WO2016108629A1 - 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈 - Google Patents

폴리이미드 기판 및 이를 포함하는 표시 기판 모듈 Download PDF

Info

Publication number
WO2016108629A1
WO2016108629A1 PCT/KR2015/014497 KR2015014497W WO2016108629A1 WO 2016108629 A1 WO2016108629 A1 WO 2016108629A1 KR 2015014497 W KR2015014497 W KR 2015014497W WO 2016108629 A1 WO2016108629 A1 WO 2016108629A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide substrate
polyimide
substrate
layer
formula
Prior art date
Application number
PCT/KR2015/014497
Other languages
English (en)
French (fr)
Inventor
우학용
안상현
정학기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150189009A external-priority patent/KR20160082478A/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2016108629A1 publication Critical patent/WO2016108629A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/62Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/16Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a polyimide substrate and a display substrate module including the same, and more particularly, to a polyimide substrate useful as a cover substrate of a flexible electronic device having excellent bending characteristics and impact resistance, and a display substrate module including the same. .
  • flexible electronic devices such as flexible OLED, light weight display, flexible encapsulant, color EPD, plastic LCD, TSP, OPV, etc. have.
  • a flexible display that can bend or bend is possible, and a new type of flexible cover substrate is required to replace the existing glass cover substrate to protect the lower element.
  • a substrate needs to maintain high hardness, low moisture permeability, chemical resistance, and light transmittance in order to protect components included in the display device.
  • various high hardness plastic substrates are considered as candidates, and among them, transparent polyimide films capable of high hardness and thinness are considered as major candidates.
  • transparent plastic substrate has a lower surface hardness than glass, there is a limit in securing wear resistance.
  • high hardness coating that is, hard coating technology, for improving the surface hardness of the polymer film has become an important issue.
  • Korean Patent Laid-Open Publication No. 2010-0041992 provides a high hardness hard coat film composition comprising an ultraviolet curable polyurethane acrylate oligomer, and WO2013-187699.
  • cured material are proposed.
  • the present invention is to provide a polyimide substrate which can improve optical properties and moisture barrier properties while maintaining warpage characteristics, surface hardness, and chemical resistance, compared to a substrate in which a hard coating layer is directly formed on a polyimide film.
  • the first preferred embodiment of the present invention for solving the above problems is a polyimide layer; And an optical primer layer including a silazane-siloxane compound represented by Formula 1 on at least one surface of the polyimide layer.
  • R is an urethane group including at least one bonding structure selected from the group consisting of Hydroxyl, Vinyl, Acryl, Epoxy, and Amine
  • R ⁇ is selected from the group consisting of Hydroxyl, Vinyl, Acryl, Epoxy, and Amine
  • It is a cyanate group containing at least 1 type of bonding structure, and m and n are an integer of 1-10.
  • the polyimide substrate according to the first embodiment may further include a hard coating layer.
  • a second preferred embodiment of the present invention is a display substrate module comprising a transparent adhesive layer, a black mattress layer and the polyimide substrate of the first embodiment.
  • the present invention it is possible to provide a transparent polyimide substrate having excellent bending characteristics and impact resistance, and having solvent resistance, optical characteristics, moisture barrier properties, and scratch resistance.
  • the transparent polyimide substrate according to the present invention can be usefully used as a cover substrate of a flexible electronic device, thereby providing a flexible display substrate module having excellent bending characteristics and impact resistance.
  • FIG. 1 is a structural diagram illustrating an example of a display substrate module including a polyimide substrate of the present invention.
  • a polyimide layer a polyimide layer; And an optical primer layer including a silazane-siloxane compound on at least one surface of the polyimide layer.
  • the polyimide layer is made of a polyimide film, and may be a conventional polyimide film obtained by polymerizing a diamine and an acid dianhydride followed by imidization.
  • the polyimide layer of the present invention can be applied without limitation as long as it is a colorless and transparent polyamide film having no inherent heat resistance and inherent heat resistance of the polyimide-based resin, and is based on a UV spectrophotometer based on a film thickness of 10 to 100 ⁇ m. If the average transmittance at 350-700 nm measured is at least 85%, the yellowness is 5 or less, and the average linear expansion coefficient (CTE) measured at 50 to 250 ° C. according to TMA-Method is 50.0 ppm / ° C. or less. More preferred.
  • CTE average linear expansion coefficient
  • the average transmittance is less than 85%, or if the yellowness is greater than 5, there is a problem that the transparency is not applicable to a display or an optical element, and the average linear expansion coefficient is If the (CTE) exceeds 50.0 ppm / ° C, the difference in thermal expansion coefficient with the plastic substrate becomes large, and there is a possibility that a short circuit occurs when the device is overheated or has a high temperature.
  • the silazane-siloxane compound may be represented by the following Formula 1, and the weight average molecular weight measured by gel permeation chromatography (GPC) is preferably 500 to 500,000 g / mol.
  • R is an urethane group including at least one bonding structure selected from the group consisting of Hydroxyl, Vinyl, Acryl, Epoxy, and Amine
  • R ⁇ is selected from the group consisting of Hydroxyl, Vinyl, Acryl, Epoxy, and Amine
  • It is a cyanate group containing at least 1 type of bonding structure, and m and n are an integer of 1-10.
  • the weight average molecular weight of the silazane-siloxane compound represented by Chemical Formula 1 is less than 500 g / mol, the effect of improving solvent resistance, heat resistance, and water barrier property is insignificant, and when it exceeds 50,000 g / mol, hydrophobic characteristics are improved. It may lack adhesion with other compounds. Since the silazane-siloxane compound has a high-density structure, it plays a role of improving chemical resistance of the substrate, and shows a low refractive index compared to the substrate, and thus the optical properties of the polyimide film are more improved due to reinforcement interference with the substrate layer. Can be improved.
  • the silazane-siloxane compound is dissolved and applied in an organic solvent
  • the applicable organic solvent is isopropyl alcohol (IPA), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate ( PGMEA), N-Butanol, Pentanol, methyl ethyl ketone (MEK), Acetone, Methyl alchol, Ethyl alchol and the like may be suitable.
  • the amount of the organic solvent may be selected according to the thickness to be applied, preferably 0.5 to 90% by weight relative to the total weight of the solution, more preferably 1 to 50% by weight, most preferably 1 to It may be 20% by weight.
  • the amount of the organic solvent is less than 0.5% by weight, it is not uniformly formed during coating, which may cause thickness variation on the surface of the substrate, and when the amount of the organic solvent exceeds 90% by weight, it is difficult to apply the substrate to the substrate due to its high viscosity.
  • the optical primer layer including the silazane-siloxane compound preferably has a thickness of 0.1 ⁇ m or more in order to secure solvent resistance and optical properties and to improve moisture blocking properties, and to lower optical properties of the polyimide cover substrate. And a thickness of 3 ⁇ m or less in order to prevent curling.
  • the optical primer layer may be formed on the lower surface or the upper surface of the polyimide film, but may be formed on both surfaces.
  • the polyimide substrate including the optical primer layer may exhibit excellent optical properties of the CM-3700D measurement standard, yellowness of 2.5 or less and light transmittance of 85 to 93% at 350 to 700 nm.
  • the optical primer layer may be coated by selecting an appropriate method from various methods such as spray coating, bar coating, spin coating, dip coating, and the like. If applicable, the present invention is not limited thereto.
  • the optical primer layer is advantageously heat-treated by heat treatment at a temperature of 200 to 300 ° C. to have an intramolecular network structure, which makes the film properties more rigid, thereby making it excellent in chemical resistance and heat resistance.
  • the polyimide substrate further comprises a hard coating layer, thereby securing chemical resistance and impact resistance, and can exhibit a surface hardness of JIS K56000 measurement standards 5H to 10H.
  • the hard coating layer should be formed on the surface of the substrate.
  • the transmittance and yellowness of the film are compared with those of the polyimide substrate having only the hard coating.
  • the ASTM E96BW measurement moisture permeability can drop to 0.001 to 10 g / m 2 * day.
  • the polyimide substrate of the present invention exhibits low moisture permeability in the above range, which may be more advantageous for protecting TFT and OLED devices from external humid environments.
  • the hard coating layer may be formed from a siloxane resin including a mixture or a chemical reactant of the alkoxy silane represented by the following formula (2) and the alkoxy metal represented by the following formula (3).
  • R 1 is a linear, branched, alicyclic, aromatic organic compound containing epoxy, acrylic, isocyanate
  • R 2 and R 3 is a linear containing a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8
  • n is an integer from 1 to 3.
  • M is a metal element including a transition metal
  • m is an integer of 1-10.
  • the siloxane resin may be prepared from a polymerization reaction of the alkoxy silane of Formula 2 alone, or may be prepared as a siloxane resin in which a chemical bond of a metal element exists by introducing an alkoxy metal of Formula 2 during the polymerization reaction. .
  • the formation reaction of the siloxane resin may proceed at room temperature, but may be stirred for 1 hour to 120 hours at 50 °C to 120 °C to promote the reaction.
  • an acid catalyst such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodide sulfate, base such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and the like
  • Catalysts and ion exchange resins such as Amberite may be used, and these catalysts may be used alone but may be used in combination.
  • the amount of the catalyst is not particularly limited, but may be added in an amount of 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin.
  • the siloxane resin synthesized by the condensation reaction may adjust the viscosity and the curing rate by the monomers added during the reaction, thereby providing an optimum resin composition suitable for the purpose.
  • the siloxane resin obtained through the reaction as described above can secure the intermolecular space during crosslinking, thereby preventing the curl phenomenon caused by curing shrinkage, and enables high surface hardness by crosslinking and metal elements.
  • the hard coating resin composition may further include an initiator for polymerization of the siloxane resin, for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole. Can be used.
  • an initiator for polymerization of the siloxane resin for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole.
  • the addition amount of the initiator is not particularly limited, but may be added from about 0.01 to 10 parts by weight based on about 100 parts by weight of the siloxane resin.
  • the hard coating resin composition of the present invention may further add an organic solvent to control the viscosity of the siloxane resin to facilitate the processability and at the same time adjust the thickness of the coating film.
  • the addition amount of the organic solvent is not particularly limited, but examples of the organic solvent that can be used include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone, or cellosolves such as methyl cellosolve and butyl cellosolve, Or ethers such as ethyl ether and dioxane, alcohols such as isobutyl alcohol, isopropyl alcohol, butanol and methanol, or halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene, or normal hexane, benzene and toluene It may include one or more selected from a solvent consisting of hydrocarbons and the like.
  • the siloxane resin of the present invention may further include an antioxidant to inhibit the oxidation reaction resulting from the polymerization reaction, and may further include a leveling agent or a coating aid, but is not necessarily limited thereto.
  • the resin composition for hard coating of the present invention may be prepared into a hardened coating cured product by photopolymerization and thermal polymerization after molding such as coating, casting, and molding.
  • photopolymerization it is possible to obtain a uniform surface over the light article pre-heat treatment, which can be carried out at a temperature below about 300 °C than 40 °C, if the irradiation light amount performed under the conditions of 50mJ / cm 2 or more 20000mJ / cm 2 or less It may be, but is not limited thereto.
  • the thermal polymerization may be performed at a temperature of 40 ° C. or more and about 300 ° C. or less, but is not limited thereto.
  • the hard coating layer formed as described above preferably has a dry thickness of 10 ⁇ m or more for ensuring excellent surface hardness, impact resistance, and chemical resistance, and is preferably formed to be less than 50 ⁇ m to prevent warpage and excessive rigidity. .
  • the present invention can provide a display substrate module including a transparent adhesive layer , a black mattress, and a polyimide substrate having the aforementioned characteristics.
  • the display substrate module of the present invention is an example of a polyimide substrate in which an optical primer layer 20, a polyimide layer 10, and a hard coating layer 30 are sequentially stacked as shown in FIG. It may be prepared by forming a transparent adhesive layer 40 and the black mattress 50 on the lower surface of the optical primer layer.
  • amorphous silica particles having OH groups bound to the surface were added to N, N-dimethylacetamide (DMAc) at a dispersion concentration of 0.1%, and subjected to sonication until the solvent became transparent.
  • 100 g of the obtained polyimide of the solid powder was taken and dissolved in 670 g of N, N-dimethylacetaamide (DMAc) to obtain a 13 wt% solution.
  • the solution thus obtained was applied to a stainless plate, cast at 340 ⁇ m, dried for 30 minutes with hot air at 130 ° C., and the film was peeled off from the stainless plate to be fixed to the frame with a pin.
  • the film on which the film was fixed was placed in a vacuum oven and slowly heated for 2 hours from 100 ° C to 300 ° C, and then slowly cooled to separate from the frame to obtain a polyimide film. After the final heat treatment was performed for 30 minutes at 300 °C again.
  • the polyimide film thus prepared had a thickness of 80 ⁇ m, an average light transmittance of 87%, a yellowness of 4.5, and an average linear expansion coefficient (CTE) measured at 50 to 250 ° C. according to TMA-Method. .
  • KBM-303 (Shinetsu), Titanium isopropoxide (Sigma-Aldrich), and H 2 O were mixed in a 500 mL flask at a ratio of 227.96 mL: 1.94 mL: 21.61 mL, and 0.2 g of sodium hydroxide was added as a catalyst. Stir for 24 hours at °C. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin having a number average molecular weight of 7245, a weight average bacterium molecular weight of 20146, and a polydispersity index (PDI, M w / M n ) of 2.78 (the molecular weight using GPC). Measure).
  • 3 parts by weight of IRGACURE 250 (BASF Co., Ltd.) was added to 100 parts by weight of the resin as a photoinitiator to finally obtain a resin for hard coating.
  • a solution of 3 wt% of a polysilazane-siloxane compound (DCT Co., Ltd.) having a weight average molecular weight of 2,000 g / mol in PGME (Daejung Chemical Co., Ltd.) was dissolved in a wire on one side of a colorless transparent polyimide film prepared according to the above preparation. After coating, the film was dried at a temperature of 80 ° C. to form a polysilazane siloxane compound film having a thickness of 0.1 ⁇ m. Thereafter, the resultant was allowed to stand at room temperature for about 5 minutes and thermally cured at a temperature of about 250 ° C. to prepare a polyimide substrate having an optical primer layer having a thickness of 0.1 ⁇ m.
  • DCT Co., Ltd. a polysilazane-siloxane compound having a weight average molecular weight of 2,000 g / mol in PGME (Daejung Chemical Co., Ltd.)
  • a solution of 10 wt% of a polysilazanesiloxane compound (DCT Co., Ltd.) having a weight average molecular weight of 2,000 g / mol in PGME (Daejung Chemical Co., Ltd.) was applied to one surface of a colorless transparent polyimide film prepared through the above preparation. Then, it dried at the temperature of 80 degreeC, and formed the polysilazane siloxane compound film
  • a solution of 20 wt% of a polysilazanesiloxane compound (DCT Co., Ltd.) having a weight average molecular weight of 2,000 g / mol in PGME (Daejung Chemical Co., Ltd.) was applied to one surface of a colorless transparent polyimide film prepared according to the Preparation Example. Then, it dried at the temperature of 80 degreeC, and formed the polysilazane siloxane compound film
  • a solution of 20 wt% of a polysilazanesiloxane compound (DCT Co., Ltd.) having a weight average molecular weight of 2,000 g / mol in PGME (Daejung Chemical Co., Ltd.) was applied to one surface of a colorless transparent polyimide film prepared according to the Preparation Example. Then, it dried at the temperature of 80 degreeC, and formed the polysilazane siloxane compound film
  • PGME Daejung Chemical Co., Ltd.
  • An optical primer layer was formed in the same manner as in Example 1, but optical primer layers were formed on both sides of the polyimide substrate.
  • the hard coating layer was further formed by exposure to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds.
  • Example 5 the hard coating layer was further formed on the top surface of the optical primer layer formed on both sides of the optical primer layer in the same manner as in Example 6.
  • a polyimide substrate was manufactured in the same manner as in Example 1, except that the polysilazane-siloxane compound having a weight average molecular weight of 1,000,000 g / mol (DCT) was used.
  • the polyimide film produced in Preparation Example 1 was prepared as it was as Comparative Example 1.
  • the optical primer layer was omitted, and only the hard coating layer was formed in the same manner as in Example 6 to prepare a polyimide substrate.
  • the hard coating layer was formed in the same manner as in Example 6 using acrylic resin instead of the hard coating resin of Preparation Example 2, but the surface cracks were visually confirmed due to severe shrinkage during curing.
  • a polyimide substrate was prepared in the same manner as in Example 1 except that the thickness of the optical primer layer was 3.5 ⁇ m, but cracks were generated during curing, making it difficult to commercialize.
  • Average light transmittance (%) The optical transmittance at 350-700 nm was measured using the spectrophotometer (CM-3700D, KONICA MINOLTA) by the standard specification ASTM E313.
  • Yellowness was measured by using a spectrophotometer (CM-3700D, KONICA MINOLTA) as a standard standard standard ASTM E313.
  • Moisture Permeability (g / m 2 * day): Water permeability (WVTR) was measured using a moisture permeability meter (MOCON / US / Aquatran-model-1) using the standard standard standard ASTM E69BW.
  • Pencil hardness 50mm at a speed of 180mm / min with a load of 1kg by using an electric pencil hardness tester (in the direction of forming a primer layer or hard coating layer) using Mitsubishi evaluation pencil (UNI) as a standard standard ASTM D3363. After drawing, the pencil hardness at which no scratch was generated on the surface was measured.
  • Adhesiveness Measured by Taping after Cross Cut with standard specification (ASTM D3359).
  • TMAH tetramethylammonium hydroxide
  • DMAc dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • KOH Sodium hydroxide
  • IPA isopropyl alcohol
  • MEK methyl ethyl ketone
  • MASO 2 sodium sulfate
  • Example 1 in which the optical primer layer including silazanesiloxane was formed on the surface of the polyimide film, compared to Comparative Example 1 in which no surface was treated. It was found that chemical resistance as well as optical properties such as light transmittance and yellowness were improved. However, in Example 8 in which the applied silazane siloxane weight average molecular weight was higher than those of Examples 1 to 5, the surface hardness and the adhesiveness were slightly deteriorated, and it was confirmed that the warpage characteristics appeared fine.
  • the polyimide substrate according to the present invention has excellent optical properties as well as surface hardness, chemical resistance, and warp characteristics, and thus is suitable as a display substrate module for flexible electronic devices. And an OLED device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리이미드 층; 및 상기 폴리이미드 층의 적어도 일면에 실라잔-실록산 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판에 관한 것이며, 이를 포함하는 표시기판 모듈에 관한 것이다.

Description

폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
본 발명은 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈에 관한 것으로서, 보다 구체적으로는 휨 특성 및 내충격성이 우수하여 플렉시블 전자기기의 커버기판으로서 유용한 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈에 관한 것이다.
최근에는 차세대 디스플레이 중 하나로 휘거나 구부릴 수 있는 전자기기로서 플렉시블(Flexible) OLED를 비롯한 플렉시블 광전소자, 경량 디스플레이, 플렉시블 봉지재, Color EPD, Plastic LCD, TSP, OPV 등과 같은 플렉시블 전자기기가 주목을 받고 있다. 이러한 구부리거나 휠 수 있는 플렉시블 타입의 디스플레이가 가능하며 하부 소자를 보호하기 위해서는 기존의 유리 커버기판을 대신할 새로운 형태의 플렉시블 커버기판이 필요하다. 아울러 이러한 기판은 디스플레이 장치에 포함되는 부품을 보호하기 위하여 높은 경도, 낮은 투습성, 내화학성 및 광투과도를 유지할 필요가 있다.
이러한 플렉시블 디스플레이 커버기판 소재로서는 여러 가지 고경도의 플라스틱 기판들이 후보로서 검토되고 있으며, 그 중에서 얇은 두께에서 고경도 구현이 가능한 투명 폴리이미드 필름이 주요한 후보로서 검토되고 있다. 그러나 투명 플라스틱 기판은 유리에 비해 낮은 표면 경도를 가지고 있어 내마모성 확보에 한계가 존재한다. 이를 위해 고분자 필름의 표면 경도를 향상시키기 위한 고경도 코팅, 즉 하드 코팅 기술이 중요한 이슈가 되고 있다.
플라스틱 기판의 표면 경도를 향상시키기 위한 목적으로, 대한민국 공개특허 2010-0041992호에는 자외선 경화성 폴리우레탄 아크릴레이트계 올리고머를 포함하는 고경도 하드코팅 필름 조성물을 제공하고 있고, 국제 공개특허공보 WO2013-187699호에는 지환식 에폭시기를 포함하는 고경도 실록산 수지 조성물과 그의 제조방법 및 상기 경화물을 포함하는 광학필름이 제안되어 있다.
이와 같이 종래에는 대부분 경도 향상을 위하여 아크릴계 또는 에폭시계 유기경화막을 투명 필름의 표면에 직접적으로 형성하는 방법이 이용되어 왔다. 그러나, 아크릴계 또는 에폭시계 유기경화막과 같이 플라스틱 기판과의 강도 차이가 큰 하드 코팅층을 플라스틱 기판에 직접적으로 형성하는 경우, 플라스틱 기판의 가요성을 저해할 뿐만 아니라, 코팅층이 플렉시블 하지 못하여 휨 특성이나 내충격성 등을 평가하면 표면이 갈라지는 문제가 발생하였다.
이에 본 발명을 통해 하드코팅층을 폴리이미드 필름에 직접적으로 형성시킨 기판에 비해 휨 특성, 표면경도 및 내화학성은 유지하면서도 광학특성 및 수분 차단성은 향상될 수 있는 폴리이미드 기판을 제공하고자 한다.
상기 과제를 해결하기 위한 본 발명의 바람직한 제 1 구현예는 폴리이미드 층; 및 상기 폴리이미드 층의 적어도 일면에 하기 화학식 1로 표시되는 실라잔-실록산 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판이다.
<화학식 1>
Figure PCTKR2015014497-appb-I000001
상기 화학식 1에서 R은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 Urethane기이고, R`은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 cyanate기 이며, m 및 n은 1 내지 10의 정수이다.
상기 제 1 구현예에 의한 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함할 수 있다.
또한, 본 발명의 바람직한 제 2 구현예는 투명 접착층, 블랙메트리스 층 및 상기 제 1 구현예의 폴리이미드 기판을 포함하는 표시 기판 모듈이다.
본 발명에 따르면 우수한 휨 특성 및 내충격성을 가지면서, 내용제성, 광학특성, 수분차단 특성 및 내스크래치성을 갖는 투명 폴리이미드 기판을 제공할 수 있다. 본 발명에 따른 투명 폴리이미드 기판은 플렉시블 전자기기의 커버기판으로 유용하게 사용할 수 있으며, 이에 따라 휨 특성 및 내 충격성이 우수한 플렉서블 표시 기판 모듈을 제공할 수 있다.
도 1은 본 발명의 폴리이미드 기판을 포함하는 표시 기판 모듈의 일예를 나타낸 구조도이다.
<부호의 설명>
10: 폴리이미드 층 20: 광학프라이머 층
30: 하드 코팅층 40: 투명 접착층
50: 블랙매트리스 층
본 발명의 일 양태에 따르면 폴리이미드 층; 및 상기 폴리이미드 층의 적어도 일면에 실라잔-실록산 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판을 제공할 수 있다.
본 발명에서 상기 폴리이미드 층은 폴리이미드 필름으로 이루어진 것으로서, 디아민과 산 이무수물을 중합한 다음 이미드화하여 얻은 통상적의 폴리이미드 필름일 수 있다. 본 발명의 폴리이미드 층으로는 폴리이미드계 수지가 갖는 고유한 내열성을 가지면서 황색을 띄지 않는 무색투명한 폴리미이드 필름이라면 제한없이 적용 가능하고, 필름 두께 10 ~ 100㎛를 기준으로 UV분광광도계로 측정된 350 내지 700nm에서의 평균 투과도가 85% 이상이고, 황색도가 5 이하이며, TMA-Method에 따라 50 내지 250℃에서 측정한 평균 선팽창계수(CTE)가 50.0ppm/℃ 이하인 폴리이미드 필름이면 보다 바람직할 수 있다.
만일, 폴리이미드 필름 두께가 10 내지 100㎛를 기준으로 평균 투과도가 85% 미만이거나, 황색도가 5를 초과하는 경우에는 투명도가 떨어져 디스플레이나 광학 소자 등에 적용할 수 없는 문제점이 있고, 평균 선팽창계수(CTE)가 50.0ppm/℃를 초과하는 경우에는 플라스틱 기판과의 열팽창계수 차이가 커져 소자가 과열되거나 고온인 경우 단락이 발생될 우려가 있다.
본 발명에서 상기 실라잔-실록산 화합물은 하기 화학식 1로 표시될 수 있으며, GPC(gel permeation chromatography)로 측정한 중량평균분자량이 500 내지 500,000 g/mol인 것이 바람직하다.
<화학식 1>
Figure PCTKR2015014497-appb-I000002
상기 화학식 1에서 R은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 Urethane기이고, R`은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 cyanate기 이며, m 및 n은 1 내지 10의 정수이다.
상기 화학식 1로 표시되는 실라잔-실록산 화합물의 중량평균분자량이 500g/mol 미만인 경우, 내용제성, 내열성 및 수분 차단성 향상 효과가 미미하고, 50,000g/mol을 초과하는 경우에는 소수특성이 향상되어 다른 화합물과 접착성이 결여될 수 있다. 이러한, 실라잔-실록산 화합물은 고밀도의 구조를 갖고 있어 기판의 내화학성을 향상시키는 역할을 하며, 기재와 대비하여 낮은 굴절율을 보이므로 기재층과의 보강간섭으로 인하여 폴리이미드 필름의 광학 특성을 보다 향상시킬 수 있다.
본 발명에서 상기 실라잔-실록산 화합물은 유기 용매에 녹여서 도포하며, 이때 적용 가능한 유기 용매는 이소프로필알콜(IPA), 프로필렌 글리콜 모노메틸 에테르(Propylene glycol monomethyl ether, PGME), Propylene Glycol Mnomethyl Ether Acetate(PGMEA), N-Butanol, Pentanol, 메틸에틸케톤(MEK), Acetone, Methyl alchol, Ethyl alchol 등이 적합할 수 있다. 이때, 상기 유기용매량은 도포하고자 하는 두께에 따라 선택될 수 있으며, 바람직하게는 용액 총 중량 대비 0.5 내지 90중량%일 수 있고, 보다 바람직하게는 1 내지 50중량%, 가장 바람직하게는 1 내지 20중량%일 수 있다. 유기용매의 양이 0.5중량%미만일 경우에는 도포시 균일하게 형성되지 않아 기재표면에 두께 편차를 초래할 수 있고, 90중량%를 초과할 경우 높은 점도로 인하여 기재에 도포하기 어렵다.
또한, 본 발명에서 상기 실라잔-실록산 화합물을 포함하는 광학프라이머층은 내용제성 및 광학특성을 확보하고 수분 차단특성을 향상시키기 위하여 두께가 0.1㎛ 이상인 것이 바람직하고, 폴리이미드 커버기판의 광학 특성저하 및 컬(curl) 발생을 방지하기 위하여 두께를 3㎛이하로 하는 것이 바람직하다. 상기 광학 프라이머층은 폴리이미드 필름의 하면 또는 상면에 형성될 수도 있으나, 양면에 모두 형성되는 것도 가능하다. 본 발명에 따라 광학 프라이머 층을 포함한 폴리이미드 기판은 CM-3700D측정 기준, 황색도가 2.5 이하 및 350 내지 700nm에서의 광투과도가 85 내지 93%의 우수한 광학특성을 나타낼 수 있게 된다.
본 발명에서 상기 광학프라이머층은 스프레이(Spray) 코팅, 바(Bar) 코팅, 스핀(Spin) 코팅, 딥(Dip) 코팅 등의 다양한 방법 중 적절한 방법을 선택하여 코팅할 수 있으며, 코팅 방식은 통상 적용되는 것이라면 이에 제한되지 않고 적용 가능하다. 상기 광학 프라이머층은 200 내지 300℃ 온도로 열처리하여 열경화하는 것이 분자내 네트워크 구조를 갖기 유리하며, 보다 막 성질을 강직하게 만들어 주어 내화학성 및 내열성을 매우 우수하게 할 수 있다.
본 발명의 바람직한 양태에 따르면, 상기 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함함으로써, 내화학성 및 내 충격성을 확보하고, JIS K56000 측정 기준 5H 내지 10H의 표면경도를 나타낼 수 있다. 단, 하드 코팅층은 기판의 표면에 위치하도록 형성시켜야 하며, 이와 같이 폴리이미드 층에 광학 프라이머 층과 하드 코팅층을 모두 형성시킴으로써, 하드 코팅만 형성된 폴리이미드 기판과 비교하여 필름의 투과도 및 황색도 등의 광학특성은 유지되면서 동시에 ASTM E96BW 측정기준 수분투과도는 0.001 내지 10 g/m2*day로 떨어질 수 있다. 특히, 본 발명의 폴리이미드 기판은 상기 범위의 낮은 수분투과도를 나타냄으로 외부의 습한 환경으로부터 TFT 및 OLED 소자를 보호하는데 보다 유리할 수 있다
이때, 본 발명에서 상기 하드 코팅층은 하기 화학식 2로 표시되는 알콕시 실란 및 하기 화학식 3으로 표시되는 알콕시 금속의 혼합물 또는 화학반응물을 포함하는 실록산 수지로부터 형성된 것일 수 있다.
<화학식2>
Figure PCTKR2015014497-appb-I000003
<화학식3>
Figure PCTKR2015014497-appb-I000004
상기 화학식 2 내지 3에서, R1은 에폭시, 아크릴, 아이소시아네이트를 포함하는 선형, 분지형, 지환식, 방향족의 유기화합물이고, R2 및 R3는 산소 또는 질소 등 헤테로 화합물을 포함하는 선형, 분지형, 지환형 C1 내지 C8의 알킬기이며, n은 1 내지 3의 정수이다. 또한, M은 전이금속을 포함한 금속원소이며, m은 1 내지 10의 정수이다.
본 발명에서 상기 실록산 수지는 상기 화학식 2의 알콕시 실란 단독의 중합반응으로부터 제조될 수도 있고, 중합반응시 상기 화학식 2의 알콕시 금속을 투입함으로써 금속 원소의 화학결합이 존재하는 실록산 수지로서 제조할 수도 있다. 이러한 실록산 수지의 형성 반응은 상온에서 진행될 수 있으나, 반응을 촉진하기 위해서 50℃ 내지 120℃에서 1시간에서 120시간 동안 교반할 수도 있다.
또한, 상기 반응시 가수분해와 축합반응을 진행하기 위한 촉매로서, 염산, 아세트산, 불화수소, 질산, 황산 요오드산 등의 산 촉매, 암모니아, 수산화칼륨, 수산화나트륨, 수산화바륨, 이미다졸 등의 염기 촉매 및 Amberite 등 이온교환수지가 사용될 수 있으며, 이들 촉매는 단독으로 사용될 수도 있으나 이들을 조합하여 사용하는 것도 가능하다. 촉매의 양은 특별히 제한되지 않으나, 실록산 수지 100 중량부 기준 0.0001 내지 약 10 중량부를 첨가할 수 있다.
상기 가수분해와 축합반응이 진행되면, 부산물인 알코올이 생성되는데 이를 제거함으로써 역반응을 줄여 정반응을 보다 빠르게 진행할 수 있으며 이를 통한 반응속도 조절이 가능하다. 또한 반응 종료 후 상기 부산물은 감압하며 열을 가함으로써 제거할 수 있다.
이와 같이 축합반응에 의해 합성된 상기 실록산 수지는 반응시 첨가되는 모노머들에 의해 점도와 경화 속도를 조절할 수 있으며, 이를 통해 용도에 맞는 최적의 수지 조성물을 제공할 수 있다. 또한, 상기와 같은 반응을 통해 얻어진 실록산 수지는 가교시 분자간 공간이 확보되므로 경화 수축에 의한 컬 현상을 방지할 수 있으며, 가교결합 및 금속 원소에 의한 높은 표면 경도 구현이 가능하게 된다.
한편, 본 발명의 바람직한 양태에 따르면, 상기 하드 코팅용 수지 조성물은 상기 실록산 수지의 중합을 위해 개시제를 추가적으로 포함할 수 있으며, 예를 들어 유기금속염 등 광중합 개시제와 아민, 이미다졸 등 열중합 개시제를 사용할 수 있다. 이때, 개시제의 첨가량은 특별히 제한되지 않으나, 실록산 수지 약 100중량부에 대해 약 0.01 내지 10 중량부를 첨가할 수 있다.
또한, 본 발명의 상기 하드 코팅용 수지 조성물은 상기 실록산 수지의 점도를 제어하여 가공성을 더욱 용이하게 함과 동시에 코팅막의 두께를 조절하기 위해 유기용매를 더 첨가할 수 있다. 유기용매의 첨가량은, 특별히 제한되지 않으나, 사용 가능한 유기용매로는, 아세톤, 메틸에틸케톤, 메틸부틸케톤, 사이클로헥사논 등 케톤류, 또는 메틸셀로솔브, 부틸셀로솔브 등의 셀로솔브류, 또는 에틸에테르, 디옥산 등의 에테르류, 이소부틸알코올, 이소프로필알코올, 부탄올, 메탄올 등 알코올류, 또는 디클로로메탄, 클로로포름, 트리클로로에틸렌 등의 할로겐화 탄화수소류, 또는 노르말 헥산, 벤젠, 톨루엔 등의 탄화수소류 등으로 이루어진 용매로부터 선택된 1종 이상을 포함할 수 있다.
본 발명의 상기 실록산 수지는 중합반응으로부터 기인하는 산화반응을 억제하기 위해 산화방지제를 추가적으로 포함할 수 있으며, 레벨링제 또는 코팅조제를 더 포함할 수도 있으나, 반드시 이에 제한되는 것은 아니다.
본 발명의 상기 하드 코팅용 수지 조성물은 코팅, 캐스팅, 몰딩 등 성형 후 광중합, 열중합에 의해 고경도 코팅 경화물로 제조될 수 있다. 광중합의 경우 광조사전 열처리를 통해 균일한 표면을 얻을 수 있으며, 이는 40℃ 이상 약 300℃ 이하의 온도에서 수행될 수 있고, 조사 광량의 경우 50mJ/cm2 이상 20000mJ/cm2 이하의 조건에서 수행될 수 있으나, 이에 제한되지 않는다. 또한, 열중합의 경우 40℃ 이상 약 300℃ 이하의 온도에서 수행될 수 있으나, 이에 제한되지 않는다.
본 발명에서 상기와 같이 형성된 하드 코팅층은 우수한 표면 경도, 내 충격성 및 내화학성 확보를 위해 건조 두께가 10㎛이상인 것이 바람직하며, 휨 발생 및 과도한 경직성을 방지하기 위해 50㎛미만으로 형성되는 것이 바람직하다.
나아가 본 발명은 투명 접착층, 블랙 메트리스 및 전술한 특성의 폴리이미드 기판을 포함하는 표시기판 모듈을 제공할 수 있다. 이에 제한되는 것은 아니나, 본 발명의 표시기판 모듈은 일예로 하기 도 1과 같이 광학프라이머 층(20), 폴리이미드 층(10) 및 하드코팅 층(30)이 순차적으로 적층된 구조의 폴리이미드 기판에 투명 접착층(40) 및 블랙메트리스(50)를 광학프라미머 층 하면에 형성하여 제조될 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.
<제조예 1. 폴리이미드 필름 제조>
1-1: 폴리이미드 분말 제조
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세타아미드(DMAc) 832g을 채운 후, 반응기의 온도를 25℃로 맞춘 후 비스 트리플루오로메틸 벤지딘(TFDB)64.046g(0.2mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA) 31.09g(0.07mol)과 비페닐 테트라카르복실릭 디안하이드라이드(BPDA) 8.83g(0.03mol)을 투입 후 일정시간 동안 교반하여 용해 및 반응 시켰다. 이 때 용액의 온도는 25℃로 유지하였다. 그리고 테레프탈로일 클로라이드(TPC) 20.302g(0.1mol)을 첨가하여 고형분의 농도는 13중량%인 폴리아믹산 용액을 얻었다.
상기 폴리아믹산 용액에 피리딘 25.6g, 아세틱 안하이드라이드 33.1g을 투입하여 30분 교반 후 다시 70℃에서 1시간 교반하여 상온으로 식히고, 이를 메탄올 20L로 침전시키고, 침전된 고형분을 여과하여 분쇄한 후 100℃에서 진공으로 6시간 건조하여 111g의 고형분 분말의 폴리이미드를 얻었다.
1-2: 폴리이미드 필름 제조
표면에 OH기가 결합된 비결정질 실리카 입자 0.03g (0.03wt%)를 N,N-디메틸아세타아미드(DMAc)에 분산농도 0.1%로 투입하고 용매가 투명해 질 때까지 초음파 처리를 한 후, 상기 수득된 고형분 분말의 폴리이미드를 100g 취하여 670g의 N,N-디메틸아세타아미드(DMAc)에 녹여서 13wt%의 용액을 었다. 이렇게 수득된 용액을 스테인레스판에 도포한 후 340㎛로 캐스팅하고 130℃의 열풍으로 30분 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 300℃까지 2시간 동안 천천히 가열한 후 서서히 냉각해 프레임으로부터 분리하여 폴리이미드 필름을 수득하였다. 이후 최종 열처리 공정으로서 다시 300℃에서 30분 동안 열처리하였다. 이때 제조된 폴리이미드 필름은 두께가 80㎛이고, 평균 광투과도가 87%이며, 황색도가 4.5이고, TMA-Method에 따라 50 내지 250℃에서 측정한 평균 선팽창계수(CTE)는 20ppm/℃ 였다.
<제조예 2. 하드 코팅 수지 제조>
KBM-303(Shinetsu社), Titanium isopropoxide(Sigma-Aldrich社), H2O를 227.96mL:1.94mL:21.61mL의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 0.2g을 촉매로 첨가하여 60℃에서 24시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 수평균분자량이 7245, 중량형균 분자량이 20146 및 다분산지수(PDI, Mw/Mn)가 2.78인 실록산 수지를 얻었다(상기 분자량은 GPC를 이용하여 측정). 여기에, 광개시제로 IRGACURE 250 (BASF社)를 상기 수지 100 중량부 대비 3 중량부 첨가하여 최종적으로 하드 코팅용 수지를 얻었다.
실시예 1
PGME(대정화금社)에 중량평균분자량이 2,000g/mol인 폴리실라잔-실록산 화합물(DCT社) 3wt%를 녹인 용액을 상기 제조예를 통해 제조한 무색투명 폴리이미드 필름의 일면에 와이어로 도포한 후, 80℃의 온도로 건조하여 두께가 0.1㎛인 폴리실라잔 실록산 화합물 막을 형성하였다. 그 후, 상온에서 약 5분간 방치한 후 약 250℃의 온도에서 열경화시켜 두께가 0.1㎛인 광학 프라이머 층이 형성된 폴리이미드 기판을 제조하였다.
실시예 2
PGME(대정화금社)에 중량평균분자량이 2,000g/mol인 폴리실라잔실록산 화합물(DCT社) 10wt%를 녹인 용액을 상기 제조예를 통해 제조한 무색투명 폴리이미드 필름의 일면에 와이어로 도포한 후, 80℃의 온도로 건조하여 두께가 0.5㎛인 폴리실라잔 실록산 화합물 막을 형성하였다. 그 후, 상온에서 약 5분간 방치한 후 약 250℃의 온도에서 열경화시켜 두께가 0.5㎛인 광학 프라이머 층이 형성된 폴리이미드 기판을 제조하였다.
실시예 3
PGME(대정화금社)에 중량평균분자량이 2,000g/mol인 폴리실라잔실록산 화합물(DCT社) 20wt%를 녹인 용액을 상기 제조예를 통해 제조한 무색투명 폴리이미드 필름의 일면에 와이어로 도포한 후, 80℃의 온도로 건조하여 두께가 1.0㎛인 폴리실라잔 실록산 화합물 막을 형성하였다. 그 후, 상온에서 약 5분간 방치한 후 약 250℃의 온도에서 열경화시켜 두께가 1.0㎛인 광학 프라이머 층이 형성된 폴리이미드 기판을 제조하였다.
실시예 4
PGME(대정화금社)에 중량평균분자량이 2,000g/mol인 폴리실라잔실록산 화합물(DCT社) 20wt%를 녹인 용액을 상기 제조예를 통해 제조한 무색투명 폴리이미드 필름의 일면에 와이어로 도포한 후, 80℃의 온도로 건조하여 두께가 3.0㎛인 폴리실라잔 실록산 화합물 막을 형성하였다. 그 후, 상온에서 약 5분간 방치한 후 약 250℃의 온도에서 열경화시켜 두께가 3.0㎛인 광학 프라이머 층이 형성된 폴리이미드 기판을 제조하였다.
실시예 5
상기 실시예 1과 같은 방법으로 광학 프라이머층을 형성하되 폴리이미드 기판의 양면에 광학 프라이머층을 형성하였다.
실시예 6
상기 실시예 1과 같은 방법으로 광학 프라이머층을 형성한 폴리이미드 기판을 제조하되, 광학 프라이머층이 형성된 면과 반대되는 폴리이미드 층의 일면에 상기 제조예 2의 하드 코팅용 수지를 40㎛으로 코팅한 뒤, 315nm 파장의 자외선 램프에 30초간 노출하여 하드 코팅층을 추가로 형성하였다.
실시예 7
상기 실시예 5에서 양쪽으로 형성된 광학 프라이머층 중 한 쪽면의 광학프라이머층 상면에만 상기 실시예 6과 같은 방법으로 하드 코팅층을 추가로 형성하였다.
실시예 8
중량평균분자량이 1,000,000g/mol인 폴리실라잔-실록산 화합물(DCT社)을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 기판을 제조하였다.
비교예 1
제조예 1에서 제조된 폴리이미드 필름을 그대로 준비하여 비교예 1로 하였다.
비교예 2
상기 제조예 1의 폴리이미드 필름에 광학 프라이머 층은 생략하고 실시예 6과 동일한 방법으로 하드 코팅층만을 형성하여 폴리이미드 기판을 제조하였다.
비교예 3
상기 제조예 2의 하드 코팅용 수지 대신 아크릴계수지를 사용하여 실시예 6과 같이 하드 코팅층을 형성하였으나, 수축률이 맞지 않아 경화시 Curl이 심하게 발생되어 표면 크렉이 육안으로 확인되었다.
비교예 4
광학 프라이머 층의 두께를 3.5㎛로 형성한 것을 제외하고 실시예 1과 동일한 방법으로 폴리이미드 기판을 제조하고자 하였으나, 경화시 크렉이 발생하여 제품화하기 곤란한 것으로 확인되었다.
<측정예>
이어서, 육안으로 크렉이 발생하여 분석이 불가한 비교예 3 및 4를 제외하고, 상기 실시예 및 비교예를 대상으로 하기와 같은 방법에 의해 물성을 측정하였고, 그 결과를 표 1 및 표 2에 나타내었다.
(1) 평균 광투과도(%): 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 350~700nm에서의 광학투과도를 측정하였다.
(2) 황색도: 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 황색도를 측정하였다.
(3) 수분투과도(g/m2*day): 표준규격 ASTM E69BW으로 수분 투과도기(MOCON/US/Aquatran- model-1)를 이용하여 수분투과도(WVTR)를 측정하였다.
(4) 연필경도: 표준규격 ASTM D3363으로 미쯔비스 평가용 연필(UNI)로 전동식연필경도측정기를 이용하여(프라이머층 또는 하드 코팅층이 형성된 방향으로) 1kg의 하중 180mm/min의 속도로 50mm를 5회 그은 후, 표면에 스크레치가 전혀 발생하지 않는 연필경도를 측정하였다.
(5) 접착성(tape로 Cross Cut후 탈부착): 표준규격(ASTM D3359)으로 Cross Cut후 Taping하여 측정하였다.
(6) 휨특성: 지름 2mm인 원형 도구에 가운데 두고 기판을 감았다 폈다 200,000회 반복하여 막의 갈라짐 유무를 육안 및 현미경으로 관찰하여 갈라지는 현상이 조금이라도 있으면 'Failed'로 표시하고, 갈라지는 현상이 없으면 'OK'로 표시하였다.
(7) 내화학성 측정: 테트라메틸암모늄 하이드록사이드(tetramethylammonium hydroxide, TMAH) 2.38%, 디메틸아세트아미드(dimethylacetamide, DMAc), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone, NMP), 수산화나트륨(KOH) 1%, 아세톤(acetone), 이소프로필알코올(isopropyl alcohol, IPA), 메틸에틸케톤(methylethylketone, MEK) 및 MASO2(sodium sulfate) 에 1시간 딥핑(Dipping) 후, 육안으로 관찰하여 백탁 현상이나 이상이 생기면 'X'로 표시하고, 건조 후 무게변화율이 0.01% 이내이면 '○'로 표시하였다.
표 1
구분 투과도(%) 황색도 수분투과도(g/m2*day) 연필경도 접착성 휨특성
실시예 1 91 2.0 >50 2H 5B OK
실시예 2 90 1.9 >50 2H 5B OK
실시예 3 89 1.5 >50 2H 5B OK
실시예 4 88 0.2 >50 2H 5B OK
실시예 5 94 0.5 >50 2H 5B OK
실시예 6 91 2.0 3.1 9H 5B OK
실시예 7 95 0.6 3.0 9H 5B OK
실시예 8 90 2.1 >50 HB 4B Failed
비교예 1 89 4.5 >50 2H 5B OK
비교예 2 88 4.4 17.0 9H 5B OK
표 2
구분 TMAH DMAc NMP KOH acetone MEK IPA MASO2
실시예 1 x x
실시예 2 x x
실시예 3 x x
실시예 4 x x
실시예 5 x x
실시예 6
실시예 7
실시예 8 x x
비교예 1 x x x x x x
비교예 2
상기 표 1 및 2의 결과를 통해 알 수 있는 바와 같이, 폴리이미드 필름 표면에 실라잔실록산을 포함한 광학 프라이머층이 형성된 실시예 1 내지 5의 경우, 표면에 어떤 처리도 하지 않은 비교예 1에 비해 광투과도 및 황색도 등의 광학 특성은 물론 내화학성이 향상되었음을 알 수 있었다. 다만, 적용된 실라잔 실록산 중량평균 분자량이 실시예 1 내지 5보다 높은 실시예 8의 경우 표면경도 및 접착성이 다소 떨어졌고, 휨특성이 미세하게 나타나는 것으로 확인되었다.
한편, 광학 프라이머층 및 하드 코팅층까지 형성한 실시에 6 및 7은 광학 프라이머층을 생략하고 하드 코팅만 형성한 비교예 2와 비교하여 내화학성이나 연필 경도와 같은 물성 변화는 크지 않았으나, 황색도와 투과도가 개선되었으며, 무엇보다도 광학특성과 수분 투과도가 비교예 2에 비해 월등히 향상될 수 있음을 확인할 수 있었다.
이러한 결과를 통해, 본 발명에 따른 폴리이미드 기판은 광학적 특성은 물론 표면경도와 내화학성, 휨 특성이 우수하여 플렉시블 전자기기의 표시기판모듈로 적합하며, 특히 수분 투과도가 낮아 외부의 습한 환경으로부터 TFT 및 OLED 소자를 보호하는데 유리할 것으로 파악되었다.

Claims (10)

  1. 폴리이미드 층; 및
    상기 폴리이미드 층의 적어도 일면에 하기 화학식 1로 표시되는 실라잔-실록산 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판.
    <화학식 1>
    Figure PCTKR2015014497-appb-I000005
    상기 화학식 1에서 R은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 Urethane기 이고, R`은 Hydroxyl, Vinyl, Acryl, Epoxy 및 Amine으로 이루어진 군에서 선택된 최소 1 종의 결합구조를 포함하는 cyanate기 이며, m 및 n은 1 내지 10의 정수이다.
  2. 제 1 항에 있어서, 상기 실라잔-실록산 화합물은 중량평균분자량이 500 내지 500,000 g/mol인 것을 특징으로 하는 폴리이미드 기판.
  3. 제 1 항에 있어서, 상기 광학프라이머층은 두께가 0.1 내지 3㎛인 것을 특징으로 하는 폴리이미드 기판.
  4. 제 1 항에 있어서, 상기 폴리이미드 기판은 KONICA MINOLTA社 CM-3700D측정 기준, 황색도가 2.5 이하 및 350 내지 700nm에서의 광투과도가 85 내지 93 %인 것을 특징으로 하는 폴리이미드 기판.
  5. 제 1 항에 있어서, 상기 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함하는 폴리이미드 기판.
  6. 제 5 항에 있어서, 상기 하드 코팅층은 하기 화학식 2로 표시되는 알콕시 실란 및 하기 화학식 3으로 표시되는 알콕시 금속의 혼합물 또는 화학반응물을 포함하는 실록산 수지로부터 형성된 것임을 특징으로 하는 폴리이미드 기판.
    <화학식2>
    Figure PCTKR2015014497-appb-I000006
    <화학식3>
    Figure PCTKR2015014497-appb-I000007
    상기 화학식 2 내지 3에서, R1은 에폭시, 아크릴, 아이소시아네이트를 포함하는 선형, 분지형, 지환식, 방향족의 유기화합물이고, R2 및 R3는 산소 또는 질소 등 헤테로 화합물을 포함하는 선형, 분지형, 지환형 C1 내지 C8의 알킬기이며, n은 1 내지 3의 정수이다. 또한, M은 전이금속을 포함한 금속원소이며, m은 1 내지 10의 정수이다.
  7. 제 5 항에 있어서, 상기 하드 코팅층은 두께가 10 내지 50㎛인 것을 특징으로 하는 폴리이미드 기판.
  8. 제 5 항에 있어서, 상기 폴리이미드 기판은 JIS K56000 측정 기준, 하드코팅층이 형성된 방향을 상면으로 하여 측정한 표면경도가 5H 내지 9H인 것을 특징으로 하는 폴리이미드 기판.
  9. 제 5 항에 있어서, 상기 폴리이미드 기판은 ASTM E96BW 측정기준, 수분투과도가 0.001 내지 10g/m2*day인 것을 특징으로 하는 폴리이미드 기판.
  10. 투명 접착층, 블랙메트리스 층 및 상기 제 1 항 내지 제 9 항 중 어느 한 항의 폴리이미 기판을 포함하는 표시 기판 모듈.
PCT/KR2015/014497 2014-12-31 2015-12-30 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈 WO2016108629A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0196057 2014-12-31
KR20140196057 2014-12-31
KR1020150189009A KR20160082478A (ko) 2014-12-31 2015-12-29 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
KR10-2015-0189009 2015-12-29

Publications (1)

Publication Number Publication Date
WO2016108629A1 true WO2016108629A1 (ko) 2016-07-07

Family

ID=56284679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014497 WO2016108629A1 (ko) 2014-12-31 2015-12-30 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈

Country Status (1)

Country Link
WO (1) WO2016108629A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070086585A (ko) * 2004-11-23 2007-08-27 클라리언트 인터내셔널 리미티드 폴리실라잔계 피복물, 및 필름, 특히 중합체 필름피복용으로서의 이의 용도
KR20130129740A (ko) * 2012-05-21 2013-11-29 제일모직주식회사 가스 배리어 필름, 그 제조방법 및 이를 포함하는 디스플레이 부재
KR20140014209A (ko) * 2011-03-01 2014-02-05 에이제토 엘렉토로닉 마티리알즈 아이피 (재팬) 가부시키가이샤 저굴절율 막 형성용 조성물, 저굴절율 막의 형성 방법, 및 당해 형성 방법에 의해 형성된 저굴절율 막 및 반사 방지 막
KR20140128638A (ko) * 2013-04-29 2014-11-06 이근수 개질된 폴리실라잔계 중합체, 이 중합체를 포함하는 코팅 조성물, 이를 이용하여 얻을 수 있는 코팅 플라스틱 기판과 이의 제조 방법, 및 상기 개질된 폴리실라잔계 중합체의 제조 방법
KR20140141350A (ko) * 2013-05-31 2014-12-10 제일모직주식회사 가스 배리어 필름 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070086585A (ko) * 2004-11-23 2007-08-27 클라리언트 인터내셔널 리미티드 폴리실라잔계 피복물, 및 필름, 특히 중합체 필름피복용으로서의 이의 용도
KR20140014209A (ko) * 2011-03-01 2014-02-05 에이제토 엘렉토로닉 마티리알즈 아이피 (재팬) 가부시키가이샤 저굴절율 막 형성용 조성물, 저굴절율 막의 형성 방법, 및 당해 형성 방법에 의해 형성된 저굴절율 막 및 반사 방지 막
KR20130129740A (ko) * 2012-05-21 2013-11-29 제일모직주식회사 가스 배리어 필름, 그 제조방법 및 이를 포함하는 디스플레이 부재
KR20140128638A (ko) * 2013-04-29 2014-11-06 이근수 개질된 폴리실라잔계 중합체, 이 중합체를 포함하는 코팅 조성물, 이를 이용하여 얻을 수 있는 코팅 플라스틱 기판과 이의 제조 방법, 및 상기 개질된 폴리실라잔계 중합체의 제조 방법
KR20140141350A (ko) * 2013-05-31 2014-12-10 제일모직주식회사 가스 배리어 필름 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2017116103A1 (ko) 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
EP2931795A1 (en) Transparent polyimide substrate and method for fabricating the same
WO2014163352A1 (en) Polyimide cover substrate
CN108473677B (zh) 粘接力提高了的聚酰胺酸组合物及包含其的聚酰亚胺膜
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2017116171A1 (ko) 유연기판용 폴리실세스퀴녹산 수지 조성물
CN110621721B (zh) 聚酰胺酸、聚酰亚胺、聚酰亚胺膜、层叠体及挠性器件、以及聚酰亚胺膜的制造方法
KR20180001175A (ko) 대전 방지된 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
KR20120083798A (ko) 고분자 및 이를 포함하는 조성물과 필름
US20210009760A1 (en) Polyamic acid and method for producing same, polyamic acid solution, polyimide, polyimide film, laminate and method for producing same, and flexible device and method for producing same
WO2018212545A1 (ko) 하드코팅 필름 및 이를 포함하는 화상표시장치
KR20180072268A (ko) 하드 코팅용 수지 조성물 및 이의 경화물을 하드 코팅층으로 포함하는 폴리이미드 기판
KR20210001810A (ko) 폴리이미드계 필름 및 이의 제조 방법
WO2014193199A1 (ko) 가스 배리어 필름 및 그 제조방법
WO2023054866A1 (ko) 다층구조를 가지는 광학 필름 및 이를 포함하는 표시장치
TWI556962B (zh) 聚醯亞胺基板及包含該聚醯亞胺基板的顯示基板模組
WO2016108629A1 (ko) 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈
WO2018212547A1 (ko) 하드코팅 필름 및 이를 포함하는 화상표시장치
US20210002440A1 (en) Polyimide-Based Film, Film for Cover Window, and Display Device Including the Same
WO2021117961A1 (ko) 우수한 내후성을 갖는 폴리이미드 필름
WO2018221980A1 (ko) 코팅용 수지 조성물 및 이의 경화물을 코팅층으로 포함하는 코팅필름
JP2004277462A (ja) 透明複合体組成物
WO2020116980A1 (ko) 방현성 코팅용 수지 조성물 및 이를 포함하여 제조된 방현성 코팅 필름
WO2021071254A1 (ko) 높은 표면 경도를 가지고 유연성이 있는 코팅막을 위한 조성물 및 이를 이용한 코팅막 형성 방법
TWI838838B (zh) 聚醯亞胺類樹脂膜、用於顯示元件的基板以及光學元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875723

Country of ref document: EP

Kind code of ref document: A1