位于台阶部2a上方靠近所述第一凹槽2的边缘,该第四凹槽10可以形成于位于该牺牲层褶皱结构4的中心的凸部4b上方,从而形成于该牺牲层褶皱结构4的中心附近。
在本实施例中,该第三凹槽9和第四凹槽10可以分别是第一层热电堆材料结构和第二层热电堆材料结构所形成的热偶对的冷结和热结凹槽。
S106:形成第二层热电堆材料结构11以覆盖所述第二层介质层结构8和所述第四凹槽10。
在本实施例中,该步骤S106可以包括以下步骤:
S1:沉积热电堆材料第二层。
沉积热电堆材料第二层11a,以覆盖所述第二层介质层结构8和所述第四凹槽10,如图2I所示。在本实施例中,该热电堆材料第二 层11a还可以被用来制作热电堆的电极,用于后续封装引线及测试。
S2:形成第二层热电堆材料结构。
通过掩模版光刻形成热电堆材料第二层图形,刻蚀该图形,形成第二层热电堆材料结构11,所述第二层热电堆材料结构11通过所述第四凹槽10与下方的所述第一层热电堆材料结构6连接,所述第二层热电堆材料结构11具有对应于所述第二凹槽7的第五凹槽11b,以露出所述第二凹槽7内的所述第二层介质层结构8,如图2J所示。
在本实施例中,该第二层热电堆材料结构11与该第一层热电堆材料结构6一起构成热电堆的热偶对,并且,在第四凹槽10处可以形成该热偶对的热结,在该热偶对的另一端可以形成冷结。其中,在冷结处,该热偶对可以是开路,由此,可以由一个第二层热电堆材料结构11与一个第一层热电堆材料结构6形成单立的热偶对。
此外,在本实施例中,第一层热电堆材料结构6可以具有相邻的至少两个,第二层热电堆材料结构11具有相邻的至少两个,并且,该第二层热电堆材料结构11与相邻的该第一层热电堆材料结构6经由该第三凹槽9连接,以形成串联的热偶对。
S107:形成第三层介质层结构12以覆盖所述第二层热电堆材料结构11和所述第五凹槽11b。
在本实施例中,该步骤S107可以包括以下步骤:
S1:沉积介质层第三层。
沉积介质层第三层12a,以覆盖所述第二层热电堆材料结构11和所述第五凹槽11b,如图2K。该介质层第三层12a用于该温度传感器的钝化层和保护层。
S2:形成第三层介质层结构。
通过掩模版光刻形成介质层第三层图形,刻蚀该图形,形成第三 层介质层结构12,该第三层介质层结构12具有第六凹槽13和第七凹槽14,其中,所述第六凹槽13位于所述台阶部2a上方,且比所述第三凹槽9更远离所述第一凹槽2,所述第二层热电堆材料结构11从所述第六凹槽13露出,所述第七凹槽14位于所述第二凹槽7的上方,且所述第二凹槽7内的所述第二层介质层结构8的一部分通过所述第七凹槽14露出,如图2L所示。在本实施例中,所述第六凹槽13可以作为该温度传感器电极露出凹槽。
S108:通过所述第七凹槽14刻蚀所述第二层介质层结构8和所述第一层介质层5,形成释放孔14a,如图2M所示。
S109:经由所述释放孔14a去除所述牺牲层褶皱结构4,形成空腔15,如图2N所示。其中,所述空腔15由第一介质层5、所述第二介质层结构8、所述第三介质层结构12、以及所述第一凹槽2围成,并且,第一介质层5、所述第二介质层结构8、以及所述第三介质层结构12所形成的多层膜结构的位于所述第一凹槽2上方的部分形成为褶皱结构,所述褶皱结构的凹部和凸部分别与所述牺牲层褶皱结构的凹部4a和凸部4b对应。
此外,在本实施例中,如图1,在步骤S107和S108之间,还可以具有步骤S110,在步骤S110中,在所述第三层介质层结构12表面形成红外吸收层结构16。
在本实施例中,该步骤S110可以通过如下步骤来实现:
S1:沉积红外吸收层;
S2:形成红外吸收层图形结构16,即,通过掩模版光刻形成红外吸收层图形,刻蚀该图形,形成红外吸收层结构16。在本实施例中,该红外吸收层结构16可以位于所述第七凹槽14的周围,不覆盖所述第七凹槽14。图3示出了在设置红外吸收层结构16的情况下形 成空腔后的温度传感器结构剖视图。通过设置红外吸收层,能够增加红外吸收效率,以提高温度传感器的灵敏度。
在本实施例中,红外吸收层结构16还可以覆盖所述第四凹槽10上方的区域,以便于所述红外吸收层结构16的热量快速地传输到热偶对的热结。
在本实施例中,所述凹部4a在垂直于所述基片1表面的方向上的深度彼此相同或不同,所述凹部4a在平行于所述基片1表面的方向上的宽度彼此相同或不同。图4和图5是不具备红外吸收层结构且凹部深度不同的温度传感器结构剖视图,图6和图7是具备红外吸收层结构且凹部深度不同的温度传感器结构剖视图。在本实施例中,通过调整凹部的深度和宽度,能够调制隔热膜的应力大小,以使得隔热膜的上表面保持平直。
在本实施例中,所述牺牲层褶皱结构的材料可以是半导体制造工艺中常用的牺牲层材料,例如聚酰亚胺、非晶硅、多晶硅、氧化硅和光刻胶等材料中的一种或两种以上。并且,随着牺牲层褶皱结构的材料的不同,在步骤S109中所使用的去除该牺牲层褶皱结构的方法也不同,具体的方法可参考现有技术,本实施例不再赘述。
在本实施例中,该红外吸收层的材料可以是钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、金黑(Gold black)、硅黑(Silicon black)和介质层复合膜等中的一种或两种以上,例如可以是如氮化硅/非晶硅/氧化硅(Si3N4/a-Si/SiO2)等复合膜系。
在本实施例中,第一层介质层、第二层介质层结构、第三层介质层结构可分别选用氮化硅(Si3N4)、氧化硅(SiO2)、非晶硅(a-Si)等非导电性介质膜,三层介质膜可以是不同材料。
在本实施例中,该第一层热电堆材料结构和所述第二层热电堆材 料结构可以分别是掺杂多晶硅、锑(Sb)及其化合物、铋(Bi)及其化合物、钛(Ti)及其化合物、钽(Ta)及其化合物、铝(Al)和金(Au)等材料中的一种;并且,所述第一层热电堆材料结构和所述第二层热电堆材料结构具有不同的塞贝克系数,由此,二者能够形成热偶对,以进行温度检测。
根据上述说明可知,本申请由于采用微加工牺牲层技术,形成褶皱式隔热膜结构,通过增加热隔膜和分布于其上的热偶对的垂直高度,提高的温度探测器的灵敏度,且该方法与传统工艺相比,其形成空腔结构的工艺难度也相应降低,适合大批量制造和生产。
下面,结合具体实例和图2,详细说明本实施例的制作方法的一个具体实施方式,在本具体实施方式中,牺牲层褶皱结构4采用聚酰亚胺(PI),第一介质层5和第三介质层结构12采用氮化硅(Si3N4),第二介质层结构8采用氧化硅(SiO2),红外吸收层结构16采用氮化钛(TiN),第一层热电堆材料结构6用掺杂硼的多晶硅(PolySi:B),第二层热电堆材料结构11采用铝(Al),并且,该基片1可以是硅片晶圆。
具体步骤如下:
1)如图2A所示,在硅片晶圆1上通过掩模版光刻涂覆在硅片晶圆1上的光刻胶图形,用深反应离子刻蚀(Deep RIE)的方法刻蚀该图形,形成一凹槽,作为第一凹槽2。
2)如图2B、2C所示,在硅片晶圆1上滴胶、甩胶、高温固化一层聚酰亚胺3,作为温度传感器的牺牲层。通过掩模版光刻涂覆在牺牲层3上的光刻胶,形成图形,用反应离子刻蚀(RIE)或粒子束刻蚀(IBE)或感应耦合等离子体刻蚀(ICP)方法刻蚀该图形,形成牺牲层褶皱图形4。
3)如图2D所示,在硅片晶圆1及牺牲层褶皱图形4上用液相化 学气相沉积(LPCVD)或等离子体增强化学气相沉积(PECVD)的方法沉积一层氮化硅薄膜,作为温度传感器的第一层介质层5,该薄膜覆盖整个褶皱图形4。
4)如图2E、2F所示,在已形成的介质层第一层介质层5的基础上用LPCVD或PECVD的方法沉积一层多晶硅薄膜,并掺杂一定浓度的硼,使其形成掺硼的多晶硅薄膜6a,该薄膜覆盖整个介质层第一层褶皱图形5。通过掩模版光刻涂覆在掺硼的多晶硅薄膜6a上的光刻胶,形成图形,用RIE或IBE刻蚀该图形,形成第一层热电堆材料结构6,该结构6在传感器中心第一层介质层上表面暴露出一凹槽图形,作为第二凹槽7。在本实施例中,该第一层热电堆材料结构6可以具有相邻的至少两个。
5)如图2G、2H所示,继续用LPCVD或PECVD的方法沉积一层氧化硅薄膜8a,使其覆盖第一层热电堆材料结构6并填充露出的第一凹槽7。通过掩模版光刻涂覆在氧化硅薄膜8上的光刻胶,形成图形,用RIE或IBE刻蚀该图形,形成第二层介质层结构8,该结构8在硅衬底至牺牲层结构边缘处与传感器中心位置边缘分别形成第三凹槽9和第四凹槽10。
6)如图2I、2J所示,用蒸发或溅射的方法沉积一层铝薄膜11a,使其覆盖上述两个个凹槽9,10。通过掩模版光刻涂覆在铝薄膜上的光刻胶,形成图形,用RIE或IBE或湿法腐蚀的方法刻蚀该图形,形成第二层热电堆材料结构11,并且,该第二层热电堆材料结构11可以具有相邻的至少两个。
该第二层热电堆材料结构11与位于其下方的第一层热电堆材料结构6共同形成热偶对,并通过第4凹槽连接,并且,该第二层热电堆材料结构11与相邻的该第一层热电堆材料结构6经由该第三凹槽 9连接,以形成串联的热偶对。
此外,所述第二层热电堆材料结构11具有对应于所述第二凹槽7的第五凹槽11b,以露出所述第二凹槽7内的所述第二层介质层结构8。
7)如图2K、2L所示,用LPCVD或PECVD的方法沉积一层氮化硅薄膜12a,使其覆盖整个温度传感器的器件结构,该氮化硅薄膜12a用于温度传感器的钝化层和保护层。通过掩模版光刻涂覆在氮化硅薄膜12a上的光刻胶,形成图形,用RIE或IBE刻蚀该图形,形成第三层介质层结构12,该结构12在硅衬底两侧露出第六凹槽13,作为电极凹槽,并在传感器中心区域形成第七凹槽14。
8)如图2M所示,用IBE的方法刻蚀位于传感器中心的第七凹槽14下方的第二层介质层结构8和第一层介质层结构5,形成释放孔14a。
9)如图2N所示,用氧等离子灰化的方法射频或微波释放牺牲层褶皱结构4,形成空腔15。
10)切割晶圆,褶皱膜温度传感器制作完成。
此外,在实施上述步骤8以前,可以引入以下工艺步骤:在原先作为红外吸收膜系的三层介质膜Si3N4/SiO2/Si3N4的基础上再形成一层红外吸收层16,以增强褶皱膜温度传感器的红外吸收效率,具体步骤如下:
在第三层介质层12上通过磁控溅射仪沉积金属Ti,并同时通入工艺气体氮气(N2),并使硅片晶圆1加热至350℃以上,由此,在第三层介质层12上形成一层氮化钛(TiN)薄膜,调制其电阻率接近377Ω·cm,该氮化钛薄膜用于吸收红外辐射;通过掩模版光刻涂覆在氮化钛薄膜16上的光刻胶,形成图形,用湿法或RIE或IBE的方法 刻蚀该图形,形成红外吸收层结构16,该红外吸收层16形成于三层介质层结构5、8、12的顶部,并且,该红外吸收层16围绕该第七凹槽14。图3示出了在设置红外吸收层结构16的情况下形成空腔后的温度传感器结构剖视图。
实施例2
本申请实施例2提供一种褶皱膜温度传感器。图2N是该褶皱膜温度传感器纵剖面结构示意图。如图2N所示,该褶皱膜温度传感器可以包括:
基片1,其具有第一凹槽2和位于所述第一凹槽2周边的台阶部2a;
在所述台阶部2a表面和所述第一凹槽2上方具有多层膜结构,所述多层膜结构自下而上依次为第一层介质层5、第一层热电堆材料结构6、第二介质层结构8、第二层热电堆材料结构11、以及第三介质层结构12,并且,所述第一介质层5、所述第二介质层结构8、所述第三介质层结构12、以及所述第一凹槽2围成空腔15;
所述多层膜结构的位于所述第一凹槽2上方的部分形成为褶皱结构,所述褶皱结构具有至少两个凹部和至少一个凸部,并且,所述褶皱结构还具有使所述空腔与外界连通的释放孔14a;
所述第二介质层结构8具有位于所述释放孔14a的外侧的第四凹槽10,并且,所述第二层热电堆材料结构8通过所述第四凹槽10与所述第一层热电堆材料结构6连接。
在本实施例中,第一层介质层5负责热电堆与基片1的电绝缘;第二层介质层结构8负责形成热电堆的热偶对的第一层热电堆材料结构6和第二层热电堆材料结构11之间的电绝缘,第三层介质层结 构12负责对温度传感器起其钝化和保护的作用;三层介质膜5、8、12形成的红外膜系可以用来吸收被测物体的红外辐射,此外,还可以在第三介质层结构12上覆盖一层专门的红外吸收层结构16;空腔15负责形成热电堆隔热膜,以形成与基片1的热隔离。此外,该温度传感器有使第二层热电堆材料结构11露出的第六凹槽13,该第六凹槽13作为电极凹槽,用于打线和测试;释放孔14a用于在温度传感器的制作过程中释放牺牲层结构,该释放孔的尺寸较小,所以,其对红外吸收的影响可以被忽略。
在本实施例中,所述第二介质层结构8还具有位于所述台阶部2a上方的第三凹槽9,并且,所述第一层热电堆材料结构6具有相邻的至少两个,所述第二层热电堆材料结构11具有相邻的至少两个,并且,所述第二层热电堆材料结构11与相邻的所述第一层热电堆材料结构6经由所述第三凹槽9连接,以形成串联的热偶对。
关于实施例2中褶皱膜温度传感器各部分的具体说明,可以参考实施例1,本实施例不再赘述。
灵敏度或响应率Rv是评价温度探测器性能的重要指标,其定义为输出电压ΔV与入射辐射功率P的比值,单位V/W,即Rv=ΔV/P。ΔV即Seebeck效应产生的电势差,入射辐射功率P可以表示为P=Gtotal*ΔT/(η*t),两式联立,可以得到响应率和热导的关系式Rv=η*t*N*(α1-α2)/Gtotal。由于热导减少,热电堆产生的温差增大,其探测器的灵敏度或响应率也相应增加。
对于热偶双材料构成的热偶对而言,一般为长条形并有一定的厚度,其热导表达式为G=λS/L,其中,λ为热导率,S为横截面积,L是物体的长度。因此,热偶对的热导Gtc为Gtc=N(λ1S1/L12S2/L2),可以看出,在材料、热偶对对数、材料横截面积确定的情况下,增加 热偶对的长度可以减少热导。
除了热偶对的热导外,隔热膜也有其自身热导。不同形状的热隔膜其热导表达式也不同。在本申请中,可以采用正方形的红外吸收区结构,设a和b分别为隔热膜中心到热结区和冷结区的距离,λmem为支撑层的热导率,tmem为其厚度,则有Gmen=8λmem*tmem/Ln(b/a),对于褶皱膜结构的热电堆温度传感器,隔热膜中心到热结区的距离与传统方法的热电堆一样,都为a,而到冷结区的距离由于其褶皱结构,增加为b+tcrease,其中tcrease指所有隔热膜垂直方向的高度总和,即褶皱结构所有凹部的深度的总和。由上述公式可以看出,其隔热膜的热导值随着隔热膜的长度变长而降低。
由上述分析可以看出,相比较传统的热电堆隔热膜结构,本申请的褶皱膜温度传感器中,隔热膜及其热偶条形成为褶皱结构,因此,相比较传统的平面隔热膜,本申请的褶皱膜温度传感器在相同空腔尺寸条件下,其隔热膜和热偶条的长度由于褶皱的原因得到了加长,从而降低了隔热膜和热偶条的热导,提高了热电堆热结和冷结的温度差,增加了温度探测器探测温度的灵敏度。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。

Claims (10)

  1. 一种褶皱膜温度传感器的制作方法,该方法包括:
    在基片(1)上形成第一凹槽(2),并且,所述基片在所述第一凹槽(2)周边的部分形成为台阶部(2a);
    形成至少覆盖所述第一凹槽(2)底部的牺牲层褶皱结构(4),所述牺牲层褶皱结构(4)具有至少两个凹部(4a)和至少一个凸部(4b);
    在所述台阶部(2a)的表面以及所述牺牲层褶皱结构(4)的表面形成第一层介质层(5);
    形成第一层热电堆材料结构(6)以覆盖所述第一介质层(5)的表面,并且,所述第一层热电堆材料结构(6)具有使所述第一层介质层(5)的上表面的一部分露出的第二凹槽(7);
    形成第二层介质层结构(8)以覆盖所述第一层热电堆材料结构(6)以及所述第二凹槽(7),并且,所述第二层介质层结构(8)具有使所述第一层热电堆材料结构(6)部分露出的第三凹槽(9)和第四凹槽(10),所述第三凹槽(9)位于所述台阶部(2a)上方,所述第四凹槽(10)位于所述第二凹槽(7)的外侧;
    形成第二层热电堆材料结构(11)以覆盖所述第二层介质层结构(8)和所述第四凹槽(10),所述第二层热电堆材料结构(11)通过所述第四凹槽(10)与下方的所述第一层热电堆材料结构(6)连接,所述第二层热电堆材料结构(11)具有对应于所述第二凹槽(7)的第五凹槽(11b),以露出所述第二凹槽(7)内的所述第二层介质层结构(8);
    形成第三层介质层结构(12)以覆盖所述第二层热电堆材料结构 (11)和所述第五凹槽(11b),所述第三层介质层结构(12)具有第六凹槽(13)和第七凹槽(14),其中,所述第六凹槽(13)位于所述台阶部(2a)上方,且比所述第三凹槽(9)更远离所述第一凹槽(2),所述第二层热电堆材料结构(11)从所述第六凹槽(13)露出,所述第七凹槽(14)位于所述第二凹槽(7)的上方,且所述第二凹槽(7)内的所述第二层介质层结构(8)的一部分通过所述第七凹槽(14)露出;
    通过所述第七凹槽(14)刻蚀所述第二层介质层结构(8)和所述第一层介质层(5),形成释放孔(14a);
    经由所述释放孔(14a)去除所述牺牲层褶皱结构(4),形成空腔(15)。
  2. 如权利要求1所述的褶皱膜温度传感器的制作方法,其中,
    所述第一层热电堆材料结构(6)具有相邻的至少两个,所述第二层热电堆材料结构(11)具有相邻的至少两个,并且,所述第二层热电堆材料结构(11)与相邻的所述第一层热电堆材料结构(6)经由所述第三凹槽(9)连接,以形成串联的热偶对。
  3. 如权利要求1所述的褶皱膜温度传感器的制作方法,其中,
    所述凹部(4a)在垂直于所述基片(1)表面的方向上的深度彼此相同或不同,
    所述凹部(4a)在平行于所述基片(1)表面的方向上的宽度彼此相同或不同。
  4. 如权利要求1所述的褶皱膜温度传感器的制作方法,其中,
    在形成所述释放孔(14a)之前,在所述第三层介质层结构(12)表面形成位于所述第七凹槽(14)周围的红外吸收层结构(16)。
  5. 如权利要求1所述的褶皱膜温度传感器的制作方法,其中,
    所述第一层热电堆材料结构和所述第二层热电堆材料结构分别是掺杂多晶硅、锑(Sb)及其化合物、铋(Bi)及其化合物、钛(Ti)及其化合物、钽(Ta)及其化合物、铝(Al)和金(Au)中的一种;
    并且,所述第一层热电堆材料结构和所述第二层热电堆材料结构具有不同的塞贝克系数。
  6. 一种褶皱膜温度传感器,包括:
    基片(1),其具有第一凹槽(2)和位于所述第一凹槽(2)周边的台阶部(2a);
    在所述台阶部(2a)表面和所述第一凹槽(2)上方具有多层膜结构,所述多层膜结构自下而上依次为第一层介质层(5)、第一层热电堆材料结构(6)、第二层介质层结构(8)、第二层热电堆材料结构(11)、以及第三层介质层结构(12),并且,所述第一层介质层(5)、所述第二层介质层结构(8)、所述第三层介质层结构(12)、以及所述第一凹槽(2)围成空腔(15);
    所述多层膜结构的位于所述第一凹槽(2)上方的部分形成为褶皱结构,所述褶皱结构具有至少两个凹部和至少一个凸部,并且,所述褶皱结构还具有使所述空腔与外界连通的释放孔(14a);
    所述第二介质层结构(8)具有位于所述释放孔(14a)的外侧的第四凹槽(10),并且,所述第二层热电堆材料结构(8)通过所述第四凹槽(10)与所述第一层热电堆材料结构(6)连接。
  7. 如权利要求6所述的褶皱膜温度传感器,其中,
    所述第二层介质层结构(8)还具有位于所述台阶部(2a)上方的第三凹槽(9),
    并且,所述第一层热电堆材料结构(6)具有相邻的至少两个,所述第二层热电堆材料结构(11)具有相邻的至少两个,并且,所述 第二层热电堆材料结构(11)与相邻的所述第一层热电堆材料结构(6)经由所述第三凹槽(9)连接,以形成串联的热偶对。
  8. 如权利要求6所述的褶皱膜温度传感器,其中,
    所述凹部(4a)在垂直于所述基片(1)表面的方向上的深度彼此相同或不同,
    所述凹部(4a)在平行于所述基片(1)表面的方向上的宽度彼此相同或不同。
  9. 如权利要求6所述的褶皱膜温度传感器,其中,
    所述第三层介质层结构(12)表面形成有位于所述释放孔(14a)周围的红外吸收层结构(16)。
  10. 如权利要求6所述的褶皱膜温度传感器,其中,
    所述第一层热电堆材料结构和所述第二层热电堆材料结构分别是掺杂多晶硅、锑(Sb)及其化合物、铋(Bi)及其化合物、钛(Ti)及其化合物、钽(Ta)及其化合物、铝(Al)和金(Au)中的一种;
    并且,所述第一层热电堆材料结构和所述第二层热电堆材料结构具有不同的塞贝克系数。
PCT/CN2015/091661 2015-01-08 2015-10-10 一种褶皱膜温度传感器及其制作方法 WO2016110135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010116.8A CN104501983B (zh) 2015-01-08 2015-01-08 一种褶皱膜温度传感器及其制作方法
CN2015100101168 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016110135A1 true WO2016110135A1 (zh) 2016-07-14

Family

ID=52943404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091661 WO2016110135A1 (zh) 2015-01-08 2015-10-10 一种褶皱膜温度传感器及其制作方法

Country Status (2)

Country Link
CN (1) CN104501983B (zh)
WO (1) WO2016110135A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640933A (zh) * 2022-04-20 2022-06-17 瑶芯微电子科技(上海)有限公司 Mems麦克风及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501983B (zh) * 2015-01-08 2017-03-22 上海新微技术研发中心有限公司 一种褶皱膜温度传感器及其制作方法
CN106744640B (zh) * 2017-03-03 2019-02-12 苏州甫一电子科技有限公司 具有台阶状结构和真空腔体的微热板及其加工方法
CN109216534B (zh) * 2017-07-04 2022-05-06 上海新微技术研发中心有限公司 一种晶圆级封装的单片集成红外温度传感器及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195096A1 (en) * 2001-07-31 2004-10-07 Christos Tsamis Method for the fabrication of suspended porous silicon microstructures and application in gas sensors
US20050000283A1 (en) * 2003-07-02 2005-01-06 Mitsubishi Denki Kabushiki Kaisha Thermosensitive flow rate detecting element and method for the manufacture thereof
CN1675126A (zh) * 2002-08-01 2005-09-28 飞思卡尔半导体公司 用于mems应用的低温等离子体硅或硅锗
CN101131407A (zh) * 2007-10-09 2008-02-27 东南大学 微电子机械可重构宽频带微波功率传感器及其制备方法
CN101776483A (zh) * 2009-12-29 2010-07-14 中国科学院上海微系统与信息技术研究所 一种非致冷热电堆红外探测器及制作方法
CN102175287A (zh) * 2010-12-30 2011-09-07 国家纳米技术与工程研究院 一种基于mems技术的流量计芯片的测量部件及其制作方法
CN102384790A (zh) * 2010-08-30 2012-03-21 中国科学院微电子研究所 热电堆红外传感器及其制作方法
CN104501983A (zh) * 2015-01-08 2015-04-08 上海新微技术研发中心有限公司 一种褶皱膜温度传感器及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4009046B2 (ja) * 2001-04-10 2007-11-14 浜松ホトニクス株式会社 赤外線センサ
JP2006038613A (ja) * 2004-07-27 2006-02-09 Nissan Motor Co Ltd 赤外線検出素子
CN100440561C (zh) * 2006-11-17 2008-12-03 中国科学院上海微系统与信息技术研究所 微机械热电堆红外探测器及其制作方法
CN101575083B (zh) * 2009-06-15 2011-11-09 中北大学 微机械热电堆红外探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195096A1 (en) * 2001-07-31 2004-10-07 Christos Tsamis Method for the fabrication of suspended porous silicon microstructures and application in gas sensors
CN1675126A (zh) * 2002-08-01 2005-09-28 飞思卡尔半导体公司 用于mems应用的低温等离子体硅或硅锗
US20050000283A1 (en) * 2003-07-02 2005-01-06 Mitsubishi Denki Kabushiki Kaisha Thermosensitive flow rate detecting element and method for the manufacture thereof
CN101131407A (zh) * 2007-10-09 2008-02-27 东南大学 微电子机械可重构宽频带微波功率传感器及其制备方法
CN101776483A (zh) * 2009-12-29 2010-07-14 中国科学院上海微系统与信息技术研究所 一种非致冷热电堆红外探测器及制作方法
CN102384790A (zh) * 2010-08-30 2012-03-21 中国科学院微电子研究所 热电堆红外传感器及其制作方法
CN102175287A (zh) * 2010-12-30 2011-09-07 国家纳米技术与工程研究院 一种基于mems技术的流量计芯片的测量部件及其制作方法
CN104501983A (zh) * 2015-01-08 2015-04-08 上海新微技术研发中心有限公司 一种褶皱膜温度传感器及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114640933A (zh) * 2022-04-20 2022-06-17 瑶芯微电子科技(上海)有限公司 Mems麦克风及其制备方法
CN114640933B (zh) * 2022-04-20 2024-03-29 瑶芯微电子科技(上海)有限公司 Mems麦克风及其制备方法

Also Published As

Publication number Publication date
CN104501983B (zh) 2017-03-22
CN104501983A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016095600A1 (zh) 一种立体式温度探测器及其制造方法
US9222837B2 (en) Black silicon-based high-performance MEMS thermopile IR detector and fabrication method
WO2014029189A1 (zh) 一种高性能mems热电堆红外探测器结构及其制备方法
CN102901567B (zh) 热电堆红外探测器、阵列及其制备方法
WO2016110135A1 (zh) 一种褶皱膜温度传感器及其制作方法
KR100925214B1 (ko) 볼로미터 및 그 제조 방법
CN103245421B (zh) 致热型mems热电堆红外探测器结构及其制备方法
TWI613423B (zh) 製造半導體裝置的方法
US8758650B2 (en) Graphene-based thermopile
CN111947787B (zh) 红外探测器及其制备方法
US20130248712A1 (en) Nanowire thermoelectric infrared detector
TW201728882A (zh) 具備具高吸收效率及訊噪比的懸置式輻射熱薄膜之偵測裝置
JP2016528498A (ja) 選択的波長赤外吸収体を有する焦電性窒化アルミニウムmems赤外センサ
WO2020174732A1 (ja) 赤外線センサ及び赤外線センサアレイ
Lang et al. A thin film bolometer using porous silicon technology
CN211920871U (zh) 红外传感器件
US9412927B2 (en) Formation of a thermopile sensor utilizing CMOS fabrication techniques
JP2811709B2 (ja) 赤外線センサ
JP5669678B2 (ja) 赤外線センサ
IL260075A (en) Microbolometer structure
CN113428833A (zh) Mems热电堆红外传感器及制备方法
US12007283B2 (en) Infrared sensor and infrared sensor array
KR101227242B1 (ko) 에스오아이 기판을 이용한 써모파일의 제조방법 및 적외선 센서의 제조방법
JPH08166284A (ja) 赤外線検知素子
Johnson-Wilke et al. New Generation Multijunction Thermal Converters at Sandia National Laboratories

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876636

Country of ref document: EP

Kind code of ref document: A1