WO2016110106A1 - 导光板及显示装置 - Google Patents

导光板及显示装置 Download PDF

Info

Publication number
WO2016110106A1
WO2016110106A1 PCT/CN2015/087814 CN2015087814W WO2016110106A1 WO 2016110106 A1 WO2016110106 A1 WO 2016110106A1 CN 2015087814 W CN2015087814 W CN 2015087814W WO 2016110106 A1 WO2016110106 A1 WO 2016110106A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
light
microstructures
microstructure
Prior art date
Application number
PCT/CN2015/087814
Other languages
English (en)
French (fr)
Inventor
龚挪威
郑伯然
徐善飞
Original Assignee
京东方科技集团股份有限公司
京东方光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方光科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/906,112 priority Critical patent/US9977172B2/en
Publication of WO2016110106A1 publication Critical patent/WO2016110106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • Embodiments of the present invention relate to a light guide plate and a display device.
  • liquid crystal display As a flat panel display device has more and more features due to its small size, low power consumption, no radiation, and relatively low production cost.
  • the ground is used in the field of high performance display.
  • a liquid crystal display is a passive light emitting device that requires a backlight unit (BLU) to provide a light source for the liquid crystal display to display an image.
  • the backlight module may include a light source and a light guide plate.
  • the light source is disposed opposite to the light incident surface of the light guide plate.
  • the light guide plate guides a transmission direction of the light beam emitted from the light source, and converts the line light source or the point light source into a surface light source.
  • the light guide plate is a core component of the backlight module, and its main function is to reasonably guide the scattering direction of the light, thereby providing a surface light source with high brightness and uniformity for the liquid crystal panel.
  • Embodiments of the present invention provide a light guide plate including at least one dot having microstructures; all of the microstructures on each of the dots are arranged on the same curved surface.
  • the surface is a spherical curved surface.
  • the top surface of the microstructure is a circular arc surface.
  • the microstructures and the sizes of the microstructures arranged on the same circumference are the same, and the plane of the circumference is parallel to the light-emitting side surface of the light guide plate.
  • the curved surface is bisected by N parabola, the starting point of the parabola is a vertex of the curved surface, and the end point is located on a bottom surface of the mesh point; N ⁇ 1; the microstructure is along the starting point to the end point of the parabola Arranged in order, and the microstructures are identical in shape and sequentially increased in size.
  • the bottom surface shape of the microstructure includes a quadrangle, a pentagon or a hexagon.
  • the position of the microstructure on the parabola satisfies a formula:
  • y (i) is the coordinate of the microstructure in the y direction in the parabolic coordinate system
  • ⁇ z (i+1) is the distance between the center lines of two adjacent microstructures in the z direction in the parabolic coordinate system
  • the tilt angle ⁇ (i) of the microstructure on the parabola satisfies the formula:
  • the amplification ratio ⁇ (i) of two adjacent microstructures satisfies the formula:
  • ⁇ lz (i+1) ⁇ is the length of the parabola between the centerlines of two adjacent microstructures in the z-direction in the parabolic coordinate system
  • the curved surface is recessed inside the light guide plate or protrudes from the outside of the light guide plate.
  • the spherical curved surfaces of all the dots on the light guide plate have the same radius of curvature.
  • Embodiments of the present invention also provide a display device including the light guide plate as described above.
  • 1a is a schematic diagram of a light propagation path of a light guide plate
  • FIG. 1b is a schematic diagram of a light propagation path of another light guide plate
  • Figure 1c is a bottom view of the light guide plate shown in Figure 1b;
  • FIG. 2a is a schematic structural diagram of a light guide plate according to an embodiment of the present invention.
  • 2b is a schematic structural diagram of a network point according to an embodiment of the present invention.
  • 2c is a schematic partial structural view of a light guide plate according to an embodiment of the present invention.
  • 2d is a schematic structural diagram of a microstructure according to an embodiment of the present invention.
  • 2 e is a schematic structural diagram of another light guide plate according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another network point according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a network dot distribution design according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another network distribution design according to an embodiment of the present invention.
  • 10-light guide plate A-light guide plate reflection surface; B-light guide plate light exit side surface; 101-mesh point; 100-mesh bottom surface; 201-microstructure; 202-microstructure top surface; 203-microstructure Bottom; the circumference of the cross section of the L1, L2-spherical surface; the apex of the o'-spherical surface; the lower end of the o-spherical surface (or the origin of the parabolic coordinate system); the P-parabola; the 30-side input light source; a portion of the light-emitting side surface of the light guide plate that is adjacent to the side-in type light source; 302-the reflective surface of the light guide plate is away from the portion of the side-in type light source.
  • FIG. 1a is a schematic diagram of a light propagation path of a light guide plate
  • FIG. 1b is a schematic view of a light propagation path of another light guide plate
  • FIG. 1c is a bottom view of the light guide plate shown in FIG. 1b.
  • the angle ⁇ between the incident light X entering the light guide plate 10 and the reflecting surface A of the light guide plate 10 is large, and therefore the incident light X is reflected on the light-emitting side surface B of the light guide plate 10 after being reflected by the reflecting surface A.
  • the incident angle ⁇ is large. Since the incident angle ⁇ of the light at the light exiting side surface B is smaller than the refraction angle ⁇ .
  • the larger the incident angle ⁇ the larger the refraction angle ⁇ .
  • the incident angle ⁇ is larger than a critical value (as indicated by a solid arrow in Fig. 1), the above-mentioned refraction angle ⁇ is 90°.
  • the light incident on the light-emitting side surface B cannot be emitted from the light guide plate, and is reflected back into the light guide plate 10, that is, the light is totally reflected on the light-emitting side surface B of the light guide plate 10.
  • a mesh point 101 is disposed on the reflection surface A of the light guide plate; as shown in FIG. 1c, the mesh point 101 is regularly disposed on the light guide plate, for example.
  • a mesh is formed as a whole.
  • the light in the light guide plate 10 is irradiated onto the mesh point 101 and reflected on the light-emitting side surface B of the light guide plate 10. Since the surface of the mesh point 101 for reflection is a curved surface, the curved surface reduces the reflected light on the light guide plate 10.
  • the incident angle ⁇ allows light to be emitted from the light-emitting side surface B of the light guide plate 10, thereby reducing the total reflection phenomenon on the light-emitting side surface B of the light guide plate 10.
  • the curvature of the curved surface of all the dots 101 on the reflecting surface A of the light guide plate 10 is the same, but the angle of the angle ⁇ between the light irradiated to the different mesh points 101 and the reflecting surface A of the light guiding plate 10 is different.
  • the angle ⁇ ' of the light shown by the broken line is larger than the angle ⁇ of the light shown by the solid line.
  • the incident angle ⁇ ' at the light-emitting side surface B of the light guide plate 10 is large, so that it cannot be emitted from the light-emitting side surface B of the light guide plate, and total reflection occurs;
  • the incident angle ⁇ at the light-emitting side surface B of the light guide plate 10 is small, so that it can be emitted from the light-emitting side surface B of the light guide plate.
  • the portion of the light-emitting side surface B of the light guide plate 10 that allows light to be emitted has a large brightness, and the portion where the light is not emitted is dark, thereby reducing the uniformity of light emission of the light guide plate.
  • an obvious strong and weak light region is formed on the display panel, and such a strong light and a weak light are interlaced together, and a glow phenomenon such as a firefly is flickered. The occurrence of the firefly phenomenon in this case affects the display effect of the display device, and the performance of the display device is lowered.
  • the embodiment of the present invention provides a light guide plate 10, as shown in FIG. 2a, which may include at least one mesh point 101 having a microstructure 201; the mesh dots 101 may be regularly distributed on the surface of the light guide plate, for example, uniformly distributed as shown in FIG. 1c. It is also possible, for example, to distribute more densely in the middle and to distribute the periphery more sparsely. At least one of these dots has a microstructure, that is, it does not require each site to have a microstructure. As shown in FIG. 2b, all of the microstructures 201 on each of the dots 101 are arranged on the same curved surface 120 of the dots 101.
  • the curved surface 120 is an outer surface of the mesh point 101 formed by the protrusion.
  • the light incident on the microstructure 201 (indicated by the solid line), the incident angle ⁇ at the light exiting side surface B of the light guide plate 10 after reflection, relative to the non-irradiated
  • the light rays on the microstructures 201 are incident angles ⁇ ' of the light-emitting side surface B of the light guide plate 10 after reflection, and the incident angle ⁇ is smaller than the incident angle ⁇ '. Therefore, the light reflected to the light-emitting side surface B of the light guide plate 10 can be refracted by the above-described microstructures 201, thereby being emitted from the light guide plate 10. Further, the more the number of the microstructures 201, the more light that can change the light propagation path in the light guide plate 10, so that the light extraction rate of the light guide plate 10 can be more effectively improved.
  • Embodiments of the present invention provide a light guide plate, which may include at least one dot having a microstructure; all of the microstructures on each dot are arranged on the same curved surface.
  • a light guide plate which may include at least one dot having a microstructure; all of the microstructures on each dot are arranged on the same curved surface.
  • first and the curved surface 120 may be a regular shape with a curvature distribution or an irregular shape.
  • the invention is not limited thereto.
  • a drill bit can be generally used to form a dot pattern on the light guide plate master, and then a material layer constituting the light guide plate 10 is formed on the master. In this way, the partial material layer may flow into or around the dot pattern to form a curved surface 120 protruding from the outside of the light guide plate 10 or recessed inside the light guide plate 10.
  • the above-mentioned drill bit is generally spherical, and thus the curved surface obtained by the above-described manufacturing method is a spherical curved surface having a regular curvature distribution.
  • the spherical curved surfaces of all the dots 101 on the light guide plate 10 have the same radius of curvature. In this way, each dot on the light guide plate 10 can be fabricated by a uniform manufacturing process, thereby simplifying the manufacturing process and reducing the processing difficulty.
  • the present invention does not limit the shape of the top surface 202 of the microstructure 201 and the bottom surface 203 of the microstructure 201.
  • the drill bit may be slightly sanded during the process of making the dots having the microstructures 201 such that the surface of the dots is roughened to form the microstructures 201 described above. Therefore, during the grinding process, the portion of the drill bit used to form the microstructure 201 is polished to a circular arc surface.
  • the top surface 202 of the formed microstructure 201 can be a circular arc surface.
  • the bottom surface 203 of the microstructure 201 can be formed into a regular shape according to the ease of processing and actual needs, such as a quadrangle as shown in FIG. 2d, or other polygons, such as a pentagon, a hexagon, and the like.
  • the bottom surface 203 of the microstructure 201 may be circular. Of course, it can also be processed into other irregular shapes.
  • the present invention does not limit the distribution rule of the mesh point 101 on the light guide plate 10, and can be set according to actual needs.
  • the incident light is on the light-emitting side surface B of the light guide plate 10 close to the side-entry light source 30.
  • the portion 301 needs to pass the total reflection of the light on the light-emitting side surface B to guide the incident light. It enters the other side of the light guide plate 10. Therefore, a small number of dots 101 may be disposed on the reflecting surface A of the light guide plate 10 near the side entrance light source 30, thereby preserving a partial total reflection phenomenon of the light side surface B to further guide the light of the total reflection to the light guide plate 10. Conducted on the other side.
  • the portion 302 of the reflective surface A of the light guide plate 10 away from the side-in type light source 30 may be provided with a plurality of mesh points 101 to reduce the total reflection phenomenon of the light-emitting side surface B of the light guide plate 10 away from the side-entry light source portion, and the light guide plate 10 is improved.
  • the light output rate of the light-emitting side surface B may be provided with a plurality of mesh points 101 to reduce the total reflection phenomenon of the light-emitting side surface B of the light guide plate 10 away from the side-entry light source portion, and the light guide plate 10 is improved.
  • the dots 101 can be evenly distributed on the reflecting surface A of the light guide plate 10. It is only necessary to ensure that the micro-structured dots 101 are disposed at a position where reduction of total reflection is required, so that it is possible to avoid a total reflection phenomenon in which a part of the light to be refracted is caused by a small angle between the reflected light and the light guide plate.
  • microstructure 201 The design of the microstructure 201 will be exemplified below by way of a specific embodiment.
  • the microstructures 201 arranged on the same circumference on the curved surface (for example, a circle arranged along the circumference L1)
  • the structure 201, or a circle of microstructures 201) arranged along the circumference L2 has the same shape and size.
  • the plane in which the above circumference (for example, the circumference L1 or the circumference L2) is located is parallel to the light-emitting side surface B of the light guide plate 10.
  • the shape and size of the microstructures 201 respectively located on the adjacent two circumferences L1 and L2 may be the same.
  • the spherical cross section (parallel to the bottom surface 100 of the mesh point 101) The cross section) is continuously expanding in diameter.
  • the cross section of the spherical curved surface 120 near the lower end o has a larger circumference
  • the space for arranging the microstructure 201 is also large
  • the spherical curved surface 120 is close to the vertex o'
  • the cross section of the cross section e.g., the cross section where the circumference L1 is located
  • the space for arranging the microstructure 201 is also small. Therefore, the spherical curved surface 120 is along the negative direction of the z-axis, and the more the area that can be used to set the microstructure 201.
  • the present invention therefore provides another solution for arranging the microstructures 201, as will be seen in the following examples.
  • the curved surface 120 can be divided by N parabola P, the starting point of the parabola P For the apex o' of the curved surface 120, the end point is located on the bottom surface 100 of the mesh point 101; wherein N ⁇ 1.
  • the microstructure 201 is sequentially arranged along the starting point o' to the end point of the parabola, and the shape of the microstructure 201 The same, the size increases in turn.
  • the size of the dots 101 is very small, if they are processed into a large-sized and very small-sized microstructure 201, this greatly increases the processing difficulty and processing accuracy. Therefore, with the above scheme, it is only necessary to fabricate the microstructure 201 having a small size on the partial spherical curved surface 120 near the vertex o'. As the diameter of the cross section of the spherical curved surface 120 increases, the size of the microstructure 201 increases accordingly. Thereby, the machining accuracy and difficulty can be reduced, and the production efficiency can be improved.
  • the circumference of the cross section (for example, the circumference L1) is:
  • each microstructure 201 is:
  • the size (diameter) of each of the microstructures 201 arranged on the circumference L1 or the circumference L2 can be obtained from the circumference of the cross section (for example, the circumference L1 or the circumference L2) of the spherical curved surface 120.
  • the bottom surface 203 of the formed microstructure 201 has a circular shape. It should be noted that the shape of the bottom surface 203 of the microstructure 201 refers to the shape of a planar image of the orthographic projection obtained from the bottom surface 203 of the microstructure 201 toward the curved surface 120.
  • the bottom surface 203 of the above microstructures 201 may be provided in the shape of a quadrangle or a pentagon. Taking the quadrilateral as an example, in the setting process, as shown in FIG. 4, the microstructures 201 which are considered to be circular on the circumference L1 or the adjacent two bottom surfaces 203 arranged on the circumference L2 overlap each other, and the overlapping portions are finally The desired microstructure portion, at this time, the orthographic projection of the bottom surface 203 of the microstructure 201 toward the spherical curved surface 120 is a quadrilateral.
  • the center position of the microstructure 201 is intercepted on a spherical curved surface 120 having a radius of curvature R.
  • the adjacent microstructures of the two microstructured bottom surfaces 203 arranged on the circumference L1 or the circumference L2 are circularly overlapped with each other.
  • y (i) - is the coordinate of the microstructure 201 in the y direction in the parabolic P coordinate system (as shown in Figure 5);
  • ⁇ z (i+1) - is the distance between the center lines of two adjacent microstructures 201 in the z direction in the parabolic P coordinate system;
  • the radius y (i) of the circumference L1 can be obtained.
  • the amplification ratio ⁇ (i) of the adjacent two microstructures 201 satisfies the formula:
  • ⁇ lz (i+1) ⁇ is the length of the parabola between the centerlines of two adjacent microstructures in the z-direction in the parabolic coordinate system
  • the dot 101 having the microstructure 201 as shown in FIG. 6 is set by the above method. 6 is a top view of the spherical curved surface 120, and all of the microstructures 201 are not shown.
  • microstructures 201 on the curved surface 120 of the dot 101 when the number of microstructures 201 on the curved surface 120 of the dot 101 is 100, a total of five layers, 20 of the microstructures 201 per layer, may be provided.
  • the focal length of the parabola P where the microstructure is located is 5 mm, and the specific data of the 10 microstructures 201 of the above 100 microstructures 201 are as shown in Table 1.
  • the following data can be obtained by using software to simulate the lighting of the dots without the microstructure 201 and the dots with the microstructure 201:
  • the data sheet 2 of the light guide plate 10 of the dot 101 in which the microstructure 201 is not provided is shown in Table 2:
  • the data sheet 3 of the light guide plate 10 of the dot 101 of the microstructure 201 is shown as follows:
  • the illuminance of the light guide plate 10 of the mesh point 101 in which the microstructure 201 is not disposed is mostly distributed at 300 Lux (the lux); and the light guide plate of the mesh point 101 of the microstructure 201 is provided in the embodiment of the present invention.
  • the illuminance of 10 is mostly distributed between 300 Lux-400 Lux (lux). Therefore, it can be clearly seen that the light extraction rate of the light guide plate 10 provided by the embodiment of the invention is improved, which is beneficial to improving the display effect of the display device.
  • the embodiment of the invention provides a display device comprising any of the light guide plates 10 as described above, which has the same structure and advantageous effects as the light guide plate 10 provided in the foregoing embodiment. Since the structure and advantageous effects of the light guide plate 10 have been described in detail in the foregoing embodiments, details are not described herein again.
  • the display device may specifically include a liquid crystal display device.
  • the display device may be any product or component having a display function, such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, or a tablet computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光板(10)及显示装置,该导光板(10)包括至少一个网点(101),每个网点(101)具有多个微结构(201);每个网点(101)上的所有微结构(201)排列在同一曲面上。该导光板(10)能够解决入射光在导光板(10)内部发生光线全反射的问题,使得导光板(10)出光更加均匀。

Description

导光板及显示装置 技术领域
本发明的实施例涉及一种导光板及显示装置。
背景技术
随着显示技术的飞速发展,液晶显示器(Liquid Crystal Display,LCD)作为一种平板显示装置,因其具有体积小、功耗低、无辐射以及制作成本相对较低等特点,而越来越多地被应用于高性能显示领域当中。
液晶显示器是一种被动发光器件,需要背光模组(Backlight Unite,BLU)给液晶显示器提供光源使其显示图像。背光模组可包括光源与导光板,光源相对于导光板的入光面设置,所述导光板引导从光源所发出光束的传输方向,将线光源或点光源转换成面光源。导光板是背光模组的核心部件,其主要作用在于合理引导光的散射方向,从而为液晶面板提供亮度高、均匀性好的面光源。
发明内容
本发明的实施例提供一种导光板,包括至少一个具有微结构的网点;每个所述网点上的所有所述微结构排列在同一曲面上。
可选的,所述曲面为球形曲面。
可选的,所述微结构的顶面为圆弧面。
可选的,所述曲面上排列于同一圆周的所述微结构的形状、大小相同,所述圆周所在的平面与所述导光板的出光侧表面平行。
可选的,所述曲面被N个抛物线平分,所述抛物线的起点为所述曲面的顶点,终点位于所述网点的底面上;N≥1;所述微结构沿所述抛物线的起点至终点依次排列,并且,所述微结构的形状相同,大小依次递增。
可选的,所述微结构的底面形状包括四边形、五边形或六边形。
可选的,所述抛物线上的所述微结构的位置满足公式:
Figure PCTCN2015087814-appb-000001
其中,P为所述抛物线焦距的2倍;
y(i)为在所述抛物线坐标系中,所述微结构在y方向上的坐标;
△z(i+1)为在所述抛物线坐标系中,沿z方向上相邻两个所述微结构的中心线之间的距离;
Figure PCTCN2015087814-appb-000002
为在所述抛物线上,相邻两个所述微结构中心线之间的夹角。
可选的,所述抛物线上的所述微结构的倾斜角度α(i)满足公式:
Figure PCTCN2015087814-appb-000003
可选的,相邻两个所述微结构的放大比率β(i)满足公式:
Figure PCTCN2015087814-appb-000004
其中,△lz(i+1)—为在所述抛物线坐标系中,沿z方向上相邻两个所述微结构的中心线之间的所述抛物线的长度;
Figure PCTCN2015087814-appb-000005
为每个所述微结构的底面的直径。
可选的,所述曲面凹陷于所述导光板内部,或凸出于所述导光板外部。
可选的,所述导光板上的所有所述网点的球形曲面的曲率均半径相同。
本发明的实施例还提供一种显示装置,包括如上所述的导光板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a为一种导光板的光线传播路径示意图;
图1b为另一种导光板的光线传播路径示意图;
图1c为图1b所示的导光板的仰视图;
图2a为本发明实施例提供的一种导光板的结构示意图;
图2b为本发明实施例提供的一种网点的结构示意图;
图2c为本发明实施例提供的一种导光板的局部结构示意图;
图2d为本发明实施例提供的一种微结构的结构示意图;
图2e为本发明实施例提供的另一种导光板的结构示意图;
图3为本发明实施例提供的另一种网点的结构示意图;
图4为本发明实施例提供的一种网点分布设计图;
图5为本发明实施例提供的另一种网点分布设计图。
附图标记:
10-导光板;A-导光板的反射面;B-导光板的出光侧表面;101-网点;100-网点的底面;201-微结构;202-微结构的顶面;203-微结构的底面;L1、L2-球形曲面横截面所在的圆周;o’-球状曲面的顶点;o-球状曲面的低端(或抛物线坐标系的原点);P-抛物线;30-侧入式光源;301-导光板的出光侧表面靠近侧入式光源的部分;302-导光板的反射面远离侧入式光源的部分。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1a为一种导光板的光线传播路径示意图;图1b为另一种导光板的光线传播路径示意图;图1c为图1b所示的导光板的仰视图。如图1a所示,进入导光板10的入射光X与导光板10的反射面A的夹角α较大,因此入射光X在反射面A反射后在导光板10的出光侧表面B处的入射角β较大。由于光线在出光侧表面B处的入射角β小于折射角θ。因此入射角β越大,折射角θ越大。当入射角β大于一临界值时(如图1中的实线箭头所示),上述折射角θ为90°。这样一来,入射至出光侧表面B的光线将无法从导光板射出,从而被反射回导光板10中,即光线在导光板10的出光侧表面B内上发生了全反射现象。
为了减少导光板10的出光侧表面B上的全反射现象,如图1b所示,在导光板的反射面A上设置有网点101;如图1c所示,网点101例如规则地设置在导光板的底面上,整体上形成网状。导光板10内的光线照射至网点101上并反射至导光板10的出光侧表面B上,由于网点101用于反射的表面为曲面,这样一来上述曲面会减小反射光线在导光板10的出光侧表面B处的 入射角β,使得光线能够从导光板10的出光侧表面B射出,从而减少导光板10的出光侧表面B上的全反射现象。
然而,为了加工方便,导光板10反射面A上所有网点101曲面的曲率相同,但是照射至不同网点101上的光线与导光板10的反射面A的夹角α的大小并不同。如图1b所示,虚线所示光线的夹角α’大于实线所示光线的夹角α。因此,虚线所示光线经过网点101的反射后,在导光板10的出光侧表面B处的入射角β’较大,从而无法从导光板的出光侧表面B射出,而发生全反射;实线所示光线经过网点101的反射后,在导光板10的出光侧表面B处的入射角β较小,从而能够从导光板的出光侧表面B射出。这样一来,导光板10的出光侧表面B上能够使得光线射出的部分亮度较大,而无法实现光线射出的部分亮度较暗,从而降低了导光板出光均匀性。进而会在显示面板上形成明显的强弱光区,这样的强光和弱光交错在一起,就会出现如萤火虫般忽明忽暗的发光现象。这中萤火虫现象的产生会对显示器件的显示效果造成影响,降低了显示器件的性能。
本发明实施例提供一种导光板10,如图2a所示,可以包括至少一个具有微结构201的网点101;网点101可以在导光板的表面上规则分布,例如如图1c所示均匀分布,也可以例如在中间较为密集地分布而周边较为稀疏地分布。这些网点中至少一个具有微结构,也即并非要求每个网点都具有微结构。如图2b所示,每个网点101上的所有微结构201排列在网点101同一曲面120上。曲面120为凸出形成的网点101的外表面。
由图2a中C处的局部视图2c可以看出,照射至微结构201上的光线(以实线表示),反射后在导光板10的出光侧表面B的入射角β,相对于未照射至微结构201上的光线(以虚线表示),反射后在导光板10的出光侧表面B的入射角β’而言,入射角β小于入射角β’。因此,通过上述微结构201,可以使得反射至导光板10出光侧表面B的光线能够发生折射,从而从导光板10射出。并且,微结构201的数量越多,能够改变导光板10中光线传播路径的光线就越多,从而能够更有效的提高导光板10的出光率。
本发明实施例提供一种导光板,可以包括至少一个具有微结构的网点;每个网点上的所有所述微结构排列在同一曲面上。这样一来,光线照射至网点时,可以通过微结构增加网点曲面上光线接触位置的曲率,从而能够减小 在微结构处反射的光线在导光板出光侧表面的入射角,使得光线能够从导光板发射出去,避免了部分需要折射出的光线由于反射光与导光板的夹角较小而发生的全反射现象,提升了导光板出光侧表面的光线出光率,从而提高了光线均匀性和显示效果。
需要说明的是,第一、上述曲面120可以为曲率分布规则形状或曲率不规则的形状。本发明对此不作限制。
在制备导光板10的过程中,一般可以采用钻头,在导光板母版上撞击形成网点模型,然后,在母版上形成一层构成导光板10的材料层。这样一来,上述部分材料层会流入或绕开上述网点模型,以形成凸出于导光板10外部或凹陷于导光板10内部的曲面120。
实际生产过程中,为了加工方便,例如,上述钻头一般为球形,因此通过上述制作方法得到的曲面为曲率分布规则的球形曲面。
例如,导光板10上的所有网点101的球形曲面的曲率半径均相同。这样一来,能够采用统一的制作工艺制作导光板10上的各个网点,从而简化制作工艺,降低加工难度。
第二、本发明对微结构201的顶面202和微结构201的底面203的形状不做限定。
为了简化制作工艺,在制作具有微结构201的网点的过程中,可以对上述钻头进行轻微打磨,使得网点的表面粗糙以形成上述微结构201。因此打磨的过程中,钻头上用于形成微结构201的部分,其表面被打磨成圆弧面。因此,如图2d所示,形成的微结构201的顶面202可以为圆弧面。
而微结构201的底面203可以根据加工的难易程度以及实际需要制作成规则的形状,如图2d所示的四边形,或者其他多边形,例如五边形、六边形等。又或者,上述微结构201的底面203还可以为圆形。当然,还可以加工成其它不规则形状。
第三、本发明对网点101在导光板10上的分布规律不做限定,可以根据实际的需要进行设置。
例如如图2e所示,对于侧入式背光源而言,由于侧入式光源30设置于导光板10的一侧,因此,入射光线在导光板10的出光侧表面B靠近侧入式光源30的部分301,需要通过光线在出光侧表面B的全反射,将入射光线导 入至导光板10的另一侧。因此,可以在导光板10的反射面A靠近侧入式光源30的部分301设置少量的网点101,从而保留出光侧表面B的部分全反射现象,以将上述全反射的光线进一步向导光板10的另一侧传导。而导光板10的反射面A远离侧入式光源30的部分302可以设置较多的网点101,以减少导光板10的出光侧表面B远离侧入式光源部分的全反射现象,提高导光板10出光侧表面B的光线输出率。
又例如,对于直下式背光源而言,由于光源设置于导光板的反射面A一侧,因此光源射出的光线能够同时进入导光板10内。所以,可以将上述网点101均匀分布于上述导光板10的反射面A上。只要保证所述具有微结构的网点101设置在需要减少全反射的位置,使其能够避免部分需要折射出的光线由于反射光与导光板的夹角较小而发生的全反射现象即可。
以下通过具体的实施例对微结构201的设计方案进行举例说明。
实施例一
在上述曲面120为球状曲面的情况下,为了简化制作工艺,提高光线均匀性,可以如图2b所示,所述曲面上排列于同一圆周的微结构201(例如沿圆周L1排列的一圈微结构201,或沿圆周L2排列的一圈微结构201)的形状、大小相同。上述圆周(例如圆周L1或圆周L2)所在的平面与导光板10的出光侧表面B平行。
例如,分别位于相邻两个圆周L1与L2上的微结构201的形状、大小可以相同。
然而,如图2b所示,对于球状曲面120而言,从球状曲面120的顶点o’到球状曲面120的低端所在圆周中心o,球面的横截面(平行于网点101的底面100截取得到的截面)直径不断扩大。这就意味着球状曲面120上靠近低端o的横截面(例如圆周L2所在的横截面)的周长较大,用于设置微结构201的空间也大,而球状曲面120上靠近顶点o’的横截面(例如圆周L1所在的横截面)的周长较小,用于设置微结构201的空间也小。因此,球状曲面120沿着z轴的负方向,可以用于设置微结构201的区域就越多。因此本发明提供了另外一种用于设置微结构201的方案,详见一下实施例。
实施例二
如图3所示,曲面120可以被N个抛物线P平分,所述抛物线P的起点 为所述曲面120的顶点o’,终点位于网点101的底面100上;其中,N≥1。
由于球形曲面120沿z轴的负方向,其横截面的周长逐渐增大,能够设置尺寸更大的微结构,因此微结构201沿抛物线的起点o’至终点依次排列,微结构201的形状相同,大小依次递增。
由于网点101的尺寸非常的小,如果都加工成等大的且尺寸非常小的微结构201,这将大大增加了加工难度和加工精度的要求。因此采用上述方案,只需要在靠近顶点o’的部分球形曲面120上制作尺寸较小的微结构201。而随着球形曲面120横截面的直径不断增大,微结构201的尺寸也相应增大。从而可以减低加工精度和难度,提高生产效率。
以下实施例在实施例二提供的微结构201的大小和排列分布的基础上,对上述微结构201的具体设置过程进行详细的说明。
实施例三
由于上述抛物线P的方程可以为y2=2Pz,式中P=2f,f为抛物线的焦距。如图3所示,当抛物线P绕着z周旋转一周,即可以得到上述球形曲面120。
由上述抛物线P方程可以得到,在坐标原点o处球形曲面120横截面的半径为
Figure PCTCN2015087814-appb-000006
设一横截面(如z≤f的横截面)的半径为y(i),则横截面(例如圆周L1)的周长为:
Figure PCTCN2015087814-appb-000007
如果在上述圆周L1上可以放置n个微结构201,则每个微结构201的尺寸(当微结构201的底面为圆形时,上述尺寸可以为直径)为:
Figure PCTCN2015087814-appb-000008
因此,可以根据球形曲面120上横截面(例如圆周L1或圆周L2)的周长,就可以得出排列于圆周L1或圆周L2上的每个微结构201的尺寸(直径)。
综上所述,采用上述设置方式,形成的微结构201的底面203的形状为圆形。需要说明的是,微结构201的底面203的形状,是指微结构201的底面203朝向曲面120的方向得到的正投影的平面图形的形状。
可以设置上述微结构201的底面203形状为四边形或五边形。以四边形为例,在设置过程中,如图4所示,可以看成为圆周L1或圆周L2上排列的相邻的两个底面203为圆形的微结构201相互重叠,重叠的部分即是最终需要的微结构部分,此时微结构201的底面203的朝向球形曲面120的正投影为四边形。
为了通过上述重叠的方法,使得微结构201的底面203为四边形或五边形,可以以
Figure PCTCN2015087814-appb-000009
为半径在曲率半径为R的球形曲面120上,对微结构201的中心位置进行截取。球形曲面120的曲率半径为R越大,相邻两个微结构201中心线之间的夹角△φ越小,反之越大。
此外,如图5所示,在上述设置过程中,抛物线P在沿z轴负方向增加△z(i+1)后,抛物面P母线的长度需增加△lz(i+1)。因此微结构201在y方向上的坐标y(i)则增加△y(i+1),即y(i+1)=y(i)+△y(i+1),只有使
Figure PCTCN2015087814-appb-000010
圆周L1或圆周L2上排列的相邻的两个微结构底面203为圆形的微结构201相互重叠。
由图5可以得出:
Figure PCTCN2015087814-appb-000011
Figure PCTCN2015087814-appb-000012
对抛物线P的方程y2=2Pz求导,得到2ydy=2Pdz,然后再取有限量得:
Figure PCTCN2015087814-appb-000013
将公式(4)带入公式(3)可得:
Figure PCTCN2015087814-appb-000014
进而,可以得到排列于上述抛物线p上的微结构201的位置应当满足的公式:
Figure PCTCN2015087814-appb-000015
其中,P—为所述抛物线P焦距f的2倍;
y(i)—为在所述抛物线P坐标系(如图5所示)中,所述微结构201在y方向上的坐标;
△z(i+1)—为在所述抛物线P坐标系中,沿z方向上相邻两个微结构201的中心线之间的距离;
Figure PCTCN2015087814-appb-000016
—为在所述抛物线P上,相邻两个微结构201中心线之间的夹角。
进一步的,当上述抛物线P的焦距f的值、圆周L1在z周上的坐标z(i)确定后,就可以得出圆周L1的半径y(i)。此外,当圆周L1上需要排列的微结构201的数量n确定后,相邻两个微结构201中心线之间的夹角
Figure PCTCN2015087814-appb-000017
便可知。由于z(i+1)=z(i)△z(i+1),因此将上述已知量带入公式(6)后便可得出:
Figure PCTCN2015087814-appb-000018
进一步的,通过上述方程(6)可以得到对抛物线P的方程y2=2Pz求导,得到的2ydy=2Pdz,就可以求出抛物线P上每个微结构201的倾斜角度α(i)所满足的公式:
Figure PCTCN2015087814-appb-000019
并且,相邻两个微结构201的放大比率β(i)满足公式:
Figure PCTCN2015087814-appb-000020
其中,△lz(i+1)—为在所述抛物线坐标系中,沿z方向上相邻两个所述微结构的中心线之间的所述抛物线的长度;
Figure PCTCN2015087814-appb-000021
—为每个所述微结构201的底面的直径。
当微结构201的坐标、倾斜角度以及放大倍数均已知,便通过上述方法,设置出如图6所示的具有微结构201的网点101。其中图6为球形曲面120的俯视图,且并未画出所有的微结构201。
例如,当网点101的曲面120上的微结构201的数量为100时,一共可以设置5层,每层20个所述微结构201。其中微结构位于的抛物线P的设焦距为5mm,上述100各微结构201的中的10个微结构201的具体数据如表1所示。
表1
Figure PCTCN2015087814-appb-000022
采用软件对未设置微结构201的网点与设置有微结构201的网点进行光照模拟能够得到以下数据:
未设置微结构201的网点101的导光板10的数据表2所示:
表2
最小(M) 242.70Lux 对比率(C) 0.15720
最大(X) 333.24Lux 标准偏差(D) 16.812
平均(A) 291.83Lux 平均偏差(V) 0.057611
设置微结构201的网点101的导光板10的数据表3所示:
表3
最小(M) 263.80Lux 对比率(C) 0.19239
最大(X) 389.48Lux 标准偏差(D) 20.976
平均(A) 326.93Lux 平均偏差(V) 0.064161
综上所述,如表2所示,未设置微结构201的网点101的导光板10的照度大多分布在300Lux(勒克斯);而本发明实施例提供的设置微结构201的网点101的导光板10的照度大多分布在300Lux-400Lux(勒克斯)之间。因此可以明显看出,本发明实施例提供的导光板10的光线出光率得到了提升,有利于提高显示装置的显示效果。
本发明实施例提供一种显示装置,包括如上所述的任意一种导光板10,具有前述实施例中提供的导光板10相同的结构和有益效果。由于前述实施例中已经对导光板10的结构和有益效果进行了详细的描述,此处不再赘述。
在本发明实施例中,显示装置具体可以包括液晶显示装置,例如该显示装置可以为液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年1月6日递交的中国专利申请第201510005708.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (12)

  1. 一种导光板,包括至少一个具有微结构的网点;其中,每个所述网点上的所有所述微结构排列在同一曲面上。
  2. 根据权利要求1所述的导光板,其中,所述曲面为球形曲面。
  3. 根据权利要求1或2所述的导光板,其中,所述微结构的顶面为圆弧面。
  4. 根据权利要求1-3的任一项所述的导光板,其中,所述曲面上排列于同一圆周的所述微结构的形状、大小相同,所述圆周所在的平面与所述导光板的出光侧表面平行。
  5. 根据权利要求1-4的任一项所述的导光板,其中,所述曲面被N个抛物线平分,所述抛物线的起点为所述曲面的顶点,终点位于所述网点的底面上;N≥1;
    所述微结构沿所述抛物线的起点至终点依次排列,并且所述微结构的形状相同,大小依次递增。
  6. 根据权利要求1-5的任一项所述的导光板,其中,所述微结构的底面形状包括四边形、五边形或六边形。
  7. 根据权利要求5或6所述的导光板,其中,所述抛物线上的所述微结构的位置满足公式:
    Figure PCTCN2015087814-appb-100001
    其中,P为所述抛物线焦距的2倍;
    y(i)为在所述抛物线坐标系中,所述微结构在y方向上的坐标;
    △z(i+1)为在所述抛物线坐标系中,沿z方向上相邻两个所述微结构的中心线之间的距离;
    Figure PCTCN2015087814-appb-100002
    为在所述抛物线上,相邻两个所述微结构中心线之间的夹角。
  8. 根据权利要求7所述的导光板,其中,所述抛物线上的所述微结构的倾斜角度α(i)满足公式:
    Figure PCTCN2015087814-appb-100003
  9. 根据权利要求8所述的导光板,其中,相邻两个所述微结构的放大比率β(i)满足公式:
    Figure PCTCN2015087814-appb-100004
    其中,△lz(i+1)为在所述抛物线坐标系中,沿z方向上相邻两个所述微结构的中心线之间的所述抛物线的长度;
    Figure PCTCN2015087814-appb-100005
    为每个所述微结构的底面的直径。
  10. 根据权利要求1-9的任一项所述的导光板,其中,所述曲面凹陷于所述导光板内部,或凸出于所述导光板外部。
  11. 根据权利要求2所述的导光板,其中,所述导光板上的所有所述网点的球形曲面的曲率均半径相同。
  12. 一种显示装置,包括如权利要求1-11任一项所述的导光板。
PCT/CN2015/087814 2015-01-06 2015-08-21 导光板及显示装置 WO2016110106A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/906,112 US9977172B2 (en) 2015-01-06 2015-08-21 Light guide plate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510005708.0 2015-01-06
CN201510005708.0A CN104536080B (zh) 2015-01-06 2015-01-06 一种导光板及显示装置

Publications (1)

Publication Number Publication Date
WO2016110106A1 true WO2016110106A1 (zh) 2016-07-14

Family

ID=52851640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087814 WO2016110106A1 (zh) 2015-01-06 2015-08-21 导光板及显示装置

Country Status (3)

Country Link
US (1) US9977172B2 (zh)
CN (1) CN104536080B (zh)
WO (1) WO2016110106A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509847A (zh) * 2016-12-05 2022-05-17 扇港元器件股份有限公司 具有模块化闩锁臂的窄宽度适配器和连接器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536080B (zh) * 2015-01-06 2017-03-08 京东方光科技有限公司 一种导光板及显示装置
WO2017214481A1 (en) * 2016-06-10 2017-12-14 Corning Incorporated Microstructured and patterned light guide plates and devices comprising the same
CN107966758A (zh) * 2016-10-19 2018-04-27 瀚宇彩晶股份有限公司 导光板
CN107608019B (zh) * 2017-09-28 2020-07-10 深圳Tcl新技术有限公司 导光板及其热压设备、背光模组及显示装置
TWI649592B (zh) 2018-01-15 2019-02-01 友達光電股份有限公司 顯示裝置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411230A (en) * 2002-12-31 2004-07-01 Hon Hai Prec Ind Co Ltd Light guide plate and backlight system using the same
TW200422671A (en) * 2003-04-25 2004-11-01 Hon Hai Prec Ind Co Ltd Backlight module and light guide plate thereof
TW200530632A (en) * 2004-03-10 2005-09-16 Wintek Corp Grid structure of light guide plate
CN101261338A (zh) * 2007-03-06 2008-09-10 鸿富锦精密工业(深圳)有限公司 导光板及其制备方法
CN102879855A (zh) * 2012-06-29 2013-01-16 景智电子股份有限公司 导光板及其制造方法
TW201326924A (zh) * 2011-12-23 2013-07-01 Hon Hai Prec Ind Co Ltd 導光板及採用該導光板之背光模組
CN103246007A (zh) * 2012-02-08 2013-08-14 颖台科技股份有限公司 导光装置、前光模块以及反射式显示器
CN103574306A (zh) * 2012-07-18 2014-02-12 欧司朗股份有限公司 照明装置
CN203600605U (zh) * 2013-10-22 2014-05-21 苏州天禄光电科技有限公司 用于导光板网点的热转印加工设备
CN104536080A (zh) * 2015-01-06 2015-04-22 京东方光科技有限公司 一种导光板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104917A (ja) * 2011-11-10 2013-05-30 Sony Corp 光源デバイスおよび表示装置、ならびに電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411230A (en) * 2002-12-31 2004-07-01 Hon Hai Prec Ind Co Ltd Light guide plate and backlight system using the same
TW200422671A (en) * 2003-04-25 2004-11-01 Hon Hai Prec Ind Co Ltd Backlight module and light guide plate thereof
TW200530632A (en) * 2004-03-10 2005-09-16 Wintek Corp Grid structure of light guide plate
CN101261338A (zh) * 2007-03-06 2008-09-10 鸿富锦精密工业(深圳)有限公司 导光板及其制备方法
TW201326924A (zh) * 2011-12-23 2013-07-01 Hon Hai Prec Ind Co Ltd 導光板及採用該導光板之背光模組
CN103246007A (zh) * 2012-02-08 2013-08-14 颖台科技股份有限公司 导光装置、前光模块以及反射式显示器
CN102879855A (zh) * 2012-06-29 2013-01-16 景智电子股份有限公司 导光板及其制造方法
CN103574306A (zh) * 2012-07-18 2014-02-12 欧司朗股份有限公司 照明装置
CN203600605U (zh) * 2013-10-22 2014-05-21 苏州天禄光电科技有限公司 用于导光板网点的热转印加工设备
CN104536080A (zh) * 2015-01-06 2015-04-22 京东方光科技有限公司 一种导光板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509847A (zh) * 2016-12-05 2022-05-17 扇港元器件股份有限公司 具有模块化闩锁臂的窄宽度适配器和连接器

Also Published As

Publication number Publication date
CN104536080B (zh) 2017-03-08
CN104536080A (zh) 2015-04-22
US20160327726A1 (en) 2016-11-10
US9977172B2 (en) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2016110106A1 (zh) 导光板及显示装置
KR100781611B1 (ko) 프리즘 시트, 이 프리즘 시트를 사용한 백라이트 유닛 및투과형 액정 표시 장치
CN102124264B (zh) 面光源装置
TWI539211B (zh) 導光板及使用導光板之背光模組
JP4750848B2 (ja) 照明装置及び液晶表示装置
US20120300493A1 (en) Light Source Module and a Backlight Module Using the Same
TWI526745B (zh) 光源模組
JP7244480B2 (ja) 薄型直接式バックライトのための超広配光発光ダイオード(led)レンズ
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
TWI408046B (zh) 背光模組、導光裝置及其導光板製造方法
TW201643485A (zh) 光源模組及其製作方法
US20110019435A1 (en) Brightness enhancement film and backlight module
TW201516498A (zh) 導光板
TWI497171B (zh) 背光模組
TWI481910B (zh) 背光模組
WO2020119087A1 (zh) 一种反射片、背光模组及显示设备
JP2010186142A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
TW201314314A (zh) 導光板、面光源裝置及透過型圖像顯示裝置
JP2009176512A (ja) 面光源装置及び画像表示装置
KR102477136B1 (ko) 광학 렌즈, 백라이트 모듈 및 디스플레이 장치
JP2005243601A (ja) 導光板
CN203784829U (zh) 直下式液晶显示背光源用led透镜和液晶显示背光屏
JP2010146986A (ja) 照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
KR100964284B1 (ko) 점광원을 사용하는 면광원 장치 및 그를 이용한 기기
US9933559B2 (en) Light guide plate, backlight module, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14906112

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876608

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - 30.01.2018

122 Ep: pct application non-entry in european phase

Ref document number: 15876608

Country of ref document: EP

Kind code of ref document: A1